vmx.c 102 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "mmu.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/sched.h>
  25. #include <linux/moduleparam.h>
  26. #include "kvm_cache_regs.h"
  27. #include "x86.h"
  28. #include <asm/io.h>
  29. #include <asm/desc.h>
  30. #include <asm/vmx.h>
  31. #include <asm/virtext.h>
  32. #include <asm/mce.h>
  33. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  34. MODULE_AUTHOR("Qumranet");
  35. MODULE_LICENSE("GPL");
  36. static int __read_mostly bypass_guest_pf = 1;
  37. module_param(bypass_guest_pf, bool, S_IRUGO);
  38. static int __read_mostly enable_vpid = 1;
  39. module_param_named(vpid, enable_vpid, bool, 0444);
  40. static int __read_mostly flexpriority_enabled = 1;
  41. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  42. static int __read_mostly enable_ept = 1;
  43. module_param_named(ept, enable_ept, bool, S_IRUGO);
  44. static int __read_mostly enable_unrestricted_guest = 1;
  45. module_param_named(unrestricted_guest,
  46. enable_unrestricted_guest, bool, S_IRUGO);
  47. static int __read_mostly emulate_invalid_guest_state = 0;
  48. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  49. struct vmcs {
  50. u32 revision_id;
  51. u32 abort;
  52. char data[0];
  53. };
  54. struct vcpu_vmx {
  55. struct kvm_vcpu vcpu;
  56. struct list_head local_vcpus_link;
  57. unsigned long host_rsp;
  58. int launched;
  59. u8 fail;
  60. u32 idt_vectoring_info;
  61. struct kvm_msr_entry *guest_msrs;
  62. struct kvm_msr_entry *host_msrs;
  63. int nmsrs;
  64. int save_nmsrs;
  65. int msr_offset_efer;
  66. #ifdef CONFIG_X86_64
  67. int msr_offset_kernel_gs_base;
  68. #endif
  69. struct vmcs *vmcs;
  70. struct {
  71. int loaded;
  72. u16 fs_sel, gs_sel, ldt_sel;
  73. int gs_ldt_reload_needed;
  74. int fs_reload_needed;
  75. int guest_efer_loaded;
  76. } host_state;
  77. struct {
  78. int vm86_active;
  79. u8 save_iopl;
  80. struct kvm_save_segment {
  81. u16 selector;
  82. unsigned long base;
  83. u32 limit;
  84. u32 ar;
  85. } tr, es, ds, fs, gs;
  86. struct {
  87. bool pending;
  88. u8 vector;
  89. unsigned rip;
  90. } irq;
  91. } rmode;
  92. int vpid;
  93. bool emulation_required;
  94. enum emulation_result invalid_state_emulation_result;
  95. /* Support for vnmi-less CPUs */
  96. int soft_vnmi_blocked;
  97. ktime_t entry_time;
  98. s64 vnmi_blocked_time;
  99. u32 exit_reason;
  100. };
  101. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  102. {
  103. return container_of(vcpu, struct vcpu_vmx, vcpu);
  104. }
  105. static int init_rmode(struct kvm *kvm);
  106. static u64 construct_eptp(unsigned long root_hpa);
  107. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  108. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  109. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  110. static unsigned long *vmx_io_bitmap_a;
  111. static unsigned long *vmx_io_bitmap_b;
  112. static unsigned long *vmx_msr_bitmap_legacy;
  113. static unsigned long *vmx_msr_bitmap_longmode;
  114. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  115. static DEFINE_SPINLOCK(vmx_vpid_lock);
  116. static struct vmcs_config {
  117. int size;
  118. int order;
  119. u32 revision_id;
  120. u32 pin_based_exec_ctrl;
  121. u32 cpu_based_exec_ctrl;
  122. u32 cpu_based_2nd_exec_ctrl;
  123. u32 vmexit_ctrl;
  124. u32 vmentry_ctrl;
  125. } vmcs_config;
  126. static struct vmx_capability {
  127. u32 ept;
  128. u32 vpid;
  129. } vmx_capability;
  130. #define VMX_SEGMENT_FIELD(seg) \
  131. [VCPU_SREG_##seg] = { \
  132. .selector = GUEST_##seg##_SELECTOR, \
  133. .base = GUEST_##seg##_BASE, \
  134. .limit = GUEST_##seg##_LIMIT, \
  135. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  136. }
  137. static struct kvm_vmx_segment_field {
  138. unsigned selector;
  139. unsigned base;
  140. unsigned limit;
  141. unsigned ar_bytes;
  142. } kvm_vmx_segment_fields[] = {
  143. VMX_SEGMENT_FIELD(CS),
  144. VMX_SEGMENT_FIELD(DS),
  145. VMX_SEGMENT_FIELD(ES),
  146. VMX_SEGMENT_FIELD(FS),
  147. VMX_SEGMENT_FIELD(GS),
  148. VMX_SEGMENT_FIELD(SS),
  149. VMX_SEGMENT_FIELD(TR),
  150. VMX_SEGMENT_FIELD(LDTR),
  151. };
  152. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  153. /*
  154. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  155. * away by decrementing the array size.
  156. */
  157. static const u32 vmx_msr_index[] = {
  158. #ifdef CONFIG_X86_64
  159. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  160. #endif
  161. MSR_EFER, MSR_K6_STAR,
  162. };
  163. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  164. static void load_msrs(struct kvm_msr_entry *e, int n)
  165. {
  166. int i;
  167. for (i = 0; i < n; ++i)
  168. wrmsrl(e[i].index, e[i].data);
  169. }
  170. static void save_msrs(struct kvm_msr_entry *e, int n)
  171. {
  172. int i;
  173. for (i = 0; i < n; ++i)
  174. rdmsrl(e[i].index, e[i].data);
  175. }
  176. static inline int is_page_fault(u32 intr_info)
  177. {
  178. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  179. INTR_INFO_VALID_MASK)) ==
  180. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  181. }
  182. static inline int is_no_device(u32 intr_info)
  183. {
  184. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  185. INTR_INFO_VALID_MASK)) ==
  186. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  187. }
  188. static inline int is_invalid_opcode(u32 intr_info)
  189. {
  190. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  191. INTR_INFO_VALID_MASK)) ==
  192. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  193. }
  194. static inline int is_external_interrupt(u32 intr_info)
  195. {
  196. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  197. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  198. }
  199. static inline int is_machine_check(u32 intr_info)
  200. {
  201. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  202. INTR_INFO_VALID_MASK)) ==
  203. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  204. }
  205. static inline int cpu_has_vmx_msr_bitmap(void)
  206. {
  207. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  208. }
  209. static inline int cpu_has_vmx_tpr_shadow(void)
  210. {
  211. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  212. }
  213. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  214. {
  215. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  216. }
  217. static inline int cpu_has_secondary_exec_ctrls(void)
  218. {
  219. return vmcs_config.cpu_based_exec_ctrl &
  220. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  221. }
  222. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  223. {
  224. return vmcs_config.cpu_based_2nd_exec_ctrl &
  225. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  226. }
  227. static inline bool cpu_has_vmx_flexpriority(void)
  228. {
  229. return cpu_has_vmx_tpr_shadow() &&
  230. cpu_has_vmx_virtualize_apic_accesses();
  231. }
  232. static inline int cpu_has_vmx_invept_individual_addr(void)
  233. {
  234. return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
  235. }
  236. static inline int cpu_has_vmx_invept_context(void)
  237. {
  238. return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
  239. }
  240. static inline int cpu_has_vmx_invept_global(void)
  241. {
  242. return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
  243. }
  244. static inline int cpu_has_vmx_ept(void)
  245. {
  246. return vmcs_config.cpu_based_2nd_exec_ctrl &
  247. SECONDARY_EXEC_ENABLE_EPT;
  248. }
  249. static inline int cpu_has_vmx_unrestricted_guest(void)
  250. {
  251. return vmcs_config.cpu_based_2nd_exec_ctrl &
  252. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  253. }
  254. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  255. {
  256. return flexpriority_enabled &&
  257. (cpu_has_vmx_virtualize_apic_accesses()) &&
  258. (irqchip_in_kernel(kvm));
  259. }
  260. static inline int cpu_has_vmx_vpid(void)
  261. {
  262. return vmcs_config.cpu_based_2nd_exec_ctrl &
  263. SECONDARY_EXEC_ENABLE_VPID;
  264. }
  265. static inline int cpu_has_virtual_nmis(void)
  266. {
  267. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  268. }
  269. static inline bool report_flexpriority(void)
  270. {
  271. return flexpriority_enabled;
  272. }
  273. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  274. {
  275. int i;
  276. for (i = 0; i < vmx->nmsrs; ++i)
  277. if (vmx->guest_msrs[i].index == msr)
  278. return i;
  279. return -1;
  280. }
  281. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  282. {
  283. struct {
  284. u64 vpid : 16;
  285. u64 rsvd : 48;
  286. u64 gva;
  287. } operand = { vpid, 0, gva };
  288. asm volatile (__ex(ASM_VMX_INVVPID)
  289. /* CF==1 or ZF==1 --> rc = -1 */
  290. "; ja 1f ; ud2 ; 1:"
  291. : : "a"(&operand), "c"(ext) : "cc", "memory");
  292. }
  293. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  294. {
  295. struct {
  296. u64 eptp, gpa;
  297. } operand = {eptp, gpa};
  298. asm volatile (__ex(ASM_VMX_INVEPT)
  299. /* CF==1 or ZF==1 --> rc = -1 */
  300. "; ja 1f ; ud2 ; 1:\n"
  301. : : "a" (&operand), "c" (ext) : "cc", "memory");
  302. }
  303. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  304. {
  305. int i;
  306. i = __find_msr_index(vmx, msr);
  307. if (i >= 0)
  308. return &vmx->guest_msrs[i];
  309. return NULL;
  310. }
  311. static void vmcs_clear(struct vmcs *vmcs)
  312. {
  313. u64 phys_addr = __pa(vmcs);
  314. u8 error;
  315. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  316. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  317. : "cc", "memory");
  318. if (error)
  319. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  320. vmcs, phys_addr);
  321. }
  322. static void __vcpu_clear(void *arg)
  323. {
  324. struct vcpu_vmx *vmx = arg;
  325. int cpu = raw_smp_processor_id();
  326. if (vmx->vcpu.cpu == cpu)
  327. vmcs_clear(vmx->vmcs);
  328. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  329. per_cpu(current_vmcs, cpu) = NULL;
  330. rdtscll(vmx->vcpu.arch.host_tsc);
  331. list_del(&vmx->local_vcpus_link);
  332. vmx->vcpu.cpu = -1;
  333. vmx->launched = 0;
  334. }
  335. static void vcpu_clear(struct vcpu_vmx *vmx)
  336. {
  337. if (vmx->vcpu.cpu == -1)
  338. return;
  339. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  340. }
  341. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  342. {
  343. if (vmx->vpid == 0)
  344. return;
  345. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  346. }
  347. static inline void ept_sync_global(void)
  348. {
  349. if (cpu_has_vmx_invept_global())
  350. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  351. }
  352. static inline void ept_sync_context(u64 eptp)
  353. {
  354. if (enable_ept) {
  355. if (cpu_has_vmx_invept_context())
  356. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  357. else
  358. ept_sync_global();
  359. }
  360. }
  361. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  362. {
  363. if (enable_ept) {
  364. if (cpu_has_vmx_invept_individual_addr())
  365. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  366. eptp, gpa);
  367. else
  368. ept_sync_context(eptp);
  369. }
  370. }
  371. static unsigned long vmcs_readl(unsigned long field)
  372. {
  373. unsigned long value;
  374. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  375. : "=a"(value) : "d"(field) : "cc");
  376. return value;
  377. }
  378. static u16 vmcs_read16(unsigned long field)
  379. {
  380. return vmcs_readl(field);
  381. }
  382. static u32 vmcs_read32(unsigned long field)
  383. {
  384. return vmcs_readl(field);
  385. }
  386. static u64 vmcs_read64(unsigned long field)
  387. {
  388. #ifdef CONFIG_X86_64
  389. return vmcs_readl(field);
  390. #else
  391. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  392. #endif
  393. }
  394. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  395. {
  396. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  397. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  398. dump_stack();
  399. }
  400. static void vmcs_writel(unsigned long field, unsigned long value)
  401. {
  402. u8 error;
  403. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  404. : "=q"(error) : "a"(value), "d"(field) : "cc");
  405. if (unlikely(error))
  406. vmwrite_error(field, value);
  407. }
  408. static void vmcs_write16(unsigned long field, u16 value)
  409. {
  410. vmcs_writel(field, value);
  411. }
  412. static void vmcs_write32(unsigned long field, u32 value)
  413. {
  414. vmcs_writel(field, value);
  415. }
  416. static void vmcs_write64(unsigned long field, u64 value)
  417. {
  418. vmcs_writel(field, value);
  419. #ifndef CONFIG_X86_64
  420. asm volatile ("");
  421. vmcs_writel(field+1, value >> 32);
  422. #endif
  423. }
  424. static void vmcs_clear_bits(unsigned long field, u32 mask)
  425. {
  426. vmcs_writel(field, vmcs_readl(field) & ~mask);
  427. }
  428. static void vmcs_set_bits(unsigned long field, u32 mask)
  429. {
  430. vmcs_writel(field, vmcs_readl(field) | mask);
  431. }
  432. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  433. {
  434. u32 eb;
  435. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR);
  436. if (!vcpu->fpu_active)
  437. eb |= 1u << NM_VECTOR;
  438. if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
  439. if (vcpu->guest_debug &
  440. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  441. eb |= 1u << DB_VECTOR;
  442. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  443. eb |= 1u << BP_VECTOR;
  444. }
  445. if (to_vmx(vcpu)->rmode.vm86_active)
  446. eb = ~0;
  447. if (enable_ept)
  448. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  449. vmcs_write32(EXCEPTION_BITMAP, eb);
  450. }
  451. static void reload_tss(void)
  452. {
  453. /*
  454. * VT restores TR but not its size. Useless.
  455. */
  456. struct descriptor_table gdt;
  457. struct desc_struct *descs;
  458. kvm_get_gdt(&gdt);
  459. descs = (void *)gdt.base;
  460. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  461. load_TR_desc();
  462. }
  463. static void load_transition_efer(struct vcpu_vmx *vmx)
  464. {
  465. int efer_offset = vmx->msr_offset_efer;
  466. u64 host_efer = vmx->host_msrs[efer_offset].data;
  467. u64 guest_efer = vmx->guest_msrs[efer_offset].data;
  468. u64 ignore_bits;
  469. if (efer_offset < 0)
  470. return;
  471. /*
  472. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  473. * outside long mode
  474. */
  475. ignore_bits = EFER_NX | EFER_SCE;
  476. #ifdef CONFIG_X86_64
  477. ignore_bits |= EFER_LMA | EFER_LME;
  478. /* SCE is meaningful only in long mode on Intel */
  479. if (guest_efer & EFER_LMA)
  480. ignore_bits &= ~(u64)EFER_SCE;
  481. #endif
  482. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  483. return;
  484. vmx->host_state.guest_efer_loaded = 1;
  485. guest_efer &= ~ignore_bits;
  486. guest_efer |= host_efer & ignore_bits;
  487. wrmsrl(MSR_EFER, guest_efer);
  488. vmx->vcpu.stat.efer_reload++;
  489. }
  490. static void reload_host_efer(struct vcpu_vmx *vmx)
  491. {
  492. if (vmx->host_state.guest_efer_loaded) {
  493. vmx->host_state.guest_efer_loaded = 0;
  494. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  495. }
  496. }
  497. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  498. {
  499. struct vcpu_vmx *vmx = to_vmx(vcpu);
  500. if (vmx->host_state.loaded)
  501. return;
  502. vmx->host_state.loaded = 1;
  503. /*
  504. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  505. * allow segment selectors with cpl > 0 or ti == 1.
  506. */
  507. vmx->host_state.ldt_sel = kvm_read_ldt();
  508. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  509. vmx->host_state.fs_sel = kvm_read_fs();
  510. if (!(vmx->host_state.fs_sel & 7)) {
  511. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  512. vmx->host_state.fs_reload_needed = 0;
  513. } else {
  514. vmcs_write16(HOST_FS_SELECTOR, 0);
  515. vmx->host_state.fs_reload_needed = 1;
  516. }
  517. vmx->host_state.gs_sel = kvm_read_gs();
  518. if (!(vmx->host_state.gs_sel & 7))
  519. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  520. else {
  521. vmcs_write16(HOST_GS_SELECTOR, 0);
  522. vmx->host_state.gs_ldt_reload_needed = 1;
  523. }
  524. #ifdef CONFIG_X86_64
  525. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  526. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  527. #else
  528. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  529. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  530. #endif
  531. #ifdef CONFIG_X86_64
  532. if (is_long_mode(&vmx->vcpu))
  533. save_msrs(vmx->host_msrs +
  534. vmx->msr_offset_kernel_gs_base, 1);
  535. #endif
  536. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  537. load_transition_efer(vmx);
  538. }
  539. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  540. {
  541. unsigned long flags;
  542. if (!vmx->host_state.loaded)
  543. return;
  544. ++vmx->vcpu.stat.host_state_reload;
  545. vmx->host_state.loaded = 0;
  546. if (vmx->host_state.fs_reload_needed)
  547. kvm_load_fs(vmx->host_state.fs_sel);
  548. if (vmx->host_state.gs_ldt_reload_needed) {
  549. kvm_load_ldt(vmx->host_state.ldt_sel);
  550. /*
  551. * If we have to reload gs, we must take care to
  552. * preserve our gs base.
  553. */
  554. local_irq_save(flags);
  555. kvm_load_gs(vmx->host_state.gs_sel);
  556. #ifdef CONFIG_X86_64
  557. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  558. #endif
  559. local_irq_restore(flags);
  560. }
  561. reload_tss();
  562. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  563. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  564. reload_host_efer(vmx);
  565. }
  566. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  567. {
  568. preempt_disable();
  569. __vmx_load_host_state(vmx);
  570. preempt_enable();
  571. }
  572. /*
  573. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  574. * vcpu mutex is already taken.
  575. */
  576. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  577. {
  578. struct vcpu_vmx *vmx = to_vmx(vcpu);
  579. u64 phys_addr = __pa(vmx->vmcs);
  580. u64 tsc_this, delta, new_offset;
  581. if (vcpu->cpu != cpu) {
  582. vcpu_clear(vmx);
  583. kvm_migrate_timers(vcpu);
  584. vpid_sync_vcpu_all(vmx);
  585. local_irq_disable();
  586. list_add(&vmx->local_vcpus_link,
  587. &per_cpu(vcpus_on_cpu, cpu));
  588. local_irq_enable();
  589. }
  590. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  591. u8 error;
  592. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  593. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  594. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  595. : "cc");
  596. if (error)
  597. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  598. vmx->vmcs, phys_addr);
  599. }
  600. if (vcpu->cpu != cpu) {
  601. struct descriptor_table dt;
  602. unsigned long sysenter_esp;
  603. vcpu->cpu = cpu;
  604. /*
  605. * Linux uses per-cpu TSS and GDT, so set these when switching
  606. * processors.
  607. */
  608. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  609. kvm_get_gdt(&dt);
  610. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  611. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  612. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  613. /*
  614. * Make sure the time stamp counter is monotonous.
  615. */
  616. rdtscll(tsc_this);
  617. if (tsc_this < vcpu->arch.host_tsc) {
  618. delta = vcpu->arch.host_tsc - tsc_this;
  619. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  620. vmcs_write64(TSC_OFFSET, new_offset);
  621. }
  622. }
  623. }
  624. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  625. {
  626. __vmx_load_host_state(to_vmx(vcpu));
  627. }
  628. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  629. {
  630. if (vcpu->fpu_active)
  631. return;
  632. vcpu->fpu_active = 1;
  633. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  634. if (vcpu->arch.cr0 & X86_CR0_TS)
  635. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  636. update_exception_bitmap(vcpu);
  637. }
  638. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  639. {
  640. if (!vcpu->fpu_active)
  641. return;
  642. vcpu->fpu_active = 0;
  643. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  644. update_exception_bitmap(vcpu);
  645. }
  646. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  647. {
  648. return vmcs_readl(GUEST_RFLAGS);
  649. }
  650. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  651. {
  652. if (to_vmx(vcpu)->rmode.vm86_active)
  653. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  654. vmcs_writel(GUEST_RFLAGS, rflags);
  655. }
  656. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  657. {
  658. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  659. int ret = 0;
  660. if (interruptibility & GUEST_INTR_STATE_STI)
  661. ret |= X86_SHADOW_INT_STI;
  662. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  663. ret |= X86_SHADOW_INT_MOV_SS;
  664. return ret & mask;
  665. }
  666. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  667. {
  668. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  669. u32 interruptibility = interruptibility_old;
  670. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  671. if (mask & X86_SHADOW_INT_MOV_SS)
  672. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  673. if (mask & X86_SHADOW_INT_STI)
  674. interruptibility |= GUEST_INTR_STATE_STI;
  675. if ((interruptibility != interruptibility_old))
  676. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  677. }
  678. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  679. {
  680. unsigned long rip;
  681. rip = kvm_rip_read(vcpu);
  682. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  683. kvm_rip_write(vcpu, rip);
  684. /* skipping an emulated instruction also counts */
  685. vmx_set_interrupt_shadow(vcpu, 0);
  686. }
  687. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  688. bool has_error_code, u32 error_code)
  689. {
  690. struct vcpu_vmx *vmx = to_vmx(vcpu);
  691. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  692. if (has_error_code) {
  693. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  694. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  695. }
  696. if (vmx->rmode.vm86_active) {
  697. vmx->rmode.irq.pending = true;
  698. vmx->rmode.irq.vector = nr;
  699. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  700. if (kvm_exception_is_soft(nr))
  701. vmx->rmode.irq.rip +=
  702. vmx->vcpu.arch.event_exit_inst_len;
  703. intr_info |= INTR_TYPE_SOFT_INTR;
  704. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  705. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  706. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  707. return;
  708. }
  709. if (kvm_exception_is_soft(nr)) {
  710. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  711. vmx->vcpu.arch.event_exit_inst_len);
  712. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  713. } else
  714. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  715. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  716. }
  717. /*
  718. * Swap MSR entry in host/guest MSR entry array.
  719. */
  720. #ifdef CONFIG_X86_64
  721. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  722. {
  723. struct kvm_msr_entry tmp;
  724. tmp = vmx->guest_msrs[to];
  725. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  726. vmx->guest_msrs[from] = tmp;
  727. tmp = vmx->host_msrs[to];
  728. vmx->host_msrs[to] = vmx->host_msrs[from];
  729. vmx->host_msrs[from] = tmp;
  730. }
  731. #endif
  732. /*
  733. * Set up the vmcs to automatically save and restore system
  734. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  735. * mode, as fiddling with msrs is very expensive.
  736. */
  737. static void setup_msrs(struct vcpu_vmx *vmx)
  738. {
  739. int save_nmsrs;
  740. unsigned long *msr_bitmap;
  741. vmx_load_host_state(vmx);
  742. save_nmsrs = 0;
  743. #ifdef CONFIG_X86_64
  744. if (is_long_mode(&vmx->vcpu)) {
  745. int index;
  746. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  747. if (index >= 0)
  748. move_msr_up(vmx, index, save_nmsrs++);
  749. index = __find_msr_index(vmx, MSR_LSTAR);
  750. if (index >= 0)
  751. move_msr_up(vmx, index, save_nmsrs++);
  752. index = __find_msr_index(vmx, MSR_CSTAR);
  753. if (index >= 0)
  754. move_msr_up(vmx, index, save_nmsrs++);
  755. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  756. if (index >= 0)
  757. move_msr_up(vmx, index, save_nmsrs++);
  758. /*
  759. * MSR_K6_STAR is only needed on long mode guests, and only
  760. * if efer.sce is enabled.
  761. */
  762. index = __find_msr_index(vmx, MSR_K6_STAR);
  763. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  764. move_msr_up(vmx, index, save_nmsrs++);
  765. }
  766. #endif
  767. vmx->save_nmsrs = save_nmsrs;
  768. #ifdef CONFIG_X86_64
  769. vmx->msr_offset_kernel_gs_base =
  770. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  771. #endif
  772. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  773. if (cpu_has_vmx_msr_bitmap()) {
  774. if (is_long_mode(&vmx->vcpu))
  775. msr_bitmap = vmx_msr_bitmap_longmode;
  776. else
  777. msr_bitmap = vmx_msr_bitmap_legacy;
  778. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  779. }
  780. }
  781. /*
  782. * reads and returns guest's timestamp counter "register"
  783. * guest_tsc = host_tsc + tsc_offset -- 21.3
  784. */
  785. static u64 guest_read_tsc(void)
  786. {
  787. u64 host_tsc, tsc_offset;
  788. rdtscll(host_tsc);
  789. tsc_offset = vmcs_read64(TSC_OFFSET);
  790. return host_tsc + tsc_offset;
  791. }
  792. /*
  793. * writes 'guest_tsc' into guest's timestamp counter "register"
  794. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  795. */
  796. static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
  797. {
  798. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  799. }
  800. /*
  801. * Reads an msr value (of 'msr_index') into 'pdata'.
  802. * Returns 0 on success, non-0 otherwise.
  803. * Assumes vcpu_load() was already called.
  804. */
  805. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  806. {
  807. u64 data;
  808. struct kvm_msr_entry *msr;
  809. if (!pdata) {
  810. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  811. return -EINVAL;
  812. }
  813. switch (msr_index) {
  814. #ifdef CONFIG_X86_64
  815. case MSR_FS_BASE:
  816. data = vmcs_readl(GUEST_FS_BASE);
  817. break;
  818. case MSR_GS_BASE:
  819. data = vmcs_readl(GUEST_GS_BASE);
  820. break;
  821. case MSR_EFER:
  822. return kvm_get_msr_common(vcpu, msr_index, pdata);
  823. #endif
  824. case MSR_IA32_TSC:
  825. data = guest_read_tsc();
  826. break;
  827. case MSR_IA32_SYSENTER_CS:
  828. data = vmcs_read32(GUEST_SYSENTER_CS);
  829. break;
  830. case MSR_IA32_SYSENTER_EIP:
  831. data = vmcs_readl(GUEST_SYSENTER_EIP);
  832. break;
  833. case MSR_IA32_SYSENTER_ESP:
  834. data = vmcs_readl(GUEST_SYSENTER_ESP);
  835. break;
  836. default:
  837. vmx_load_host_state(to_vmx(vcpu));
  838. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  839. if (msr) {
  840. data = msr->data;
  841. break;
  842. }
  843. return kvm_get_msr_common(vcpu, msr_index, pdata);
  844. }
  845. *pdata = data;
  846. return 0;
  847. }
  848. /*
  849. * Writes msr value into into the appropriate "register".
  850. * Returns 0 on success, non-0 otherwise.
  851. * Assumes vcpu_load() was already called.
  852. */
  853. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  854. {
  855. struct vcpu_vmx *vmx = to_vmx(vcpu);
  856. struct kvm_msr_entry *msr;
  857. u64 host_tsc;
  858. int ret = 0;
  859. switch (msr_index) {
  860. case MSR_EFER:
  861. vmx_load_host_state(vmx);
  862. ret = kvm_set_msr_common(vcpu, msr_index, data);
  863. break;
  864. #ifdef CONFIG_X86_64
  865. case MSR_FS_BASE:
  866. vmcs_writel(GUEST_FS_BASE, data);
  867. break;
  868. case MSR_GS_BASE:
  869. vmcs_writel(GUEST_GS_BASE, data);
  870. break;
  871. #endif
  872. case MSR_IA32_SYSENTER_CS:
  873. vmcs_write32(GUEST_SYSENTER_CS, data);
  874. break;
  875. case MSR_IA32_SYSENTER_EIP:
  876. vmcs_writel(GUEST_SYSENTER_EIP, data);
  877. break;
  878. case MSR_IA32_SYSENTER_ESP:
  879. vmcs_writel(GUEST_SYSENTER_ESP, data);
  880. break;
  881. case MSR_IA32_TSC:
  882. rdtscll(host_tsc);
  883. guest_write_tsc(data, host_tsc);
  884. break;
  885. case MSR_P6_PERFCTR0:
  886. case MSR_P6_PERFCTR1:
  887. case MSR_P6_EVNTSEL0:
  888. case MSR_P6_EVNTSEL1:
  889. /*
  890. * Just discard all writes to the performance counters; this
  891. * should keep both older linux and windows 64-bit guests
  892. * happy
  893. */
  894. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index, data);
  895. break;
  896. case MSR_IA32_CR_PAT:
  897. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  898. vmcs_write64(GUEST_IA32_PAT, data);
  899. vcpu->arch.pat = data;
  900. break;
  901. }
  902. /* Otherwise falls through to kvm_set_msr_common */
  903. default:
  904. vmx_load_host_state(vmx);
  905. msr = find_msr_entry(vmx, msr_index);
  906. if (msr) {
  907. msr->data = data;
  908. break;
  909. }
  910. ret = kvm_set_msr_common(vcpu, msr_index, data);
  911. }
  912. return ret;
  913. }
  914. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  915. {
  916. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  917. switch (reg) {
  918. case VCPU_REGS_RSP:
  919. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  920. break;
  921. case VCPU_REGS_RIP:
  922. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  923. break;
  924. case VCPU_EXREG_PDPTR:
  925. if (enable_ept)
  926. ept_save_pdptrs(vcpu);
  927. break;
  928. default:
  929. break;
  930. }
  931. }
  932. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  933. {
  934. int old_debug = vcpu->guest_debug;
  935. unsigned long flags;
  936. vcpu->guest_debug = dbg->control;
  937. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  938. vcpu->guest_debug = 0;
  939. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  940. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  941. else
  942. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  943. flags = vmcs_readl(GUEST_RFLAGS);
  944. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  945. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  946. else if (old_debug & KVM_GUESTDBG_SINGLESTEP)
  947. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  948. vmcs_writel(GUEST_RFLAGS, flags);
  949. update_exception_bitmap(vcpu);
  950. return 0;
  951. }
  952. static __init int cpu_has_kvm_support(void)
  953. {
  954. return cpu_has_vmx();
  955. }
  956. static __init int vmx_disabled_by_bios(void)
  957. {
  958. u64 msr;
  959. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  960. return (msr & (FEATURE_CONTROL_LOCKED |
  961. FEATURE_CONTROL_VMXON_ENABLED))
  962. == FEATURE_CONTROL_LOCKED;
  963. /* locked but not enabled */
  964. }
  965. static void hardware_enable(void *garbage)
  966. {
  967. int cpu = raw_smp_processor_id();
  968. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  969. u64 old;
  970. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  971. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  972. if ((old & (FEATURE_CONTROL_LOCKED |
  973. FEATURE_CONTROL_VMXON_ENABLED))
  974. != (FEATURE_CONTROL_LOCKED |
  975. FEATURE_CONTROL_VMXON_ENABLED))
  976. /* enable and lock */
  977. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  978. FEATURE_CONTROL_LOCKED |
  979. FEATURE_CONTROL_VMXON_ENABLED);
  980. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  981. asm volatile (ASM_VMX_VMXON_RAX
  982. : : "a"(&phys_addr), "m"(phys_addr)
  983. : "memory", "cc");
  984. }
  985. static void vmclear_local_vcpus(void)
  986. {
  987. int cpu = raw_smp_processor_id();
  988. struct vcpu_vmx *vmx, *n;
  989. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  990. local_vcpus_link)
  991. __vcpu_clear(vmx);
  992. }
  993. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  994. * tricks.
  995. */
  996. static void kvm_cpu_vmxoff(void)
  997. {
  998. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  999. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  1000. }
  1001. static void hardware_disable(void *garbage)
  1002. {
  1003. vmclear_local_vcpus();
  1004. kvm_cpu_vmxoff();
  1005. }
  1006. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  1007. u32 msr, u32 *result)
  1008. {
  1009. u32 vmx_msr_low, vmx_msr_high;
  1010. u32 ctl = ctl_min | ctl_opt;
  1011. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  1012. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  1013. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  1014. /* Ensure minimum (required) set of control bits are supported. */
  1015. if (ctl_min & ~ctl)
  1016. return -EIO;
  1017. *result = ctl;
  1018. return 0;
  1019. }
  1020. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  1021. {
  1022. u32 vmx_msr_low, vmx_msr_high;
  1023. u32 min, opt, min2, opt2;
  1024. u32 _pin_based_exec_control = 0;
  1025. u32 _cpu_based_exec_control = 0;
  1026. u32 _cpu_based_2nd_exec_control = 0;
  1027. u32 _vmexit_control = 0;
  1028. u32 _vmentry_control = 0;
  1029. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  1030. opt = PIN_BASED_VIRTUAL_NMIS;
  1031. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  1032. &_pin_based_exec_control) < 0)
  1033. return -EIO;
  1034. min = CPU_BASED_HLT_EXITING |
  1035. #ifdef CONFIG_X86_64
  1036. CPU_BASED_CR8_LOAD_EXITING |
  1037. CPU_BASED_CR8_STORE_EXITING |
  1038. #endif
  1039. CPU_BASED_CR3_LOAD_EXITING |
  1040. CPU_BASED_CR3_STORE_EXITING |
  1041. CPU_BASED_USE_IO_BITMAPS |
  1042. CPU_BASED_MOV_DR_EXITING |
  1043. CPU_BASED_USE_TSC_OFFSETING |
  1044. CPU_BASED_INVLPG_EXITING;
  1045. opt = CPU_BASED_TPR_SHADOW |
  1046. CPU_BASED_USE_MSR_BITMAPS |
  1047. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1048. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1049. &_cpu_based_exec_control) < 0)
  1050. return -EIO;
  1051. #ifdef CONFIG_X86_64
  1052. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  1053. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  1054. ~CPU_BASED_CR8_STORE_EXITING;
  1055. #endif
  1056. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  1057. min2 = 0;
  1058. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1059. SECONDARY_EXEC_WBINVD_EXITING |
  1060. SECONDARY_EXEC_ENABLE_VPID |
  1061. SECONDARY_EXEC_ENABLE_EPT |
  1062. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  1063. if (adjust_vmx_controls(min2, opt2,
  1064. MSR_IA32_VMX_PROCBASED_CTLS2,
  1065. &_cpu_based_2nd_exec_control) < 0)
  1066. return -EIO;
  1067. }
  1068. #ifndef CONFIG_X86_64
  1069. if (!(_cpu_based_2nd_exec_control &
  1070. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1071. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1072. #endif
  1073. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1074. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  1075. enabled */
  1076. min &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1077. CPU_BASED_CR3_STORE_EXITING |
  1078. CPU_BASED_INVLPG_EXITING);
  1079. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1080. &_cpu_based_exec_control) < 0)
  1081. return -EIO;
  1082. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1083. vmx_capability.ept, vmx_capability.vpid);
  1084. }
  1085. min = 0;
  1086. #ifdef CONFIG_X86_64
  1087. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1088. #endif
  1089. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  1090. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1091. &_vmexit_control) < 0)
  1092. return -EIO;
  1093. min = 0;
  1094. opt = VM_ENTRY_LOAD_IA32_PAT;
  1095. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1096. &_vmentry_control) < 0)
  1097. return -EIO;
  1098. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1099. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1100. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1101. return -EIO;
  1102. #ifdef CONFIG_X86_64
  1103. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1104. if (vmx_msr_high & (1u<<16))
  1105. return -EIO;
  1106. #endif
  1107. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1108. if (((vmx_msr_high >> 18) & 15) != 6)
  1109. return -EIO;
  1110. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1111. vmcs_conf->order = get_order(vmcs_config.size);
  1112. vmcs_conf->revision_id = vmx_msr_low;
  1113. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1114. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1115. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1116. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1117. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1118. return 0;
  1119. }
  1120. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1121. {
  1122. int node = cpu_to_node(cpu);
  1123. struct page *pages;
  1124. struct vmcs *vmcs;
  1125. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  1126. if (!pages)
  1127. return NULL;
  1128. vmcs = page_address(pages);
  1129. memset(vmcs, 0, vmcs_config.size);
  1130. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1131. return vmcs;
  1132. }
  1133. static struct vmcs *alloc_vmcs(void)
  1134. {
  1135. return alloc_vmcs_cpu(raw_smp_processor_id());
  1136. }
  1137. static void free_vmcs(struct vmcs *vmcs)
  1138. {
  1139. free_pages((unsigned long)vmcs, vmcs_config.order);
  1140. }
  1141. static void free_kvm_area(void)
  1142. {
  1143. int cpu;
  1144. for_each_online_cpu(cpu)
  1145. free_vmcs(per_cpu(vmxarea, cpu));
  1146. }
  1147. static __init int alloc_kvm_area(void)
  1148. {
  1149. int cpu;
  1150. for_each_online_cpu(cpu) {
  1151. struct vmcs *vmcs;
  1152. vmcs = alloc_vmcs_cpu(cpu);
  1153. if (!vmcs) {
  1154. free_kvm_area();
  1155. return -ENOMEM;
  1156. }
  1157. per_cpu(vmxarea, cpu) = vmcs;
  1158. }
  1159. return 0;
  1160. }
  1161. static __init int hardware_setup(void)
  1162. {
  1163. if (setup_vmcs_config(&vmcs_config) < 0)
  1164. return -EIO;
  1165. if (boot_cpu_has(X86_FEATURE_NX))
  1166. kvm_enable_efer_bits(EFER_NX);
  1167. if (!cpu_has_vmx_vpid())
  1168. enable_vpid = 0;
  1169. if (!cpu_has_vmx_ept()) {
  1170. enable_ept = 0;
  1171. enable_unrestricted_guest = 0;
  1172. }
  1173. if (!cpu_has_vmx_unrestricted_guest())
  1174. enable_unrestricted_guest = 0;
  1175. if (!cpu_has_vmx_flexpriority())
  1176. flexpriority_enabled = 0;
  1177. if (!cpu_has_vmx_tpr_shadow())
  1178. kvm_x86_ops->update_cr8_intercept = NULL;
  1179. return alloc_kvm_area();
  1180. }
  1181. static __exit void hardware_unsetup(void)
  1182. {
  1183. free_kvm_area();
  1184. }
  1185. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1186. {
  1187. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1188. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1189. vmcs_write16(sf->selector, save->selector);
  1190. vmcs_writel(sf->base, save->base);
  1191. vmcs_write32(sf->limit, save->limit);
  1192. vmcs_write32(sf->ar_bytes, save->ar);
  1193. } else {
  1194. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1195. << AR_DPL_SHIFT;
  1196. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1197. }
  1198. }
  1199. static void enter_pmode(struct kvm_vcpu *vcpu)
  1200. {
  1201. unsigned long flags;
  1202. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1203. vmx->emulation_required = 1;
  1204. vmx->rmode.vm86_active = 0;
  1205. vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
  1206. vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
  1207. vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
  1208. flags = vmcs_readl(GUEST_RFLAGS);
  1209. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1210. flags |= (vmx->rmode.save_iopl << IOPL_SHIFT);
  1211. vmcs_writel(GUEST_RFLAGS, flags);
  1212. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1213. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1214. update_exception_bitmap(vcpu);
  1215. if (emulate_invalid_guest_state)
  1216. return;
  1217. fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
  1218. fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
  1219. fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
  1220. fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
  1221. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1222. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1223. vmcs_write16(GUEST_CS_SELECTOR,
  1224. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1225. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1226. }
  1227. static gva_t rmode_tss_base(struct kvm *kvm)
  1228. {
  1229. if (!kvm->arch.tss_addr) {
  1230. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  1231. kvm->memslots[0].npages - 3;
  1232. return base_gfn << PAGE_SHIFT;
  1233. }
  1234. return kvm->arch.tss_addr;
  1235. }
  1236. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1237. {
  1238. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1239. save->selector = vmcs_read16(sf->selector);
  1240. save->base = vmcs_readl(sf->base);
  1241. save->limit = vmcs_read32(sf->limit);
  1242. save->ar = vmcs_read32(sf->ar_bytes);
  1243. vmcs_write16(sf->selector, save->base >> 4);
  1244. vmcs_write32(sf->base, save->base & 0xfffff);
  1245. vmcs_write32(sf->limit, 0xffff);
  1246. vmcs_write32(sf->ar_bytes, 0xf3);
  1247. }
  1248. static void enter_rmode(struct kvm_vcpu *vcpu)
  1249. {
  1250. unsigned long flags;
  1251. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1252. if (enable_unrestricted_guest)
  1253. return;
  1254. vmx->emulation_required = 1;
  1255. vmx->rmode.vm86_active = 1;
  1256. vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1257. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1258. vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1259. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1260. vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1261. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1262. flags = vmcs_readl(GUEST_RFLAGS);
  1263. vmx->rmode.save_iopl
  1264. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1265. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1266. vmcs_writel(GUEST_RFLAGS, flags);
  1267. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1268. update_exception_bitmap(vcpu);
  1269. if (emulate_invalid_guest_state)
  1270. goto continue_rmode;
  1271. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1272. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1273. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1274. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1275. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1276. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1277. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1278. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1279. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
  1280. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
  1281. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
  1282. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
  1283. continue_rmode:
  1284. kvm_mmu_reset_context(vcpu);
  1285. init_rmode(vcpu->kvm);
  1286. }
  1287. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1288. {
  1289. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1290. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1291. vcpu->arch.shadow_efer = efer;
  1292. if (!msr)
  1293. return;
  1294. if (efer & EFER_LMA) {
  1295. vmcs_write32(VM_ENTRY_CONTROLS,
  1296. vmcs_read32(VM_ENTRY_CONTROLS) |
  1297. VM_ENTRY_IA32E_MODE);
  1298. msr->data = efer;
  1299. } else {
  1300. vmcs_write32(VM_ENTRY_CONTROLS,
  1301. vmcs_read32(VM_ENTRY_CONTROLS) &
  1302. ~VM_ENTRY_IA32E_MODE);
  1303. msr->data = efer & ~EFER_LME;
  1304. }
  1305. setup_msrs(vmx);
  1306. }
  1307. #ifdef CONFIG_X86_64
  1308. static void enter_lmode(struct kvm_vcpu *vcpu)
  1309. {
  1310. u32 guest_tr_ar;
  1311. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1312. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1313. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1314. __func__);
  1315. vmcs_write32(GUEST_TR_AR_BYTES,
  1316. (guest_tr_ar & ~AR_TYPE_MASK)
  1317. | AR_TYPE_BUSY_64_TSS);
  1318. }
  1319. vcpu->arch.shadow_efer |= EFER_LMA;
  1320. vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
  1321. }
  1322. static void exit_lmode(struct kvm_vcpu *vcpu)
  1323. {
  1324. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1325. vmcs_write32(VM_ENTRY_CONTROLS,
  1326. vmcs_read32(VM_ENTRY_CONTROLS)
  1327. & ~VM_ENTRY_IA32E_MODE);
  1328. }
  1329. #endif
  1330. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1331. {
  1332. vpid_sync_vcpu_all(to_vmx(vcpu));
  1333. if (enable_ept)
  1334. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1335. }
  1336. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1337. {
  1338. vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
  1339. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1340. }
  1341. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1342. {
  1343. if (!test_bit(VCPU_EXREG_PDPTR,
  1344. (unsigned long *)&vcpu->arch.regs_dirty))
  1345. return;
  1346. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1347. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1348. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1349. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1350. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1351. }
  1352. }
  1353. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  1354. {
  1355. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1356. vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  1357. vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  1358. vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  1359. vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  1360. }
  1361. __set_bit(VCPU_EXREG_PDPTR,
  1362. (unsigned long *)&vcpu->arch.regs_avail);
  1363. __set_bit(VCPU_EXREG_PDPTR,
  1364. (unsigned long *)&vcpu->arch.regs_dirty);
  1365. }
  1366. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1367. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1368. unsigned long cr0,
  1369. struct kvm_vcpu *vcpu)
  1370. {
  1371. if (!(cr0 & X86_CR0_PG)) {
  1372. /* From paging/starting to nonpaging */
  1373. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1374. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1375. (CPU_BASED_CR3_LOAD_EXITING |
  1376. CPU_BASED_CR3_STORE_EXITING));
  1377. vcpu->arch.cr0 = cr0;
  1378. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1379. *hw_cr0 &= ~X86_CR0_WP;
  1380. } else if (!is_paging(vcpu)) {
  1381. /* From nonpaging to paging */
  1382. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1383. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1384. ~(CPU_BASED_CR3_LOAD_EXITING |
  1385. CPU_BASED_CR3_STORE_EXITING));
  1386. vcpu->arch.cr0 = cr0;
  1387. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1388. if (!(vcpu->arch.cr0 & X86_CR0_WP))
  1389. *hw_cr0 &= ~X86_CR0_WP;
  1390. }
  1391. }
  1392. static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
  1393. struct kvm_vcpu *vcpu)
  1394. {
  1395. if (!is_paging(vcpu)) {
  1396. *hw_cr4 &= ~X86_CR4_PAE;
  1397. *hw_cr4 |= X86_CR4_PSE;
  1398. } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
  1399. *hw_cr4 &= ~X86_CR4_PAE;
  1400. }
  1401. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1402. {
  1403. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1404. unsigned long hw_cr0;
  1405. if (enable_unrestricted_guest)
  1406. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
  1407. | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  1408. else
  1409. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
  1410. vmx_fpu_deactivate(vcpu);
  1411. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  1412. enter_pmode(vcpu);
  1413. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  1414. enter_rmode(vcpu);
  1415. #ifdef CONFIG_X86_64
  1416. if (vcpu->arch.shadow_efer & EFER_LME) {
  1417. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1418. enter_lmode(vcpu);
  1419. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1420. exit_lmode(vcpu);
  1421. }
  1422. #endif
  1423. if (enable_ept)
  1424. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1425. vmcs_writel(CR0_READ_SHADOW, cr0);
  1426. vmcs_writel(GUEST_CR0, hw_cr0);
  1427. vcpu->arch.cr0 = cr0;
  1428. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1429. vmx_fpu_activate(vcpu);
  1430. }
  1431. static u64 construct_eptp(unsigned long root_hpa)
  1432. {
  1433. u64 eptp;
  1434. /* TODO write the value reading from MSR */
  1435. eptp = VMX_EPT_DEFAULT_MT |
  1436. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1437. eptp |= (root_hpa & PAGE_MASK);
  1438. return eptp;
  1439. }
  1440. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1441. {
  1442. unsigned long guest_cr3;
  1443. u64 eptp;
  1444. guest_cr3 = cr3;
  1445. if (enable_ept) {
  1446. eptp = construct_eptp(cr3);
  1447. vmcs_write64(EPT_POINTER, eptp);
  1448. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1449. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1450. }
  1451. vmx_flush_tlb(vcpu);
  1452. vmcs_writel(GUEST_CR3, guest_cr3);
  1453. if (vcpu->arch.cr0 & X86_CR0_PE)
  1454. vmx_fpu_deactivate(vcpu);
  1455. }
  1456. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1457. {
  1458. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  1459. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1460. vcpu->arch.cr4 = cr4;
  1461. if (enable_ept)
  1462. ept_update_paging_mode_cr4(&hw_cr4, vcpu);
  1463. vmcs_writel(CR4_READ_SHADOW, cr4);
  1464. vmcs_writel(GUEST_CR4, hw_cr4);
  1465. }
  1466. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1467. {
  1468. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1469. return vmcs_readl(sf->base);
  1470. }
  1471. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1472. struct kvm_segment *var, int seg)
  1473. {
  1474. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1475. u32 ar;
  1476. var->base = vmcs_readl(sf->base);
  1477. var->limit = vmcs_read32(sf->limit);
  1478. var->selector = vmcs_read16(sf->selector);
  1479. ar = vmcs_read32(sf->ar_bytes);
  1480. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  1481. ar = 0;
  1482. var->type = ar & 15;
  1483. var->s = (ar >> 4) & 1;
  1484. var->dpl = (ar >> 5) & 3;
  1485. var->present = (ar >> 7) & 1;
  1486. var->avl = (ar >> 12) & 1;
  1487. var->l = (ar >> 13) & 1;
  1488. var->db = (ar >> 14) & 1;
  1489. var->g = (ar >> 15) & 1;
  1490. var->unusable = (ar >> 16) & 1;
  1491. }
  1492. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1493. {
  1494. struct kvm_segment kvm_seg;
  1495. if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
  1496. return 0;
  1497. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1498. return 3;
  1499. vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
  1500. return kvm_seg.selector & 3;
  1501. }
  1502. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1503. {
  1504. u32 ar;
  1505. if (var->unusable)
  1506. ar = 1 << 16;
  1507. else {
  1508. ar = var->type & 15;
  1509. ar |= (var->s & 1) << 4;
  1510. ar |= (var->dpl & 3) << 5;
  1511. ar |= (var->present & 1) << 7;
  1512. ar |= (var->avl & 1) << 12;
  1513. ar |= (var->l & 1) << 13;
  1514. ar |= (var->db & 1) << 14;
  1515. ar |= (var->g & 1) << 15;
  1516. }
  1517. if (ar == 0) /* a 0 value means unusable */
  1518. ar = AR_UNUSABLE_MASK;
  1519. return ar;
  1520. }
  1521. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1522. struct kvm_segment *var, int seg)
  1523. {
  1524. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1525. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1526. u32 ar;
  1527. if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
  1528. vmx->rmode.tr.selector = var->selector;
  1529. vmx->rmode.tr.base = var->base;
  1530. vmx->rmode.tr.limit = var->limit;
  1531. vmx->rmode.tr.ar = vmx_segment_access_rights(var);
  1532. return;
  1533. }
  1534. vmcs_writel(sf->base, var->base);
  1535. vmcs_write32(sf->limit, var->limit);
  1536. vmcs_write16(sf->selector, var->selector);
  1537. if (vmx->rmode.vm86_active && var->s) {
  1538. /*
  1539. * Hack real-mode segments into vm86 compatibility.
  1540. */
  1541. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1542. vmcs_writel(sf->base, 0xf0000);
  1543. ar = 0xf3;
  1544. } else
  1545. ar = vmx_segment_access_rights(var);
  1546. /*
  1547. * Fix the "Accessed" bit in AR field of segment registers for older
  1548. * qemu binaries.
  1549. * IA32 arch specifies that at the time of processor reset the
  1550. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  1551. * is setting it to 0 in the usedland code. This causes invalid guest
  1552. * state vmexit when "unrestricted guest" mode is turned on.
  1553. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  1554. * tree. Newer qemu binaries with that qemu fix would not need this
  1555. * kvm hack.
  1556. */
  1557. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  1558. ar |= 0x1; /* Accessed */
  1559. vmcs_write32(sf->ar_bytes, ar);
  1560. }
  1561. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1562. {
  1563. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1564. *db = (ar >> 14) & 1;
  1565. *l = (ar >> 13) & 1;
  1566. }
  1567. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1568. {
  1569. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1570. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1571. }
  1572. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1573. {
  1574. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1575. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1576. }
  1577. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1578. {
  1579. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1580. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1581. }
  1582. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1583. {
  1584. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1585. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1586. }
  1587. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1588. {
  1589. struct kvm_segment var;
  1590. u32 ar;
  1591. vmx_get_segment(vcpu, &var, seg);
  1592. ar = vmx_segment_access_rights(&var);
  1593. if (var.base != (var.selector << 4))
  1594. return false;
  1595. if (var.limit != 0xffff)
  1596. return false;
  1597. if (ar != 0xf3)
  1598. return false;
  1599. return true;
  1600. }
  1601. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  1602. {
  1603. struct kvm_segment cs;
  1604. unsigned int cs_rpl;
  1605. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1606. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  1607. if (cs.unusable)
  1608. return false;
  1609. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  1610. return false;
  1611. if (!cs.s)
  1612. return false;
  1613. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  1614. if (cs.dpl > cs_rpl)
  1615. return false;
  1616. } else {
  1617. if (cs.dpl != cs_rpl)
  1618. return false;
  1619. }
  1620. if (!cs.present)
  1621. return false;
  1622. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  1623. return true;
  1624. }
  1625. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  1626. {
  1627. struct kvm_segment ss;
  1628. unsigned int ss_rpl;
  1629. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1630. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  1631. if (ss.unusable)
  1632. return true;
  1633. if (ss.type != 3 && ss.type != 7)
  1634. return false;
  1635. if (!ss.s)
  1636. return false;
  1637. if (ss.dpl != ss_rpl) /* DPL != RPL */
  1638. return false;
  1639. if (!ss.present)
  1640. return false;
  1641. return true;
  1642. }
  1643. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1644. {
  1645. struct kvm_segment var;
  1646. unsigned int rpl;
  1647. vmx_get_segment(vcpu, &var, seg);
  1648. rpl = var.selector & SELECTOR_RPL_MASK;
  1649. if (var.unusable)
  1650. return true;
  1651. if (!var.s)
  1652. return false;
  1653. if (!var.present)
  1654. return false;
  1655. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  1656. if (var.dpl < rpl) /* DPL < RPL */
  1657. return false;
  1658. }
  1659. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  1660. * rights flags
  1661. */
  1662. return true;
  1663. }
  1664. static bool tr_valid(struct kvm_vcpu *vcpu)
  1665. {
  1666. struct kvm_segment tr;
  1667. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  1668. if (tr.unusable)
  1669. return false;
  1670. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1671. return false;
  1672. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  1673. return false;
  1674. if (!tr.present)
  1675. return false;
  1676. return true;
  1677. }
  1678. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  1679. {
  1680. struct kvm_segment ldtr;
  1681. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  1682. if (ldtr.unusable)
  1683. return true;
  1684. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1685. return false;
  1686. if (ldtr.type != 2)
  1687. return false;
  1688. if (!ldtr.present)
  1689. return false;
  1690. return true;
  1691. }
  1692. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  1693. {
  1694. struct kvm_segment cs, ss;
  1695. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1696. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1697. return ((cs.selector & SELECTOR_RPL_MASK) ==
  1698. (ss.selector & SELECTOR_RPL_MASK));
  1699. }
  1700. /*
  1701. * Check if guest state is valid. Returns true if valid, false if
  1702. * not.
  1703. * We assume that registers are always usable
  1704. */
  1705. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  1706. {
  1707. /* real mode guest state checks */
  1708. if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
  1709. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  1710. return false;
  1711. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  1712. return false;
  1713. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  1714. return false;
  1715. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  1716. return false;
  1717. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  1718. return false;
  1719. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  1720. return false;
  1721. } else {
  1722. /* protected mode guest state checks */
  1723. if (!cs_ss_rpl_check(vcpu))
  1724. return false;
  1725. if (!code_segment_valid(vcpu))
  1726. return false;
  1727. if (!stack_segment_valid(vcpu))
  1728. return false;
  1729. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  1730. return false;
  1731. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  1732. return false;
  1733. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  1734. return false;
  1735. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  1736. return false;
  1737. if (!tr_valid(vcpu))
  1738. return false;
  1739. if (!ldtr_valid(vcpu))
  1740. return false;
  1741. }
  1742. /* TODO:
  1743. * - Add checks on RIP
  1744. * - Add checks on RFLAGS
  1745. */
  1746. return true;
  1747. }
  1748. static int init_rmode_tss(struct kvm *kvm)
  1749. {
  1750. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1751. u16 data = 0;
  1752. int ret = 0;
  1753. int r;
  1754. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1755. if (r < 0)
  1756. goto out;
  1757. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1758. r = kvm_write_guest_page(kvm, fn++, &data,
  1759. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  1760. if (r < 0)
  1761. goto out;
  1762. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1763. if (r < 0)
  1764. goto out;
  1765. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1766. if (r < 0)
  1767. goto out;
  1768. data = ~0;
  1769. r = kvm_write_guest_page(kvm, fn, &data,
  1770. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1771. sizeof(u8));
  1772. if (r < 0)
  1773. goto out;
  1774. ret = 1;
  1775. out:
  1776. return ret;
  1777. }
  1778. static int init_rmode_identity_map(struct kvm *kvm)
  1779. {
  1780. int i, r, ret;
  1781. pfn_t identity_map_pfn;
  1782. u32 tmp;
  1783. if (!enable_ept)
  1784. return 1;
  1785. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1786. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1787. "haven't been allocated!\n");
  1788. return 0;
  1789. }
  1790. if (likely(kvm->arch.ept_identity_pagetable_done))
  1791. return 1;
  1792. ret = 0;
  1793. identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
  1794. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1795. if (r < 0)
  1796. goto out;
  1797. /* Set up identity-mapping pagetable for EPT in real mode */
  1798. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1799. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1800. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1801. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1802. &tmp, i * sizeof(tmp), sizeof(tmp));
  1803. if (r < 0)
  1804. goto out;
  1805. }
  1806. kvm->arch.ept_identity_pagetable_done = true;
  1807. ret = 1;
  1808. out:
  1809. return ret;
  1810. }
  1811. static void seg_setup(int seg)
  1812. {
  1813. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1814. unsigned int ar;
  1815. vmcs_write16(sf->selector, 0);
  1816. vmcs_writel(sf->base, 0);
  1817. vmcs_write32(sf->limit, 0xffff);
  1818. if (enable_unrestricted_guest) {
  1819. ar = 0x93;
  1820. if (seg == VCPU_SREG_CS)
  1821. ar |= 0x08; /* code segment */
  1822. } else
  1823. ar = 0xf3;
  1824. vmcs_write32(sf->ar_bytes, ar);
  1825. }
  1826. static int alloc_apic_access_page(struct kvm *kvm)
  1827. {
  1828. struct kvm_userspace_memory_region kvm_userspace_mem;
  1829. int r = 0;
  1830. down_write(&kvm->slots_lock);
  1831. if (kvm->arch.apic_access_page)
  1832. goto out;
  1833. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1834. kvm_userspace_mem.flags = 0;
  1835. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1836. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1837. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1838. if (r)
  1839. goto out;
  1840. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1841. out:
  1842. up_write(&kvm->slots_lock);
  1843. return r;
  1844. }
  1845. static int alloc_identity_pagetable(struct kvm *kvm)
  1846. {
  1847. struct kvm_userspace_memory_region kvm_userspace_mem;
  1848. int r = 0;
  1849. down_write(&kvm->slots_lock);
  1850. if (kvm->arch.ept_identity_pagetable)
  1851. goto out;
  1852. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  1853. kvm_userspace_mem.flags = 0;
  1854. kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1855. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1856. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1857. if (r)
  1858. goto out;
  1859. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  1860. VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
  1861. out:
  1862. up_write(&kvm->slots_lock);
  1863. return r;
  1864. }
  1865. static void allocate_vpid(struct vcpu_vmx *vmx)
  1866. {
  1867. int vpid;
  1868. vmx->vpid = 0;
  1869. if (!enable_vpid)
  1870. return;
  1871. spin_lock(&vmx_vpid_lock);
  1872. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1873. if (vpid < VMX_NR_VPIDS) {
  1874. vmx->vpid = vpid;
  1875. __set_bit(vpid, vmx_vpid_bitmap);
  1876. }
  1877. spin_unlock(&vmx_vpid_lock);
  1878. }
  1879. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  1880. {
  1881. int f = sizeof(unsigned long);
  1882. if (!cpu_has_vmx_msr_bitmap())
  1883. return;
  1884. /*
  1885. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1886. * have the write-low and read-high bitmap offsets the wrong way round.
  1887. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1888. */
  1889. if (msr <= 0x1fff) {
  1890. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  1891. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  1892. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1893. msr &= 0x1fff;
  1894. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  1895. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  1896. }
  1897. }
  1898. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  1899. {
  1900. if (!longmode_only)
  1901. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  1902. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  1903. }
  1904. /*
  1905. * Sets up the vmcs for emulated real mode.
  1906. */
  1907. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1908. {
  1909. u32 host_sysenter_cs, msr_low, msr_high;
  1910. u32 junk;
  1911. u64 host_pat, tsc_this, tsc_base;
  1912. unsigned long a;
  1913. struct descriptor_table dt;
  1914. int i;
  1915. unsigned long kvm_vmx_return;
  1916. u32 exec_control;
  1917. /* I/O */
  1918. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  1919. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  1920. if (cpu_has_vmx_msr_bitmap())
  1921. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  1922. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1923. /* Control */
  1924. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1925. vmcs_config.pin_based_exec_ctrl);
  1926. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1927. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1928. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1929. #ifdef CONFIG_X86_64
  1930. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1931. CPU_BASED_CR8_LOAD_EXITING;
  1932. #endif
  1933. }
  1934. if (!enable_ept)
  1935. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  1936. CPU_BASED_CR3_LOAD_EXITING |
  1937. CPU_BASED_INVLPG_EXITING;
  1938. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1939. if (cpu_has_secondary_exec_ctrls()) {
  1940. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1941. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1942. exec_control &=
  1943. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1944. if (vmx->vpid == 0)
  1945. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  1946. if (!enable_ept)
  1947. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  1948. if (!enable_unrestricted_guest)
  1949. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  1950. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1951. }
  1952. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1953. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1954. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1955. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1956. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1957. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1958. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1959. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1960. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1961. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  1962. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  1963. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1964. #ifdef CONFIG_X86_64
  1965. rdmsrl(MSR_FS_BASE, a);
  1966. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1967. rdmsrl(MSR_GS_BASE, a);
  1968. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1969. #else
  1970. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1971. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1972. #endif
  1973. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1974. kvm_get_idt(&dt);
  1975. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1976. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1977. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1978. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1979. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1980. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1981. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1982. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1983. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1984. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1985. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1986. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1987. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  1988. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  1989. host_pat = msr_low | ((u64) msr_high << 32);
  1990. vmcs_write64(HOST_IA32_PAT, host_pat);
  1991. }
  1992. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  1993. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  1994. host_pat = msr_low | ((u64) msr_high << 32);
  1995. /* Write the default value follow host pat */
  1996. vmcs_write64(GUEST_IA32_PAT, host_pat);
  1997. /* Keep arch.pat sync with GUEST_IA32_PAT */
  1998. vmx->vcpu.arch.pat = host_pat;
  1999. }
  2000. for (i = 0; i < NR_VMX_MSR; ++i) {
  2001. u32 index = vmx_msr_index[i];
  2002. u32 data_low, data_high;
  2003. u64 data;
  2004. int j = vmx->nmsrs;
  2005. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  2006. continue;
  2007. if (wrmsr_safe(index, data_low, data_high) < 0)
  2008. continue;
  2009. data = data_low | ((u64)data_high << 32);
  2010. vmx->host_msrs[j].index = index;
  2011. vmx->host_msrs[j].reserved = 0;
  2012. vmx->host_msrs[j].data = data;
  2013. vmx->guest_msrs[j] = vmx->host_msrs[j];
  2014. ++vmx->nmsrs;
  2015. }
  2016. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  2017. /* 22.2.1, 20.8.1 */
  2018. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  2019. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  2020. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  2021. tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
  2022. rdtscll(tsc_this);
  2023. if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
  2024. tsc_base = tsc_this;
  2025. guest_write_tsc(0, tsc_base);
  2026. return 0;
  2027. }
  2028. static int init_rmode(struct kvm *kvm)
  2029. {
  2030. if (!init_rmode_tss(kvm))
  2031. return 0;
  2032. if (!init_rmode_identity_map(kvm))
  2033. return 0;
  2034. return 1;
  2035. }
  2036. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  2037. {
  2038. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2039. u64 msr;
  2040. int ret;
  2041. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  2042. down_read(&vcpu->kvm->slots_lock);
  2043. if (!init_rmode(vmx->vcpu.kvm)) {
  2044. ret = -ENOMEM;
  2045. goto out;
  2046. }
  2047. vmx->rmode.vm86_active = 0;
  2048. vmx->soft_vnmi_blocked = 0;
  2049. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  2050. kvm_set_cr8(&vmx->vcpu, 0);
  2051. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  2052. if (vmx->vcpu.vcpu_id == 0)
  2053. msr |= MSR_IA32_APICBASE_BSP;
  2054. kvm_set_apic_base(&vmx->vcpu, msr);
  2055. fx_init(&vmx->vcpu);
  2056. seg_setup(VCPU_SREG_CS);
  2057. /*
  2058. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  2059. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  2060. */
  2061. if (vmx->vcpu.vcpu_id == 0) {
  2062. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  2063. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  2064. } else {
  2065. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  2066. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  2067. }
  2068. seg_setup(VCPU_SREG_DS);
  2069. seg_setup(VCPU_SREG_ES);
  2070. seg_setup(VCPU_SREG_FS);
  2071. seg_setup(VCPU_SREG_GS);
  2072. seg_setup(VCPU_SREG_SS);
  2073. vmcs_write16(GUEST_TR_SELECTOR, 0);
  2074. vmcs_writel(GUEST_TR_BASE, 0);
  2075. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  2076. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2077. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  2078. vmcs_writel(GUEST_LDTR_BASE, 0);
  2079. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  2080. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  2081. vmcs_write32(GUEST_SYSENTER_CS, 0);
  2082. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  2083. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  2084. vmcs_writel(GUEST_RFLAGS, 0x02);
  2085. if (vmx->vcpu.vcpu_id == 0)
  2086. kvm_rip_write(vcpu, 0xfff0);
  2087. else
  2088. kvm_rip_write(vcpu, 0);
  2089. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  2090. vmcs_writel(GUEST_DR7, 0x400);
  2091. vmcs_writel(GUEST_GDTR_BASE, 0);
  2092. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  2093. vmcs_writel(GUEST_IDTR_BASE, 0);
  2094. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  2095. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  2096. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  2097. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  2098. /* Special registers */
  2099. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  2100. setup_msrs(vmx);
  2101. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  2102. if (cpu_has_vmx_tpr_shadow()) {
  2103. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  2104. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  2105. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  2106. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  2107. vmcs_write32(TPR_THRESHOLD, 0);
  2108. }
  2109. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2110. vmcs_write64(APIC_ACCESS_ADDR,
  2111. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  2112. if (vmx->vpid != 0)
  2113. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  2114. vmx->vcpu.arch.cr0 = 0x60000010;
  2115. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  2116. vmx_set_cr4(&vmx->vcpu, 0);
  2117. vmx_set_efer(&vmx->vcpu, 0);
  2118. vmx_fpu_activate(&vmx->vcpu);
  2119. update_exception_bitmap(&vmx->vcpu);
  2120. vpid_sync_vcpu_all(vmx);
  2121. ret = 0;
  2122. /* HACK: Don't enable emulation on guest boot/reset */
  2123. vmx->emulation_required = 0;
  2124. out:
  2125. up_read(&vcpu->kvm->slots_lock);
  2126. return ret;
  2127. }
  2128. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2129. {
  2130. u32 cpu_based_vm_exec_control;
  2131. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2132. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2133. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2134. }
  2135. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2136. {
  2137. u32 cpu_based_vm_exec_control;
  2138. if (!cpu_has_virtual_nmis()) {
  2139. enable_irq_window(vcpu);
  2140. return;
  2141. }
  2142. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2143. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2144. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2145. }
  2146. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  2147. {
  2148. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2149. uint32_t intr;
  2150. int irq = vcpu->arch.interrupt.nr;
  2151. KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
  2152. ++vcpu->stat.irq_injections;
  2153. if (vmx->rmode.vm86_active) {
  2154. vmx->rmode.irq.pending = true;
  2155. vmx->rmode.irq.vector = irq;
  2156. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2157. if (vcpu->arch.interrupt.soft)
  2158. vmx->rmode.irq.rip +=
  2159. vmx->vcpu.arch.event_exit_inst_len;
  2160. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2161. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  2162. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2163. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2164. return;
  2165. }
  2166. intr = irq | INTR_INFO_VALID_MASK;
  2167. if (vcpu->arch.interrupt.soft) {
  2168. intr |= INTR_TYPE_SOFT_INTR;
  2169. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  2170. vmx->vcpu.arch.event_exit_inst_len);
  2171. } else
  2172. intr |= INTR_TYPE_EXT_INTR;
  2173. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  2174. }
  2175. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  2176. {
  2177. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2178. if (!cpu_has_virtual_nmis()) {
  2179. /*
  2180. * Tracking the NMI-blocked state in software is built upon
  2181. * finding the next open IRQ window. This, in turn, depends on
  2182. * well-behaving guests: They have to keep IRQs disabled at
  2183. * least as long as the NMI handler runs. Otherwise we may
  2184. * cause NMI nesting, maybe breaking the guest. But as this is
  2185. * highly unlikely, we can live with the residual risk.
  2186. */
  2187. vmx->soft_vnmi_blocked = 1;
  2188. vmx->vnmi_blocked_time = 0;
  2189. }
  2190. ++vcpu->stat.nmi_injections;
  2191. if (vmx->rmode.vm86_active) {
  2192. vmx->rmode.irq.pending = true;
  2193. vmx->rmode.irq.vector = NMI_VECTOR;
  2194. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2195. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2196. NMI_VECTOR | INTR_TYPE_SOFT_INTR |
  2197. INTR_INFO_VALID_MASK);
  2198. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2199. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2200. return;
  2201. }
  2202. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2203. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  2204. }
  2205. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  2206. {
  2207. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  2208. return 0;
  2209. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2210. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
  2211. GUEST_INTR_STATE_NMI));
  2212. }
  2213. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  2214. {
  2215. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2216. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2217. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  2218. }
  2219. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2220. {
  2221. int ret;
  2222. struct kvm_userspace_memory_region tss_mem = {
  2223. .slot = TSS_PRIVATE_MEMSLOT,
  2224. .guest_phys_addr = addr,
  2225. .memory_size = PAGE_SIZE * 3,
  2226. .flags = 0,
  2227. };
  2228. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2229. if (ret)
  2230. return ret;
  2231. kvm->arch.tss_addr = addr;
  2232. return 0;
  2233. }
  2234. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2235. int vec, u32 err_code)
  2236. {
  2237. /*
  2238. * Instruction with address size override prefix opcode 0x67
  2239. * Cause the #SS fault with 0 error code in VM86 mode.
  2240. */
  2241. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2242. if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
  2243. return 1;
  2244. /*
  2245. * Forward all other exceptions that are valid in real mode.
  2246. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2247. * the required debugging infrastructure rework.
  2248. */
  2249. switch (vec) {
  2250. case DB_VECTOR:
  2251. if (vcpu->guest_debug &
  2252. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  2253. return 0;
  2254. kvm_queue_exception(vcpu, vec);
  2255. return 1;
  2256. case BP_VECTOR:
  2257. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  2258. return 0;
  2259. /* fall through */
  2260. case DE_VECTOR:
  2261. case OF_VECTOR:
  2262. case BR_VECTOR:
  2263. case UD_VECTOR:
  2264. case DF_VECTOR:
  2265. case SS_VECTOR:
  2266. case GP_VECTOR:
  2267. case MF_VECTOR:
  2268. kvm_queue_exception(vcpu, vec);
  2269. return 1;
  2270. }
  2271. return 0;
  2272. }
  2273. /*
  2274. * Trigger machine check on the host. We assume all the MSRs are already set up
  2275. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  2276. * We pass a fake environment to the machine check handler because we want
  2277. * the guest to be always treated like user space, no matter what context
  2278. * it used internally.
  2279. */
  2280. static void kvm_machine_check(void)
  2281. {
  2282. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  2283. struct pt_regs regs = {
  2284. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  2285. .flags = X86_EFLAGS_IF,
  2286. };
  2287. do_machine_check(&regs, 0);
  2288. #endif
  2289. }
  2290. static int handle_machine_check(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2291. {
  2292. /* already handled by vcpu_run */
  2293. return 1;
  2294. }
  2295. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2296. {
  2297. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2298. u32 intr_info, ex_no, error_code;
  2299. unsigned long cr2, rip, dr6;
  2300. u32 vect_info;
  2301. enum emulation_result er;
  2302. vect_info = vmx->idt_vectoring_info;
  2303. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2304. if (is_machine_check(intr_info))
  2305. return handle_machine_check(vcpu, kvm_run);
  2306. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2307. !is_page_fault(intr_info))
  2308. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  2309. "intr info 0x%x\n", __func__, vect_info, intr_info);
  2310. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  2311. return 1; /* already handled by vmx_vcpu_run() */
  2312. if (is_no_device(intr_info)) {
  2313. vmx_fpu_activate(vcpu);
  2314. return 1;
  2315. }
  2316. if (is_invalid_opcode(intr_info)) {
  2317. er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
  2318. if (er != EMULATE_DONE)
  2319. kvm_queue_exception(vcpu, UD_VECTOR);
  2320. return 1;
  2321. }
  2322. error_code = 0;
  2323. rip = kvm_rip_read(vcpu);
  2324. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2325. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2326. if (is_page_fault(intr_info)) {
  2327. /* EPT won't cause page fault directly */
  2328. if (enable_ept)
  2329. BUG();
  2330. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2331. KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
  2332. (u32)((u64)cr2 >> 32), handler);
  2333. if (kvm_event_needs_reinjection(vcpu))
  2334. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2335. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  2336. }
  2337. if (vmx->rmode.vm86_active &&
  2338. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2339. error_code)) {
  2340. if (vcpu->arch.halt_request) {
  2341. vcpu->arch.halt_request = 0;
  2342. return kvm_emulate_halt(vcpu);
  2343. }
  2344. return 1;
  2345. }
  2346. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  2347. switch (ex_no) {
  2348. case DB_VECTOR:
  2349. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  2350. if (!(vcpu->guest_debug &
  2351. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  2352. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  2353. kvm_queue_exception(vcpu, DB_VECTOR);
  2354. return 1;
  2355. }
  2356. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  2357. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  2358. /* fall through */
  2359. case BP_VECTOR:
  2360. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2361. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  2362. kvm_run->debug.arch.exception = ex_no;
  2363. break;
  2364. default:
  2365. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2366. kvm_run->ex.exception = ex_no;
  2367. kvm_run->ex.error_code = error_code;
  2368. break;
  2369. }
  2370. return 0;
  2371. }
  2372. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  2373. struct kvm_run *kvm_run)
  2374. {
  2375. ++vcpu->stat.irq_exits;
  2376. KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
  2377. return 1;
  2378. }
  2379. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2380. {
  2381. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  2382. return 0;
  2383. }
  2384. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2385. {
  2386. unsigned long exit_qualification;
  2387. int size, in, string;
  2388. unsigned port;
  2389. ++vcpu->stat.io_exits;
  2390. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2391. string = (exit_qualification & 16) != 0;
  2392. if (string) {
  2393. if (emulate_instruction(vcpu,
  2394. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  2395. return 0;
  2396. return 1;
  2397. }
  2398. size = (exit_qualification & 7) + 1;
  2399. in = (exit_qualification & 8) != 0;
  2400. port = exit_qualification >> 16;
  2401. skip_emulated_instruction(vcpu);
  2402. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  2403. }
  2404. static void
  2405. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2406. {
  2407. /*
  2408. * Patch in the VMCALL instruction:
  2409. */
  2410. hypercall[0] = 0x0f;
  2411. hypercall[1] = 0x01;
  2412. hypercall[2] = 0xc1;
  2413. }
  2414. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2415. {
  2416. unsigned long exit_qualification;
  2417. int cr;
  2418. int reg;
  2419. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2420. cr = exit_qualification & 15;
  2421. reg = (exit_qualification >> 8) & 15;
  2422. switch ((exit_qualification >> 4) & 3) {
  2423. case 0: /* mov to cr */
  2424. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
  2425. (u32)kvm_register_read(vcpu, reg),
  2426. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2427. handler);
  2428. switch (cr) {
  2429. case 0:
  2430. kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
  2431. skip_emulated_instruction(vcpu);
  2432. return 1;
  2433. case 3:
  2434. kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
  2435. skip_emulated_instruction(vcpu);
  2436. return 1;
  2437. case 4:
  2438. kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
  2439. skip_emulated_instruction(vcpu);
  2440. return 1;
  2441. case 8: {
  2442. u8 cr8_prev = kvm_get_cr8(vcpu);
  2443. u8 cr8 = kvm_register_read(vcpu, reg);
  2444. kvm_set_cr8(vcpu, cr8);
  2445. skip_emulated_instruction(vcpu);
  2446. if (irqchip_in_kernel(vcpu->kvm))
  2447. return 1;
  2448. if (cr8_prev <= cr8)
  2449. return 1;
  2450. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  2451. return 0;
  2452. }
  2453. };
  2454. break;
  2455. case 2: /* clts */
  2456. vmx_fpu_deactivate(vcpu);
  2457. vcpu->arch.cr0 &= ~X86_CR0_TS;
  2458. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  2459. vmx_fpu_activate(vcpu);
  2460. KVMTRACE_0D(CLTS, vcpu, handler);
  2461. skip_emulated_instruction(vcpu);
  2462. return 1;
  2463. case 1: /*mov from cr*/
  2464. switch (cr) {
  2465. case 3:
  2466. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2467. KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
  2468. (u32)kvm_register_read(vcpu, reg),
  2469. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2470. handler);
  2471. skip_emulated_instruction(vcpu);
  2472. return 1;
  2473. case 8:
  2474. kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
  2475. KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
  2476. (u32)kvm_register_read(vcpu, reg), handler);
  2477. skip_emulated_instruction(vcpu);
  2478. return 1;
  2479. }
  2480. break;
  2481. case 3: /* lmsw */
  2482. kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  2483. skip_emulated_instruction(vcpu);
  2484. return 1;
  2485. default:
  2486. break;
  2487. }
  2488. kvm_run->exit_reason = 0;
  2489. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2490. (int)(exit_qualification >> 4) & 3, cr);
  2491. return 0;
  2492. }
  2493. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2494. {
  2495. unsigned long exit_qualification;
  2496. unsigned long val;
  2497. int dr, reg;
  2498. dr = vmcs_readl(GUEST_DR7);
  2499. if (dr & DR7_GD) {
  2500. /*
  2501. * As the vm-exit takes precedence over the debug trap, we
  2502. * need to emulate the latter, either for the host or the
  2503. * guest debugging itself.
  2504. */
  2505. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  2506. kvm_run->debug.arch.dr6 = vcpu->arch.dr6;
  2507. kvm_run->debug.arch.dr7 = dr;
  2508. kvm_run->debug.arch.pc =
  2509. vmcs_readl(GUEST_CS_BASE) +
  2510. vmcs_readl(GUEST_RIP);
  2511. kvm_run->debug.arch.exception = DB_VECTOR;
  2512. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2513. return 0;
  2514. } else {
  2515. vcpu->arch.dr7 &= ~DR7_GD;
  2516. vcpu->arch.dr6 |= DR6_BD;
  2517. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2518. kvm_queue_exception(vcpu, DB_VECTOR);
  2519. return 1;
  2520. }
  2521. }
  2522. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2523. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  2524. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  2525. if (exit_qualification & TYPE_MOV_FROM_DR) {
  2526. switch (dr) {
  2527. case 0 ... 3:
  2528. val = vcpu->arch.db[dr];
  2529. break;
  2530. case 6:
  2531. val = vcpu->arch.dr6;
  2532. break;
  2533. case 7:
  2534. val = vcpu->arch.dr7;
  2535. break;
  2536. default:
  2537. val = 0;
  2538. }
  2539. kvm_register_write(vcpu, reg, val);
  2540. KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
  2541. } else {
  2542. val = vcpu->arch.regs[reg];
  2543. switch (dr) {
  2544. case 0 ... 3:
  2545. vcpu->arch.db[dr] = val;
  2546. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  2547. vcpu->arch.eff_db[dr] = val;
  2548. break;
  2549. case 4 ... 5:
  2550. if (vcpu->arch.cr4 & X86_CR4_DE)
  2551. kvm_queue_exception(vcpu, UD_VECTOR);
  2552. break;
  2553. case 6:
  2554. if (val & 0xffffffff00000000ULL) {
  2555. kvm_queue_exception(vcpu, GP_VECTOR);
  2556. break;
  2557. }
  2558. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  2559. break;
  2560. case 7:
  2561. if (val & 0xffffffff00000000ULL) {
  2562. kvm_queue_exception(vcpu, GP_VECTOR);
  2563. break;
  2564. }
  2565. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  2566. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  2567. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2568. vcpu->arch.switch_db_regs =
  2569. (val & DR7_BP_EN_MASK);
  2570. }
  2571. break;
  2572. }
  2573. KVMTRACE_2D(DR_WRITE, vcpu, (u32)dr, (u32)val, handler);
  2574. }
  2575. skip_emulated_instruction(vcpu);
  2576. return 1;
  2577. }
  2578. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2579. {
  2580. kvm_emulate_cpuid(vcpu);
  2581. return 1;
  2582. }
  2583. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2584. {
  2585. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2586. u64 data;
  2587. if (vmx_get_msr(vcpu, ecx, &data)) {
  2588. kvm_inject_gp(vcpu, 0);
  2589. return 1;
  2590. }
  2591. KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2592. handler);
  2593. /* FIXME: handling of bits 32:63 of rax, rdx */
  2594. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2595. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2596. skip_emulated_instruction(vcpu);
  2597. return 1;
  2598. }
  2599. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2600. {
  2601. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2602. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2603. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2604. KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2605. handler);
  2606. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2607. kvm_inject_gp(vcpu, 0);
  2608. return 1;
  2609. }
  2610. skip_emulated_instruction(vcpu);
  2611. return 1;
  2612. }
  2613. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  2614. struct kvm_run *kvm_run)
  2615. {
  2616. return 1;
  2617. }
  2618. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  2619. struct kvm_run *kvm_run)
  2620. {
  2621. u32 cpu_based_vm_exec_control;
  2622. /* clear pending irq */
  2623. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2624. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2625. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2626. KVMTRACE_0D(PEND_INTR, vcpu, handler);
  2627. ++vcpu->stat.irq_window_exits;
  2628. /*
  2629. * If the user space waits to inject interrupts, exit as soon as
  2630. * possible
  2631. */
  2632. if (!irqchip_in_kernel(vcpu->kvm) &&
  2633. kvm_run->request_interrupt_window &&
  2634. !kvm_cpu_has_interrupt(vcpu)) {
  2635. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2636. return 0;
  2637. }
  2638. return 1;
  2639. }
  2640. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2641. {
  2642. skip_emulated_instruction(vcpu);
  2643. return kvm_emulate_halt(vcpu);
  2644. }
  2645. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2646. {
  2647. skip_emulated_instruction(vcpu);
  2648. kvm_emulate_hypercall(vcpu);
  2649. return 1;
  2650. }
  2651. static int handle_vmx_insn(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2652. {
  2653. kvm_queue_exception(vcpu, UD_VECTOR);
  2654. return 1;
  2655. }
  2656. static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2657. {
  2658. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2659. kvm_mmu_invlpg(vcpu, exit_qualification);
  2660. skip_emulated_instruction(vcpu);
  2661. return 1;
  2662. }
  2663. static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2664. {
  2665. skip_emulated_instruction(vcpu);
  2666. /* TODO: Add support for VT-d/pass-through device */
  2667. return 1;
  2668. }
  2669. static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2670. {
  2671. unsigned long exit_qualification;
  2672. enum emulation_result er;
  2673. unsigned long offset;
  2674. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2675. offset = exit_qualification & 0xffful;
  2676. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2677. if (er != EMULATE_DONE) {
  2678. printk(KERN_ERR
  2679. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2680. offset);
  2681. return -ENOTSUPP;
  2682. }
  2683. return 1;
  2684. }
  2685. static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2686. {
  2687. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2688. unsigned long exit_qualification;
  2689. u16 tss_selector;
  2690. int reason, type, idt_v;
  2691. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  2692. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  2693. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2694. reason = (u32)exit_qualification >> 30;
  2695. if (reason == TASK_SWITCH_GATE && idt_v) {
  2696. switch (type) {
  2697. case INTR_TYPE_NMI_INTR:
  2698. vcpu->arch.nmi_injected = false;
  2699. if (cpu_has_virtual_nmis())
  2700. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2701. GUEST_INTR_STATE_NMI);
  2702. break;
  2703. case INTR_TYPE_EXT_INTR:
  2704. case INTR_TYPE_SOFT_INTR:
  2705. kvm_clear_interrupt_queue(vcpu);
  2706. break;
  2707. case INTR_TYPE_HARD_EXCEPTION:
  2708. case INTR_TYPE_SOFT_EXCEPTION:
  2709. kvm_clear_exception_queue(vcpu);
  2710. break;
  2711. default:
  2712. break;
  2713. }
  2714. }
  2715. tss_selector = exit_qualification;
  2716. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  2717. type != INTR_TYPE_EXT_INTR &&
  2718. type != INTR_TYPE_NMI_INTR))
  2719. skip_emulated_instruction(vcpu);
  2720. if (!kvm_task_switch(vcpu, tss_selector, reason))
  2721. return 0;
  2722. /* clear all local breakpoint enable flags */
  2723. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  2724. /*
  2725. * TODO: What about debug traps on tss switch?
  2726. * Are we supposed to inject them and update dr6?
  2727. */
  2728. return 1;
  2729. }
  2730. static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2731. {
  2732. unsigned long exit_qualification;
  2733. gpa_t gpa;
  2734. int gla_validity;
  2735. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2736. if (exit_qualification & (1 << 6)) {
  2737. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2738. return -ENOTSUPP;
  2739. }
  2740. gla_validity = (exit_qualification >> 7) & 0x3;
  2741. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2742. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2743. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2744. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2745. vmcs_readl(GUEST_LINEAR_ADDRESS));
  2746. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2747. (long unsigned int)exit_qualification);
  2748. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2749. kvm_run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  2750. return 0;
  2751. }
  2752. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2753. return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2754. }
  2755. static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2756. {
  2757. u32 cpu_based_vm_exec_control;
  2758. /* clear pending NMI */
  2759. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2760. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  2761. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2762. ++vcpu->stat.nmi_window_exits;
  2763. return 1;
  2764. }
  2765. static void handle_invalid_guest_state(struct kvm_vcpu *vcpu,
  2766. struct kvm_run *kvm_run)
  2767. {
  2768. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2769. enum emulation_result err = EMULATE_DONE;
  2770. local_irq_enable();
  2771. preempt_enable();
  2772. while (!guest_state_valid(vcpu)) {
  2773. err = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2774. if (err == EMULATE_DO_MMIO)
  2775. break;
  2776. if (err != EMULATE_DONE) {
  2777. kvm_report_emulation_failure(vcpu, "emulation failure");
  2778. break;
  2779. }
  2780. if (signal_pending(current))
  2781. break;
  2782. if (need_resched())
  2783. schedule();
  2784. }
  2785. preempt_disable();
  2786. local_irq_disable();
  2787. vmx->invalid_state_emulation_result = err;
  2788. }
  2789. /*
  2790. * The exit handlers return 1 if the exit was handled fully and guest execution
  2791. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  2792. * to be done to userspace and return 0.
  2793. */
  2794. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  2795. struct kvm_run *kvm_run) = {
  2796. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  2797. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  2798. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  2799. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  2800. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  2801. [EXIT_REASON_CR_ACCESS] = handle_cr,
  2802. [EXIT_REASON_DR_ACCESS] = handle_dr,
  2803. [EXIT_REASON_CPUID] = handle_cpuid,
  2804. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  2805. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  2806. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  2807. [EXIT_REASON_HLT] = handle_halt,
  2808. [EXIT_REASON_INVLPG] = handle_invlpg,
  2809. [EXIT_REASON_VMCALL] = handle_vmcall,
  2810. [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
  2811. [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
  2812. [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
  2813. [EXIT_REASON_VMPTRST] = handle_vmx_insn,
  2814. [EXIT_REASON_VMREAD] = handle_vmx_insn,
  2815. [EXIT_REASON_VMRESUME] = handle_vmx_insn,
  2816. [EXIT_REASON_VMWRITE] = handle_vmx_insn,
  2817. [EXIT_REASON_VMOFF] = handle_vmx_insn,
  2818. [EXIT_REASON_VMON] = handle_vmx_insn,
  2819. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  2820. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  2821. [EXIT_REASON_WBINVD] = handle_wbinvd,
  2822. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  2823. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  2824. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  2825. };
  2826. static const int kvm_vmx_max_exit_handlers =
  2827. ARRAY_SIZE(kvm_vmx_exit_handlers);
  2828. /*
  2829. * The guest has exited. See if we can fix it or if we need userspace
  2830. * assistance.
  2831. */
  2832. static int vmx_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  2833. {
  2834. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2835. u32 exit_reason = vmx->exit_reason;
  2836. u32 vectoring_info = vmx->idt_vectoring_info;
  2837. KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
  2838. (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
  2839. /* If we need to emulate an MMIO from handle_invalid_guest_state
  2840. * we just return 0 */
  2841. if (vmx->emulation_required && emulate_invalid_guest_state) {
  2842. if (guest_state_valid(vcpu))
  2843. vmx->emulation_required = 0;
  2844. return vmx->invalid_state_emulation_result != EMULATE_DO_MMIO;
  2845. }
  2846. /* Access CR3 don't cause VMExit in paging mode, so we need
  2847. * to sync with guest real CR3. */
  2848. if (enable_ept && is_paging(vcpu))
  2849. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2850. if (unlikely(vmx->fail)) {
  2851. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2852. kvm_run->fail_entry.hardware_entry_failure_reason
  2853. = vmcs_read32(VM_INSTRUCTION_ERROR);
  2854. return 0;
  2855. }
  2856. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2857. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  2858. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  2859. exit_reason != EXIT_REASON_TASK_SWITCH))
  2860. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  2861. "(0x%x) and exit reason is 0x%x\n",
  2862. __func__, vectoring_info, exit_reason);
  2863. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
  2864. if (vmx_interrupt_allowed(vcpu)) {
  2865. vmx->soft_vnmi_blocked = 0;
  2866. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  2867. vcpu->arch.nmi_pending) {
  2868. /*
  2869. * This CPU don't support us in finding the end of an
  2870. * NMI-blocked window if the guest runs with IRQs
  2871. * disabled. So we pull the trigger after 1 s of
  2872. * futile waiting, but inform the user about this.
  2873. */
  2874. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  2875. "state on VCPU %d after 1 s timeout\n",
  2876. __func__, vcpu->vcpu_id);
  2877. vmx->soft_vnmi_blocked = 0;
  2878. }
  2879. }
  2880. if (exit_reason < kvm_vmx_max_exit_handlers
  2881. && kvm_vmx_exit_handlers[exit_reason])
  2882. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  2883. else {
  2884. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2885. kvm_run->hw.hardware_exit_reason = exit_reason;
  2886. }
  2887. return 0;
  2888. }
  2889. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  2890. {
  2891. if (irr == -1 || tpr < irr) {
  2892. vmcs_write32(TPR_THRESHOLD, 0);
  2893. return;
  2894. }
  2895. vmcs_write32(TPR_THRESHOLD, irr);
  2896. }
  2897. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  2898. {
  2899. u32 exit_intr_info;
  2900. u32 idt_vectoring_info = vmx->idt_vectoring_info;
  2901. bool unblock_nmi;
  2902. u8 vector;
  2903. int type;
  2904. bool idtv_info_valid;
  2905. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2906. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  2907. /* Handle machine checks before interrupts are enabled */
  2908. if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
  2909. || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
  2910. && is_machine_check(exit_intr_info)))
  2911. kvm_machine_check();
  2912. /* We need to handle NMIs before interrupts are enabled */
  2913. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  2914. (exit_intr_info & INTR_INFO_VALID_MASK)) {
  2915. KVMTRACE_0D(NMI, &vmx->vcpu, handler);
  2916. asm("int $2");
  2917. }
  2918. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  2919. if (cpu_has_virtual_nmis()) {
  2920. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  2921. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  2922. /*
  2923. * SDM 3: 27.7.1.2 (September 2008)
  2924. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  2925. * a guest IRET fault.
  2926. * SDM 3: 23.2.2 (September 2008)
  2927. * Bit 12 is undefined in any of the following cases:
  2928. * If the VM exit sets the valid bit in the IDT-vectoring
  2929. * information field.
  2930. * If the VM exit is due to a double fault.
  2931. */
  2932. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  2933. vector != DF_VECTOR && !idtv_info_valid)
  2934. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2935. GUEST_INTR_STATE_NMI);
  2936. } else if (unlikely(vmx->soft_vnmi_blocked))
  2937. vmx->vnmi_blocked_time +=
  2938. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  2939. vmx->vcpu.arch.nmi_injected = false;
  2940. kvm_clear_exception_queue(&vmx->vcpu);
  2941. kvm_clear_interrupt_queue(&vmx->vcpu);
  2942. if (!idtv_info_valid)
  2943. return;
  2944. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  2945. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  2946. switch (type) {
  2947. case INTR_TYPE_NMI_INTR:
  2948. vmx->vcpu.arch.nmi_injected = true;
  2949. /*
  2950. * SDM 3: 27.7.1.2 (September 2008)
  2951. * Clear bit "block by NMI" before VM entry if a NMI
  2952. * delivery faulted.
  2953. */
  2954. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2955. GUEST_INTR_STATE_NMI);
  2956. break;
  2957. case INTR_TYPE_SOFT_EXCEPTION:
  2958. vmx->vcpu.arch.event_exit_inst_len =
  2959. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  2960. /* fall through */
  2961. case INTR_TYPE_HARD_EXCEPTION:
  2962. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  2963. u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
  2964. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  2965. } else
  2966. kvm_queue_exception(&vmx->vcpu, vector);
  2967. break;
  2968. case INTR_TYPE_SOFT_INTR:
  2969. vmx->vcpu.arch.event_exit_inst_len =
  2970. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  2971. /* fall through */
  2972. case INTR_TYPE_EXT_INTR:
  2973. kvm_queue_interrupt(&vmx->vcpu, vector,
  2974. type == INTR_TYPE_SOFT_INTR);
  2975. break;
  2976. default:
  2977. break;
  2978. }
  2979. }
  2980. /*
  2981. * Failure to inject an interrupt should give us the information
  2982. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  2983. * when fetching the interrupt redirection bitmap in the real-mode
  2984. * tss, this doesn't happen. So we do it ourselves.
  2985. */
  2986. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  2987. {
  2988. vmx->rmode.irq.pending = 0;
  2989. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  2990. return;
  2991. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  2992. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  2993. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  2994. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  2995. return;
  2996. }
  2997. vmx->idt_vectoring_info =
  2998. VECTORING_INFO_VALID_MASK
  2999. | INTR_TYPE_EXT_INTR
  3000. | vmx->rmode.irq.vector;
  3001. }
  3002. #ifdef CONFIG_X86_64
  3003. #define R "r"
  3004. #define Q "q"
  3005. #else
  3006. #define R "e"
  3007. #define Q "l"
  3008. #endif
  3009. static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3010. {
  3011. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3012. if (enable_ept && is_paging(vcpu)) {
  3013. vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
  3014. ept_load_pdptrs(vcpu);
  3015. }
  3016. /* Record the guest's net vcpu time for enforced NMI injections. */
  3017. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  3018. vmx->entry_time = ktime_get();
  3019. /* Handle invalid guest state instead of entering VMX */
  3020. if (vmx->emulation_required && emulate_invalid_guest_state) {
  3021. handle_invalid_guest_state(vcpu, kvm_run);
  3022. return;
  3023. }
  3024. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  3025. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  3026. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  3027. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  3028. /* When single-stepping over STI and MOV SS, we must clear the
  3029. * corresponding interruptibility bits in the guest state. Otherwise
  3030. * vmentry fails as it then expects bit 14 (BS) in pending debug
  3031. * exceptions being set, but that's not correct for the guest debugging
  3032. * case. */
  3033. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  3034. vmx_set_interrupt_shadow(vcpu, 0);
  3035. /*
  3036. * Loading guest fpu may have cleared host cr0.ts
  3037. */
  3038. vmcs_writel(HOST_CR0, read_cr0());
  3039. set_debugreg(vcpu->arch.dr6, 6);
  3040. asm(
  3041. /* Store host registers */
  3042. "push %%"R"dx; push %%"R"bp;"
  3043. "push %%"R"cx \n\t"
  3044. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  3045. "je 1f \n\t"
  3046. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  3047. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  3048. "1: \n\t"
  3049. /* Check if vmlaunch of vmresume is needed */
  3050. "cmpl $0, %c[launched](%0) \n\t"
  3051. /* Load guest registers. Don't clobber flags. */
  3052. "mov %c[cr2](%0), %%"R"ax \n\t"
  3053. "mov %%"R"ax, %%cr2 \n\t"
  3054. "mov %c[rax](%0), %%"R"ax \n\t"
  3055. "mov %c[rbx](%0), %%"R"bx \n\t"
  3056. "mov %c[rdx](%0), %%"R"dx \n\t"
  3057. "mov %c[rsi](%0), %%"R"si \n\t"
  3058. "mov %c[rdi](%0), %%"R"di \n\t"
  3059. "mov %c[rbp](%0), %%"R"bp \n\t"
  3060. #ifdef CONFIG_X86_64
  3061. "mov %c[r8](%0), %%r8 \n\t"
  3062. "mov %c[r9](%0), %%r9 \n\t"
  3063. "mov %c[r10](%0), %%r10 \n\t"
  3064. "mov %c[r11](%0), %%r11 \n\t"
  3065. "mov %c[r12](%0), %%r12 \n\t"
  3066. "mov %c[r13](%0), %%r13 \n\t"
  3067. "mov %c[r14](%0), %%r14 \n\t"
  3068. "mov %c[r15](%0), %%r15 \n\t"
  3069. #endif
  3070. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  3071. /* Enter guest mode */
  3072. "jne .Llaunched \n\t"
  3073. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  3074. "jmp .Lkvm_vmx_return \n\t"
  3075. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  3076. ".Lkvm_vmx_return: "
  3077. /* Save guest registers, load host registers, keep flags */
  3078. "xchg %0, (%%"R"sp) \n\t"
  3079. "mov %%"R"ax, %c[rax](%0) \n\t"
  3080. "mov %%"R"bx, %c[rbx](%0) \n\t"
  3081. "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
  3082. "mov %%"R"dx, %c[rdx](%0) \n\t"
  3083. "mov %%"R"si, %c[rsi](%0) \n\t"
  3084. "mov %%"R"di, %c[rdi](%0) \n\t"
  3085. "mov %%"R"bp, %c[rbp](%0) \n\t"
  3086. #ifdef CONFIG_X86_64
  3087. "mov %%r8, %c[r8](%0) \n\t"
  3088. "mov %%r9, %c[r9](%0) \n\t"
  3089. "mov %%r10, %c[r10](%0) \n\t"
  3090. "mov %%r11, %c[r11](%0) \n\t"
  3091. "mov %%r12, %c[r12](%0) \n\t"
  3092. "mov %%r13, %c[r13](%0) \n\t"
  3093. "mov %%r14, %c[r14](%0) \n\t"
  3094. "mov %%r15, %c[r15](%0) \n\t"
  3095. #endif
  3096. "mov %%cr2, %%"R"ax \n\t"
  3097. "mov %%"R"ax, %c[cr2](%0) \n\t"
  3098. "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
  3099. "setbe %c[fail](%0) \n\t"
  3100. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  3101. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  3102. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  3103. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  3104. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  3105. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  3106. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  3107. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  3108. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  3109. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  3110. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  3111. #ifdef CONFIG_X86_64
  3112. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  3113. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  3114. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  3115. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  3116. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  3117. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  3118. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  3119. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  3120. #endif
  3121. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  3122. : "cc", "memory"
  3123. , R"bx", R"di", R"si"
  3124. #ifdef CONFIG_X86_64
  3125. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  3126. #endif
  3127. );
  3128. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  3129. | (1 << VCPU_EXREG_PDPTR));
  3130. vcpu->arch.regs_dirty = 0;
  3131. get_debugreg(vcpu->arch.dr6, 6);
  3132. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  3133. if (vmx->rmode.irq.pending)
  3134. fixup_rmode_irq(vmx);
  3135. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  3136. vmx->launched = 1;
  3137. vmx_complete_interrupts(vmx);
  3138. }
  3139. #undef R
  3140. #undef Q
  3141. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  3142. {
  3143. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3144. if (vmx->vmcs) {
  3145. vcpu_clear(vmx);
  3146. free_vmcs(vmx->vmcs);
  3147. vmx->vmcs = NULL;
  3148. }
  3149. }
  3150. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  3151. {
  3152. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3153. spin_lock(&vmx_vpid_lock);
  3154. if (vmx->vpid != 0)
  3155. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3156. spin_unlock(&vmx_vpid_lock);
  3157. vmx_free_vmcs(vcpu);
  3158. kfree(vmx->host_msrs);
  3159. kfree(vmx->guest_msrs);
  3160. kvm_vcpu_uninit(vcpu);
  3161. kmem_cache_free(kvm_vcpu_cache, vmx);
  3162. }
  3163. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  3164. {
  3165. int err;
  3166. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  3167. int cpu;
  3168. if (!vmx)
  3169. return ERR_PTR(-ENOMEM);
  3170. allocate_vpid(vmx);
  3171. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  3172. if (err)
  3173. goto free_vcpu;
  3174. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3175. if (!vmx->guest_msrs) {
  3176. err = -ENOMEM;
  3177. goto uninit_vcpu;
  3178. }
  3179. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3180. if (!vmx->host_msrs)
  3181. goto free_guest_msrs;
  3182. vmx->vmcs = alloc_vmcs();
  3183. if (!vmx->vmcs)
  3184. goto free_msrs;
  3185. vmcs_clear(vmx->vmcs);
  3186. cpu = get_cpu();
  3187. vmx_vcpu_load(&vmx->vcpu, cpu);
  3188. err = vmx_vcpu_setup(vmx);
  3189. vmx_vcpu_put(&vmx->vcpu);
  3190. put_cpu();
  3191. if (err)
  3192. goto free_vmcs;
  3193. if (vm_need_virtualize_apic_accesses(kvm))
  3194. if (alloc_apic_access_page(kvm) != 0)
  3195. goto free_vmcs;
  3196. if (enable_ept)
  3197. if (alloc_identity_pagetable(kvm) != 0)
  3198. goto free_vmcs;
  3199. return &vmx->vcpu;
  3200. free_vmcs:
  3201. free_vmcs(vmx->vmcs);
  3202. free_msrs:
  3203. kfree(vmx->host_msrs);
  3204. free_guest_msrs:
  3205. kfree(vmx->guest_msrs);
  3206. uninit_vcpu:
  3207. kvm_vcpu_uninit(&vmx->vcpu);
  3208. free_vcpu:
  3209. kmem_cache_free(kvm_vcpu_cache, vmx);
  3210. return ERR_PTR(err);
  3211. }
  3212. static void __init vmx_check_processor_compat(void *rtn)
  3213. {
  3214. struct vmcs_config vmcs_conf;
  3215. *(int *)rtn = 0;
  3216. if (setup_vmcs_config(&vmcs_conf) < 0)
  3217. *(int *)rtn = -EIO;
  3218. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  3219. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  3220. smp_processor_id());
  3221. *(int *)rtn = -EIO;
  3222. }
  3223. }
  3224. static int get_ept_level(void)
  3225. {
  3226. return VMX_EPT_DEFAULT_GAW + 1;
  3227. }
  3228. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  3229. {
  3230. u64 ret;
  3231. /* For VT-d and EPT combination
  3232. * 1. MMIO: always map as UC
  3233. * 2. EPT with VT-d:
  3234. * a. VT-d without snooping control feature: can't guarantee the
  3235. * result, try to trust guest.
  3236. * b. VT-d with snooping control feature: snooping control feature of
  3237. * VT-d engine can guarantee the cache correctness. Just set it
  3238. * to WB to keep consistent with host. So the same as item 3.
  3239. * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
  3240. * consistent with host MTRR
  3241. */
  3242. if (is_mmio)
  3243. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  3244. else if (vcpu->kvm->arch.iommu_domain &&
  3245. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  3246. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  3247. VMX_EPT_MT_EPTE_SHIFT;
  3248. else
  3249. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  3250. | VMX_EPT_IGMT_BIT;
  3251. return ret;
  3252. }
  3253. static struct kvm_x86_ops vmx_x86_ops = {
  3254. .cpu_has_kvm_support = cpu_has_kvm_support,
  3255. .disabled_by_bios = vmx_disabled_by_bios,
  3256. .hardware_setup = hardware_setup,
  3257. .hardware_unsetup = hardware_unsetup,
  3258. .check_processor_compatibility = vmx_check_processor_compat,
  3259. .hardware_enable = hardware_enable,
  3260. .hardware_disable = hardware_disable,
  3261. .cpu_has_accelerated_tpr = report_flexpriority,
  3262. .vcpu_create = vmx_create_vcpu,
  3263. .vcpu_free = vmx_free_vcpu,
  3264. .vcpu_reset = vmx_vcpu_reset,
  3265. .prepare_guest_switch = vmx_save_host_state,
  3266. .vcpu_load = vmx_vcpu_load,
  3267. .vcpu_put = vmx_vcpu_put,
  3268. .set_guest_debug = set_guest_debug,
  3269. .get_msr = vmx_get_msr,
  3270. .set_msr = vmx_set_msr,
  3271. .get_segment_base = vmx_get_segment_base,
  3272. .get_segment = vmx_get_segment,
  3273. .set_segment = vmx_set_segment,
  3274. .get_cpl = vmx_get_cpl,
  3275. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  3276. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  3277. .set_cr0 = vmx_set_cr0,
  3278. .set_cr3 = vmx_set_cr3,
  3279. .set_cr4 = vmx_set_cr4,
  3280. .set_efer = vmx_set_efer,
  3281. .get_idt = vmx_get_idt,
  3282. .set_idt = vmx_set_idt,
  3283. .get_gdt = vmx_get_gdt,
  3284. .set_gdt = vmx_set_gdt,
  3285. .cache_reg = vmx_cache_reg,
  3286. .get_rflags = vmx_get_rflags,
  3287. .set_rflags = vmx_set_rflags,
  3288. .tlb_flush = vmx_flush_tlb,
  3289. .run = vmx_vcpu_run,
  3290. .handle_exit = vmx_handle_exit,
  3291. .skip_emulated_instruction = skip_emulated_instruction,
  3292. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  3293. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  3294. .patch_hypercall = vmx_patch_hypercall,
  3295. .set_irq = vmx_inject_irq,
  3296. .set_nmi = vmx_inject_nmi,
  3297. .queue_exception = vmx_queue_exception,
  3298. .interrupt_allowed = vmx_interrupt_allowed,
  3299. .nmi_allowed = vmx_nmi_allowed,
  3300. .enable_nmi_window = enable_nmi_window,
  3301. .enable_irq_window = enable_irq_window,
  3302. .update_cr8_intercept = update_cr8_intercept,
  3303. .set_tss_addr = vmx_set_tss_addr,
  3304. .get_tdp_level = get_ept_level,
  3305. .get_mt_mask = vmx_get_mt_mask,
  3306. };
  3307. static int __init vmx_init(void)
  3308. {
  3309. int r;
  3310. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  3311. if (!vmx_io_bitmap_a)
  3312. return -ENOMEM;
  3313. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  3314. if (!vmx_io_bitmap_b) {
  3315. r = -ENOMEM;
  3316. goto out;
  3317. }
  3318. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  3319. if (!vmx_msr_bitmap_legacy) {
  3320. r = -ENOMEM;
  3321. goto out1;
  3322. }
  3323. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  3324. if (!vmx_msr_bitmap_longmode) {
  3325. r = -ENOMEM;
  3326. goto out2;
  3327. }
  3328. /*
  3329. * Allow direct access to the PC debug port (it is often used for I/O
  3330. * delays, but the vmexits simply slow things down).
  3331. */
  3332. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  3333. clear_bit(0x80, vmx_io_bitmap_a);
  3334. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  3335. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  3336. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  3337. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  3338. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  3339. if (r)
  3340. goto out3;
  3341. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  3342. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  3343. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  3344. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  3345. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  3346. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  3347. if (enable_ept) {
  3348. bypass_guest_pf = 0;
  3349. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  3350. VMX_EPT_WRITABLE_MASK);
  3351. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  3352. VMX_EPT_EXECUTABLE_MASK);
  3353. kvm_enable_tdp();
  3354. } else
  3355. kvm_disable_tdp();
  3356. if (bypass_guest_pf)
  3357. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  3358. ept_sync_global();
  3359. return 0;
  3360. out3:
  3361. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3362. out2:
  3363. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3364. out1:
  3365. free_page((unsigned long)vmx_io_bitmap_b);
  3366. out:
  3367. free_page((unsigned long)vmx_io_bitmap_a);
  3368. return r;
  3369. }
  3370. static void __exit vmx_exit(void)
  3371. {
  3372. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3373. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3374. free_page((unsigned long)vmx_io_bitmap_b);
  3375. free_page((unsigned long)vmx_io_bitmap_a);
  3376. kvm_exit();
  3377. }
  3378. module_init(vmx_init)
  3379. module_exit(vmx_exit)