ctree.c 112 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398
  1. /*
  2. * Copyright (C) 2007,2008 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include "ctree.h"
  21. #include "disk-io.h"
  22. #include "transaction.h"
  23. #include "print-tree.h"
  24. #include "locking.h"
  25. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  26. *root, struct btrfs_path *path, int level);
  27. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  28. *root, struct btrfs_key *ins_key,
  29. struct btrfs_path *path, int data_size, int extend);
  30. static int push_node_left(struct btrfs_trans_handle *trans,
  31. struct btrfs_root *root, struct extent_buffer *dst,
  32. struct extent_buffer *src, int empty);
  33. static int balance_node_right(struct btrfs_trans_handle *trans,
  34. struct btrfs_root *root,
  35. struct extent_buffer *dst_buf,
  36. struct extent_buffer *src_buf);
  37. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  38. struct btrfs_path *path, int level, int slot);
  39. struct btrfs_path *btrfs_alloc_path(void)
  40. {
  41. struct btrfs_path *path;
  42. path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  43. return path;
  44. }
  45. /*
  46. * set all locked nodes in the path to blocking locks. This should
  47. * be done before scheduling
  48. */
  49. noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  50. {
  51. int i;
  52. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  53. if (p->nodes[i] && p->locks[i])
  54. btrfs_set_lock_blocking(p->nodes[i]);
  55. }
  56. }
  57. /*
  58. * reset all the locked nodes in the patch to spinning locks.
  59. *
  60. * held is used to keep lockdep happy, when lockdep is enabled
  61. * we set held to a blocking lock before we go around and
  62. * retake all the spinlocks in the path. You can safely use NULL
  63. * for held
  64. */
  65. noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  66. struct extent_buffer *held)
  67. {
  68. int i;
  69. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  70. /* lockdep really cares that we take all of these spinlocks
  71. * in the right order. If any of the locks in the path are not
  72. * currently blocking, it is going to complain. So, make really
  73. * really sure by forcing the path to blocking before we clear
  74. * the path blocking.
  75. */
  76. if (held)
  77. btrfs_set_lock_blocking(held);
  78. btrfs_set_path_blocking(p);
  79. #endif
  80. for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  81. if (p->nodes[i] && p->locks[i])
  82. btrfs_clear_lock_blocking(p->nodes[i]);
  83. }
  84. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  85. if (held)
  86. btrfs_clear_lock_blocking(held);
  87. #endif
  88. }
  89. /* this also releases the path */
  90. void btrfs_free_path(struct btrfs_path *p)
  91. {
  92. if (!p)
  93. return;
  94. btrfs_release_path(p);
  95. kmem_cache_free(btrfs_path_cachep, p);
  96. }
  97. /*
  98. * path release drops references on the extent buffers in the path
  99. * and it drops any locks held by this path
  100. *
  101. * It is safe to call this on paths that no locks or extent buffers held.
  102. */
  103. noinline void btrfs_release_path(struct btrfs_path *p)
  104. {
  105. int i;
  106. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  107. p->slots[i] = 0;
  108. if (!p->nodes[i])
  109. continue;
  110. if (p->locks[i]) {
  111. btrfs_tree_unlock(p->nodes[i]);
  112. p->locks[i] = 0;
  113. }
  114. free_extent_buffer(p->nodes[i]);
  115. p->nodes[i] = NULL;
  116. }
  117. }
  118. /*
  119. * safely gets a reference on the root node of a tree. A lock
  120. * is not taken, so a concurrent writer may put a different node
  121. * at the root of the tree. See btrfs_lock_root_node for the
  122. * looping required.
  123. *
  124. * The extent buffer returned by this has a reference taken, so
  125. * it won't disappear. It may stop being the root of the tree
  126. * at any time because there are no locks held.
  127. */
  128. struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
  129. {
  130. struct extent_buffer *eb;
  131. rcu_read_lock();
  132. eb = rcu_dereference(root->node);
  133. extent_buffer_get(eb);
  134. rcu_read_unlock();
  135. return eb;
  136. }
  137. /* loop around taking references on and locking the root node of the
  138. * tree until you end up with a lock on the root. A locked buffer
  139. * is returned, with a reference held.
  140. */
  141. struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
  142. {
  143. struct extent_buffer *eb;
  144. while (1) {
  145. eb = btrfs_root_node(root);
  146. btrfs_tree_lock(eb);
  147. if (eb == root->node)
  148. break;
  149. btrfs_tree_unlock(eb);
  150. free_extent_buffer(eb);
  151. }
  152. return eb;
  153. }
  154. /* cowonly root (everything not a reference counted cow subvolume), just get
  155. * put onto a simple dirty list. transaction.c walks this to make sure they
  156. * get properly updated on disk.
  157. */
  158. static void add_root_to_dirty_list(struct btrfs_root *root)
  159. {
  160. if (root->track_dirty && list_empty(&root->dirty_list)) {
  161. list_add(&root->dirty_list,
  162. &root->fs_info->dirty_cowonly_roots);
  163. }
  164. }
  165. /*
  166. * used by snapshot creation to make a copy of a root for a tree with
  167. * a given objectid. The buffer with the new root node is returned in
  168. * cow_ret, and this func returns zero on success or a negative error code.
  169. */
  170. int btrfs_copy_root(struct btrfs_trans_handle *trans,
  171. struct btrfs_root *root,
  172. struct extent_buffer *buf,
  173. struct extent_buffer **cow_ret, u64 new_root_objectid)
  174. {
  175. struct extent_buffer *cow;
  176. int ret = 0;
  177. int level;
  178. struct btrfs_disk_key disk_key;
  179. WARN_ON(root->ref_cows && trans->transid !=
  180. root->fs_info->running_transaction->transid);
  181. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  182. level = btrfs_header_level(buf);
  183. if (level == 0)
  184. btrfs_item_key(buf, &disk_key, 0);
  185. else
  186. btrfs_node_key(buf, &disk_key, 0);
  187. cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
  188. new_root_objectid, &disk_key, level,
  189. buf->start, 0);
  190. if (IS_ERR(cow))
  191. return PTR_ERR(cow);
  192. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  193. btrfs_set_header_bytenr(cow, cow->start);
  194. btrfs_set_header_generation(cow, trans->transid);
  195. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  196. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  197. BTRFS_HEADER_FLAG_RELOC);
  198. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  199. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  200. else
  201. btrfs_set_header_owner(cow, new_root_objectid);
  202. write_extent_buffer(cow, root->fs_info->fsid,
  203. (unsigned long)btrfs_header_fsid(cow),
  204. BTRFS_FSID_SIZE);
  205. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  206. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  207. ret = btrfs_inc_ref(trans, root, cow, 1);
  208. else
  209. ret = btrfs_inc_ref(trans, root, cow, 0);
  210. if (ret)
  211. return ret;
  212. btrfs_mark_buffer_dirty(cow);
  213. *cow_ret = cow;
  214. return 0;
  215. }
  216. /*
  217. * check if the tree block can be shared by multiple trees
  218. */
  219. int btrfs_block_can_be_shared(struct btrfs_root *root,
  220. struct extent_buffer *buf)
  221. {
  222. /*
  223. * Tree blocks not in refernece counted trees and tree roots
  224. * are never shared. If a block was allocated after the last
  225. * snapshot and the block was not allocated by tree relocation,
  226. * we know the block is not shared.
  227. */
  228. if (root->ref_cows &&
  229. buf != root->node && buf != root->commit_root &&
  230. (btrfs_header_generation(buf) <=
  231. btrfs_root_last_snapshot(&root->root_item) ||
  232. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
  233. return 1;
  234. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  235. if (root->ref_cows &&
  236. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  237. return 1;
  238. #endif
  239. return 0;
  240. }
  241. static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
  242. struct btrfs_root *root,
  243. struct extent_buffer *buf,
  244. struct extent_buffer *cow,
  245. int *last_ref)
  246. {
  247. u64 refs;
  248. u64 owner;
  249. u64 flags;
  250. u64 new_flags = 0;
  251. int ret;
  252. /*
  253. * Backrefs update rules:
  254. *
  255. * Always use full backrefs for extent pointers in tree block
  256. * allocated by tree relocation.
  257. *
  258. * If a shared tree block is no longer referenced by its owner
  259. * tree (btrfs_header_owner(buf) == root->root_key.objectid),
  260. * use full backrefs for extent pointers in tree block.
  261. *
  262. * If a tree block is been relocating
  263. * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
  264. * use full backrefs for extent pointers in tree block.
  265. * The reason for this is some operations (such as drop tree)
  266. * are only allowed for blocks use full backrefs.
  267. */
  268. if (btrfs_block_can_be_shared(root, buf)) {
  269. ret = btrfs_lookup_extent_info(trans, root, buf->start,
  270. buf->len, &refs, &flags);
  271. BUG_ON(ret);
  272. BUG_ON(refs == 0);
  273. } else {
  274. refs = 1;
  275. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  276. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  277. flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  278. else
  279. flags = 0;
  280. }
  281. owner = btrfs_header_owner(buf);
  282. BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
  283. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
  284. if (refs > 1) {
  285. if ((owner == root->root_key.objectid ||
  286. root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
  287. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
  288. ret = btrfs_inc_ref(trans, root, buf, 1);
  289. BUG_ON(ret);
  290. if (root->root_key.objectid ==
  291. BTRFS_TREE_RELOC_OBJECTID) {
  292. ret = btrfs_dec_ref(trans, root, buf, 0);
  293. BUG_ON(ret);
  294. ret = btrfs_inc_ref(trans, root, cow, 1);
  295. BUG_ON(ret);
  296. }
  297. new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
  298. } else {
  299. if (root->root_key.objectid ==
  300. BTRFS_TREE_RELOC_OBJECTID)
  301. ret = btrfs_inc_ref(trans, root, cow, 1);
  302. else
  303. ret = btrfs_inc_ref(trans, root, cow, 0);
  304. BUG_ON(ret);
  305. }
  306. if (new_flags != 0) {
  307. ret = btrfs_set_disk_extent_flags(trans, root,
  308. buf->start,
  309. buf->len,
  310. new_flags, 0);
  311. BUG_ON(ret);
  312. }
  313. } else {
  314. if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
  315. if (root->root_key.objectid ==
  316. BTRFS_TREE_RELOC_OBJECTID)
  317. ret = btrfs_inc_ref(trans, root, cow, 1);
  318. else
  319. ret = btrfs_inc_ref(trans, root, cow, 0);
  320. BUG_ON(ret);
  321. ret = btrfs_dec_ref(trans, root, buf, 1);
  322. BUG_ON(ret);
  323. }
  324. clean_tree_block(trans, root, buf);
  325. *last_ref = 1;
  326. }
  327. return 0;
  328. }
  329. /*
  330. * does the dirty work in cow of a single block. The parent block (if
  331. * supplied) is updated to point to the new cow copy. The new buffer is marked
  332. * dirty and returned locked. If you modify the block it needs to be marked
  333. * dirty again.
  334. *
  335. * search_start -- an allocation hint for the new block
  336. *
  337. * empty_size -- a hint that you plan on doing more cow. This is the size in
  338. * bytes the allocator should try to find free next to the block it returns.
  339. * This is just a hint and may be ignored by the allocator.
  340. */
  341. static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
  342. struct btrfs_root *root,
  343. struct extent_buffer *buf,
  344. struct extent_buffer *parent, int parent_slot,
  345. struct extent_buffer **cow_ret,
  346. u64 search_start, u64 empty_size)
  347. {
  348. struct btrfs_disk_key disk_key;
  349. struct extent_buffer *cow;
  350. int level;
  351. int last_ref = 0;
  352. int unlock_orig = 0;
  353. u64 parent_start;
  354. if (*cow_ret == buf)
  355. unlock_orig = 1;
  356. btrfs_assert_tree_locked(buf);
  357. WARN_ON(root->ref_cows && trans->transid !=
  358. root->fs_info->running_transaction->transid);
  359. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  360. level = btrfs_header_level(buf);
  361. if (level == 0)
  362. btrfs_item_key(buf, &disk_key, 0);
  363. else
  364. btrfs_node_key(buf, &disk_key, 0);
  365. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  366. if (parent)
  367. parent_start = parent->start;
  368. else
  369. parent_start = 0;
  370. } else
  371. parent_start = 0;
  372. cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
  373. root->root_key.objectid, &disk_key,
  374. level, search_start, empty_size);
  375. if (IS_ERR(cow))
  376. return PTR_ERR(cow);
  377. /* cow is set to blocking by btrfs_init_new_buffer */
  378. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  379. btrfs_set_header_bytenr(cow, cow->start);
  380. btrfs_set_header_generation(cow, trans->transid);
  381. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  382. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  383. BTRFS_HEADER_FLAG_RELOC);
  384. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  385. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  386. else
  387. btrfs_set_header_owner(cow, root->root_key.objectid);
  388. write_extent_buffer(cow, root->fs_info->fsid,
  389. (unsigned long)btrfs_header_fsid(cow),
  390. BTRFS_FSID_SIZE);
  391. update_ref_for_cow(trans, root, buf, cow, &last_ref);
  392. if (root->ref_cows)
  393. btrfs_reloc_cow_block(trans, root, buf, cow);
  394. if (buf == root->node) {
  395. WARN_ON(parent && parent != buf);
  396. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  397. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  398. parent_start = buf->start;
  399. else
  400. parent_start = 0;
  401. extent_buffer_get(cow);
  402. rcu_assign_pointer(root->node, cow);
  403. btrfs_free_tree_block(trans, root, buf, parent_start,
  404. last_ref);
  405. free_extent_buffer(buf);
  406. add_root_to_dirty_list(root);
  407. } else {
  408. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  409. parent_start = parent->start;
  410. else
  411. parent_start = 0;
  412. WARN_ON(trans->transid != btrfs_header_generation(parent));
  413. btrfs_set_node_blockptr(parent, parent_slot,
  414. cow->start);
  415. btrfs_set_node_ptr_generation(parent, parent_slot,
  416. trans->transid);
  417. btrfs_mark_buffer_dirty(parent);
  418. btrfs_free_tree_block(trans, root, buf, parent_start,
  419. last_ref);
  420. }
  421. if (unlock_orig)
  422. btrfs_tree_unlock(buf);
  423. free_extent_buffer(buf);
  424. btrfs_mark_buffer_dirty(cow);
  425. *cow_ret = cow;
  426. return 0;
  427. }
  428. static inline int should_cow_block(struct btrfs_trans_handle *trans,
  429. struct btrfs_root *root,
  430. struct extent_buffer *buf)
  431. {
  432. if (btrfs_header_generation(buf) == trans->transid &&
  433. !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
  434. !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
  435. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
  436. return 0;
  437. return 1;
  438. }
  439. /*
  440. * cows a single block, see __btrfs_cow_block for the real work.
  441. * This version of it has extra checks so that a block isn't cow'd more than
  442. * once per transaction, as long as it hasn't been written yet
  443. */
  444. noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
  445. struct btrfs_root *root, struct extent_buffer *buf,
  446. struct extent_buffer *parent, int parent_slot,
  447. struct extent_buffer **cow_ret)
  448. {
  449. u64 search_start;
  450. int ret;
  451. if (trans->transaction != root->fs_info->running_transaction) {
  452. printk(KERN_CRIT "trans %llu running %llu\n",
  453. (unsigned long long)trans->transid,
  454. (unsigned long long)
  455. root->fs_info->running_transaction->transid);
  456. WARN_ON(1);
  457. }
  458. if (trans->transid != root->fs_info->generation) {
  459. printk(KERN_CRIT "trans %llu running %llu\n",
  460. (unsigned long long)trans->transid,
  461. (unsigned long long)root->fs_info->generation);
  462. WARN_ON(1);
  463. }
  464. if (!should_cow_block(trans, root, buf)) {
  465. *cow_ret = buf;
  466. return 0;
  467. }
  468. search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
  469. if (parent)
  470. btrfs_set_lock_blocking(parent);
  471. btrfs_set_lock_blocking(buf);
  472. ret = __btrfs_cow_block(trans, root, buf, parent,
  473. parent_slot, cow_ret, search_start, 0);
  474. trace_btrfs_cow_block(root, buf, *cow_ret);
  475. return ret;
  476. }
  477. /*
  478. * helper function for defrag to decide if two blocks pointed to by a
  479. * node are actually close by
  480. */
  481. static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
  482. {
  483. if (blocknr < other && other - (blocknr + blocksize) < 32768)
  484. return 1;
  485. if (blocknr > other && blocknr - (other + blocksize) < 32768)
  486. return 1;
  487. return 0;
  488. }
  489. /*
  490. * compare two keys in a memcmp fashion
  491. */
  492. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  493. {
  494. struct btrfs_key k1;
  495. btrfs_disk_key_to_cpu(&k1, disk);
  496. return btrfs_comp_cpu_keys(&k1, k2);
  497. }
  498. /*
  499. * same as comp_keys only with two btrfs_key's
  500. */
  501. int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
  502. {
  503. if (k1->objectid > k2->objectid)
  504. return 1;
  505. if (k1->objectid < k2->objectid)
  506. return -1;
  507. if (k1->type > k2->type)
  508. return 1;
  509. if (k1->type < k2->type)
  510. return -1;
  511. if (k1->offset > k2->offset)
  512. return 1;
  513. if (k1->offset < k2->offset)
  514. return -1;
  515. return 0;
  516. }
  517. /*
  518. * this is used by the defrag code to go through all the
  519. * leaves pointed to by a node and reallocate them so that
  520. * disk order is close to key order
  521. */
  522. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  523. struct btrfs_root *root, struct extent_buffer *parent,
  524. int start_slot, int cache_only, u64 *last_ret,
  525. struct btrfs_key *progress)
  526. {
  527. struct extent_buffer *cur;
  528. u64 blocknr;
  529. u64 gen;
  530. u64 search_start = *last_ret;
  531. u64 last_block = 0;
  532. u64 other;
  533. u32 parent_nritems;
  534. int end_slot;
  535. int i;
  536. int err = 0;
  537. int parent_level;
  538. int uptodate;
  539. u32 blocksize;
  540. int progress_passed = 0;
  541. struct btrfs_disk_key disk_key;
  542. parent_level = btrfs_header_level(parent);
  543. if (cache_only && parent_level != 1)
  544. return 0;
  545. if (trans->transaction != root->fs_info->running_transaction)
  546. WARN_ON(1);
  547. if (trans->transid != root->fs_info->generation)
  548. WARN_ON(1);
  549. parent_nritems = btrfs_header_nritems(parent);
  550. blocksize = btrfs_level_size(root, parent_level - 1);
  551. end_slot = parent_nritems;
  552. if (parent_nritems == 1)
  553. return 0;
  554. btrfs_set_lock_blocking(parent);
  555. for (i = start_slot; i < end_slot; i++) {
  556. int close = 1;
  557. if (!parent->map_token) {
  558. map_extent_buffer(parent,
  559. btrfs_node_key_ptr_offset(i),
  560. sizeof(struct btrfs_key_ptr),
  561. &parent->map_token, &parent->kaddr,
  562. &parent->map_start, &parent->map_len,
  563. KM_USER1);
  564. }
  565. btrfs_node_key(parent, &disk_key, i);
  566. if (!progress_passed && comp_keys(&disk_key, progress) < 0)
  567. continue;
  568. progress_passed = 1;
  569. blocknr = btrfs_node_blockptr(parent, i);
  570. gen = btrfs_node_ptr_generation(parent, i);
  571. if (last_block == 0)
  572. last_block = blocknr;
  573. if (i > 0) {
  574. other = btrfs_node_blockptr(parent, i - 1);
  575. close = close_blocks(blocknr, other, blocksize);
  576. }
  577. if (!close && i < end_slot - 2) {
  578. other = btrfs_node_blockptr(parent, i + 1);
  579. close = close_blocks(blocknr, other, blocksize);
  580. }
  581. if (close) {
  582. last_block = blocknr;
  583. continue;
  584. }
  585. if (parent->map_token) {
  586. unmap_extent_buffer(parent, parent->map_token,
  587. KM_USER1);
  588. parent->map_token = NULL;
  589. }
  590. cur = btrfs_find_tree_block(root, blocknr, blocksize);
  591. if (cur)
  592. uptodate = btrfs_buffer_uptodate(cur, gen);
  593. else
  594. uptodate = 0;
  595. if (!cur || !uptodate) {
  596. if (cache_only) {
  597. free_extent_buffer(cur);
  598. continue;
  599. }
  600. if (!cur) {
  601. cur = read_tree_block(root, blocknr,
  602. blocksize, gen);
  603. if (!cur)
  604. return -EIO;
  605. } else if (!uptodate) {
  606. btrfs_read_buffer(cur, gen);
  607. }
  608. }
  609. if (search_start == 0)
  610. search_start = last_block;
  611. btrfs_tree_lock(cur);
  612. btrfs_set_lock_blocking(cur);
  613. err = __btrfs_cow_block(trans, root, cur, parent, i,
  614. &cur, search_start,
  615. min(16 * blocksize,
  616. (end_slot - i) * blocksize));
  617. if (err) {
  618. btrfs_tree_unlock(cur);
  619. free_extent_buffer(cur);
  620. break;
  621. }
  622. search_start = cur->start;
  623. last_block = cur->start;
  624. *last_ret = search_start;
  625. btrfs_tree_unlock(cur);
  626. free_extent_buffer(cur);
  627. }
  628. if (parent->map_token) {
  629. unmap_extent_buffer(parent, parent->map_token,
  630. KM_USER1);
  631. parent->map_token = NULL;
  632. }
  633. return err;
  634. }
  635. /*
  636. * The leaf data grows from end-to-front in the node.
  637. * this returns the address of the start of the last item,
  638. * which is the stop of the leaf data stack
  639. */
  640. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  641. struct extent_buffer *leaf)
  642. {
  643. u32 nr = btrfs_header_nritems(leaf);
  644. if (nr == 0)
  645. return BTRFS_LEAF_DATA_SIZE(root);
  646. return btrfs_item_offset_nr(leaf, nr - 1);
  647. }
  648. /*
  649. * search for key in the extent_buffer. The items start at offset p,
  650. * and they are item_size apart. There are 'max' items in p.
  651. *
  652. * the slot in the array is returned via slot, and it points to
  653. * the place where you would insert key if it is not found in
  654. * the array.
  655. *
  656. * slot may point to max if the key is bigger than all of the keys
  657. */
  658. static noinline int generic_bin_search(struct extent_buffer *eb,
  659. unsigned long p,
  660. int item_size, struct btrfs_key *key,
  661. int max, int *slot)
  662. {
  663. int low = 0;
  664. int high = max;
  665. int mid;
  666. int ret;
  667. struct btrfs_disk_key *tmp = NULL;
  668. struct btrfs_disk_key unaligned;
  669. unsigned long offset;
  670. char *map_token = NULL;
  671. char *kaddr = NULL;
  672. unsigned long map_start = 0;
  673. unsigned long map_len = 0;
  674. int err;
  675. while (low < high) {
  676. mid = (low + high) / 2;
  677. offset = p + mid * item_size;
  678. if (!map_token || offset < map_start ||
  679. (offset + sizeof(struct btrfs_disk_key)) >
  680. map_start + map_len) {
  681. if (map_token) {
  682. unmap_extent_buffer(eb, map_token, KM_USER0);
  683. map_token = NULL;
  684. }
  685. err = map_private_extent_buffer(eb, offset,
  686. sizeof(struct btrfs_disk_key),
  687. &map_token, &kaddr,
  688. &map_start, &map_len, KM_USER0);
  689. if (!err) {
  690. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  691. map_start);
  692. } else {
  693. read_extent_buffer(eb, &unaligned,
  694. offset, sizeof(unaligned));
  695. tmp = &unaligned;
  696. }
  697. } else {
  698. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  699. map_start);
  700. }
  701. ret = comp_keys(tmp, key);
  702. if (ret < 0)
  703. low = mid + 1;
  704. else if (ret > 0)
  705. high = mid;
  706. else {
  707. *slot = mid;
  708. if (map_token)
  709. unmap_extent_buffer(eb, map_token, KM_USER0);
  710. return 0;
  711. }
  712. }
  713. *slot = low;
  714. if (map_token)
  715. unmap_extent_buffer(eb, map_token, KM_USER0);
  716. return 1;
  717. }
  718. /*
  719. * simple bin_search frontend that does the right thing for
  720. * leaves vs nodes
  721. */
  722. static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  723. int level, int *slot)
  724. {
  725. if (level == 0) {
  726. return generic_bin_search(eb,
  727. offsetof(struct btrfs_leaf, items),
  728. sizeof(struct btrfs_item),
  729. key, btrfs_header_nritems(eb),
  730. slot);
  731. } else {
  732. return generic_bin_search(eb,
  733. offsetof(struct btrfs_node, ptrs),
  734. sizeof(struct btrfs_key_ptr),
  735. key, btrfs_header_nritems(eb),
  736. slot);
  737. }
  738. return -1;
  739. }
  740. int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  741. int level, int *slot)
  742. {
  743. return bin_search(eb, key, level, slot);
  744. }
  745. static void root_add_used(struct btrfs_root *root, u32 size)
  746. {
  747. spin_lock(&root->accounting_lock);
  748. btrfs_set_root_used(&root->root_item,
  749. btrfs_root_used(&root->root_item) + size);
  750. spin_unlock(&root->accounting_lock);
  751. }
  752. static void root_sub_used(struct btrfs_root *root, u32 size)
  753. {
  754. spin_lock(&root->accounting_lock);
  755. btrfs_set_root_used(&root->root_item,
  756. btrfs_root_used(&root->root_item) - size);
  757. spin_unlock(&root->accounting_lock);
  758. }
  759. /* given a node and slot number, this reads the blocks it points to. The
  760. * extent buffer is returned with a reference taken (but unlocked).
  761. * NULL is returned on error.
  762. */
  763. static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
  764. struct extent_buffer *parent, int slot)
  765. {
  766. int level = btrfs_header_level(parent);
  767. if (slot < 0)
  768. return NULL;
  769. if (slot >= btrfs_header_nritems(parent))
  770. return NULL;
  771. BUG_ON(level == 0);
  772. return read_tree_block(root, btrfs_node_blockptr(parent, slot),
  773. btrfs_level_size(root, level - 1),
  774. btrfs_node_ptr_generation(parent, slot));
  775. }
  776. /*
  777. * node level balancing, used to make sure nodes are in proper order for
  778. * item deletion. We balance from the top down, so we have to make sure
  779. * that a deletion won't leave an node completely empty later on.
  780. */
  781. static noinline int balance_level(struct btrfs_trans_handle *trans,
  782. struct btrfs_root *root,
  783. struct btrfs_path *path, int level)
  784. {
  785. struct extent_buffer *right = NULL;
  786. struct extent_buffer *mid;
  787. struct extent_buffer *left = NULL;
  788. struct extent_buffer *parent = NULL;
  789. int ret = 0;
  790. int wret;
  791. int pslot;
  792. int orig_slot = path->slots[level];
  793. u64 orig_ptr;
  794. if (level == 0)
  795. return 0;
  796. mid = path->nodes[level];
  797. WARN_ON(!path->locks[level]);
  798. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  799. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  800. if (level < BTRFS_MAX_LEVEL - 1)
  801. parent = path->nodes[level + 1];
  802. pslot = path->slots[level + 1];
  803. /*
  804. * deal with the case where there is only one pointer in the root
  805. * by promoting the node below to a root
  806. */
  807. if (!parent) {
  808. struct extent_buffer *child;
  809. if (btrfs_header_nritems(mid) != 1)
  810. return 0;
  811. /* promote the child to a root */
  812. child = read_node_slot(root, mid, 0);
  813. BUG_ON(!child);
  814. btrfs_tree_lock(child);
  815. btrfs_set_lock_blocking(child);
  816. ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
  817. if (ret) {
  818. btrfs_tree_unlock(child);
  819. free_extent_buffer(child);
  820. goto enospc;
  821. }
  822. rcu_assign_pointer(root->node, child);
  823. add_root_to_dirty_list(root);
  824. btrfs_tree_unlock(child);
  825. path->locks[level] = 0;
  826. path->nodes[level] = NULL;
  827. clean_tree_block(trans, root, mid);
  828. btrfs_tree_unlock(mid);
  829. /* once for the path */
  830. free_extent_buffer(mid);
  831. root_sub_used(root, mid->len);
  832. btrfs_free_tree_block(trans, root, mid, 0, 1);
  833. /* once for the root ptr */
  834. free_extent_buffer(mid);
  835. return 0;
  836. }
  837. if (btrfs_header_nritems(mid) >
  838. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  839. return 0;
  840. btrfs_header_nritems(mid);
  841. left = read_node_slot(root, parent, pslot - 1);
  842. if (left) {
  843. btrfs_tree_lock(left);
  844. btrfs_set_lock_blocking(left);
  845. wret = btrfs_cow_block(trans, root, left,
  846. parent, pslot - 1, &left);
  847. if (wret) {
  848. ret = wret;
  849. goto enospc;
  850. }
  851. }
  852. right = read_node_slot(root, parent, pslot + 1);
  853. if (right) {
  854. btrfs_tree_lock(right);
  855. btrfs_set_lock_blocking(right);
  856. wret = btrfs_cow_block(trans, root, right,
  857. parent, pslot + 1, &right);
  858. if (wret) {
  859. ret = wret;
  860. goto enospc;
  861. }
  862. }
  863. /* first, try to make some room in the middle buffer */
  864. if (left) {
  865. orig_slot += btrfs_header_nritems(left);
  866. wret = push_node_left(trans, root, left, mid, 1);
  867. if (wret < 0)
  868. ret = wret;
  869. btrfs_header_nritems(mid);
  870. }
  871. /*
  872. * then try to empty the right most buffer into the middle
  873. */
  874. if (right) {
  875. wret = push_node_left(trans, root, mid, right, 1);
  876. if (wret < 0 && wret != -ENOSPC)
  877. ret = wret;
  878. if (btrfs_header_nritems(right) == 0) {
  879. clean_tree_block(trans, root, right);
  880. btrfs_tree_unlock(right);
  881. wret = del_ptr(trans, root, path, level + 1, pslot +
  882. 1);
  883. if (wret)
  884. ret = wret;
  885. root_sub_used(root, right->len);
  886. btrfs_free_tree_block(trans, root, right, 0, 1);
  887. free_extent_buffer(right);
  888. right = NULL;
  889. } else {
  890. struct btrfs_disk_key right_key;
  891. btrfs_node_key(right, &right_key, 0);
  892. btrfs_set_node_key(parent, &right_key, pslot + 1);
  893. btrfs_mark_buffer_dirty(parent);
  894. }
  895. }
  896. if (btrfs_header_nritems(mid) == 1) {
  897. /*
  898. * we're not allowed to leave a node with one item in the
  899. * tree during a delete. A deletion from lower in the tree
  900. * could try to delete the only pointer in this node.
  901. * So, pull some keys from the left.
  902. * There has to be a left pointer at this point because
  903. * otherwise we would have pulled some pointers from the
  904. * right
  905. */
  906. BUG_ON(!left);
  907. wret = balance_node_right(trans, root, mid, left);
  908. if (wret < 0) {
  909. ret = wret;
  910. goto enospc;
  911. }
  912. if (wret == 1) {
  913. wret = push_node_left(trans, root, left, mid, 1);
  914. if (wret < 0)
  915. ret = wret;
  916. }
  917. BUG_ON(wret == 1);
  918. }
  919. if (btrfs_header_nritems(mid) == 0) {
  920. clean_tree_block(trans, root, mid);
  921. btrfs_tree_unlock(mid);
  922. wret = del_ptr(trans, root, path, level + 1, pslot);
  923. if (wret)
  924. ret = wret;
  925. root_sub_used(root, mid->len);
  926. btrfs_free_tree_block(trans, root, mid, 0, 1);
  927. free_extent_buffer(mid);
  928. mid = NULL;
  929. } else {
  930. /* update the parent key to reflect our changes */
  931. struct btrfs_disk_key mid_key;
  932. btrfs_node_key(mid, &mid_key, 0);
  933. btrfs_set_node_key(parent, &mid_key, pslot);
  934. btrfs_mark_buffer_dirty(parent);
  935. }
  936. /* update the path */
  937. if (left) {
  938. if (btrfs_header_nritems(left) > orig_slot) {
  939. extent_buffer_get(left);
  940. /* left was locked after cow */
  941. path->nodes[level] = left;
  942. path->slots[level + 1] -= 1;
  943. path->slots[level] = orig_slot;
  944. if (mid) {
  945. btrfs_tree_unlock(mid);
  946. free_extent_buffer(mid);
  947. }
  948. } else {
  949. orig_slot -= btrfs_header_nritems(left);
  950. path->slots[level] = orig_slot;
  951. }
  952. }
  953. /* double check we haven't messed things up */
  954. if (orig_ptr !=
  955. btrfs_node_blockptr(path->nodes[level], path->slots[level]))
  956. BUG();
  957. enospc:
  958. if (right) {
  959. btrfs_tree_unlock(right);
  960. free_extent_buffer(right);
  961. }
  962. if (left) {
  963. if (path->nodes[level] != left)
  964. btrfs_tree_unlock(left);
  965. free_extent_buffer(left);
  966. }
  967. return ret;
  968. }
  969. /* Node balancing for insertion. Here we only split or push nodes around
  970. * when they are completely full. This is also done top down, so we
  971. * have to be pessimistic.
  972. */
  973. static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
  974. struct btrfs_root *root,
  975. struct btrfs_path *path, int level)
  976. {
  977. struct extent_buffer *right = NULL;
  978. struct extent_buffer *mid;
  979. struct extent_buffer *left = NULL;
  980. struct extent_buffer *parent = NULL;
  981. int ret = 0;
  982. int wret;
  983. int pslot;
  984. int orig_slot = path->slots[level];
  985. if (level == 0)
  986. return 1;
  987. mid = path->nodes[level];
  988. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  989. if (level < BTRFS_MAX_LEVEL - 1)
  990. parent = path->nodes[level + 1];
  991. pslot = path->slots[level + 1];
  992. if (!parent)
  993. return 1;
  994. left = read_node_slot(root, parent, pslot - 1);
  995. /* first, try to make some room in the middle buffer */
  996. if (left) {
  997. u32 left_nr;
  998. btrfs_tree_lock(left);
  999. btrfs_set_lock_blocking(left);
  1000. left_nr = btrfs_header_nritems(left);
  1001. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1002. wret = 1;
  1003. } else {
  1004. ret = btrfs_cow_block(trans, root, left, parent,
  1005. pslot - 1, &left);
  1006. if (ret)
  1007. wret = 1;
  1008. else {
  1009. wret = push_node_left(trans, root,
  1010. left, mid, 0);
  1011. }
  1012. }
  1013. if (wret < 0)
  1014. ret = wret;
  1015. if (wret == 0) {
  1016. struct btrfs_disk_key disk_key;
  1017. orig_slot += left_nr;
  1018. btrfs_node_key(mid, &disk_key, 0);
  1019. btrfs_set_node_key(parent, &disk_key, pslot);
  1020. btrfs_mark_buffer_dirty(parent);
  1021. if (btrfs_header_nritems(left) > orig_slot) {
  1022. path->nodes[level] = left;
  1023. path->slots[level + 1] -= 1;
  1024. path->slots[level] = orig_slot;
  1025. btrfs_tree_unlock(mid);
  1026. free_extent_buffer(mid);
  1027. } else {
  1028. orig_slot -=
  1029. btrfs_header_nritems(left);
  1030. path->slots[level] = orig_slot;
  1031. btrfs_tree_unlock(left);
  1032. free_extent_buffer(left);
  1033. }
  1034. return 0;
  1035. }
  1036. btrfs_tree_unlock(left);
  1037. free_extent_buffer(left);
  1038. }
  1039. right = read_node_slot(root, parent, pslot + 1);
  1040. /*
  1041. * then try to empty the right most buffer into the middle
  1042. */
  1043. if (right) {
  1044. u32 right_nr;
  1045. btrfs_tree_lock(right);
  1046. btrfs_set_lock_blocking(right);
  1047. right_nr = btrfs_header_nritems(right);
  1048. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1049. wret = 1;
  1050. } else {
  1051. ret = btrfs_cow_block(trans, root, right,
  1052. parent, pslot + 1,
  1053. &right);
  1054. if (ret)
  1055. wret = 1;
  1056. else {
  1057. wret = balance_node_right(trans, root,
  1058. right, mid);
  1059. }
  1060. }
  1061. if (wret < 0)
  1062. ret = wret;
  1063. if (wret == 0) {
  1064. struct btrfs_disk_key disk_key;
  1065. btrfs_node_key(right, &disk_key, 0);
  1066. btrfs_set_node_key(parent, &disk_key, pslot + 1);
  1067. btrfs_mark_buffer_dirty(parent);
  1068. if (btrfs_header_nritems(mid) <= orig_slot) {
  1069. path->nodes[level] = right;
  1070. path->slots[level + 1] += 1;
  1071. path->slots[level] = orig_slot -
  1072. btrfs_header_nritems(mid);
  1073. btrfs_tree_unlock(mid);
  1074. free_extent_buffer(mid);
  1075. } else {
  1076. btrfs_tree_unlock(right);
  1077. free_extent_buffer(right);
  1078. }
  1079. return 0;
  1080. }
  1081. btrfs_tree_unlock(right);
  1082. free_extent_buffer(right);
  1083. }
  1084. return 1;
  1085. }
  1086. /*
  1087. * readahead one full node of leaves, finding things that are close
  1088. * to the block in 'slot', and triggering ra on them.
  1089. */
  1090. static void reada_for_search(struct btrfs_root *root,
  1091. struct btrfs_path *path,
  1092. int level, int slot, u64 objectid)
  1093. {
  1094. struct extent_buffer *node;
  1095. struct btrfs_disk_key disk_key;
  1096. u32 nritems;
  1097. u64 search;
  1098. u64 target;
  1099. u64 nread = 0;
  1100. u64 gen;
  1101. int direction = path->reada;
  1102. struct extent_buffer *eb;
  1103. u32 nr;
  1104. u32 blocksize;
  1105. u32 nscan = 0;
  1106. if (level != 1)
  1107. return;
  1108. if (!path->nodes[level])
  1109. return;
  1110. node = path->nodes[level];
  1111. search = btrfs_node_blockptr(node, slot);
  1112. blocksize = btrfs_level_size(root, level - 1);
  1113. eb = btrfs_find_tree_block(root, search, blocksize);
  1114. if (eb) {
  1115. free_extent_buffer(eb);
  1116. return;
  1117. }
  1118. target = search;
  1119. nritems = btrfs_header_nritems(node);
  1120. nr = slot;
  1121. while (1) {
  1122. if (!node->map_token) {
  1123. unsigned long offset = btrfs_node_key_ptr_offset(nr);
  1124. map_private_extent_buffer(node, offset,
  1125. sizeof(struct btrfs_key_ptr),
  1126. &node->map_token,
  1127. &node->kaddr,
  1128. &node->map_start,
  1129. &node->map_len, KM_USER1);
  1130. }
  1131. if (direction < 0) {
  1132. if (nr == 0)
  1133. break;
  1134. nr--;
  1135. } else if (direction > 0) {
  1136. nr++;
  1137. if (nr >= nritems)
  1138. break;
  1139. }
  1140. if (path->reada < 0 && objectid) {
  1141. btrfs_node_key(node, &disk_key, nr);
  1142. if (btrfs_disk_key_objectid(&disk_key) != objectid)
  1143. break;
  1144. }
  1145. search = btrfs_node_blockptr(node, nr);
  1146. if ((search <= target && target - search <= 65536) ||
  1147. (search > target && search - target <= 65536)) {
  1148. gen = btrfs_node_ptr_generation(node, nr);
  1149. if (node->map_token) {
  1150. unmap_extent_buffer(node, node->map_token,
  1151. KM_USER1);
  1152. node->map_token = NULL;
  1153. }
  1154. readahead_tree_block(root, search, blocksize, gen);
  1155. nread += blocksize;
  1156. }
  1157. nscan++;
  1158. if ((nread > 65536 || nscan > 32))
  1159. break;
  1160. }
  1161. if (node->map_token) {
  1162. unmap_extent_buffer(node, node->map_token, KM_USER1);
  1163. node->map_token = NULL;
  1164. }
  1165. }
  1166. /*
  1167. * returns -EAGAIN if it had to drop the path, or zero if everything was in
  1168. * cache
  1169. */
  1170. static noinline int reada_for_balance(struct btrfs_root *root,
  1171. struct btrfs_path *path, int level)
  1172. {
  1173. int slot;
  1174. int nritems;
  1175. struct extent_buffer *parent;
  1176. struct extent_buffer *eb;
  1177. u64 gen;
  1178. u64 block1 = 0;
  1179. u64 block2 = 0;
  1180. int ret = 0;
  1181. int blocksize;
  1182. parent = path->nodes[level + 1];
  1183. if (!parent)
  1184. return 0;
  1185. nritems = btrfs_header_nritems(parent);
  1186. slot = path->slots[level + 1];
  1187. blocksize = btrfs_level_size(root, level);
  1188. if (slot > 0) {
  1189. block1 = btrfs_node_blockptr(parent, slot - 1);
  1190. gen = btrfs_node_ptr_generation(parent, slot - 1);
  1191. eb = btrfs_find_tree_block(root, block1, blocksize);
  1192. if (eb && btrfs_buffer_uptodate(eb, gen))
  1193. block1 = 0;
  1194. free_extent_buffer(eb);
  1195. }
  1196. if (slot + 1 < nritems) {
  1197. block2 = btrfs_node_blockptr(parent, slot + 1);
  1198. gen = btrfs_node_ptr_generation(parent, slot + 1);
  1199. eb = btrfs_find_tree_block(root, block2, blocksize);
  1200. if (eb && btrfs_buffer_uptodate(eb, gen))
  1201. block2 = 0;
  1202. free_extent_buffer(eb);
  1203. }
  1204. if (block1 || block2) {
  1205. ret = -EAGAIN;
  1206. /* release the whole path */
  1207. btrfs_release_path(path);
  1208. /* read the blocks */
  1209. if (block1)
  1210. readahead_tree_block(root, block1, blocksize, 0);
  1211. if (block2)
  1212. readahead_tree_block(root, block2, blocksize, 0);
  1213. if (block1) {
  1214. eb = read_tree_block(root, block1, blocksize, 0);
  1215. free_extent_buffer(eb);
  1216. }
  1217. if (block2) {
  1218. eb = read_tree_block(root, block2, blocksize, 0);
  1219. free_extent_buffer(eb);
  1220. }
  1221. }
  1222. return ret;
  1223. }
  1224. /*
  1225. * when we walk down the tree, it is usually safe to unlock the higher layers
  1226. * in the tree. The exceptions are when our path goes through slot 0, because
  1227. * operations on the tree might require changing key pointers higher up in the
  1228. * tree.
  1229. *
  1230. * callers might also have set path->keep_locks, which tells this code to keep
  1231. * the lock if the path points to the last slot in the block. This is part of
  1232. * walking through the tree, and selecting the next slot in the higher block.
  1233. *
  1234. * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
  1235. * if lowest_unlock is 1, level 0 won't be unlocked
  1236. */
  1237. static noinline void unlock_up(struct btrfs_path *path, int level,
  1238. int lowest_unlock)
  1239. {
  1240. int i;
  1241. int skip_level = level;
  1242. int no_skips = 0;
  1243. struct extent_buffer *t;
  1244. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1245. if (!path->nodes[i])
  1246. break;
  1247. if (!path->locks[i])
  1248. break;
  1249. if (!no_skips && path->slots[i] == 0) {
  1250. skip_level = i + 1;
  1251. continue;
  1252. }
  1253. if (!no_skips && path->keep_locks) {
  1254. u32 nritems;
  1255. t = path->nodes[i];
  1256. nritems = btrfs_header_nritems(t);
  1257. if (nritems < 1 || path->slots[i] >= nritems - 1) {
  1258. skip_level = i + 1;
  1259. continue;
  1260. }
  1261. }
  1262. if (skip_level < i && i >= lowest_unlock)
  1263. no_skips = 1;
  1264. t = path->nodes[i];
  1265. if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
  1266. btrfs_tree_unlock(t);
  1267. path->locks[i] = 0;
  1268. }
  1269. }
  1270. }
  1271. /*
  1272. * This releases any locks held in the path starting at level and
  1273. * going all the way up to the root.
  1274. *
  1275. * btrfs_search_slot will keep the lock held on higher nodes in a few
  1276. * corner cases, such as COW of the block at slot zero in the node. This
  1277. * ignores those rules, and it should only be called when there are no
  1278. * more updates to be done higher up in the tree.
  1279. */
  1280. noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
  1281. {
  1282. int i;
  1283. if (path->keep_locks)
  1284. return;
  1285. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1286. if (!path->nodes[i])
  1287. continue;
  1288. if (!path->locks[i])
  1289. continue;
  1290. btrfs_tree_unlock(path->nodes[i]);
  1291. path->locks[i] = 0;
  1292. }
  1293. }
  1294. /*
  1295. * helper function for btrfs_search_slot. The goal is to find a block
  1296. * in cache without setting the path to blocking. If we find the block
  1297. * we return zero and the path is unchanged.
  1298. *
  1299. * If we can't find the block, we set the path blocking and do some
  1300. * reada. -EAGAIN is returned and the search must be repeated.
  1301. */
  1302. static int
  1303. read_block_for_search(struct btrfs_trans_handle *trans,
  1304. struct btrfs_root *root, struct btrfs_path *p,
  1305. struct extent_buffer **eb_ret, int level, int slot,
  1306. struct btrfs_key *key)
  1307. {
  1308. u64 blocknr;
  1309. u64 gen;
  1310. u32 blocksize;
  1311. struct extent_buffer *b = *eb_ret;
  1312. struct extent_buffer *tmp;
  1313. int ret;
  1314. blocknr = btrfs_node_blockptr(b, slot);
  1315. gen = btrfs_node_ptr_generation(b, slot);
  1316. blocksize = btrfs_level_size(root, level - 1);
  1317. tmp = btrfs_find_tree_block(root, blocknr, blocksize);
  1318. if (tmp) {
  1319. if (btrfs_buffer_uptodate(tmp, 0)) {
  1320. if (btrfs_buffer_uptodate(tmp, gen)) {
  1321. /*
  1322. * we found an up to date block without
  1323. * sleeping, return
  1324. * right away
  1325. */
  1326. *eb_ret = tmp;
  1327. return 0;
  1328. }
  1329. /* the pages were up to date, but we failed
  1330. * the generation number check. Do a full
  1331. * read for the generation number that is correct.
  1332. * We must do this without dropping locks so
  1333. * we can trust our generation number
  1334. */
  1335. free_extent_buffer(tmp);
  1336. tmp = read_tree_block(root, blocknr, blocksize, gen);
  1337. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  1338. *eb_ret = tmp;
  1339. return 0;
  1340. }
  1341. free_extent_buffer(tmp);
  1342. btrfs_release_path(p);
  1343. return -EIO;
  1344. }
  1345. }
  1346. /*
  1347. * reduce lock contention at high levels
  1348. * of the btree by dropping locks before
  1349. * we read. Don't release the lock on the current
  1350. * level because we need to walk this node to figure
  1351. * out which blocks to read.
  1352. */
  1353. btrfs_unlock_up_safe(p, level + 1);
  1354. btrfs_set_path_blocking(p);
  1355. free_extent_buffer(tmp);
  1356. if (p->reada)
  1357. reada_for_search(root, p, level, slot, key->objectid);
  1358. btrfs_release_path(p);
  1359. ret = -EAGAIN;
  1360. tmp = read_tree_block(root, blocknr, blocksize, 0);
  1361. if (tmp) {
  1362. /*
  1363. * If the read above didn't mark this buffer up to date,
  1364. * it will never end up being up to date. Set ret to EIO now
  1365. * and give up so that our caller doesn't loop forever
  1366. * on our EAGAINs.
  1367. */
  1368. if (!btrfs_buffer_uptodate(tmp, 0))
  1369. ret = -EIO;
  1370. free_extent_buffer(tmp);
  1371. }
  1372. return ret;
  1373. }
  1374. /*
  1375. * helper function for btrfs_search_slot. This does all of the checks
  1376. * for node-level blocks and does any balancing required based on
  1377. * the ins_len.
  1378. *
  1379. * If no extra work was required, zero is returned. If we had to
  1380. * drop the path, -EAGAIN is returned and btrfs_search_slot must
  1381. * start over
  1382. */
  1383. static int
  1384. setup_nodes_for_search(struct btrfs_trans_handle *trans,
  1385. struct btrfs_root *root, struct btrfs_path *p,
  1386. struct extent_buffer *b, int level, int ins_len)
  1387. {
  1388. int ret;
  1389. if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
  1390. BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
  1391. int sret;
  1392. sret = reada_for_balance(root, p, level);
  1393. if (sret)
  1394. goto again;
  1395. btrfs_set_path_blocking(p);
  1396. sret = split_node(trans, root, p, level);
  1397. btrfs_clear_path_blocking(p, NULL);
  1398. BUG_ON(sret > 0);
  1399. if (sret) {
  1400. ret = sret;
  1401. goto done;
  1402. }
  1403. b = p->nodes[level];
  1404. } else if (ins_len < 0 && btrfs_header_nritems(b) <
  1405. BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
  1406. int sret;
  1407. sret = reada_for_balance(root, p, level);
  1408. if (sret)
  1409. goto again;
  1410. btrfs_set_path_blocking(p);
  1411. sret = balance_level(trans, root, p, level);
  1412. btrfs_clear_path_blocking(p, NULL);
  1413. if (sret) {
  1414. ret = sret;
  1415. goto done;
  1416. }
  1417. b = p->nodes[level];
  1418. if (!b) {
  1419. btrfs_release_path(p);
  1420. goto again;
  1421. }
  1422. BUG_ON(btrfs_header_nritems(b) == 1);
  1423. }
  1424. return 0;
  1425. again:
  1426. ret = -EAGAIN;
  1427. done:
  1428. return ret;
  1429. }
  1430. /*
  1431. * look for key in the tree. path is filled in with nodes along the way
  1432. * if key is found, we return zero and you can find the item in the leaf
  1433. * level of the path (level 0)
  1434. *
  1435. * If the key isn't found, the path points to the slot where it should
  1436. * be inserted, and 1 is returned. If there are other errors during the
  1437. * search a negative error number is returned.
  1438. *
  1439. * if ins_len > 0, nodes and leaves will be split as we walk down the
  1440. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  1441. * possible)
  1442. */
  1443. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  1444. *root, struct btrfs_key *key, struct btrfs_path *p, int
  1445. ins_len, int cow)
  1446. {
  1447. struct extent_buffer *b;
  1448. int slot;
  1449. int ret;
  1450. int err;
  1451. int level;
  1452. int lowest_unlock = 1;
  1453. u8 lowest_level = 0;
  1454. lowest_level = p->lowest_level;
  1455. WARN_ON(lowest_level && ins_len > 0);
  1456. WARN_ON(p->nodes[0] != NULL);
  1457. if (ins_len < 0)
  1458. lowest_unlock = 2;
  1459. again:
  1460. if (p->search_commit_root) {
  1461. b = root->commit_root;
  1462. extent_buffer_get(b);
  1463. if (!p->skip_locking)
  1464. btrfs_tree_lock(b);
  1465. } else {
  1466. if (p->skip_locking)
  1467. b = btrfs_root_node(root);
  1468. else
  1469. b = btrfs_lock_root_node(root);
  1470. }
  1471. while (b) {
  1472. level = btrfs_header_level(b);
  1473. /*
  1474. * setup the path here so we can release it under lock
  1475. * contention with the cow code
  1476. */
  1477. p->nodes[level] = b;
  1478. if (!p->skip_locking)
  1479. p->locks[level] = 1;
  1480. if (cow) {
  1481. /*
  1482. * if we don't really need to cow this block
  1483. * then we don't want to set the path blocking,
  1484. * so we test it here
  1485. */
  1486. if (!should_cow_block(trans, root, b))
  1487. goto cow_done;
  1488. btrfs_set_path_blocking(p);
  1489. err = btrfs_cow_block(trans, root, b,
  1490. p->nodes[level + 1],
  1491. p->slots[level + 1], &b);
  1492. if (err) {
  1493. ret = err;
  1494. goto done;
  1495. }
  1496. }
  1497. cow_done:
  1498. BUG_ON(!cow && ins_len);
  1499. p->nodes[level] = b;
  1500. if (!p->skip_locking)
  1501. p->locks[level] = 1;
  1502. btrfs_clear_path_blocking(p, NULL);
  1503. /*
  1504. * we have a lock on b and as long as we aren't changing
  1505. * the tree, there is no way to for the items in b to change.
  1506. * It is safe to drop the lock on our parent before we
  1507. * go through the expensive btree search on b.
  1508. *
  1509. * If cow is true, then we might be changing slot zero,
  1510. * which may require changing the parent. So, we can't
  1511. * drop the lock until after we know which slot we're
  1512. * operating on.
  1513. */
  1514. if (!cow)
  1515. btrfs_unlock_up_safe(p, level + 1);
  1516. ret = bin_search(b, key, level, &slot);
  1517. if (level != 0) {
  1518. int dec = 0;
  1519. if (ret && slot > 0) {
  1520. dec = 1;
  1521. slot -= 1;
  1522. }
  1523. p->slots[level] = slot;
  1524. err = setup_nodes_for_search(trans, root, p, b, level,
  1525. ins_len);
  1526. if (err == -EAGAIN)
  1527. goto again;
  1528. if (err) {
  1529. ret = err;
  1530. goto done;
  1531. }
  1532. b = p->nodes[level];
  1533. slot = p->slots[level];
  1534. unlock_up(p, level, lowest_unlock);
  1535. if (level == lowest_level) {
  1536. if (dec)
  1537. p->slots[level]++;
  1538. goto done;
  1539. }
  1540. err = read_block_for_search(trans, root, p,
  1541. &b, level, slot, key);
  1542. if (err == -EAGAIN)
  1543. goto again;
  1544. if (err) {
  1545. ret = err;
  1546. goto done;
  1547. }
  1548. if (!p->skip_locking) {
  1549. btrfs_clear_path_blocking(p, NULL);
  1550. err = btrfs_try_spin_lock(b);
  1551. if (!err) {
  1552. btrfs_set_path_blocking(p);
  1553. btrfs_tree_lock(b);
  1554. btrfs_clear_path_blocking(p, b);
  1555. }
  1556. }
  1557. } else {
  1558. p->slots[level] = slot;
  1559. if (ins_len > 0 &&
  1560. btrfs_leaf_free_space(root, b) < ins_len) {
  1561. btrfs_set_path_blocking(p);
  1562. err = split_leaf(trans, root, key,
  1563. p, ins_len, ret == 0);
  1564. btrfs_clear_path_blocking(p, NULL);
  1565. BUG_ON(err > 0);
  1566. if (err) {
  1567. ret = err;
  1568. goto done;
  1569. }
  1570. }
  1571. if (!p->search_for_split)
  1572. unlock_up(p, level, lowest_unlock);
  1573. goto done;
  1574. }
  1575. }
  1576. ret = 1;
  1577. done:
  1578. /*
  1579. * we don't really know what they plan on doing with the path
  1580. * from here on, so for now just mark it as blocking
  1581. */
  1582. if (!p->leave_spinning)
  1583. btrfs_set_path_blocking(p);
  1584. if (ret < 0)
  1585. btrfs_release_path(p);
  1586. return ret;
  1587. }
  1588. /*
  1589. * adjust the pointers going up the tree, starting at level
  1590. * making sure the right key of each node is points to 'key'.
  1591. * This is used after shifting pointers to the left, so it stops
  1592. * fixing up pointers when a given leaf/node is not in slot 0 of the
  1593. * higher levels
  1594. *
  1595. * If this fails to write a tree block, it returns -1, but continues
  1596. * fixing up the blocks in ram so the tree is consistent.
  1597. */
  1598. static int fixup_low_keys(struct btrfs_trans_handle *trans,
  1599. struct btrfs_root *root, struct btrfs_path *path,
  1600. struct btrfs_disk_key *key, int level)
  1601. {
  1602. int i;
  1603. int ret = 0;
  1604. struct extent_buffer *t;
  1605. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1606. int tslot = path->slots[i];
  1607. if (!path->nodes[i])
  1608. break;
  1609. t = path->nodes[i];
  1610. btrfs_set_node_key(t, key, tslot);
  1611. btrfs_mark_buffer_dirty(path->nodes[i]);
  1612. if (tslot != 0)
  1613. break;
  1614. }
  1615. return ret;
  1616. }
  1617. /*
  1618. * update item key.
  1619. *
  1620. * This function isn't completely safe. It's the caller's responsibility
  1621. * that the new key won't break the order
  1622. */
  1623. int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
  1624. struct btrfs_root *root, struct btrfs_path *path,
  1625. struct btrfs_key *new_key)
  1626. {
  1627. struct btrfs_disk_key disk_key;
  1628. struct extent_buffer *eb;
  1629. int slot;
  1630. eb = path->nodes[0];
  1631. slot = path->slots[0];
  1632. if (slot > 0) {
  1633. btrfs_item_key(eb, &disk_key, slot - 1);
  1634. if (comp_keys(&disk_key, new_key) >= 0)
  1635. return -1;
  1636. }
  1637. if (slot < btrfs_header_nritems(eb) - 1) {
  1638. btrfs_item_key(eb, &disk_key, slot + 1);
  1639. if (comp_keys(&disk_key, new_key) <= 0)
  1640. return -1;
  1641. }
  1642. btrfs_cpu_key_to_disk(&disk_key, new_key);
  1643. btrfs_set_item_key(eb, &disk_key, slot);
  1644. btrfs_mark_buffer_dirty(eb);
  1645. if (slot == 0)
  1646. fixup_low_keys(trans, root, path, &disk_key, 1);
  1647. return 0;
  1648. }
  1649. /*
  1650. * try to push data from one node into the next node left in the
  1651. * tree.
  1652. *
  1653. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  1654. * error, and > 0 if there was no room in the left hand block.
  1655. */
  1656. static int push_node_left(struct btrfs_trans_handle *trans,
  1657. struct btrfs_root *root, struct extent_buffer *dst,
  1658. struct extent_buffer *src, int empty)
  1659. {
  1660. int push_items = 0;
  1661. int src_nritems;
  1662. int dst_nritems;
  1663. int ret = 0;
  1664. src_nritems = btrfs_header_nritems(src);
  1665. dst_nritems = btrfs_header_nritems(dst);
  1666. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1667. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1668. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1669. if (!empty && src_nritems <= 8)
  1670. return 1;
  1671. if (push_items <= 0)
  1672. return 1;
  1673. if (empty) {
  1674. push_items = min(src_nritems, push_items);
  1675. if (push_items < src_nritems) {
  1676. /* leave at least 8 pointers in the node if
  1677. * we aren't going to empty it
  1678. */
  1679. if (src_nritems - push_items < 8) {
  1680. if (push_items <= 8)
  1681. return 1;
  1682. push_items -= 8;
  1683. }
  1684. }
  1685. } else
  1686. push_items = min(src_nritems - 8, push_items);
  1687. copy_extent_buffer(dst, src,
  1688. btrfs_node_key_ptr_offset(dst_nritems),
  1689. btrfs_node_key_ptr_offset(0),
  1690. push_items * sizeof(struct btrfs_key_ptr));
  1691. if (push_items < src_nritems) {
  1692. memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
  1693. btrfs_node_key_ptr_offset(push_items),
  1694. (src_nritems - push_items) *
  1695. sizeof(struct btrfs_key_ptr));
  1696. }
  1697. btrfs_set_header_nritems(src, src_nritems - push_items);
  1698. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1699. btrfs_mark_buffer_dirty(src);
  1700. btrfs_mark_buffer_dirty(dst);
  1701. return ret;
  1702. }
  1703. /*
  1704. * try to push data from one node into the next node right in the
  1705. * tree.
  1706. *
  1707. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  1708. * error, and > 0 if there was no room in the right hand block.
  1709. *
  1710. * this will only push up to 1/2 the contents of the left node over
  1711. */
  1712. static int balance_node_right(struct btrfs_trans_handle *trans,
  1713. struct btrfs_root *root,
  1714. struct extent_buffer *dst,
  1715. struct extent_buffer *src)
  1716. {
  1717. int push_items = 0;
  1718. int max_push;
  1719. int src_nritems;
  1720. int dst_nritems;
  1721. int ret = 0;
  1722. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1723. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1724. src_nritems = btrfs_header_nritems(src);
  1725. dst_nritems = btrfs_header_nritems(dst);
  1726. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1727. if (push_items <= 0)
  1728. return 1;
  1729. if (src_nritems < 4)
  1730. return 1;
  1731. max_push = src_nritems / 2 + 1;
  1732. /* don't try to empty the node */
  1733. if (max_push >= src_nritems)
  1734. return 1;
  1735. if (max_push < push_items)
  1736. push_items = max_push;
  1737. memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
  1738. btrfs_node_key_ptr_offset(0),
  1739. (dst_nritems) *
  1740. sizeof(struct btrfs_key_ptr));
  1741. copy_extent_buffer(dst, src,
  1742. btrfs_node_key_ptr_offset(0),
  1743. btrfs_node_key_ptr_offset(src_nritems - push_items),
  1744. push_items * sizeof(struct btrfs_key_ptr));
  1745. btrfs_set_header_nritems(src, src_nritems - push_items);
  1746. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1747. btrfs_mark_buffer_dirty(src);
  1748. btrfs_mark_buffer_dirty(dst);
  1749. return ret;
  1750. }
  1751. /*
  1752. * helper function to insert a new root level in the tree.
  1753. * A new node is allocated, and a single item is inserted to
  1754. * point to the existing root
  1755. *
  1756. * returns zero on success or < 0 on failure.
  1757. */
  1758. static noinline int insert_new_root(struct btrfs_trans_handle *trans,
  1759. struct btrfs_root *root,
  1760. struct btrfs_path *path, int level)
  1761. {
  1762. u64 lower_gen;
  1763. struct extent_buffer *lower;
  1764. struct extent_buffer *c;
  1765. struct extent_buffer *old;
  1766. struct btrfs_disk_key lower_key;
  1767. BUG_ON(path->nodes[level]);
  1768. BUG_ON(path->nodes[level-1] != root->node);
  1769. lower = path->nodes[level-1];
  1770. if (level == 1)
  1771. btrfs_item_key(lower, &lower_key, 0);
  1772. else
  1773. btrfs_node_key(lower, &lower_key, 0);
  1774. c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1775. root->root_key.objectid, &lower_key,
  1776. level, root->node->start, 0);
  1777. if (IS_ERR(c))
  1778. return PTR_ERR(c);
  1779. root_add_used(root, root->nodesize);
  1780. memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
  1781. btrfs_set_header_nritems(c, 1);
  1782. btrfs_set_header_level(c, level);
  1783. btrfs_set_header_bytenr(c, c->start);
  1784. btrfs_set_header_generation(c, trans->transid);
  1785. btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
  1786. btrfs_set_header_owner(c, root->root_key.objectid);
  1787. write_extent_buffer(c, root->fs_info->fsid,
  1788. (unsigned long)btrfs_header_fsid(c),
  1789. BTRFS_FSID_SIZE);
  1790. write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
  1791. (unsigned long)btrfs_header_chunk_tree_uuid(c),
  1792. BTRFS_UUID_SIZE);
  1793. btrfs_set_node_key(c, &lower_key, 0);
  1794. btrfs_set_node_blockptr(c, 0, lower->start);
  1795. lower_gen = btrfs_header_generation(lower);
  1796. WARN_ON(lower_gen != trans->transid);
  1797. btrfs_set_node_ptr_generation(c, 0, lower_gen);
  1798. btrfs_mark_buffer_dirty(c);
  1799. old = root->node;
  1800. rcu_assign_pointer(root->node, c);
  1801. /* the super has an extra ref to root->node */
  1802. free_extent_buffer(old);
  1803. add_root_to_dirty_list(root);
  1804. extent_buffer_get(c);
  1805. path->nodes[level] = c;
  1806. path->locks[level] = 1;
  1807. path->slots[level] = 0;
  1808. return 0;
  1809. }
  1810. /*
  1811. * worker function to insert a single pointer in a node.
  1812. * the node should have enough room for the pointer already
  1813. *
  1814. * slot and level indicate where you want the key to go, and
  1815. * blocknr is the block the key points to.
  1816. *
  1817. * returns zero on success and < 0 on any error
  1818. */
  1819. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  1820. *root, struct btrfs_path *path, struct btrfs_disk_key
  1821. *key, u64 bytenr, int slot, int level)
  1822. {
  1823. struct extent_buffer *lower;
  1824. int nritems;
  1825. BUG_ON(!path->nodes[level]);
  1826. btrfs_assert_tree_locked(path->nodes[level]);
  1827. lower = path->nodes[level];
  1828. nritems = btrfs_header_nritems(lower);
  1829. BUG_ON(slot > nritems);
  1830. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  1831. BUG();
  1832. if (slot != nritems) {
  1833. memmove_extent_buffer(lower,
  1834. btrfs_node_key_ptr_offset(slot + 1),
  1835. btrfs_node_key_ptr_offset(slot),
  1836. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  1837. }
  1838. btrfs_set_node_key(lower, key, slot);
  1839. btrfs_set_node_blockptr(lower, slot, bytenr);
  1840. WARN_ON(trans->transid == 0);
  1841. btrfs_set_node_ptr_generation(lower, slot, trans->transid);
  1842. btrfs_set_header_nritems(lower, nritems + 1);
  1843. btrfs_mark_buffer_dirty(lower);
  1844. return 0;
  1845. }
  1846. /*
  1847. * split the node at the specified level in path in two.
  1848. * The path is corrected to point to the appropriate node after the split
  1849. *
  1850. * Before splitting this tries to make some room in the node by pushing
  1851. * left and right, if either one works, it returns right away.
  1852. *
  1853. * returns 0 on success and < 0 on failure
  1854. */
  1855. static noinline int split_node(struct btrfs_trans_handle *trans,
  1856. struct btrfs_root *root,
  1857. struct btrfs_path *path, int level)
  1858. {
  1859. struct extent_buffer *c;
  1860. struct extent_buffer *split;
  1861. struct btrfs_disk_key disk_key;
  1862. int mid;
  1863. int ret;
  1864. int wret;
  1865. u32 c_nritems;
  1866. c = path->nodes[level];
  1867. WARN_ON(btrfs_header_generation(c) != trans->transid);
  1868. if (c == root->node) {
  1869. /* trying to split the root, lets make a new one */
  1870. ret = insert_new_root(trans, root, path, level + 1);
  1871. if (ret)
  1872. return ret;
  1873. } else {
  1874. ret = push_nodes_for_insert(trans, root, path, level);
  1875. c = path->nodes[level];
  1876. if (!ret && btrfs_header_nritems(c) <
  1877. BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
  1878. return 0;
  1879. if (ret < 0)
  1880. return ret;
  1881. }
  1882. c_nritems = btrfs_header_nritems(c);
  1883. mid = (c_nritems + 1) / 2;
  1884. btrfs_node_key(c, &disk_key, mid);
  1885. split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1886. root->root_key.objectid,
  1887. &disk_key, level, c->start, 0);
  1888. if (IS_ERR(split))
  1889. return PTR_ERR(split);
  1890. root_add_used(root, root->nodesize);
  1891. memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
  1892. btrfs_set_header_level(split, btrfs_header_level(c));
  1893. btrfs_set_header_bytenr(split, split->start);
  1894. btrfs_set_header_generation(split, trans->transid);
  1895. btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
  1896. btrfs_set_header_owner(split, root->root_key.objectid);
  1897. write_extent_buffer(split, root->fs_info->fsid,
  1898. (unsigned long)btrfs_header_fsid(split),
  1899. BTRFS_FSID_SIZE);
  1900. write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
  1901. (unsigned long)btrfs_header_chunk_tree_uuid(split),
  1902. BTRFS_UUID_SIZE);
  1903. copy_extent_buffer(split, c,
  1904. btrfs_node_key_ptr_offset(0),
  1905. btrfs_node_key_ptr_offset(mid),
  1906. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  1907. btrfs_set_header_nritems(split, c_nritems - mid);
  1908. btrfs_set_header_nritems(c, mid);
  1909. ret = 0;
  1910. btrfs_mark_buffer_dirty(c);
  1911. btrfs_mark_buffer_dirty(split);
  1912. wret = insert_ptr(trans, root, path, &disk_key, split->start,
  1913. path->slots[level + 1] + 1,
  1914. level + 1);
  1915. if (wret)
  1916. ret = wret;
  1917. if (path->slots[level] >= mid) {
  1918. path->slots[level] -= mid;
  1919. btrfs_tree_unlock(c);
  1920. free_extent_buffer(c);
  1921. path->nodes[level] = split;
  1922. path->slots[level + 1] += 1;
  1923. } else {
  1924. btrfs_tree_unlock(split);
  1925. free_extent_buffer(split);
  1926. }
  1927. return ret;
  1928. }
  1929. /*
  1930. * how many bytes are required to store the items in a leaf. start
  1931. * and nr indicate which items in the leaf to check. This totals up the
  1932. * space used both by the item structs and the item data
  1933. */
  1934. static int leaf_space_used(struct extent_buffer *l, int start, int nr)
  1935. {
  1936. int data_len;
  1937. int nritems = btrfs_header_nritems(l);
  1938. int end = min(nritems, start + nr) - 1;
  1939. if (!nr)
  1940. return 0;
  1941. data_len = btrfs_item_end_nr(l, start);
  1942. data_len = data_len - btrfs_item_offset_nr(l, end);
  1943. data_len += sizeof(struct btrfs_item) * nr;
  1944. WARN_ON(data_len < 0);
  1945. return data_len;
  1946. }
  1947. /*
  1948. * The space between the end of the leaf items and
  1949. * the start of the leaf data. IOW, how much room
  1950. * the leaf has left for both items and data
  1951. */
  1952. noinline int btrfs_leaf_free_space(struct btrfs_root *root,
  1953. struct extent_buffer *leaf)
  1954. {
  1955. int nritems = btrfs_header_nritems(leaf);
  1956. int ret;
  1957. ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  1958. if (ret < 0) {
  1959. printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
  1960. "used %d nritems %d\n",
  1961. ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
  1962. leaf_space_used(leaf, 0, nritems), nritems);
  1963. }
  1964. return ret;
  1965. }
  1966. /*
  1967. * min slot controls the lowest index we're willing to push to the
  1968. * right. We'll push up to and including min_slot, but no lower
  1969. */
  1970. static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
  1971. struct btrfs_root *root,
  1972. struct btrfs_path *path,
  1973. int data_size, int empty,
  1974. struct extent_buffer *right,
  1975. int free_space, u32 left_nritems,
  1976. u32 min_slot)
  1977. {
  1978. struct extent_buffer *left = path->nodes[0];
  1979. struct extent_buffer *upper = path->nodes[1];
  1980. struct btrfs_disk_key disk_key;
  1981. int slot;
  1982. u32 i;
  1983. int push_space = 0;
  1984. int push_items = 0;
  1985. struct btrfs_item *item;
  1986. u32 nr;
  1987. u32 right_nritems;
  1988. u32 data_end;
  1989. u32 this_item_size;
  1990. if (empty)
  1991. nr = 0;
  1992. else
  1993. nr = max_t(u32, 1, min_slot);
  1994. if (path->slots[0] >= left_nritems)
  1995. push_space += data_size;
  1996. slot = path->slots[1];
  1997. i = left_nritems - 1;
  1998. while (i >= nr) {
  1999. item = btrfs_item_nr(left, i);
  2000. if (!empty && push_items > 0) {
  2001. if (path->slots[0] > i)
  2002. break;
  2003. if (path->slots[0] == i) {
  2004. int space = btrfs_leaf_free_space(root, left);
  2005. if (space + push_space * 2 > free_space)
  2006. break;
  2007. }
  2008. }
  2009. if (path->slots[0] == i)
  2010. push_space += data_size;
  2011. if (!left->map_token) {
  2012. map_extent_buffer(left, (unsigned long)item,
  2013. sizeof(struct btrfs_item),
  2014. &left->map_token, &left->kaddr,
  2015. &left->map_start, &left->map_len,
  2016. KM_USER1);
  2017. }
  2018. this_item_size = btrfs_item_size(left, item);
  2019. if (this_item_size + sizeof(*item) + push_space > free_space)
  2020. break;
  2021. push_items++;
  2022. push_space += this_item_size + sizeof(*item);
  2023. if (i == 0)
  2024. break;
  2025. i--;
  2026. }
  2027. if (left->map_token) {
  2028. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2029. left->map_token = NULL;
  2030. }
  2031. if (push_items == 0)
  2032. goto out_unlock;
  2033. if (!empty && push_items == left_nritems)
  2034. WARN_ON(1);
  2035. /* push left to right */
  2036. right_nritems = btrfs_header_nritems(right);
  2037. push_space = btrfs_item_end_nr(left, left_nritems - push_items);
  2038. push_space -= leaf_data_end(root, left);
  2039. /* make room in the right data area */
  2040. data_end = leaf_data_end(root, right);
  2041. memmove_extent_buffer(right,
  2042. btrfs_leaf_data(right) + data_end - push_space,
  2043. btrfs_leaf_data(right) + data_end,
  2044. BTRFS_LEAF_DATA_SIZE(root) - data_end);
  2045. /* copy from the left data area */
  2046. copy_extent_buffer(right, left, btrfs_leaf_data(right) +
  2047. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2048. btrfs_leaf_data(left) + leaf_data_end(root, left),
  2049. push_space);
  2050. memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
  2051. btrfs_item_nr_offset(0),
  2052. right_nritems * sizeof(struct btrfs_item));
  2053. /* copy the items from left to right */
  2054. copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
  2055. btrfs_item_nr_offset(left_nritems - push_items),
  2056. push_items * sizeof(struct btrfs_item));
  2057. /* update the item pointers */
  2058. right_nritems += push_items;
  2059. btrfs_set_header_nritems(right, right_nritems);
  2060. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2061. for (i = 0; i < right_nritems; i++) {
  2062. item = btrfs_item_nr(right, i);
  2063. if (!right->map_token) {
  2064. map_extent_buffer(right, (unsigned long)item,
  2065. sizeof(struct btrfs_item),
  2066. &right->map_token, &right->kaddr,
  2067. &right->map_start, &right->map_len,
  2068. KM_USER1);
  2069. }
  2070. push_space -= btrfs_item_size(right, item);
  2071. btrfs_set_item_offset(right, item, push_space);
  2072. }
  2073. if (right->map_token) {
  2074. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2075. right->map_token = NULL;
  2076. }
  2077. left_nritems -= push_items;
  2078. btrfs_set_header_nritems(left, left_nritems);
  2079. if (left_nritems)
  2080. btrfs_mark_buffer_dirty(left);
  2081. else
  2082. clean_tree_block(trans, root, left);
  2083. btrfs_mark_buffer_dirty(right);
  2084. btrfs_item_key(right, &disk_key, 0);
  2085. btrfs_set_node_key(upper, &disk_key, slot + 1);
  2086. btrfs_mark_buffer_dirty(upper);
  2087. /* then fixup the leaf pointer in the path */
  2088. if (path->slots[0] >= left_nritems) {
  2089. path->slots[0] -= left_nritems;
  2090. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2091. clean_tree_block(trans, root, path->nodes[0]);
  2092. btrfs_tree_unlock(path->nodes[0]);
  2093. free_extent_buffer(path->nodes[0]);
  2094. path->nodes[0] = right;
  2095. path->slots[1] += 1;
  2096. } else {
  2097. btrfs_tree_unlock(right);
  2098. free_extent_buffer(right);
  2099. }
  2100. return 0;
  2101. out_unlock:
  2102. btrfs_tree_unlock(right);
  2103. free_extent_buffer(right);
  2104. return 1;
  2105. }
  2106. /*
  2107. * push some data in the path leaf to the right, trying to free up at
  2108. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2109. *
  2110. * returns 1 if the push failed because the other node didn't have enough
  2111. * room, 0 if everything worked out and < 0 if there were major errors.
  2112. *
  2113. * this will push starting from min_slot to the end of the leaf. It won't
  2114. * push any slot lower than min_slot
  2115. */
  2116. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  2117. *root, struct btrfs_path *path,
  2118. int min_data_size, int data_size,
  2119. int empty, u32 min_slot)
  2120. {
  2121. struct extent_buffer *left = path->nodes[0];
  2122. struct extent_buffer *right;
  2123. struct extent_buffer *upper;
  2124. int slot;
  2125. int free_space;
  2126. u32 left_nritems;
  2127. int ret;
  2128. if (!path->nodes[1])
  2129. return 1;
  2130. slot = path->slots[1];
  2131. upper = path->nodes[1];
  2132. if (slot >= btrfs_header_nritems(upper) - 1)
  2133. return 1;
  2134. btrfs_assert_tree_locked(path->nodes[1]);
  2135. right = read_node_slot(root, upper, slot + 1);
  2136. if (right == NULL)
  2137. return 1;
  2138. btrfs_tree_lock(right);
  2139. btrfs_set_lock_blocking(right);
  2140. free_space = btrfs_leaf_free_space(root, right);
  2141. if (free_space < data_size)
  2142. goto out_unlock;
  2143. /* cow and double check */
  2144. ret = btrfs_cow_block(trans, root, right, upper,
  2145. slot + 1, &right);
  2146. if (ret)
  2147. goto out_unlock;
  2148. free_space = btrfs_leaf_free_space(root, right);
  2149. if (free_space < data_size)
  2150. goto out_unlock;
  2151. left_nritems = btrfs_header_nritems(left);
  2152. if (left_nritems == 0)
  2153. goto out_unlock;
  2154. return __push_leaf_right(trans, root, path, min_data_size, empty,
  2155. right, free_space, left_nritems, min_slot);
  2156. out_unlock:
  2157. btrfs_tree_unlock(right);
  2158. free_extent_buffer(right);
  2159. return 1;
  2160. }
  2161. /*
  2162. * push some data in the path leaf to the left, trying to free up at
  2163. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2164. *
  2165. * max_slot can put a limit on how far into the leaf we'll push items. The
  2166. * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
  2167. * items
  2168. */
  2169. static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
  2170. struct btrfs_root *root,
  2171. struct btrfs_path *path, int data_size,
  2172. int empty, struct extent_buffer *left,
  2173. int free_space, u32 right_nritems,
  2174. u32 max_slot)
  2175. {
  2176. struct btrfs_disk_key disk_key;
  2177. struct extent_buffer *right = path->nodes[0];
  2178. int i;
  2179. int push_space = 0;
  2180. int push_items = 0;
  2181. struct btrfs_item *item;
  2182. u32 old_left_nritems;
  2183. u32 nr;
  2184. int ret = 0;
  2185. int wret;
  2186. u32 this_item_size;
  2187. u32 old_left_item_size;
  2188. if (empty)
  2189. nr = min(right_nritems, max_slot);
  2190. else
  2191. nr = min(right_nritems - 1, max_slot);
  2192. for (i = 0; i < nr; i++) {
  2193. item = btrfs_item_nr(right, i);
  2194. if (!right->map_token) {
  2195. map_extent_buffer(right, (unsigned long)item,
  2196. sizeof(struct btrfs_item),
  2197. &right->map_token, &right->kaddr,
  2198. &right->map_start, &right->map_len,
  2199. KM_USER1);
  2200. }
  2201. if (!empty && push_items > 0) {
  2202. if (path->slots[0] < i)
  2203. break;
  2204. if (path->slots[0] == i) {
  2205. int space = btrfs_leaf_free_space(root, right);
  2206. if (space + push_space * 2 > free_space)
  2207. break;
  2208. }
  2209. }
  2210. if (path->slots[0] == i)
  2211. push_space += data_size;
  2212. this_item_size = btrfs_item_size(right, item);
  2213. if (this_item_size + sizeof(*item) + push_space > free_space)
  2214. break;
  2215. push_items++;
  2216. push_space += this_item_size + sizeof(*item);
  2217. }
  2218. if (right->map_token) {
  2219. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2220. right->map_token = NULL;
  2221. }
  2222. if (push_items == 0) {
  2223. ret = 1;
  2224. goto out;
  2225. }
  2226. if (!empty && push_items == btrfs_header_nritems(right))
  2227. WARN_ON(1);
  2228. /* push data from right to left */
  2229. copy_extent_buffer(left, right,
  2230. btrfs_item_nr_offset(btrfs_header_nritems(left)),
  2231. btrfs_item_nr_offset(0),
  2232. push_items * sizeof(struct btrfs_item));
  2233. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  2234. btrfs_item_offset_nr(right, push_items - 1);
  2235. copy_extent_buffer(left, right, btrfs_leaf_data(left) +
  2236. leaf_data_end(root, left) - push_space,
  2237. btrfs_leaf_data(right) +
  2238. btrfs_item_offset_nr(right, push_items - 1),
  2239. push_space);
  2240. old_left_nritems = btrfs_header_nritems(left);
  2241. BUG_ON(old_left_nritems <= 0);
  2242. old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
  2243. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  2244. u32 ioff;
  2245. item = btrfs_item_nr(left, i);
  2246. if (!left->map_token) {
  2247. map_extent_buffer(left, (unsigned long)item,
  2248. sizeof(struct btrfs_item),
  2249. &left->map_token, &left->kaddr,
  2250. &left->map_start, &left->map_len,
  2251. KM_USER1);
  2252. }
  2253. ioff = btrfs_item_offset(left, item);
  2254. btrfs_set_item_offset(left, item,
  2255. ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
  2256. }
  2257. btrfs_set_header_nritems(left, old_left_nritems + push_items);
  2258. if (left->map_token) {
  2259. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2260. left->map_token = NULL;
  2261. }
  2262. /* fixup right node */
  2263. if (push_items > right_nritems) {
  2264. printk(KERN_CRIT "push items %d nr %u\n", push_items,
  2265. right_nritems);
  2266. WARN_ON(1);
  2267. }
  2268. if (push_items < right_nritems) {
  2269. push_space = btrfs_item_offset_nr(right, push_items - 1) -
  2270. leaf_data_end(root, right);
  2271. memmove_extent_buffer(right, btrfs_leaf_data(right) +
  2272. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2273. btrfs_leaf_data(right) +
  2274. leaf_data_end(root, right), push_space);
  2275. memmove_extent_buffer(right, btrfs_item_nr_offset(0),
  2276. btrfs_item_nr_offset(push_items),
  2277. (btrfs_header_nritems(right) - push_items) *
  2278. sizeof(struct btrfs_item));
  2279. }
  2280. right_nritems -= push_items;
  2281. btrfs_set_header_nritems(right, right_nritems);
  2282. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2283. for (i = 0; i < right_nritems; i++) {
  2284. item = btrfs_item_nr(right, i);
  2285. if (!right->map_token) {
  2286. map_extent_buffer(right, (unsigned long)item,
  2287. sizeof(struct btrfs_item),
  2288. &right->map_token, &right->kaddr,
  2289. &right->map_start, &right->map_len,
  2290. KM_USER1);
  2291. }
  2292. push_space = push_space - btrfs_item_size(right, item);
  2293. btrfs_set_item_offset(right, item, push_space);
  2294. }
  2295. if (right->map_token) {
  2296. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2297. right->map_token = NULL;
  2298. }
  2299. btrfs_mark_buffer_dirty(left);
  2300. if (right_nritems)
  2301. btrfs_mark_buffer_dirty(right);
  2302. else
  2303. clean_tree_block(trans, root, right);
  2304. btrfs_item_key(right, &disk_key, 0);
  2305. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  2306. if (wret)
  2307. ret = wret;
  2308. /* then fixup the leaf pointer in the path */
  2309. if (path->slots[0] < push_items) {
  2310. path->slots[0] += old_left_nritems;
  2311. btrfs_tree_unlock(path->nodes[0]);
  2312. free_extent_buffer(path->nodes[0]);
  2313. path->nodes[0] = left;
  2314. path->slots[1] -= 1;
  2315. } else {
  2316. btrfs_tree_unlock(left);
  2317. free_extent_buffer(left);
  2318. path->slots[0] -= push_items;
  2319. }
  2320. BUG_ON(path->slots[0] < 0);
  2321. return ret;
  2322. out:
  2323. btrfs_tree_unlock(left);
  2324. free_extent_buffer(left);
  2325. return ret;
  2326. }
  2327. /*
  2328. * push some data in the path leaf to the left, trying to free up at
  2329. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2330. *
  2331. * max_slot can put a limit on how far into the leaf we'll push items. The
  2332. * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
  2333. * items
  2334. */
  2335. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  2336. *root, struct btrfs_path *path, int min_data_size,
  2337. int data_size, int empty, u32 max_slot)
  2338. {
  2339. struct extent_buffer *right = path->nodes[0];
  2340. struct extent_buffer *left;
  2341. int slot;
  2342. int free_space;
  2343. u32 right_nritems;
  2344. int ret = 0;
  2345. slot = path->slots[1];
  2346. if (slot == 0)
  2347. return 1;
  2348. if (!path->nodes[1])
  2349. return 1;
  2350. right_nritems = btrfs_header_nritems(right);
  2351. if (right_nritems == 0)
  2352. return 1;
  2353. btrfs_assert_tree_locked(path->nodes[1]);
  2354. left = read_node_slot(root, path->nodes[1], slot - 1);
  2355. if (left == NULL)
  2356. return 1;
  2357. btrfs_tree_lock(left);
  2358. btrfs_set_lock_blocking(left);
  2359. free_space = btrfs_leaf_free_space(root, left);
  2360. if (free_space < data_size) {
  2361. ret = 1;
  2362. goto out;
  2363. }
  2364. /* cow and double check */
  2365. ret = btrfs_cow_block(trans, root, left,
  2366. path->nodes[1], slot - 1, &left);
  2367. if (ret) {
  2368. /* we hit -ENOSPC, but it isn't fatal here */
  2369. ret = 1;
  2370. goto out;
  2371. }
  2372. free_space = btrfs_leaf_free_space(root, left);
  2373. if (free_space < data_size) {
  2374. ret = 1;
  2375. goto out;
  2376. }
  2377. return __push_leaf_left(trans, root, path, min_data_size,
  2378. empty, left, free_space, right_nritems,
  2379. max_slot);
  2380. out:
  2381. btrfs_tree_unlock(left);
  2382. free_extent_buffer(left);
  2383. return ret;
  2384. }
  2385. /*
  2386. * split the path's leaf in two, making sure there is at least data_size
  2387. * available for the resulting leaf level of the path.
  2388. *
  2389. * returns 0 if all went well and < 0 on failure.
  2390. */
  2391. static noinline int copy_for_split(struct btrfs_trans_handle *trans,
  2392. struct btrfs_root *root,
  2393. struct btrfs_path *path,
  2394. struct extent_buffer *l,
  2395. struct extent_buffer *right,
  2396. int slot, int mid, int nritems)
  2397. {
  2398. int data_copy_size;
  2399. int rt_data_off;
  2400. int i;
  2401. int ret = 0;
  2402. int wret;
  2403. struct btrfs_disk_key disk_key;
  2404. nritems = nritems - mid;
  2405. btrfs_set_header_nritems(right, nritems);
  2406. data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
  2407. copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
  2408. btrfs_item_nr_offset(mid),
  2409. nritems * sizeof(struct btrfs_item));
  2410. copy_extent_buffer(right, l,
  2411. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  2412. data_copy_size, btrfs_leaf_data(l) +
  2413. leaf_data_end(root, l), data_copy_size);
  2414. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  2415. btrfs_item_end_nr(l, mid);
  2416. for (i = 0; i < nritems; i++) {
  2417. struct btrfs_item *item = btrfs_item_nr(right, i);
  2418. u32 ioff;
  2419. if (!right->map_token) {
  2420. map_extent_buffer(right, (unsigned long)item,
  2421. sizeof(struct btrfs_item),
  2422. &right->map_token, &right->kaddr,
  2423. &right->map_start, &right->map_len,
  2424. KM_USER1);
  2425. }
  2426. ioff = btrfs_item_offset(right, item);
  2427. btrfs_set_item_offset(right, item, ioff + rt_data_off);
  2428. }
  2429. if (right->map_token) {
  2430. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2431. right->map_token = NULL;
  2432. }
  2433. btrfs_set_header_nritems(l, mid);
  2434. ret = 0;
  2435. btrfs_item_key(right, &disk_key, 0);
  2436. wret = insert_ptr(trans, root, path, &disk_key, right->start,
  2437. path->slots[1] + 1, 1);
  2438. if (wret)
  2439. ret = wret;
  2440. btrfs_mark_buffer_dirty(right);
  2441. btrfs_mark_buffer_dirty(l);
  2442. BUG_ON(path->slots[0] != slot);
  2443. if (mid <= slot) {
  2444. btrfs_tree_unlock(path->nodes[0]);
  2445. free_extent_buffer(path->nodes[0]);
  2446. path->nodes[0] = right;
  2447. path->slots[0] -= mid;
  2448. path->slots[1] += 1;
  2449. } else {
  2450. btrfs_tree_unlock(right);
  2451. free_extent_buffer(right);
  2452. }
  2453. BUG_ON(path->slots[0] < 0);
  2454. return ret;
  2455. }
  2456. /*
  2457. * double splits happen when we need to insert a big item in the middle
  2458. * of a leaf. A double split can leave us with 3 mostly empty leaves:
  2459. * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
  2460. * A B C
  2461. *
  2462. * We avoid this by trying to push the items on either side of our target
  2463. * into the adjacent leaves. If all goes well we can avoid the double split
  2464. * completely.
  2465. */
  2466. static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
  2467. struct btrfs_root *root,
  2468. struct btrfs_path *path,
  2469. int data_size)
  2470. {
  2471. int ret;
  2472. int progress = 0;
  2473. int slot;
  2474. u32 nritems;
  2475. slot = path->slots[0];
  2476. /*
  2477. * try to push all the items after our slot into the
  2478. * right leaf
  2479. */
  2480. ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
  2481. if (ret < 0)
  2482. return ret;
  2483. if (ret == 0)
  2484. progress++;
  2485. nritems = btrfs_header_nritems(path->nodes[0]);
  2486. /*
  2487. * our goal is to get our slot at the start or end of a leaf. If
  2488. * we've done so we're done
  2489. */
  2490. if (path->slots[0] == 0 || path->slots[0] == nritems)
  2491. return 0;
  2492. if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
  2493. return 0;
  2494. /* try to push all the items before our slot into the next leaf */
  2495. slot = path->slots[0];
  2496. ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
  2497. if (ret < 0)
  2498. return ret;
  2499. if (ret == 0)
  2500. progress++;
  2501. if (progress)
  2502. return 0;
  2503. return 1;
  2504. }
  2505. /*
  2506. * split the path's leaf in two, making sure there is at least data_size
  2507. * available for the resulting leaf level of the path.
  2508. *
  2509. * returns 0 if all went well and < 0 on failure.
  2510. */
  2511. static noinline int split_leaf(struct btrfs_trans_handle *trans,
  2512. struct btrfs_root *root,
  2513. struct btrfs_key *ins_key,
  2514. struct btrfs_path *path, int data_size,
  2515. int extend)
  2516. {
  2517. struct btrfs_disk_key disk_key;
  2518. struct extent_buffer *l;
  2519. u32 nritems;
  2520. int mid;
  2521. int slot;
  2522. struct extent_buffer *right;
  2523. int ret = 0;
  2524. int wret;
  2525. int split;
  2526. int num_doubles = 0;
  2527. int tried_avoid_double = 0;
  2528. l = path->nodes[0];
  2529. slot = path->slots[0];
  2530. if (extend && data_size + btrfs_item_size_nr(l, slot) +
  2531. sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
  2532. return -EOVERFLOW;
  2533. /* first try to make some room by pushing left and right */
  2534. if (data_size) {
  2535. wret = push_leaf_right(trans, root, path, data_size,
  2536. data_size, 0, 0);
  2537. if (wret < 0)
  2538. return wret;
  2539. if (wret) {
  2540. wret = push_leaf_left(trans, root, path, data_size,
  2541. data_size, 0, (u32)-1);
  2542. if (wret < 0)
  2543. return wret;
  2544. }
  2545. l = path->nodes[0];
  2546. /* did the pushes work? */
  2547. if (btrfs_leaf_free_space(root, l) >= data_size)
  2548. return 0;
  2549. }
  2550. if (!path->nodes[1]) {
  2551. ret = insert_new_root(trans, root, path, 1);
  2552. if (ret)
  2553. return ret;
  2554. }
  2555. again:
  2556. split = 1;
  2557. l = path->nodes[0];
  2558. slot = path->slots[0];
  2559. nritems = btrfs_header_nritems(l);
  2560. mid = (nritems + 1) / 2;
  2561. if (mid <= slot) {
  2562. if (nritems == 1 ||
  2563. leaf_space_used(l, mid, nritems - mid) + data_size >
  2564. BTRFS_LEAF_DATA_SIZE(root)) {
  2565. if (slot >= nritems) {
  2566. split = 0;
  2567. } else {
  2568. mid = slot;
  2569. if (mid != nritems &&
  2570. leaf_space_used(l, mid, nritems - mid) +
  2571. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2572. if (data_size && !tried_avoid_double)
  2573. goto push_for_double;
  2574. split = 2;
  2575. }
  2576. }
  2577. }
  2578. } else {
  2579. if (leaf_space_used(l, 0, mid) + data_size >
  2580. BTRFS_LEAF_DATA_SIZE(root)) {
  2581. if (!extend && data_size && slot == 0) {
  2582. split = 0;
  2583. } else if ((extend || !data_size) && slot == 0) {
  2584. mid = 1;
  2585. } else {
  2586. mid = slot;
  2587. if (mid != nritems &&
  2588. leaf_space_used(l, mid, nritems - mid) +
  2589. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2590. if (data_size && !tried_avoid_double)
  2591. goto push_for_double;
  2592. split = 2 ;
  2593. }
  2594. }
  2595. }
  2596. }
  2597. if (split == 0)
  2598. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2599. else
  2600. btrfs_item_key(l, &disk_key, mid);
  2601. right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  2602. root->root_key.objectid,
  2603. &disk_key, 0, l->start, 0);
  2604. if (IS_ERR(right))
  2605. return PTR_ERR(right);
  2606. root_add_used(root, root->leafsize);
  2607. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  2608. btrfs_set_header_bytenr(right, right->start);
  2609. btrfs_set_header_generation(right, trans->transid);
  2610. btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
  2611. btrfs_set_header_owner(right, root->root_key.objectid);
  2612. btrfs_set_header_level(right, 0);
  2613. write_extent_buffer(right, root->fs_info->fsid,
  2614. (unsigned long)btrfs_header_fsid(right),
  2615. BTRFS_FSID_SIZE);
  2616. write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
  2617. (unsigned long)btrfs_header_chunk_tree_uuid(right),
  2618. BTRFS_UUID_SIZE);
  2619. if (split == 0) {
  2620. if (mid <= slot) {
  2621. btrfs_set_header_nritems(right, 0);
  2622. wret = insert_ptr(trans, root, path,
  2623. &disk_key, right->start,
  2624. path->slots[1] + 1, 1);
  2625. if (wret)
  2626. ret = wret;
  2627. btrfs_tree_unlock(path->nodes[0]);
  2628. free_extent_buffer(path->nodes[0]);
  2629. path->nodes[0] = right;
  2630. path->slots[0] = 0;
  2631. path->slots[1] += 1;
  2632. } else {
  2633. btrfs_set_header_nritems(right, 0);
  2634. wret = insert_ptr(trans, root, path,
  2635. &disk_key,
  2636. right->start,
  2637. path->slots[1], 1);
  2638. if (wret)
  2639. ret = wret;
  2640. btrfs_tree_unlock(path->nodes[0]);
  2641. free_extent_buffer(path->nodes[0]);
  2642. path->nodes[0] = right;
  2643. path->slots[0] = 0;
  2644. if (path->slots[1] == 0) {
  2645. wret = fixup_low_keys(trans, root,
  2646. path, &disk_key, 1);
  2647. if (wret)
  2648. ret = wret;
  2649. }
  2650. }
  2651. btrfs_mark_buffer_dirty(right);
  2652. return ret;
  2653. }
  2654. ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
  2655. BUG_ON(ret);
  2656. if (split == 2) {
  2657. BUG_ON(num_doubles != 0);
  2658. num_doubles++;
  2659. goto again;
  2660. }
  2661. return ret;
  2662. push_for_double:
  2663. push_for_double_split(trans, root, path, data_size);
  2664. tried_avoid_double = 1;
  2665. if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
  2666. return 0;
  2667. goto again;
  2668. }
  2669. static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
  2670. struct btrfs_root *root,
  2671. struct btrfs_path *path, int ins_len)
  2672. {
  2673. struct btrfs_key key;
  2674. struct extent_buffer *leaf;
  2675. struct btrfs_file_extent_item *fi;
  2676. u64 extent_len = 0;
  2677. u32 item_size;
  2678. int ret;
  2679. leaf = path->nodes[0];
  2680. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  2681. BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
  2682. key.type != BTRFS_EXTENT_CSUM_KEY);
  2683. if (btrfs_leaf_free_space(root, leaf) >= ins_len)
  2684. return 0;
  2685. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2686. if (key.type == BTRFS_EXTENT_DATA_KEY) {
  2687. fi = btrfs_item_ptr(leaf, path->slots[0],
  2688. struct btrfs_file_extent_item);
  2689. extent_len = btrfs_file_extent_num_bytes(leaf, fi);
  2690. }
  2691. btrfs_release_path(path);
  2692. path->keep_locks = 1;
  2693. path->search_for_split = 1;
  2694. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  2695. path->search_for_split = 0;
  2696. if (ret < 0)
  2697. goto err;
  2698. ret = -EAGAIN;
  2699. leaf = path->nodes[0];
  2700. /* if our item isn't there or got smaller, return now */
  2701. if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
  2702. goto err;
  2703. /* the leaf has changed, it now has room. return now */
  2704. if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
  2705. goto err;
  2706. if (key.type == BTRFS_EXTENT_DATA_KEY) {
  2707. fi = btrfs_item_ptr(leaf, path->slots[0],
  2708. struct btrfs_file_extent_item);
  2709. if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
  2710. goto err;
  2711. }
  2712. btrfs_set_path_blocking(path);
  2713. ret = split_leaf(trans, root, &key, path, ins_len, 1);
  2714. if (ret)
  2715. goto err;
  2716. path->keep_locks = 0;
  2717. btrfs_unlock_up_safe(path, 1);
  2718. return 0;
  2719. err:
  2720. path->keep_locks = 0;
  2721. return ret;
  2722. }
  2723. static noinline int split_item(struct btrfs_trans_handle *trans,
  2724. struct btrfs_root *root,
  2725. struct btrfs_path *path,
  2726. struct btrfs_key *new_key,
  2727. unsigned long split_offset)
  2728. {
  2729. struct extent_buffer *leaf;
  2730. struct btrfs_item *item;
  2731. struct btrfs_item *new_item;
  2732. int slot;
  2733. char *buf;
  2734. u32 nritems;
  2735. u32 item_size;
  2736. u32 orig_offset;
  2737. struct btrfs_disk_key disk_key;
  2738. leaf = path->nodes[0];
  2739. BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
  2740. btrfs_set_path_blocking(path);
  2741. item = btrfs_item_nr(leaf, path->slots[0]);
  2742. orig_offset = btrfs_item_offset(leaf, item);
  2743. item_size = btrfs_item_size(leaf, item);
  2744. buf = kmalloc(item_size, GFP_NOFS);
  2745. if (!buf)
  2746. return -ENOMEM;
  2747. read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
  2748. path->slots[0]), item_size);
  2749. slot = path->slots[0] + 1;
  2750. nritems = btrfs_header_nritems(leaf);
  2751. if (slot != nritems) {
  2752. /* shift the items */
  2753. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
  2754. btrfs_item_nr_offset(slot),
  2755. (nritems - slot) * sizeof(struct btrfs_item));
  2756. }
  2757. btrfs_cpu_key_to_disk(&disk_key, new_key);
  2758. btrfs_set_item_key(leaf, &disk_key, slot);
  2759. new_item = btrfs_item_nr(leaf, slot);
  2760. btrfs_set_item_offset(leaf, new_item, orig_offset);
  2761. btrfs_set_item_size(leaf, new_item, item_size - split_offset);
  2762. btrfs_set_item_offset(leaf, item,
  2763. orig_offset + item_size - split_offset);
  2764. btrfs_set_item_size(leaf, item, split_offset);
  2765. btrfs_set_header_nritems(leaf, nritems + 1);
  2766. /* write the data for the start of the original item */
  2767. write_extent_buffer(leaf, buf,
  2768. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2769. split_offset);
  2770. /* write the data for the new item */
  2771. write_extent_buffer(leaf, buf + split_offset,
  2772. btrfs_item_ptr_offset(leaf, slot),
  2773. item_size - split_offset);
  2774. btrfs_mark_buffer_dirty(leaf);
  2775. BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
  2776. kfree(buf);
  2777. return 0;
  2778. }
  2779. /*
  2780. * This function splits a single item into two items,
  2781. * giving 'new_key' to the new item and splitting the
  2782. * old one at split_offset (from the start of the item).
  2783. *
  2784. * The path may be released by this operation. After
  2785. * the split, the path is pointing to the old item. The
  2786. * new item is going to be in the same node as the old one.
  2787. *
  2788. * Note, the item being split must be smaller enough to live alone on
  2789. * a tree block with room for one extra struct btrfs_item
  2790. *
  2791. * This allows us to split the item in place, keeping a lock on the
  2792. * leaf the entire time.
  2793. */
  2794. int btrfs_split_item(struct btrfs_trans_handle *trans,
  2795. struct btrfs_root *root,
  2796. struct btrfs_path *path,
  2797. struct btrfs_key *new_key,
  2798. unsigned long split_offset)
  2799. {
  2800. int ret;
  2801. ret = setup_leaf_for_split(trans, root, path,
  2802. sizeof(struct btrfs_item));
  2803. if (ret)
  2804. return ret;
  2805. ret = split_item(trans, root, path, new_key, split_offset);
  2806. return ret;
  2807. }
  2808. /*
  2809. * This function duplicate a item, giving 'new_key' to the new item.
  2810. * It guarantees both items live in the same tree leaf and the new item
  2811. * is contiguous with the original item.
  2812. *
  2813. * This allows us to split file extent in place, keeping a lock on the
  2814. * leaf the entire time.
  2815. */
  2816. int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
  2817. struct btrfs_root *root,
  2818. struct btrfs_path *path,
  2819. struct btrfs_key *new_key)
  2820. {
  2821. struct extent_buffer *leaf;
  2822. int ret;
  2823. u32 item_size;
  2824. leaf = path->nodes[0];
  2825. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2826. ret = setup_leaf_for_split(trans, root, path,
  2827. item_size + sizeof(struct btrfs_item));
  2828. if (ret)
  2829. return ret;
  2830. path->slots[0]++;
  2831. ret = setup_items_for_insert(trans, root, path, new_key, &item_size,
  2832. item_size, item_size +
  2833. sizeof(struct btrfs_item), 1);
  2834. BUG_ON(ret);
  2835. leaf = path->nodes[0];
  2836. memcpy_extent_buffer(leaf,
  2837. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2838. btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
  2839. item_size);
  2840. return 0;
  2841. }
  2842. /*
  2843. * make the item pointed to by the path smaller. new_size indicates
  2844. * how small to make it, and from_end tells us if we just chop bytes
  2845. * off the end of the item or if we shift the item to chop bytes off
  2846. * the front.
  2847. */
  2848. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  2849. struct btrfs_root *root,
  2850. struct btrfs_path *path,
  2851. u32 new_size, int from_end)
  2852. {
  2853. int slot;
  2854. struct extent_buffer *leaf;
  2855. struct btrfs_item *item;
  2856. u32 nritems;
  2857. unsigned int data_end;
  2858. unsigned int old_data_start;
  2859. unsigned int old_size;
  2860. unsigned int size_diff;
  2861. int i;
  2862. leaf = path->nodes[0];
  2863. slot = path->slots[0];
  2864. old_size = btrfs_item_size_nr(leaf, slot);
  2865. if (old_size == new_size)
  2866. return 0;
  2867. nritems = btrfs_header_nritems(leaf);
  2868. data_end = leaf_data_end(root, leaf);
  2869. old_data_start = btrfs_item_offset_nr(leaf, slot);
  2870. size_diff = old_size - new_size;
  2871. BUG_ON(slot < 0);
  2872. BUG_ON(slot >= nritems);
  2873. /*
  2874. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2875. */
  2876. /* first correct the data pointers */
  2877. for (i = slot; i < nritems; i++) {
  2878. u32 ioff;
  2879. item = btrfs_item_nr(leaf, i);
  2880. if (!leaf->map_token) {
  2881. map_extent_buffer(leaf, (unsigned long)item,
  2882. sizeof(struct btrfs_item),
  2883. &leaf->map_token, &leaf->kaddr,
  2884. &leaf->map_start, &leaf->map_len,
  2885. KM_USER1);
  2886. }
  2887. ioff = btrfs_item_offset(leaf, item);
  2888. btrfs_set_item_offset(leaf, item, ioff + size_diff);
  2889. }
  2890. if (leaf->map_token) {
  2891. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2892. leaf->map_token = NULL;
  2893. }
  2894. /* shift the data */
  2895. if (from_end) {
  2896. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2897. data_end + size_diff, btrfs_leaf_data(leaf) +
  2898. data_end, old_data_start + new_size - data_end);
  2899. } else {
  2900. struct btrfs_disk_key disk_key;
  2901. u64 offset;
  2902. btrfs_item_key(leaf, &disk_key, slot);
  2903. if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
  2904. unsigned long ptr;
  2905. struct btrfs_file_extent_item *fi;
  2906. fi = btrfs_item_ptr(leaf, slot,
  2907. struct btrfs_file_extent_item);
  2908. fi = (struct btrfs_file_extent_item *)(
  2909. (unsigned long)fi - size_diff);
  2910. if (btrfs_file_extent_type(leaf, fi) ==
  2911. BTRFS_FILE_EXTENT_INLINE) {
  2912. ptr = btrfs_item_ptr_offset(leaf, slot);
  2913. memmove_extent_buffer(leaf, ptr,
  2914. (unsigned long)fi,
  2915. offsetof(struct btrfs_file_extent_item,
  2916. disk_bytenr));
  2917. }
  2918. }
  2919. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2920. data_end + size_diff, btrfs_leaf_data(leaf) +
  2921. data_end, old_data_start - data_end);
  2922. offset = btrfs_disk_key_offset(&disk_key);
  2923. btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
  2924. btrfs_set_item_key(leaf, &disk_key, slot);
  2925. if (slot == 0)
  2926. fixup_low_keys(trans, root, path, &disk_key, 1);
  2927. }
  2928. item = btrfs_item_nr(leaf, slot);
  2929. btrfs_set_item_size(leaf, item, new_size);
  2930. btrfs_mark_buffer_dirty(leaf);
  2931. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2932. btrfs_print_leaf(root, leaf);
  2933. BUG();
  2934. }
  2935. return 0;
  2936. }
  2937. /*
  2938. * make the item pointed to by the path bigger, data_size is the new size.
  2939. */
  2940. int btrfs_extend_item(struct btrfs_trans_handle *trans,
  2941. struct btrfs_root *root, struct btrfs_path *path,
  2942. u32 data_size)
  2943. {
  2944. int slot;
  2945. struct extent_buffer *leaf;
  2946. struct btrfs_item *item;
  2947. u32 nritems;
  2948. unsigned int data_end;
  2949. unsigned int old_data;
  2950. unsigned int old_size;
  2951. int i;
  2952. leaf = path->nodes[0];
  2953. nritems = btrfs_header_nritems(leaf);
  2954. data_end = leaf_data_end(root, leaf);
  2955. if (btrfs_leaf_free_space(root, leaf) < data_size) {
  2956. btrfs_print_leaf(root, leaf);
  2957. BUG();
  2958. }
  2959. slot = path->slots[0];
  2960. old_data = btrfs_item_end_nr(leaf, slot);
  2961. BUG_ON(slot < 0);
  2962. if (slot >= nritems) {
  2963. btrfs_print_leaf(root, leaf);
  2964. printk(KERN_CRIT "slot %d too large, nritems %d\n",
  2965. slot, nritems);
  2966. BUG_ON(1);
  2967. }
  2968. /*
  2969. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2970. */
  2971. /* first correct the data pointers */
  2972. for (i = slot; i < nritems; i++) {
  2973. u32 ioff;
  2974. item = btrfs_item_nr(leaf, i);
  2975. if (!leaf->map_token) {
  2976. map_extent_buffer(leaf, (unsigned long)item,
  2977. sizeof(struct btrfs_item),
  2978. &leaf->map_token, &leaf->kaddr,
  2979. &leaf->map_start, &leaf->map_len,
  2980. KM_USER1);
  2981. }
  2982. ioff = btrfs_item_offset(leaf, item);
  2983. btrfs_set_item_offset(leaf, item, ioff - data_size);
  2984. }
  2985. if (leaf->map_token) {
  2986. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2987. leaf->map_token = NULL;
  2988. }
  2989. /* shift the data */
  2990. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2991. data_end - data_size, btrfs_leaf_data(leaf) +
  2992. data_end, old_data - data_end);
  2993. data_end = old_data;
  2994. old_size = btrfs_item_size_nr(leaf, slot);
  2995. item = btrfs_item_nr(leaf, slot);
  2996. btrfs_set_item_size(leaf, item, old_size + data_size);
  2997. btrfs_mark_buffer_dirty(leaf);
  2998. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2999. btrfs_print_leaf(root, leaf);
  3000. BUG();
  3001. }
  3002. return 0;
  3003. }
  3004. /*
  3005. * Given a key and some data, insert items into the tree.
  3006. * This does all the path init required, making room in the tree if needed.
  3007. * Returns the number of keys that were inserted.
  3008. */
  3009. int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
  3010. struct btrfs_root *root,
  3011. struct btrfs_path *path,
  3012. struct btrfs_key *cpu_key, u32 *data_size,
  3013. int nr)
  3014. {
  3015. struct extent_buffer *leaf;
  3016. struct btrfs_item *item;
  3017. int ret = 0;
  3018. int slot;
  3019. int i;
  3020. u32 nritems;
  3021. u32 total_data = 0;
  3022. u32 total_size = 0;
  3023. unsigned int data_end;
  3024. struct btrfs_disk_key disk_key;
  3025. struct btrfs_key found_key;
  3026. for (i = 0; i < nr; i++) {
  3027. if (total_size + data_size[i] + sizeof(struct btrfs_item) >
  3028. BTRFS_LEAF_DATA_SIZE(root)) {
  3029. break;
  3030. nr = i;
  3031. }
  3032. total_data += data_size[i];
  3033. total_size += data_size[i] + sizeof(struct btrfs_item);
  3034. }
  3035. BUG_ON(nr == 0);
  3036. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3037. if (ret == 0)
  3038. return -EEXIST;
  3039. if (ret < 0)
  3040. goto out;
  3041. leaf = path->nodes[0];
  3042. nritems = btrfs_header_nritems(leaf);
  3043. data_end = leaf_data_end(root, leaf);
  3044. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3045. for (i = nr; i >= 0; i--) {
  3046. total_data -= data_size[i];
  3047. total_size -= data_size[i] + sizeof(struct btrfs_item);
  3048. if (total_size < btrfs_leaf_free_space(root, leaf))
  3049. break;
  3050. }
  3051. nr = i;
  3052. }
  3053. slot = path->slots[0];
  3054. BUG_ON(slot < 0);
  3055. if (slot != nritems) {
  3056. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3057. item = btrfs_item_nr(leaf, slot);
  3058. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  3059. /* figure out how many keys we can insert in here */
  3060. total_data = data_size[0];
  3061. for (i = 1; i < nr; i++) {
  3062. if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
  3063. break;
  3064. total_data += data_size[i];
  3065. }
  3066. nr = i;
  3067. if (old_data < data_end) {
  3068. btrfs_print_leaf(root, leaf);
  3069. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3070. slot, old_data, data_end);
  3071. BUG_ON(1);
  3072. }
  3073. /*
  3074. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3075. */
  3076. /* first correct the data pointers */
  3077. WARN_ON(leaf->map_token);
  3078. for (i = slot; i < nritems; i++) {
  3079. u32 ioff;
  3080. item = btrfs_item_nr(leaf, i);
  3081. if (!leaf->map_token) {
  3082. map_extent_buffer(leaf, (unsigned long)item,
  3083. sizeof(struct btrfs_item),
  3084. &leaf->map_token, &leaf->kaddr,
  3085. &leaf->map_start, &leaf->map_len,
  3086. KM_USER1);
  3087. }
  3088. ioff = btrfs_item_offset(leaf, item);
  3089. btrfs_set_item_offset(leaf, item, ioff - total_data);
  3090. }
  3091. if (leaf->map_token) {
  3092. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3093. leaf->map_token = NULL;
  3094. }
  3095. /* shift the items */
  3096. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3097. btrfs_item_nr_offset(slot),
  3098. (nritems - slot) * sizeof(struct btrfs_item));
  3099. /* shift the data */
  3100. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3101. data_end - total_data, btrfs_leaf_data(leaf) +
  3102. data_end, old_data - data_end);
  3103. data_end = old_data;
  3104. } else {
  3105. /*
  3106. * this sucks but it has to be done, if we are inserting at
  3107. * the end of the leaf only insert 1 of the items, since we
  3108. * have no way of knowing whats on the next leaf and we'd have
  3109. * to drop our current locks to figure it out
  3110. */
  3111. nr = 1;
  3112. }
  3113. /* setup the item for the new data */
  3114. for (i = 0; i < nr; i++) {
  3115. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3116. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3117. item = btrfs_item_nr(leaf, slot + i);
  3118. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3119. data_end -= data_size[i];
  3120. btrfs_set_item_size(leaf, item, data_size[i]);
  3121. }
  3122. btrfs_set_header_nritems(leaf, nritems + nr);
  3123. btrfs_mark_buffer_dirty(leaf);
  3124. ret = 0;
  3125. if (slot == 0) {
  3126. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3127. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3128. }
  3129. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3130. btrfs_print_leaf(root, leaf);
  3131. BUG();
  3132. }
  3133. out:
  3134. if (!ret)
  3135. ret = nr;
  3136. return ret;
  3137. }
  3138. /*
  3139. * this is a helper for btrfs_insert_empty_items, the main goal here is
  3140. * to save stack depth by doing the bulk of the work in a function
  3141. * that doesn't call btrfs_search_slot
  3142. */
  3143. int setup_items_for_insert(struct btrfs_trans_handle *trans,
  3144. struct btrfs_root *root, struct btrfs_path *path,
  3145. struct btrfs_key *cpu_key, u32 *data_size,
  3146. u32 total_data, u32 total_size, int nr)
  3147. {
  3148. struct btrfs_item *item;
  3149. int i;
  3150. u32 nritems;
  3151. unsigned int data_end;
  3152. struct btrfs_disk_key disk_key;
  3153. int ret;
  3154. struct extent_buffer *leaf;
  3155. int slot;
  3156. leaf = path->nodes[0];
  3157. slot = path->slots[0];
  3158. nritems = btrfs_header_nritems(leaf);
  3159. data_end = leaf_data_end(root, leaf);
  3160. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3161. btrfs_print_leaf(root, leaf);
  3162. printk(KERN_CRIT "not enough freespace need %u have %d\n",
  3163. total_size, btrfs_leaf_free_space(root, leaf));
  3164. BUG();
  3165. }
  3166. if (slot != nritems) {
  3167. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3168. if (old_data < data_end) {
  3169. btrfs_print_leaf(root, leaf);
  3170. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3171. slot, old_data, data_end);
  3172. BUG_ON(1);
  3173. }
  3174. /*
  3175. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3176. */
  3177. /* first correct the data pointers */
  3178. WARN_ON(leaf->map_token);
  3179. for (i = slot; i < nritems; i++) {
  3180. u32 ioff;
  3181. item = btrfs_item_nr(leaf, i);
  3182. if (!leaf->map_token) {
  3183. map_extent_buffer(leaf, (unsigned long)item,
  3184. sizeof(struct btrfs_item),
  3185. &leaf->map_token, &leaf->kaddr,
  3186. &leaf->map_start, &leaf->map_len,
  3187. KM_USER1);
  3188. }
  3189. ioff = btrfs_item_offset(leaf, item);
  3190. btrfs_set_item_offset(leaf, item, ioff - total_data);
  3191. }
  3192. if (leaf->map_token) {
  3193. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3194. leaf->map_token = NULL;
  3195. }
  3196. /* shift the items */
  3197. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3198. btrfs_item_nr_offset(slot),
  3199. (nritems - slot) * sizeof(struct btrfs_item));
  3200. /* shift the data */
  3201. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3202. data_end - total_data, btrfs_leaf_data(leaf) +
  3203. data_end, old_data - data_end);
  3204. data_end = old_data;
  3205. }
  3206. /* setup the item for the new data */
  3207. for (i = 0; i < nr; i++) {
  3208. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3209. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3210. item = btrfs_item_nr(leaf, slot + i);
  3211. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3212. data_end -= data_size[i];
  3213. btrfs_set_item_size(leaf, item, data_size[i]);
  3214. }
  3215. btrfs_set_header_nritems(leaf, nritems + nr);
  3216. ret = 0;
  3217. if (slot == 0) {
  3218. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3219. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3220. }
  3221. btrfs_unlock_up_safe(path, 1);
  3222. btrfs_mark_buffer_dirty(leaf);
  3223. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3224. btrfs_print_leaf(root, leaf);
  3225. BUG();
  3226. }
  3227. return ret;
  3228. }
  3229. /*
  3230. * Given a key and some data, insert items into the tree.
  3231. * This does all the path init required, making room in the tree if needed.
  3232. */
  3233. int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
  3234. struct btrfs_root *root,
  3235. struct btrfs_path *path,
  3236. struct btrfs_key *cpu_key, u32 *data_size,
  3237. int nr)
  3238. {
  3239. int ret = 0;
  3240. int slot;
  3241. int i;
  3242. u32 total_size = 0;
  3243. u32 total_data = 0;
  3244. for (i = 0; i < nr; i++)
  3245. total_data += data_size[i];
  3246. total_size = total_data + (nr * sizeof(struct btrfs_item));
  3247. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3248. if (ret == 0)
  3249. return -EEXIST;
  3250. if (ret < 0)
  3251. goto out;
  3252. slot = path->slots[0];
  3253. BUG_ON(slot < 0);
  3254. ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
  3255. total_data, total_size, nr);
  3256. out:
  3257. return ret;
  3258. }
  3259. /*
  3260. * Given a key and some data, insert an item into the tree.
  3261. * This does all the path init required, making room in the tree if needed.
  3262. */
  3263. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  3264. *root, struct btrfs_key *cpu_key, void *data, u32
  3265. data_size)
  3266. {
  3267. int ret = 0;
  3268. struct btrfs_path *path;
  3269. struct extent_buffer *leaf;
  3270. unsigned long ptr;
  3271. path = btrfs_alloc_path();
  3272. if (!path)
  3273. return -ENOMEM;
  3274. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  3275. if (!ret) {
  3276. leaf = path->nodes[0];
  3277. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  3278. write_extent_buffer(leaf, data, ptr, data_size);
  3279. btrfs_mark_buffer_dirty(leaf);
  3280. }
  3281. btrfs_free_path(path);
  3282. return ret;
  3283. }
  3284. /*
  3285. * delete the pointer from a given node.
  3286. *
  3287. * the tree should have been previously balanced so the deletion does not
  3288. * empty a node.
  3289. */
  3290. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3291. struct btrfs_path *path, int level, int slot)
  3292. {
  3293. struct extent_buffer *parent = path->nodes[level];
  3294. u32 nritems;
  3295. int ret = 0;
  3296. int wret;
  3297. nritems = btrfs_header_nritems(parent);
  3298. if (slot != nritems - 1) {
  3299. memmove_extent_buffer(parent,
  3300. btrfs_node_key_ptr_offset(slot),
  3301. btrfs_node_key_ptr_offset(slot + 1),
  3302. sizeof(struct btrfs_key_ptr) *
  3303. (nritems - slot - 1));
  3304. }
  3305. nritems--;
  3306. btrfs_set_header_nritems(parent, nritems);
  3307. if (nritems == 0 && parent == root->node) {
  3308. BUG_ON(btrfs_header_level(root->node) != 1);
  3309. /* just turn the root into a leaf and break */
  3310. btrfs_set_header_level(root->node, 0);
  3311. } else if (slot == 0) {
  3312. struct btrfs_disk_key disk_key;
  3313. btrfs_node_key(parent, &disk_key, 0);
  3314. wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
  3315. if (wret)
  3316. ret = wret;
  3317. }
  3318. btrfs_mark_buffer_dirty(parent);
  3319. return ret;
  3320. }
  3321. /*
  3322. * a helper function to delete the leaf pointed to by path->slots[1] and
  3323. * path->nodes[1].
  3324. *
  3325. * This deletes the pointer in path->nodes[1] and frees the leaf
  3326. * block extent. zero is returned if it all worked out, < 0 otherwise.
  3327. *
  3328. * The path must have already been setup for deleting the leaf, including
  3329. * all the proper balancing. path->nodes[1] must be locked.
  3330. */
  3331. static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
  3332. struct btrfs_root *root,
  3333. struct btrfs_path *path,
  3334. struct extent_buffer *leaf)
  3335. {
  3336. int ret;
  3337. WARN_ON(btrfs_header_generation(leaf) != trans->transid);
  3338. ret = del_ptr(trans, root, path, 1, path->slots[1]);
  3339. if (ret)
  3340. return ret;
  3341. /*
  3342. * btrfs_free_extent is expensive, we want to make sure we
  3343. * aren't holding any locks when we call it
  3344. */
  3345. btrfs_unlock_up_safe(path, 0);
  3346. root_sub_used(root, leaf->len);
  3347. btrfs_free_tree_block(trans, root, leaf, 0, 1);
  3348. return 0;
  3349. }
  3350. /*
  3351. * delete the item at the leaf level in path. If that empties
  3352. * the leaf, remove it from the tree
  3353. */
  3354. int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3355. struct btrfs_path *path, int slot, int nr)
  3356. {
  3357. struct extent_buffer *leaf;
  3358. struct btrfs_item *item;
  3359. int last_off;
  3360. int dsize = 0;
  3361. int ret = 0;
  3362. int wret;
  3363. int i;
  3364. u32 nritems;
  3365. leaf = path->nodes[0];
  3366. last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
  3367. for (i = 0; i < nr; i++)
  3368. dsize += btrfs_item_size_nr(leaf, slot + i);
  3369. nritems = btrfs_header_nritems(leaf);
  3370. if (slot + nr != nritems) {
  3371. int data_end = leaf_data_end(root, leaf);
  3372. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3373. data_end + dsize,
  3374. btrfs_leaf_data(leaf) + data_end,
  3375. last_off - data_end);
  3376. for (i = slot + nr; i < nritems; i++) {
  3377. u32 ioff;
  3378. item = btrfs_item_nr(leaf, i);
  3379. if (!leaf->map_token) {
  3380. map_extent_buffer(leaf, (unsigned long)item,
  3381. sizeof(struct btrfs_item),
  3382. &leaf->map_token, &leaf->kaddr,
  3383. &leaf->map_start, &leaf->map_len,
  3384. KM_USER1);
  3385. }
  3386. ioff = btrfs_item_offset(leaf, item);
  3387. btrfs_set_item_offset(leaf, item, ioff + dsize);
  3388. }
  3389. if (leaf->map_token) {
  3390. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3391. leaf->map_token = NULL;
  3392. }
  3393. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
  3394. btrfs_item_nr_offset(slot + nr),
  3395. sizeof(struct btrfs_item) *
  3396. (nritems - slot - nr));
  3397. }
  3398. btrfs_set_header_nritems(leaf, nritems - nr);
  3399. nritems -= nr;
  3400. /* delete the leaf if we've emptied it */
  3401. if (nritems == 0) {
  3402. if (leaf == root->node) {
  3403. btrfs_set_header_level(leaf, 0);
  3404. } else {
  3405. btrfs_set_path_blocking(path);
  3406. clean_tree_block(trans, root, leaf);
  3407. ret = btrfs_del_leaf(trans, root, path, leaf);
  3408. BUG_ON(ret);
  3409. }
  3410. } else {
  3411. int used = leaf_space_used(leaf, 0, nritems);
  3412. if (slot == 0) {
  3413. struct btrfs_disk_key disk_key;
  3414. btrfs_item_key(leaf, &disk_key, 0);
  3415. wret = fixup_low_keys(trans, root, path,
  3416. &disk_key, 1);
  3417. if (wret)
  3418. ret = wret;
  3419. }
  3420. /* delete the leaf if it is mostly empty */
  3421. if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
  3422. /* push_leaf_left fixes the path.
  3423. * make sure the path still points to our leaf
  3424. * for possible call to del_ptr below
  3425. */
  3426. slot = path->slots[1];
  3427. extent_buffer_get(leaf);
  3428. btrfs_set_path_blocking(path);
  3429. wret = push_leaf_left(trans, root, path, 1, 1,
  3430. 1, (u32)-1);
  3431. if (wret < 0 && wret != -ENOSPC)
  3432. ret = wret;
  3433. if (path->nodes[0] == leaf &&
  3434. btrfs_header_nritems(leaf)) {
  3435. wret = push_leaf_right(trans, root, path, 1,
  3436. 1, 1, 0);
  3437. if (wret < 0 && wret != -ENOSPC)
  3438. ret = wret;
  3439. }
  3440. if (btrfs_header_nritems(leaf) == 0) {
  3441. path->slots[1] = slot;
  3442. ret = btrfs_del_leaf(trans, root, path, leaf);
  3443. BUG_ON(ret);
  3444. free_extent_buffer(leaf);
  3445. } else {
  3446. /* if we're still in the path, make sure
  3447. * we're dirty. Otherwise, one of the
  3448. * push_leaf functions must have already
  3449. * dirtied this buffer
  3450. */
  3451. if (path->nodes[0] == leaf)
  3452. btrfs_mark_buffer_dirty(leaf);
  3453. free_extent_buffer(leaf);
  3454. }
  3455. } else {
  3456. btrfs_mark_buffer_dirty(leaf);
  3457. }
  3458. }
  3459. return ret;
  3460. }
  3461. /*
  3462. * search the tree again to find a leaf with lesser keys
  3463. * returns 0 if it found something or 1 if there are no lesser leaves.
  3464. * returns < 0 on io errors.
  3465. *
  3466. * This may release the path, and so you may lose any locks held at the
  3467. * time you call it.
  3468. */
  3469. int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3470. {
  3471. struct btrfs_key key;
  3472. struct btrfs_disk_key found_key;
  3473. int ret;
  3474. btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
  3475. if (key.offset > 0)
  3476. key.offset--;
  3477. else if (key.type > 0)
  3478. key.type--;
  3479. else if (key.objectid > 0)
  3480. key.objectid--;
  3481. else
  3482. return 1;
  3483. btrfs_release_path(path);
  3484. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3485. if (ret < 0)
  3486. return ret;
  3487. btrfs_item_key(path->nodes[0], &found_key, 0);
  3488. ret = comp_keys(&found_key, &key);
  3489. if (ret < 0)
  3490. return 0;
  3491. return 1;
  3492. }
  3493. /*
  3494. * A helper function to walk down the tree starting at min_key, and looking
  3495. * for nodes or leaves that are either in cache or have a minimum
  3496. * transaction id. This is used by the btree defrag code, and tree logging
  3497. *
  3498. * This does not cow, but it does stuff the starting key it finds back
  3499. * into min_key, so you can call btrfs_search_slot with cow=1 on the
  3500. * key and get a writable path.
  3501. *
  3502. * This does lock as it descends, and path->keep_locks should be set
  3503. * to 1 by the caller.
  3504. *
  3505. * This honors path->lowest_level to prevent descent past a given level
  3506. * of the tree.
  3507. *
  3508. * min_trans indicates the oldest transaction that you are interested
  3509. * in walking through. Any nodes or leaves older than min_trans are
  3510. * skipped over (without reading them).
  3511. *
  3512. * returns zero if something useful was found, < 0 on error and 1 if there
  3513. * was nothing in the tree that matched the search criteria.
  3514. */
  3515. int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
  3516. struct btrfs_key *max_key,
  3517. struct btrfs_path *path, int cache_only,
  3518. u64 min_trans)
  3519. {
  3520. struct extent_buffer *cur;
  3521. struct btrfs_key found_key;
  3522. int slot;
  3523. int sret;
  3524. u32 nritems;
  3525. int level;
  3526. int ret = 1;
  3527. WARN_ON(!path->keep_locks);
  3528. again:
  3529. cur = btrfs_lock_root_node(root);
  3530. level = btrfs_header_level(cur);
  3531. WARN_ON(path->nodes[level]);
  3532. path->nodes[level] = cur;
  3533. path->locks[level] = 1;
  3534. if (btrfs_header_generation(cur) < min_trans) {
  3535. ret = 1;
  3536. goto out;
  3537. }
  3538. while (1) {
  3539. nritems = btrfs_header_nritems(cur);
  3540. level = btrfs_header_level(cur);
  3541. sret = bin_search(cur, min_key, level, &slot);
  3542. /* at the lowest level, we're done, setup the path and exit */
  3543. if (level == path->lowest_level) {
  3544. if (slot >= nritems)
  3545. goto find_next_key;
  3546. ret = 0;
  3547. path->slots[level] = slot;
  3548. btrfs_item_key_to_cpu(cur, &found_key, slot);
  3549. goto out;
  3550. }
  3551. if (sret && slot > 0)
  3552. slot--;
  3553. /*
  3554. * check this node pointer against the cache_only and
  3555. * min_trans parameters. If it isn't in cache or is too
  3556. * old, skip to the next one.
  3557. */
  3558. while (slot < nritems) {
  3559. u64 blockptr;
  3560. u64 gen;
  3561. struct extent_buffer *tmp;
  3562. struct btrfs_disk_key disk_key;
  3563. blockptr = btrfs_node_blockptr(cur, slot);
  3564. gen = btrfs_node_ptr_generation(cur, slot);
  3565. if (gen < min_trans) {
  3566. slot++;
  3567. continue;
  3568. }
  3569. if (!cache_only)
  3570. break;
  3571. if (max_key) {
  3572. btrfs_node_key(cur, &disk_key, slot);
  3573. if (comp_keys(&disk_key, max_key) >= 0) {
  3574. ret = 1;
  3575. goto out;
  3576. }
  3577. }
  3578. tmp = btrfs_find_tree_block(root, blockptr,
  3579. btrfs_level_size(root, level - 1));
  3580. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  3581. free_extent_buffer(tmp);
  3582. break;
  3583. }
  3584. if (tmp)
  3585. free_extent_buffer(tmp);
  3586. slot++;
  3587. }
  3588. find_next_key:
  3589. /*
  3590. * we didn't find a candidate key in this node, walk forward
  3591. * and find another one
  3592. */
  3593. if (slot >= nritems) {
  3594. path->slots[level] = slot;
  3595. btrfs_set_path_blocking(path);
  3596. sret = btrfs_find_next_key(root, path, min_key, level,
  3597. cache_only, min_trans);
  3598. if (sret == 0) {
  3599. btrfs_release_path(path);
  3600. goto again;
  3601. } else {
  3602. goto out;
  3603. }
  3604. }
  3605. /* save our key for returning back */
  3606. btrfs_node_key_to_cpu(cur, &found_key, slot);
  3607. path->slots[level] = slot;
  3608. if (level == path->lowest_level) {
  3609. ret = 0;
  3610. unlock_up(path, level, 1);
  3611. goto out;
  3612. }
  3613. btrfs_set_path_blocking(path);
  3614. cur = read_node_slot(root, cur, slot);
  3615. BUG_ON(!cur);
  3616. btrfs_tree_lock(cur);
  3617. path->locks[level - 1] = 1;
  3618. path->nodes[level - 1] = cur;
  3619. unlock_up(path, level, 1);
  3620. btrfs_clear_path_blocking(path, NULL);
  3621. }
  3622. out:
  3623. if (ret == 0)
  3624. memcpy(min_key, &found_key, sizeof(found_key));
  3625. btrfs_set_path_blocking(path);
  3626. return ret;
  3627. }
  3628. /*
  3629. * this is similar to btrfs_next_leaf, but does not try to preserve
  3630. * and fixup the path. It looks for and returns the next key in the
  3631. * tree based on the current path and the cache_only and min_trans
  3632. * parameters.
  3633. *
  3634. * 0 is returned if another key is found, < 0 if there are any errors
  3635. * and 1 is returned if there are no higher keys in the tree
  3636. *
  3637. * path->keep_locks should be set to 1 on the search made before
  3638. * calling this function.
  3639. */
  3640. int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
  3641. struct btrfs_key *key, int level,
  3642. int cache_only, u64 min_trans)
  3643. {
  3644. int slot;
  3645. struct extent_buffer *c;
  3646. WARN_ON(!path->keep_locks);
  3647. while (level < BTRFS_MAX_LEVEL) {
  3648. if (!path->nodes[level])
  3649. return 1;
  3650. slot = path->slots[level] + 1;
  3651. c = path->nodes[level];
  3652. next:
  3653. if (slot >= btrfs_header_nritems(c)) {
  3654. int ret;
  3655. int orig_lowest;
  3656. struct btrfs_key cur_key;
  3657. if (level + 1 >= BTRFS_MAX_LEVEL ||
  3658. !path->nodes[level + 1])
  3659. return 1;
  3660. if (path->locks[level + 1]) {
  3661. level++;
  3662. continue;
  3663. }
  3664. slot = btrfs_header_nritems(c) - 1;
  3665. if (level == 0)
  3666. btrfs_item_key_to_cpu(c, &cur_key, slot);
  3667. else
  3668. btrfs_node_key_to_cpu(c, &cur_key, slot);
  3669. orig_lowest = path->lowest_level;
  3670. btrfs_release_path(path);
  3671. path->lowest_level = level;
  3672. ret = btrfs_search_slot(NULL, root, &cur_key, path,
  3673. 0, 0);
  3674. path->lowest_level = orig_lowest;
  3675. if (ret < 0)
  3676. return ret;
  3677. c = path->nodes[level];
  3678. slot = path->slots[level];
  3679. if (ret == 0)
  3680. slot++;
  3681. goto next;
  3682. }
  3683. if (level == 0)
  3684. btrfs_item_key_to_cpu(c, key, slot);
  3685. else {
  3686. u64 blockptr = btrfs_node_blockptr(c, slot);
  3687. u64 gen = btrfs_node_ptr_generation(c, slot);
  3688. if (cache_only) {
  3689. struct extent_buffer *cur;
  3690. cur = btrfs_find_tree_block(root, blockptr,
  3691. btrfs_level_size(root, level - 1));
  3692. if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
  3693. slot++;
  3694. if (cur)
  3695. free_extent_buffer(cur);
  3696. goto next;
  3697. }
  3698. free_extent_buffer(cur);
  3699. }
  3700. if (gen < min_trans) {
  3701. slot++;
  3702. goto next;
  3703. }
  3704. btrfs_node_key_to_cpu(c, key, slot);
  3705. }
  3706. return 0;
  3707. }
  3708. return 1;
  3709. }
  3710. /*
  3711. * search the tree again to find a leaf with greater keys
  3712. * returns 0 if it found something or 1 if there are no greater leaves.
  3713. * returns < 0 on io errors.
  3714. */
  3715. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3716. {
  3717. int slot;
  3718. int level;
  3719. struct extent_buffer *c;
  3720. struct extent_buffer *next;
  3721. struct btrfs_key key;
  3722. u32 nritems;
  3723. int ret;
  3724. int old_spinning = path->leave_spinning;
  3725. int force_blocking = 0;
  3726. nritems = btrfs_header_nritems(path->nodes[0]);
  3727. if (nritems == 0)
  3728. return 1;
  3729. /*
  3730. * we take the blocks in an order that upsets lockdep. Using
  3731. * blocking mode is the only way around it.
  3732. */
  3733. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  3734. force_blocking = 1;
  3735. #endif
  3736. btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
  3737. again:
  3738. level = 1;
  3739. next = NULL;
  3740. btrfs_release_path(path);
  3741. path->keep_locks = 1;
  3742. if (!force_blocking)
  3743. path->leave_spinning = 1;
  3744. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3745. path->keep_locks = 0;
  3746. if (ret < 0)
  3747. return ret;
  3748. nritems = btrfs_header_nritems(path->nodes[0]);
  3749. /*
  3750. * by releasing the path above we dropped all our locks. A balance
  3751. * could have added more items next to the key that used to be
  3752. * at the very end of the block. So, check again here and
  3753. * advance the path if there are now more items available.
  3754. */
  3755. if (nritems > 0 && path->slots[0] < nritems - 1) {
  3756. if (ret == 0)
  3757. path->slots[0]++;
  3758. ret = 0;
  3759. goto done;
  3760. }
  3761. while (level < BTRFS_MAX_LEVEL) {
  3762. if (!path->nodes[level]) {
  3763. ret = 1;
  3764. goto done;
  3765. }
  3766. slot = path->slots[level] + 1;
  3767. c = path->nodes[level];
  3768. if (slot >= btrfs_header_nritems(c)) {
  3769. level++;
  3770. if (level == BTRFS_MAX_LEVEL) {
  3771. ret = 1;
  3772. goto done;
  3773. }
  3774. continue;
  3775. }
  3776. if (next) {
  3777. btrfs_tree_unlock(next);
  3778. free_extent_buffer(next);
  3779. }
  3780. next = c;
  3781. ret = read_block_for_search(NULL, root, path, &next, level,
  3782. slot, &key);
  3783. if (ret == -EAGAIN)
  3784. goto again;
  3785. if (ret < 0) {
  3786. btrfs_release_path(path);
  3787. goto done;
  3788. }
  3789. if (!path->skip_locking) {
  3790. ret = btrfs_try_spin_lock(next);
  3791. if (!ret) {
  3792. btrfs_set_path_blocking(path);
  3793. btrfs_tree_lock(next);
  3794. if (!force_blocking)
  3795. btrfs_clear_path_blocking(path, next);
  3796. }
  3797. if (force_blocking)
  3798. btrfs_set_lock_blocking(next);
  3799. }
  3800. break;
  3801. }
  3802. path->slots[level] = slot;
  3803. while (1) {
  3804. level--;
  3805. c = path->nodes[level];
  3806. if (path->locks[level])
  3807. btrfs_tree_unlock(c);
  3808. free_extent_buffer(c);
  3809. path->nodes[level] = next;
  3810. path->slots[level] = 0;
  3811. if (!path->skip_locking)
  3812. path->locks[level] = 1;
  3813. if (!level)
  3814. break;
  3815. ret = read_block_for_search(NULL, root, path, &next, level,
  3816. 0, &key);
  3817. if (ret == -EAGAIN)
  3818. goto again;
  3819. if (ret < 0) {
  3820. btrfs_release_path(path);
  3821. goto done;
  3822. }
  3823. if (!path->skip_locking) {
  3824. btrfs_assert_tree_locked(path->nodes[level]);
  3825. ret = btrfs_try_spin_lock(next);
  3826. if (!ret) {
  3827. btrfs_set_path_blocking(path);
  3828. btrfs_tree_lock(next);
  3829. if (!force_blocking)
  3830. btrfs_clear_path_blocking(path, next);
  3831. }
  3832. if (force_blocking)
  3833. btrfs_set_lock_blocking(next);
  3834. }
  3835. }
  3836. ret = 0;
  3837. done:
  3838. unlock_up(path, 0, 1);
  3839. path->leave_spinning = old_spinning;
  3840. if (!old_spinning)
  3841. btrfs_set_path_blocking(path);
  3842. return ret;
  3843. }
  3844. /*
  3845. * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
  3846. * searching until it gets past min_objectid or finds an item of 'type'
  3847. *
  3848. * returns 0 if something is found, 1 if nothing was found and < 0 on error
  3849. */
  3850. int btrfs_previous_item(struct btrfs_root *root,
  3851. struct btrfs_path *path, u64 min_objectid,
  3852. int type)
  3853. {
  3854. struct btrfs_key found_key;
  3855. struct extent_buffer *leaf;
  3856. u32 nritems;
  3857. int ret;
  3858. while (1) {
  3859. if (path->slots[0] == 0) {
  3860. btrfs_set_path_blocking(path);
  3861. ret = btrfs_prev_leaf(root, path);
  3862. if (ret != 0)
  3863. return ret;
  3864. } else {
  3865. path->slots[0]--;
  3866. }
  3867. leaf = path->nodes[0];
  3868. nritems = btrfs_header_nritems(leaf);
  3869. if (nritems == 0)
  3870. return 1;
  3871. if (path->slots[0] == nritems)
  3872. path->slots[0]--;
  3873. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  3874. if (found_key.objectid < min_objectid)
  3875. break;
  3876. if (found_key.type == type)
  3877. return 0;
  3878. if (found_key.objectid == min_objectid &&
  3879. found_key.type < type)
  3880. break;
  3881. }
  3882. return 1;
  3883. }