input.c 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621
  1. /*
  2. * The input core
  3. *
  4. * Copyright (c) 1999-2002 Vojtech Pavlik
  5. */
  6. /*
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License version 2 as published by
  9. * the Free Software Foundation.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/input.h>
  13. #include <linux/module.h>
  14. #include <linux/random.h>
  15. #include <linux/major.h>
  16. #include <linux/proc_fs.h>
  17. #include <linux/seq_file.h>
  18. #include <linux/poll.h>
  19. #include <linux/device.h>
  20. #include <linux/mutex.h>
  21. #include <linux/rcupdate.h>
  22. MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
  23. MODULE_DESCRIPTION("Input core");
  24. MODULE_LICENSE("GPL");
  25. #define INPUT_DEVICES 256
  26. static LIST_HEAD(input_dev_list);
  27. static LIST_HEAD(input_handler_list);
  28. /*
  29. * input_mutex protects access to both input_dev_list and input_handler_list.
  30. * This also causes input_[un]register_device and input_[un]register_handler
  31. * be mutually exclusive which simplifies locking in drivers implementing
  32. * input handlers.
  33. */
  34. static DEFINE_MUTEX(input_mutex);
  35. static struct input_handler *input_table[8];
  36. static inline int is_event_supported(unsigned int code,
  37. unsigned long *bm, unsigned int max)
  38. {
  39. return code <= max && test_bit(code, bm);
  40. }
  41. static int input_defuzz_abs_event(int value, int old_val, int fuzz)
  42. {
  43. if (fuzz) {
  44. if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
  45. return old_val;
  46. if (value > old_val - fuzz && value < old_val + fuzz)
  47. return (old_val * 3 + value) / 4;
  48. if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
  49. return (old_val + value) / 2;
  50. }
  51. return value;
  52. }
  53. /*
  54. * Pass event through all open handles. This function is called with
  55. * dev->event_lock held and interrupts disabled. Because of that we
  56. * do not need to use rcu_read_lock() here although we are using RCU
  57. * to access handle list. Note that because of that write-side uses
  58. * synchronize_sched() instead of synchronize_ru().
  59. */
  60. static void input_pass_event(struct input_dev *dev,
  61. unsigned int type, unsigned int code, int value)
  62. {
  63. struct input_handle *handle = rcu_dereference(dev->grab);
  64. if (handle)
  65. handle->handler->event(handle, type, code, value);
  66. else
  67. list_for_each_entry_rcu(handle, &dev->h_list, d_node)
  68. if (handle->open)
  69. handle->handler->event(handle,
  70. type, code, value);
  71. }
  72. /*
  73. * Generate software autorepeat event. Note that we take
  74. * dev->event_lock here to avoid racing with input_event
  75. * which may cause keys get "stuck".
  76. */
  77. static void input_repeat_key(unsigned long data)
  78. {
  79. struct input_dev *dev = (void *) data;
  80. unsigned long flags;
  81. spin_lock_irqsave(&dev->event_lock, flags);
  82. if (test_bit(dev->repeat_key, dev->key) &&
  83. is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
  84. input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
  85. if (dev->sync) {
  86. /*
  87. * Only send SYN_REPORT if we are not in a middle
  88. * of driver parsing a new hardware packet.
  89. * Otherwise assume that the driver will send
  90. * SYN_REPORT once it's done.
  91. */
  92. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  93. }
  94. if (dev->rep[REP_PERIOD])
  95. mod_timer(&dev->timer, jiffies +
  96. msecs_to_jiffies(dev->rep[REP_PERIOD]));
  97. }
  98. spin_unlock_irqrestore(&dev->event_lock, flags);
  99. }
  100. static void input_start_autorepeat(struct input_dev *dev, int code)
  101. {
  102. if (test_bit(EV_REP, dev->evbit) &&
  103. dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
  104. dev->timer.data) {
  105. dev->repeat_key = code;
  106. mod_timer(&dev->timer,
  107. jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
  108. }
  109. }
  110. #define INPUT_IGNORE_EVENT 0
  111. #define INPUT_PASS_TO_HANDLERS 1
  112. #define INPUT_PASS_TO_DEVICE 2
  113. #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
  114. static void input_handle_event(struct input_dev *dev,
  115. unsigned int type, unsigned int code, int value)
  116. {
  117. int disposition = INPUT_IGNORE_EVENT;
  118. switch (type) {
  119. case EV_SYN:
  120. switch (code) {
  121. case SYN_CONFIG:
  122. disposition = INPUT_PASS_TO_ALL;
  123. break;
  124. case SYN_REPORT:
  125. if (!dev->sync) {
  126. dev->sync = 1;
  127. disposition = INPUT_PASS_TO_HANDLERS;
  128. }
  129. break;
  130. }
  131. break;
  132. case EV_KEY:
  133. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  134. !!test_bit(code, dev->key) != value) {
  135. if (value != 2) {
  136. __change_bit(code, dev->key);
  137. if (value)
  138. input_start_autorepeat(dev, code);
  139. }
  140. disposition = INPUT_PASS_TO_HANDLERS;
  141. }
  142. break;
  143. case EV_SW:
  144. if (is_event_supported(code, dev->swbit, SW_MAX) &&
  145. !!test_bit(code, dev->sw) != value) {
  146. __change_bit(code, dev->sw);
  147. disposition = INPUT_PASS_TO_HANDLERS;
  148. }
  149. break;
  150. case EV_ABS:
  151. if (is_event_supported(code, dev->absbit, ABS_MAX)) {
  152. value = input_defuzz_abs_event(value,
  153. dev->abs[code], dev->absfuzz[code]);
  154. if (dev->abs[code] != value) {
  155. dev->abs[code] = value;
  156. disposition = INPUT_PASS_TO_HANDLERS;
  157. }
  158. }
  159. break;
  160. case EV_REL:
  161. if (is_event_supported(code, dev->relbit, REL_MAX) && value)
  162. disposition = INPUT_PASS_TO_HANDLERS;
  163. break;
  164. case EV_MSC:
  165. if (is_event_supported(code, dev->mscbit, MSC_MAX))
  166. disposition = INPUT_PASS_TO_ALL;
  167. break;
  168. case EV_LED:
  169. if (is_event_supported(code, dev->ledbit, LED_MAX) &&
  170. !!test_bit(code, dev->led) != value) {
  171. __change_bit(code, dev->led);
  172. disposition = INPUT_PASS_TO_ALL;
  173. }
  174. break;
  175. case EV_SND:
  176. if (is_event_supported(code, dev->sndbit, SND_MAX)) {
  177. if (!!test_bit(code, dev->snd) != !!value)
  178. __change_bit(code, dev->snd);
  179. disposition = INPUT_PASS_TO_ALL;
  180. }
  181. break;
  182. case EV_REP:
  183. if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
  184. dev->rep[code] = value;
  185. disposition = INPUT_PASS_TO_ALL;
  186. }
  187. break;
  188. case EV_FF:
  189. if (value >= 0)
  190. disposition = INPUT_PASS_TO_ALL;
  191. break;
  192. }
  193. if (type != EV_SYN)
  194. dev->sync = 0;
  195. if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
  196. dev->event(dev, type, code, value);
  197. if (disposition & INPUT_PASS_TO_HANDLERS)
  198. input_pass_event(dev, type, code, value);
  199. }
  200. /**
  201. * input_event() - report new input event
  202. * @dev: device that generated the event
  203. * @type: type of the event
  204. * @code: event code
  205. * @value: value of the event
  206. *
  207. * This function should be used by drivers implementing various input
  208. * devices. See also input_inject_event().
  209. */
  210. void input_event(struct input_dev *dev,
  211. unsigned int type, unsigned int code, int value)
  212. {
  213. unsigned long flags;
  214. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  215. spin_lock_irqsave(&dev->event_lock, flags);
  216. add_input_randomness(type, code, value);
  217. input_handle_event(dev, type, code, value);
  218. spin_unlock_irqrestore(&dev->event_lock, flags);
  219. }
  220. }
  221. EXPORT_SYMBOL(input_event);
  222. /**
  223. * input_inject_event() - send input event from input handler
  224. * @handle: input handle to send event through
  225. * @type: type of the event
  226. * @code: event code
  227. * @value: value of the event
  228. *
  229. * Similar to input_event() but will ignore event if device is
  230. * "grabbed" and handle injecting event is not the one that owns
  231. * the device.
  232. */
  233. void input_inject_event(struct input_handle *handle,
  234. unsigned int type, unsigned int code, int value)
  235. {
  236. struct input_dev *dev = handle->dev;
  237. struct input_handle *grab;
  238. unsigned long flags;
  239. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  240. spin_lock_irqsave(&dev->event_lock, flags);
  241. grab = rcu_dereference(dev->grab);
  242. if (!grab || grab == handle)
  243. input_handle_event(dev, type, code, value);
  244. spin_unlock_irqrestore(&dev->event_lock, flags);
  245. }
  246. }
  247. EXPORT_SYMBOL(input_inject_event);
  248. /**
  249. * input_grab_device - grabs device for exclusive use
  250. * @handle: input handle that wants to own the device
  251. *
  252. * When a device is grabbed by an input handle all events generated by
  253. * the device are delivered only to this handle. Also events injected
  254. * by other input handles are ignored while device is grabbed.
  255. */
  256. int input_grab_device(struct input_handle *handle)
  257. {
  258. struct input_dev *dev = handle->dev;
  259. int retval;
  260. retval = mutex_lock_interruptible(&dev->mutex);
  261. if (retval)
  262. return retval;
  263. if (dev->grab) {
  264. retval = -EBUSY;
  265. goto out;
  266. }
  267. rcu_assign_pointer(dev->grab, handle);
  268. /*
  269. * Not using synchronize_rcu() because read-side is protected
  270. * by a spinlock with interrupts off instead of rcu_read_lock().
  271. */
  272. synchronize_sched();
  273. out:
  274. mutex_unlock(&dev->mutex);
  275. return retval;
  276. }
  277. EXPORT_SYMBOL(input_grab_device);
  278. static void __input_release_device(struct input_handle *handle)
  279. {
  280. struct input_dev *dev = handle->dev;
  281. if (dev->grab == handle) {
  282. rcu_assign_pointer(dev->grab, NULL);
  283. /* Make sure input_pass_event() notices that grab is gone */
  284. synchronize_sched();
  285. list_for_each_entry(handle, &dev->h_list, d_node)
  286. if (handle->open && handle->handler->start)
  287. handle->handler->start(handle);
  288. }
  289. }
  290. /**
  291. * input_release_device - release previously grabbed device
  292. * @handle: input handle that owns the device
  293. *
  294. * Releases previously grabbed device so that other input handles can
  295. * start receiving input events. Upon release all handlers attached
  296. * to the device have their start() method called so they have a change
  297. * to synchronize device state with the rest of the system.
  298. */
  299. void input_release_device(struct input_handle *handle)
  300. {
  301. struct input_dev *dev = handle->dev;
  302. mutex_lock(&dev->mutex);
  303. __input_release_device(handle);
  304. mutex_unlock(&dev->mutex);
  305. }
  306. EXPORT_SYMBOL(input_release_device);
  307. /**
  308. * input_open_device - open input device
  309. * @handle: handle through which device is being accessed
  310. *
  311. * This function should be called by input handlers when they
  312. * want to start receive events from given input device.
  313. */
  314. int input_open_device(struct input_handle *handle)
  315. {
  316. struct input_dev *dev = handle->dev;
  317. int retval;
  318. retval = mutex_lock_interruptible(&dev->mutex);
  319. if (retval)
  320. return retval;
  321. if (dev->going_away) {
  322. retval = -ENODEV;
  323. goto out;
  324. }
  325. handle->open++;
  326. if (!dev->users++ && dev->open)
  327. retval = dev->open(dev);
  328. if (retval) {
  329. dev->users--;
  330. if (!--handle->open) {
  331. /*
  332. * Make sure we are not delivering any more events
  333. * through this handle
  334. */
  335. synchronize_sched();
  336. }
  337. }
  338. out:
  339. mutex_unlock(&dev->mutex);
  340. return retval;
  341. }
  342. EXPORT_SYMBOL(input_open_device);
  343. int input_flush_device(struct input_handle *handle, struct file *file)
  344. {
  345. struct input_dev *dev = handle->dev;
  346. int retval;
  347. retval = mutex_lock_interruptible(&dev->mutex);
  348. if (retval)
  349. return retval;
  350. if (dev->flush)
  351. retval = dev->flush(dev, file);
  352. mutex_unlock(&dev->mutex);
  353. return retval;
  354. }
  355. EXPORT_SYMBOL(input_flush_device);
  356. /**
  357. * input_close_device - close input device
  358. * @handle: handle through which device is being accessed
  359. *
  360. * This function should be called by input handlers when they
  361. * want to stop receive events from given input device.
  362. */
  363. void input_close_device(struct input_handle *handle)
  364. {
  365. struct input_dev *dev = handle->dev;
  366. mutex_lock(&dev->mutex);
  367. __input_release_device(handle);
  368. if (!--dev->users && dev->close)
  369. dev->close(dev);
  370. if (!--handle->open) {
  371. /*
  372. * synchronize_sched() makes sure that input_pass_event()
  373. * completed and that no more input events are delivered
  374. * through this handle
  375. */
  376. synchronize_sched();
  377. }
  378. mutex_unlock(&dev->mutex);
  379. }
  380. EXPORT_SYMBOL(input_close_device);
  381. /*
  382. * Prepare device for unregistering
  383. */
  384. static void input_disconnect_device(struct input_dev *dev)
  385. {
  386. struct input_handle *handle;
  387. int code;
  388. /*
  389. * Mark device as going away. Note that we take dev->mutex here
  390. * not to protect access to dev->going_away but rather to ensure
  391. * that there are no threads in the middle of input_open_device()
  392. */
  393. mutex_lock(&dev->mutex);
  394. dev->going_away = 1;
  395. mutex_unlock(&dev->mutex);
  396. spin_lock_irq(&dev->event_lock);
  397. /*
  398. * Simulate keyup events for all pressed keys so that handlers
  399. * are not left with "stuck" keys. The driver may continue
  400. * generate events even after we done here but they will not
  401. * reach any handlers.
  402. */
  403. if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
  404. for (code = 0; code <= KEY_MAX; code++) {
  405. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  406. test_bit(code, dev->key)) {
  407. input_pass_event(dev, EV_KEY, code, 0);
  408. }
  409. }
  410. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  411. }
  412. list_for_each_entry(handle, &dev->h_list, d_node)
  413. handle->open = 0;
  414. spin_unlock_irq(&dev->event_lock);
  415. }
  416. static int input_fetch_keycode(struct input_dev *dev, int scancode)
  417. {
  418. switch (dev->keycodesize) {
  419. case 1:
  420. return ((u8 *)dev->keycode)[scancode];
  421. case 2:
  422. return ((u16 *)dev->keycode)[scancode];
  423. default:
  424. return ((u32 *)dev->keycode)[scancode];
  425. }
  426. }
  427. static int input_default_getkeycode(struct input_dev *dev,
  428. int scancode, int *keycode)
  429. {
  430. if (!dev->keycodesize)
  431. return -EINVAL;
  432. if (scancode < 0 || scancode >= dev->keycodemax)
  433. return -EINVAL;
  434. *keycode = input_fetch_keycode(dev, scancode);
  435. return 0;
  436. }
  437. static int input_default_setkeycode(struct input_dev *dev,
  438. int scancode, int keycode)
  439. {
  440. int old_keycode;
  441. int i;
  442. if (scancode < 0 || scancode >= dev->keycodemax)
  443. return -EINVAL;
  444. if (keycode < 0 || keycode > KEY_MAX)
  445. return -EINVAL;
  446. if (!dev->keycodesize)
  447. return -EINVAL;
  448. if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
  449. return -EINVAL;
  450. switch (dev->keycodesize) {
  451. case 1: {
  452. u8 *k = (u8 *)dev->keycode;
  453. old_keycode = k[scancode];
  454. k[scancode] = keycode;
  455. break;
  456. }
  457. case 2: {
  458. u16 *k = (u16 *)dev->keycode;
  459. old_keycode = k[scancode];
  460. k[scancode] = keycode;
  461. break;
  462. }
  463. default: {
  464. u32 *k = (u32 *)dev->keycode;
  465. old_keycode = k[scancode];
  466. k[scancode] = keycode;
  467. break;
  468. }
  469. }
  470. clear_bit(old_keycode, dev->keybit);
  471. set_bit(keycode, dev->keybit);
  472. for (i = 0; i < dev->keycodemax; i++) {
  473. if (input_fetch_keycode(dev, i) == old_keycode) {
  474. set_bit(old_keycode, dev->keybit);
  475. break; /* Setting the bit twice is useless, so break */
  476. }
  477. }
  478. return 0;
  479. }
  480. #define MATCH_BIT(bit, max) \
  481. for (i = 0; i < NBITS(max); i++) \
  482. if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
  483. break; \
  484. if (i != NBITS(max)) \
  485. continue;
  486. static const struct input_device_id *input_match_device(const struct input_device_id *id,
  487. struct input_dev *dev)
  488. {
  489. int i;
  490. for (; id->flags || id->driver_info; id++) {
  491. if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
  492. if (id->bustype != dev->id.bustype)
  493. continue;
  494. if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
  495. if (id->vendor != dev->id.vendor)
  496. continue;
  497. if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
  498. if (id->product != dev->id.product)
  499. continue;
  500. if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
  501. if (id->version != dev->id.version)
  502. continue;
  503. MATCH_BIT(evbit, EV_MAX);
  504. MATCH_BIT(keybit, KEY_MAX);
  505. MATCH_BIT(relbit, REL_MAX);
  506. MATCH_BIT(absbit, ABS_MAX);
  507. MATCH_BIT(mscbit, MSC_MAX);
  508. MATCH_BIT(ledbit, LED_MAX);
  509. MATCH_BIT(sndbit, SND_MAX);
  510. MATCH_BIT(ffbit, FF_MAX);
  511. MATCH_BIT(swbit, SW_MAX);
  512. return id;
  513. }
  514. return NULL;
  515. }
  516. static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
  517. {
  518. const struct input_device_id *id;
  519. int error;
  520. if (handler->blacklist && input_match_device(handler->blacklist, dev))
  521. return -ENODEV;
  522. id = input_match_device(handler->id_table, dev);
  523. if (!id)
  524. return -ENODEV;
  525. error = handler->connect(handler, dev, id);
  526. if (error && error != -ENODEV)
  527. printk(KERN_ERR
  528. "input: failed to attach handler %s to device %s, "
  529. "error: %d\n",
  530. handler->name, kobject_name(&dev->dev.kobj), error);
  531. return error;
  532. }
  533. #ifdef CONFIG_PROC_FS
  534. static struct proc_dir_entry *proc_bus_input_dir;
  535. static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
  536. static int input_devices_state;
  537. static inline void input_wakeup_procfs_readers(void)
  538. {
  539. input_devices_state++;
  540. wake_up(&input_devices_poll_wait);
  541. }
  542. static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
  543. {
  544. int state = input_devices_state;
  545. poll_wait(file, &input_devices_poll_wait, wait);
  546. if (state != input_devices_state)
  547. return POLLIN | POLLRDNORM;
  548. return 0;
  549. }
  550. static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
  551. {
  552. if (mutex_lock_interruptible(&input_mutex))
  553. return NULL;
  554. return seq_list_start(&input_dev_list, *pos);
  555. }
  556. static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  557. {
  558. return seq_list_next(v, &input_dev_list, pos);
  559. }
  560. static void input_devices_seq_stop(struct seq_file *seq, void *v)
  561. {
  562. mutex_unlock(&input_mutex);
  563. }
  564. static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
  565. unsigned long *bitmap, int max)
  566. {
  567. int i;
  568. for (i = NBITS(max) - 1; i > 0; i--)
  569. if (bitmap[i])
  570. break;
  571. seq_printf(seq, "B: %s=", name);
  572. for (; i >= 0; i--)
  573. seq_printf(seq, "%lx%s", bitmap[i], i > 0 ? " " : "");
  574. seq_putc(seq, '\n');
  575. }
  576. static int input_devices_seq_show(struct seq_file *seq, void *v)
  577. {
  578. struct input_dev *dev = container_of(v, struct input_dev, node);
  579. const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  580. struct input_handle *handle;
  581. seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
  582. dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
  583. seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
  584. seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
  585. seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
  586. seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
  587. seq_printf(seq, "H: Handlers=");
  588. list_for_each_entry(handle, &dev->h_list, d_node)
  589. seq_printf(seq, "%s ", handle->name);
  590. seq_putc(seq, '\n');
  591. input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
  592. if (test_bit(EV_KEY, dev->evbit))
  593. input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
  594. if (test_bit(EV_REL, dev->evbit))
  595. input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
  596. if (test_bit(EV_ABS, dev->evbit))
  597. input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
  598. if (test_bit(EV_MSC, dev->evbit))
  599. input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
  600. if (test_bit(EV_LED, dev->evbit))
  601. input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
  602. if (test_bit(EV_SND, dev->evbit))
  603. input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
  604. if (test_bit(EV_FF, dev->evbit))
  605. input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
  606. if (test_bit(EV_SW, dev->evbit))
  607. input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
  608. seq_putc(seq, '\n');
  609. kfree(path);
  610. return 0;
  611. }
  612. static struct seq_operations input_devices_seq_ops = {
  613. .start = input_devices_seq_start,
  614. .next = input_devices_seq_next,
  615. .stop = input_devices_seq_stop,
  616. .show = input_devices_seq_show,
  617. };
  618. static int input_proc_devices_open(struct inode *inode, struct file *file)
  619. {
  620. return seq_open(file, &input_devices_seq_ops);
  621. }
  622. static const struct file_operations input_devices_fileops = {
  623. .owner = THIS_MODULE,
  624. .open = input_proc_devices_open,
  625. .poll = input_proc_devices_poll,
  626. .read = seq_read,
  627. .llseek = seq_lseek,
  628. .release = seq_release,
  629. };
  630. static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
  631. {
  632. if (mutex_lock_interruptible(&input_mutex))
  633. return NULL;
  634. seq->private = (void *)(unsigned long)*pos;
  635. return seq_list_start(&input_handler_list, *pos);
  636. }
  637. static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  638. {
  639. seq->private = (void *)(unsigned long)(*pos + 1);
  640. return seq_list_next(v, &input_handler_list, pos);
  641. }
  642. static void input_handlers_seq_stop(struct seq_file *seq, void *v)
  643. {
  644. mutex_unlock(&input_mutex);
  645. }
  646. static int input_handlers_seq_show(struct seq_file *seq, void *v)
  647. {
  648. struct input_handler *handler = container_of(v, struct input_handler, node);
  649. seq_printf(seq, "N: Number=%ld Name=%s",
  650. (unsigned long)seq->private, handler->name);
  651. if (handler->fops)
  652. seq_printf(seq, " Minor=%d", handler->minor);
  653. seq_putc(seq, '\n');
  654. return 0;
  655. }
  656. static struct seq_operations input_handlers_seq_ops = {
  657. .start = input_handlers_seq_start,
  658. .next = input_handlers_seq_next,
  659. .stop = input_handlers_seq_stop,
  660. .show = input_handlers_seq_show,
  661. };
  662. static int input_proc_handlers_open(struct inode *inode, struct file *file)
  663. {
  664. return seq_open(file, &input_handlers_seq_ops);
  665. }
  666. static const struct file_operations input_handlers_fileops = {
  667. .owner = THIS_MODULE,
  668. .open = input_proc_handlers_open,
  669. .read = seq_read,
  670. .llseek = seq_lseek,
  671. .release = seq_release,
  672. };
  673. static int __init input_proc_init(void)
  674. {
  675. struct proc_dir_entry *entry;
  676. proc_bus_input_dir = proc_mkdir("input", proc_bus);
  677. if (!proc_bus_input_dir)
  678. return -ENOMEM;
  679. proc_bus_input_dir->owner = THIS_MODULE;
  680. entry = create_proc_entry("devices", 0, proc_bus_input_dir);
  681. if (!entry)
  682. goto fail1;
  683. entry->owner = THIS_MODULE;
  684. entry->proc_fops = &input_devices_fileops;
  685. entry = create_proc_entry("handlers", 0, proc_bus_input_dir);
  686. if (!entry)
  687. goto fail2;
  688. entry->owner = THIS_MODULE;
  689. entry->proc_fops = &input_handlers_fileops;
  690. return 0;
  691. fail2: remove_proc_entry("devices", proc_bus_input_dir);
  692. fail1: remove_proc_entry("input", proc_bus);
  693. return -ENOMEM;
  694. }
  695. static void input_proc_exit(void)
  696. {
  697. remove_proc_entry("devices", proc_bus_input_dir);
  698. remove_proc_entry("handlers", proc_bus_input_dir);
  699. remove_proc_entry("input", proc_bus);
  700. }
  701. #else /* !CONFIG_PROC_FS */
  702. static inline void input_wakeup_procfs_readers(void) { }
  703. static inline int input_proc_init(void) { return 0; }
  704. static inline void input_proc_exit(void) { }
  705. #endif
  706. #define INPUT_DEV_STRING_ATTR_SHOW(name) \
  707. static ssize_t input_dev_show_##name(struct device *dev, \
  708. struct device_attribute *attr, \
  709. char *buf) \
  710. { \
  711. struct input_dev *input_dev = to_input_dev(dev); \
  712. \
  713. return scnprintf(buf, PAGE_SIZE, "%s\n", \
  714. input_dev->name ? input_dev->name : ""); \
  715. } \
  716. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
  717. INPUT_DEV_STRING_ATTR_SHOW(name);
  718. INPUT_DEV_STRING_ATTR_SHOW(phys);
  719. INPUT_DEV_STRING_ATTR_SHOW(uniq);
  720. static int input_print_modalias_bits(char *buf, int size,
  721. char name, unsigned long *bm,
  722. unsigned int min_bit, unsigned int max_bit)
  723. {
  724. int len = 0, i;
  725. len += snprintf(buf, max(size, 0), "%c", name);
  726. for (i = min_bit; i < max_bit; i++)
  727. if (bm[LONG(i)] & BIT(i))
  728. len += snprintf(buf + len, max(size - len, 0), "%X,", i);
  729. return len;
  730. }
  731. static int input_print_modalias(char *buf, int size, struct input_dev *id,
  732. int add_cr)
  733. {
  734. int len;
  735. len = snprintf(buf, max(size, 0),
  736. "input:b%04Xv%04Xp%04Xe%04X-",
  737. id->id.bustype, id->id.vendor,
  738. id->id.product, id->id.version);
  739. len += input_print_modalias_bits(buf + len, size - len,
  740. 'e', id->evbit, 0, EV_MAX);
  741. len += input_print_modalias_bits(buf + len, size - len,
  742. 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
  743. len += input_print_modalias_bits(buf + len, size - len,
  744. 'r', id->relbit, 0, REL_MAX);
  745. len += input_print_modalias_bits(buf + len, size - len,
  746. 'a', id->absbit, 0, ABS_MAX);
  747. len += input_print_modalias_bits(buf + len, size - len,
  748. 'm', id->mscbit, 0, MSC_MAX);
  749. len += input_print_modalias_bits(buf + len, size - len,
  750. 'l', id->ledbit, 0, LED_MAX);
  751. len += input_print_modalias_bits(buf + len, size - len,
  752. 's', id->sndbit, 0, SND_MAX);
  753. len += input_print_modalias_bits(buf + len, size - len,
  754. 'f', id->ffbit, 0, FF_MAX);
  755. len += input_print_modalias_bits(buf + len, size - len,
  756. 'w', id->swbit, 0, SW_MAX);
  757. if (add_cr)
  758. len += snprintf(buf + len, max(size - len, 0), "\n");
  759. return len;
  760. }
  761. static ssize_t input_dev_show_modalias(struct device *dev,
  762. struct device_attribute *attr,
  763. char *buf)
  764. {
  765. struct input_dev *id = to_input_dev(dev);
  766. ssize_t len;
  767. len = input_print_modalias(buf, PAGE_SIZE, id, 1);
  768. return min_t(int, len, PAGE_SIZE);
  769. }
  770. static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
  771. static struct attribute *input_dev_attrs[] = {
  772. &dev_attr_name.attr,
  773. &dev_attr_phys.attr,
  774. &dev_attr_uniq.attr,
  775. &dev_attr_modalias.attr,
  776. NULL
  777. };
  778. static struct attribute_group input_dev_attr_group = {
  779. .attrs = input_dev_attrs,
  780. };
  781. #define INPUT_DEV_ID_ATTR(name) \
  782. static ssize_t input_dev_show_id_##name(struct device *dev, \
  783. struct device_attribute *attr, \
  784. char *buf) \
  785. { \
  786. struct input_dev *input_dev = to_input_dev(dev); \
  787. return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
  788. } \
  789. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
  790. INPUT_DEV_ID_ATTR(bustype);
  791. INPUT_DEV_ID_ATTR(vendor);
  792. INPUT_DEV_ID_ATTR(product);
  793. INPUT_DEV_ID_ATTR(version);
  794. static struct attribute *input_dev_id_attrs[] = {
  795. &dev_attr_bustype.attr,
  796. &dev_attr_vendor.attr,
  797. &dev_attr_product.attr,
  798. &dev_attr_version.attr,
  799. NULL
  800. };
  801. static struct attribute_group input_dev_id_attr_group = {
  802. .name = "id",
  803. .attrs = input_dev_id_attrs,
  804. };
  805. static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
  806. int max, int add_cr)
  807. {
  808. int i;
  809. int len = 0;
  810. for (i = NBITS(max) - 1; i > 0; i--)
  811. if (bitmap[i])
  812. break;
  813. for (; i >= 0; i--)
  814. len += snprintf(buf + len, max(buf_size - len, 0),
  815. "%lx%s", bitmap[i], i > 0 ? " " : "");
  816. if (add_cr)
  817. len += snprintf(buf + len, max(buf_size - len, 0), "\n");
  818. return len;
  819. }
  820. #define INPUT_DEV_CAP_ATTR(ev, bm) \
  821. static ssize_t input_dev_show_cap_##bm(struct device *dev, \
  822. struct device_attribute *attr, \
  823. char *buf) \
  824. { \
  825. struct input_dev *input_dev = to_input_dev(dev); \
  826. int len = input_print_bitmap(buf, PAGE_SIZE, \
  827. input_dev->bm##bit, ev##_MAX, 1); \
  828. return min_t(int, len, PAGE_SIZE); \
  829. } \
  830. static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
  831. INPUT_DEV_CAP_ATTR(EV, ev);
  832. INPUT_DEV_CAP_ATTR(KEY, key);
  833. INPUT_DEV_CAP_ATTR(REL, rel);
  834. INPUT_DEV_CAP_ATTR(ABS, abs);
  835. INPUT_DEV_CAP_ATTR(MSC, msc);
  836. INPUT_DEV_CAP_ATTR(LED, led);
  837. INPUT_DEV_CAP_ATTR(SND, snd);
  838. INPUT_DEV_CAP_ATTR(FF, ff);
  839. INPUT_DEV_CAP_ATTR(SW, sw);
  840. static struct attribute *input_dev_caps_attrs[] = {
  841. &dev_attr_ev.attr,
  842. &dev_attr_key.attr,
  843. &dev_attr_rel.attr,
  844. &dev_attr_abs.attr,
  845. &dev_attr_msc.attr,
  846. &dev_attr_led.attr,
  847. &dev_attr_snd.attr,
  848. &dev_attr_ff.attr,
  849. &dev_attr_sw.attr,
  850. NULL
  851. };
  852. static struct attribute_group input_dev_caps_attr_group = {
  853. .name = "capabilities",
  854. .attrs = input_dev_caps_attrs,
  855. };
  856. static struct attribute_group *input_dev_attr_groups[] = {
  857. &input_dev_attr_group,
  858. &input_dev_id_attr_group,
  859. &input_dev_caps_attr_group,
  860. NULL
  861. };
  862. static void input_dev_release(struct device *device)
  863. {
  864. struct input_dev *dev = to_input_dev(device);
  865. input_ff_destroy(dev);
  866. kfree(dev);
  867. module_put(THIS_MODULE);
  868. }
  869. /*
  870. * Input uevent interface - loading event handlers based on
  871. * device bitfields.
  872. */
  873. static int input_add_uevent_bm_var(char **envp, int num_envp, int *cur_index,
  874. char *buffer, int buffer_size, int *cur_len,
  875. const char *name, unsigned long *bitmap, int max)
  876. {
  877. if (*cur_index >= num_envp - 1)
  878. return -ENOMEM;
  879. envp[*cur_index] = buffer + *cur_len;
  880. *cur_len += snprintf(buffer + *cur_len, max(buffer_size - *cur_len, 0), name);
  881. if (*cur_len >= buffer_size)
  882. return -ENOMEM;
  883. *cur_len += input_print_bitmap(buffer + *cur_len,
  884. max(buffer_size - *cur_len, 0),
  885. bitmap, max, 0) + 1;
  886. if (*cur_len > buffer_size)
  887. return -ENOMEM;
  888. (*cur_index)++;
  889. return 0;
  890. }
  891. static int input_add_uevent_modalias_var(char **envp, int num_envp, int *cur_index,
  892. char *buffer, int buffer_size, int *cur_len,
  893. struct input_dev *dev)
  894. {
  895. if (*cur_index >= num_envp - 1)
  896. return -ENOMEM;
  897. envp[*cur_index] = buffer + *cur_len;
  898. *cur_len += snprintf(buffer + *cur_len, max(buffer_size - *cur_len, 0),
  899. "MODALIAS=");
  900. if (*cur_len >= buffer_size)
  901. return -ENOMEM;
  902. *cur_len += input_print_modalias(buffer + *cur_len,
  903. max(buffer_size - *cur_len, 0),
  904. dev, 0) + 1;
  905. if (*cur_len > buffer_size)
  906. return -ENOMEM;
  907. (*cur_index)++;
  908. return 0;
  909. }
  910. #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
  911. do { \
  912. int err = add_uevent_var(envp, num_envp, &i, \
  913. buffer, buffer_size, &len, \
  914. fmt, val); \
  915. if (err) \
  916. return err; \
  917. } while (0)
  918. #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
  919. do { \
  920. int err = input_add_uevent_bm_var(envp, num_envp, &i, \
  921. buffer, buffer_size, &len, \
  922. name, bm, max); \
  923. if (err) \
  924. return err; \
  925. } while (0)
  926. #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
  927. do { \
  928. int err = input_add_uevent_modalias_var(envp, \
  929. num_envp, &i, \
  930. buffer, buffer_size, &len, \
  931. dev); \
  932. if (err) \
  933. return err; \
  934. } while (0)
  935. static int input_dev_uevent(struct device *device, char **envp,
  936. int num_envp, char *buffer, int buffer_size)
  937. {
  938. struct input_dev *dev = to_input_dev(device);
  939. int i = 0;
  940. int len = 0;
  941. INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
  942. dev->id.bustype, dev->id.vendor,
  943. dev->id.product, dev->id.version);
  944. if (dev->name)
  945. INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
  946. if (dev->phys)
  947. INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
  948. if (dev->uniq)
  949. INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
  950. INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
  951. if (test_bit(EV_KEY, dev->evbit))
  952. INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
  953. if (test_bit(EV_REL, dev->evbit))
  954. INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
  955. if (test_bit(EV_ABS, dev->evbit))
  956. INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
  957. if (test_bit(EV_MSC, dev->evbit))
  958. INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
  959. if (test_bit(EV_LED, dev->evbit))
  960. INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
  961. if (test_bit(EV_SND, dev->evbit))
  962. INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
  963. if (test_bit(EV_FF, dev->evbit))
  964. INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
  965. if (test_bit(EV_SW, dev->evbit))
  966. INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
  967. INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
  968. envp[i] = NULL;
  969. return 0;
  970. }
  971. static struct device_type input_dev_type = {
  972. .groups = input_dev_attr_groups,
  973. .release = input_dev_release,
  974. .uevent = input_dev_uevent,
  975. };
  976. struct class input_class = {
  977. .name = "input",
  978. };
  979. EXPORT_SYMBOL_GPL(input_class);
  980. /**
  981. * input_allocate_device - allocate memory for new input device
  982. *
  983. * Returns prepared struct input_dev or NULL.
  984. *
  985. * NOTE: Use input_free_device() to free devices that have not been
  986. * registered; input_unregister_device() should be used for already
  987. * registered devices.
  988. */
  989. struct input_dev *input_allocate_device(void)
  990. {
  991. struct input_dev *dev;
  992. dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
  993. if (dev) {
  994. dev->dev.type = &input_dev_type;
  995. dev->dev.class = &input_class;
  996. device_initialize(&dev->dev);
  997. mutex_init(&dev->mutex);
  998. spin_lock_init(&dev->event_lock);
  999. INIT_LIST_HEAD(&dev->h_list);
  1000. INIT_LIST_HEAD(&dev->node);
  1001. __module_get(THIS_MODULE);
  1002. }
  1003. return dev;
  1004. }
  1005. EXPORT_SYMBOL(input_allocate_device);
  1006. /**
  1007. * input_free_device - free memory occupied by input_dev structure
  1008. * @dev: input device to free
  1009. *
  1010. * This function should only be used if input_register_device()
  1011. * was not called yet or if it failed. Once device was registered
  1012. * use input_unregister_device() and memory will be freed once last
  1013. * reference to the device is dropped.
  1014. *
  1015. * Device should be allocated by input_allocate_device().
  1016. *
  1017. * NOTE: If there are references to the input device then memory
  1018. * will not be freed until last reference is dropped.
  1019. */
  1020. void input_free_device(struct input_dev *dev)
  1021. {
  1022. if (dev)
  1023. input_put_device(dev);
  1024. }
  1025. EXPORT_SYMBOL(input_free_device);
  1026. /**
  1027. * input_set_capability - mark device as capable of a certain event
  1028. * @dev: device that is capable of emitting or accepting event
  1029. * @type: type of the event (EV_KEY, EV_REL, etc...)
  1030. * @code: event code
  1031. *
  1032. * In addition to setting up corresponding bit in appropriate capability
  1033. * bitmap the function also adjusts dev->evbit.
  1034. */
  1035. void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
  1036. {
  1037. switch (type) {
  1038. case EV_KEY:
  1039. __set_bit(code, dev->keybit);
  1040. break;
  1041. case EV_REL:
  1042. __set_bit(code, dev->relbit);
  1043. break;
  1044. case EV_ABS:
  1045. __set_bit(code, dev->absbit);
  1046. break;
  1047. case EV_MSC:
  1048. __set_bit(code, dev->mscbit);
  1049. break;
  1050. case EV_SW:
  1051. __set_bit(code, dev->swbit);
  1052. break;
  1053. case EV_LED:
  1054. __set_bit(code, dev->ledbit);
  1055. break;
  1056. case EV_SND:
  1057. __set_bit(code, dev->sndbit);
  1058. break;
  1059. case EV_FF:
  1060. __set_bit(code, dev->ffbit);
  1061. break;
  1062. default:
  1063. printk(KERN_ERR
  1064. "input_set_capability: unknown type %u (code %u)\n",
  1065. type, code);
  1066. dump_stack();
  1067. return;
  1068. }
  1069. __set_bit(type, dev->evbit);
  1070. }
  1071. EXPORT_SYMBOL(input_set_capability);
  1072. /**
  1073. * input_register_device - register device with input core
  1074. * @dev: device to be registered
  1075. *
  1076. * This function registers device with input core. The device must be
  1077. * allocated with input_allocate_device() and all it's capabilities
  1078. * set up before registering.
  1079. * If function fails the device must be freed with input_free_device().
  1080. * Once device has been successfully registered it can be unregistered
  1081. * with input_unregister_device(); input_free_device() should not be
  1082. * called in this case.
  1083. */
  1084. int input_register_device(struct input_dev *dev)
  1085. {
  1086. static atomic_t input_no = ATOMIC_INIT(0);
  1087. struct input_handler *handler;
  1088. const char *path;
  1089. int error;
  1090. __set_bit(EV_SYN, dev->evbit);
  1091. /*
  1092. * If delay and period are pre-set by the driver, then autorepeating
  1093. * is handled by the driver itself and we don't do it in input.c.
  1094. */
  1095. init_timer(&dev->timer);
  1096. if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
  1097. dev->timer.data = (long) dev;
  1098. dev->timer.function = input_repeat_key;
  1099. dev->rep[REP_DELAY] = 250;
  1100. dev->rep[REP_PERIOD] = 33;
  1101. }
  1102. if (!dev->getkeycode)
  1103. dev->getkeycode = input_default_getkeycode;
  1104. if (!dev->setkeycode)
  1105. dev->setkeycode = input_default_setkeycode;
  1106. snprintf(dev->dev.bus_id, sizeof(dev->dev.bus_id),
  1107. "input%ld", (unsigned long) atomic_inc_return(&input_no) - 1);
  1108. if (dev->cdev.dev)
  1109. dev->dev.parent = dev->cdev.dev;
  1110. error = device_add(&dev->dev);
  1111. if (error)
  1112. return error;
  1113. path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  1114. printk(KERN_INFO "input: %s as %s\n",
  1115. dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
  1116. kfree(path);
  1117. error = mutex_lock_interruptible(&input_mutex);
  1118. if (error) {
  1119. device_del(&dev->dev);
  1120. return error;
  1121. }
  1122. list_add_tail(&dev->node, &input_dev_list);
  1123. list_for_each_entry(handler, &input_handler_list, node)
  1124. input_attach_handler(dev, handler);
  1125. input_wakeup_procfs_readers();
  1126. mutex_unlock(&input_mutex);
  1127. return 0;
  1128. }
  1129. EXPORT_SYMBOL(input_register_device);
  1130. /**
  1131. * input_unregister_device - unregister previously registered device
  1132. * @dev: device to be unregistered
  1133. *
  1134. * This function unregisters an input device. Once device is unregistered
  1135. * the caller should not try to access it as it may get freed at any moment.
  1136. */
  1137. void input_unregister_device(struct input_dev *dev)
  1138. {
  1139. struct input_handle *handle, *next;
  1140. input_disconnect_device(dev);
  1141. mutex_lock(&input_mutex);
  1142. list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
  1143. handle->handler->disconnect(handle);
  1144. WARN_ON(!list_empty(&dev->h_list));
  1145. del_timer_sync(&dev->timer);
  1146. list_del_init(&dev->node);
  1147. input_wakeup_procfs_readers();
  1148. mutex_unlock(&input_mutex);
  1149. device_unregister(&dev->dev);
  1150. }
  1151. EXPORT_SYMBOL(input_unregister_device);
  1152. /**
  1153. * input_register_handler - register a new input handler
  1154. * @handler: handler to be registered
  1155. *
  1156. * This function registers a new input handler (interface) for input
  1157. * devices in the system and attaches it to all input devices that
  1158. * are compatible with the handler.
  1159. */
  1160. int input_register_handler(struct input_handler *handler)
  1161. {
  1162. struct input_dev *dev;
  1163. int retval;
  1164. retval = mutex_lock_interruptible(&input_mutex);
  1165. if (retval)
  1166. return retval;
  1167. INIT_LIST_HEAD(&handler->h_list);
  1168. if (handler->fops != NULL) {
  1169. if (input_table[handler->minor >> 5]) {
  1170. retval = -EBUSY;
  1171. goto out;
  1172. }
  1173. input_table[handler->minor >> 5] = handler;
  1174. }
  1175. list_add_tail(&handler->node, &input_handler_list);
  1176. list_for_each_entry(dev, &input_dev_list, node)
  1177. input_attach_handler(dev, handler);
  1178. input_wakeup_procfs_readers();
  1179. out:
  1180. mutex_unlock(&input_mutex);
  1181. return retval;
  1182. }
  1183. EXPORT_SYMBOL(input_register_handler);
  1184. /**
  1185. * input_unregister_handler - unregisters an input handler
  1186. * @handler: handler to be unregistered
  1187. *
  1188. * This function disconnects a handler from its input devices and
  1189. * removes it from lists of known handlers.
  1190. */
  1191. void input_unregister_handler(struct input_handler *handler)
  1192. {
  1193. struct input_handle *handle, *next;
  1194. mutex_lock(&input_mutex);
  1195. list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
  1196. handler->disconnect(handle);
  1197. WARN_ON(!list_empty(&handler->h_list));
  1198. list_del_init(&handler->node);
  1199. if (handler->fops != NULL)
  1200. input_table[handler->minor >> 5] = NULL;
  1201. input_wakeup_procfs_readers();
  1202. mutex_unlock(&input_mutex);
  1203. }
  1204. EXPORT_SYMBOL(input_unregister_handler);
  1205. /**
  1206. * input_register_handle - register a new input handle
  1207. * @handle: handle to register
  1208. *
  1209. * This function puts a new input handle onto device's
  1210. * and handler's lists so that events can flow through
  1211. * it once it is opened using input_open_device().
  1212. *
  1213. * This function is supposed to be called from handler's
  1214. * connect() method.
  1215. */
  1216. int input_register_handle(struct input_handle *handle)
  1217. {
  1218. struct input_handler *handler = handle->handler;
  1219. struct input_dev *dev = handle->dev;
  1220. int error;
  1221. /*
  1222. * We take dev->mutex here to prevent race with
  1223. * input_release_device().
  1224. */
  1225. error = mutex_lock_interruptible(&dev->mutex);
  1226. if (error)
  1227. return error;
  1228. list_add_tail_rcu(&handle->d_node, &dev->h_list);
  1229. mutex_unlock(&dev->mutex);
  1230. /*
  1231. * We don't use synchronize_rcu() here because we rely
  1232. * on dev->event_lock to protect read-side critical
  1233. * section in input_pass_event().
  1234. */
  1235. synchronize_sched();
  1236. /*
  1237. * Since we are supposed to be called from ->connect()
  1238. * which is mutually exclusive with ->disconnect()
  1239. * we can't be racing with input_unregister_handle()
  1240. * and so separate lock is not needed here.
  1241. */
  1242. list_add_tail(&handle->h_node, &handler->h_list);
  1243. if (handler->start)
  1244. handler->start(handle);
  1245. return 0;
  1246. }
  1247. EXPORT_SYMBOL(input_register_handle);
  1248. /**
  1249. * input_unregister_handle - unregister an input handle
  1250. * @handle: handle to unregister
  1251. *
  1252. * This function removes input handle from device's
  1253. * and handler's lists.
  1254. *
  1255. * This function is supposed to be called from handler's
  1256. * disconnect() method.
  1257. */
  1258. void input_unregister_handle(struct input_handle *handle)
  1259. {
  1260. struct input_dev *dev = handle->dev;
  1261. list_del_init(&handle->h_node);
  1262. /*
  1263. * Take dev->mutex to prevent race with input_release_device().
  1264. */
  1265. mutex_lock(&dev->mutex);
  1266. list_del_rcu(&handle->d_node);
  1267. mutex_unlock(&dev->mutex);
  1268. synchronize_sched();
  1269. }
  1270. EXPORT_SYMBOL(input_unregister_handle);
  1271. static int input_open_file(struct inode *inode, struct file *file)
  1272. {
  1273. struct input_handler *handler = input_table[iminor(inode) >> 5];
  1274. const struct file_operations *old_fops, *new_fops = NULL;
  1275. int err;
  1276. /* No load-on-demand here? */
  1277. if (!handler || !(new_fops = fops_get(handler->fops)))
  1278. return -ENODEV;
  1279. /*
  1280. * That's _really_ odd. Usually NULL ->open means "nothing special",
  1281. * not "no device". Oh, well...
  1282. */
  1283. if (!new_fops->open) {
  1284. fops_put(new_fops);
  1285. return -ENODEV;
  1286. }
  1287. old_fops = file->f_op;
  1288. file->f_op = new_fops;
  1289. err = new_fops->open(inode, file);
  1290. if (err) {
  1291. fops_put(file->f_op);
  1292. file->f_op = fops_get(old_fops);
  1293. }
  1294. fops_put(old_fops);
  1295. return err;
  1296. }
  1297. static const struct file_operations input_fops = {
  1298. .owner = THIS_MODULE,
  1299. .open = input_open_file,
  1300. };
  1301. static int __init input_init(void)
  1302. {
  1303. int err;
  1304. err = class_register(&input_class);
  1305. if (err) {
  1306. printk(KERN_ERR "input: unable to register input_dev class\n");
  1307. return err;
  1308. }
  1309. err = input_proc_init();
  1310. if (err)
  1311. goto fail1;
  1312. err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
  1313. if (err) {
  1314. printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
  1315. goto fail2;
  1316. }
  1317. return 0;
  1318. fail2: input_proc_exit();
  1319. fail1: class_unregister(&input_class);
  1320. return err;
  1321. }
  1322. static void __exit input_exit(void)
  1323. {
  1324. input_proc_exit();
  1325. unregister_chrdev(INPUT_MAJOR, "input");
  1326. class_unregister(&input_class);
  1327. }
  1328. subsys_initcall(input_init);
  1329. module_exit(input_exit);