vmx.c 123 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "irq.h"
  19. #include "mmu.h"
  20. #include <linux/kvm_host.h>
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/mm.h>
  24. #include <linux/highmem.h>
  25. #include <linux/sched.h>
  26. #include <linux/moduleparam.h>
  27. #include <linux/ftrace_event.h>
  28. #include <linux/slab.h>
  29. #include <linux/tboot.h>
  30. #include "kvm_cache_regs.h"
  31. #include "x86.h"
  32. #include <asm/io.h>
  33. #include <asm/desc.h>
  34. #include <asm/vmx.h>
  35. #include <asm/virtext.h>
  36. #include <asm/mce.h>
  37. #include <asm/i387.h>
  38. #include <asm/xcr.h>
  39. #include "trace.h"
  40. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  41. #define __ex_clear(x, reg) \
  42. ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
  43. MODULE_AUTHOR("Qumranet");
  44. MODULE_LICENSE("GPL");
  45. static int __read_mostly bypass_guest_pf = 1;
  46. module_param(bypass_guest_pf, bool, S_IRUGO);
  47. static int __read_mostly enable_vpid = 1;
  48. module_param_named(vpid, enable_vpid, bool, 0444);
  49. static int __read_mostly flexpriority_enabled = 1;
  50. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  51. static int __read_mostly enable_ept = 1;
  52. module_param_named(ept, enable_ept, bool, S_IRUGO);
  53. static int __read_mostly enable_unrestricted_guest = 1;
  54. module_param_named(unrestricted_guest,
  55. enable_unrestricted_guest, bool, S_IRUGO);
  56. static int __read_mostly emulate_invalid_guest_state = 0;
  57. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  58. static int __read_mostly vmm_exclusive = 1;
  59. module_param(vmm_exclusive, bool, S_IRUGO);
  60. static int __read_mostly yield_on_hlt = 1;
  61. module_param(yield_on_hlt, bool, S_IRUGO);
  62. /*
  63. * If nested=1, nested virtualization is supported, i.e., guests may use
  64. * VMX and be a hypervisor for its own guests. If nested=0, guests may not
  65. * use VMX instructions.
  66. */
  67. static int __read_mostly nested = 0;
  68. module_param(nested, bool, S_IRUGO);
  69. #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
  70. (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
  71. #define KVM_GUEST_CR0_MASK \
  72. (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  73. #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
  74. (X86_CR0_WP | X86_CR0_NE)
  75. #define KVM_VM_CR0_ALWAYS_ON \
  76. (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  77. #define KVM_CR4_GUEST_OWNED_BITS \
  78. (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
  79. | X86_CR4_OSXMMEXCPT)
  80. #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
  81. #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
  82. #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
  83. /*
  84. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  85. * ple_gap: upper bound on the amount of time between two successive
  86. * executions of PAUSE in a loop. Also indicate if ple enabled.
  87. * According to test, this time is usually smaller than 128 cycles.
  88. * ple_window: upper bound on the amount of time a guest is allowed to execute
  89. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  90. * less than 2^12 cycles
  91. * Time is measured based on a counter that runs at the same rate as the TSC,
  92. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  93. */
  94. #define KVM_VMX_DEFAULT_PLE_GAP 128
  95. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  96. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  97. module_param(ple_gap, int, S_IRUGO);
  98. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  99. module_param(ple_window, int, S_IRUGO);
  100. #define NR_AUTOLOAD_MSRS 1
  101. struct vmcs {
  102. u32 revision_id;
  103. u32 abort;
  104. char data[0];
  105. };
  106. /*
  107. * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
  108. * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
  109. * loaded on this CPU (so we can clear them if the CPU goes down).
  110. */
  111. struct loaded_vmcs {
  112. struct vmcs *vmcs;
  113. int cpu;
  114. int launched;
  115. struct list_head loaded_vmcss_on_cpu_link;
  116. };
  117. struct shared_msr_entry {
  118. unsigned index;
  119. u64 data;
  120. u64 mask;
  121. };
  122. struct vcpu_vmx {
  123. struct kvm_vcpu vcpu;
  124. unsigned long host_rsp;
  125. u8 fail;
  126. u8 cpl;
  127. bool nmi_known_unmasked;
  128. u32 exit_intr_info;
  129. u32 idt_vectoring_info;
  130. ulong rflags;
  131. struct shared_msr_entry *guest_msrs;
  132. int nmsrs;
  133. int save_nmsrs;
  134. #ifdef CONFIG_X86_64
  135. u64 msr_host_kernel_gs_base;
  136. u64 msr_guest_kernel_gs_base;
  137. #endif
  138. /*
  139. * loaded_vmcs points to the VMCS currently used in this vcpu. For a
  140. * non-nested (L1) guest, it always points to vmcs01. For a nested
  141. * guest (L2), it points to a different VMCS.
  142. */
  143. struct loaded_vmcs vmcs01;
  144. struct loaded_vmcs *loaded_vmcs;
  145. bool __launched; /* temporary, used in vmx_vcpu_run */
  146. struct msr_autoload {
  147. unsigned nr;
  148. struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
  149. struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
  150. } msr_autoload;
  151. struct {
  152. int loaded;
  153. u16 fs_sel, gs_sel, ldt_sel;
  154. int gs_ldt_reload_needed;
  155. int fs_reload_needed;
  156. } host_state;
  157. struct {
  158. int vm86_active;
  159. ulong save_rflags;
  160. struct kvm_save_segment {
  161. u16 selector;
  162. unsigned long base;
  163. u32 limit;
  164. u32 ar;
  165. } tr, es, ds, fs, gs;
  166. } rmode;
  167. struct {
  168. u32 bitmask; /* 4 bits per segment (1 bit per field) */
  169. struct kvm_save_segment seg[8];
  170. } segment_cache;
  171. int vpid;
  172. bool emulation_required;
  173. /* Support for vnmi-less CPUs */
  174. int soft_vnmi_blocked;
  175. ktime_t entry_time;
  176. s64 vnmi_blocked_time;
  177. u32 exit_reason;
  178. bool rdtscp_enabled;
  179. };
  180. enum segment_cache_field {
  181. SEG_FIELD_SEL = 0,
  182. SEG_FIELD_BASE = 1,
  183. SEG_FIELD_LIMIT = 2,
  184. SEG_FIELD_AR = 3,
  185. SEG_FIELD_NR = 4
  186. };
  187. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  188. {
  189. return container_of(vcpu, struct vcpu_vmx, vcpu);
  190. }
  191. static u64 construct_eptp(unsigned long root_hpa);
  192. static void kvm_cpu_vmxon(u64 addr);
  193. static void kvm_cpu_vmxoff(void);
  194. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
  195. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
  196. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  197. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  198. /*
  199. * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
  200. * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
  201. */
  202. static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
  203. static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
  204. static unsigned long *vmx_io_bitmap_a;
  205. static unsigned long *vmx_io_bitmap_b;
  206. static unsigned long *vmx_msr_bitmap_legacy;
  207. static unsigned long *vmx_msr_bitmap_longmode;
  208. static bool cpu_has_load_ia32_efer;
  209. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  210. static DEFINE_SPINLOCK(vmx_vpid_lock);
  211. static struct vmcs_config {
  212. int size;
  213. int order;
  214. u32 revision_id;
  215. u32 pin_based_exec_ctrl;
  216. u32 cpu_based_exec_ctrl;
  217. u32 cpu_based_2nd_exec_ctrl;
  218. u32 vmexit_ctrl;
  219. u32 vmentry_ctrl;
  220. } vmcs_config;
  221. static struct vmx_capability {
  222. u32 ept;
  223. u32 vpid;
  224. } vmx_capability;
  225. #define VMX_SEGMENT_FIELD(seg) \
  226. [VCPU_SREG_##seg] = { \
  227. .selector = GUEST_##seg##_SELECTOR, \
  228. .base = GUEST_##seg##_BASE, \
  229. .limit = GUEST_##seg##_LIMIT, \
  230. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  231. }
  232. static struct kvm_vmx_segment_field {
  233. unsigned selector;
  234. unsigned base;
  235. unsigned limit;
  236. unsigned ar_bytes;
  237. } kvm_vmx_segment_fields[] = {
  238. VMX_SEGMENT_FIELD(CS),
  239. VMX_SEGMENT_FIELD(DS),
  240. VMX_SEGMENT_FIELD(ES),
  241. VMX_SEGMENT_FIELD(FS),
  242. VMX_SEGMENT_FIELD(GS),
  243. VMX_SEGMENT_FIELD(SS),
  244. VMX_SEGMENT_FIELD(TR),
  245. VMX_SEGMENT_FIELD(LDTR),
  246. };
  247. static u64 host_efer;
  248. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  249. /*
  250. * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
  251. * away by decrementing the array size.
  252. */
  253. static const u32 vmx_msr_index[] = {
  254. #ifdef CONFIG_X86_64
  255. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
  256. #endif
  257. MSR_EFER, MSR_TSC_AUX, MSR_STAR,
  258. };
  259. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  260. static inline bool is_page_fault(u32 intr_info)
  261. {
  262. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  263. INTR_INFO_VALID_MASK)) ==
  264. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  265. }
  266. static inline bool is_no_device(u32 intr_info)
  267. {
  268. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  269. INTR_INFO_VALID_MASK)) ==
  270. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  271. }
  272. static inline bool is_invalid_opcode(u32 intr_info)
  273. {
  274. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  275. INTR_INFO_VALID_MASK)) ==
  276. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  277. }
  278. static inline bool is_external_interrupt(u32 intr_info)
  279. {
  280. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  281. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  282. }
  283. static inline bool is_machine_check(u32 intr_info)
  284. {
  285. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  286. INTR_INFO_VALID_MASK)) ==
  287. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  288. }
  289. static inline bool cpu_has_vmx_msr_bitmap(void)
  290. {
  291. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  292. }
  293. static inline bool cpu_has_vmx_tpr_shadow(void)
  294. {
  295. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  296. }
  297. static inline bool vm_need_tpr_shadow(struct kvm *kvm)
  298. {
  299. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  300. }
  301. static inline bool cpu_has_secondary_exec_ctrls(void)
  302. {
  303. return vmcs_config.cpu_based_exec_ctrl &
  304. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  305. }
  306. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  307. {
  308. return vmcs_config.cpu_based_2nd_exec_ctrl &
  309. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  310. }
  311. static inline bool cpu_has_vmx_flexpriority(void)
  312. {
  313. return cpu_has_vmx_tpr_shadow() &&
  314. cpu_has_vmx_virtualize_apic_accesses();
  315. }
  316. static inline bool cpu_has_vmx_ept_execute_only(void)
  317. {
  318. return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
  319. }
  320. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  321. {
  322. return vmx_capability.ept & VMX_EPTP_UC_BIT;
  323. }
  324. static inline bool cpu_has_vmx_eptp_writeback(void)
  325. {
  326. return vmx_capability.ept & VMX_EPTP_WB_BIT;
  327. }
  328. static inline bool cpu_has_vmx_ept_2m_page(void)
  329. {
  330. return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
  331. }
  332. static inline bool cpu_has_vmx_ept_1g_page(void)
  333. {
  334. return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
  335. }
  336. static inline bool cpu_has_vmx_ept_4levels(void)
  337. {
  338. return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
  339. }
  340. static inline bool cpu_has_vmx_invept_individual_addr(void)
  341. {
  342. return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
  343. }
  344. static inline bool cpu_has_vmx_invept_context(void)
  345. {
  346. return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
  347. }
  348. static inline bool cpu_has_vmx_invept_global(void)
  349. {
  350. return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
  351. }
  352. static inline bool cpu_has_vmx_invvpid_single(void)
  353. {
  354. return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
  355. }
  356. static inline bool cpu_has_vmx_invvpid_global(void)
  357. {
  358. return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
  359. }
  360. static inline bool cpu_has_vmx_ept(void)
  361. {
  362. return vmcs_config.cpu_based_2nd_exec_ctrl &
  363. SECONDARY_EXEC_ENABLE_EPT;
  364. }
  365. static inline bool cpu_has_vmx_unrestricted_guest(void)
  366. {
  367. return vmcs_config.cpu_based_2nd_exec_ctrl &
  368. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  369. }
  370. static inline bool cpu_has_vmx_ple(void)
  371. {
  372. return vmcs_config.cpu_based_2nd_exec_ctrl &
  373. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  374. }
  375. static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
  376. {
  377. return flexpriority_enabled && irqchip_in_kernel(kvm);
  378. }
  379. static inline bool cpu_has_vmx_vpid(void)
  380. {
  381. return vmcs_config.cpu_based_2nd_exec_ctrl &
  382. SECONDARY_EXEC_ENABLE_VPID;
  383. }
  384. static inline bool cpu_has_vmx_rdtscp(void)
  385. {
  386. return vmcs_config.cpu_based_2nd_exec_ctrl &
  387. SECONDARY_EXEC_RDTSCP;
  388. }
  389. static inline bool cpu_has_virtual_nmis(void)
  390. {
  391. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  392. }
  393. static inline bool cpu_has_vmx_wbinvd_exit(void)
  394. {
  395. return vmcs_config.cpu_based_2nd_exec_ctrl &
  396. SECONDARY_EXEC_WBINVD_EXITING;
  397. }
  398. static inline bool report_flexpriority(void)
  399. {
  400. return flexpriority_enabled;
  401. }
  402. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  403. {
  404. int i;
  405. for (i = 0; i < vmx->nmsrs; ++i)
  406. if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
  407. return i;
  408. return -1;
  409. }
  410. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  411. {
  412. struct {
  413. u64 vpid : 16;
  414. u64 rsvd : 48;
  415. u64 gva;
  416. } operand = { vpid, 0, gva };
  417. asm volatile (__ex(ASM_VMX_INVVPID)
  418. /* CF==1 or ZF==1 --> rc = -1 */
  419. "; ja 1f ; ud2 ; 1:"
  420. : : "a"(&operand), "c"(ext) : "cc", "memory");
  421. }
  422. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  423. {
  424. struct {
  425. u64 eptp, gpa;
  426. } operand = {eptp, gpa};
  427. asm volatile (__ex(ASM_VMX_INVEPT)
  428. /* CF==1 or ZF==1 --> rc = -1 */
  429. "; ja 1f ; ud2 ; 1:\n"
  430. : : "a" (&operand), "c" (ext) : "cc", "memory");
  431. }
  432. static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  433. {
  434. int i;
  435. i = __find_msr_index(vmx, msr);
  436. if (i >= 0)
  437. return &vmx->guest_msrs[i];
  438. return NULL;
  439. }
  440. static void vmcs_clear(struct vmcs *vmcs)
  441. {
  442. u64 phys_addr = __pa(vmcs);
  443. u8 error;
  444. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  445. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  446. : "cc", "memory");
  447. if (error)
  448. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  449. vmcs, phys_addr);
  450. }
  451. static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
  452. {
  453. vmcs_clear(loaded_vmcs->vmcs);
  454. loaded_vmcs->cpu = -1;
  455. loaded_vmcs->launched = 0;
  456. }
  457. static void vmcs_load(struct vmcs *vmcs)
  458. {
  459. u64 phys_addr = __pa(vmcs);
  460. u8 error;
  461. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  462. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  463. : "cc", "memory");
  464. if (error)
  465. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  466. vmcs, phys_addr);
  467. }
  468. static void __loaded_vmcs_clear(void *arg)
  469. {
  470. struct loaded_vmcs *loaded_vmcs = arg;
  471. int cpu = raw_smp_processor_id();
  472. if (loaded_vmcs->cpu != cpu)
  473. return; /* vcpu migration can race with cpu offline */
  474. if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
  475. per_cpu(current_vmcs, cpu) = NULL;
  476. list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
  477. loaded_vmcs_init(loaded_vmcs);
  478. }
  479. static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
  480. {
  481. if (loaded_vmcs->cpu != -1)
  482. smp_call_function_single(
  483. loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1);
  484. }
  485. static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
  486. {
  487. if (vmx->vpid == 0)
  488. return;
  489. if (cpu_has_vmx_invvpid_single())
  490. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  491. }
  492. static inline void vpid_sync_vcpu_global(void)
  493. {
  494. if (cpu_has_vmx_invvpid_global())
  495. __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
  496. }
  497. static inline void vpid_sync_context(struct vcpu_vmx *vmx)
  498. {
  499. if (cpu_has_vmx_invvpid_single())
  500. vpid_sync_vcpu_single(vmx);
  501. else
  502. vpid_sync_vcpu_global();
  503. }
  504. static inline void ept_sync_global(void)
  505. {
  506. if (cpu_has_vmx_invept_global())
  507. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  508. }
  509. static inline void ept_sync_context(u64 eptp)
  510. {
  511. if (enable_ept) {
  512. if (cpu_has_vmx_invept_context())
  513. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  514. else
  515. ept_sync_global();
  516. }
  517. }
  518. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  519. {
  520. if (enable_ept) {
  521. if (cpu_has_vmx_invept_individual_addr())
  522. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  523. eptp, gpa);
  524. else
  525. ept_sync_context(eptp);
  526. }
  527. }
  528. static __always_inline unsigned long vmcs_readl(unsigned long field)
  529. {
  530. unsigned long value;
  531. asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
  532. : "=a"(value) : "d"(field) : "cc");
  533. return value;
  534. }
  535. static __always_inline u16 vmcs_read16(unsigned long field)
  536. {
  537. return vmcs_readl(field);
  538. }
  539. static __always_inline u32 vmcs_read32(unsigned long field)
  540. {
  541. return vmcs_readl(field);
  542. }
  543. static __always_inline u64 vmcs_read64(unsigned long field)
  544. {
  545. #ifdef CONFIG_X86_64
  546. return vmcs_readl(field);
  547. #else
  548. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  549. #endif
  550. }
  551. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  552. {
  553. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  554. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  555. dump_stack();
  556. }
  557. static void vmcs_writel(unsigned long field, unsigned long value)
  558. {
  559. u8 error;
  560. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  561. : "=q"(error) : "a"(value), "d"(field) : "cc");
  562. if (unlikely(error))
  563. vmwrite_error(field, value);
  564. }
  565. static void vmcs_write16(unsigned long field, u16 value)
  566. {
  567. vmcs_writel(field, value);
  568. }
  569. static void vmcs_write32(unsigned long field, u32 value)
  570. {
  571. vmcs_writel(field, value);
  572. }
  573. static void vmcs_write64(unsigned long field, u64 value)
  574. {
  575. vmcs_writel(field, value);
  576. #ifndef CONFIG_X86_64
  577. asm volatile ("");
  578. vmcs_writel(field+1, value >> 32);
  579. #endif
  580. }
  581. static void vmcs_clear_bits(unsigned long field, u32 mask)
  582. {
  583. vmcs_writel(field, vmcs_readl(field) & ~mask);
  584. }
  585. static void vmcs_set_bits(unsigned long field, u32 mask)
  586. {
  587. vmcs_writel(field, vmcs_readl(field) | mask);
  588. }
  589. static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
  590. {
  591. vmx->segment_cache.bitmask = 0;
  592. }
  593. static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
  594. unsigned field)
  595. {
  596. bool ret;
  597. u32 mask = 1 << (seg * SEG_FIELD_NR + field);
  598. if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
  599. vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
  600. vmx->segment_cache.bitmask = 0;
  601. }
  602. ret = vmx->segment_cache.bitmask & mask;
  603. vmx->segment_cache.bitmask |= mask;
  604. return ret;
  605. }
  606. static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
  607. {
  608. u16 *p = &vmx->segment_cache.seg[seg].selector;
  609. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
  610. *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
  611. return *p;
  612. }
  613. static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
  614. {
  615. ulong *p = &vmx->segment_cache.seg[seg].base;
  616. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
  617. *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
  618. return *p;
  619. }
  620. static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
  621. {
  622. u32 *p = &vmx->segment_cache.seg[seg].limit;
  623. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
  624. *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
  625. return *p;
  626. }
  627. static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
  628. {
  629. u32 *p = &vmx->segment_cache.seg[seg].ar;
  630. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
  631. *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
  632. return *p;
  633. }
  634. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  635. {
  636. u32 eb;
  637. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
  638. (1u << NM_VECTOR) | (1u << DB_VECTOR);
  639. if ((vcpu->guest_debug &
  640. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
  641. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
  642. eb |= 1u << BP_VECTOR;
  643. if (to_vmx(vcpu)->rmode.vm86_active)
  644. eb = ~0;
  645. if (enable_ept)
  646. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  647. if (vcpu->fpu_active)
  648. eb &= ~(1u << NM_VECTOR);
  649. vmcs_write32(EXCEPTION_BITMAP, eb);
  650. }
  651. static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
  652. {
  653. unsigned i;
  654. struct msr_autoload *m = &vmx->msr_autoload;
  655. if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
  656. vmcs_clear_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
  657. vmcs_clear_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
  658. return;
  659. }
  660. for (i = 0; i < m->nr; ++i)
  661. if (m->guest[i].index == msr)
  662. break;
  663. if (i == m->nr)
  664. return;
  665. --m->nr;
  666. m->guest[i] = m->guest[m->nr];
  667. m->host[i] = m->host[m->nr];
  668. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  669. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  670. }
  671. static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
  672. u64 guest_val, u64 host_val)
  673. {
  674. unsigned i;
  675. struct msr_autoload *m = &vmx->msr_autoload;
  676. if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
  677. vmcs_write64(GUEST_IA32_EFER, guest_val);
  678. vmcs_write64(HOST_IA32_EFER, host_val);
  679. vmcs_set_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
  680. vmcs_set_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
  681. return;
  682. }
  683. for (i = 0; i < m->nr; ++i)
  684. if (m->guest[i].index == msr)
  685. break;
  686. if (i == m->nr) {
  687. ++m->nr;
  688. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  689. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  690. }
  691. m->guest[i].index = msr;
  692. m->guest[i].value = guest_val;
  693. m->host[i].index = msr;
  694. m->host[i].value = host_val;
  695. }
  696. static void reload_tss(void)
  697. {
  698. /*
  699. * VT restores TR but not its size. Useless.
  700. */
  701. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  702. struct desc_struct *descs;
  703. descs = (void *)gdt->address;
  704. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  705. load_TR_desc();
  706. }
  707. static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
  708. {
  709. u64 guest_efer;
  710. u64 ignore_bits;
  711. guest_efer = vmx->vcpu.arch.efer;
  712. /*
  713. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  714. * outside long mode
  715. */
  716. ignore_bits = EFER_NX | EFER_SCE;
  717. #ifdef CONFIG_X86_64
  718. ignore_bits |= EFER_LMA | EFER_LME;
  719. /* SCE is meaningful only in long mode on Intel */
  720. if (guest_efer & EFER_LMA)
  721. ignore_bits &= ~(u64)EFER_SCE;
  722. #endif
  723. guest_efer &= ~ignore_bits;
  724. guest_efer |= host_efer & ignore_bits;
  725. vmx->guest_msrs[efer_offset].data = guest_efer;
  726. vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
  727. clear_atomic_switch_msr(vmx, MSR_EFER);
  728. /* On ept, can't emulate nx, and must switch nx atomically */
  729. if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
  730. guest_efer = vmx->vcpu.arch.efer;
  731. if (!(guest_efer & EFER_LMA))
  732. guest_efer &= ~EFER_LME;
  733. add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
  734. return false;
  735. }
  736. return true;
  737. }
  738. static unsigned long segment_base(u16 selector)
  739. {
  740. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  741. struct desc_struct *d;
  742. unsigned long table_base;
  743. unsigned long v;
  744. if (!(selector & ~3))
  745. return 0;
  746. table_base = gdt->address;
  747. if (selector & 4) { /* from ldt */
  748. u16 ldt_selector = kvm_read_ldt();
  749. if (!(ldt_selector & ~3))
  750. return 0;
  751. table_base = segment_base(ldt_selector);
  752. }
  753. d = (struct desc_struct *)(table_base + (selector & ~7));
  754. v = get_desc_base(d);
  755. #ifdef CONFIG_X86_64
  756. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  757. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  758. #endif
  759. return v;
  760. }
  761. static inline unsigned long kvm_read_tr_base(void)
  762. {
  763. u16 tr;
  764. asm("str %0" : "=g"(tr));
  765. return segment_base(tr);
  766. }
  767. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  768. {
  769. struct vcpu_vmx *vmx = to_vmx(vcpu);
  770. int i;
  771. if (vmx->host_state.loaded)
  772. return;
  773. vmx->host_state.loaded = 1;
  774. /*
  775. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  776. * allow segment selectors with cpl > 0 or ti == 1.
  777. */
  778. vmx->host_state.ldt_sel = kvm_read_ldt();
  779. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  780. savesegment(fs, vmx->host_state.fs_sel);
  781. if (!(vmx->host_state.fs_sel & 7)) {
  782. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  783. vmx->host_state.fs_reload_needed = 0;
  784. } else {
  785. vmcs_write16(HOST_FS_SELECTOR, 0);
  786. vmx->host_state.fs_reload_needed = 1;
  787. }
  788. savesegment(gs, vmx->host_state.gs_sel);
  789. if (!(vmx->host_state.gs_sel & 7))
  790. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  791. else {
  792. vmcs_write16(HOST_GS_SELECTOR, 0);
  793. vmx->host_state.gs_ldt_reload_needed = 1;
  794. }
  795. #ifdef CONFIG_X86_64
  796. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  797. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  798. #else
  799. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  800. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  801. #endif
  802. #ifdef CONFIG_X86_64
  803. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  804. if (is_long_mode(&vmx->vcpu))
  805. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  806. #endif
  807. for (i = 0; i < vmx->save_nmsrs; ++i)
  808. kvm_set_shared_msr(vmx->guest_msrs[i].index,
  809. vmx->guest_msrs[i].data,
  810. vmx->guest_msrs[i].mask);
  811. }
  812. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  813. {
  814. if (!vmx->host_state.loaded)
  815. return;
  816. ++vmx->vcpu.stat.host_state_reload;
  817. vmx->host_state.loaded = 0;
  818. #ifdef CONFIG_X86_64
  819. if (is_long_mode(&vmx->vcpu))
  820. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  821. #endif
  822. if (vmx->host_state.gs_ldt_reload_needed) {
  823. kvm_load_ldt(vmx->host_state.ldt_sel);
  824. #ifdef CONFIG_X86_64
  825. load_gs_index(vmx->host_state.gs_sel);
  826. #else
  827. loadsegment(gs, vmx->host_state.gs_sel);
  828. #endif
  829. }
  830. if (vmx->host_state.fs_reload_needed)
  831. loadsegment(fs, vmx->host_state.fs_sel);
  832. reload_tss();
  833. #ifdef CONFIG_X86_64
  834. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  835. #endif
  836. if (current_thread_info()->status & TS_USEDFPU)
  837. clts();
  838. load_gdt(&__get_cpu_var(host_gdt));
  839. }
  840. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  841. {
  842. preempt_disable();
  843. __vmx_load_host_state(vmx);
  844. preempt_enable();
  845. }
  846. /*
  847. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  848. * vcpu mutex is already taken.
  849. */
  850. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  851. {
  852. struct vcpu_vmx *vmx = to_vmx(vcpu);
  853. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  854. if (!vmm_exclusive)
  855. kvm_cpu_vmxon(phys_addr);
  856. else if (vmx->loaded_vmcs->cpu != cpu)
  857. loaded_vmcs_clear(vmx->loaded_vmcs);
  858. if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
  859. per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
  860. vmcs_load(vmx->loaded_vmcs->vmcs);
  861. }
  862. if (vmx->loaded_vmcs->cpu != cpu) {
  863. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  864. unsigned long sysenter_esp;
  865. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  866. local_irq_disable();
  867. list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
  868. &per_cpu(loaded_vmcss_on_cpu, cpu));
  869. local_irq_enable();
  870. /*
  871. * Linux uses per-cpu TSS and GDT, so set these when switching
  872. * processors.
  873. */
  874. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  875. vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
  876. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  877. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  878. vmx->loaded_vmcs->cpu = cpu;
  879. }
  880. }
  881. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  882. {
  883. __vmx_load_host_state(to_vmx(vcpu));
  884. if (!vmm_exclusive) {
  885. __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
  886. vcpu->cpu = -1;
  887. kvm_cpu_vmxoff();
  888. }
  889. }
  890. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  891. {
  892. ulong cr0;
  893. if (vcpu->fpu_active)
  894. return;
  895. vcpu->fpu_active = 1;
  896. cr0 = vmcs_readl(GUEST_CR0);
  897. cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
  898. cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
  899. vmcs_writel(GUEST_CR0, cr0);
  900. update_exception_bitmap(vcpu);
  901. vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
  902. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  903. }
  904. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
  905. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  906. {
  907. vmx_decache_cr0_guest_bits(vcpu);
  908. vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
  909. update_exception_bitmap(vcpu);
  910. vcpu->arch.cr0_guest_owned_bits = 0;
  911. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  912. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  913. }
  914. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  915. {
  916. unsigned long rflags, save_rflags;
  917. if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
  918. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  919. rflags = vmcs_readl(GUEST_RFLAGS);
  920. if (to_vmx(vcpu)->rmode.vm86_active) {
  921. rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  922. save_rflags = to_vmx(vcpu)->rmode.save_rflags;
  923. rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  924. }
  925. to_vmx(vcpu)->rflags = rflags;
  926. }
  927. return to_vmx(vcpu)->rflags;
  928. }
  929. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  930. {
  931. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  932. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  933. to_vmx(vcpu)->rflags = rflags;
  934. if (to_vmx(vcpu)->rmode.vm86_active) {
  935. to_vmx(vcpu)->rmode.save_rflags = rflags;
  936. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  937. }
  938. vmcs_writel(GUEST_RFLAGS, rflags);
  939. }
  940. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  941. {
  942. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  943. int ret = 0;
  944. if (interruptibility & GUEST_INTR_STATE_STI)
  945. ret |= KVM_X86_SHADOW_INT_STI;
  946. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  947. ret |= KVM_X86_SHADOW_INT_MOV_SS;
  948. return ret & mask;
  949. }
  950. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  951. {
  952. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  953. u32 interruptibility = interruptibility_old;
  954. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  955. if (mask & KVM_X86_SHADOW_INT_MOV_SS)
  956. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  957. else if (mask & KVM_X86_SHADOW_INT_STI)
  958. interruptibility |= GUEST_INTR_STATE_STI;
  959. if ((interruptibility != interruptibility_old))
  960. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  961. }
  962. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  963. {
  964. unsigned long rip;
  965. rip = kvm_rip_read(vcpu);
  966. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  967. kvm_rip_write(vcpu, rip);
  968. /* skipping an emulated instruction also counts */
  969. vmx_set_interrupt_shadow(vcpu, 0);
  970. }
  971. static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
  972. {
  973. /* Ensure that we clear the HLT state in the VMCS. We don't need to
  974. * explicitly skip the instruction because if the HLT state is set, then
  975. * the instruction is already executing and RIP has already been
  976. * advanced. */
  977. if (!yield_on_hlt &&
  978. vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
  979. vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
  980. }
  981. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  982. bool has_error_code, u32 error_code,
  983. bool reinject)
  984. {
  985. struct vcpu_vmx *vmx = to_vmx(vcpu);
  986. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  987. if (has_error_code) {
  988. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  989. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  990. }
  991. if (vmx->rmode.vm86_active) {
  992. int inc_eip = 0;
  993. if (kvm_exception_is_soft(nr))
  994. inc_eip = vcpu->arch.event_exit_inst_len;
  995. if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
  996. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  997. return;
  998. }
  999. if (kvm_exception_is_soft(nr)) {
  1000. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  1001. vmx->vcpu.arch.event_exit_inst_len);
  1002. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  1003. } else
  1004. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  1005. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  1006. vmx_clear_hlt(vcpu);
  1007. }
  1008. static bool vmx_rdtscp_supported(void)
  1009. {
  1010. return cpu_has_vmx_rdtscp();
  1011. }
  1012. /*
  1013. * Swap MSR entry in host/guest MSR entry array.
  1014. */
  1015. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  1016. {
  1017. struct shared_msr_entry tmp;
  1018. tmp = vmx->guest_msrs[to];
  1019. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  1020. vmx->guest_msrs[from] = tmp;
  1021. }
  1022. /*
  1023. * Set up the vmcs to automatically save and restore system
  1024. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  1025. * mode, as fiddling with msrs is very expensive.
  1026. */
  1027. static void setup_msrs(struct vcpu_vmx *vmx)
  1028. {
  1029. int save_nmsrs, index;
  1030. unsigned long *msr_bitmap;
  1031. vmx_load_host_state(vmx);
  1032. save_nmsrs = 0;
  1033. #ifdef CONFIG_X86_64
  1034. if (is_long_mode(&vmx->vcpu)) {
  1035. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  1036. if (index >= 0)
  1037. move_msr_up(vmx, index, save_nmsrs++);
  1038. index = __find_msr_index(vmx, MSR_LSTAR);
  1039. if (index >= 0)
  1040. move_msr_up(vmx, index, save_nmsrs++);
  1041. index = __find_msr_index(vmx, MSR_CSTAR);
  1042. if (index >= 0)
  1043. move_msr_up(vmx, index, save_nmsrs++);
  1044. index = __find_msr_index(vmx, MSR_TSC_AUX);
  1045. if (index >= 0 && vmx->rdtscp_enabled)
  1046. move_msr_up(vmx, index, save_nmsrs++);
  1047. /*
  1048. * MSR_STAR is only needed on long mode guests, and only
  1049. * if efer.sce is enabled.
  1050. */
  1051. index = __find_msr_index(vmx, MSR_STAR);
  1052. if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
  1053. move_msr_up(vmx, index, save_nmsrs++);
  1054. }
  1055. #endif
  1056. index = __find_msr_index(vmx, MSR_EFER);
  1057. if (index >= 0 && update_transition_efer(vmx, index))
  1058. move_msr_up(vmx, index, save_nmsrs++);
  1059. vmx->save_nmsrs = save_nmsrs;
  1060. if (cpu_has_vmx_msr_bitmap()) {
  1061. if (is_long_mode(&vmx->vcpu))
  1062. msr_bitmap = vmx_msr_bitmap_longmode;
  1063. else
  1064. msr_bitmap = vmx_msr_bitmap_legacy;
  1065. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  1066. }
  1067. }
  1068. /*
  1069. * reads and returns guest's timestamp counter "register"
  1070. * guest_tsc = host_tsc + tsc_offset -- 21.3
  1071. */
  1072. static u64 guest_read_tsc(void)
  1073. {
  1074. u64 host_tsc, tsc_offset;
  1075. rdtscll(host_tsc);
  1076. tsc_offset = vmcs_read64(TSC_OFFSET);
  1077. return host_tsc + tsc_offset;
  1078. }
  1079. /*
  1080. * Empty call-back. Needs to be implemented when VMX enables the SET_TSC_KHZ
  1081. * ioctl. In this case the call-back should update internal vmx state to make
  1082. * the changes effective.
  1083. */
  1084. static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
  1085. {
  1086. /* Nothing to do here */
  1087. }
  1088. /*
  1089. * writes 'offset' into guest's timestamp counter offset register
  1090. */
  1091. static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
  1092. {
  1093. vmcs_write64(TSC_OFFSET, offset);
  1094. }
  1095. static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
  1096. {
  1097. u64 offset = vmcs_read64(TSC_OFFSET);
  1098. vmcs_write64(TSC_OFFSET, offset + adjustment);
  1099. }
  1100. static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
  1101. {
  1102. return target_tsc - native_read_tsc();
  1103. }
  1104. static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
  1105. {
  1106. struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
  1107. return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
  1108. }
  1109. /*
  1110. * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
  1111. * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
  1112. * all guests if the "nested" module option is off, and can also be disabled
  1113. * for a single guest by disabling its VMX cpuid bit.
  1114. */
  1115. static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
  1116. {
  1117. return nested && guest_cpuid_has_vmx(vcpu);
  1118. }
  1119. /*
  1120. * Reads an msr value (of 'msr_index') into 'pdata'.
  1121. * Returns 0 on success, non-0 otherwise.
  1122. * Assumes vcpu_load() was already called.
  1123. */
  1124. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1125. {
  1126. u64 data;
  1127. struct shared_msr_entry *msr;
  1128. if (!pdata) {
  1129. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  1130. return -EINVAL;
  1131. }
  1132. switch (msr_index) {
  1133. #ifdef CONFIG_X86_64
  1134. case MSR_FS_BASE:
  1135. data = vmcs_readl(GUEST_FS_BASE);
  1136. break;
  1137. case MSR_GS_BASE:
  1138. data = vmcs_readl(GUEST_GS_BASE);
  1139. break;
  1140. case MSR_KERNEL_GS_BASE:
  1141. vmx_load_host_state(to_vmx(vcpu));
  1142. data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
  1143. break;
  1144. #endif
  1145. case MSR_EFER:
  1146. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1147. case MSR_IA32_TSC:
  1148. data = guest_read_tsc();
  1149. break;
  1150. case MSR_IA32_SYSENTER_CS:
  1151. data = vmcs_read32(GUEST_SYSENTER_CS);
  1152. break;
  1153. case MSR_IA32_SYSENTER_EIP:
  1154. data = vmcs_readl(GUEST_SYSENTER_EIP);
  1155. break;
  1156. case MSR_IA32_SYSENTER_ESP:
  1157. data = vmcs_readl(GUEST_SYSENTER_ESP);
  1158. break;
  1159. case MSR_TSC_AUX:
  1160. if (!to_vmx(vcpu)->rdtscp_enabled)
  1161. return 1;
  1162. /* Otherwise falls through */
  1163. default:
  1164. vmx_load_host_state(to_vmx(vcpu));
  1165. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  1166. if (msr) {
  1167. vmx_load_host_state(to_vmx(vcpu));
  1168. data = msr->data;
  1169. break;
  1170. }
  1171. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1172. }
  1173. *pdata = data;
  1174. return 0;
  1175. }
  1176. /*
  1177. * Writes msr value into into the appropriate "register".
  1178. * Returns 0 on success, non-0 otherwise.
  1179. * Assumes vcpu_load() was already called.
  1180. */
  1181. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1182. {
  1183. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1184. struct shared_msr_entry *msr;
  1185. int ret = 0;
  1186. switch (msr_index) {
  1187. case MSR_EFER:
  1188. vmx_load_host_state(vmx);
  1189. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1190. break;
  1191. #ifdef CONFIG_X86_64
  1192. case MSR_FS_BASE:
  1193. vmx_segment_cache_clear(vmx);
  1194. vmcs_writel(GUEST_FS_BASE, data);
  1195. break;
  1196. case MSR_GS_BASE:
  1197. vmx_segment_cache_clear(vmx);
  1198. vmcs_writel(GUEST_GS_BASE, data);
  1199. break;
  1200. case MSR_KERNEL_GS_BASE:
  1201. vmx_load_host_state(vmx);
  1202. vmx->msr_guest_kernel_gs_base = data;
  1203. break;
  1204. #endif
  1205. case MSR_IA32_SYSENTER_CS:
  1206. vmcs_write32(GUEST_SYSENTER_CS, data);
  1207. break;
  1208. case MSR_IA32_SYSENTER_EIP:
  1209. vmcs_writel(GUEST_SYSENTER_EIP, data);
  1210. break;
  1211. case MSR_IA32_SYSENTER_ESP:
  1212. vmcs_writel(GUEST_SYSENTER_ESP, data);
  1213. break;
  1214. case MSR_IA32_TSC:
  1215. kvm_write_tsc(vcpu, data);
  1216. break;
  1217. case MSR_IA32_CR_PAT:
  1218. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  1219. vmcs_write64(GUEST_IA32_PAT, data);
  1220. vcpu->arch.pat = data;
  1221. break;
  1222. }
  1223. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1224. break;
  1225. case MSR_TSC_AUX:
  1226. if (!vmx->rdtscp_enabled)
  1227. return 1;
  1228. /* Check reserved bit, higher 32 bits should be zero */
  1229. if ((data >> 32) != 0)
  1230. return 1;
  1231. /* Otherwise falls through */
  1232. default:
  1233. msr = find_msr_entry(vmx, msr_index);
  1234. if (msr) {
  1235. vmx_load_host_state(vmx);
  1236. msr->data = data;
  1237. break;
  1238. }
  1239. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1240. }
  1241. return ret;
  1242. }
  1243. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  1244. {
  1245. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  1246. switch (reg) {
  1247. case VCPU_REGS_RSP:
  1248. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  1249. break;
  1250. case VCPU_REGS_RIP:
  1251. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  1252. break;
  1253. case VCPU_EXREG_PDPTR:
  1254. if (enable_ept)
  1255. ept_save_pdptrs(vcpu);
  1256. break;
  1257. default:
  1258. break;
  1259. }
  1260. }
  1261. static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  1262. {
  1263. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  1264. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  1265. else
  1266. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  1267. update_exception_bitmap(vcpu);
  1268. }
  1269. static __init int cpu_has_kvm_support(void)
  1270. {
  1271. return cpu_has_vmx();
  1272. }
  1273. static __init int vmx_disabled_by_bios(void)
  1274. {
  1275. u64 msr;
  1276. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  1277. if (msr & FEATURE_CONTROL_LOCKED) {
  1278. /* launched w/ TXT and VMX disabled */
  1279. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  1280. && tboot_enabled())
  1281. return 1;
  1282. /* launched w/o TXT and VMX only enabled w/ TXT */
  1283. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  1284. && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  1285. && !tboot_enabled()) {
  1286. printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
  1287. "activate TXT before enabling KVM\n");
  1288. return 1;
  1289. }
  1290. /* launched w/o TXT and VMX disabled */
  1291. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  1292. && !tboot_enabled())
  1293. return 1;
  1294. }
  1295. return 0;
  1296. }
  1297. static void kvm_cpu_vmxon(u64 addr)
  1298. {
  1299. asm volatile (ASM_VMX_VMXON_RAX
  1300. : : "a"(&addr), "m"(addr)
  1301. : "memory", "cc");
  1302. }
  1303. static int hardware_enable(void *garbage)
  1304. {
  1305. int cpu = raw_smp_processor_id();
  1306. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  1307. u64 old, test_bits;
  1308. if (read_cr4() & X86_CR4_VMXE)
  1309. return -EBUSY;
  1310. INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
  1311. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  1312. test_bits = FEATURE_CONTROL_LOCKED;
  1313. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
  1314. if (tboot_enabled())
  1315. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
  1316. if ((old & test_bits) != test_bits) {
  1317. /* enable and lock */
  1318. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
  1319. }
  1320. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  1321. if (vmm_exclusive) {
  1322. kvm_cpu_vmxon(phys_addr);
  1323. ept_sync_global();
  1324. }
  1325. store_gdt(&__get_cpu_var(host_gdt));
  1326. return 0;
  1327. }
  1328. static void vmclear_local_loaded_vmcss(void)
  1329. {
  1330. int cpu = raw_smp_processor_id();
  1331. struct loaded_vmcs *v, *n;
  1332. list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
  1333. loaded_vmcss_on_cpu_link)
  1334. __loaded_vmcs_clear(v);
  1335. }
  1336. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  1337. * tricks.
  1338. */
  1339. static void kvm_cpu_vmxoff(void)
  1340. {
  1341. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  1342. }
  1343. static void hardware_disable(void *garbage)
  1344. {
  1345. if (vmm_exclusive) {
  1346. vmclear_local_loaded_vmcss();
  1347. kvm_cpu_vmxoff();
  1348. }
  1349. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  1350. }
  1351. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  1352. u32 msr, u32 *result)
  1353. {
  1354. u32 vmx_msr_low, vmx_msr_high;
  1355. u32 ctl = ctl_min | ctl_opt;
  1356. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  1357. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  1358. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  1359. /* Ensure minimum (required) set of control bits are supported. */
  1360. if (ctl_min & ~ctl)
  1361. return -EIO;
  1362. *result = ctl;
  1363. return 0;
  1364. }
  1365. static __init bool allow_1_setting(u32 msr, u32 ctl)
  1366. {
  1367. u32 vmx_msr_low, vmx_msr_high;
  1368. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  1369. return vmx_msr_high & ctl;
  1370. }
  1371. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  1372. {
  1373. u32 vmx_msr_low, vmx_msr_high;
  1374. u32 min, opt, min2, opt2;
  1375. u32 _pin_based_exec_control = 0;
  1376. u32 _cpu_based_exec_control = 0;
  1377. u32 _cpu_based_2nd_exec_control = 0;
  1378. u32 _vmexit_control = 0;
  1379. u32 _vmentry_control = 0;
  1380. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  1381. opt = PIN_BASED_VIRTUAL_NMIS;
  1382. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  1383. &_pin_based_exec_control) < 0)
  1384. return -EIO;
  1385. min =
  1386. #ifdef CONFIG_X86_64
  1387. CPU_BASED_CR8_LOAD_EXITING |
  1388. CPU_BASED_CR8_STORE_EXITING |
  1389. #endif
  1390. CPU_BASED_CR3_LOAD_EXITING |
  1391. CPU_BASED_CR3_STORE_EXITING |
  1392. CPU_BASED_USE_IO_BITMAPS |
  1393. CPU_BASED_MOV_DR_EXITING |
  1394. CPU_BASED_USE_TSC_OFFSETING |
  1395. CPU_BASED_MWAIT_EXITING |
  1396. CPU_BASED_MONITOR_EXITING |
  1397. CPU_BASED_INVLPG_EXITING;
  1398. if (yield_on_hlt)
  1399. min |= CPU_BASED_HLT_EXITING;
  1400. opt = CPU_BASED_TPR_SHADOW |
  1401. CPU_BASED_USE_MSR_BITMAPS |
  1402. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1403. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1404. &_cpu_based_exec_control) < 0)
  1405. return -EIO;
  1406. #ifdef CONFIG_X86_64
  1407. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  1408. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  1409. ~CPU_BASED_CR8_STORE_EXITING;
  1410. #endif
  1411. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  1412. min2 = 0;
  1413. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1414. SECONDARY_EXEC_WBINVD_EXITING |
  1415. SECONDARY_EXEC_ENABLE_VPID |
  1416. SECONDARY_EXEC_ENABLE_EPT |
  1417. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  1418. SECONDARY_EXEC_PAUSE_LOOP_EXITING |
  1419. SECONDARY_EXEC_RDTSCP;
  1420. if (adjust_vmx_controls(min2, opt2,
  1421. MSR_IA32_VMX_PROCBASED_CTLS2,
  1422. &_cpu_based_2nd_exec_control) < 0)
  1423. return -EIO;
  1424. }
  1425. #ifndef CONFIG_X86_64
  1426. if (!(_cpu_based_2nd_exec_control &
  1427. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1428. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1429. #endif
  1430. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1431. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  1432. enabled */
  1433. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1434. CPU_BASED_CR3_STORE_EXITING |
  1435. CPU_BASED_INVLPG_EXITING);
  1436. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1437. vmx_capability.ept, vmx_capability.vpid);
  1438. }
  1439. min = 0;
  1440. #ifdef CONFIG_X86_64
  1441. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1442. #endif
  1443. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  1444. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1445. &_vmexit_control) < 0)
  1446. return -EIO;
  1447. min = 0;
  1448. opt = VM_ENTRY_LOAD_IA32_PAT;
  1449. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1450. &_vmentry_control) < 0)
  1451. return -EIO;
  1452. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1453. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1454. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1455. return -EIO;
  1456. #ifdef CONFIG_X86_64
  1457. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1458. if (vmx_msr_high & (1u<<16))
  1459. return -EIO;
  1460. #endif
  1461. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1462. if (((vmx_msr_high >> 18) & 15) != 6)
  1463. return -EIO;
  1464. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1465. vmcs_conf->order = get_order(vmcs_config.size);
  1466. vmcs_conf->revision_id = vmx_msr_low;
  1467. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1468. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1469. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1470. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1471. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1472. cpu_has_load_ia32_efer =
  1473. allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
  1474. VM_ENTRY_LOAD_IA32_EFER)
  1475. && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
  1476. VM_EXIT_LOAD_IA32_EFER);
  1477. return 0;
  1478. }
  1479. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1480. {
  1481. int node = cpu_to_node(cpu);
  1482. struct page *pages;
  1483. struct vmcs *vmcs;
  1484. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  1485. if (!pages)
  1486. return NULL;
  1487. vmcs = page_address(pages);
  1488. memset(vmcs, 0, vmcs_config.size);
  1489. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1490. return vmcs;
  1491. }
  1492. static struct vmcs *alloc_vmcs(void)
  1493. {
  1494. return alloc_vmcs_cpu(raw_smp_processor_id());
  1495. }
  1496. static void free_vmcs(struct vmcs *vmcs)
  1497. {
  1498. free_pages((unsigned long)vmcs, vmcs_config.order);
  1499. }
  1500. /*
  1501. * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
  1502. */
  1503. static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
  1504. {
  1505. if (!loaded_vmcs->vmcs)
  1506. return;
  1507. loaded_vmcs_clear(loaded_vmcs);
  1508. free_vmcs(loaded_vmcs->vmcs);
  1509. loaded_vmcs->vmcs = NULL;
  1510. }
  1511. static void free_kvm_area(void)
  1512. {
  1513. int cpu;
  1514. for_each_possible_cpu(cpu) {
  1515. free_vmcs(per_cpu(vmxarea, cpu));
  1516. per_cpu(vmxarea, cpu) = NULL;
  1517. }
  1518. }
  1519. static __init int alloc_kvm_area(void)
  1520. {
  1521. int cpu;
  1522. for_each_possible_cpu(cpu) {
  1523. struct vmcs *vmcs;
  1524. vmcs = alloc_vmcs_cpu(cpu);
  1525. if (!vmcs) {
  1526. free_kvm_area();
  1527. return -ENOMEM;
  1528. }
  1529. per_cpu(vmxarea, cpu) = vmcs;
  1530. }
  1531. return 0;
  1532. }
  1533. static __init int hardware_setup(void)
  1534. {
  1535. if (setup_vmcs_config(&vmcs_config) < 0)
  1536. return -EIO;
  1537. if (boot_cpu_has(X86_FEATURE_NX))
  1538. kvm_enable_efer_bits(EFER_NX);
  1539. if (!cpu_has_vmx_vpid())
  1540. enable_vpid = 0;
  1541. if (!cpu_has_vmx_ept() ||
  1542. !cpu_has_vmx_ept_4levels()) {
  1543. enable_ept = 0;
  1544. enable_unrestricted_guest = 0;
  1545. }
  1546. if (!cpu_has_vmx_unrestricted_guest())
  1547. enable_unrestricted_guest = 0;
  1548. if (!cpu_has_vmx_flexpriority())
  1549. flexpriority_enabled = 0;
  1550. if (!cpu_has_vmx_tpr_shadow())
  1551. kvm_x86_ops->update_cr8_intercept = NULL;
  1552. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  1553. kvm_disable_largepages();
  1554. if (!cpu_has_vmx_ple())
  1555. ple_gap = 0;
  1556. return alloc_kvm_area();
  1557. }
  1558. static __exit void hardware_unsetup(void)
  1559. {
  1560. free_kvm_area();
  1561. }
  1562. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1563. {
  1564. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1565. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1566. vmcs_write16(sf->selector, save->selector);
  1567. vmcs_writel(sf->base, save->base);
  1568. vmcs_write32(sf->limit, save->limit);
  1569. vmcs_write32(sf->ar_bytes, save->ar);
  1570. } else {
  1571. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1572. << AR_DPL_SHIFT;
  1573. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1574. }
  1575. }
  1576. static void enter_pmode(struct kvm_vcpu *vcpu)
  1577. {
  1578. unsigned long flags;
  1579. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1580. vmx->emulation_required = 1;
  1581. vmx->rmode.vm86_active = 0;
  1582. vmx_segment_cache_clear(vmx);
  1583. vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
  1584. vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
  1585. vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
  1586. vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
  1587. flags = vmcs_readl(GUEST_RFLAGS);
  1588. flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  1589. flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  1590. vmcs_writel(GUEST_RFLAGS, flags);
  1591. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1592. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1593. update_exception_bitmap(vcpu);
  1594. if (emulate_invalid_guest_state)
  1595. return;
  1596. fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
  1597. fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
  1598. fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
  1599. fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
  1600. vmx_segment_cache_clear(vmx);
  1601. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1602. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1603. vmcs_write16(GUEST_CS_SELECTOR,
  1604. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1605. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1606. }
  1607. static gva_t rmode_tss_base(struct kvm *kvm)
  1608. {
  1609. if (!kvm->arch.tss_addr) {
  1610. struct kvm_memslots *slots;
  1611. gfn_t base_gfn;
  1612. slots = kvm_memslots(kvm);
  1613. base_gfn = slots->memslots[0].base_gfn +
  1614. kvm->memslots->memslots[0].npages - 3;
  1615. return base_gfn << PAGE_SHIFT;
  1616. }
  1617. return kvm->arch.tss_addr;
  1618. }
  1619. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1620. {
  1621. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1622. save->selector = vmcs_read16(sf->selector);
  1623. save->base = vmcs_readl(sf->base);
  1624. save->limit = vmcs_read32(sf->limit);
  1625. save->ar = vmcs_read32(sf->ar_bytes);
  1626. vmcs_write16(sf->selector, save->base >> 4);
  1627. vmcs_write32(sf->base, save->base & 0xffff0);
  1628. vmcs_write32(sf->limit, 0xffff);
  1629. vmcs_write32(sf->ar_bytes, 0xf3);
  1630. if (save->base & 0xf)
  1631. printk_once(KERN_WARNING "kvm: segment base is not paragraph"
  1632. " aligned when entering protected mode (seg=%d)",
  1633. seg);
  1634. }
  1635. static void enter_rmode(struct kvm_vcpu *vcpu)
  1636. {
  1637. unsigned long flags;
  1638. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1639. if (enable_unrestricted_guest)
  1640. return;
  1641. vmx->emulation_required = 1;
  1642. vmx->rmode.vm86_active = 1;
  1643. /*
  1644. * Very old userspace does not call KVM_SET_TSS_ADDR before entering
  1645. * vcpu. Call it here with phys address pointing 16M below 4G.
  1646. */
  1647. if (!vcpu->kvm->arch.tss_addr) {
  1648. printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
  1649. "called before entering vcpu\n");
  1650. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  1651. vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
  1652. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  1653. }
  1654. vmx_segment_cache_clear(vmx);
  1655. vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
  1656. vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1657. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1658. vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1659. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1660. vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1661. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1662. flags = vmcs_readl(GUEST_RFLAGS);
  1663. vmx->rmode.save_rflags = flags;
  1664. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1665. vmcs_writel(GUEST_RFLAGS, flags);
  1666. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1667. update_exception_bitmap(vcpu);
  1668. if (emulate_invalid_guest_state)
  1669. goto continue_rmode;
  1670. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1671. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1672. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1673. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1674. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1675. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1676. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1677. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1678. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
  1679. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
  1680. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
  1681. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
  1682. continue_rmode:
  1683. kvm_mmu_reset_context(vcpu);
  1684. }
  1685. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1686. {
  1687. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1688. struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1689. if (!msr)
  1690. return;
  1691. /*
  1692. * Force kernel_gs_base reloading before EFER changes, as control
  1693. * of this msr depends on is_long_mode().
  1694. */
  1695. vmx_load_host_state(to_vmx(vcpu));
  1696. vcpu->arch.efer = efer;
  1697. if (efer & EFER_LMA) {
  1698. vmcs_write32(VM_ENTRY_CONTROLS,
  1699. vmcs_read32(VM_ENTRY_CONTROLS) |
  1700. VM_ENTRY_IA32E_MODE);
  1701. msr->data = efer;
  1702. } else {
  1703. vmcs_write32(VM_ENTRY_CONTROLS,
  1704. vmcs_read32(VM_ENTRY_CONTROLS) &
  1705. ~VM_ENTRY_IA32E_MODE);
  1706. msr->data = efer & ~EFER_LME;
  1707. }
  1708. setup_msrs(vmx);
  1709. }
  1710. #ifdef CONFIG_X86_64
  1711. static void enter_lmode(struct kvm_vcpu *vcpu)
  1712. {
  1713. u32 guest_tr_ar;
  1714. vmx_segment_cache_clear(to_vmx(vcpu));
  1715. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1716. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1717. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1718. __func__);
  1719. vmcs_write32(GUEST_TR_AR_BYTES,
  1720. (guest_tr_ar & ~AR_TYPE_MASK)
  1721. | AR_TYPE_BUSY_64_TSS);
  1722. }
  1723. vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
  1724. }
  1725. static void exit_lmode(struct kvm_vcpu *vcpu)
  1726. {
  1727. vmcs_write32(VM_ENTRY_CONTROLS,
  1728. vmcs_read32(VM_ENTRY_CONTROLS)
  1729. & ~VM_ENTRY_IA32E_MODE);
  1730. vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
  1731. }
  1732. #endif
  1733. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1734. {
  1735. vpid_sync_context(to_vmx(vcpu));
  1736. if (enable_ept) {
  1737. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1738. return;
  1739. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1740. }
  1741. }
  1742. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
  1743. {
  1744. ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
  1745. vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
  1746. vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
  1747. }
  1748. static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
  1749. {
  1750. if (enable_ept && is_paging(vcpu))
  1751. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  1752. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  1753. }
  1754. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1755. {
  1756. ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
  1757. vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
  1758. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
  1759. }
  1760. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1761. {
  1762. if (!test_bit(VCPU_EXREG_PDPTR,
  1763. (unsigned long *)&vcpu->arch.regs_dirty))
  1764. return;
  1765. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1766. vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
  1767. vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
  1768. vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
  1769. vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
  1770. }
  1771. }
  1772. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  1773. {
  1774. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1775. vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  1776. vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  1777. vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  1778. vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  1779. }
  1780. __set_bit(VCPU_EXREG_PDPTR,
  1781. (unsigned long *)&vcpu->arch.regs_avail);
  1782. __set_bit(VCPU_EXREG_PDPTR,
  1783. (unsigned long *)&vcpu->arch.regs_dirty);
  1784. }
  1785. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1786. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1787. unsigned long cr0,
  1788. struct kvm_vcpu *vcpu)
  1789. {
  1790. if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
  1791. vmx_decache_cr3(vcpu);
  1792. if (!(cr0 & X86_CR0_PG)) {
  1793. /* From paging/starting to nonpaging */
  1794. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1795. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1796. (CPU_BASED_CR3_LOAD_EXITING |
  1797. CPU_BASED_CR3_STORE_EXITING));
  1798. vcpu->arch.cr0 = cr0;
  1799. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  1800. } else if (!is_paging(vcpu)) {
  1801. /* From nonpaging to paging */
  1802. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1803. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1804. ~(CPU_BASED_CR3_LOAD_EXITING |
  1805. CPU_BASED_CR3_STORE_EXITING));
  1806. vcpu->arch.cr0 = cr0;
  1807. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  1808. }
  1809. if (!(cr0 & X86_CR0_WP))
  1810. *hw_cr0 &= ~X86_CR0_WP;
  1811. }
  1812. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1813. {
  1814. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1815. unsigned long hw_cr0;
  1816. if (enable_unrestricted_guest)
  1817. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
  1818. | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  1819. else
  1820. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
  1821. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  1822. enter_pmode(vcpu);
  1823. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  1824. enter_rmode(vcpu);
  1825. #ifdef CONFIG_X86_64
  1826. if (vcpu->arch.efer & EFER_LME) {
  1827. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1828. enter_lmode(vcpu);
  1829. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1830. exit_lmode(vcpu);
  1831. }
  1832. #endif
  1833. if (enable_ept)
  1834. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1835. if (!vcpu->fpu_active)
  1836. hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
  1837. vmcs_writel(CR0_READ_SHADOW, cr0);
  1838. vmcs_writel(GUEST_CR0, hw_cr0);
  1839. vcpu->arch.cr0 = cr0;
  1840. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  1841. }
  1842. static u64 construct_eptp(unsigned long root_hpa)
  1843. {
  1844. u64 eptp;
  1845. /* TODO write the value reading from MSR */
  1846. eptp = VMX_EPT_DEFAULT_MT |
  1847. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1848. eptp |= (root_hpa & PAGE_MASK);
  1849. return eptp;
  1850. }
  1851. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1852. {
  1853. unsigned long guest_cr3;
  1854. u64 eptp;
  1855. guest_cr3 = cr3;
  1856. if (enable_ept) {
  1857. eptp = construct_eptp(cr3);
  1858. vmcs_write64(EPT_POINTER, eptp);
  1859. guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
  1860. vcpu->kvm->arch.ept_identity_map_addr;
  1861. ept_load_pdptrs(vcpu);
  1862. }
  1863. vmx_flush_tlb(vcpu);
  1864. vmcs_writel(GUEST_CR3, guest_cr3);
  1865. }
  1866. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1867. {
  1868. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  1869. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1870. vcpu->arch.cr4 = cr4;
  1871. if (enable_ept) {
  1872. if (!is_paging(vcpu)) {
  1873. hw_cr4 &= ~X86_CR4_PAE;
  1874. hw_cr4 |= X86_CR4_PSE;
  1875. } else if (!(cr4 & X86_CR4_PAE)) {
  1876. hw_cr4 &= ~X86_CR4_PAE;
  1877. }
  1878. }
  1879. vmcs_writel(CR4_READ_SHADOW, cr4);
  1880. vmcs_writel(GUEST_CR4, hw_cr4);
  1881. }
  1882. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1883. struct kvm_segment *var, int seg)
  1884. {
  1885. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1886. struct kvm_save_segment *save;
  1887. u32 ar;
  1888. if (vmx->rmode.vm86_active
  1889. && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
  1890. || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
  1891. || seg == VCPU_SREG_GS)
  1892. && !emulate_invalid_guest_state) {
  1893. switch (seg) {
  1894. case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
  1895. case VCPU_SREG_ES: save = &vmx->rmode.es; break;
  1896. case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
  1897. case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
  1898. case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
  1899. default: BUG();
  1900. }
  1901. var->selector = save->selector;
  1902. var->base = save->base;
  1903. var->limit = save->limit;
  1904. ar = save->ar;
  1905. if (seg == VCPU_SREG_TR
  1906. || var->selector == vmx_read_guest_seg_selector(vmx, seg))
  1907. goto use_saved_rmode_seg;
  1908. }
  1909. var->base = vmx_read_guest_seg_base(vmx, seg);
  1910. var->limit = vmx_read_guest_seg_limit(vmx, seg);
  1911. var->selector = vmx_read_guest_seg_selector(vmx, seg);
  1912. ar = vmx_read_guest_seg_ar(vmx, seg);
  1913. use_saved_rmode_seg:
  1914. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  1915. ar = 0;
  1916. var->type = ar & 15;
  1917. var->s = (ar >> 4) & 1;
  1918. var->dpl = (ar >> 5) & 3;
  1919. var->present = (ar >> 7) & 1;
  1920. var->avl = (ar >> 12) & 1;
  1921. var->l = (ar >> 13) & 1;
  1922. var->db = (ar >> 14) & 1;
  1923. var->g = (ar >> 15) & 1;
  1924. var->unusable = (ar >> 16) & 1;
  1925. }
  1926. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1927. {
  1928. struct kvm_segment s;
  1929. if (to_vmx(vcpu)->rmode.vm86_active) {
  1930. vmx_get_segment(vcpu, &s, seg);
  1931. return s.base;
  1932. }
  1933. return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
  1934. }
  1935. static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
  1936. {
  1937. if (!is_protmode(vcpu))
  1938. return 0;
  1939. if (!is_long_mode(vcpu)
  1940. && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
  1941. return 3;
  1942. return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
  1943. }
  1944. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1945. {
  1946. if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
  1947. __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  1948. to_vmx(vcpu)->cpl = __vmx_get_cpl(vcpu);
  1949. }
  1950. return to_vmx(vcpu)->cpl;
  1951. }
  1952. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1953. {
  1954. u32 ar;
  1955. if (var->unusable)
  1956. ar = 1 << 16;
  1957. else {
  1958. ar = var->type & 15;
  1959. ar |= (var->s & 1) << 4;
  1960. ar |= (var->dpl & 3) << 5;
  1961. ar |= (var->present & 1) << 7;
  1962. ar |= (var->avl & 1) << 12;
  1963. ar |= (var->l & 1) << 13;
  1964. ar |= (var->db & 1) << 14;
  1965. ar |= (var->g & 1) << 15;
  1966. }
  1967. if (ar == 0) /* a 0 value means unusable */
  1968. ar = AR_UNUSABLE_MASK;
  1969. return ar;
  1970. }
  1971. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1972. struct kvm_segment *var, int seg)
  1973. {
  1974. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1975. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1976. u32 ar;
  1977. vmx_segment_cache_clear(vmx);
  1978. if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
  1979. vmcs_write16(sf->selector, var->selector);
  1980. vmx->rmode.tr.selector = var->selector;
  1981. vmx->rmode.tr.base = var->base;
  1982. vmx->rmode.tr.limit = var->limit;
  1983. vmx->rmode.tr.ar = vmx_segment_access_rights(var);
  1984. return;
  1985. }
  1986. vmcs_writel(sf->base, var->base);
  1987. vmcs_write32(sf->limit, var->limit);
  1988. vmcs_write16(sf->selector, var->selector);
  1989. if (vmx->rmode.vm86_active && var->s) {
  1990. /*
  1991. * Hack real-mode segments into vm86 compatibility.
  1992. */
  1993. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1994. vmcs_writel(sf->base, 0xf0000);
  1995. ar = 0xf3;
  1996. } else
  1997. ar = vmx_segment_access_rights(var);
  1998. /*
  1999. * Fix the "Accessed" bit in AR field of segment registers for older
  2000. * qemu binaries.
  2001. * IA32 arch specifies that at the time of processor reset the
  2002. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  2003. * is setting it to 0 in the usedland code. This causes invalid guest
  2004. * state vmexit when "unrestricted guest" mode is turned on.
  2005. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  2006. * tree. Newer qemu binaries with that qemu fix would not need this
  2007. * kvm hack.
  2008. */
  2009. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  2010. ar |= 0x1; /* Accessed */
  2011. vmcs_write32(sf->ar_bytes, ar);
  2012. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2013. }
  2014. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2015. {
  2016. u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
  2017. *db = (ar >> 14) & 1;
  2018. *l = (ar >> 13) & 1;
  2019. }
  2020. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2021. {
  2022. dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
  2023. dt->address = vmcs_readl(GUEST_IDTR_BASE);
  2024. }
  2025. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2026. {
  2027. vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
  2028. vmcs_writel(GUEST_IDTR_BASE, dt->address);
  2029. }
  2030. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2031. {
  2032. dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
  2033. dt->address = vmcs_readl(GUEST_GDTR_BASE);
  2034. }
  2035. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2036. {
  2037. vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
  2038. vmcs_writel(GUEST_GDTR_BASE, dt->address);
  2039. }
  2040. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  2041. {
  2042. struct kvm_segment var;
  2043. u32 ar;
  2044. vmx_get_segment(vcpu, &var, seg);
  2045. ar = vmx_segment_access_rights(&var);
  2046. if (var.base != (var.selector << 4))
  2047. return false;
  2048. if (var.limit != 0xffff)
  2049. return false;
  2050. if (ar != 0xf3)
  2051. return false;
  2052. return true;
  2053. }
  2054. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  2055. {
  2056. struct kvm_segment cs;
  2057. unsigned int cs_rpl;
  2058. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  2059. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  2060. if (cs.unusable)
  2061. return false;
  2062. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  2063. return false;
  2064. if (!cs.s)
  2065. return false;
  2066. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  2067. if (cs.dpl > cs_rpl)
  2068. return false;
  2069. } else {
  2070. if (cs.dpl != cs_rpl)
  2071. return false;
  2072. }
  2073. if (!cs.present)
  2074. return false;
  2075. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  2076. return true;
  2077. }
  2078. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  2079. {
  2080. struct kvm_segment ss;
  2081. unsigned int ss_rpl;
  2082. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  2083. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  2084. if (ss.unusable)
  2085. return true;
  2086. if (ss.type != 3 && ss.type != 7)
  2087. return false;
  2088. if (!ss.s)
  2089. return false;
  2090. if (ss.dpl != ss_rpl) /* DPL != RPL */
  2091. return false;
  2092. if (!ss.present)
  2093. return false;
  2094. return true;
  2095. }
  2096. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  2097. {
  2098. struct kvm_segment var;
  2099. unsigned int rpl;
  2100. vmx_get_segment(vcpu, &var, seg);
  2101. rpl = var.selector & SELECTOR_RPL_MASK;
  2102. if (var.unusable)
  2103. return true;
  2104. if (!var.s)
  2105. return false;
  2106. if (!var.present)
  2107. return false;
  2108. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  2109. if (var.dpl < rpl) /* DPL < RPL */
  2110. return false;
  2111. }
  2112. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  2113. * rights flags
  2114. */
  2115. return true;
  2116. }
  2117. static bool tr_valid(struct kvm_vcpu *vcpu)
  2118. {
  2119. struct kvm_segment tr;
  2120. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  2121. if (tr.unusable)
  2122. return false;
  2123. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  2124. return false;
  2125. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  2126. return false;
  2127. if (!tr.present)
  2128. return false;
  2129. return true;
  2130. }
  2131. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  2132. {
  2133. struct kvm_segment ldtr;
  2134. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  2135. if (ldtr.unusable)
  2136. return true;
  2137. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  2138. return false;
  2139. if (ldtr.type != 2)
  2140. return false;
  2141. if (!ldtr.present)
  2142. return false;
  2143. return true;
  2144. }
  2145. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  2146. {
  2147. struct kvm_segment cs, ss;
  2148. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  2149. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  2150. return ((cs.selector & SELECTOR_RPL_MASK) ==
  2151. (ss.selector & SELECTOR_RPL_MASK));
  2152. }
  2153. /*
  2154. * Check if guest state is valid. Returns true if valid, false if
  2155. * not.
  2156. * We assume that registers are always usable
  2157. */
  2158. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  2159. {
  2160. /* real mode guest state checks */
  2161. if (!is_protmode(vcpu)) {
  2162. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  2163. return false;
  2164. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  2165. return false;
  2166. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  2167. return false;
  2168. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  2169. return false;
  2170. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  2171. return false;
  2172. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  2173. return false;
  2174. } else {
  2175. /* protected mode guest state checks */
  2176. if (!cs_ss_rpl_check(vcpu))
  2177. return false;
  2178. if (!code_segment_valid(vcpu))
  2179. return false;
  2180. if (!stack_segment_valid(vcpu))
  2181. return false;
  2182. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  2183. return false;
  2184. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  2185. return false;
  2186. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  2187. return false;
  2188. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  2189. return false;
  2190. if (!tr_valid(vcpu))
  2191. return false;
  2192. if (!ldtr_valid(vcpu))
  2193. return false;
  2194. }
  2195. /* TODO:
  2196. * - Add checks on RIP
  2197. * - Add checks on RFLAGS
  2198. */
  2199. return true;
  2200. }
  2201. static int init_rmode_tss(struct kvm *kvm)
  2202. {
  2203. gfn_t fn;
  2204. u16 data = 0;
  2205. int r, idx, ret = 0;
  2206. idx = srcu_read_lock(&kvm->srcu);
  2207. fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  2208. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  2209. if (r < 0)
  2210. goto out;
  2211. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  2212. r = kvm_write_guest_page(kvm, fn++, &data,
  2213. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  2214. if (r < 0)
  2215. goto out;
  2216. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  2217. if (r < 0)
  2218. goto out;
  2219. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  2220. if (r < 0)
  2221. goto out;
  2222. data = ~0;
  2223. r = kvm_write_guest_page(kvm, fn, &data,
  2224. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  2225. sizeof(u8));
  2226. if (r < 0)
  2227. goto out;
  2228. ret = 1;
  2229. out:
  2230. srcu_read_unlock(&kvm->srcu, idx);
  2231. return ret;
  2232. }
  2233. static int init_rmode_identity_map(struct kvm *kvm)
  2234. {
  2235. int i, idx, r, ret;
  2236. pfn_t identity_map_pfn;
  2237. u32 tmp;
  2238. if (!enable_ept)
  2239. return 1;
  2240. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  2241. printk(KERN_ERR "EPT: identity-mapping pagetable "
  2242. "haven't been allocated!\n");
  2243. return 0;
  2244. }
  2245. if (likely(kvm->arch.ept_identity_pagetable_done))
  2246. return 1;
  2247. ret = 0;
  2248. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  2249. idx = srcu_read_lock(&kvm->srcu);
  2250. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  2251. if (r < 0)
  2252. goto out;
  2253. /* Set up identity-mapping pagetable for EPT in real mode */
  2254. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  2255. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  2256. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  2257. r = kvm_write_guest_page(kvm, identity_map_pfn,
  2258. &tmp, i * sizeof(tmp), sizeof(tmp));
  2259. if (r < 0)
  2260. goto out;
  2261. }
  2262. kvm->arch.ept_identity_pagetable_done = true;
  2263. ret = 1;
  2264. out:
  2265. srcu_read_unlock(&kvm->srcu, idx);
  2266. return ret;
  2267. }
  2268. static void seg_setup(int seg)
  2269. {
  2270. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2271. unsigned int ar;
  2272. vmcs_write16(sf->selector, 0);
  2273. vmcs_writel(sf->base, 0);
  2274. vmcs_write32(sf->limit, 0xffff);
  2275. if (enable_unrestricted_guest) {
  2276. ar = 0x93;
  2277. if (seg == VCPU_SREG_CS)
  2278. ar |= 0x08; /* code segment */
  2279. } else
  2280. ar = 0xf3;
  2281. vmcs_write32(sf->ar_bytes, ar);
  2282. }
  2283. static int alloc_apic_access_page(struct kvm *kvm)
  2284. {
  2285. struct kvm_userspace_memory_region kvm_userspace_mem;
  2286. int r = 0;
  2287. mutex_lock(&kvm->slots_lock);
  2288. if (kvm->arch.apic_access_page)
  2289. goto out;
  2290. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  2291. kvm_userspace_mem.flags = 0;
  2292. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  2293. kvm_userspace_mem.memory_size = PAGE_SIZE;
  2294. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2295. if (r)
  2296. goto out;
  2297. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  2298. out:
  2299. mutex_unlock(&kvm->slots_lock);
  2300. return r;
  2301. }
  2302. static int alloc_identity_pagetable(struct kvm *kvm)
  2303. {
  2304. struct kvm_userspace_memory_region kvm_userspace_mem;
  2305. int r = 0;
  2306. mutex_lock(&kvm->slots_lock);
  2307. if (kvm->arch.ept_identity_pagetable)
  2308. goto out;
  2309. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  2310. kvm_userspace_mem.flags = 0;
  2311. kvm_userspace_mem.guest_phys_addr =
  2312. kvm->arch.ept_identity_map_addr;
  2313. kvm_userspace_mem.memory_size = PAGE_SIZE;
  2314. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2315. if (r)
  2316. goto out;
  2317. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  2318. kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  2319. out:
  2320. mutex_unlock(&kvm->slots_lock);
  2321. return r;
  2322. }
  2323. static void allocate_vpid(struct vcpu_vmx *vmx)
  2324. {
  2325. int vpid;
  2326. vmx->vpid = 0;
  2327. if (!enable_vpid)
  2328. return;
  2329. spin_lock(&vmx_vpid_lock);
  2330. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  2331. if (vpid < VMX_NR_VPIDS) {
  2332. vmx->vpid = vpid;
  2333. __set_bit(vpid, vmx_vpid_bitmap);
  2334. }
  2335. spin_unlock(&vmx_vpid_lock);
  2336. }
  2337. static void free_vpid(struct vcpu_vmx *vmx)
  2338. {
  2339. if (!enable_vpid)
  2340. return;
  2341. spin_lock(&vmx_vpid_lock);
  2342. if (vmx->vpid != 0)
  2343. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  2344. spin_unlock(&vmx_vpid_lock);
  2345. }
  2346. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  2347. {
  2348. int f = sizeof(unsigned long);
  2349. if (!cpu_has_vmx_msr_bitmap())
  2350. return;
  2351. /*
  2352. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  2353. * have the write-low and read-high bitmap offsets the wrong way round.
  2354. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  2355. */
  2356. if (msr <= 0x1fff) {
  2357. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  2358. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  2359. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  2360. msr &= 0x1fff;
  2361. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  2362. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  2363. }
  2364. }
  2365. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  2366. {
  2367. if (!longmode_only)
  2368. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  2369. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  2370. }
  2371. /*
  2372. * Sets up the vmcs for emulated real mode.
  2373. */
  2374. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  2375. {
  2376. u32 host_sysenter_cs, msr_low, msr_high;
  2377. u32 junk;
  2378. u64 host_pat;
  2379. unsigned long a;
  2380. struct desc_ptr dt;
  2381. int i;
  2382. unsigned long kvm_vmx_return;
  2383. u32 exec_control;
  2384. /* I/O */
  2385. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  2386. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  2387. if (cpu_has_vmx_msr_bitmap())
  2388. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  2389. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  2390. /* Control */
  2391. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  2392. vmcs_config.pin_based_exec_ctrl);
  2393. exec_control = vmcs_config.cpu_based_exec_ctrl;
  2394. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  2395. exec_control &= ~CPU_BASED_TPR_SHADOW;
  2396. #ifdef CONFIG_X86_64
  2397. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  2398. CPU_BASED_CR8_LOAD_EXITING;
  2399. #endif
  2400. }
  2401. if (!enable_ept)
  2402. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  2403. CPU_BASED_CR3_LOAD_EXITING |
  2404. CPU_BASED_INVLPG_EXITING;
  2405. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  2406. if (cpu_has_secondary_exec_ctrls()) {
  2407. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  2408. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2409. exec_control &=
  2410. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  2411. if (vmx->vpid == 0)
  2412. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  2413. if (!enable_ept) {
  2414. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  2415. enable_unrestricted_guest = 0;
  2416. }
  2417. if (!enable_unrestricted_guest)
  2418. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  2419. if (!ple_gap)
  2420. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  2421. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  2422. }
  2423. if (ple_gap) {
  2424. vmcs_write32(PLE_GAP, ple_gap);
  2425. vmcs_write32(PLE_WINDOW, ple_window);
  2426. }
  2427. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  2428. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  2429. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  2430. vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
  2431. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  2432. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  2433. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  2434. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2435. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2436. vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
  2437. vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
  2438. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2439. #ifdef CONFIG_X86_64
  2440. rdmsrl(MSR_FS_BASE, a);
  2441. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  2442. rdmsrl(MSR_GS_BASE, a);
  2443. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  2444. #else
  2445. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  2446. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  2447. #endif
  2448. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  2449. native_store_idt(&dt);
  2450. vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
  2451. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  2452. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  2453. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  2454. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  2455. vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
  2456. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  2457. vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
  2458. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  2459. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  2460. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  2461. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  2462. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  2463. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  2464. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  2465. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2466. host_pat = msr_low | ((u64) msr_high << 32);
  2467. vmcs_write64(HOST_IA32_PAT, host_pat);
  2468. }
  2469. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  2470. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2471. host_pat = msr_low | ((u64) msr_high << 32);
  2472. /* Write the default value follow host pat */
  2473. vmcs_write64(GUEST_IA32_PAT, host_pat);
  2474. /* Keep arch.pat sync with GUEST_IA32_PAT */
  2475. vmx->vcpu.arch.pat = host_pat;
  2476. }
  2477. for (i = 0; i < NR_VMX_MSR; ++i) {
  2478. u32 index = vmx_msr_index[i];
  2479. u32 data_low, data_high;
  2480. int j = vmx->nmsrs;
  2481. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  2482. continue;
  2483. if (wrmsr_safe(index, data_low, data_high) < 0)
  2484. continue;
  2485. vmx->guest_msrs[j].index = i;
  2486. vmx->guest_msrs[j].data = 0;
  2487. vmx->guest_msrs[j].mask = -1ull;
  2488. ++vmx->nmsrs;
  2489. }
  2490. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  2491. /* 22.2.1, 20.8.1 */
  2492. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  2493. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  2494. vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
  2495. if (enable_ept)
  2496. vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
  2497. vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
  2498. kvm_write_tsc(&vmx->vcpu, 0);
  2499. return 0;
  2500. }
  2501. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  2502. {
  2503. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2504. u64 msr;
  2505. int ret;
  2506. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  2507. vmx->rmode.vm86_active = 0;
  2508. vmx->soft_vnmi_blocked = 0;
  2509. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  2510. kvm_set_cr8(&vmx->vcpu, 0);
  2511. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  2512. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2513. msr |= MSR_IA32_APICBASE_BSP;
  2514. kvm_set_apic_base(&vmx->vcpu, msr);
  2515. ret = fx_init(&vmx->vcpu);
  2516. if (ret != 0)
  2517. goto out;
  2518. vmx_segment_cache_clear(vmx);
  2519. seg_setup(VCPU_SREG_CS);
  2520. /*
  2521. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  2522. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  2523. */
  2524. if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
  2525. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  2526. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  2527. } else {
  2528. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  2529. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  2530. }
  2531. seg_setup(VCPU_SREG_DS);
  2532. seg_setup(VCPU_SREG_ES);
  2533. seg_setup(VCPU_SREG_FS);
  2534. seg_setup(VCPU_SREG_GS);
  2535. seg_setup(VCPU_SREG_SS);
  2536. vmcs_write16(GUEST_TR_SELECTOR, 0);
  2537. vmcs_writel(GUEST_TR_BASE, 0);
  2538. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  2539. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2540. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  2541. vmcs_writel(GUEST_LDTR_BASE, 0);
  2542. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  2543. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  2544. vmcs_write32(GUEST_SYSENTER_CS, 0);
  2545. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  2546. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  2547. vmcs_writel(GUEST_RFLAGS, 0x02);
  2548. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2549. kvm_rip_write(vcpu, 0xfff0);
  2550. else
  2551. kvm_rip_write(vcpu, 0);
  2552. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  2553. vmcs_writel(GUEST_DR7, 0x400);
  2554. vmcs_writel(GUEST_GDTR_BASE, 0);
  2555. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  2556. vmcs_writel(GUEST_IDTR_BASE, 0);
  2557. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  2558. vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
  2559. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  2560. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  2561. /* Special registers */
  2562. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  2563. setup_msrs(vmx);
  2564. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  2565. if (cpu_has_vmx_tpr_shadow()) {
  2566. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  2567. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  2568. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  2569. __pa(vmx->vcpu.arch.apic->regs));
  2570. vmcs_write32(TPR_THRESHOLD, 0);
  2571. }
  2572. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2573. vmcs_write64(APIC_ACCESS_ADDR,
  2574. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  2575. if (vmx->vpid != 0)
  2576. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  2577. vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  2578. vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
  2579. vmx_set_cr4(&vmx->vcpu, 0);
  2580. vmx_set_efer(&vmx->vcpu, 0);
  2581. vmx_fpu_activate(&vmx->vcpu);
  2582. update_exception_bitmap(&vmx->vcpu);
  2583. vpid_sync_context(vmx);
  2584. ret = 0;
  2585. /* HACK: Don't enable emulation on guest boot/reset */
  2586. vmx->emulation_required = 0;
  2587. out:
  2588. return ret;
  2589. }
  2590. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2591. {
  2592. u32 cpu_based_vm_exec_control;
  2593. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2594. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2595. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2596. }
  2597. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2598. {
  2599. u32 cpu_based_vm_exec_control;
  2600. if (!cpu_has_virtual_nmis()) {
  2601. enable_irq_window(vcpu);
  2602. return;
  2603. }
  2604. if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
  2605. enable_irq_window(vcpu);
  2606. return;
  2607. }
  2608. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2609. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2610. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2611. }
  2612. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  2613. {
  2614. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2615. uint32_t intr;
  2616. int irq = vcpu->arch.interrupt.nr;
  2617. trace_kvm_inj_virq(irq);
  2618. ++vcpu->stat.irq_injections;
  2619. if (vmx->rmode.vm86_active) {
  2620. int inc_eip = 0;
  2621. if (vcpu->arch.interrupt.soft)
  2622. inc_eip = vcpu->arch.event_exit_inst_len;
  2623. if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
  2624. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2625. return;
  2626. }
  2627. intr = irq | INTR_INFO_VALID_MASK;
  2628. if (vcpu->arch.interrupt.soft) {
  2629. intr |= INTR_TYPE_SOFT_INTR;
  2630. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  2631. vmx->vcpu.arch.event_exit_inst_len);
  2632. } else
  2633. intr |= INTR_TYPE_EXT_INTR;
  2634. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  2635. vmx_clear_hlt(vcpu);
  2636. }
  2637. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  2638. {
  2639. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2640. if (!cpu_has_virtual_nmis()) {
  2641. /*
  2642. * Tracking the NMI-blocked state in software is built upon
  2643. * finding the next open IRQ window. This, in turn, depends on
  2644. * well-behaving guests: They have to keep IRQs disabled at
  2645. * least as long as the NMI handler runs. Otherwise we may
  2646. * cause NMI nesting, maybe breaking the guest. But as this is
  2647. * highly unlikely, we can live with the residual risk.
  2648. */
  2649. vmx->soft_vnmi_blocked = 1;
  2650. vmx->vnmi_blocked_time = 0;
  2651. }
  2652. ++vcpu->stat.nmi_injections;
  2653. vmx->nmi_known_unmasked = false;
  2654. if (vmx->rmode.vm86_active) {
  2655. if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
  2656. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2657. return;
  2658. }
  2659. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2660. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  2661. vmx_clear_hlt(vcpu);
  2662. }
  2663. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  2664. {
  2665. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  2666. return 0;
  2667. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2668. (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
  2669. | GUEST_INTR_STATE_NMI));
  2670. }
  2671. static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
  2672. {
  2673. if (!cpu_has_virtual_nmis())
  2674. return to_vmx(vcpu)->soft_vnmi_blocked;
  2675. if (to_vmx(vcpu)->nmi_known_unmasked)
  2676. return false;
  2677. return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
  2678. }
  2679. static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  2680. {
  2681. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2682. if (!cpu_has_virtual_nmis()) {
  2683. if (vmx->soft_vnmi_blocked != masked) {
  2684. vmx->soft_vnmi_blocked = masked;
  2685. vmx->vnmi_blocked_time = 0;
  2686. }
  2687. } else {
  2688. vmx->nmi_known_unmasked = !masked;
  2689. if (masked)
  2690. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2691. GUEST_INTR_STATE_NMI);
  2692. else
  2693. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2694. GUEST_INTR_STATE_NMI);
  2695. }
  2696. }
  2697. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  2698. {
  2699. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2700. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2701. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  2702. }
  2703. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2704. {
  2705. int ret;
  2706. struct kvm_userspace_memory_region tss_mem = {
  2707. .slot = TSS_PRIVATE_MEMSLOT,
  2708. .guest_phys_addr = addr,
  2709. .memory_size = PAGE_SIZE * 3,
  2710. .flags = 0,
  2711. };
  2712. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2713. if (ret)
  2714. return ret;
  2715. kvm->arch.tss_addr = addr;
  2716. if (!init_rmode_tss(kvm))
  2717. return -ENOMEM;
  2718. return 0;
  2719. }
  2720. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2721. int vec, u32 err_code)
  2722. {
  2723. /*
  2724. * Instruction with address size override prefix opcode 0x67
  2725. * Cause the #SS fault with 0 error code in VM86 mode.
  2726. */
  2727. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2728. if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
  2729. return 1;
  2730. /*
  2731. * Forward all other exceptions that are valid in real mode.
  2732. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2733. * the required debugging infrastructure rework.
  2734. */
  2735. switch (vec) {
  2736. case DB_VECTOR:
  2737. if (vcpu->guest_debug &
  2738. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  2739. return 0;
  2740. kvm_queue_exception(vcpu, vec);
  2741. return 1;
  2742. case BP_VECTOR:
  2743. /*
  2744. * Update instruction length as we may reinject the exception
  2745. * from user space while in guest debugging mode.
  2746. */
  2747. to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
  2748. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  2749. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  2750. return 0;
  2751. /* fall through */
  2752. case DE_VECTOR:
  2753. case OF_VECTOR:
  2754. case BR_VECTOR:
  2755. case UD_VECTOR:
  2756. case DF_VECTOR:
  2757. case SS_VECTOR:
  2758. case GP_VECTOR:
  2759. case MF_VECTOR:
  2760. kvm_queue_exception(vcpu, vec);
  2761. return 1;
  2762. }
  2763. return 0;
  2764. }
  2765. /*
  2766. * Trigger machine check on the host. We assume all the MSRs are already set up
  2767. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  2768. * We pass a fake environment to the machine check handler because we want
  2769. * the guest to be always treated like user space, no matter what context
  2770. * it used internally.
  2771. */
  2772. static void kvm_machine_check(void)
  2773. {
  2774. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  2775. struct pt_regs regs = {
  2776. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  2777. .flags = X86_EFLAGS_IF,
  2778. };
  2779. do_machine_check(&regs, 0);
  2780. #endif
  2781. }
  2782. static int handle_machine_check(struct kvm_vcpu *vcpu)
  2783. {
  2784. /* already handled by vcpu_run */
  2785. return 1;
  2786. }
  2787. static int handle_exception(struct kvm_vcpu *vcpu)
  2788. {
  2789. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2790. struct kvm_run *kvm_run = vcpu->run;
  2791. u32 intr_info, ex_no, error_code;
  2792. unsigned long cr2, rip, dr6;
  2793. u32 vect_info;
  2794. enum emulation_result er;
  2795. vect_info = vmx->idt_vectoring_info;
  2796. intr_info = vmx->exit_intr_info;
  2797. if (is_machine_check(intr_info))
  2798. return handle_machine_check(vcpu);
  2799. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2800. !is_page_fault(intr_info)) {
  2801. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2802. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
  2803. vcpu->run->internal.ndata = 2;
  2804. vcpu->run->internal.data[0] = vect_info;
  2805. vcpu->run->internal.data[1] = intr_info;
  2806. return 0;
  2807. }
  2808. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  2809. return 1; /* already handled by vmx_vcpu_run() */
  2810. if (is_no_device(intr_info)) {
  2811. vmx_fpu_activate(vcpu);
  2812. return 1;
  2813. }
  2814. if (is_invalid_opcode(intr_info)) {
  2815. er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
  2816. if (er != EMULATE_DONE)
  2817. kvm_queue_exception(vcpu, UD_VECTOR);
  2818. return 1;
  2819. }
  2820. error_code = 0;
  2821. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2822. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2823. if (is_page_fault(intr_info)) {
  2824. /* EPT won't cause page fault directly */
  2825. if (enable_ept)
  2826. BUG();
  2827. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2828. trace_kvm_page_fault(cr2, error_code);
  2829. if (kvm_event_needs_reinjection(vcpu))
  2830. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2831. return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
  2832. }
  2833. if (vmx->rmode.vm86_active &&
  2834. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2835. error_code)) {
  2836. if (vcpu->arch.halt_request) {
  2837. vcpu->arch.halt_request = 0;
  2838. return kvm_emulate_halt(vcpu);
  2839. }
  2840. return 1;
  2841. }
  2842. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  2843. switch (ex_no) {
  2844. case DB_VECTOR:
  2845. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  2846. if (!(vcpu->guest_debug &
  2847. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  2848. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  2849. kvm_queue_exception(vcpu, DB_VECTOR);
  2850. return 1;
  2851. }
  2852. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  2853. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  2854. /* fall through */
  2855. case BP_VECTOR:
  2856. /*
  2857. * Update instruction length as we may reinject #BP from
  2858. * user space while in guest debugging mode. Reading it for
  2859. * #DB as well causes no harm, it is not used in that case.
  2860. */
  2861. vmx->vcpu.arch.event_exit_inst_len =
  2862. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  2863. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2864. rip = kvm_rip_read(vcpu);
  2865. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  2866. kvm_run->debug.arch.exception = ex_no;
  2867. break;
  2868. default:
  2869. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2870. kvm_run->ex.exception = ex_no;
  2871. kvm_run->ex.error_code = error_code;
  2872. break;
  2873. }
  2874. return 0;
  2875. }
  2876. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  2877. {
  2878. ++vcpu->stat.irq_exits;
  2879. return 1;
  2880. }
  2881. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  2882. {
  2883. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  2884. return 0;
  2885. }
  2886. static int handle_io(struct kvm_vcpu *vcpu)
  2887. {
  2888. unsigned long exit_qualification;
  2889. int size, in, string;
  2890. unsigned port;
  2891. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2892. string = (exit_qualification & 16) != 0;
  2893. in = (exit_qualification & 8) != 0;
  2894. ++vcpu->stat.io_exits;
  2895. if (string || in)
  2896. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  2897. port = exit_qualification >> 16;
  2898. size = (exit_qualification & 7) + 1;
  2899. skip_emulated_instruction(vcpu);
  2900. return kvm_fast_pio_out(vcpu, size, port);
  2901. }
  2902. static void
  2903. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2904. {
  2905. /*
  2906. * Patch in the VMCALL instruction:
  2907. */
  2908. hypercall[0] = 0x0f;
  2909. hypercall[1] = 0x01;
  2910. hypercall[2] = 0xc1;
  2911. }
  2912. static int handle_cr(struct kvm_vcpu *vcpu)
  2913. {
  2914. unsigned long exit_qualification, val;
  2915. int cr;
  2916. int reg;
  2917. int err;
  2918. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2919. cr = exit_qualification & 15;
  2920. reg = (exit_qualification >> 8) & 15;
  2921. switch ((exit_qualification >> 4) & 3) {
  2922. case 0: /* mov to cr */
  2923. val = kvm_register_read(vcpu, reg);
  2924. trace_kvm_cr_write(cr, val);
  2925. switch (cr) {
  2926. case 0:
  2927. err = kvm_set_cr0(vcpu, val);
  2928. kvm_complete_insn_gp(vcpu, err);
  2929. return 1;
  2930. case 3:
  2931. err = kvm_set_cr3(vcpu, val);
  2932. kvm_complete_insn_gp(vcpu, err);
  2933. return 1;
  2934. case 4:
  2935. err = kvm_set_cr4(vcpu, val);
  2936. kvm_complete_insn_gp(vcpu, err);
  2937. return 1;
  2938. case 8: {
  2939. u8 cr8_prev = kvm_get_cr8(vcpu);
  2940. u8 cr8 = kvm_register_read(vcpu, reg);
  2941. err = kvm_set_cr8(vcpu, cr8);
  2942. kvm_complete_insn_gp(vcpu, err);
  2943. if (irqchip_in_kernel(vcpu->kvm))
  2944. return 1;
  2945. if (cr8_prev <= cr8)
  2946. return 1;
  2947. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  2948. return 0;
  2949. }
  2950. };
  2951. break;
  2952. case 2: /* clts */
  2953. vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  2954. trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
  2955. skip_emulated_instruction(vcpu);
  2956. vmx_fpu_activate(vcpu);
  2957. return 1;
  2958. case 1: /*mov from cr*/
  2959. switch (cr) {
  2960. case 3:
  2961. val = kvm_read_cr3(vcpu);
  2962. kvm_register_write(vcpu, reg, val);
  2963. trace_kvm_cr_read(cr, val);
  2964. skip_emulated_instruction(vcpu);
  2965. return 1;
  2966. case 8:
  2967. val = kvm_get_cr8(vcpu);
  2968. kvm_register_write(vcpu, reg, val);
  2969. trace_kvm_cr_read(cr, val);
  2970. skip_emulated_instruction(vcpu);
  2971. return 1;
  2972. }
  2973. break;
  2974. case 3: /* lmsw */
  2975. val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
  2976. trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
  2977. kvm_lmsw(vcpu, val);
  2978. skip_emulated_instruction(vcpu);
  2979. return 1;
  2980. default:
  2981. break;
  2982. }
  2983. vcpu->run->exit_reason = 0;
  2984. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2985. (int)(exit_qualification >> 4) & 3, cr);
  2986. return 0;
  2987. }
  2988. static int handle_dr(struct kvm_vcpu *vcpu)
  2989. {
  2990. unsigned long exit_qualification;
  2991. int dr, reg;
  2992. /* Do not handle if the CPL > 0, will trigger GP on re-entry */
  2993. if (!kvm_require_cpl(vcpu, 0))
  2994. return 1;
  2995. dr = vmcs_readl(GUEST_DR7);
  2996. if (dr & DR7_GD) {
  2997. /*
  2998. * As the vm-exit takes precedence over the debug trap, we
  2999. * need to emulate the latter, either for the host or the
  3000. * guest debugging itself.
  3001. */
  3002. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  3003. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  3004. vcpu->run->debug.arch.dr7 = dr;
  3005. vcpu->run->debug.arch.pc =
  3006. vmcs_readl(GUEST_CS_BASE) +
  3007. vmcs_readl(GUEST_RIP);
  3008. vcpu->run->debug.arch.exception = DB_VECTOR;
  3009. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  3010. return 0;
  3011. } else {
  3012. vcpu->arch.dr7 &= ~DR7_GD;
  3013. vcpu->arch.dr6 |= DR6_BD;
  3014. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  3015. kvm_queue_exception(vcpu, DB_VECTOR);
  3016. return 1;
  3017. }
  3018. }
  3019. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3020. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  3021. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  3022. if (exit_qualification & TYPE_MOV_FROM_DR) {
  3023. unsigned long val;
  3024. if (!kvm_get_dr(vcpu, dr, &val))
  3025. kvm_register_write(vcpu, reg, val);
  3026. } else
  3027. kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
  3028. skip_emulated_instruction(vcpu);
  3029. return 1;
  3030. }
  3031. static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
  3032. {
  3033. vmcs_writel(GUEST_DR7, val);
  3034. }
  3035. static int handle_cpuid(struct kvm_vcpu *vcpu)
  3036. {
  3037. kvm_emulate_cpuid(vcpu);
  3038. return 1;
  3039. }
  3040. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  3041. {
  3042. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  3043. u64 data;
  3044. if (vmx_get_msr(vcpu, ecx, &data)) {
  3045. trace_kvm_msr_read_ex(ecx);
  3046. kvm_inject_gp(vcpu, 0);
  3047. return 1;
  3048. }
  3049. trace_kvm_msr_read(ecx, data);
  3050. /* FIXME: handling of bits 32:63 of rax, rdx */
  3051. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  3052. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  3053. skip_emulated_instruction(vcpu);
  3054. return 1;
  3055. }
  3056. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  3057. {
  3058. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  3059. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  3060. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  3061. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  3062. trace_kvm_msr_write_ex(ecx, data);
  3063. kvm_inject_gp(vcpu, 0);
  3064. return 1;
  3065. }
  3066. trace_kvm_msr_write(ecx, data);
  3067. skip_emulated_instruction(vcpu);
  3068. return 1;
  3069. }
  3070. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  3071. {
  3072. kvm_make_request(KVM_REQ_EVENT, vcpu);
  3073. return 1;
  3074. }
  3075. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  3076. {
  3077. u32 cpu_based_vm_exec_control;
  3078. /* clear pending irq */
  3079. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3080. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  3081. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3082. kvm_make_request(KVM_REQ_EVENT, vcpu);
  3083. ++vcpu->stat.irq_window_exits;
  3084. /*
  3085. * If the user space waits to inject interrupts, exit as soon as
  3086. * possible
  3087. */
  3088. if (!irqchip_in_kernel(vcpu->kvm) &&
  3089. vcpu->run->request_interrupt_window &&
  3090. !kvm_cpu_has_interrupt(vcpu)) {
  3091. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  3092. return 0;
  3093. }
  3094. return 1;
  3095. }
  3096. static int handle_halt(struct kvm_vcpu *vcpu)
  3097. {
  3098. skip_emulated_instruction(vcpu);
  3099. return kvm_emulate_halt(vcpu);
  3100. }
  3101. static int handle_vmcall(struct kvm_vcpu *vcpu)
  3102. {
  3103. skip_emulated_instruction(vcpu);
  3104. kvm_emulate_hypercall(vcpu);
  3105. return 1;
  3106. }
  3107. static int handle_vmx_insn(struct kvm_vcpu *vcpu)
  3108. {
  3109. kvm_queue_exception(vcpu, UD_VECTOR);
  3110. return 1;
  3111. }
  3112. static int handle_invd(struct kvm_vcpu *vcpu)
  3113. {
  3114. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  3115. }
  3116. static int handle_invlpg(struct kvm_vcpu *vcpu)
  3117. {
  3118. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3119. kvm_mmu_invlpg(vcpu, exit_qualification);
  3120. skip_emulated_instruction(vcpu);
  3121. return 1;
  3122. }
  3123. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  3124. {
  3125. skip_emulated_instruction(vcpu);
  3126. kvm_emulate_wbinvd(vcpu);
  3127. return 1;
  3128. }
  3129. static int handle_xsetbv(struct kvm_vcpu *vcpu)
  3130. {
  3131. u64 new_bv = kvm_read_edx_eax(vcpu);
  3132. u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3133. if (kvm_set_xcr(vcpu, index, new_bv) == 0)
  3134. skip_emulated_instruction(vcpu);
  3135. return 1;
  3136. }
  3137. static int handle_apic_access(struct kvm_vcpu *vcpu)
  3138. {
  3139. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  3140. }
  3141. static int handle_task_switch(struct kvm_vcpu *vcpu)
  3142. {
  3143. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3144. unsigned long exit_qualification;
  3145. bool has_error_code = false;
  3146. u32 error_code = 0;
  3147. u16 tss_selector;
  3148. int reason, type, idt_v;
  3149. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  3150. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  3151. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3152. reason = (u32)exit_qualification >> 30;
  3153. if (reason == TASK_SWITCH_GATE && idt_v) {
  3154. switch (type) {
  3155. case INTR_TYPE_NMI_INTR:
  3156. vcpu->arch.nmi_injected = false;
  3157. vmx_set_nmi_mask(vcpu, true);
  3158. break;
  3159. case INTR_TYPE_EXT_INTR:
  3160. case INTR_TYPE_SOFT_INTR:
  3161. kvm_clear_interrupt_queue(vcpu);
  3162. break;
  3163. case INTR_TYPE_HARD_EXCEPTION:
  3164. if (vmx->idt_vectoring_info &
  3165. VECTORING_INFO_DELIVER_CODE_MASK) {
  3166. has_error_code = true;
  3167. error_code =
  3168. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  3169. }
  3170. /* fall through */
  3171. case INTR_TYPE_SOFT_EXCEPTION:
  3172. kvm_clear_exception_queue(vcpu);
  3173. break;
  3174. default:
  3175. break;
  3176. }
  3177. }
  3178. tss_selector = exit_qualification;
  3179. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  3180. type != INTR_TYPE_EXT_INTR &&
  3181. type != INTR_TYPE_NMI_INTR))
  3182. skip_emulated_instruction(vcpu);
  3183. if (kvm_task_switch(vcpu, tss_selector, reason,
  3184. has_error_code, error_code) == EMULATE_FAIL) {
  3185. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3186. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  3187. vcpu->run->internal.ndata = 0;
  3188. return 0;
  3189. }
  3190. /* clear all local breakpoint enable flags */
  3191. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  3192. /*
  3193. * TODO: What about debug traps on tss switch?
  3194. * Are we supposed to inject them and update dr6?
  3195. */
  3196. return 1;
  3197. }
  3198. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  3199. {
  3200. unsigned long exit_qualification;
  3201. gpa_t gpa;
  3202. int gla_validity;
  3203. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3204. if (exit_qualification & (1 << 6)) {
  3205. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  3206. return -EINVAL;
  3207. }
  3208. gla_validity = (exit_qualification >> 7) & 0x3;
  3209. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  3210. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  3211. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  3212. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  3213. vmcs_readl(GUEST_LINEAR_ADDRESS));
  3214. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  3215. (long unsigned int)exit_qualification);
  3216. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  3217. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  3218. return 0;
  3219. }
  3220. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  3221. trace_kvm_page_fault(gpa, exit_qualification);
  3222. return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
  3223. }
  3224. static u64 ept_rsvd_mask(u64 spte, int level)
  3225. {
  3226. int i;
  3227. u64 mask = 0;
  3228. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  3229. mask |= (1ULL << i);
  3230. if (level > 2)
  3231. /* bits 7:3 reserved */
  3232. mask |= 0xf8;
  3233. else if (level == 2) {
  3234. if (spte & (1ULL << 7))
  3235. /* 2MB ref, bits 20:12 reserved */
  3236. mask |= 0x1ff000;
  3237. else
  3238. /* bits 6:3 reserved */
  3239. mask |= 0x78;
  3240. }
  3241. return mask;
  3242. }
  3243. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  3244. int level)
  3245. {
  3246. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  3247. /* 010b (write-only) */
  3248. WARN_ON((spte & 0x7) == 0x2);
  3249. /* 110b (write/execute) */
  3250. WARN_ON((spte & 0x7) == 0x6);
  3251. /* 100b (execute-only) and value not supported by logical processor */
  3252. if (!cpu_has_vmx_ept_execute_only())
  3253. WARN_ON((spte & 0x7) == 0x4);
  3254. /* not 000b */
  3255. if ((spte & 0x7)) {
  3256. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  3257. if (rsvd_bits != 0) {
  3258. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  3259. __func__, rsvd_bits);
  3260. WARN_ON(1);
  3261. }
  3262. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  3263. u64 ept_mem_type = (spte & 0x38) >> 3;
  3264. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  3265. ept_mem_type == 7) {
  3266. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  3267. __func__, ept_mem_type);
  3268. WARN_ON(1);
  3269. }
  3270. }
  3271. }
  3272. }
  3273. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  3274. {
  3275. u64 sptes[4];
  3276. int nr_sptes, i;
  3277. gpa_t gpa;
  3278. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  3279. printk(KERN_ERR "EPT: Misconfiguration.\n");
  3280. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  3281. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  3282. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  3283. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  3284. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  3285. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  3286. return 0;
  3287. }
  3288. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  3289. {
  3290. u32 cpu_based_vm_exec_control;
  3291. /* clear pending NMI */
  3292. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3293. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  3294. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3295. ++vcpu->stat.nmi_window_exits;
  3296. kvm_make_request(KVM_REQ_EVENT, vcpu);
  3297. return 1;
  3298. }
  3299. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  3300. {
  3301. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3302. enum emulation_result err = EMULATE_DONE;
  3303. int ret = 1;
  3304. u32 cpu_exec_ctrl;
  3305. bool intr_window_requested;
  3306. cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3307. intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
  3308. while (!guest_state_valid(vcpu)) {
  3309. if (intr_window_requested
  3310. && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
  3311. return handle_interrupt_window(&vmx->vcpu);
  3312. err = emulate_instruction(vcpu, 0);
  3313. if (err == EMULATE_DO_MMIO) {
  3314. ret = 0;
  3315. goto out;
  3316. }
  3317. if (err != EMULATE_DONE)
  3318. return 0;
  3319. if (signal_pending(current))
  3320. goto out;
  3321. if (need_resched())
  3322. schedule();
  3323. }
  3324. vmx->emulation_required = 0;
  3325. out:
  3326. return ret;
  3327. }
  3328. /*
  3329. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  3330. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  3331. */
  3332. static int handle_pause(struct kvm_vcpu *vcpu)
  3333. {
  3334. skip_emulated_instruction(vcpu);
  3335. kvm_vcpu_on_spin(vcpu);
  3336. return 1;
  3337. }
  3338. static int handle_invalid_op(struct kvm_vcpu *vcpu)
  3339. {
  3340. kvm_queue_exception(vcpu, UD_VECTOR);
  3341. return 1;
  3342. }
  3343. /*
  3344. * The exit handlers return 1 if the exit was handled fully and guest execution
  3345. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  3346. * to be done to userspace and return 0.
  3347. */
  3348. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  3349. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  3350. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  3351. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  3352. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  3353. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  3354. [EXIT_REASON_CR_ACCESS] = handle_cr,
  3355. [EXIT_REASON_DR_ACCESS] = handle_dr,
  3356. [EXIT_REASON_CPUID] = handle_cpuid,
  3357. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  3358. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  3359. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  3360. [EXIT_REASON_HLT] = handle_halt,
  3361. [EXIT_REASON_INVD] = handle_invd,
  3362. [EXIT_REASON_INVLPG] = handle_invlpg,
  3363. [EXIT_REASON_VMCALL] = handle_vmcall,
  3364. [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
  3365. [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
  3366. [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
  3367. [EXIT_REASON_VMPTRST] = handle_vmx_insn,
  3368. [EXIT_REASON_VMREAD] = handle_vmx_insn,
  3369. [EXIT_REASON_VMRESUME] = handle_vmx_insn,
  3370. [EXIT_REASON_VMWRITE] = handle_vmx_insn,
  3371. [EXIT_REASON_VMOFF] = handle_vmx_insn,
  3372. [EXIT_REASON_VMON] = handle_vmx_insn,
  3373. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  3374. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  3375. [EXIT_REASON_WBINVD] = handle_wbinvd,
  3376. [EXIT_REASON_XSETBV] = handle_xsetbv,
  3377. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  3378. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  3379. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  3380. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  3381. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  3382. [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
  3383. [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
  3384. };
  3385. static const int kvm_vmx_max_exit_handlers =
  3386. ARRAY_SIZE(kvm_vmx_exit_handlers);
  3387. static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
  3388. {
  3389. *info1 = vmcs_readl(EXIT_QUALIFICATION);
  3390. *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
  3391. }
  3392. /*
  3393. * The guest has exited. See if we can fix it or if we need userspace
  3394. * assistance.
  3395. */
  3396. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  3397. {
  3398. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3399. u32 exit_reason = vmx->exit_reason;
  3400. u32 vectoring_info = vmx->idt_vectoring_info;
  3401. trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
  3402. /* If guest state is invalid, start emulating */
  3403. if (vmx->emulation_required && emulate_invalid_guest_state)
  3404. return handle_invalid_guest_state(vcpu);
  3405. if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
  3406. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  3407. vcpu->run->fail_entry.hardware_entry_failure_reason
  3408. = exit_reason;
  3409. return 0;
  3410. }
  3411. if (unlikely(vmx->fail)) {
  3412. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  3413. vcpu->run->fail_entry.hardware_entry_failure_reason
  3414. = vmcs_read32(VM_INSTRUCTION_ERROR);
  3415. return 0;
  3416. }
  3417. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  3418. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  3419. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  3420. exit_reason != EXIT_REASON_TASK_SWITCH))
  3421. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  3422. "(0x%x) and exit reason is 0x%x\n",
  3423. __func__, vectoring_info, exit_reason);
  3424. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
  3425. if (vmx_interrupt_allowed(vcpu)) {
  3426. vmx->soft_vnmi_blocked = 0;
  3427. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  3428. vcpu->arch.nmi_pending) {
  3429. /*
  3430. * This CPU don't support us in finding the end of an
  3431. * NMI-blocked window if the guest runs with IRQs
  3432. * disabled. So we pull the trigger after 1 s of
  3433. * futile waiting, but inform the user about this.
  3434. */
  3435. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  3436. "state on VCPU %d after 1 s timeout\n",
  3437. __func__, vcpu->vcpu_id);
  3438. vmx->soft_vnmi_blocked = 0;
  3439. }
  3440. }
  3441. if (exit_reason < kvm_vmx_max_exit_handlers
  3442. && kvm_vmx_exit_handlers[exit_reason])
  3443. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  3444. else {
  3445. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  3446. vcpu->run->hw.hardware_exit_reason = exit_reason;
  3447. }
  3448. return 0;
  3449. }
  3450. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  3451. {
  3452. if (irr == -1 || tpr < irr) {
  3453. vmcs_write32(TPR_THRESHOLD, 0);
  3454. return;
  3455. }
  3456. vmcs_write32(TPR_THRESHOLD, irr);
  3457. }
  3458. static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
  3459. {
  3460. u32 exit_intr_info;
  3461. if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
  3462. || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
  3463. return;
  3464. vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  3465. exit_intr_info = vmx->exit_intr_info;
  3466. /* Handle machine checks before interrupts are enabled */
  3467. if (is_machine_check(exit_intr_info))
  3468. kvm_machine_check();
  3469. /* We need to handle NMIs before interrupts are enabled */
  3470. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  3471. (exit_intr_info & INTR_INFO_VALID_MASK)) {
  3472. kvm_before_handle_nmi(&vmx->vcpu);
  3473. asm("int $2");
  3474. kvm_after_handle_nmi(&vmx->vcpu);
  3475. }
  3476. }
  3477. static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
  3478. {
  3479. u32 exit_intr_info;
  3480. bool unblock_nmi;
  3481. u8 vector;
  3482. bool idtv_info_valid;
  3483. idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  3484. if (cpu_has_virtual_nmis()) {
  3485. if (vmx->nmi_known_unmasked)
  3486. return;
  3487. /*
  3488. * Can't use vmx->exit_intr_info since we're not sure what
  3489. * the exit reason is.
  3490. */
  3491. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  3492. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  3493. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  3494. /*
  3495. * SDM 3: 27.7.1.2 (September 2008)
  3496. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  3497. * a guest IRET fault.
  3498. * SDM 3: 23.2.2 (September 2008)
  3499. * Bit 12 is undefined in any of the following cases:
  3500. * If the VM exit sets the valid bit in the IDT-vectoring
  3501. * information field.
  3502. * If the VM exit is due to a double fault.
  3503. */
  3504. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  3505. vector != DF_VECTOR && !idtv_info_valid)
  3506. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3507. GUEST_INTR_STATE_NMI);
  3508. else
  3509. vmx->nmi_known_unmasked =
  3510. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
  3511. & GUEST_INTR_STATE_NMI);
  3512. } else if (unlikely(vmx->soft_vnmi_blocked))
  3513. vmx->vnmi_blocked_time +=
  3514. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  3515. }
  3516. static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
  3517. u32 idt_vectoring_info,
  3518. int instr_len_field,
  3519. int error_code_field)
  3520. {
  3521. u8 vector;
  3522. int type;
  3523. bool idtv_info_valid;
  3524. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  3525. vmx->vcpu.arch.nmi_injected = false;
  3526. kvm_clear_exception_queue(&vmx->vcpu);
  3527. kvm_clear_interrupt_queue(&vmx->vcpu);
  3528. if (!idtv_info_valid)
  3529. return;
  3530. kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
  3531. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  3532. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  3533. switch (type) {
  3534. case INTR_TYPE_NMI_INTR:
  3535. vmx->vcpu.arch.nmi_injected = true;
  3536. /*
  3537. * SDM 3: 27.7.1.2 (September 2008)
  3538. * Clear bit "block by NMI" before VM entry if a NMI
  3539. * delivery faulted.
  3540. */
  3541. vmx_set_nmi_mask(&vmx->vcpu, false);
  3542. break;
  3543. case INTR_TYPE_SOFT_EXCEPTION:
  3544. vmx->vcpu.arch.event_exit_inst_len =
  3545. vmcs_read32(instr_len_field);
  3546. /* fall through */
  3547. case INTR_TYPE_HARD_EXCEPTION:
  3548. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  3549. u32 err = vmcs_read32(error_code_field);
  3550. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  3551. } else
  3552. kvm_queue_exception(&vmx->vcpu, vector);
  3553. break;
  3554. case INTR_TYPE_SOFT_INTR:
  3555. vmx->vcpu.arch.event_exit_inst_len =
  3556. vmcs_read32(instr_len_field);
  3557. /* fall through */
  3558. case INTR_TYPE_EXT_INTR:
  3559. kvm_queue_interrupt(&vmx->vcpu, vector,
  3560. type == INTR_TYPE_SOFT_INTR);
  3561. break;
  3562. default:
  3563. break;
  3564. }
  3565. }
  3566. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  3567. {
  3568. __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
  3569. VM_EXIT_INSTRUCTION_LEN,
  3570. IDT_VECTORING_ERROR_CODE);
  3571. }
  3572. static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
  3573. {
  3574. __vmx_complete_interrupts(to_vmx(vcpu),
  3575. vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
  3576. VM_ENTRY_INSTRUCTION_LEN,
  3577. VM_ENTRY_EXCEPTION_ERROR_CODE);
  3578. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
  3579. }
  3580. #ifdef CONFIG_X86_64
  3581. #define R "r"
  3582. #define Q "q"
  3583. #else
  3584. #define R "e"
  3585. #define Q "l"
  3586. #endif
  3587. static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
  3588. {
  3589. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3590. /* Record the guest's net vcpu time for enforced NMI injections. */
  3591. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  3592. vmx->entry_time = ktime_get();
  3593. /* Don't enter VMX if guest state is invalid, let the exit handler
  3594. start emulation until we arrive back to a valid state */
  3595. if (vmx->emulation_required && emulate_invalid_guest_state)
  3596. return;
  3597. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  3598. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  3599. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  3600. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  3601. /* When single-stepping over STI and MOV SS, we must clear the
  3602. * corresponding interruptibility bits in the guest state. Otherwise
  3603. * vmentry fails as it then expects bit 14 (BS) in pending debug
  3604. * exceptions being set, but that's not correct for the guest debugging
  3605. * case. */
  3606. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  3607. vmx_set_interrupt_shadow(vcpu, 0);
  3608. vmx->__launched = vmx->loaded_vmcs->launched;
  3609. asm(
  3610. /* Store host registers */
  3611. "push %%"R"dx; push %%"R"bp;"
  3612. "push %%"R"cx \n\t" /* placeholder for guest rcx */
  3613. "push %%"R"cx \n\t"
  3614. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  3615. "je 1f \n\t"
  3616. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  3617. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  3618. "1: \n\t"
  3619. /* Reload cr2 if changed */
  3620. "mov %c[cr2](%0), %%"R"ax \n\t"
  3621. "mov %%cr2, %%"R"dx \n\t"
  3622. "cmp %%"R"ax, %%"R"dx \n\t"
  3623. "je 2f \n\t"
  3624. "mov %%"R"ax, %%cr2 \n\t"
  3625. "2: \n\t"
  3626. /* Check if vmlaunch of vmresume is needed */
  3627. "cmpl $0, %c[launched](%0) \n\t"
  3628. /* Load guest registers. Don't clobber flags. */
  3629. "mov %c[rax](%0), %%"R"ax \n\t"
  3630. "mov %c[rbx](%0), %%"R"bx \n\t"
  3631. "mov %c[rdx](%0), %%"R"dx \n\t"
  3632. "mov %c[rsi](%0), %%"R"si \n\t"
  3633. "mov %c[rdi](%0), %%"R"di \n\t"
  3634. "mov %c[rbp](%0), %%"R"bp \n\t"
  3635. #ifdef CONFIG_X86_64
  3636. "mov %c[r8](%0), %%r8 \n\t"
  3637. "mov %c[r9](%0), %%r9 \n\t"
  3638. "mov %c[r10](%0), %%r10 \n\t"
  3639. "mov %c[r11](%0), %%r11 \n\t"
  3640. "mov %c[r12](%0), %%r12 \n\t"
  3641. "mov %c[r13](%0), %%r13 \n\t"
  3642. "mov %c[r14](%0), %%r14 \n\t"
  3643. "mov %c[r15](%0), %%r15 \n\t"
  3644. #endif
  3645. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  3646. /* Enter guest mode */
  3647. "jne .Llaunched \n\t"
  3648. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  3649. "jmp .Lkvm_vmx_return \n\t"
  3650. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  3651. ".Lkvm_vmx_return: "
  3652. /* Save guest registers, load host registers, keep flags */
  3653. "mov %0, %c[wordsize](%%"R"sp) \n\t"
  3654. "pop %0 \n\t"
  3655. "mov %%"R"ax, %c[rax](%0) \n\t"
  3656. "mov %%"R"bx, %c[rbx](%0) \n\t"
  3657. "pop"Q" %c[rcx](%0) \n\t"
  3658. "mov %%"R"dx, %c[rdx](%0) \n\t"
  3659. "mov %%"R"si, %c[rsi](%0) \n\t"
  3660. "mov %%"R"di, %c[rdi](%0) \n\t"
  3661. "mov %%"R"bp, %c[rbp](%0) \n\t"
  3662. #ifdef CONFIG_X86_64
  3663. "mov %%r8, %c[r8](%0) \n\t"
  3664. "mov %%r9, %c[r9](%0) \n\t"
  3665. "mov %%r10, %c[r10](%0) \n\t"
  3666. "mov %%r11, %c[r11](%0) \n\t"
  3667. "mov %%r12, %c[r12](%0) \n\t"
  3668. "mov %%r13, %c[r13](%0) \n\t"
  3669. "mov %%r14, %c[r14](%0) \n\t"
  3670. "mov %%r15, %c[r15](%0) \n\t"
  3671. #endif
  3672. "mov %%cr2, %%"R"ax \n\t"
  3673. "mov %%"R"ax, %c[cr2](%0) \n\t"
  3674. "pop %%"R"bp; pop %%"R"dx \n\t"
  3675. "setbe %c[fail](%0) \n\t"
  3676. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  3677. [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
  3678. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  3679. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  3680. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  3681. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  3682. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  3683. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  3684. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  3685. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  3686. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  3687. #ifdef CONFIG_X86_64
  3688. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  3689. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  3690. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  3691. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  3692. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  3693. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  3694. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  3695. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  3696. #endif
  3697. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
  3698. [wordsize]"i"(sizeof(ulong))
  3699. : "cc", "memory"
  3700. , R"ax", R"bx", R"di", R"si"
  3701. #ifdef CONFIG_X86_64
  3702. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  3703. #endif
  3704. );
  3705. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  3706. | (1 << VCPU_EXREG_RFLAGS)
  3707. | (1 << VCPU_EXREG_CPL)
  3708. | (1 << VCPU_EXREG_PDPTR)
  3709. | (1 << VCPU_EXREG_SEGMENTS)
  3710. | (1 << VCPU_EXREG_CR3));
  3711. vcpu->arch.regs_dirty = 0;
  3712. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  3713. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  3714. vmx->loaded_vmcs->launched = 1;
  3715. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  3716. vmx_complete_atomic_exit(vmx);
  3717. vmx_recover_nmi_blocking(vmx);
  3718. vmx_complete_interrupts(vmx);
  3719. }
  3720. #undef R
  3721. #undef Q
  3722. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  3723. {
  3724. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3725. free_vpid(vmx);
  3726. free_loaded_vmcs(vmx->loaded_vmcs);
  3727. kfree(vmx->guest_msrs);
  3728. kvm_vcpu_uninit(vcpu);
  3729. kmem_cache_free(kvm_vcpu_cache, vmx);
  3730. }
  3731. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  3732. {
  3733. int err;
  3734. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  3735. int cpu;
  3736. if (!vmx)
  3737. return ERR_PTR(-ENOMEM);
  3738. allocate_vpid(vmx);
  3739. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  3740. if (err)
  3741. goto free_vcpu;
  3742. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3743. err = -ENOMEM;
  3744. if (!vmx->guest_msrs) {
  3745. goto uninit_vcpu;
  3746. }
  3747. vmx->loaded_vmcs = &vmx->vmcs01;
  3748. vmx->loaded_vmcs->vmcs = alloc_vmcs();
  3749. if (!vmx->loaded_vmcs->vmcs)
  3750. goto free_msrs;
  3751. if (!vmm_exclusive)
  3752. kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
  3753. loaded_vmcs_init(vmx->loaded_vmcs);
  3754. if (!vmm_exclusive)
  3755. kvm_cpu_vmxoff();
  3756. cpu = get_cpu();
  3757. vmx_vcpu_load(&vmx->vcpu, cpu);
  3758. vmx->vcpu.cpu = cpu;
  3759. err = vmx_vcpu_setup(vmx);
  3760. vmx_vcpu_put(&vmx->vcpu);
  3761. put_cpu();
  3762. if (err)
  3763. goto free_vmcs;
  3764. if (vm_need_virtualize_apic_accesses(kvm))
  3765. err = alloc_apic_access_page(kvm);
  3766. if (err)
  3767. goto free_vmcs;
  3768. if (enable_ept) {
  3769. if (!kvm->arch.ept_identity_map_addr)
  3770. kvm->arch.ept_identity_map_addr =
  3771. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  3772. err = -ENOMEM;
  3773. if (alloc_identity_pagetable(kvm) != 0)
  3774. goto free_vmcs;
  3775. if (!init_rmode_identity_map(kvm))
  3776. goto free_vmcs;
  3777. }
  3778. return &vmx->vcpu;
  3779. free_vmcs:
  3780. free_vmcs(vmx->loaded_vmcs->vmcs);
  3781. free_msrs:
  3782. kfree(vmx->guest_msrs);
  3783. uninit_vcpu:
  3784. kvm_vcpu_uninit(&vmx->vcpu);
  3785. free_vcpu:
  3786. free_vpid(vmx);
  3787. kmem_cache_free(kvm_vcpu_cache, vmx);
  3788. return ERR_PTR(err);
  3789. }
  3790. static void __init vmx_check_processor_compat(void *rtn)
  3791. {
  3792. struct vmcs_config vmcs_conf;
  3793. *(int *)rtn = 0;
  3794. if (setup_vmcs_config(&vmcs_conf) < 0)
  3795. *(int *)rtn = -EIO;
  3796. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  3797. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  3798. smp_processor_id());
  3799. *(int *)rtn = -EIO;
  3800. }
  3801. }
  3802. static int get_ept_level(void)
  3803. {
  3804. return VMX_EPT_DEFAULT_GAW + 1;
  3805. }
  3806. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  3807. {
  3808. u64 ret;
  3809. /* For VT-d and EPT combination
  3810. * 1. MMIO: always map as UC
  3811. * 2. EPT with VT-d:
  3812. * a. VT-d without snooping control feature: can't guarantee the
  3813. * result, try to trust guest.
  3814. * b. VT-d with snooping control feature: snooping control feature of
  3815. * VT-d engine can guarantee the cache correctness. Just set it
  3816. * to WB to keep consistent with host. So the same as item 3.
  3817. * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
  3818. * consistent with host MTRR
  3819. */
  3820. if (is_mmio)
  3821. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  3822. else if (vcpu->kvm->arch.iommu_domain &&
  3823. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  3824. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  3825. VMX_EPT_MT_EPTE_SHIFT;
  3826. else
  3827. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  3828. | VMX_EPT_IPAT_BIT;
  3829. return ret;
  3830. }
  3831. #define _ER(x) { EXIT_REASON_##x, #x }
  3832. static const struct trace_print_flags vmx_exit_reasons_str[] = {
  3833. _ER(EXCEPTION_NMI),
  3834. _ER(EXTERNAL_INTERRUPT),
  3835. _ER(TRIPLE_FAULT),
  3836. _ER(PENDING_INTERRUPT),
  3837. _ER(NMI_WINDOW),
  3838. _ER(TASK_SWITCH),
  3839. _ER(CPUID),
  3840. _ER(HLT),
  3841. _ER(INVLPG),
  3842. _ER(RDPMC),
  3843. _ER(RDTSC),
  3844. _ER(VMCALL),
  3845. _ER(VMCLEAR),
  3846. _ER(VMLAUNCH),
  3847. _ER(VMPTRLD),
  3848. _ER(VMPTRST),
  3849. _ER(VMREAD),
  3850. _ER(VMRESUME),
  3851. _ER(VMWRITE),
  3852. _ER(VMOFF),
  3853. _ER(VMON),
  3854. _ER(CR_ACCESS),
  3855. _ER(DR_ACCESS),
  3856. _ER(IO_INSTRUCTION),
  3857. _ER(MSR_READ),
  3858. _ER(MSR_WRITE),
  3859. _ER(MWAIT_INSTRUCTION),
  3860. _ER(MONITOR_INSTRUCTION),
  3861. _ER(PAUSE_INSTRUCTION),
  3862. _ER(MCE_DURING_VMENTRY),
  3863. _ER(TPR_BELOW_THRESHOLD),
  3864. _ER(APIC_ACCESS),
  3865. _ER(EPT_VIOLATION),
  3866. _ER(EPT_MISCONFIG),
  3867. _ER(WBINVD),
  3868. { -1, NULL }
  3869. };
  3870. #undef _ER
  3871. static int vmx_get_lpage_level(void)
  3872. {
  3873. if (enable_ept && !cpu_has_vmx_ept_1g_page())
  3874. return PT_DIRECTORY_LEVEL;
  3875. else
  3876. /* For shadow and EPT supported 1GB page */
  3877. return PT_PDPE_LEVEL;
  3878. }
  3879. static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
  3880. {
  3881. struct kvm_cpuid_entry2 *best;
  3882. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3883. u32 exec_control;
  3884. vmx->rdtscp_enabled = false;
  3885. if (vmx_rdtscp_supported()) {
  3886. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  3887. if (exec_control & SECONDARY_EXEC_RDTSCP) {
  3888. best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  3889. if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
  3890. vmx->rdtscp_enabled = true;
  3891. else {
  3892. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  3893. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  3894. exec_control);
  3895. }
  3896. }
  3897. }
  3898. }
  3899. static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
  3900. {
  3901. }
  3902. static int vmx_check_intercept(struct kvm_vcpu *vcpu,
  3903. struct x86_instruction_info *info,
  3904. enum x86_intercept_stage stage)
  3905. {
  3906. return X86EMUL_CONTINUE;
  3907. }
  3908. static struct kvm_x86_ops vmx_x86_ops = {
  3909. .cpu_has_kvm_support = cpu_has_kvm_support,
  3910. .disabled_by_bios = vmx_disabled_by_bios,
  3911. .hardware_setup = hardware_setup,
  3912. .hardware_unsetup = hardware_unsetup,
  3913. .check_processor_compatibility = vmx_check_processor_compat,
  3914. .hardware_enable = hardware_enable,
  3915. .hardware_disable = hardware_disable,
  3916. .cpu_has_accelerated_tpr = report_flexpriority,
  3917. .vcpu_create = vmx_create_vcpu,
  3918. .vcpu_free = vmx_free_vcpu,
  3919. .vcpu_reset = vmx_vcpu_reset,
  3920. .prepare_guest_switch = vmx_save_host_state,
  3921. .vcpu_load = vmx_vcpu_load,
  3922. .vcpu_put = vmx_vcpu_put,
  3923. .set_guest_debug = set_guest_debug,
  3924. .get_msr = vmx_get_msr,
  3925. .set_msr = vmx_set_msr,
  3926. .get_segment_base = vmx_get_segment_base,
  3927. .get_segment = vmx_get_segment,
  3928. .set_segment = vmx_set_segment,
  3929. .get_cpl = vmx_get_cpl,
  3930. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  3931. .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
  3932. .decache_cr3 = vmx_decache_cr3,
  3933. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  3934. .set_cr0 = vmx_set_cr0,
  3935. .set_cr3 = vmx_set_cr3,
  3936. .set_cr4 = vmx_set_cr4,
  3937. .set_efer = vmx_set_efer,
  3938. .get_idt = vmx_get_idt,
  3939. .set_idt = vmx_set_idt,
  3940. .get_gdt = vmx_get_gdt,
  3941. .set_gdt = vmx_set_gdt,
  3942. .set_dr7 = vmx_set_dr7,
  3943. .cache_reg = vmx_cache_reg,
  3944. .get_rflags = vmx_get_rflags,
  3945. .set_rflags = vmx_set_rflags,
  3946. .fpu_activate = vmx_fpu_activate,
  3947. .fpu_deactivate = vmx_fpu_deactivate,
  3948. .tlb_flush = vmx_flush_tlb,
  3949. .run = vmx_vcpu_run,
  3950. .handle_exit = vmx_handle_exit,
  3951. .skip_emulated_instruction = skip_emulated_instruction,
  3952. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  3953. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  3954. .patch_hypercall = vmx_patch_hypercall,
  3955. .set_irq = vmx_inject_irq,
  3956. .set_nmi = vmx_inject_nmi,
  3957. .queue_exception = vmx_queue_exception,
  3958. .cancel_injection = vmx_cancel_injection,
  3959. .interrupt_allowed = vmx_interrupt_allowed,
  3960. .nmi_allowed = vmx_nmi_allowed,
  3961. .get_nmi_mask = vmx_get_nmi_mask,
  3962. .set_nmi_mask = vmx_set_nmi_mask,
  3963. .enable_nmi_window = enable_nmi_window,
  3964. .enable_irq_window = enable_irq_window,
  3965. .update_cr8_intercept = update_cr8_intercept,
  3966. .set_tss_addr = vmx_set_tss_addr,
  3967. .get_tdp_level = get_ept_level,
  3968. .get_mt_mask = vmx_get_mt_mask,
  3969. .get_exit_info = vmx_get_exit_info,
  3970. .exit_reasons_str = vmx_exit_reasons_str,
  3971. .get_lpage_level = vmx_get_lpage_level,
  3972. .cpuid_update = vmx_cpuid_update,
  3973. .rdtscp_supported = vmx_rdtscp_supported,
  3974. .set_supported_cpuid = vmx_set_supported_cpuid,
  3975. .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
  3976. .set_tsc_khz = vmx_set_tsc_khz,
  3977. .write_tsc_offset = vmx_write_tsc_offset,
  3978. .adjust_tsc_offset = vmx_adjust_tsc_offset,
  3979. .compute_tsc_offset = vmx_compute_tsc_offset,
  3980. .set_tdp_cr3 = vmx_set_cr3,
  3981. .check_intercept = vmx_check_intercept,
  3982. };
  3983. static int __init vmx_init(void)
  3984. {
  3985. int r, i;
  3986. rdmsrl_safe(MSR_EFER, &host_efer);
  3987. for (i = 0; i < NR_VMX_MSR; ++i)
  3988. kvm_define_shared_msr(i, vmx_msr_index[i]);
  3989. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  3990. if (!vmx_io_bitmap_a)
  3991. return -ENOMEM;
  3992. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  3993. if (!vmx_io_bitmap_b) {
  3994. r = -ENOMEM;
  3995. goto out;
  3996. }
  3997. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  3998. if (!vmx_msr_bitmap_legacy) {
  3999. r = -ENOMEM;
  4000. goto out1;
  4001. }
  4002. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  4003. if (!vmx_msr_bitmap_longmode) {
  4004. r = -ENOMEM;
  4005. goto out2;
  4006. }
  4007. /*
  4008. * Allow direct access to the PC debug port (it is often used for I/O
  4009. * delays, but the vmexits simply slow things down).
  4010. */
  4011. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  4012. clear_bit(0x80, vmx_io_bitmap_a);
  4013. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  4014. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  4015. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  4016. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  4017. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
  4018. __alignof__(struct vcpu_vmx), THIS_MODULE);
  4019. if (r)
  4020. goto out3;
  4021. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  4022. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  4023. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  4024. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  4025. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  4026. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  4027. if (enable_ept) {
  4028. bypass_guest_pf = 0;
  4029. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  4030. VMX_EPT_EXECUTABLE_MASK);
  4031. kvm_enable_tdp();
  4032. } else
  4033. kvm_disable_tdp();
  4034. if (bypass_guest_pf)
  4035. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  4036. return 0;
  4037. out3:
  4038. free_page((unsigned long)vmx_msr_bitmap_longmode);
  4039. out2:
  4040. free_page((unsigned long)vmx_msr_bitmap_legacy);
  4041. out1:
  4042. free_page((unsigned long)vmx_io_bitmap_b);
  4043. out:
  4044. free_page((unsigned long)vmx_io_bitmap_a);
  4045. return r;
  4046. }
  4047. static void __exit vmx_exit(void)
  4048. {
  4049. free_page((unsigned long)vmx_msr_bitmap_legacy);
  4050. free_page((unsigned long)vmx_msr_bitmap_longmode);
  4051. free_page((unsigned long)vmx_io_bitmap_b);
  4052. free_page((unsigned long)vmx_io_bitmap_a);
  4053. kvm_exit();
  4054. }
  4055. module_init(vmx_init)
  4056. module_exit(vmx_exit)