disk-io.c 111 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <linux/uuid.h>
  33. #include <linux/semaphore.h>
  34. #include <asm/unaligned.h>
  35. #include "compat.h"
  36. #include "ctree.h"
  37. #include "disk-io.h"
  38. #include "transaction.h"
  39. #include "btrfs_inode.h"
  40. #include "volumes.h"
  41. #include "print-tree.h"
  42. #include "async-thread.h"
  43. #include "locking.h"
  44. #include "tree-log.h"
  45. #include "free-space-cache.h"
  46. #include "inode-map.h"
  47. #include "check-integrity.h"
  48. #include "rcu-string.h"
  49. #include "dev-replace.h"
  50. #include "raid56.h"
  51. #ifdef CONFIG_X86
  52. #include <asm/cpufeature.h>
  53. #endif
  54. static struct extent_io_ops btree_extent_io_ops;
  55. static void end_workqueue_fn(struct btrfs_work *work);
  56. static void free_fs_root(struct btrfs_root *root);
  57. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  58. int read_only);
  59. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  60. struct btrfs_root *root);
  61. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  62. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  63. struct btrfs_root *root);
  64. static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
  65. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  66. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  67. struct extent_io_tree *dirty_pages,
  68. int mark);
  69. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  70. struct extent_io_tree *pinned_extents);
  71. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  72. static void btrfs_error_commit_super(struct btrfs_root *root);
  73. /*
  74. * end_io_wq structs are used to do processing in task context when an IO is
  75. * complete. This is used during reads to verify checksums, and it is used
  76. * by writes to insert metadata for new file extents after IO is complete.
  77. */
  78. struct end_io_wq {
  79. struct bio *bio;
  80. bio_end_io_t *end_io;
  81. void *private;
  82. struct btrfs_fs_info *info;
  83. int error;
  84. int metadata;
  85. struct list_head list;
  86. struct btrfs_work work;
  87. };
  88. /*
  89. * async submit bios are used to offload expensive checksumming
  90. * onto the worker threads. They checksum file and metadata bios
  91. * just before they are sent down the IO stack.
  92. */
  93. struct async_submit_bio {
  94. struct inode *inode;
  95. struct bio *bio;
  96. struct list_head list;
  97. extent_submit_bio_hook_t *submit_bio_start;
  98. extent_submit_bio_hook_t *submit_bio_done;
  99. int rw;
  100. int mirror_num;
  101. unsigned long bio_flags;
  102. /*
  103. * bio_offset is optional, can be used if the pages in the bio
  104. * can't tell us where in the file the bio should go
  105. */
  106. u64 bio_offset;
  107. struct btrfs_work work;
  108. int error;
  109. };
  110. /*
  111. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  112. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  113. * the level the eb occupies in the tree.
  114. *
  115. * Different roots are used for different purposes and may nest inside each
  116. * other and they require separate keysets. As lockdep keys should be
  117. * static, assign keysets according to the purpose of the root as indicated
  118. * by btrfs_root->objectid. This ensures that all special purpose roots
  119. * have separate keysets.
  120. *
  121. * Lock-nesting across peer nodes is always done with the immediate parent
  122. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  123. * subclass to avoid triggering lockdep warning in such cases.
  124. *
  125. * The key is set by the readpage_end_io_hook after the buffer has passed
  126. * csum validation but before the pages are unlocked. It is also set by
  127. * btrfs_init_new_buffer on freshly allocated blocks.
  128. *
  129. * We also add a check to make sure the highest level of the tree is the
  130. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  131. * needs update as well.
  132. */
  133. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  134. # if BTRFS_MAX_LEVEL != 8
  135. # error
  136. # endif
  137. static struct btrfs_lockdep_keyset {
  138. u64 id; /* root objectid */
  139. const char *name_stem; /* lock name stem */
  140. char names[BTRFS_MAX_LEVEL + 1][20];
  141. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  142. } btrfs_lockdep_keysets[] = {
  143. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  144. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  145. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  146. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  147. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  148. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  149. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  150. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  151. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  152. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  153. { .id = 0, .name_stem = "tree" },
  154. };
  155. void __init btrfs_init_lockdep(void)
  156. {
  157. int i, j;
  158. /* initialize lockdep class names */
  159. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  160. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  161. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  162. snprintf(ks->names[j], sizeof(ks->names[j]),
  163. "btrfs-%s-%02d", ks->name_stem, j);
  164. }
  165. }
  166. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  167. int level)
  168. {
  169. struct btrfs_lockdep_keyset *ks;
  170. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  171. /* find the matching keyset, id 0 is the default entry */
  172. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  173. if (ks->id == objectid)
  174. break;
  175. lockdep_set_class_and_name(&eb->lock,
  176. &ks->keys[level], ks->names[level]);
  177. }
  178. #endif
  179. /*
  180. * extents on the btree inode are pretty simple, there's one extent
  181. * that covers the entire device
  182. */
  183. static struct extent_map *btree_get_extent(struct inode *inode,
  184. struct page *page, size_t pg_offset, u64 start, u64 len,
  185. int create)
  186. {
  187. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  188. struct extent_map *em;
  189. int ret;
  190. read_lock(&em_tree->lock);
  191. em = lookup_extent_mapping(em_tree, start, len);
  192. if (em) {
  193. em->bdev =
  194. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  195. read_unlock(&em_tree->lock);
  196. goto out;
  197. }
  198. read_unlock(&em_tree->lock);
  199. em = alloc_extent_map();
  200. if (!em) {
  201. em = ERR_PTR(-ENOMEM);
  202. goto out;
  203. }
  204. em->start = 0;
  205. em->len = (u64)-1;
  206. em->block_len = (u64)-1;
  207. em->block_start = 0;
  208. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  209. write_lock(&em_tree->lock);
  210. ret = add_extent_mapping(em_tree, em, 0);
  211. if (ret == -EEXIST) {
  212. free_extent_map(em);
  213. em = lookup_extent_mapping(em_tree, start, len);
  214. if (!em)
  215. em = ERR_PTR(-EIO);
  216. } else if (ret) {
  217. free_extent_map(em);
  218. em = ERR_PTR(ret);
  219. }
  220. write_unlock(&em_tree->lock);
  221. out:
  222. return em;
  223. }
  224. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  225. {
  226. return crc32c(seed, data, len);
  227. }
  228. void btrfs_csum_final(u32 crc, char *result)
  229. {
  230. put_unaligned_le32(~crc, result);
  231. }
  232. /*
  233. * compute the csum for a btree block, and either verify it or write it
  234. * into the csum field of the block.
  235. */
  236. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  237. int verify)
  238. {
  239. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  240. char *result = NULL;
  241. unsigned long len;
  242. unsigned long cur_len;
  243. unsigned long offset = BTRFS_CSUM_SIZE;
  244. char *kaddr;
  245. unsigned long map_start;
  246. unsigned long map_len;
  247. int err;
  248. u32 crc = ~(u32)0;
  249. unsigned long inline_result;
  250. len = buf->len - offset;
  251. while (len > 0) {
  252. err = map_private_extent_buffer(buf, offset, 32,
  253. &kaddr, &map_start, &map_len);
  254. if (err)
  255. return 1;
  256. cur_len = min(len, map_len - (offset - map_start));
  257. crc = btrfs_csum_data(kaddr + offset - map_start,
  258. crc, cur_len);
  259. len -= cur_len;
  260. offset += cur_len;
  261. }
  262. if (csum_size > sizeof(inline_result)) {
  263. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  264. if (!result)
  265. return 1;
  266. } else {
  267. result = (char *)&inline_result;
  268. }
  269. btrfs_csum_final(crc, result);
  270. if (verify) {
  271. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  272. u32 val;
  273. u32 found = 0;
  274. memcpy(&found, result, csum_size);
  275. read_extent_buffer(buf, &val, 0, csum_size);
  276. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  277. "failed on %llu wanted %X found %X "
  278. "level %d\n",
  279. root->fs_info->sb->s_id,
  280. (unsigned long long)buf->start, val, found,
  281. btrfs_header_level(buf));
  282. if (result != (char *)&inline_result)
  283. kfree(result);
  284. return 1;
  285. }
  286. } else {
  287. write_extent_buffer(buf, result, 0, csum_size);
  288. }
  289. if (result != (char *)&inline_result)
  290. kfree(result);
  291. return 0;
  292. }
  293. /*
  294. * we can't consider a given block up to date unless the transid of the
  295. * block matches the transid in the parent node's pointer. This is how we
  296. * detect blocks that either didn't get written at all or got written
  297. * in the wrong place.
  298. */
  299. static int verify_parent_transid(struct extent_io_tree *io_tree,
  300. struct extent_buffer *eb, u64 parent_transid,
  301. int atomic)
  302. {
  303. struct extent_state *cached_state = NULL;
  304. int ret;
  305. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  306. return 0;
  307. if (atomic)
  308. return -EAGAIN;
  309. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  310. 0, &cached_state);
  311. if (extent_buffer_uptodate(eb) &&
  312. btrfs_header_generation(eb) == parent_transid) {
  313. ret = 0;
  314. goto out;
  315. }
  316. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  317. "found %llu\n",
  318. (unsigned long long)eb->start,
  319. (unsigned long long)parent_transid,
  320. (unsigned long long)btrfs_header_generation(eb));
  321. ret = 1;
  322. clear_extent_buffer_uptodate(eb);
  323. out:
  324. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  325. &cached_state, GFP_NOFS);
  326. return ret;
  327. }
  328. /*
  329. * Return 0 if the superblock checksum type matches the checksum value of that
  330. * algorithm. Pass the raw disk superblock data.
  331. */
  332. static int btrfs_check_super_csum(char *raw_disk_sb)
  333. {
  334. struct btrfs_super_block *disk_sb =
  335. (struct btrfs_super_block *)raw_disk_sb;
  336. u16 csum_type = btrfs_super_csum_type(disk_sb);
  337. int ret = 0;
  338. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  339. u32 crc = ~(u32)0;
  340. const int csum_size = sizeof(crc);
  341. char result[csum_size];
  342. /*
  343. * The super_block structure does not span the whole
  344. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  345. * is filled with zeros and is included in the checkum.
  346. */
  347. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  348. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  349. btrfs_csum_final(crc, result);
  350. if (memcmp(raw_disk_sb, result, csum_size))
  351. ret = 1;
  352. if (ret && btrfs_super_generation(disk_sb) < 10) {
  353. printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
  354. ret = 0;
  355. }
  356. }
  357. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  358. printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
  359. csum_type);
  360. ret = 1;
  361. }
  362. return ret;
  363. }
  364. /*
  365. * helper to read a given tree block, doing retries as required when
  366. * the checksums don't match and we have alternate mirrors to try.
  367. */
  368. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  369. struct extent_buffer *eb,
  370. u64 start, u64 parent_transid)
  371. {
  372. struct extent_io_tree *io_tree;
  373. int failed = 0;
  374. int ret;
  375. int num_copies = 0;
  376. int mirror_num = 0;
  377. int failed_mirror = 0;
  378. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  379. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  380. while (1) {
  381. ret = read_extent_buffer_pages(io_tree, eb, start,
  382. WAIT_COMPLETE,
  383. btree_get_extent, mirror_num);
  384. if (!ret) {
  385. if (!verify_parent_transid(io_tree, eb,
  386. parent_transid, 0))
  387. break;
  388. else
  389. ret = -EIO;
  390. }
  391. /*
  392. * This buffer's crc is fine, but its contents are corrupted, so
  393. * there is no reason to read the other copies, they won't be
  394. * any less wrong.
  395. */
  396. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  397. break;
  398. num_copies = btrfs_num_copies(root->fs_info,
  399. eb->start, eb->len);
  400. if (num_copies == 1)
  401. break;
  402. if (!failed_mirror) {
  403. failed = 1;
  404. failed_mirror = eb->read_mirror;
  405. }
  406. mirror_num++;
  407. if (mirror_num == failed_mirror)
  408. mirror_num++;
  409. if (mirror_num > num_copies)
  410. break;
  411. }
  412. if (failed && !ret && failed_mirror)
  413. repair_eb_io_failure(root, eb, failed_mirror);
  414. return ret;
  415. }
  416. /*
  417. * checksum a dirty tree block before IO. This has extra checks to make sure
  418. * we only fill in the checksum field in the first page of a multi-page block
  419. */
  420. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  421. {
  422. struct extent_io_tree *tree;
  423. u64 start = page_offset(page);
  424. u64 found_start;
  425. struct extent_buffer *eb;
  426. tree = &BTRFS_I(page->mapping->host)->io_tree;
  427. eb = (struct extent_buffer *)page->private;
  428. if (page != eb->pages[0])
  429. return 0;
  430. found_start = btrfs_header_bytenr(eb);
  431. if (found_start != start) {
  432. WARN_ON(1);
  433. return 0;
  434. }
  435. if (!PageUptodate(page)) {
  436. WARN_ON(1);
  437. return 0;
  438. }
  439. csum_tree_block(root, eb, 0);
  440. return 0;
  441. }
  442. static int check_tree_block_fsid(struct btrfs_root *root,
  443. struct extent_buffer *eb)
  444. {
  445. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  446. u8 fsid[BTRFS_UUID_SIZE];
  447. int ret = 1;
  448. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  449. BTRFS_FSID_SIZE);
  450. while (fs_devices) {
  451. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  452. ret = 0;
  453. break;
  454. }
  455. fs_devices = fs_devices->seed;
  456. }
  457. return ret;
  458. }
  459. #define CORRUPT(reason, eb, root, slot) \
  460. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  461. "root=%llu, slot=%d\n", reason, \
  462. (unsigned long long)btrfs_header_bytenr(eb), \
  463. (unsigned long long)root->objectid, slot)
  464. static noinline int check_leaf(struct btrfs_root *root,
  465. struct extent_buffer *leaf)
  466. {
  467. struct btrfs_key key;
  468. struct btrfs_key leaf_key;
  469. u32 nritems = btrfs_header_nritems(leaf);
  470. int slot;
  471. if (nritems == 0)
  472. return 0;
  473. /* Check the 0 item */
  474. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  475. BTRFS_LEAF_DATA_SIZE(root)) {
  476. CORRUPT("invalid item offset size pair", leaf, root, 0);
  477. return -EIO;
  478. }
  479. /*
  480. * Check to make sure each items keys are in the correct order and their
  481. * offsets make sense. We only have to loop through nritems-1 because
  482. * we check the current slot against the next slot, which verifies the
  483. * next slot's offset+size makes sense and that the current's slot
  484. * offset is correct.
  485. */
  486. for (slot = 0; slot < nritems - 1; slot++) {
  487. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  488. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  489. /* Make sure the keys are in the right order */
  490. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  491. CORRUPT("bad key order", leaf, root, slot);
  492. return -EIO;
  493. }
  494. /*
  495. * Make sure the offset and ends are right, remember that the
  496. * item data starts at the end of the leaf and grows towards the
  497. * front.
  498. */
  499. if (btrfs_item_offset_nr(leaf, slot) !=
  500. btrfs_item_end_nr(leaf, slot + 1)) {
  501. CORRUPT("slot offset bad", leaf, root, slot);
  502. return -EIO;
  503. }
  504. /*
  505. * Check to make sure that we don't point outside of the leaf,
  506. * just incase all the items are consistent to eachother, but
  507. * all point outside of the leaf.
  508. */
  509. if (btrfs_item_end_nr(leaf, slot) >
  510. BTRFS_LEAF_DATA_SIZE(root)) {
  511. CORRUPT("slot end outside of leaf", leaf, root, slot);
  512. return -EIO;
  513. }
  514. }
  515. return 0;
  516. }
  517. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  518. u64 phy_offset, struct page *page,
  519. u64 start, u64 end, int mirror)
  520. {
  521. struct extent_io_tree *tree;
  522. u64 found_start;
  523. int found_level;
  524. struct extent_buffer *eb;
  525. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  526. int ret = 0;
  527. int reads_done;
  528. if (!page->private)
  529. goto out;
  530. tree = &BTRFS_I(page->mapping->host)->io_tree;
  531. eb = (struct extent_buffer *)page->private;
  532. /* the pending IO might have been the only thing that kept this buffer
  533. * in memory. Make sure we have a ref for all this other checks
  534. */
  535. extent_buffer_get(eb);
  536. reads_done = atomic_dec_and_test(&eb->io_pages);
  537. if (!reads_done)
  538. goto err;
  539. eb->read_mirror = mirror;
  540. if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
  541. ret = -EIO;
  542. goto err;
  543. }
  544. found_start = btrfs_header_bytenr(eb);
  545. if (found_start != eb->start) {
  546. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  547. "%llu %llu\n",
  548. (unsigned long long)found_start,
  549. (unsigned long long)eb->start);
  550. ret = -EIO;
  551. goto err;
  552. }
  553. if (check_tree_block_fsid(root, eb)) {
  554. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  555. (unsigned long long)eb->start);
  556. ret = -EIO;
  557. goto err;
  558. }
  559. found_level = btrfs_header_level(eb);
  560. if (found_level >= BTRFS_MAX_LEVEL) {
  561. btrfs_info(root->fs_info, "bad tree block level %d\n",
  562. (int)btrfs_header_level(eb));
  563. ret = -EIO;
  564. goto err;
  565. }
  566. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  567. eb, found_level);
  568. ret = csum_tree_block(root, eb, 1);
  569. if (ret) {
  570. ret = -EIO;
  571. goto err;
  572. }
  573. /*
  574. * If this is a leaf block and it is corrupt, set the corrupt bit so
  575. * that we don't try and read the other copies of this block, just
  576. * return -EIO.
  577. */
  578. if (found_level == 0 && check_leaf(root, eb)) {
  579. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  580. ret = -EIO;
  581. }
  582. if (!ret)
  583. set_extent_buffer_uptodate(eb);
  584. err:
  585. if (reads_done &&
  586. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  587. btree_readahead_hook(root, eb, eb->start, ret);
  588. if (ret) {
  589. /*
  590. * our io error hook is going to dec the io pages
  591. * again, we have to make sure it has something
  592. * to decrement
  593. */
  594. atomic_inc(&eb->io_pages);
  595. clear_extent_buffer_uptodate(eb);
  596. }
  597. free_extent_buffer(eb);
  598. out:
  599. return ret;
  600. }
  601. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  602. {
  603. struct extent_buffer *eb;
  604. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  605. eb = (struct extent_buffer *)page->private;
  606. set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  607. eb->read_mirror = failed_mirror;
  608. atomic_dec(&eb->io_pages);
  609. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  610. btree_readahead_hook(root, eb, eb->start, -EIO);
  611. return -EIO; /* we fixed nothing */
  612. }
  613. static void end_workqueue_bio(struct bio *bio, int err)
  614. {
  615. struct end_io_wq *end_io_wq = bio->bi_private;
  616. struct btrfs_fs_info *fs_info;
  617. fs_info = end_io_wq->info;
  618. end_io_wq->error = err;
  619. end_io_wq->work.func = end_workqueue_fn;
  620. end_io_wq->work.flags = 0;
  621. if (bio->bi_rw & REQ_WRITE) {
  622. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
  623. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  624. &end_io_wq->work);
  625. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
  626. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  627. &end_io_wq->work);
  628. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  629. btrfs_queue_worker(&fs_info->endio_raid56_workers,
  630. &end_io_wq->work);
  631. else
  632. btrfs_queue_worker(&fs_info->endio_write_workers,
  633. &end_io_wq->work);
  634. } else {
  635. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  636. btrfs_queue_worker(&fs_info->endio_raid56_workers,
  637. &end_io_wq->work);
  638. else if (end_io_wq->metadata)
  639. btrfs_queue_worker(&fs_info->endio_meta_workers,
  640. &end_io_wq->work);
  641. else
  642. btrfs_queue_worker(&fs_info->endio_workers,
  643. &end_io_wq->work);
  644. }
  645. }
  646. /*
  647. * For the metadata arg you want
  648. *
  649. * 0 - if data
  650. * 1 - if normal metadta
  651. * 2 - if writing to the free space cache area
  652. * 3 - raid parity work
  653. */
  654. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  655. int metadata)
  656. {
  657. struct end_io_wq *end_io_wq;
  658. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  659. if (!end_io_wq)
  660. return -ENOMEM;
  661. end_io_wq->private = bio->bi_private;
  662. end_io_wq->end_io = bio->bi_end_io;
  663. end_io_wq->info = info;
  664. end_io_wq->error = 0;
  665. end_io_wq->bio = bio;
  666. end_io_wq->metadata = metadata;
  667. bio->bi_private = end_io_wq;
  668. bio->bi_end_io = end_workqueue_bio;
  669. return 0;
  670. }
  671. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  672. {
  673. unsigned long limit = min_t(unsigned long,
  674. info->workers.max_workers,
  675. info->fs_devices->open_devices);
  676. return 256 * limit;
  677. }
  678. static void run_one_async_start(struct btrfs_work *work)
  679. {
  680. struct async_submit_bio *async;
  681. int ret;
  682. async = container_of(work, struct async_submit_bio, work);
  683. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  684. async->mirror_num, async->bio_flags,
  685. async->bio_offset);
  686. if (ret)
  687. async->error = ret;
  688. }
  689. static void run_one_async_done(struct btrfs_work *work)
  690. {
  691. struct btrfs_fs_info *fs_info;
  692. struct async_submit_bio *async;
  693. int limit;
  694. async = container_of(work, struct async_submit_bio, work);
  695. fs_info = BTRFS_I(async->inode)->root->fs_info;
  696. limit = btrfs_async_submit_limit(fs_info);
  697. limit = limit * 2 / 3;
  698. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  699. waitqueue_active(&fs_info->async_submit_wait))
  700. wake_up(&fs_info->async_submit_wait);
  701. /* If an error occured we just want to clean up the bio and move on */
  702. if (async->error) {
  703. bio_endio(async->bio, async->error);
  704. return;
  705. }
  706. async->submit_bio_done(async->inode, async->rw, async->bio,
  707. async->mirror_num, async->bio_flags,
  708. async->bio_offset);
  709. }
  710. static void run_one_async_free(struct btrfs_work *work)
  711. {
  712. struct async_submit_bio *async;
  713. async = container_of(work, struct async_submit_bio, work);
  714. kfree(async);
  715. }
  716. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  717. int rw, struct bio *bio, int mirror_num,
  718. unsigned long bio_flags,
  719. u64 bio_offset,
  720. extent_submit_bio_hook_t *submit_bio_start,
  721. extent_submit_bio_hook_t *submit_bio_done)
  722. {
  723. struct async_submit_bio *async;
  724. async = kmalloc(sizeof(*async), GFP_NOFS);
  725. if (!async)
  726. return -ENOMEM;
  727. async->inode = inode;
  728. async->rw = rw;
  729. async->bio = bio;
  730. async->mirror_num = mirror_num;
  731. async->submit_bio_start = submit_bio_start;
  732. async->submit_bio_done = submit_bio_done;
  733. async->work.func = run_one_async_start;
  734. async->work.ordered_func = run_one_async_done;
  735. async->work.ordered_free = run_one_async_free;
  736. async->work.flags = 0;
  737. async->bio_flags = bio_flags;
  738. async->bio_offset = bio_offset;
  739. async->error = 0;
  740. atomic_inc(&fs_info->nr_async_submits);
  741. if (rw & REQ_SYNC)
  742. btrfs_set_work_high_prio(&async->work);
  743. btrfs_queue_worker(&fs_info->workers, &async->work);
  744. while (atomic_read(&fs_info->async_submit_draining) &&
  745. atomic_read(&fs_info->nr_async_submits)) {
  746. wait_event(fs_info->async_submit_wait,
  747. (atomic_read(&fs_info->nr_async_submits) == 0));
  748. }
  749. return 0;
  750. }
  751. static int btree_csum_one_bio(struct bio *bio)
  752. {
  753. struct bio_vec *bvec = bio->bi_io_vec;
  754. int bio_index = 0;
  755. struct btrfs_root *root;
  756. int ret = 0;
  757. WARN_ON(bio->bi_vcnt <= 0);
  758. while (bio_index < bio->bi_vcnt) {
  759. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  760. ret = csum_dirty_buffer(root, bvec->bv_page);
  761. if (ret)
  762. break;
  763. bio_index++;
  764. bvec++;
  765. }
  766. return ret;
  767. }
  768. static int __btree_submit_bio_start(struct inode *inode, int rw,
  769. struct bio *bio, int mirror_num,
  770. unsigned long bio_flags,
  771. u64 bio_offset)
  772. {
  773. /*
  774. * when we're called for a write, we're already in the async
  775. * submission context. Just jump into btrfs_map_bio
  776. */
  777. return btree_csum_one_bio(bio);
  778. }
  779. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  780. int mirror_num, unsigned long bio_flags,
  781. u64 bio_offset)
  782. {
  783. int ret;
  784. /*
  785. * when we're called for a write, we're already in the async
  786. * submission context. Just jump into btrfs_map_bio
  787. */
  788. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  789. if (ret)
  790. bio_endio(bio, ret);
  791. return ret;
  792. }
  793. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  794. {
  795. if (bio_flags & EXTENT_BIO_TREE_LOG)
  796. return 0;
  797. #ifdef CONFIG_X86
  798. if (cpu_has_xmm4_2)
  799. return 0;
  800. #endif
  801. return 1;
  802. }
  803. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  804. int mirror_num, unsigned long bio_flags,
  805. u64 bio_offset)
  806. {
  807. int async = check_async_write(inode, bio_flags);
  808. int ret;
  809. if (!(rw & REQ_WRITE)) {
  810. /*
  811. * called for a read, do the setup so that checksum validation
  812. * can happen in the async kernel threads
  813. */
  814. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  815. bio, 1);
  816. if (ret)
  817. goto out_w_error;
  818. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  819. mirror_num, 0);
  820. } else if (!async) {
  821. ret = btree_csum_one_bio(bio);
  822. if (ret)
  823. goto out_w_error;
  824. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  825. mirror_num, 0);
  826. } else {
  827. /*
  828. * kthread helpers are used to submit writes so that
  829. * checksumming can happen in parallel across all CPUs
  830. */
  831. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  832. inode, rw, bio, mirror_num, 0,
  833. bio_offset,
  834. __btree_submit_bio_start,
  835. __btree_submit_bio_done);
  836. }
  837. if (ret) {
  838. out_w_error:
  839. bio_endio(bio, ret);
  840. }
  841. return ret;
  842. }
  843. #ifdef CONFIG_MIGRATION
  844. static int btree_migratepage(struct address_space *mapping,
  845. struct page *newpage, struct page *page,
  846. enum migrate_mode mode)
  847. {
  848. /*
  849. * we can't safely write a btree page from here,
  850. * we haven't done the locking hook
  851. */
  852. if (PageDirty(page))
  853. return -EAGAIN;
  854. /*
  855. * Buffers may be managed in a filesystem specific way.
  856. * We must have no buffers or drop them.
  857. */
  858. if (page_has_private(page) &&
  859. !try_to_release_page(page, GFP_KERNEL))
  860. return -EAGAIN;
  861. return migrate_page(mapping, newpage, page, mode);
  862. }
  863. #endif
  864. static int btree_writepages(struct address_space *mapping,
  865. struct writeback_control *wbc)
  866. {
  867. struct extent_io_tree *tree;
  868. struct btrfs_fs_info *fs_info;
  869. int ret;
  870. tree = &BTRFS_I(mapping->host)->io_tree;
  871. if (wbc->sync_mode == WB_SYNC_NONE) {
  872. if (wbc->for_kupdate)
  873. return 0;
  874. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  875. /* this is a bit racy, but that's ok */
  876. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  877. BTRFS_DIRTY_METADATA_THRESH);
  878. if (ret < 0)
  879. return 0;
  880. }
  881. return btree_write_cache_pages(mapping, wbc);
  882. }
  883. static int btree_readpage(struct file *file, struct page *page)
  884. {
  885. struct extent_io_tree *tree;
  886. tree = &BTRFS_I(page->mapping->host)->io_tree;
  887. return extent_read_full_page(tree, page, btree_get_extent, 0);
  888. }
  889. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  890. {
  891. if (PageWriteback(page) || PageDirty(page))
  892. return 0;
  893. return try_release_extent_buffer(page);
  894. }
  895. static void btree_invalidatepage(struct page *page, unsigned int offset,
  896. unsigned int length)
  897. {
  898. struct extent_io_tree *tree;
  899. tree = &BTRFS_I(page->mapping->host)->io_tree;
  900. extent_invalidatepage(tree, page, offset);
  901. btree_releasepage(page, GFP_NOFS);
  902. if (PagePrivate(page)) {
  903. printk(KERN_WARNING "btrfs warning page private not zero "
  904. "on page %llu\n", (unsigned long long)page_offset(page));
  905. ClearPagePrivate(page);
  906. set_page_private(page, 0);
  907. page_cache_release(page);
  908. }
  909. }
  910. static int btree_set_page_dirty(struct page *page)
  911. {
  912. #ifdef DEBUG
  913. struct extent_buffer *eb;
  914. BUG_ON(!PagePrivate(page));
  915. eb = (struct extent_buffer *)page->private;
  916. BUG_ON(!eb);
  917. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  918. BUG_ON(!atomic_read(&eb->refs));
  919. btrfs_assert_tree_locked(eb);
  920. #endif
  921. return __set_page_dirty_nobuffers(page);
  922. }
  923. static const struct address_space_operations btree_aops = {
  924. .readpage = btree_readpage,
  925. .writepages = btree_writepages,
  926. .releasepage = btree_releasepage,
  927. .invalidatepage = btree_invalidatepage,
  928. #ifdef CONFIG_MIGRATION
  929. .migratepage = btree_migratepage,
  930. #endif
  931. .set_page_dirty = btree_set_page_dirty,
  932. };
  933. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  934. u64 parent_transid)
  935. {
  936. struct extent_buffer *buf = NULL;
  937. struct inode *btree_inode = root->fs_info->btree_inode;
  938. int ret = 0;
  939. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  940. if (!buf)
  941. return 0;
  942. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  943. buf, 0, WAIT_NONE, btree_get_extent, 0);
  944. free_extent_buffer(buf);
  945. return ret;
  946. }
  947. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  948. int mirror_num, struct extent_buffer **eb)
  949. {
  950. struct extent_buffer *buf = NULL;
  951. struct inode *btree_inode = root->fs_info->btree_inode;
  952. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  953. int ret;
  954. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  955. if (!buf)
  956. return 0;
  957. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  958. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  959. btree_get_extent, mirror_num);
  960. if (ret) {
  961. free_extent_buffer(buf);
  962. return ret;
  963. }
  964. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  965. free_extent_buffer(buf);
  966. return -EIO;
  967. } else if (extent_buffer_uptodate(buf)) {
  968. *eb = buf;
  969. } else {
  970. free_extent_buffer(buf);
  971. }
  972. return 0;
  973. }
  974. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  975. u64 bytenr, u32 blocksize)
  976. {
  977. struct inode *btree_inode = root->fs_info->btree_inode;
  978. struct extent_buffer *eb;
  979. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  980. bytenr, blocksize);
  981. return eb;
  982. }
  983. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  984. u64 bytenr, u32 blocksize)
  985. {
  986. struct inode *btree_inode = root->fs_info->btree_inode;
  987. struct extent_buffer *eb;
  988. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  989. bytenr, blocksize);
  990. return eb;
  991. }
  992. int btrfs_write_tree_block(struct extent_buffer *buf)
  993. {
  994. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  995. buf->start + buf->len - 1);
  996. }
  997. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  998. {
  999. return filemap_fdatawait_range(buf->pages[0]->mapping,
  1000. buf->start, buf->start + buf->len - 1);
  1001. }
  1002. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  1003. u32 blocksize, u64 parent_transid)
  1004. {
  1005. struct extent_buffer *buf = NULL;
  1006. int ret;
  1007. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  1008. if (!buf)
  1009. return NULL;
  1010. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  1011. if (ret) {
  1012. free_extent_buffer(buf);
  1013. return NULL;
  1014. }
  1015. return buf;
  1016. }
  1017. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1018. struct extent_buffer *buf)
  1019. {
  1020. struct btrfs_fs_info *fs_info = root->fs_info;
  1021. if (btrfs_header_generation(buf) ==
  1022. fs_info->running_transaction->transid) {
  1023. btrfs_assert_tree_locked(buf);
  1024. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1025. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1026. -buf->len,
  1027. fs_info->dirty_metadata_batch);
  1028. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1029. btrfs_set_lock_blocking(buf);
  1030. clear_extent_buffer_dirty(buf);
  1031. }
  1032. }
  1033. }
  1034. static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  1035. u32 stripesize, struct btrfs_root *root,
  1036. struct btrfs_fs_info *fs_info,
  1037. u64 objectid)
  1038. {
  1039. root->node = NULL;
  1040. root->commit_root = NULL;
  1041. root->sectorsize = sectorsize;
  1042. root->nodesize = nodesize;
  1043. root->leafsize = leafsize;
  1044. root->stripesize = stripesize;
  1045. root->ref_cows = 0;
  1046. root->track_dirty = 0;
  1047. root->in_radix = 0;
  1048. root->orphan_item_inserted = 0;
  1049. root->orphan_cleanup_state = 0;
  1050. root->objectid = objectid;
  1051. root->last_trans = 0;
  1052. root->highest_objectid = 0;
  1053. root->nr_delalloc_inodes = 0;
  1054. root->nr_ordered_extents = 0;
  1055. root->name = NULL;
  1056. root->inode_tree = RB_ROOT;
  1057. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1058. root->block_rsv = NULL;
  1059. root->orphan_block_rsv = NULL;
  1060. INIT_LIST_HEAD(&root->dirty_list);
  1061. INIT_LIST_HEAD(&root->root_list);
  1062. INIT_LIST_HEAD(&root->delalloc_inodes);
  1063. INIT_LIST_HEAD(&root->delalloc_root);
  1064. INIT_LIST_HEAD(&root->ordered_extents);
  1065. INIT_LIST_HEAD(&root->ordered_root);
  1066. INIT_LIST_HEAD(&root->logged_list[0]);
  1067. INIT_LIST_HEAD(&root->logged_list[1]);
  1068. spin_lock_init(&root->orphan_lock);
  1069. spin_lock_init(&root->inode_lock);
  1070. spin_lock_init(&root->delalloc_lock);
  1071. spin_lock_init(&root->ordered_extent_lock);
  1072. spin_lock_init(&root->accounting_lock);
  1073. spin_lock_init(&root->log_extents_lock[0]);
  1074. spin_lock_init(&root->log_extents_lock[1]);
  1075. mutex_init(&root->objectid_mutex);
  1076. mutex_init(&root->log_mutex);
  1077. init_waitqueue_head(&root->log_writer_wait);
  1078. init_waitqueue_head(&root->log_commit_wait[0]);
  1079. init_waitqueue_head(&root->log_commit_wait[1]);
  1080. atomic_set(&root->log_commit[0], 0);
  1081. atomic_set(&root->log_commit[1], 0);
  1082. atomic_set(&root->log_writers, 0);
  1083. atomic_set(&root->log_batch, 0);
  1084. atomic_set(&root->orphan_inodes, 0);
  1085. atomic_set(&root->refs, 1);
  1086. root->log_transid = 0;
  1087. root->last_log_commit = 0;
  1088. extent_io_tree_init(&root->dirty_log_pages,
  1089. fs_info->btree_inode->i_mapping);
  1090. memset(&root->root_key, 0, sizeof(root->root_key));
  1091. memset(&root->root_item, 0, sizeof(root->root_item));
  1092. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1093. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1094. root->defrag_trans_start = fs_info->generation;
  1095. init_completion(&root->kobj_unregister);
  1096. root->defrag_running = 0;
  1097. root->root_key.objectid = objectid;
  1098. root->anon_dev = 0;
  1099. spin_lock_init(&root->root_item_lock);
  1100. }
  1101. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1102. {
  1103. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1104. if (root)
  1105. root->fs_info = fs_info;
  1106. return root;
  1107. }
  1108. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1109. struct btrfs_fs_info *fs_info,
  1110. u64 objectid)
  1111. {
  1112. struct extent_buffer *leaf;
  1113. struct btrfs_root *tree_root = fs_info->tree_root;
  1114. struct btrfs_root *root;
  1115. struct btrfs_key key;
  1116. int ret = 0;
  1117. u64 bytenr;
  1118. uuid_le uuid;
  1119. root = btrfs_alloc_root(fs_info);
  1120. if (!root)
  1121. return ERR_PTR(-ENOMEM);
  1122. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1123. tree_root->sectorsize, tree_root->stripesize,
  1124. root, fs_info, objectid);
  1125. root->root_key.objectid = objectid;
  1126. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1127. root->root_key.offset = 0;
  1128. leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
  1129. 0, objectid, NULL, 0, 0, 0);
  1130. if (IS_ERR(leaf)) {
  1131. ret = PTR_ERR(leaf);
  1132. leaf = NULL;
  1133. goto fail;
  1134. }
  1135. bytenr = leaf->start;
  1136. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1137. btrfs_set_header_bytenr(leaf, leaf->start);
  1138. btrfs_set_header_generation(leaf, trans->transid);
  1139. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1140. btrfs_set_header_owner(leaf, objectid);
  1141. root->node = leaf;
  1142. write_extent_buffer(leaf, fs_info->fsid,
  1143. (unsigned long)btrfs_header_fsid(leaf),
  1144. BTRFS_FSID_SIZE);
  1145. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1146. (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
  1147. BTRFS_UUID_SIZE);
  1148. btrfs_mark_buffer_dirty(leaf);
  1149. root->commit_root = btrfs_root_node(root);
  1150. root->track_dirty = 1;
  1151. root->root_item.flags = 0;
  1152. root->root_item.byte_limit = 0;
  1153. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1154. btrfs_set_root_generation(&root->root_item, trans->transid);
  1155. btrfs_set_root_level(&root->root_item, 0);
  1156. btrfs_set_root_refs(&root->root_item, 1);
  1157. btrfs_set_root_used(&root->root_item, leaf->len);
  1158. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1159. btrfs_set_root_dirid(&root->root_item, 0);
  1160. uuid_le_gen(&uuid);
  1161. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1162. root->root_item.drop_level = 0;
  1163. key.objectid = objectid;
  1164. key.type = BTRFS_ROOT_ITEM_KEY;
  1165. key.offset = 0;
  1166. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1167. if (ret)
  1168. goto fail;
  1169. btrfs_tree_unlock(leaf);
  1170. return root;
  1171. fail:
  1172. if (leaf) {
  1173. btrfs_tree_unlock(leaf);
  1174. free_extent_buffer(leaf);
  1175. }
  1176. kfree(root);
  1177. return ERR_PTR(ret);
  1178. }
  1179. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1180. struct btrfs_fs_info *fs_info)
  1181. {
  1182. struct btrfs_root *root;
  1183. struct btrfs_root *tree_root = fs_info->tree_root;
  1184. struct extent_buffer *leaf;
  1185. root = btrfs_alloc_root(fs_info);
  1186. if (!root)
  1187. return ERR_PTR(-ENOMEM);
  1188. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1189. tree_root->sectorsize, tree_root->stripesize,
  1190. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1191. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1192. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1193. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1194. /*
  1195. * log trees do not get reference counted because they go away
  1196. * before a real commit is actually done. They do store pointers
  1197. * to file data extents, and those reference counts still get
  1198. * updated (along with back refs to the log tree).
  1199. */
  1200. root->ref_cows = 0;
  1201. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1202. BTRFS_TREE_LOG_OBJECTID, NULL,
  1203. 0, 0, 0);
  1204. if (IS_ERR(leaf)) {
  1205. kfree(root);
  1206. return ERR_CAST(leaf);
  1207. }
  1208. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1209. btrfs_set_header_bytenr(leaf, leaf->start);
  1210. btrfs_set_header_generation(leaf, trans->transid);
  1211. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1212. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1213. root->node = leaf;
  1214. write_extent_buffer(root->node, root->fs_info->fsid,
  1215. (unsigned long)btrfs_header_fsid(root->node),
  1216. BTRFS_FSID_SIZE);
  1217. btrfs_mark_buffer_dirty(root->node);
  1218. btrfs_tree_unlock(root->node);
  1219. return root;
  1220. }
  1221. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1222. struct btrfs_fs_info *fs_info)
  1223. {
  1224. struct btrfs_root *log_root;
  1225. log_root = alloc_log_tree(trans, fs_info);
  1226. if (IS_ERR(log_root))
  1227. return PTR_ERR(log_root);
  1228. WARN_ON(fs_info->log_root_tree);
  1229. fs_info->log_root_tree = log_root;
  1230. return 0;
  1231. }
  1232. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1233. struct btrfs_root *root)
  1234. {
  1235. struct btrfs_root *log_root;
  1236. struct btrfs_inode_item *inode_item;
  1237. log_root = alloc_log_tree(trans, root->fs_info);
  1238. if (IS_ERR(log_root))
  1239. return PTR_ERR(log_root);
  1240. log_root->last_trans = trans->transid;
  1241. log_root->root_key.offset = root->root_key.objectid;
  1242. inode_item = &log_root->root_item.inode;
  1243. btrfs_set_stack_inode_generation(inode_item, 1);
  1244. btrfs_set_stack_inode_size(inode_item, 3);
  1245. btrfs_set_stack_inode_nlink(inode_item, 1);
  1246. btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
  1247. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1248. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1249. WARN_ON(root->log_root);
  1250. root->log_root = log_root;
  1251. root->log_transid = 0;
  1252. root->last_log_commit = 0;
  1253. return 0;
  1254. }
  1255. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1256. struct btrfs_key *key)
  1257. {
  1258. struct btrfs_root *root;
  1259. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1260. struct btrfs_path *path;
  1261. u64 generation;
  1262. u32 blocksize;
  1263. int ret;
  1264. path = btrfs_alloc_path();
  1265. if (!path)
  1266. return ERR_PTR(-ENOMEM);
  1267. root = btrfs_alloc_root(fs_info);
  1268. if (!root) {
  1269. ret = -ENOMEM;
  1270. goto alloc_fail;
  1271. }
  1272. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1273. tree_root->sectorsize, tree_root->stripesize,
  1274. root, fs_info, key->objectid);
  1275. ret = btrfs_find_root(tree_root, key, path,
  1276. &root->root_item, &root->root_key);
  1277. if (ret) {
  1278. if (ret > 0)
  1279. ret = -ENOENT;
  1280. goto find_fail;
  1281. }
  1282. generation = btrfs_root_generation(&root->root_item);
  1283. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1284. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1285. blocksize, generation);
  1286. if (!root->node) {
  1287. ret = -ENOMEM;
  1288. goto find_fail;
  1289. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1290. ret = -EIO;
  1291. goto read_fail;
  1292. }
  1293. root->commit_root = btrfs_root_node(root);
  1294. out:
  1295. btrfs_free_path(path);
  1296. return root;
  1297. read_fail:
  1298. free_extent_buffer(root->node);
  1299. find_fail:
  1300. kfree(root);
  1301. alloc_fail:
  1302. root = ERR_PTR(ret);
  1303. goto out;
  1304. }
  1305. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1306. struct btrfs_key *location)
  1307. {
  1308. struct btrfs_root *root;
  1309. root = btrfs_read_tree_root(tree_root, location);
  1310. if (IS_ERR(root))
  1311. return root;
  1312. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1313. root->ref_cows = 1;
  1314. btrfs_check_and_init_root_item(&root->root_item);
  1315. }
  1316. return root;
  1317. }
  1318. int btrfs_init_fs_root(struct btrfs_root *root)
  1319. {
  1320. int ret;
  1321. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1322. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1323. GFP_NOFS);
  1324. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1325. ret = -ENOMEM;
  1326. goto fail;
  1327. }
  1328. btrfs_init_free_ino_ctl(root);
  1329. mutex_init(&root->fs_commit_mutex);
  1330. spin_lock_init(&root->cache_lock);
  1331. init_waitqueue_head(&root->cache_wait);
  1332. ret = get_anon_bdev(&root->anon_dev);
  1333. if (ret)
  1334. goto fail;
  1335. return 0;
  1336. fail:
  1337. kfree(root->free_ino_ctl);
  1338. kfree(root->free_ino_pinned);
  1339. return ret;
  1340. }
  1341. static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1342. u64 root_id)
  1343. {
  1344. struct btrfs_root *root;
  1345. spin_lock(&fs_info->fs_roots_radix_lock);
  1346. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1347. (unsigned long)root_id);
  1348. spin_unlock(&fs_info->fs_roots_radix_lock);
  1349. return root;
  1350. }
  1351. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1352. struct btrfs_root *root)
  1353. {
  1354. int ret;
  1355. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1356. if (ret)
  1357. return ret;
  1358. spin_lock(&fs_info->fs_roots_radix_lock);
  1359. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1360. (unsigned long)root->root_key.objectid,
  1361. root);
  1362. if (ret == 0)
  1363. root->in_radix = 1;
  1364. spin_unlock(&fs_info->fs_roots_radix_lock);
  1365. radix_tree_preload_end();
  1366. return ret;
  1367. }
  1368. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1369. struct btrfs_key *location)
  1370. {
  1371. struct btrfs_root *root;
  1372. int ret;
  1373. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1374. return fs_info->tree_root;
  1375. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1376. return fs_info->extent_root;
  1377. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1378. return fs_info->chunk_root;
  1379. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1380. return fs_info->dev_root;
  1381. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1382. return fs_info->csum_root;
  1383. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1384. return fs_info->quota_root ? fs_info->quota_root :
  1385. ERR_PTR(-ENOENT);
  1386. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1387. return fs_info->uuid_root ? fs_info->uuid_root :
  1388. ERR_PTR(-ENOENT);
  1389. again:
  1390. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1391. if (root)
  1392. return root;
  1393. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1394. if (IS_ERR(root))
  1395. return root;
  1396. if (btrfs_root_refs(&root->root_item) == 0) {
  1397. ret = -ENOENT;
  1398. goto fail;
  1399. }
  1400. ret = btrfs_init_fs_root(root);
  1401. if (ret)
  1402. goto fail;
  1403. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1404. if (ret < 0)
  1405. goto fail;
  1406. if (ret == 0)
  1407. root->orphan_item_inserted = 1;
  1408. ret = btrfs_insert_fs_root(fs_info, root);
  1409. if (ret) {
  1410. if (ret == -EEXIST) {
  1411. free_fs_root(root);
  1412. goto again;
  1413. }
  1414. goto fail;
  1415. }
  1416. return root;
  1417. fail:
  1418. free_fs_root(root);
  1419. return ERR_PTR(ret);
  1420. }
  1421. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1422. {
  1423. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1424. int ret = 0;
  1425. struct btrfs_device *device;
  1426. struct backing_dev_info *bdi;
  1427. rcu_read_lock();
  1428. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1429. if (!device->bdev)
  1430. continue;
  1431. bdi = blk_get_backing_dev_info(device->bdev);
  1432. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1433. ret = 1;
  1434. break;
  1435. }
  1436. }
  1437. rcu_read_unlock();
  1438. return ret;
  1439. }
  1440. /*
  1441. * If this fails, caller must call bdi_destroy() to get rid of the
  1442. * bdi again.
  1443. */
  1444. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1445. {
  1446. int err;
  1447. bdi->capabilities = BDI_CAP_MAP_COPY;
  1448. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1449. if (err)
  1450. return err;
  1451. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1452. bdi->congested_fn = btrfs_congested_fn;
  1453. bdi->congested_data = info;
  1454. return 0;
  1455. }
  1456. /*
  1457. * called by the kthread helper functions to finally call the bio end_io
  1458. * functions. This is where read checksum verification actually happens
  1459. */
  1460. static void end_workqueue_fn(struct btrfs_work *work)
  1461. {
  1462. struct bio *bio;
  1463. struct end_io_wq *end_io_wq;
  1464. struct btrfs_fs_info *fs_info;
  1465. int error;
  1466. end_io_wq = container_of(work, struct end_io_wq, work);
  1467. bio = end_io_wq->bio;
  1468. fs_info = end_io_wq->info;
  1469. error = end_io_wq->error;
  1470. bio->bi_private = end_io_wq->private;
  1471. bio->bi_end_io = end_io_wq->end_io;
  1472. kfree(end_io_wq);
  1473. bio_endio(bio, error);
  1474. }
  1475. static int cleaner_kthread(void *arg)
  1476. {
  1477. struct btrfs_root *root = arg;
  1478. int again;
  1479. do {
  1480. again = 0;
  1481. /* Make the cleaner go to sleep early. */
  1482. if (btrfs_need_cleaner_sleep(root))
  1483. goto sleep;
  1484. if (!mutex_trylock(&root->fs_info->cleaner_mutex))
  1485. goto sleep;
  1486. /*
  1487. * Avoid the problem that we change the status of the fs
  1488. * during the above check and trylock.
  1489. */
  1490. if (btrfs_need_cleaner_sleep(root)) {
  1491. mutex_unlock(&root->fs_info->cleaner_mutex);
  1492. goto sleep;
  1493. }
  1494. btrfs_run_delayed_iputs(root);
  1495. again = btrfs_clean_one_deleted_snapshot(root);
  1496. mutex_unlock(&root->fs_info->cleaner_mutex);
  1497. /*
  1498. * The defragger has dealt with the R/O remount and umount,
  1499. * needn't do anything special here.
  1500. */
  1501. btrfs_run_defrag_inodes(root->fs_info);
  1502. sleep:
  1503. if (!try_to_freeze() && !again) {
  1504. set_current_state(TASK_INTERRUPTIBLE);
  1505. if (!kthread_should_stop())
  1506. schedule();
  1507. __set_current_state(TASK_RUNNING);
  1508. }
  1509. } while (!kthread_should_stop());
  1510. return 0;
  1511. }
  1512. static int transaction_kthread(void *arg)
  1513. {
  1514. struct btrfs_root *root = arg;
  1515. struct btrfs_trans_handle *trans;
  1516. struct btrfs_transaction *cur;
  1517. u64 transid;
  1518. unsigned long now;
  1519. unsigned long delay;
  1520. bool cannot_commit;
  1521. do {
  1522. cannot_commit = false;
  1523. delay = HZ * root->fs_info->commit_interval;
  1524. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1525. spin_lock(&root->fs_info->trans_lock);
  1526. cur = root->fs_info->running_transaction;
  1527. if (!cur) {
  1528. spin_unlock(&root->fs_info->trans_lock);
  1529. goto sleep;
  1530. }
  1531. now = get_seconds();
  1532. if (cur->state < TRANS_STATE_BLOCKED &&
  1533. (now < cur->start_time ||
  1534. now - cur->start_time < root->fs_info->commit_interval)) {
  1535. spin_unlock(&root->fs_info->trans_lock);
  1536. delay = HZ * 5;
  1537. goto sleep;
  1538. }
  1539. transid = cur->transid;
  1540. spin_unlock(&root->fs_info->trans_lock);
  1541. /* If the file system is aborted, this will always fail. */
  1542. trans = btrfs_attach_transaction(root);
  1543. if (IS_ERR(trans)) {
  1544. if (PTR_ERR(trans) != -ENOENT)
  1545. cannot_commit = true;
  1546. goto sleep;
  1547. }
  1548. if (transid == trans->transid) {
  1549. btrfs_commit_transaction(trans, root);
  1550. } else {
  1551. btrfs_end_transaction(trans, root);
  1552. }
  1553. sleep:
  1554. wake_up_process(root->fs_info->cleaner_kthread);
  1555. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1556. if (!try_to_freeze()) {
  1557. set_current_state(TASK_INTERRUPTIBLE);
  1558. if (!kthread_should_stop() &&
  1559. (!btrfs_transaction_blocked(root->fs_info) ||
  1560. cannot_commit))
  1561. schedule_timeout(delay);
  1562. __set_current_state(TASK_RUNNING);
  1563. }
  1564. } while (!kthread_should_stop());
  1565. return 0;
  1566. }
  1567. /*
  1568. * this will find the highest generation in the array of
  1569. * root backups. The index of the highest array is returned,
  1570. * or -1 if we can't find anything.
  1571. *
  1572. * We check to make sure the array is valid by comparing the
  1573. * generation of the latest root in the array with the generation
  1574. * in the super block. If they don't match we pitch it.
  1575. */
  1576. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1577. {
  1578. u64 cur;
  1579. int newest_index = -1;
  1580. struct btrfs_root_backup *root_backup;
  1581. int i;
  1582. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1583. root_backup = info->super_copy->super_roots + i;
  1584. cur = btrfs_backup_tree_root_gen(root_backup);
  1585. if (cur == newest_gen)
  1586. newest_index = i;
  1587. }
  1588. /* check to see if we actually wrapped around */
  1589. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1590. root_backup = info->super_copy->super_roots;
  1591. cur = btrfs_backup_tree_root_gen(root_backup);
  1592. if (cur == newest_gen)
  1593. newest_index = 0;
  1594. }
  1595. return newest_index;
  1596. }
  1597. /*
  1598. * find the oldest backup so we know where to store new entries
  1599. * in the backup array. This will set the backup_root_index
  1600. * field in the fs_info struct
  1601. */
  1602. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1603. u64 newest_gen)
  1604. {
  1605. int newest_index = -1;
  1606. newest_index = find_newest_super_backup(info, newest_gen);
  1607. /* if there was garbage in there, just move along */
  1608. if (newest_index == -1) {
  1609. info->backup_root_index = 0;
  1610. } else {
  1611. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1612. }
  1613. }
  1614. /*
  1615. * copy all the root pointers into the super backup array.
  1616. * this will bump the backup pointer by one when it is
  1617. * done
  1618. */
  1619. static void backup_super_roots(struct btrfs_fs_info *info)
  1620. {
  1621. int next_backup;
  1622. struct btrfs_root_backup *root_backup;
  1623. int last_backup;
  1624. next_backup = info->backup_root_index;
  1625. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1626. BTRFS_NUM_BACKUP_ROOTS;
  1627. /*
  1628. * just overwrite the last backup if we're at the same generation
  1629. * this happens only at umount
  1630. */
  1631. root_backup = info->super_for_commit->super_roots + last_backup;
  1632. if (btrfs_backup_tree_root_gen(root_backup) ==
  1633. btrfs_header_generation(info->tree_root->node))
  1634. next_backup = last_backup;
  1635. root_backup = info->super_for_commit->super_roots + next_backup;
  1636. /*
  1637. * make sure all of our padding and empty slots get zero filled
  1638. * regardless of which ones we use today
  1639. */
  1640. memset(root_backup, 0, sizeof(*root_backup));
  1641. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1642. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1643. btrfs_set_backup_tree_root_gen(root_backup,
  1644. btrfs_header_generation(info->tree_root->node));
  1645. btrfs_set_backup_tree_root_level(root_backup,
  1646. btrfs_header_level(info->tree_root->node));
  1647. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1648. btrfs_set_backup_chunk_root_gen(root_backup,
  1649. btrfs_header_generation(info->chunk_root->node));
  1650. btrfs_set_backup_chunk_root_level(root_backup,
  1651. btrfs_header_level(info->chunk_root->node));
  1652. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1653. btrfs_set_backup_extent_root_gen(root_backup,
  1654. btrfs_header_generation(info->extent_root->node));
  1655. btrfs_set_backup_extent_root_level(root_backup,
  1656. btrfs_header_level(info->extent_root->node));
  1657. /*
  1658. * we might commit during log recovery, which happens before we set
  1659. * the fs_root. Make sure it is valid before we fill it in.
  1660. */
  1661. if (info->fs_root && info->fs_root->node) {
  1662. btrfs_set_backup_fs_root(root_backup,
  1663. info->fs_root->node->start);
  1664. btrfs_set_backup_fs_root_gen(root_backup,
  1665. btrfs_header_generation(info->fs_root->node));
  1666. btrfs_set_backup_fs_root_level(root_backup,
  1667. btrfs_header_level(info->fs_root->node));
  1668. }
  1669. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1670. btrfs_set_backup_dev_root_gen(root_backup,
  1671. btrfs_header_generation(info->dev_root->node));
  1672. btrfs_set_backup_dev_root_level(root_backup,
  1673. btrfs_header_level(info->dev_root->node));
  1674. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1675. btrfs_set_backup_csum_root_gen(root_backup,
  1676. btrfs_header_generation(info->csum_root->node));
  1677. btrfs_set_backup_csum_root_level(root_backup,
  1678. btrfs_header_level(info->csum_root->node));
  1679. btrfs_set_backup_total_bytes(root_backup,
  1680. btrfs_super_total_bytes(info->super_copy));
  1681. btrfs_set_backup_bytes_used(root_backup,
  1682. btrfs_super_bytes_used(info->super_copy));
  1683. btrfs_set_backup_num_devices(root_backup,
  1684. btrfs_super_num_devices(info->super_copy));
  1685. /*
  1686. * if we don't copy this out to the super_copy, it won't get remembered
  1687. * for the next commit
  1688. */
  1689. memcpy(&info->super_copy->super_roots,
  1690. &info->super_for_commit->super_roots,
  1691. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1692. }
  1693. /*
  1694. * this copies info out of the root backup array and back into
  1695. * the in-memory super block. It is meant to help iterate through
  1696. * the array, so you send it the number of backups you've already
  1697. * tried and the last backup index you used.
  1698. *
  1699. * this returns -1 when it has tried all the backups
  1700. */
  1701. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1702. struct btrfs_super_block *super,
  1703. int *num_backups_tried, int *backup_index)
  1704. {
  1705. struct btrfs_root_backup *root_backup;
  1706. int newest = *backup_index;
  1707. if (*num_backups_tried == 0) {
  1708. u64 gen = btrfs_super_generation(super);
  1709. newest = find_newest_super_backup(info, gen);
  1710. if (newest == -1)
  1711. return -1;
  1712. *backup_index = newest;
  1713. *num_backups_tried = 1;
  1714. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1715. /* we've tried all the backups, all done */
  1716. return -1;
  1717. } else {
  1718. /* jump to the next oldest backup */
  1719. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1720. BTRFS_NUM_BACKUP_ROOTS;
  1721. *backup_index = newest;
  1722. *num_backups_tried += 1;
  1723. }
  1724. root_backup = super->super_roots + newest;
  1725. btrfs_set_super_generation(super,
  1726. btrfs_backup_tree_root_gen(root_backup));
  1727. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1728. btrfs_set_super_root_level(super,
  1729. btrfs_backup_tree_root_level(root_backup));
  1730. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1731. /*
  1732. * fixme: the total bytes and num_devices need to match or we should
  1733. * need a fsck
  1734. */
  1735. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1736. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1737. return 0;
  1738. }
  1739. /* helper to cleanup workers */
  1740. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1741. {
  1742. btrfs_stop_workers(&fs_info->generic_worker);
  1743. btrfs_stop_workers(&fs_info->fixup_workers);
  1744. btrfs_stop_workers(&fs_info->delalloc_workers);
  1745. btrfs_stop_workers(&fs_info->workers);
  1746. btrfs_stop_workers(&fs_info->endio_workers);
  1747. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1748. btrfs_stop_workers(&fs_info->endio_raid56_workers);
  1749. btrfs_stop_workers(&fs_info->rmw_workers);
  1750. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1751. btrfs_stop_workers(&fs_info->endio_write_workers);
  1752. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  1753. btrfs_stop_workers(&fs_info->submit_workers);
  1754. btrfs_stop_workers(&fs_info->delayed_workers);
  1755. btrfs_stop_workers(&fs_info->caching_workers);
  1756. btrfs_stop_workers(&fs_info->readahead_workers);
  1757. btrfs_stop_workers(&fs_info->flush_workers);
  1758. btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
  1759. }
  1760. /* helper to cleanup tree roots */
  1761. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1762. {
  1763. free_extent_buffer(info->tree_root->node);
  1764. free_extent_buffer(info->tree_root->commit_root);
  1765. info->tree_root->node = NULL;
  1766. info->tree_root->commit_root = NULL;
  1767. if (info->dev_root) {
  1768. free_extent_buffer(info->dev_root->node);
  1769. free_extent_buffer(info->dev_root->commit_root);
  1770. info->dev_root->node = NULL;
  1771. info->dev_root->commit_root = NULL;
  1772. }
  1773. if (info->extent_root) {
  1774. free_extent_buffer(info->extent_root->node);
  1775. free_extent_buffer(info->extent_root->commit_root);
  1776. info->extent_root->node = NULL;
  1777. info->extent_root->commit_root = NULL;
  1778. }
  1779. if (info->csum_root) {
  1780. free_extent_buffer(info->csum_root->node);
  1781. free_extent_buffer(info->csum_root->commit_root);
  1782. info->csum_root->node = NULL;
  1783. info->csum_root->commit_root = NULL;
  1784. }
  1785. if (info->quota_root) {
  1786. free_extent_buffer(info->quota_root->node);
  1787. free_extent_buffer(info->quota_root->commit_root);
  1788. info->quota_root->node = NULL;
  1789. info->quota_root->commit_root = NULL;
  1790. }
  1791. if (info->uuid_root) {
  1792. free_extent_buffer(info->uuid_root->node);
  1793. free_extent_buffer(info->uuid_root->commit_root);
  1794. info->uuid_root->node = NULL;
  1795. info->uuid_root->commit_root = NULL;
  1796. }
  1797. if (chunk_root) {
  1798. free_extent_buffer(info->chunk_root->node);
  1799. free_extent_buffer(info->chunk_root->commit_root);
  1800. info->chunk_root->node = NULL;
  1801. info->chunk_root->commit_root = NULL;
  1802. }
  1803. }
  1804. static void del_fs_roots(struct btrfs_fs_info *fs_info)
  1805. {
  1806. int ret;
  1807. struct btrfs_root *gang[8];
  1808. int i;
  1809. while (!list_empty(&fs_info->dead_roots)) {
  1810. gang[0] = list_entry(fs_info->dead_roots.next,
  1811. struct btrfs_root, root_list);
  1812. list_del(&gang[0]->root_list);
  1813. if (gang[0]->in_radix) {
  1814. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1815. } else {
  1816. free_extent_buffer(gang[0]->node);
  1817. free_extent_buffer(gang[0]->commit_root);
  1818. btrfs_put_fs_root(gang[0]);
  1819. }
  1820. }
  1821. while (1) {
  1822. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1823. (void **)gang, 0,
  1824. ARRAY_SIZE(gang));
  1825. if (!ret)
  1826. break;
  1827. for (i = 0; i < ret; i++)
  1828. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1829. }
  1830. }
  1831. int open_ctree(struct super_block *sb,
  1832. struct btrfs_fs_devices *fs_devices,
  1833. char *options)
  1834. {
  1835. u32 sectorsize;
  1836. u32 nodesize;
  1837. u32 leafsize;
  1838. u32 blocksize;
  1839. u32 stripesize;
  1840. u64 generation;
  1841. u64 features;
  1842. struct btrfs_key location;
  1843. struct buffer_head *bh;
  1844. struct btrfs_super_block *disk_super;
  1845. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1846. struct btrfs_root *tree_root;
  1847. struct btrfs_root *extent_root;
  1848. struct btrfs_root *csum_root;
  1849. struct btrfs_root *chunk_root;
  1850. struct btrfs_root *dev_root;
  1851. struct btrfs_root *quota_root;
  1852. struct btrfs_root *uuid_root;
  1853. struct btrfs_root *log_tree_root;
  1854. int ret;
  1855. int err = -EINVAL;
  1856. int num_backups_tried = 0;
  1857. int backup_index = 0;
  1858. bool create_uuid_tree = false;
  1859. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1860. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1861. if (!tree_root || !chunk_root) {
  1862. err = -ENOMEM;
  1863. goto fail;
  1864. }
  1865. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1866. if (ret) {
  1867. err = ret;
  1868. goto fail;
  1869. }
  1870. ret = setup_bdi(fs_info, &fs_info->bdi);
  1871. if (ret) {
  1872. err = ret;
  1873. goto fail_srcu;
  1874. }
  1875. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
  1876. if (ret) {
  1877. err = ret;
  1878. goto fail_bdi;
  1879. }
  1880. fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
  1881. (1 + ilog2(nr_cpu_ids));
  1882. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
  1883. if (ret) {
  1884. err = ret;
  1885. goto fail_dirty_metadata_bytes;
  1886. }
  1887. fs_info->btree_inode = new_inode(sb);
  1888. if (!fs_info->btree_inode) {
  1889. err = -ENOMEM;
  1890. goto fail_delalloc_bytes;
  1891. }
  1892. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1893. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1894. INIT_LIST_HEAD(&fs_info->trans_list);
  1895. INIT_LIST_HEAD(&fs_info->dead_roots);
  1896. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1897. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  1898. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1899. spin_lock_init(&fs_info->delalloc_root_lock);
  1900. spin_lock_init(&fs_info->trans_lock);
  1901. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1902. spin_lock_init(&fs_info->delayed_iput_lock);
  1903. spin_lock_init(&fs_info->defrag_inodes_lock);
  1904. spin_lock_init(&fs_info->free_chunk_lock);
  1905. spin_lock_init(&fs_info->tree_mod_seq_lock);
  1906. spin_lock_init(&fs_info->super_lock);
  1907. rwlock_init(&fs_info->tree_mod_log_lock);
  1908. mutex_init(&fs_info->reloc_mutex);
  1909. seqlock_init(&fs_info->profiles_lock);
  1910. init_completion(&fs_info->kobj_unregister);
  1911. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1912. INIT_LIST_HEAD(&fs_info->space_info);
  1913. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  1914. btrfs_mapping_init(&fs_info->mapping_tree);
  1915. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  1916. BTRFS_BLOCK_RSV_GLOBAL);
  1917. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  1918. BTRFS_BLOCK_RSV_DELALLOC);
  1919. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  1920. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  1921. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  1922. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  1923. BTRFS_BLOCK_RSV_DELOPS);
  1924. atomic_set(&fs_info->nr_async_submits, 0);
  1925. atomic_set(&fs_info->async_delalloc_pages, 0);
  1926. atomic_set(&fs_info->async_submit_draining, 0);
  1927. atomic_set(&fs_info->nr_async_bios, 0);
  1928. atomic_set(&fs_info->defrag_running, 0);
  1929. atomic64_set(&fs_info->tree_mod_seq, 0);
  1930. fs_info->sb = sb;
  1931. fs_info->max_inline = 8192 * 1024;
  1932. fs_info->metadata_ratio = 0;
  1933. fs_info->defrag_inodes = RB_ROOT;
  1934. fs_info->free_chunk_space = 0;
  1935. fs_info->tree_mod_log = RB_ROOT;
  1936. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  1937. /* readahead state */
  1938. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1939. spin_lock_init(&fs_info->reada_lock);
  1940. fs_info->thread_pool_size = min_t(unsigned long,
  1941. num_online_cpus() + 2, 8);
  1942. INIT_LIST_HEAD(&fs_info->ordered_roots);
  1943. spin_lock_init(&fs_info->ordered_root_lock);
  1944. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1945. GFP_NOFS);
  1946. if (!fs_info->delayed_root) {
  1947. err = -ENOMEM;
  1948. goto fail_iput;
  1949. }
  1950. btrfs_init_delayed_root(fs_info->delayed_root);
  1951. mutex_init(&fs_info->scrub_lock);
  1952. atomic_set(&fs_info->scrubs_running, 0);
  1953. atomic_set(&fs_info->scrub_pause_req, 0);
  1954. atomic_set(&fs_info->scrubs_paused, 0);
  1955. atomic_set(&fs_info->scrub_cancel_req, 0);
  1956. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1957. init_rwsem(&fs_info->scrub_super_lock);
  1958. fs_info->scrub_workers_refcnt = 0;
  1959. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  1960. fs_info->check_integrity_print_mask = 0;
  1961. #endif
  1962. spin_lock_init(&fs_info->balance_lock);
  1963. mutex_init(&fs_info->balance_mutex);
  1964. atomic_set(&fs_info->balance_running, 0);
  1965. atomic_set(&fs_info->balance_pause_req, 0);
  1966. atomic_set(&fs_info->balance_cancel_req, 0);
  1967. fs_info->balance_ctl = NULL;
  1968. init_waitqueue_head(&fs_info->balance_wait_q);
  1969. sb->s_blocksize = 4096;
  1970. sb->s_blocksize_bits = blksize_bits(4096);
  1971. sb->s_bdi = &fs_info->bdi;
  1972. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1973. set_nlink(fs_info->btree_inode, 1);
  1974. /*
  1975. * we set the i_size on the btree inode to the max possible int.
  1976. * the real end of the address space is determined by all of
  1977. * the devices in the system
  1978. */
  1979. fs_info->btree_inode->i_size = OFFSET_MAX;
  1980. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1981. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1982. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1983. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1984. fs_info->btree_inode->i_mapping);
  1985. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1986. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1987. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1988. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1989. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1990. sizeof(struct btrfs_key));
  1991. set_bit(BTRFS_INODE_DUMMY,
  1992. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1993. insert_inode_hash(fs_info->btree_inode);
  1994. spin_lock_init(&fs_info->block_group_cache_lock);
  1995. fs_info->block_group_cache_tree = RB_ROOT;
  1996. fs_info->first_logical_byte = (u64)-1;
  1997. extent_io_tree_init(&fs_info->freed_extents[0],
  1998. fs_info->btree_inode->i_mapping);
  1999. extent_io_tree_init(&fs_info->freed_extents[1],
  2000. fs_info->btree_inode->i_mapping);
  2001. fs_info->pinned_extents = &fs_info->freed_extents[0];
  2002. fs_info->do_barriers = 1;
  2003. mutex_init(&fs_info->ordered_operations_mutex);
  2004. mutex_init(&fs_info->ordered_extent_flush_mutex);
  2005. mutex_init(&fs_info->tree_log_mutex);
  2006. mutex_init(&fs_info->chunk_mutex);
  2007. mutex_init(&fs_info->transaction_kthread_mutex);
  2008. mutex_init(&fs_info->cleaner_mutex);
  2009. mutex_init(&fs_info->volume_mutex);
  2010. init_rwsem(&fs_info->extent_commit_sem);
  2011. init_rwsem(&fs_info->cleanup_work_sem);
  2012. init_rwsem(&fs_info->subvol_sem);
  2013. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2014. fs_info->dev_replace.lock_owner = 0;
  2015. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  2016. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  2017. mutex_init(&fs_info->dev_replace.lock_management_lock);
  2018. mutex_init(&fs_info->dev_replace.lock);
  2019. spin_lock_init(&fs_info->qgroup_lock);
  2020. mutex_init(&fs_info->qgroup_ioctl_lock);
  2021. fs_info->qgroup_tree = RB_ROOT;
  2022. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  2023. fs_info->qgroup_seq = 1;
  2024. fs_info->quota_enabled = 0;
  2025. fs_info->pending_quota_state = 0;
  2026. fs_info->qgroup_ulist = NULL;
  2027. mutex_init(&fs_info->qgroup_rescan_lock);
  2028. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2029. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2030. init_waitqueue_head(&fs_info->transaction_throttle);
  2031. init_waitqueue_head(&fs_info->transaction_wait);
  2032. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2033. init_waitqueue_head(&fs_info->async_submit_wait);
  2034. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2035. if (ret) {
  2036. err = ret;
  2037. goto fail_alloc;
  2038. }
  2039. __setup_root(4096, 4096, 4096, 4096, tree_root,
  2040. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2041. invalidate_bdev(fs_devices->latest_bdev);
  2042. /*
  2043. * Read super block and check the signature bytes only
  2044. */
  2045. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2046. if (!bh) {
  2047. err = -EINVAL;
  2048. goto fail_alloc;
  2049. }
  2050. /*
  2051. * We want to check superblock checksum, the type is stored inside.
  2052. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2053. */
  2054. if (btrfs_check_super_csum(bh->b_data)) {
  2055. printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
  2056. err = -EINVAL;
  2057. goto fail_alloc;
  2058. }
  2059. /*
  2060. * super_copy is zeroed at allocation time and we never touch the
  2061. * following bytes up to INFO_SIZE, the checksum is calculated from
  2062. * the whole block of INFO_SIZE
  2063. */
  2064. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2065. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2066. sizeof(*fs_info->super_for_commit));
  2067. brelse(bh);
  2068. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2069. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2070. if (ret) {
  2071. printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
  2072. err = -EINVAL;
  2073. goto fail_alloc;
  2074. }
  2075. disk_super = fs_info->super_copy;
  2076. if (!btrfs_super_root(disk_super))
  2077. goto fail_alloc;
  2078. /* check FS state, whether FS is broken. */
  2079. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2080. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2081. /*
  2082. * run through our array of backup supers and setup
  2083. * our ring pointer to the oldest one
  2084. */
  2085. generation = btrfs_super_generation(disk_super);
  2086. find_oldest_super_backup(fs_info, generation);
  2087. /*
  2088. * In the long term, we'll store the compression type in the super
  2089. * block, and it'll be used for per file compression control.
  2090. */
  2091. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2092. ret = btrfs_parse_options(tree_root, options);
  2093. if (ret) {
  2094. err = ret;
  2095. goto fail_alloc;
  2096. }
  2097. features = btrfs_super_incompat_flags(disk_super) &
  2098. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2099. if (features) {
  2100. printk(KERN_ERR "BTRFS: couldn't mount because of "
  2101. "unsupported optional features (%Lx).\n",
  2102. (unsigned long long)features);
  2103. err = -EINVAL;
  2104. goto fail_alloc;
  2105. }
  2106. if (btrfs_super_leafsize(disk_super) !=
  2107. btrfs_super_nodesize(disk_super)) {
  2108. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2109. "blocksizes don't match. node %d leaf %d\n",
  2110. btrfs_super_nodesize(disk_super),
  2111. btrfs_super_leafsize(disk_super));
  2112. err = -EINVAL;
  2113. goto fail_alloc;
  2114. }
  2115. if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  2116. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2117. "blocksize (%d) was too large\n",
  2118. btrfs_super_leafsize(disk_super));
  2119. err = -EINVAL;
  2120. goto fail_alloc;
  2121. }
  2122. features = btrfs_super_incompat_flags(disk_super);
  2123. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2124. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2125. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2126. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2127. printk(KERN_ERR "btrfs: has skinny extents\n");
  2128. /*
  2129. * flag our filesystem as having big metadata blocks if
  2130. * they are bigger than the page size
  2131. */
  2132. if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
  2133. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2134. printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
  2135. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2136. }
  2137. nodesize = btrfs_super_nodesize(disk_super);
  2138. leafsize = btrfs_super_leafsize(disk_super);
  2139. sectorsize = btrfs_super_sectorsize(disk_super);
  2140. stripesize = btrfs_super_stripesize(disk_super);
  2141. fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
  2142. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2143. /*
  2144. * mixed block groups end up with duplicate but slightly offset
  2145. * extent buffers for the same range. It leads to corruptions
  2146. */
  2147. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2148. (sectorsize != leafsize)) {
  2149. printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
  2150. "are not allowed for mixed block groups on %s\n",
  2151. sb->s_id);
  2152. goto fail_alloc;
  2153. }
  2154. /*
  2155. * Needn't use the lock because there is no other task which will
  2156. * update the flag.
  2157. */
  2158. btrfs_set_super_incompat_flags(disk_super, features);
  2159. features = btrfs_super_compat_ro_flags(disk_super) &
  2160. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2161. if (!(sb->s_flags & MS_RDONLY) && features) {
  2162. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  2163. "unsupported option features (%Lx).\n",
  2164. (unsigned long long)features);
  2165. err = -EINVAL;
  2166. goto fail_alloc;
  2167. }
  2168. btrfs_init_workers(&fs_info->generic_worker,
  2169. "genwork", 1, NULL);
  2170. btrfs_init_workers(&fs_info->workers, "worker",
  2171. fs_info->thread_pool_size,
  2172. &fs_info->generic_worker);
  2173. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  2174. fs_info->thread_pool_size,
  2175. &fs_info->generic_worker);
  2176. btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
  2177. fs_info->thread_pool_size,
  2178. &fs_info->generic_worker);
  2179. btrfs_init_workers(&fs_info->submit_workers, "submit",
  2180. min_t(u64, fs_devices->num_devices,
  2181. fs_info->thread_pool_size),
  2182. &fs_info->generic_worker);
  2183. btrfs_init_workers(&fs_info->caching_workers, "cache",
  2184. 2, &fs_info->generic_worker);
  2185. /* a higher idle thresh on the submit workers makes it much more
  2186. * likely that bios will be send down in a sane order to the
  2187. * devices
  2188. */
  2189. fs_info->submit_workers.idle_thresh = 64;
  2190. fs_info->workers.idle_thresh = 16;
  2191. fs_info->workers.ordered = 1;
  2192. fs_info->delalloc_workers.idle_thresh = 2;
  2193. fs_info->delalloc_workers.ordered = 1;
  2194. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  2195. &fs_info->generic_worker);
  2196. btrfs_init_workers(&fs_info->endio_workers, "endio",
  2197. fs_info->thread_pool_size,
  2198. &fs_info->generic_worker);
  2199. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  2200. fs_info->thread_pool_size,
  2201. &fs_info->generic_worker);
  2202. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  2203. "endio-meta-write", fs_info->thread_pool_size,
  2204. &fs_info->generic_worker);
  2205. btrfs_init_workers(&fs_info->endio_raid56_workers,
  2206. "endio-raid56", fs_info->thread_pool_size,
  2207. &fs_info->generic_worker);
  2208. btrfs_init_workers(&fs_info->rmw_workers,
  2209. "rmw", fs_info->thread_pool_size,
  2210. &fs_info->generic_worker);
  2211. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  2212. fs_info->thread_pool_size,
  2213. &fs_info->generic_worker);
  2214. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  2215. 1, &fs_info->generic_worker);
  2216. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  2217. fs_info->thread_pool_size,
  2218. &fs_info->generic_worker);
  2219. btrfs_init_workers(&fs_info->readahead_workers, "readahead",
  2220. fs_info->thread_pool_size,
  2221. &fs_info->generic_worker);
  2222. btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
  2223. &fs_info->generic_worker);
  2224. /*
  2225. * endios are largely parallel and should have a very
  2226. * low idle thresh
  2227. */
  2228. fs_info->endio_workers.idle_thresh = 4;
  2229. fs_info->endio_meta_workers.idle_thresh = 4;
  2230. fs_info->endio_raid56_workers.idle_thresh = 4;
  2231. fs_info->rmw_workers.idle_thresh = 2;
  2232. fs_info->endio_write_workers.idle_thresh = 2;
  2233. fs_info->endio_meta_write_workers.idle_thresh = 2;
  2234. fs_info->readahead_workers.idle_thresh = 2;
  2235. /*
  2236. * btrfs_start_workers can really only fail because of ENOMEM so just
  2237. * return -ENOMEM if any of these fail.
  2238. */
  2239. ret = btrfs_start_workers(&fs_info->workers);
  2240. ret |= btrfs_start_workers(&fs_info->generic_worker);
  2241. ret |= btrfs_start_workers(&fs_info->submit_workers);
  2242. ret |= btrfs_start_workers(&fs_info->delalloc_workers);
  2243. ret |= btrfs_start_workers(&fs_info->fixup_workers);
  2244. ret |= btrfs_start_workers(&fs_info->endio_workers);
  2245. ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
  2246. ret |= btrfs_start_workers(&fs_info->rmw_workers);
  2247. ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
  2248. ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
  2249. ret |= btrfs_start_workers(&fs_info->endio_write_workers);
  2250. ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
  2251. ret |= btrfs_start_workers(&fs_info->delayed_workers);
  2252. ret |= btrfs_start_workers(&fs_info->caching_workers);
  2253. ret |= btrfs_start_workers(&fs_info->readahead_workers);
  2254. ret |= btrfs_start_workers(&fs_info->flush_workers);
  2255. ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
  2256. if (ret) {
  2257. err = -ENOMEM;
  2258. goto fail_sb_buffer;
  2259. }
  2260. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2261. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2262. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2263. tree_root->nodesize = nodesize;
  2264. tree_root->leafsize = leafsize;
  2265. tree_root->sectorsize = sectorsize;
  2266. tree_root->stripesize = stripesize;
  2267. sb->s_blocksize = sectorsize;
  2268. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2269. if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
  2270. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  2271. goto fail_sb_buffer;
  2272. }
  2273. if (sectorsize != PAGE_SIZE) {
  2274. printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
  2275. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2276. goto fail_sb_buffer;
  2277. }
  2278. mutex_lock(&fs_info->chunk_mutex);
  2279. ret = btrfs_read_sys_array(tree_root);
  2280. mutex_unlock(&fs_info->chunk_mutex);
  2281. if (ret) {
  2282. printk(KERN_WARNING "btrfs: failed to read the system "
  2283. "array on %s\n", sb->s_id);
  2284. goto fail_sb_buffer;
  2285. }
  2286. blocksize = btrfs_level_size(tree_root,
  2287. btrfs_super_chunk_root_level(disk_super));
  2288. generation = btrfs_super_chunk_root_generation(disk_super);
  2289. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2290. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2291. chunk_root->node = read_tree_block(chunk_root,
  2292. btrfs_super_chunk_root(disk_super),
  2293. blocksize, generation);
  2294. if (!chunk_root->node ||
  2295. !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2296. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  2297. sb->s_id);
  2298. goto fail_tree_roots;
  2299. }
  2300. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2301. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2302. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2303. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  2304. BTRFS_UUID_SIZE);
  2305. ret = btrfs_read_chunk_tree(chunk_root);
  2306. if (ret) {
  2307. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  2308. sb->s_id);
  2309. goto fail_tree_roots;
  2310. }
  2311. /*
  2312. * keep the device that is marked to be the target device for the
  2313. * dev_replace procedure
  2314. */
  2315. btrfs_close_extra_devices(fs_info, fs_devices, 0);
  2316. if (!fs_devices->latest_bdev) {
  2317. printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
  2318. sb->s_id);
  2319. goto fail_tree_roots;
  2320. }
  2321. retry_root_backup:
  2322. blocksize = btrfs_level_size(tree_root,
  2323. btrfs_super_root_level(disk_super));
  2324. generation = btrfs_super_generation(disk_super);
  2325. tree_root->node = read_tree_block(tree_root,
  2326. btrfs_super_root(disk_super),
  2327. blocksize, generation);
  2328. if (!tree_root->node ||
  2329. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2330. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  2331. sb->s_id);
  2332. goto recovery_tree_root;
  2333. }
  2334. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2335. tree_root->commit_root = btrfs_root_node(tree_root);
  2336. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2337. location.type = BTRFS_ROOT_ITEM_KEY;
  2338. location.offset = 0;
  2339. extent_root = btrfs_read_tree_root(tree_root, &location);
  2340. if (IS_ERR(extent_root)) {
  2341. ret = PTR_ERR(extent_root);
  2342. goto recovery_tree_root;
  2343. }
  2344. extent_root->track_dirty = 1;
  2345. fs_info->extent_root = extent_root;
  2346. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2347. dev_root = btrfs_read_tree_root(tree_root, &location);
  2348. if (IS_ERR(dev_root)) {
  2349. ret = PTR_ERR(dev_root);
  2350. goto recovery_tree_root;
  2351. }
  2352. dev_root->track_dirty = 1;
  2353. fs_info->dev_root = dev_root;
  2354. btrfs_init_devices_late(fs_info);
  2355. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2356. csum_root = btrfs_read_tree_root(tree_root, &location);
  2357. if (IS_ERR(csum_root)) {
  2358. ret = PTR_ERR(csum_root);
  2359. goto recovery_tree_root;
  2360. }
  2361. csum_root->track_dirty = 1;
  2362. fs_info->csum_root = csum_root;
  2363. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2364. quota_root = btrfs_read_tree_root(tree_root, &location);
  2365. if (!IS_ERR(quota_root)) {
  2366. quota_root->track_dirty = 1;
  2367. fs_info->quota_enabled = 1;
  2368. fs_info->pending_quota_state = 1;
  2369. fs_info->quota_root = quota_root;
  2370. }
  2371. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2372. uuid_root = btrfs_read_tree_root(tree_root, &location);
  2373. if (IS_ERR(uuid_root)) {
  2374. ret = PTR_ERR(uuid_root);
  2375. if (ret != -ENOENT)
  2376. goto recovery_tree_root;
  2377. create_uuid_tree = true;
  2378. } else {
  2379. uuid_root->track_dirty = 1;
  2380. fs_info->uuid_root = uuid_root;
  2381. }
  2382. fs_info->generation = generation;
  2383. fs_info->last_trans_committed = generation;
  2384. ret = btrfs_recover_balance(fs_info);
  2385. if (ret) {
  2386. printk(KERN_WARNING "btrfs: failed to recover balance\n");
  2387. goto fail_block_groups;
  2388. }
  2389. ret = btrfs_init_dev_stats(fs_info);
  2390. if (ret) {
  2391. printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
  2392. ret);
  2393. goto fail_block_groups;
  2394. }
  2395. ret = btrfs_init_dev_replace(fs_info);
  2396. if (ret) {
  2397. pr_err("btrfs: failed to init dev_replace: %d\n", ret);
  2398. goto fail_block_groups;
  2399. }
  2400. btrfs_close_extra_devices(fs_info, fs_devices, 1);
  2401. ret = btrfs_init_space_info(fs_info);
  2402. if (ret) {
  2403. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  2404. goto fail_block_groups;
  2405. }
  2406. ret = btrfs_read_block_groups(extent_root);
  2407. if (ret) {
  2408. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  2409. goto fail_block_groups;
  2410. }
  2411. fs_info->num_tolerated_disk_barrier_failures =
  2412. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2413. if (fs_info->fs_devices->missing_devices >
  2414. fs_info->num_tolerated_disk_barrier_failures &&
  2415. !(sb->s_flags & MS_RDONLY)) {
  2416. printk(KERN_WARNING
  2417. "Btrfs: too many missing devices, writeable mount is not allowed\n");
  2418. goto fail_block_groups;
  2419. }
  2420. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2421. "btrfs-cleaner");
  2422. if (IS_ERR(fs_info->cleaner_kthread))
  2423. goto fail_block_groups;
  2424. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2425. tree_root,
  2426. "btrfs-transaction");
  2427. if (IS_ERR(fs_info->transaction_kthread))
  2428. goto fail_cleaner;
  2429. if (!btrfs_test_opt(tree_root, SSD) &&
  2430. !btrfs_test_opt(tree_root, NOSSD) &&
  2431. !fs_info->fs_devices->rotating) {
  2432. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  2433. "mode\n");
  2434. btrfs_set_opt(fs_info->mount_opt, SSD);
  2435. }
  2436. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2437. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2438. ret = btrfsic_mount(tree_root, fs_devices,
  2439. btrfs_test_opt(tree_root,
  2440. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2441. 1 : 0,
  2442. fs_info->check_integrity_print_mask);
  2443. if (ret)
  2444. printk(KERN_WARNING "btrfs: failed to initialize"
  2445. " integrity check module %s\n", sb->s_id);
  2446. }
  2447. #endif
  2448. ret = btrfs_read_qgroup_config(fs_info);
  2449. if (ret)
  2450. goto fail_trans_kthread;
  2451. /* do not make disk changes in broken FS */
  2452. if (btrfs_super_log_root(disk_super) != 0) {
  2453. u64 bytenr = btrfs_super_log_root(disk_super);
  2454. if (fs_devices->rw_devices == 0) {
  2455. printk(KERN_WARNING "Btrfs log replay required "
  2456. "on RO media\n");
  2457. err = -EIO;
  2458. goto fail_qgroup;
  2459. }
  2460. blocksize =
  2461. btrfs_level_size(tree_root,
  2462. btrfs_super_log_root_level(disk_super));
  2463. log_tree_root = btrfs_alloc_root(fs_info);
  2464. if (!log_tree_root) {
  2465. err = -ENOMEM;
  2466. goto fail_qgroup;
  2467. }
  2468. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2469. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2470. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2471. blocksize,
  2472. generation + 1);
  2473. if (!log_tree_root->node ||
  2474. !extent_buffer_uptodate(log_tree_root->node)) {
  2475. printk(KERN_ERR "btrfs: failed to read log tree\n");
  2476. free_extent_buffer(log_tree_root->node);
  2477. kfree(log_tree_root);
  2478. goto fail_trans_kthread;
  2479. }
  2480. /* returns with log_tree_root freed on success */
  2481. ret = btrfs_recover_log_trees(log_tree_root);
  2482. if (ret) {
  2483. btrfs_error(tree_root->fs_info, ret,
  2484. "Failed to recover log tree");
  2485. free_extent_buffer(log_tree_root->node);
  2486. kfree(log_tree_root);
  2487. goto fail_trans_kthread;
  2488. }
  2489. if (sb->s_flags & MS_RDONLY) {
  2490. ret = btrfs_commit_super(tree_root);
  2491. if (ret)
  2492. goto fail_trans_kthread;
  2493. }
  2494. }
  2495. ret = btrfs_find_orphan_roots(tree_root);
  2496. if (ret)
  2497. goto fail_trans_kthread;
  2498. if (!(sb->s_flags & MS_RDONLY)) {
  2499. ret = btrfs_cleanup_fs_roots(fs_info);
  2500. if (ret)
  2501. goto fail_trans_kthread;
  2502. ret = btrfs_recover_relocation(tree_root);
  2503. if (ret < 0) {
  2504. printk(KERN_WARNING
  2505. "btrfs: failed to recover relocation\n");
  2506. err = -EINVAL;
  2507. goto fail_qgroup;
  2508. }
  2509. }
  2510. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2511. location.type = BTRFS_ROOT_ITEM_KEY;
  2512. location.offset = 0;
  2513. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2514. if (IS_ERR(fs_info->fs_root)) {
  2515. err = PTR_ERR(fs_info->fs_root);
  2516. goto fail_qgroup;
  2517. }
  2518. if (sb->s_flags & MS_RDONLY)
  2519. return 0;
  2520. down_read(&fs_info->cleanup_work_sem);
  2521. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2522. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2523. up_read(&fs_info->cleanup_work_sem);
  2524. close_ctree(tree_root);
  2525. return ret;
  2526. }
  2527. up_read(&fs_info->cleanup_work_sem);
  2528. ret = btrfs_resume_balance_async(fs_info);
  2529. if (ret) {
  2530. printk(KERN_WARNING "btrfs: failed to resume balance\n");
  2531. close_ctree(tree_root);
  2532. return ret;
  2533. }
  2534. ret = btrfs_resume_dev_replace_async(fs_info);
  2535. if (ret) {
  2536. pr_warn("btrfs: failed to resume dev_replace\n");
  2537. close_ctree(tree_root);
  2538. return ret;
  2539. }
  2540. btrfs_qgroup_rescan_resume(fs_info);
  2541. if (create_uuid_tree) {
  2542. pr_info("btrfs: creating UUID tree\n");
  2543. ret = btrfs_create_uuid_tree(fs_info);
  2544. if (ret) {
  2545. pr_warn("btrfs: failed to create the UUID tree %d\n",
  2546. ret);
  2547. close_ctree(tree_root);
  2548. return ret;
  2549. }
  2550. }
  2551. return 0;
  2552. fail_qgroup:
  2553. btrfs_free_qgroup_config(fs_info);
  2554. fail_trans_kthread:
  2555. kthread_stop(fs_info->transaction_kthread);
  2556. btrfs_cleanup_transaction(fs_info->tree_root);
  2557. del_fs_roots(fs_info);
  2558. fail_cleaner:
  2559. kthread_stop(fs_info->cleaner_kthread);
  2560. /*
  2561. * make sure we're done with the btree inode before we stop our
  2562. * kthreads
  2563. */
  2564. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2565. fail_block_groups:
  2566. btrfs_put_block_group_cache(fs_info);
  2567. btrfs_free_block_groups(fs_info);
  2568. fail_tree_roots:
  2569. free_root_pointers(fs_info, 1);
  2570. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2571. fail_sb_buffer:
  2572. btrfs_stop_all_workers(fs_info);
  2573. fail_alloc:
  2574. fail_iput:
  2575. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2576. iput(fs_info->btree_inode);
  2577. fail_delalloc_bytes:
  2578. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2579. fail_dirty_metadata_bytes:
  2580. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2581. fail_bdi:
  2582. bdi_destroy(&fs_info->bdi);
  2583. fail_srcu:
  2584. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2585. fail:
  2586. btrfs_free_stripe_hash_table(fs_info);
  2587. btrfs_close_devices(fs_info->fs_devices);
  2588. return err;
  2589. recovery_tree_root:
  2590. if (!btrfs_test_opt(tree_root, RECOVERY))
  2591. goto fail_tree_roots;
  2592. free_root_pointers(fs_info, 0);
  2593. /* don't use the log in recovery mode, it won't be valid */
  2594. btrfs_set_super_log_root(disk_super, 0);
  2595. /* we can't trust the free space cache either */
  2596. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2597. ret = next_root_backup(fs_info, fs_info->super_copy,
  2598. &num_backups_tried, &backup_index);
  2599. if (ret == -1)
  2600. goto fail_block_groups;
  2601. goto retry_root_backup;
  2602. }
  2603. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2604. {
  2605. if (uptodate) {
  2606. set_buffer_uptodate(bh);
  2607. } else {
  2608. struct btrfs_device *device = (struct btrfs_device *)
  2609. bh->b_private;
  2610. printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
  2611. "I/O error on %s\n",
  2612. rcu_str_deref(device->name));
  2613. /* note, we dont' set_buffer_write_io_error because we have
  2614. * our own ways of dealing with the IO errors
  2615. */
  2616. clear_buffer_uptodate(bh);
  2617. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2618. }
  2619. unlock_buffer(bh);
  2620. put_bh(bh);
  2621. }
  2622. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2623. {
  2624. struct buffer_head *bh;
  2625. struct buffer_head *latest = NULL;
  2626. struct btrfs_super_block *super;
  2627. int i;
  2628. u64 transid = 0;
  2629. u64 bytenr;
  2630. /* we would like to check all the supers, but that would make
  2631. * a btrfs mount succeed after a mkfs from a different FS.
  2632. * So, we need to add a special mount option to scan for
  2633. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2634. */
  2635. for (i = 0; i < 1; i++) {
  2636. bytenr = btrfs_sb_offset(i);
  2637. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2638. i_size_read(bdev->bd_inode))
  2639. break;
  2640. bh = __bread(bdev, bytenr / 4096,
  2641. BTRFS_SUPER_INFO_SIZE);
  2642. if (!bh)
  2643. continue;
  2644. super = (struct btrfs_super_block *)bh->b_data;
  2645. if (btrfs_super_bytenr(super) != bytenr ||
  2646. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2647. brelse(bh);
  2648. continue;
  2649. }
  2650. if (!latest || btrfs_super_generation(super) > transid) {
  2651. brelse(latest);
  2652. latest = bh;
  2653. transid = btrfs_super_generation(super);
  2654. } else {
  2655. brelse(bh);
  2656. }
  2657. }
  2658. return latest;
  2659. }
  2660. /*
  2661. * this should be called twice, once with wait == 0 and
  2662. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2663. * we write are pinned.
  2664. *
  2665. * They are released when wait == 1 is done.
  2666. * max_mirrors must be the same for both runs, and it indicates how
  2667. * many supers on this one device should be written.
  2668. *
  2669. * max_mirrors == 0 means to write them all.
  2670. */
  2671. static int write_dev_supers(struct btrfs_device *device,
  2672. struct btrfs_super_block *sb,
  2673. int do_barriers, int wait, int max_mirrors)
  2674. {
  2675. struct buffer_head *bh;
  2676. int i;
  2677. int ret;
  2678. int errors = 0;
  2679. u32 crc;
  2680. u64 bytenr;
  2681. if (max_mirrors == 0)
  2682. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2683. for (i = 0; i < max_mirrors; i++) {
  2684. bytenr = btrfs_sb_offset(i);
  2685. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2686. break;
  2687. if (wait) {
  2688. bh = __find_get_block(device->bdev, bytenr / 4096,
  2689. BTRFS_SUPER_INFO_SIZE);
  2690. if (!bh) {
  2691. errors++;
  2692. continue;
  2693. }
  2694. wait_on_buffer(bh);
  2695. if (!buffer_uptodate(bh))
  2696. errors++;
  2697. /* drop our reference */
  2698. brelse(bh);
  2699. /* drop the reference from the wait == 0 run */
  2700. brelse(bh);
  2701. continue;
  2702. } else {
  2703. btrfs_set_super_bytenr(sb, bytenr);
  2704. crc = ~(u32)0;
  2705. crc = btrfs_csum_data((char *)sb +
  2706. BTRFS_CSUM_SIZE, crc,
  2707. BTRFS_SUPER_INFO_SIZE -
  2708. BTRFS_CSUM_SIZE);
  2709. btrfs_csum_final(crc, sb->csum);
  2710. /*
  2711. * one reference for us, and we leave it for the
  2712. * caller
  2713. */
  2714. bh = __getblk(device->bdev, bytenr / 4096,
  2715. BTRFS_SUPER_INFO_SIZE);
  2716. if (!bh) {
  2717. printk(KERN_ERR "btrfs: couldn't get super "
  2718. "buffer head for bytenr %Lu\n", bytenr);
  2719. errors++;
  2720. continue;
  2721. }
  2722. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2723. /* one reference for submit_bh */
  2724. get_bh(bh);
  2725. set_buffer_uptodate(bh);
  2726. lock_buffer(bh);
  2727. bh->b_end_io = btrfs_end_buffer_write_sync;
  2728. bh->b_private = device;
  2729. }
  2730. /*
  2731. * we fua the first super. The others we allow
  2732. * to go down lazy.
  2733. */
  2734. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2735. if (ret)
  2736. errors++;
  2737. }
  2738. return errors < i ? 0 : -1;
  2739. }
  2740. /*
  2741. * endio for the write_dev_flush, this will wake anyone waiting
  2742. * for the barrier when it is done
  2743. */
  2744. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2745. {
  2746. if (err) {
  2747. if (err == -EOPNOTSUPP)
  2748. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2749. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2750. }
  2751. if (bio->bi_private)
  2752. complete(bio->bi_private);
  2753. bio_put(bio);
  2754. }
  2755. /*
  2756. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2757. * sent down. With wait == 1, it waits for the previous flush.
  2758. *
  2759. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2760. * capable
  2761. */
  2762. static int write_dev_flush(struct btrfs_device *device, int wait)
  2763. {
  2764. struct bio *bio;
  2765. int ret = 0;
  2766. if (device->nobarriers)
  2767. return 0;
  2768. if (wait) {
  2769. bio = device->flush_bio;
  2770. if (!bio)
  2771. return 0;
  2772. wait_for_completion(&device->flush_wait);
  2773. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2774. printk_in_rcu("btrfs: disabling barriers on dev %s\n",
  2775. rcu_str_deref(device->name));
  2776. device->nobarriers = 1;
  2777. } else if (!bio_flagged(bio, BIO_UPTODATE)) {
  2778. ret = -EIO;
  2779. btrfs_dev_stat_inc_and_print(device,
  2780. BTRFS_DEV_STAT_FLUSH_ERRS);
  2781. }
  2782. /* drop the reference from the wait == 0 run */
  2783. bio_put(bio);
  2784. device->flush_bio = NULL;
  2785. return ret;
  2786. }
  2787. /*
  2788. * one reference for us, and we leave it for the
  2789. * caller
  2790. */
  2791. device->flush_bio = NULL;
  2792. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  2793. if (!bio)
  2794. return -ENOMEM;
  2795. bio->bi_end_io = btrfs_end_empty_barrier;
  2796. bio->bi_bdev = device->bdev;
  2797. init_completion(&device->flush_wait);
  2798. bio->bi_private = &device->flush_wait;
  2799. device->flush_bio = bio;
  2800. bio_get(bio);
  2801. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2802. return 0;
  2803. }
  2804. /*
  2805. * send an empty flush down to each device in parallel,
  2806. * then wait for them
  2807. */
  2808. static int barrier_all_devices(struct btrfs_fs_info *info)
  2809. {
  2810. struct list_head *head;
  2811. struct btrfs_device *dev;
  2812. int errors_send = 0;
  2813. int errors_wait = 0;
  2814. int ret;
  2815. /* send down all the barriers */
  2816. head = &info->fs_devices->devices;
  2817. list_for_each_entry_rcu(dev, head, dev_list) {
  2818. if (!dev->bdev) {
  2819. errors_send++;
  2820. continue;
  2821. }
  2822. if (!dev->in_fs_metadata || !dev->writeable)
  2823. continue;
  2824. ret = write_dev_flush(dev, 0);
  2825. if (ret)
  2826. errors_send++;
  2827. }
  2828. /* wait for all the barriers */
  2829. list_for_each_entry_rcu(dev, head, dev_list) {
  2830. if (!dev->bdev) {
  2831. errors_wait++;
  2832. continue;
  2833. }
  2834. if (!dev->in_fs_metadata || !dev->writeable)
  2835. continue;
  2836. ret = write_dev_flush(dev, 1);
  2837. if (ret)
  2838. errors_wait++;
  2839. }
  2840. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  2841. errors_wait > info->num_tolerated_disk_barrier_failures)
  2842. return -EIO;
  2843. return 0;
  2844. }
  2845. int btrfs_calc_num_tolerated_disk_barrier_failures(
  2846. struct btrfs_fs_info *fs_info)
  2847. {
  2848. struct btrfs_ioctl_space_info space;
  2849. struct btrfs_space_info *sinfo;
  2850. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  2851. BTRFS_BLOCK_GROUP_SYSTEM,
  2852. BTRFS_BLOCK_GROUP_METADATA,
  2853. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  2854. int num_types = 4;
  2855. int i;
  2856. int c;
  2857. int num_tolerated_disk_barrier_failures =
  2858. (int)fs_info->fs_devices->num_devices;
  2859. for (i = 0; i < num_types; i++) {
  2860. struct btrfs_space_info *tmp;
  2861. sinfo = NULL;
  2862. rcu_read_lock();
  2863. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  2864. if (tmp->flags == types[i]) {
  2865. sinfo = tmp;
  2866. break;
  2867. }
  2868. }
  2869. rcu_read_unlock();
  2870. if (!sinfo)
  2871. continue;
  2872. down_read(&sinfo->groups_sem);
  2873. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  2874. if (!list_empty(&sinfo->block_groups[c])) {
  2875. u64 flags;
  2876. btrfs_get_block_group_info(
  2877. &sinfo->block_groups[c], &space);
  2878. if (space.total_bytes == 0 ||
  2879. space.used_bytes == 0)
  2880. continue;
  2881. flags = space.flags;
  2882. /*
  2883. * return
  2884. * 0: if dup, single or RAID0 is configured for
  2885. * any of metadata, system or data, else
  2886. * 1: if RAID5 is configured, or if RAID1 or
  2887. * RAID10 is configured and only two mirrors
  2888. * are used, else
  2889. * 2: if RAID6 is configured, else
  2890. * num_mirrors - 1: if RAID1 or RAID10 is
  2891. * configured and more than
  2892. * 2 mirrors are used.
  2893. */
  2894. if (num_tolerated_disk_barrier_failures > 0 &&
  2895. ((flags & (BTRFS_BLOCK_GROUP_DUP |
  2896. BTRFS_BLOCK_GROUP_RAID0)) ||
  2897. ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
  2898. == 0)))
  2899. num_tolerated_disk_barrier_failures = 0;
  2900. else if (num_tolerated_disk_barrier_failures > 1) {
  2901. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2902. BTRFS_BLOCK_GROUP_RAID5 |
  2903. BTRFS_BLOCK_GROUP_RAID10)) {
  2904. num_tolerated_disk_barrier_failures = 1;
  2905. } else if (flags &
  2906. BTRFS_BLOCK_GROUP_RAID6) {
  2907. num_tolerated_disk_barrier_failures = 2;
  2908. }
  2909. }
  2910. }
  2911. }
  2912. up_read(&sinfo->groups_sem);
  2913. }
  2914. return num_tolerated_disk_barrier_failures;
  2915. }
  2916. static int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2917. {
  2918. struct list_head *head;
  2919. struct btrfs_device *dev;
  2920. struct btrfs_super_block *sb;
  2921. struct btrfs_dev_item *dev_item;
  2922. int ret;
  2923. int do_barriers;
  2924. int max_errors;
  2925. int total_errors = 0;
  2926. u64 flags;
  2927. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2928. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2929. backup_super_roots(root->fs_info);
  2930. sb = root->fs_info->super_for_commit;
  2931. dev_item = &sb->dev_item;
  2932. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2933. head = &root->fs_info->fs_devices->devices;
  2934. if (do_barriers) {
  2935. ret = barrier_all_devices(root->fs_info);
  2936. if (ret) {
  2937. mutex_unlock(
  2938. &root->fs_info->fs_devices->device_list_mutex);
  2939. btrfs_error(root->fs_info, ret,
  2940. "errors while submitting device barriers.");
  2941. return ret;
  2942. }
  2943. }
  2944. list_for_each_entry_rcu(dev, head, dev_list) {
  2945. if (!dev->bdev) {
  2946. total_errors++;
  2947. continue;
  2948. }
  2949. if (!dev->in_fs_metadata || !dev->writeable)
  2950. continue;
  2951. btrfs_set_stack_device_generation(dev_item, 0);
  2952. btrfs_set_stack_device_type(dev_item, dev->type);
  2953. btrfs_set_stack_device_id(dev_item, dev->devid);
  2954. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2955. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2956. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2957. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2958. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2959. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2960. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2961. flags = btrfs_super_flags(sb);
  2962. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2963. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2964. if (ret)
  2965. total_errors++;
  2966. }
  2967. if (total_errors > max_errors) {
  2968. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2969. total_errors);
  2970. /* This shouldn't happen. FUA is masked off if unsupported */
  2971. BUG();
  2972. }
  2973. total_errors = 0;
  2974. list_for_each_entry_rcu(dev, head, dev_list) {
  2975. if (!dev->bdev)
  2976. continue;
  2977. if (!dev->in_fs_metadata || !dev->writeable)
  2978. continue;
  2979. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2980. if (ret)
  2981. total_errors++;
  2982. }
  2983. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2984. if (total_errors > max_errors) {
  2985. btrfs_error(root->fs_info, -EIO,
  2986. "%d errors while writing supers", total_errors);
  2987. return -EIO;
  2988. }
  2989. return 0;
  2990. }
  2991. int write_ctree_super(struct btrfs_trans_handle *trans,
  2992. struct btrfs_root *root, int max_mirrors)
  2993. {
  2994. int ret;
  2995. ret = write_all_supers(root, max_mirrors);
  2996. return ret;
  2997. }
  2998. /* Drop a fs root from the radix tree and free it. */
  2999. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3000. struct btrfs_root *root)
  3001. {
  3002. spin_lock(&fs_info->fs_roots_radix_lock);
  3003. radix_tree_delete(&fs_info->fs_roots_radix,
  3004. (unsigned long)root->root_key.objectid);
  3005. spin_unlock(&fs_info->fs_roots_radix_lock);
  3006. if (btrfs_root_refs(&root->root_item) == 0)
  3007. synchronize_srcu(&fs_info->subvol_srcu);
  3008. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  3009. btrfs_free_log(NULL, root);
  3010. btrfs_free_log_root_tree(NULL, fs_info);
  3011. }
  3012. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3013. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3014. free_fs_root(root);
  3015. }
  3016. static void free_fs_root(struct btrfs_root *root)
  3017. {
  3018. iput(root->cache_inode);
  3019. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3020. if (root->anon_dev)
  3021. free_anon_bdev(root->anon_dev);
  3022. free_extent_buffer(root->node);
  3023. free_extent_buffer(root->commit_root);
  3024. kfree(root->free_ino_ctl);
  3025. kfree(root->free_ino_pinned);
  3026. kfree(root->name);
  3027. btrfs_put_fs_root(root);
  3028. }
  3029. void btrfs_free_fs_root(struct btrfs_root *root)
  3030. {
  3031. free_fs_root(root);
  3032. }
  3033. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3034. {
  3035. u64 root_objectid = 0;
  3036. struct btrfs_root *gang[8];
  3037. int i;
  3038. int ret;
  3039. while (1) {
  3040. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3041. (void **)gang, root_objectid,
  3042. ARRAY_SIZE(gang));
  3043. if (!ret)
  3044. break;
  3045. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3046. for (i = 0; i < ret; i++) {
  3047. int err;
  3048. root_objectid = gang[i]->root_key.objectid;
  3049. err = btrfs_orphan_cleanup(gang[i]);
  3050. if (err)
  3051. return err;
  3052. }
  3053. root_objectid++;
  3054. }
  3055. return 0;
  3056. }
  3057. int btrfs_commit_super(struct btrfs_root *root)
  3058. {
  3059. struct btrfs_trans_handle *trans;
  3060. int ret;
  3061. mutex_lock(&root->fs_info->cleaner_mutex);
  3062. btrfs_run_delayed_iputs(root);
  3063. mutex_unlock(&root->fs_info->cleaner_mutex);
  3064. wake_up_process(root->fs_info->cleaner_kthread);
  3065. /* wait until ongoing cleanup work done */
  3066. down_write(&root->fs_info->cleanup_work_sem);
  3067. up_write(&root->fs_info->cleanup_work_sem);
  3068. trans = btrfs_join_transaction(root);
  3069. if (IS_ERR(trans))
  3070. return PTR_ERR(trans);
  3071. ret = btrfs_commit_transaction(trans, root);
  3072. if (ret)
  3073. return ret;
  3074. /* run commit again to drop the original snapshot */
  3075. trans = btrfs_join_transaction(root);
  3076. if (IS_ERR(trans))
  3077. return PTR_ERR(trans);
  3078. ret = btrfs_commit_transaction(trans, root);
  3079. if (ret)
  3080. return ret;
  3081. ret = btrfs_write_and_wait_transaction(NULL, root);
  3082. if (ret) {
  3083. btrfs_error(root->fs_info, ret,
  3084. "Failed to sync btree inode to disk.");
  3085. return ret;
  3086. }
  3087. ret = write_ctree_super(NULL, root, 0);
  3088. return ret;
  3089. }
  3090. int close_ctree(struct btrfs_root *root)
  3091. {
  3092. struct btrfs_fs_info *fs_info = root->fs_info;
  3093. int ret;
  3094. fs_info->closing = 1;
  3095. smp_mb();
  3096. /* wait for the uuid_scan task to finish */
  3097. down(&fs_info->uuid_tree_rescan_sem);
  3098. /* avoid complains from lockdep et al., set sem back to initial state */
  3099. up(&fs_info->uuid_tree_rescan_sem);
  3100. /* pause restriper - we want to resume on mount */
  3101. btrfs_pause_balance(fs_info);
  3102. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3103. btrfs_scrub_cancel(fs_info);
  3104. /* wait for any defraggers to finish */
  3105. wait_event(fs_info->transaction_wait,
  3106. (atomic_read(&fs_info->defrag_running) == 0));
  3107. /* clear out the rbtree of defraggable inodes */
  3108. btrfs_cleanup_defrag_inodes(fs_info);
  3109. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3110. ret = btrfs_commit_super(root);
  3111. if (ret)
  3112. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  3113. }
  3114. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3115. btrfs_error_commit_super(root);
  3116. btrfs_put_block_group_cache(fs_info);
  3117. kthread_stop(fs_info->transaction_kthread);
  3118. kthread_stop(fs_info->cleaner_kthread);
  3119. fs_info->closing = 2;
  3120. smp_mb();
  3121. btrfs_free_qgroup_config(root->fs_info);
  3122. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3123. printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
  3124. percpu_counter_sum(&fs_info->delalloc_bytes));
  3125. }
  3126. btrfs_free_block_groups(fs_info);
  3127. btrfs_stop_all_workers(fs_info);
  3128. del_fs_roots(fs_info);
  3129. free_root_pointers(fs_info, 1);
  3130. iput(fs_info->btree_inode);
  3131. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3132. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  3133. btrfsic_unmount(root, fs_info->fs_devices);
  3134. #endif
  3135. btrfs_close_devices(fs_info->fs_devices);
  3136. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3137. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3138. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3139. bdi_destroy(&fs_info->bdi);
  3140. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3141. btrfs_free_stripe_hash_table(fs_info);
  3142. return 0;
  3143. }
  3144. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3145. int atomic)
  3146. {
  3147. int ret;
  3148. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3149. ret = extent_buffer_uptodate(buf);
  3150. if (!ret)
  3151. return ret;
  3152. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3153. parent_transid, atomic);
  3154. if (ret == -EAGAIN)
  3155. return ret;
  3156. return !ret;
  3157. }
  3158. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  3159. {
  3160. return set_extent_buffer_uptodate(buf);
  3161. }
  3162. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3163. {
  3164. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3165. u64 transid = btrfs_header_generation(buf);
  3166. int was_dirty;
  3167. btrfs_assert_tree_locked(buf);
  3168. if (transid != root->fs_info->generation)
  3169. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3170. "found %llu running %llu\n",
  3171. (unsigned long long)buf->start,
  3172. (unsigned long long)transid,
  3173. (unsigned long long)root->fs_info->generation);
  3174. was_dirty = set_extent_buffer_dirty(buf);
  3175. if (!was_dirty)
  3176. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3177. buf->len,
  3178. root->fs_info->dirty_metadata_batch);
  3179. }
  3180. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3181. int flush_delayed)
  3182. {
  3183. /*
  3184. * looks as though older kernels can get into trouble with
  3185. * this code, they end up stuck in balance_dirty_pages forever
  3186. */
  3187. int ret;
  3188. if (current->flags & PF_MEMALLOC)
  3189. return;
  3190. if (flush_delayed)
  3191. btrfs_balance_delayed_items(root);
  3192. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3193. BTRFS_DIRTY_METADATA_THRESH);
  3194. if (ret > 0) {
  3195. balance_dirty_pages_ratelimited(
  3196. root->fs_info->btree_inode->i_mapping);
  3197. }
  3198. return;
  3199. }
  3200. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3201. {
  3202. __btrfs_btree_balance_dirty(root, 1);
  3203. }
  3204. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3205. {
  3206. __btrfs_btree_balance_dirty(root, 0);
  3207. }
  3208. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3209. {
  3210. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3211. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3212. }
  3213. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3214. int read_only)
  3215. {
  3216. /*
  3217. * Placeholder for checks
  3218. */
  3219. return 0;
  3220. }
  3221. static void btrfs_error_commit_super(struct btrfs_root *root)
  3222. {
  3223. mutex_lock(&root->fs_info->cleaner_mutex);
  3224. btrfs_run_delayed_iputs(root);
  3225. mutex_unlock(&root->fs_info->cleaner_mutex);
  3226. down_write(&root->fs_info->cleanup_work_sem);
  3227. up_write(&root->fs_info->cleanup_work_sem);
  3228. /* cleanup FS via transaction */
  3229. btrfs_cleanup_transaction(root);
  3230. }
  3231. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  3232. struct btrfs_root *root)
  3233. {
  3234. struct btrfs_inode *btrfs_inode;
  3235. struct list_head splice;
  3236. INIT_LIST_HEAD(&splice);
  3237. mutex_lock(&root->fs_info->ordered_operations_mutex);
  3238. spin_lock(&root->fs_info->ordered_root_lock);
  3239. list_splice_init(&t->ordered_operations, &splice);
  3240. while (!list_empty(&splice)) {
  3241. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3242. ordered_operations);
  3243. list_del_init(&btrfs_inode->ordered_operations);
  3244. spin_unlock(&root->fs_info->ordered_root_lock);
  3245. btrfs_invalidate_inodes(btrfs_inode->root);
  3246. spin_lock(&root->fs_info->ordered_root_lock);
  3247. }
  3248. spin_unlock(&root->fs_info->ordered_root_lock);
  3249. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  3250. }
  3251. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3252. {
  3253. struct btrfs_ordered_extent *ordered;
  3254. spin_lock(&root->ordered_extent_lock);
  3255. /*
  3256. * This will just short circuit the ordered completion stuff which will
  3257. * make sure the ordered extent gets properly cleaned up.
  3258. */
  3259. list_for_each_entry(ordered, &root->ordered_extents,
  3260. root_extent_list)
  3261. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3262. spin_unlock(&root->ordered_extent_lock);
  3263. }
  3264. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3265. {
  3266. struct btrfs_root *root;
  3267. struct list_head splice;
  3268. INIT_LIST_HEAD(&splice);
  3269. spin_lock(&fs_info->ordered_root_lock);
  3270. list_splice_init(&fs_info->ordered_roots, &splice);
  3271. while (!list_empty(&splice)) {
  3272. root = list_first_entry(&splice, struct btrfs_root,
  3273. ordered_root);
  3274. list_del_init(&root->ordered_root);
  3275. btrfs_destroy_ordered_extents(root);
  3276. cond_resched_lock(&fs_info->ordered_root_lock);
  3277. }
  3278. spin_unlock(&fs_info->ordered_root_lock);
  3279. }
  3280. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3281. struct btrfs_root *root)
  3282. {
  3283. struct rb_node *node;
  3284. struct btrfs_delayed_ref_root *delayed_refs;
  3285. struct btrfs_delayed_ref_node *ref;
  3286. int ret = 0;
  3287. delayed_refs = &trans->delayed_refs;
  3288. spin_lock(&delayed_refs->lock);
  3289. if (delayed_refs->num_entries == 0) {
  3290. spin_unlock(&delayed_refs->lock);
  3291. printk(KERN_INFO "delayed_refs has NO entry\n");
  3292. return ret;
  3293. }
  3294. while ((node = rb_first(&delayed_refs->root)) != NULL) {
  3295. struct btrfs_delayed_ref_head *head = NULL;
  3296. bool pin_bytes = false;
  3297. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  3298. atomic_set(&ref->refs, 1);
  3299. if (btrfs_delayed_ref_is_head(ref)) {
  3300. head = btrfs_delayed_node_to_head(ref);
  3301. if (!mutex_trylock(&head->mutex)) {
  3302. atomic_inc(&ref->refs);
  3303. spin_unlock(&delayed_refs->lock);
  3304. /* Need to wait for the delayed ref to run */
  3305. mutex_lock(&head->mutex);
  3306. mutex_unlock(&head->mutex);
  3307. btrfs_put_delayed_ref(ref);
  3308. spin_lock(&delayed_refs->lock);
  3309. continue;
  3310. }
  3311. if (head->must_insert_reserved)
  3312. pin_bytes = true;
  3313. btrfs_free_delayed_extent_op(head->extent_op);
  3314. delayed_refs->num_heads--;
  3315. if (list_empty(&head->cluster))
  3316. delayed_refs->num_heads_ready--;
  3317. list_del_init(&head->cluster);
  3318. }
  3319. ref->in_tree = 0;
  3320. rb_erase(&ref->rb_node, &delayed_refs->root);
  3321. delayed_refs->num_entries--;
  3322. spin_unlock(&delayed_refs->lock);
  3323. if (head) {
  3324. if (pin_bytes)
  3325. btrfs_pin_extent(root, ref->bytenr,
  3326. ref->num_bytes, 1);
  3327. mutex_unlock(&head->mutex);
  3328. }
  3329. btrfs_put_delayed_ref(ref);
  3330. cond_resched();
  3331. spin_lock(&delayed_refs->lock);
  3332. }
  3333. spin_unlock(&delayed_refs->lock);
  3334. return ret;
  3335. }
  3336. static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
  3337. {
  3338. struct btrfs_pending_snapshot *snapshot;
  3339. struct list_head splice;
  3340. INIT_LIST_HEAD(&splice);
  3341. list_splice_init(&t->pending_snapshots, &splice);
  3342. while (!list_empty(&splice)) {
  3343. snapshot = list_entry(splice.next,
  3344. struct btrfs_pending_snapshot,
  3345. list);
  3346. snapshot->error = -ECANCELED;
  3347. list_del_init(&snapshot->list);
  3348. }
  3349. }
  3350. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3351. {
  3352. struct btrfs_inode *btrfs_inode;
  3353. struct list_head splice;
  3354. INIT_LIST_HEAD(&splice);
  3355. spin_lock(&root->delalloc_lock);
  3356. list_splice_init(&root->delalloc_inodes, &splice);
  3357. while (!list_empty(&splice)) {
  3358. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3359. delalloc_inodes);
  3360. list_del_init(&btrfs_inode->delalloc_inodes);
  3361. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3362. &btrfs_inode->runtime_flags);
  3363. spin_unlock(&root->delalloc_lock);
  3364. btrfs_invalidate_inodes(btrfs_inode->root);
  3365. spin_lock(&root->delalloc_lock);
  3366. }
  3367. spin_unlock(&root->delalloc_lock);
  3368. }
  3369. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3370. {
  3371. struct btrfs_root *root;
  3372. struct list_head splice;
  3373. INIT_LIST_HEAD(&splice);
  3374. spin_lock(&fs_info->delalloc_root_lock);
  3375. list_splice_init(&fs_info->delalloc_roots, &splice);
  3376. while (!list_empty(&splice)) {
  3377. root = list_first_entry(&splice, struct btrfs_root,
  3378. delalloc_root);
  3379. list_del_init(&root->delalloc_root);
  3380. root = btrfs_grab_fs_root(root);
  3381. BUG_ON(!root);
  3382. spin_unlock(&fs_info->delalloc_root_lock);
  3383. btrfs_destroy_delalloc_inodes(root);
  3384. btrfs_put_fs_root(root);
  3385. spin_lock(&fs_info->delalloc_root_lock);
  3386. }
  3387. spin_unlock(&fs_info->delalloc_root_lock);
  3388. }
  3389. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3390. struct extent_io_tree *dirty_pages,
  3391. int mark)
  3392. {
  3393. int ret;
  3394. struct extent_buffer *eb;
  3395. u64 start = 0;
  3396. u64 end;
  3397. while (1) {
  3398. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3399. mark, NULL);
  3400. if (ret)
  3401. break;
  3402. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3403. while (start <= end) {
  3404. eb = btrfs_find_tree_block(root, start,
  3405. root->leafsize);
  3406. start += root->leafsize;
  3407. if (!eb)
  3408. continue;
  3409. wait_on_extent_buffer_writeback(eb);
  3410. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3411. &eb->bflags))
  3412. clear_extent_buffer_dirty(eb);
  3413. free_extent_buffer_stale(eb);
  3414. }
  3415. }
  3416. return ret;
  3417. }
  3418. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3419. struct extent_io_tree *pinned_extents)
  3420. {
  3421. struct extent_io_tree *unpin;
  3422. u64 start;
  3423. u64 end;
  3424. int ret;
  3425. bool loop = true;
  3426. unpin = pinned_extents;
  3427. again:
  3428. while (1) {
  3429. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3430. EXTENT_DIRTY, NULL);
  3431. if (ret)
  3432. break;
  3433. /* opt_discard */
  3434. if (btrfs_test_opt(root, DISCARD))
  3435. ret = btrfs_error_discard_extent(root, start,
  3436. end + 1 - start,
  3437. NULL);
  3438. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3439. btrfs_error_unpin_extent_range(root, start, end);
  3440. cond_resched();
  3441. }
  3442. if (loop) {
  3443. if (unpin == &root->fs_info->freed_extents[0])
  3444. unpin = &root->fs_info->freed_extents[1];
  3445. else
  3446. unpin = &root->fs_info->freed_extents[0];
  3447. loop = false;
  3448. goto again;
  3449. }
  3450. return 0;
  3451. }
  3452. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3453. struct btrfs_root *root)
  3454. {
  3455. btrfs_destroy_delayed_refs(cur_trans, root);
  3456. btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
  3457. cur_trans->dirty_pages.dirty_bytes);
  3458. cur_trans->state = TRANS_STATE_COMMIT_START;
  3459. wake_up(&root->fs_info->transaction_blocked_wait);
  3460. btrfs_evict_pending_snapshots(cur_trans);
  3461. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3462. wake_up(&root->fs_info->transaction_wait);
  3463. btrfs_destroy_delayed_inodes(root);
  3464. btrfs_assert_delayed_root_empty(root);
  3465. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3466. EXTENT_DIRTY);
  3467. btrfs_destroy_pinned_extent(root,
  3468. root->fs_info->pinned_extents);
  3469. cur_trans->state =TRANS_STATE_COMPLETED;
  3470. wake_up(&cur_trans->commit_wait);
  3471. /*
  3472. memset(cur_trans, 0, sizeof(*cur_trans));
  3473. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3474. */
  3475. }
  3476. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  3477. {
  3478. struct btrfs_transaction *t;
  3479. LIST_HEAD(list);
  3480. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3481. spin_lock(&root->fs_info->trans_lock);
  3482. list_splice_init(&root->fs_info->trans_list, &list);
  3483. root->fs_info->running_transaction = NULL;
  3484. spin_unlock(&root->fs_info->trans_lock);
  3485. while (!list_empty(&list)) {
  3486. t = list_entry(list.next, struct btrfs_transaction, list);
  3487. btrfs_destroy_ordered_operations(t, root);
  3488. btrfs_destroy_all_ordered_extents(root->fs_info);
  3489. btrfs_destroy_delayed_refs(t, root);
  3490. /*
  3491. * FIXME: cleanup wait for commit
  3492. * We needn't acquire the lock here, because we are during
  3493. * the umount, there is no other task which will change it.
  3494. */
  3495. t->state = TRANS_STATE_COMMIT_START;
  3496. smp_mb();
  3497. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  3498. wake_up(&root->fs_info->transaction_blocked_wait);
  3499. btrfs_evict_pending_snapshots(t);
  3500. t->state = TRANS_STATE_UNBLOCKED;
  3501. smp_mb();
  3502. if (waitqueue_active(&root->fs_info->transaction_wait))
  3503. wake_up(&root->fs_info->transaction_wait);
  3504. btrfs_destroy_delayed_inodes(root);
  3505. btrfs_assert_delayed_root_empty(root);
  3506. btrfs_destroy_all_delalloc_inodes(root->fs_info);
  3507. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  3508. EXTENT_DIRTY);
  3509. btrfs_destroy_pinned_extent(root,
  3510. root->fs_info->pinned_extents);
  3511. t->state = TRANS_STATE_COMPLETED;
  3512. smp_mb();
  3513. if (waitqueue_active(&t->commit_wait))
  3514. wake_up(&t->commit_wait);
  3515. atomic_set(&t->use_count, 0);
  3516. list_del_init(&t->list);
  3517. memset(t, 0, sizeof(*t));
  3518. kmem_cache_free(btrfs_transaction_cachep, t);
  3519. }
  3520. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3521. return 0;
  3522. }
  3523. static struct extent_io_ops btree_extent_io_ops = {
  3524. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3525. .readpage_io_failed_hook = btree_io_failed_hook,
  3526. .submit_bio_hook = btree_submit_bio_hook,
  3527. /* note we're sharing with inode.c for the merge bio hook */
  3528. .merge_bio_hook = btrfs_merge_bio_hook,
  3529. };