amd_iommu.c 49 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060
  1. /*
  2. * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
  3. * Author: Joerg Roedel <joerg.roedel@amd.com>
  4. * Leo Duran <leo.duran@amd.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/pci.h>
  20. #include <linux/gfp.h>
  21. #include <linux/bitops.h>
  22. #include <linux/debugfs.h>
  23. #include <linux/scatterlist.h>
  24. #include <linux/dma-mapping.h>
  25. #include <linux/iommu-helper.h>
  26. #include <linux/iommu.h>
  27. #include <asm/proto.h>
  28. #include <asm/iommu.h>
  29. #include <asm/gart.h>
  30. #include <asm/amd_iommu_types.h>
  31. #include <asm/amd_iommu.h>
  32. #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
  33. #define EXIT_LOOP_COUNT 10000000
  34. static DEFINE_RWLOCK(amd_iommu_devtable_lock);
  35. /* A list of preallocated protection domains */
  36. static LIST_HEAD(iommu_pd_list);
  37. static DEFINE_SPINLOCK(iommu_pd_list_lock);
  38. #ifdef CONFIG_IOMMU_API
  39. static struct iommu_ops amd_iommu_ops;
  40. #endif
  41. /*
  42. * general struct to manage commands send to an IOMMU
  43. */
  44. struct iommu_cmd {
  45. u32 data[4];
  46. };
  47. static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
  48. struct unity_map_entry *e);
  49. static struct dma_ops_domain *find_protection_domain(u16 devid);
  50. static u64* alloc_pte(struct protection_domain *dom,
  51. unsigned long address, u64
  52. **pte_page, gfp_t gfp);
  53. #ifdef CONFIG_AMD_IOMMU_STATS
  54. /*
  55. * Initialization code for statistics collection
  56. */
  57. DECLARE_STATS_COUNTER(compl_wait);
  58. DECLARE_STATS_COUNTER(cnt_map_single);
  59. DECLARE_STATS_COUNTER(cnt_unmap_single);
  60. DECLARE_STATS_COUNTER(cnt_map_sg);
  61. DECLARE_STATS_COUNTER(cnt_unmap_sg);
  62. DECLARE_STATS_COUNTER(cnt_alloc_coherent);
  63. DECLARE_STATS_COUNTER(cnt_free_coherent);
  64. DECLARE_STATS_COUNTER(cross_page);
  65. DECLARE_STATS_COUNTER(domain_flush_single);
  66. DECLARE_STATS_COUNTER(domain_flush_all);
  67. DECLARE_STATS_COUNTER(alloced_io_mem);
  68. DECLARE_STATS_COUNTER(total_map_requests);
  69. static struct dentry *stats_dir;
  70. static struct dentry *de_isolate;
  71. static struct dentry *de_fflush;
  72. static void amd_iommu_stats_add(struct __iommu_counter *cnt)
  73. {
  74. if (stats_dir == NULL)
  75. return;
  76. cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
  77. &cnt->value);
  78. }
  79. static void amd_iommu_stats_init(void)
  80. {
  81. stats_dir = debugfs_create_dir("amd-iommu", NULL);
  82. if (stats_dir == NULL)
  83. return;
  84. de_isolate = debugfs_create_bool("isolation", 0444, stats_dir,
  85. (u32 *)&amd_iommu_isolate);
  86. de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
  87. (u32 *)&amd_iommu_unmap_flush);
  88. amd_iommu_stats_add(&compl_wait);
  89. amd_iommu_stats_add(&cnt_map_single);
  90. amd_iommu_stats_add(&cnt_unmap_single);
  91. amd_iommu_stats_add(&cnt_map_sg);
  92. amd_iommu_stats_add(&cnt_unmap_sg);
  93. amd_iommu_stats_add(&cnt_alloc_coherent);
  94. amd_iommu_stats_add(&cnt_free_coherent);
  95. amd_iommu_stats_add(&cross_page);
  96. amd_iommu_stats_add(&domain_flush_single);
  97. amd_iommu_stats_add(&domain_flush_all);
  98. amd_iommu_stats_add(&alloced_io_mem);
  99. amd_iommu_stats_add(&total_map_requests);
  100. }
  101. #endif
  102. /* returns !0 if the IOMMU is caching non-present entries in its TLB */
  103. static int iommu_has_npcache(struct amd_iommu *iommu)
  104. {
  105. return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
  106. }
  107. /****************************************************************************
  108. *
  109. * Interrupt handling functions
  110. *
  111. ****************************************************************************/
  112. static void iommu_print_event(void *__evt)
  113. {
  114. u32 *event = __evt;
  115. int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
  116. int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
  117. int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
  118. int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
  119. u64 address = (u64)(((u64)event[3]) << 32) | event[2];
  120. printk(KERN_ERR "AMD IOMMU: Event logged [");
  121. switch (type) {
  122. case EVENT_TYPE_ILL_DEV:
  123. printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
  124. "address=0x%016llx flags=0x%04x]\n",
  125. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  126. address, flags);
  127. break;
  128. case EVENT_TYPE_IO_FAULT:
  129. printk("IO_PAGE_FAULT device=%02x:%02x.%x "
  130. "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  131. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  132. domid, address, flags);
  133. break;
  134. case EVENT_TYPE_DEV_TAB_ERR:
  135. printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
  136. "address=0x%016llx flags=0x%04x]\n",
  137. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  138. address, flags);
  139. break;
  140. case EVENT_TYPE_PAGE_TAB_ERR:
  141. printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
  142. "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  143. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  144. domid, address, flags);
  145. break;
  146. case EVENT_TYPE_ILL_CMD:
  147. printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
  148. break;
  149. case EVENT_TYPE_CMD_HARD_ERR:
  150. printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
  151. "flags=0x%04x]\n", address, flags);
  152. break;
  153. case EVENT_TYPE_IOTLB_INV_TO:
  154. printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
  155. "address=0x%016llx]\n",
  156. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  157. address);
  158. break;
  159. case EVENT_TYPE_INV_DEV_REQ:
  160. printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
  161. "address=0x%016llx flags=0x%04x]\n",
  162. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  163. address, flags);
  164. break;
  165. default:
  166. printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
  167. }
  168. }
  169. static void iommu_poll_events(struct amd_iommu *iommu)
  170. {
  171. u32 head, tail;
  172. unsigned long flags;
  173. spin_lock_irqsave(&iommu->lock, flags);
  174. head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
  175. tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
  176. while (head != tail) {
  177. iommu_print_event(iommu->evt_buf + head);
  178. head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
  179. }
  180. writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
  181. spin_unlock_irqrestore(&iommu->lock, flags);
  182. }
  183. irqreturn_t amd_iommu_int_handler(int irq, void *data)
  184. {
  185. struct amd_iommu *iommu;
  186. list_for_each_entry(iommu, &amd_iommu_list, list)
  187. iommu_poll_events(iommu);
  188. return IRQ_HANDLED;
  189. }
  190. /****************************************************************************
  191. *
  192. * IOMMU command queuing functions
  193. *
  194. ****************************************************************************/
  195. /*
  196. * Writes the command to the IOMMUs command buffer and informs the
  197. * hardware about the new command. Must be called with iommu->lock held.
  198. */
  199. static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
  200. {
  201. u32 tail, head;
  202. u8 *target;
  203. tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  204. target = iommu->cmd_buf + tail;
  205. memcpy_toio(target, cmd, sizeof(*cmd));
  206. tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
  207. head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
  208. if (tail == head)
  209. return -ENOMEM;
  210. writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  211. return 0;
  212. }
  213. /*
  214. * General queuing function for commands. Takes iommu->lock and calls
  215. * __iommu_queue_command().
  216. */
  217. static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
  218. {
  219. unsigned long flags;
  220. int ret;
  221. spin_lock_irqsave(&iommu->lock, flags);
  222. ret = __iommu_queue_command(iommu, cmd);
  223. if (!ret)
  224. iommu->need_sync = true;
  225. spin_unlock_irqrestore(&iommu->lock, flags);
  226. return ret;
  227. }
  228. /*
  229. * This function waits until an IOMMU has completed a completion
  230. * wait command
  231. */
  232. static void __iommu_wait_for_completion(struct amd_iommu *iommu)
  233. {
  234. int ready = 0;
  235. unsigned status = 0;
  236. unsigned long i = 0;
  237. INC_STATS_COUNTER(compl_wait);
  238. while (!ready && (i < EXIT_LOOP_COUNT)) {
  239. ++i;
  240. /* wait for the bit to become one */
  241. status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
  242. ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
  243. }
  244. /* set bit back to zero */
  245. status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
  246. writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
  247. if (unlikely(i == EXIT_LOOP_COUNT))
  248. panic("AMD IOMMU: Completion wait loop failed\n");
  249. }
  250. /*
  251. * This function queues a completion wait command into the command
  252. * buffer of an IOMMU
  253. */
  254. static int __iommu_completion_wait(struct amd_iommu *iommu)
  255. {
  256. struct iommu_cmd cmd;
  257. memset(&cmd, 0, sizeof(cmd));
  258. cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
  259. CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
  260. return __iommu_queue_command(iommu, &cmd);
  261. }
  262. /*
  263. * This function is called whenever we need to ensure that the IOMMU has
  264. * completed execution of all commands we sent. It sends a
  265. * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
  266. * us about that by writing a value to a physical address we pass with
  267. * the command.
  268. */
  269. static int iommu_completion_wait(struct amd_iommu *iommu)
  270. {
  271. int ret = 0;
  272. unsigned long flags;
  273. spin_lock_irqsave(&iommu->lock, flags);
  274. if (!iommu->need_sync)
  275. goto out;
  276. ret = __iommu_completion_wait(iommu);
  277. iommu->need_sync = false;
  278. if (ret)
  279. goto out;
  280. __iommu_wait_for_completion(iommu);
  281. out:
  282. spin_unlock_irqrestore(&iommu->lock, flags);
  283. return 0;
  284. }
  285. /*
  286. * Command send function for invalidating a device table entry
  287. */
  288. static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
  289. {
  290. struct iommu_cmd cmd;
  291. int ret;
  292. BUG_ON(iommu == NULL);
  293. memset(&cmd, 0, sizeof(cmd));
  294. CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
  295. cmd.data[0] = devid;
  296. ret = iommu_queue_command(iommu, &cmd);
  297. return ret;
  298. }
  299. static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
  300. u16 domid, int pde, int s)
  301. {
  302. memset(cmd, 0, sizeof(*cmd));
  303. address &= PAGE_MASK;
  304. CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
  305. cmd->data[1] |= domid;
  306. cmd->data[2] = lower_32_bits(address);
  307. cmd->data[3] = upper_32_bits(address);
  308. if (s) /* size bit - we flush more than one 4kb page */
  309. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  310. if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
  311. cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
  312. }
  313. /*
  314. * Generic command send function for invalidaing TLB entries
  315. */
  316. static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
  317. u64 address, u16 domid, int pde, int s)
  318. {
  319. struct iommu_cmd cmd;
  320. int ret;
  321. __iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
  322. ret = iommu_queue_command(iommu, &cmd);
  323. return ret;
  324. }
  325. /*
  326. * TLB invalidation function which is called from the mapping functions.
  327. * It invalidates a single PTE if the range to flush is within a single
  328. * page. Otherwise it flushes the whole TLB of the IOMMU.
  329. */
  330. static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
  331. u64 address, size_t size)
  332. {
  333. int s = 0;
  334. unsigned pages = iommu_num_pages(address, size, PAGE_SIZE);
  335. address &= PAGE_MASK;
  336. if (pages > 1) {
  337. /*
  338. * If we have to flush more than one page, flush all
  339. * TLB entries for this domain
  340. */
  341. address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
  342. s = 1;
  343. }
  344. iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);
  345. return 0;
  346. }
  347. /* Flush the whole IO/TLB for a given protection domain */
  348. static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
  349. {
  350. u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
  351. INC_STATS_COUNTER(domain_flush_single);
  352. iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
  353. }
  354. /*
  355. * This function is used to flush the IO/TLB for a given protection domain
  356. * on every IOMMU in the system
  357. */
  358. static void iommu_flush_domain(u16 domid)
  359. {
  360. unsigned long flags;
  361. struct amd_iommu *iommu;
  362. struct iommu_cmd cmd;
  363. INC_STATS_COUNTER(domain_flush_all);
  364. __iommu_build_inv_iommu_pages(&cmd, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
  365. domid, 1, 1);
  366. list_for_each_entry(iommu, &amd_iommu_list, list) {
  367. spin_lock_irqsave(&iommu->lock, flags);
  368. __iommu_queue_command(iommu, &cmd);
  369. __iommu_completion_wait(iommu);
  370. __iommu_wait_for_completion(iommu);
  371. spin_unlock_irqrestore(&iommu->lock, flags);
  372. }
  373. }
  374. /****************************************************************************
  375. *
  376. * The functions below are used the create the page table mappings for
  377. * unity mapped regions.
  378. *
  379. ****************************************************************************/
  380. /*
  381. * Generic mapping functions. It maps a physical address into a DMA
  382. * address space. It allocates the page table pages if necessary.
  383. * In the future it can be extended to a generic mapping function
  384. * supporting all features of AMD IOMMU page tables like level skipping
  385. * and full 64 bit address spaces.
  386. */
  387. static int iommu_map_page(struct protection_domain *dom,
  388. unsigned long bus_addr,
  389. unsigned long phys_addr,
  390. int prot)
  391. {
  392. u64 __pte, *pte;
  393. bus_addr = PAGE_ALIGN(bus_addr);
  394. phys_addr = PAGE_ALIGN(phys_addr);
  395. /* only support 512GB address spaces for now */
  396. if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
  397. return -EINVAL;
  398. pte = alloc_pte(dom, bus_addr, NULL, GFP_KERNEL);
  399. if (IOMMU_PTE_PRESENT(*pte))
  400. return -EBUSY;
  401. __pte = phys_addr | IOMMU_PTE_P;
  402. if (prot & IOMMU_PROT_IR)
  403. __pte |= IOMMU_PTE_IR;
  404. if (prot & IOMMU_PROT_IW)
  405. __pte |= IOMMU_PTE_IW;
  406. *pte = __pte;
  407. return 0;
  408. }
  409. static void iommu_unmap_page(struct protection_domain *dom,
  410. unsigned long bus_addr)
  411. {
  412. u64 *pte;
  413. pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];
  414. if (!IOMMU_PTE_PRESENT(*pte))
  415. return;
  416. pte = IOMMU_PTE_PAGE(*pte);
  417. pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
  418. if (!IOMMU_PTE_PRESENT(*pte))
  419. return;
  420. pte = IOMMU_PTE_PAGE(*pte);
  421. pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
  422. *pte = 0;
  423. }
  424. /*
  425. * This function checks if a specific unity mapping entry is needed for
  426. * this specific IOMMU.
  427. */
  428. static int iommu_for_unity_map(struct amd_iommu *iommu,
  429. struct unity_map_entry *entry)
  430. {
  431. u16 bdf, i;
  432. for (i = entry->devid_start; i <= entry->devid_end; ++i) {
  433. bdf = amd_iommu_alias_table[i];
  434. if (amd_iommu_rlookup_table[bdf] == iommu)
  435. return 1;
  436. }
  437. return 0;
  438. }
  439. /*
  440. * Init the unity mappings for a specific IOMMU in the system
  441. *
  442. * Basically iterates over all unity mapping entries and applies them to
  443. * the default domain DMA of that IOMMU if necessary.
  444. */
  445. static int iommu_init_unity_mappings(struct amd_iommu *iommu)
  446. {
  447. struct unity_map_entry *entry;
  448. int ret;
  449. list_for_each_entry(entry, &amd_iommu_unity_map, list) {
  450. if (!iommu_for_unity_map(iommu, entry))
  451. continue;
  452. ret = dma_ops_unity_map(iommu->default_dom, entry);
  453. if (ret)
  454. return ret;
  455. }
  456. return 0;
  457. }
  458. /*
  459. * This function actually applies the mapping to the page table of the
  460. * dma_ops domain.
  461. */
  462. static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
  463. struct unity_map_entry *e)
  464. {
  465. u64 addr;
  466. int ret;
  467. for (addr = e->address_start; addr < e->address_end;
  468. addr += PAGE_SIZE) {
  469. ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot);
  470. if (ret)
  471. return ret;
  472. /*
  473. * if unity mapping is in aperture range mark the page
  474. * as allocated in the aperture
  475. */
  476. if (addr < dma_dom->aperture_size)
  477. __set_bit(addr >> PAGE_SHIFT,
  478. dma_dom->aperture[0]->bitmap);
  479. }
  480. return 0;
  481. }
  482. /*
  483. * Inits the unity mappings required for a specific device
  484. */
  485. static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
  486. u16 devid)
  487. {
  488. struct unity_map_entry *e;
  489. int ret;
  490. list_for_each_entry(e, &amd_iommu_unity_map, list) {
  491. if (!(devid >= e->devid_start && devid <= e->devid_end))
  492. continue;
  493. ret = dma_ops_unity_map(dma_dom, e);
  494. if (ret)
  495. return ret;
  496. }
  497. return 0;
  498. }
  499. /****************************************************************************
  500. *
  501. * The next functions belong to the address allocator for the dma_ops
  502. * interface functions. They work like the allocators in the other IOMMU
  503. * drivers. Its basically a bitmap which marks the allocated pages in
  504. * the aperture. Maybe it could be enhanced in the future to a more
  505. * efficient allocator.
  506. *
  507. ****************************************************************************/
  508. /*
  509. * The address allocator core functions.
  510. *
  511. * called with domain->lock held
  512. */
  513. static unsigned long dma_ops_area_alloc(struct device *dev,
  514. struct dma_ops_domain *dom,
  515. unsigned int pages,
  516. unsigned long align_mask,
  517. u64 dma_mask,
  518. unsigned long start)
  519. {
  520. unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
  521. int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
  522. int i = start >> APERTURE_RANGE_SHIFT;
  523. unsigned long boundary_size;
  524. unsigned long address = -1;
  525. unsigned long limit;
  526. next_bit >>= PAGE_SHIFT;
  527. boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
  528. PAGE_SIZE) >> PAGE_SHIFT;
  529. for (;i < max_index; ++i) {
  530. unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
  531. if (dom->aperture[i]->offset >= dma_mask)
  532. break;
  533. limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
  534. dma_mask >> PAGE_SHIFT);
  535. address = iommu_area_alloc(dom->aperture[i]->bitmap,
  536. limit, next_bit, pages, 0,
  537. boundary_size, align_mask);
  538. if (address != -1) {
  539. address = dom->aperture[i]->offset +
  540. (address << PAGE_SHIFT);
  541. dom->next_address = address + (pages << PAGE_SHIFT);
  542. break;
  543. }
  544. next_bit = 0;
  545. }
  546. return address;
  547. }
  548. static unsigned long dma_ops_alloc_addresses(struct device *dev,
  549. struct dma_ops_domain *dom,
  550. unsigned int pages,
  551. unsigned long align_mask,
  552. u64 dma_mask)
  553. {
  554. unsigned long address;
  555. address = dma_ops_area_alloc(dev, dom, pages, align_mask,
  556. dma_mask, dom->next_address);
  557. if (address == -1) {
  558. dom->next_address = 0;
  559. address = dma_ops_area_alloc(dev, dom, pages, align_mask,
  560. dma_mask, 0);
  561. dom->need_flush = true;
  562. }
  563. if (unlikely(address == -1))
  564. address = bad_dma_address;
  565. WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
  566. return address;
  567. }
  568. /*
  569. * The address free function.
  570. *
  571. * called with domain->lock held
  572. */
  573. static void dma_ops_free_addresses(struct dma_ops_domain *dom,
  574. unsigned long address,
  575. unsigned int pages)
  576. {
  577. unsigned i = address >> APERTURE_RANGE_SHIFT;
  578. struct aperture_range *range = dom->aperture[i];
  579. BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
  580. if (address >= dom->next_address)
  581. dom->need_flush = true;
  582. address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
  583. iommu_area_free(range->bitmap, address, pages);
  584. }
  585. /****************************************************************************
  586. *
  587. * The next functions belong to the domain allocation. A domain is
  588. * allocated for every IOMMU as the default domain. If device isolation
  589. * is enabled, every device get its own domain. The most important thing
  590. * about domains is the page table mapping the DMA address space they
  591. * contain.
  592. *
  593. ****************************************************************************/
  594. static u16 domain_id_alloc(void)
  595. {
  596. unsigned long flags;
  597. int id;
  598. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  599. id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
  600. BUG_ON(id == 0);
  601. if (id > 0 && id < MAX_DOMAIN_ID)
  602. __set_bit(id, amd_iommu_pd_alloc_bitmap);
  603. else
  604. id = 0;
  605. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  606. return id;
  607. }
  608. static void domain_id_free(int id)
  609. {
  610. unsigned long flags;
  611. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  612. if (id > 0 && id < MAX_DOMAIN_ID)
  613. __clear_bit(id, amd_iommu_pd_alloc_bitmap);
  614. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  615. }
  616. /*
  617. * Used to reserve address ranges in the aperture (e.g. for exclusion
  618. * ranges.
  619. */
  620. static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
  621. unsigned long start_page,
  622. unsigned int pages)
  623. {
  624. unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
  625. if (start_page + pages > last_page)
  626. pages = last_page - start_page;
  627. for (i = start_page; i < start_page + pages; ++i) {
  628. int index = i / APERTURE_RANGE_PAGES;
  629. int page = i % APERTURE_RANGE_PAGES;
  630. __set_bit(page, dom->aperture[index]->bitmap);
  631. }
  632. }
  633. static void free_pagetable(struct protection_domain *domain)
  634. {
  635. int i, j;
  636. u64 *p1, *p2, *p3;
  637. p1 = domain->pt_root;
  638. if (!p1)
  639. return;
  640. for (i = 0; i < 512; ++i) {
  641. if (!IOMMU_PTE_PRESENT(p1[i]))
  642. continue;
  643. p2 = IOMMU_PTE_PAGE(p1[i]);
  644. for (j = 0; j < 512; ++j) {
  645. if (!IOMMU_PTE_PRESENT(p2[j]))
  646. continue;
  647. p3 = IOMMU_PTE_PAGE(p2[j]);
  648. free_page((unsigned long)p3);
  649. }
  650. free_page((unsigned long)p2);
  651. }
  652. free_page((unsigned long)p1);
  653. domain->pt_root = NULL;
  654. }
  655. /*
  656. * Free a domain, only used if something went wrong in the
  657. * allocation path and we need to free an already allocated page table
  658. */
  659. static void dma_ops_domain_free(struct dma_ops_domain *dom)
  660. {
  661. int i;
  662. if (!dom)
  663. return;
  664. free_pagetable(&dom->domain);
  665. for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
  666. if (!dom->aperture[i])
  667. continue;
  668. free_page((unsigned long)dom->aperture[i]->bitmap);
  669. kfree(dom->aperture[i]);
  670. }
  671. kfree(dom);
  672. }
  673. /*
  674. * Allocates a new protection domain usable for the dma_ops functions.
  675. * It also intializes the page table and the address allocator data
  676. * structures required for the dma_ops interface
  677. */
  678. static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu,
  679. unsigned order)
  680. {
  681. struct dma_ops_domain *dma_dom;
  682. unsigned i, num_pte_pages;
  683. u64 *l2_pde;
  684. u64 address;
  685. /*
  686. * Currently the DMA aperture must be between 32 MB and 1GB in size
  687. */
  688. if ((order < 25) || (order > 30))
  689. return NULL;
  690. dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
  691. if (!dma_dom)
  692. return NULL;
  693. dma_dom->aperture[0] = kzalloc(sizeof(struct aperture_range),
  694. GFP_KERNEL);
  695. if (!dma_dom->aperture[0])
  696. goto free_dma_dom;
  697. spin_lock_init(&dma_dom->domain.lock);
  698. dma_dom->domain.id = domain_id_alloc();
  699. if (dma_dom->domain.id == 0)
  700. goto free_dma_dom;
  701. dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
  702. dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
  703. dma_dom->domain.flags = PD_DMA_OPS_MASK;
  704. dma_dom->domain.priv = dma_dom;
  705. if (!dma_dom->domain.pt_root)
  706. goto free_dma_dom;
  707. dma_dom->aperture_size = APERTURE_RANGE_SIZE;
  708. dma_dom->aperture[0]->bitmap = (void *)get_zeroed_page(GFP_KERNEL);
  709. if (!dma_dom->aperture[0]->bitmap)
  710. goto free_dma_dom;
  711. /*
  712. * mark the first page as allocated so we never return 0 as
  713. * a valid dma-address. So we can use 0 as error value
  714. */
  715. dma_dom->aperture[0]->bitmap[0] = 1;
  716. dma_dom->next_address = 0;
  717. dma_dom->need_flush = false;
  718. dma_dom->target_dev = 0xffff;
  719. /* Intialize the exclusion range if necessary */
  720. if (iommu->exclusion_start &&
  721. iommu->exclusion_start < dma_dom->aperture_size) {
  722. unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
  723. int pages = iommu_num_pages(iommu->exclusion_start,
  724. iommu->exclusion_length,
  725. PAGE_SIZE);
  726. dma_ops_reserve_addresses(dma_dom, startpage, pages);
  727. }
  728. /*
  729. * At the last step, build the page tables so we don't need to
  730. * allocate page table pages in the dma_ops mapping/unmapping
  731. * path for the first 128MB of dma address space.
  732. */
  733. num_pte_pages = dma_dom->aperture_size / (PAGE_SIZE * 512);
  734. l2_pde = (u64 *)get_zeroed_page(GFP_KERNEL);
  735. if (l2_pde == NULL)
  736. goto free_dma_dom;
  737. dma_dom->domain.pt_root[0] = IOMMU_L2_PDE(virt_to_phys(l2_pde));
  738. for (i = 0; i < num_pte_pages; ++i) {
  739. u64 **pte_page = &dma_dom->aperture[0]->pte_pages[i];
  740. *pte_page = (u64 *)get_zeroed_page(GFP_KERNEL);
  741. if (!*pte_page)
  742. goto free_dma_dom;
  743. address = virt_to_phys(*pte_page);
  744. l2_pde[i] = IOMMU_L1_PDE(address);
  745. }
  746. return dma_dom;
  747. free_dma_dom:
  748. dma_ops_domain_free(dma_dom);
  749. return NULL;
  750. }
  751. /*
  752. * little helper function to check whether a given protection domain is a
  753. * dma_ops domain
  754. */
  755. static bool dma_ops_domain(struct protection_domain *domain)
  756. {
  757. return domain->flags & PD_DMA_OPS_MASK;
  758. }
  759. /*
  760. * Find out the protection domain structure for a given PCI device. This
  761. * will give us the pointer to the page table root for example.
  762. */
  763. static struct protection_domain *domain_for_device(u16 devid)
  764. {
  765. struct protection_domain *dom;
  766. unsigned long flags;
  767. read_lock_irqsave(&amd_iommu_devtable_lock, flags);
  768. dom = amd_iommu_pd_table[devid];
  769. read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  770. return dom;
  771. }
  772. /*
  773. * If a device is not yet associated with a domain, this function does
  774. * assigns it visible for the hardware
  775. */
  776. static void attach_device(struct amd_iommu *iommu,
  777. struct protection_domain *domain,
  778. u16 devid)
  779. {
  780. unsigned long flags;
  781. u64 pte_root = virt_to_phys(domain->pt_root);
  782. domain->dev_cnt += 1;
  783. pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
  784. << DEV_ENTRY_MODE_SHIFT;
  785. pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
  786. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  787. amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
  788. amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
  789. amd_iommu_dev_table[devid].data[2] = domain->id;
  790. amd_iommu_pd_table[devid] = domain;
  791. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  792. iommu_queue_inv_dev_entry(iommu, devid);
  793. }
  794. /*
  795. * Removes a device from a protection domain (unlocked)
  796. */
  797. static void __detach_device(struct protection_domain *domain, u16 devid)
  798. {
  799. /* lock domain */
  800. spin_lock(&domain->lock);
  801. /* remove domain from the lookup table */
  802. amd_iommu_pd_table[devid] = NULL;
  803. /* remove entry from the device table seen by the hardware */
  804. amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
  805. amd_iommu_dev_table[devid].data[1] = 0;
  806. amd_iommu_dev_table[devid].data[2] = 0;
  807. /* decrease reference counter */
  808. domain->dev_cnt -= 1;
  809. /* ready */
  810. spin_unlock(&domain->lock);
  811. }
  812. /*
  813. * Removes a device from a protection domain (with devtable_lock held)
  814. */
  815. static void detach_device(struct protection_domain *domain, u16 devid)
  816. {
  817. unsigned long flags;
  818. /* lock device table */
  819. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  820. __detach_device(domain, devid);
  821. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  822. }
  823. static int device_change_notifier(struct notifier_block *nb,
  824. unsigned long action, void *data)
  825. {
  826. struct device *dev = data;
  827. struct pci_dev *pdev = to_pci_dev(dev);
  828. u16 devid = calc_devid(pdev->bus->number, pdev->devfn);
  829. struct protection_domain *domain;
  830. struct dma_ops_domain *dma_domain;
  831. struct amd_iommu *iommu;
  832. int order = amd_iommu_aperture_order;
  833. unsigned long flags;
  834. if (devid > amd_iommu_last_bdf)
  835. goto out;
  836. devid = amd_iommu_alias_table[devid];
  837. iommu = amd_iommu_rlookup_table[devid];
  838. if (iommu == NULL)
  839. goto out;
  840. domain = domain_for_device(devid);
  841. if (domain && !dma_ops_domain(domain))
  842. WARN_ONCE(1, "AMD IOMMU WARNING: device %s already bound "
  843. "to a non-dma-ops domain\n", dev_name(dev));
  844. switch (action) {
  845. case BUS_NOTIFY_BOUND_DRIVER:
  846. if (domain)
  847. goto out;
  848. dma_domain = find_protection_domain(devid);
  849. if (!dma_domain)
  850. dma_domain = iommu->default_dom;
  851. attach_device(iommu, &dma_domain->domain, devid);
  852. printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
  853. "device %s\n", dma_domain->domain.id, dev_name(dev));
  854. break;
  855. case BUS_NOTIFY_UNBIND_DRIVER:
  856. if (!domain)
  857. goto out;
  858. detach_device(domain, devid);
  859. break;
  860. case BUS_NOTIFY_ADD_DEVICE:
  861. /* allocate a protection domain if a device is added */
  862. dma_domain = find_protection_domain(devid);
  863. if (dma_domain)
  864. goto out;
  865. dma_domain = dma_ops_domain_alloc(iommu, order);
  866. if (!dma_domain)
  867. goto out;
  868. dma_domain->target_dev = devid;
  869. spin_lock_irqsave(&iommu_pd_list_lock, flags);
  870. list_add_tail(&dma_domain->list, &iommu_pd_list);
  871. spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
  872. break;
  873. default:
  874. goto out;
  875. }
  876. iommu_queue_inv_dev_entry(iommu, devid);
  877. iommu_completion_wait(iommu);
  878. out:
  879. return 0;
  880. }
  881. struct notifier_block device_nb = {
  882. .notifier_call = device_change_notifier,
  883. };
  884. /*****************************************************************************
  885. *
  886. * The next functions belong to the dma_ops mapping/unmapping code.
  887. *
  888. *****************************************************************************/
  889. /*
  890. * This function checks if the driver got a valid device from the caller to
  891. * avoid dereferencing invalid pointers.
  892. */
  893. static bool check_device(struct device *dev)
  894. {
  895. if (!dev || !dev->dma_mask)
  896. return false;
  897. return true;
  898. }
  899. /*
  900. * In this function the list of preallocated protection domains is traversed to
  901. * find the domain for a specific device
  902. */
  903. static struct dma_ops_domain *find_protection_domain(u16 devid)
  904. {
  905. struct dma_ops_domain *entry, *ret = NULL;
  906. unsigned long flags;
  907. if (list_empty(&iommu_pd_list))
  908. return NULL;
  909. spin_lock_irqsave(&iommu_pd_list_lock, flags);
  910. list_for_each_entry(entry, &iommu_pd_list, list) {
  911. if (entry->target_dev == devid) {
  912. ret = entry;
  913. break;
  914. }
  915. }
  916. spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
  917. return ret;
  918. }
  919. /*
  920. * In the dma_ops path we only have the struct device. This function
  921. * finds the corresponding IOMMU, the protection domain and the
  922. * requestor id for a given device.
  923. * If the device is not yet associated with a domain this is also done
  924. * in this function.
  925. */
  926. static int get_device_resources(struct device *dev,
  927. struct amd_iommu **iommu,
  928. struct protection_domain **domain,
  929. u16 *bdf)
  930. {
  931. struct dma_ops_domain *dma_dom;
  932. struct pci_dev *pcidev;
  933. u16 _bdf;
  934. *iommu = NULL;
  935. *domain = NULL;
  936. *bdf = 0xffff;
  937. if (dev->bus != &pci_bus_type)
  938. return 0;
  939. pcidev = to_pci_dev(dev);
  940. _bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
  941. /* device not translated by any IOMMU in the system? */
  942. if (_bdf > amd_iommu_last_bdf)
  943. return 0;
  944. *bdf = amd_iommu_alias_table[_bdf];
  945. *iommu = amd_iommu_rlookup_table[*bdf];
  946. if (*iommu == NULL)
  947. return 0;
  948. *domain = domain_for_device(*bdf);
  949. if (*domain == NULL) {
  950. dma_dom = find_protection_domain(*bdf);
  951. if (!dma_dom)
  952. dma_dom = (*iommu)->default_dom;
  953. *domain = &dma_dom->domain;
  954. attach_device(*iommu, *domain, *bdf);
  955. printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
  956. "device %s\n", (*domain)->id, dev_name(dev));
  957. }
  958. if (domain_for_device(_bdf) == NULL)
  959. attach_device(*iommu, *domain, _bdf);
  960. return 1;
  961. }
  962. /*
  963. * If the pte_page is not yet allocated this function is called
  964. */
  965. static u64* alloc_pte(struct protection_domain *dom,
  966. unsigned long address, u64 **pte_page, gfp_t gfp)
  967. {
  968. u64 *pte, *page;
  969. pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(address)];
  970. if (!IOMMU_PTE_PRESENT(*pte)) {
  971. page = (u64 *)get_zeroed_page(gfp);
  972. if (!page)
  973. return NULL;
  974. *pte = IOMMU_L2_PDE(virt_to_phys(page));
  975. }
  976. pte = IOMMU_PTE_PAGE(*pte);
  977. pte = &pte[IOMMU_PTE_L1_INDEX(address)];
  978. if (!IOMMU_PTE_PRESENT(*pte)) {
  979. page = (u64 *)get_zeroed_page(gfp);
  980. if (!page)
  981. return NULL;
  982. *pte = IOMMU_L1_PDE(virt_to_phys(page));
  983. }
  984. pte = IOMMU_PTE_PAGE(*pte);
  985. if (pte_page)
  986. *pte_page = pte;
  987. pte = &pte[IOMMU_PTE_L0_INDEX(address)];
  988. return pte;
  989. }
  990. /*
  991. * This function fetches the PTE for a given address in the aperture
  992. */
  993. static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
  994. unsigned long address)
  995. {
  996. struct aperture_range *aperture;
  997. u64 *pte, *pte_page;
  998. aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
  999. if (!aperture)
  1000. return NULL;
  1001. pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
  1002. if (!pte) {
  1003. pte = alloc_pte(&dom->domain, address, &pte_page, GFP_ATOMIC);
  1004. aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
  1005. } else
  1006. pte += IOMMU_PTE_L0_INDEX(address);
  1007. return pte;
  1008. }
  1009. /*
  1010. * This is the generic map function. It maps one 4kb page at paddr to
  1011. * the given address in the DMA address space for the domain.
  1012. */
  1013. static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
  1014. struct dma_ops_domain *dom,
  1015. unsigned long address,
  1016. phys_addr_t paddr,
  1017. int direction)
  1018. {
  1019. u64 *pte, __pte;
  1020. WARN_ON(address > dom->aperture_size);
  1021. paddr &= PAGE_MASK;
  1022. pte = dma_ops_get_pte(dom, address);
  1023. if (!pte)
  1024. return bad_dma_address;
  1025. __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
  1026. if (direction == DMA_TO_DEVICE)
  1027. __pte |= IOMMU_PTE_IR;
  1028. else if (direction == DMA_FROM_DEVICE)
  1029. __pte |= IOMMU_PTE_IW;
  1030. else if (direction == DMA_BIDIRECTIONAL)
  1031. __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
  1032. WARN_ON(*pte);
  1033. *pte = __pte;
  1034. return (dma_addr_t)address;
  1035. }
  1036. /*
  1037. * The generic unmapping function for on page in the DMA address space.
  1038. */
  1039. static void dma_ops_domain_unmap(struct amd_iommu *iommu,
  1040. struct dma_ops_domain *dom,
  1041. unsigned long address)
  1042. {
  1043. struct aperture_range *aperture;
  1044. u64 *pte;
  1045. if (address >= dom->aperture_size)
  1046. return;
  1047. aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
  1048. if (!aperture)
  1049. return;
  1050. pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
  1051. if (!pte)
  1052. return;
  1053. pte += IOMMU_PTE_L0_INDEX(address);
  1054. WARN_ON(!*pte);
  1055. *pte = 0ULL;
  1056. }
  1057. /*
  1058. * This function contains common code for mapping of a physically
  1059. * contiguous memory region into DMA address space. It is used by all
  1060. * mapping functions provided with this IOMMU driver.
  1061. * Must be called with the domain lock held.
  1062. */
  1063. static dma_addr_t __map_single(struct device *dev,
  1064. struct amd_iommu *iommu,
  1065. struct dma_ops_domain *dma_dom,
  1066. phys_addr_t paddr,
  1067. size_t size,
  1068. int dir,
  1069. bool align,
  1070. u64 dma_mask)
  1071. {
  1072. dma_addr_t offset = paddr & ~PAGE_MASK;
  1073. dma_addr_t address, start, ret;
  1074. unsigned int pages;
  1075. unsigned long align_mask = 0;
  1076. int i;
  1077. pages = iommu_num_pages(paddr, size, PAGE_SIZE);
  1078. paddr &= PAGE_MASK;
  1079. INC_STATS_COUNTER(total_map_requests);
  1080. if (pages > 1)
  1081. INC_STATS_COUNTER(cross_page);
  1082. if (align)
  1083. align_mask = (1UL << get_order(size)) - 1;
  1084. address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
  1085. dma_mask);
  1086. if (unlikely(address == bad_dma_address))
  1087. goto out;
  1088. start = address;
  1089. for (i = 0; i < pages; ++i) {
  1090. ret = dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
  1091. if (ret == bad_dma_address)
  1092. goto out_unmap;
  1093. paddr += PAGE_SIZE;
  1094. start += PAGE_SIZE;
  1095. }
  1096. address += offset;
  1097. ADD_STATS_COUNTER(alloced_io_mem, size);
  1098. if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
  1099. iommu_flush_tlb(iommu, dma_dom->domain.id);
  1100. dma_dom->need_flush = false;
  1101. } else if (unlikely(iommu_has_npcache(iommu)))
  1102. iommu_flush_pages(iommu, dma_dom->domain.id, address, size);
  1103. out:
  1104. return address;
  1105. out_unmap:
  1106. for (--i; i >= 0; --i) {
  1107. start -= PAGE_SIZE;
  1108. dma_ops_domain_unmap(iommu, dma_dom, start);
  1109. }
  1110. dma_ops_free_addresses(dma_dom, address, pages);
  1111. return bad_dma_address;
  1112. }
  1113. /*
  1114. * Does the reverse of the __map_single function. Must be called with
  1115. * the domain lock held too
  1116. */
  1117. static void __unmap_single(struct amd_iommu *iommu,
  1118. struct dma_ops_domain *dma_dom,
  1119. dma_addr_t dma_addr,
  1120. size_t size,
  1121. int dir)
  1122. {
  1123. dma_addr_t i, start;
  1124. unsigned int pages;
  1125. if ((dma_addr == bad_dma_address) ||
  1126. (dma_addr + size > dma_dom->aperture_size))
  1127. return;
  1128. pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
  1129. dma_addr &= PAGE_MASK;
  1130. start = dma_addr;
  1131. for (i = 0; i < pages; ++i) {
  1132. dma_ops_domain_unmap(iommu, dma_dom, start);
  1133. start += PAGE_SIZE;
  1134. }
  1135. SUB_STATS_COUNTER(alloced_io_mem, size);
  1136. dma_ops_free_addresses(dma_dom, dma_addr, pages);
  1137. if (amd_iommu_unmap_flush || dma_dom->need_flush) {
  1138. iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
  1139. dma_dom->need_flush = false;
  1140. }
  1141. }
  1142. /*
  1143. * The exported map_single function for dma_ops.
  1144. */
  1145. static dma_addr_t map_page(struct device *dev, struct page *page,
  1146. unsigned long offset, size_t size,
  1147. enum dma_data_direction dir,
  1148. struct dma_attrs *attrs)
  1149. {
  1150. unsigned long flags;
  1151. struct amd_iommu *iommu;
  1152. struct protection_domain *domain;
  1153. u16 devid;
  1154. dma_addr_t addr;
  1155. u64 dma_mask;
  1156. phys_addr_t paddr = page_to_phys(page) + offset;
  1157. INC_STATS_COUNTER(cnt_map_single);
  1158. if (!check_device(dev))
  1159. return bad_dma_address;
  1160. dma_mask = *dev->dma_mask;
  1161. get_device_resources(dev, &iommu, &domain, &devid);
  1162. if (iommu == NULL || domain == NULL)
  1163. /* device not handled by any AMD IOMMU */
  1164. return (dma_addr_t)paddr;
  1165. if (!dma_ops_domain(domain))
  1166. return bad_dma_address;
  1167. spin_lock_irqsave(&domain->lock, flags);
  1168. addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
  1169. dma_mask);
  1170. if (addr == bad_dma_address)
  1171. goto out;
  1172. iommu_completion_wait(iommu);
  1173. out:
  1174. spin_unlock_irqrestore(&domain->lock, flags);
  1175. return addr;
  1176. }
  1177. /*
  1178. * The exported unmap_single function for dma_ops.
  1179. */
  1180. static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
  1181. enum dma_data_direction dir, struct dma_attrs *attrs)
  1182. {
  1183. unsigned long flags;
  1184. struct amd_iommu *iommu;
  1185. struct protection_domain *domain;
  1186. u16 devid;
  1187. INC_STATS_COUNTER(cnt_unmap_single);
  1188. if (!check_device(dev) ||
  1189. !get_device_resources(dev, &iommu, &domain, &devid))
  1190. /* device not handled by any AMD IOMMU */
  1191. return;
  1192. if (!dma_ops_domain(domain))
  1193. return;
  1194. spin_lock_irqsave(&domain->lock, flags);
  1195. __unmap_single(iommu, domain->priv, dma_addr, size, dir);
  1196. iommu_completion_wait(iommu);
  1197. spin_unlock_irqrestore(&domain->lock, flags);
  1198. }
  1199. /*
  1200. * This is a special map_sg function which is used if we should map a
  1201. * device which is not handled by an AMD IOMMU in the system.
  1202. */
  1203. static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
  1204. int nelems, int dir)
  1205. {
  1206. struct scatterlist *s;
  1207. int i;
  1208. for_each_sg(sglist, s, nelems, i) {
  1209. s->dma_address = (dma_addr_t)sg_phys(s);
  1210. s->dma_length = s->length;
  1211. }
  1212. return nelems;
  1213. }
  1214. /*
  1215. * The exported map_sg function for dma_ops (handles scatter-gather
  1216. * lists).
  1217. */
  1218. static int map_sg(struct device *dev, struct scatterlist *sglist,
  1219. int nelems, enum dma_data_direction dir,
  1220. struct dma_attrs *attrs)
  1221. {
  1222. unsigned long flags;
  1223. struct amd_iommu *iommu;
  1224. struct protection_domain *domain;
  1225. u16 devid;
  1226. int i;
  1227. struct scatterlist *s;
  1228. phys_addr_t paddr;
  1229. int mapped_elems = 0;
  1230. u64 dma_mask;
  1231. INC_STATS_COUNTER(cnt_map_sg);
  1232. if (!check_device(dev))
  1233. return 0;
  1234. dma_mask = *dev->dma_mask;
  1235. get_device_resources(dev, &iommu, &domain, &devid);
  1236. if (!iommu || !domain)
  1237. return map_sg_no_iommu(dev, sglist, nelems, dir);
  1238. if (!dma_ops_domain(domain))
  1239. return 0;
  1240. spin_lock_irqsave(&domain->lock, flags);
  1241. for_each_sg(sglist, s, nelems, i) {
  1242. paddr = sg_phys(s);
  1243. s->dma_address = __map_single(dev, iommu, domain->priv,
  1244. paddr, s->length, dir, false,
  1245. dma_mask);
  1246. if (s->dma_address) {
  1247. s->dma_length = s->length;
  1248. mapped_elems++;
  1249. } else
  1250. goto unmap;
  1251. }
  1252. iommu_completion_wait(iommu);
  1253. out:
  1254. spin_unlock_irqrestore(&domain->lock, flags);
  1255. return mapped_elems;
  1256. unmap:
  1257. for_each_sg(sglist, s, mapped_elems, i) {
  1258. if (s->dma_address)
  1259. __unmap_single(iommu, domain->priv, s->dma_address,
  1260. s->dma_length, dir);
  1261. s->dma_address = s->dma_length = 0;
  1262. }
  1263. mapped_elems = 0;
  1264. goto out;
  1265. }
  1266. /*
  1267. * The exported map_sg function for dma_ops (handles scatter-gather
  1268. * lists).
  1269. */
  1270. static void unmap_sg(struct device *dev, struct scatterlist *sglist,
  1271. int nelems, enum dma_data_direction dir,
  1272. struct dma_attrs *attrs)
  1273. {
  1274. unsigned long flags;
  1275. struct amd_iommu *iommu;
  1276. struct protection_domain *domain;
  1277. struct scatterlist *s;
  1278. u16 devid;
  1279. int i;
  1280. INC_STATS_COUNTER(cnt_unmap_sg);
  1281. if (!check_device(dev) ||
  1282. !get_device_resources(dev, &iommu, &domain, &devid))
  1283. return;
  1284. if (!dma_ops_domain(domain))
  1285. return;
  1286. spin_lock_irqsave(&domain->lock, flags);
  1287. for_each_sg(sglist, s, nelems, i) {
  1288. __unmap_single(iommu, domain->priv, s->dma_address,
  1289. s->dma_length, dir);
  1290. s->dma_address = s->dma_length = 0;
  1291. }
  1292. iommu_completion_wait(iommu);
  1293. spin_unlock_irqrestore(&domain->lock, flags);
  1294. }
  1295. /*
  1296. * The exported alloc_coherent function for dma_ops.
  1297. */
  1298. static void *alloc_coherent(struct device *dev, size_t size,
  1299. dma_addr_t *dma_addr, gfp_t flag)
  1300. {
  1301. unsigned long flags;
  1302. void *virt_addr;
  1303. struct amd_iommu *iommu;
  1304. struct protection_domain *domain;
  1305. u16 devid;
  1306. phys_addr_t paddr;
  1307. u64 dma_mask = dev->coherent_dma_mask;
  1308. INC_STATS_COUNTER(cnt_alloc_coherent);
  1309. if (!check_device(dev))
  1310. return NULL;
  1311. if (!get_device_resources(dev, &iommu, &domain, &devid))
  1312. flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
  1313. flag |= __GFP_ZERO;
  1314. virt_addr = (void *)__get_free_pages(flag, get_order(size));
  1315. if (!virt_addr)
  1316. return 0;
  1317. paddr = virt_to_phys(virt_addr);
  1318. if (!iommu || !domain) {
  1319. *dma_addr = (dma_addr_t)paddr;
  1320. return virt_addr;
  1321. }
  1322. if (!dma_ops_domain(domain))
  1323. goto out_free;
  1324. if (!dma_mask)
  1325. dma_mask = *dev->dma_mask;
  1326. spin_lock_irqsave(&domain->lock, flags);
  1327. *dma_addr = __map_single(dev, iommu, domain->priv, paddr,
  1328. size, DMA_BIDIRECTIONAL, true, dma_mask);
  1329. if (*dma_addr == bad_dma_address)
  1330. goto out_free;
  1331. iommu_completion_wait(iommu);
  1332. spin_unlock_irqrestore(&domain->lock, flags);
  1333. return virt_addr;
  1334. out_free:
  1335. free_pages((unsigned long)virt_addr, get_order(size));
  1336. return NULL;
  1337. }
  1338. /*
  1339. * The exported free_coherent function for dma_ops.
  1340. */
  1341. static void free_coherent(struct device *dev, size_t size,
  1342. void *virt_addr, dma_addr_t dma_addr)
  1343. {
  1344. unsigned long flags;
  1345. struct amd_iommu *iommu;
  1346. struct protection_domain *domain;
  1347. u16 devid;
  1348. INC_STATS_COUNTER(cnt_free_coherent);
  1349. if (!check_device(dev))
  1350. return;
  1351. get_device_resources(dev, &iommu, &domain, &devid);
  1352. if (!iommu || !domain)
  1353. goto free_mem;
  1354. if (!dma_ops_domain(domain))
  1355. goto free_mem;
  1356. spin_lock_irqsave(&domain->lock, flags);
  1357. __unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
  1358. iommu_completion_wait(iommu);
  1359. spin_unlock_irqrestore(&domain->lock, flags);
  1360. free_mem:
  1361. free_pages((unsigned long)virt_addr, get_order(size));
  1362. }
  1363. /*
  1364. * This function is called by the DMA layer to find out if we can handle a
  1365. * particular device. It is part of the dma_ops.
  1366. */
  1367. static int amd_iommu_dma_supported(struct device *dev, u64 mask)
  1368. {
  1369. u16 bdf;
  1370. struct pci_dev *pcidev;
  1371. /* No device or no PCI device */
  1372. if (!dev || dev->bus != &pci_bus_type)
  1373. return 0;
  1374. pcidev = to_pci_dev(dev);
  1375. bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
  1376. /* Out of our scope? */
  1377. if (bdf > amd_iommu_last_bdf)
  1378. return 0;
  1379. return 1;
  1380. }
  1381. /*
  1382. * The function for pre-allocating protection domains.
  1383. *
  1384. * If the driver core informs the DMA layer if a driver grabs a device
  1385. * we don't need to preallocate the protection domains anymore.
  1386. * For now we have to.
  1387. */
  1388. static void prealloc_protection_domains(void)
  1389. {
  1390. struct pci_dev *dev = NULL;
  1391. struct dma_ops_domain *dma_dom;
  1392. struct amd_iommu *iommu;
  1393. int order = amd_iommu_aperture_order;
  1394. u16 devid;
  1395. while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
  1396. devid = calc_devid(dev->bus->number, dev->devfn);
  1397. if (devid > amd_iommu_last_bdf)
  1398. continue;
  1399. devid = amd_iommu_alias_table[devid];
  1400. if (domain_for_device(devid))
  1401. continue;
  1402. iommu = amd_iommu_rlookup_table[devid];
  1403. if (!iommu)
  1404. continue;
  1405. dma_dom = dma_ops_domain_alloc(iommu, order);
  1406. if (!dma_dom)
  1407. continue;
  1408. init_unity_mappings_for_device(dma_dom, devid);
  1409. dma_dom->target_dev = devid;
  1410. list_add_tail(&dma_dom->list, &iommu_pd_list);
  1411. }
  1412. }
  1413. static struct dma_map_ops amd_iommu_dma_ops = {
  1414. .alloc_coherent = alloc_coherent,
  1415. .free_coherent = free_coherent,
  1416. .map_page = map_page,
  1417. .unmap_page = unmap_page,
  1418. .map_sg = map_sg,
  1419. .unmap_sg = unmap_sg,
  1420. .dma_supported = amd_iommu_dma_supported,
  1421. };
  1422. /*
  1423. * The function which clues the AMD IOMMU driver into dma_ops.
  1424. */
  1425. int __init amd_iommu_init_dma_ops(void)
  1426. {
  1427. struct amd_iommu *iommu;
  1428. int order = amd_iommu_aperture_order;
  1429. int ret;
  1430. /*
  1431. * first allocate a default protection domain for every IOMMU we
  1432. * found in the system. Devices not assigned to any other
  1433. * protection domain will be assigned to the default one.
  1434. */
  1435. list_for_each_entry(iommu, &amd_iommu_list, list) {
  1436. iommu->default_dom = dma_ops_domain_alloc(iommu, order);
  1437. if (iommu->default_dom == NULL)
  1438. return -ENOMEM;
  1439. iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
  1440. ret = iommu_init_unity_mappings(iommu);
  1441. if (ret)
  1442. goto free_domains;
  1443. }
  1444. /*
  1445. * If device isolation is enabled, pre-allocate the protection
  1446. * domains for each device.
  1447. */
  1448. if (amd_iommu_isolate)
  1449. prealloc_protection_domains();
  1450. iommu_detected = 1;
  1451. force_iommu = 1;
  1452. bad_dma_address = 0;
  1453. #ifdef CONFIG_GART_IOMMU
  1454. gart_iommu_aperture_disabled = 1;
  1455. gart_iommu_aperture = 0;
  1456. #endif
  1457. /* Make the driver finally visible to the drivers */
  1458. dma_ops = &amd_iommu_dma_ops;
  1459. register_iommu(&amd_iommu_ops);
  1460. bus_register_notifier(&pci_bus_type, &device_nb);
  1461. amd_iommu_stats_init();
  1462. return 0;
  1463. free_domains:
  1464. list_for_each_entry(iommu, &amd_iommu_list, list) {
  1465. if (iommu->default_dom)
  1466. dma_ops_domain_free(iommu->default_dom);
  1467. }
  1468. return ret;
  1469. }
  1470. /*****************************************************************************
  1471. *
  1472. * The following functions belong to the exported interface of AMD IOMMU
  1473. *
  1474. * This interface allows access to lower level functions of the IOMMU
  1475. * like protection domain handling and assignement of devices to domains
  1476. * which is not possible with the dma_ops interface.
  1477. *
  1478. *****************************************************************************/
  1479. static void cleanup_domain(struct protection_domain *domain)
  1480. {
  1481. unsigned long flags;
  1482. u16 devid;
  1483. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1484. for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
  1485. if (amd_iommu_pd_table[devid] == domain)
  1486. __detach_device(domain, devid);
  1487. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1488. }
  1489. static int amd_iommu_domain_init(struct iommu_domain *dom)
  1490. {
  1491. struct protection_domain *domain;
  1492. domain = kzalloc(sizeof(*domain), GFP_KERNEL);
  1493. if (!domain)
  1494. return -ENOMEM;
  1495. spin_lock_init(&domain->lock);
  1496. domain->mode = PAGE_MODE_3_LEVEL;
  1497. domain->id = domain_id_alloc();
  1498. if (!domain->id)
  1499. goto out_free;
  1500. domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
  1501. if (!domain->pt_root)
  1502. goto out_free;
  1503. dom->priv = domain;
  1504. return 0;
  1505. out_free:
  1506. kfree(domain);
  1507. return -ENOMEM;
  1508. }
  1509. static void amd_iommu_domain_destroy(struct iommu_domain *dom)
  1510. {
  1511. struct protection_domain *domain = dom->priv;
  1512. if (!domain)
  1513. return;
  1514. if (domain->dev_cnt > 0)
  1515. cleanup_domain(domain);
  1516. BUG_ON(domain->dev_cnt != 0);
  1517. free_pagetable(domain);
  1518. domain_id_free(domain->id);
  1519. kfree(domain);
  1520. dom->priv = NULL;
  1521. }
  1522. static void amd_iommu_detach_device(struct iommu_domain *dom,
  1523. struct device *dev)
  1524. {
  1525. struct protection_domain *domain = dom->priv;
  1526. struct amd_iommu *iommu;
  1527. struct pci_dev *pdev;
  1528. u16 devid;
  1529. if (dev->bus != &pci_bus_type)
  1530. return;
  1531. pdev = to_pci_dev(dev);
  1532. devid = calc_devid(pdev->bus->number, pdev->devfn);
  1533. if (devid > 0)
  1534. detach_device(domain, devid);
  1535. iommu = amd_iommu_rlookup_table[devid];
  1536. if (!iommu)
  1537. return;
  1538. iommu_queue_inv_dev_entry(iommu, devid);
  1539. iommu_completion_wait(iommu);
  1540. }
  1541. static int amd_iommu_attach_device(struct iommu_domain *dom,
  1542. struct device *dev)
  1543. {
  1544. struct protection_domain *domain = dom->priv;
  1545. struct protection_domain *old_domain;
  1546. struct amd_iommu *iommu;
  1547. struct pci_dev *pdev;
  1548. u16 devid;
  1549. if (dev->bus != &pci_bus_type)
  1550. return -EINVAL;
  1551. pdev = to_pci_dev(dev);
  1552. devid = calc_devid(pdev->bus->number, pdev->devfn);
  1553. if (devid >= amd_iommu_last_bdf ||
  1554. devid != amd_iommu_alias_table[devid])
  1555. return -EINVAL;
  1556. iommu = amd_iommu_rlookup_table[devid];
  1557. if (!iommu)
  1558. return -EINVAL;
  1559. old_domain = domain_for_device(devid);
  1560. if (old_domain)
  1561. return -EBUSY;
  1562. attach_device(iommu, domain, devid);
  1563. iommu_completion_wait(iommu);
  1564. return 0;
  1565. }
  1566. static int amd_iommu_map_range(struct iommu_domain *dom,
  1567. unsigned long iova, phys_addr_t paddr,
  1568. size_t size, int iommu_prot)
  1569. {
  1570. struct protection_domain *domain = dom->priv;
  1571. unsigned long i, npages = iommu_num_pages(paddr, size, PAGE_SIZE);
  1572. int prot = 0;
  1573. int ret;
  1574. if (iommu_prot & IOMMU_READ)
  1575. prot |= IOMMU_PROT_IR;
  1576. if (iommu_prot & IOMMU_WRITE)
  1577. prot |= IOMMU_PROT_IW;
  1578. iova &= PAGE_MASK;
  1579. paddr &= PAGE_MASK;
  1580. for (i = 0; i < npages; ++i) {
  1581. ret = iommu_map_page(domain, iova, paddr, prot);
  1582. if (ret)
  1583. return ret;
  1584. iova += PAGE_SIZE;
  1585. paddr += PAGE_SIZE;
  1586. }
  1587. return 0;
  1588. }
  1589. static void amd_iommu_unmap_range(struct iommu_domain *dom,
  1590. unsigned long iova, size_t size)
  1591. {
  1592. struct protection_domain *domain = dom->priv;
  1593. unsigned long i, npages = iommu_num_pages(iova, size, PAGE_SIZE);
  1594. iova &= PAGE_MASK;
  1595. for (i = 0; i < npages; ++i) {
  1596. iommu_unmap_page(domain, iova);
  1597. iova += PAGE_SIZE;
  1598. }
  1599. iommu_flush_domain(domain->id);
  1600. }
  1601. static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
  1602. unsigned long iova)
  1603. {
  1604. struct protection_domain *domain = dom->priv;
  1605. unsigned long offset = iova & ~PAGE_MASK;
  1606. phys_addr_t paddr;
  1607. u64 *pte;
  1608. pte = &domain->pt_root[IOMMU_PTE_L2_INDEX(iova)];
  1609. if (!IOMMU_PTE_PRESENT(*pte))
  1610. return 0;
  1611. pte = IOMMU_PTE_PAGE(*pte);
  1612. pte = &pte[IOMMU_PTE_L1_INDEX(iova)];
  1613. if (!IOMMU_PTE_PRESENT(*pte))
  1614. return 0;
  1615. pte = IOMMU_PTE_PAGE(*pte);
  1616. pte = &pte[IOMMU_PTE_L0_INDEX(iova)];
  1617. if (!IOMMU_PTE_PRESENT(*pte))
  1618. return 0;
  1619. paddr = *pte & IOMMU_PAGE_MASK;
  1620. paddr |= offset;
  1621. return paddr;
  1622. }
  1623. static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
  1624. unsigned long cap)
  1625. {
  1626. return 0;
  1627. }
  1628. static struct iommu_ops amd_iommu_ops = {
  1629. .domain_init = amd_iommu_domain_init,
  1630. .domain_destroy = amd_iommu_domain_destroy,
  1631. .attach_dev = amd_iommu_attach_device,
  1632. .detach_dev = amd_iommu_detach_device,
  1633. .map = amd_iommu_map_range,
  1634. .unmap = amd_iommu_unmap_range,
  1635. .iova_to_phys = amd_iommu_iova_to_phys,
  1636. .domain_has_cap = amd_iommu_domain_has_cap,
  1637. };