ste_dma40.c 81 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252
  1. /*
  2. * Copyright (C) Ericsson AB 2007-2008
  3. * Copyright (C) ST-Ericsson SA 2008-2010
  4. * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
  5. * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
  6. * License terms: GNU General Public License (GPL) version 2
  7. */
  8. #include <linux/dma-mapping.h>
  9. #include <linux/kernel.h>
  10. #include <linux/slab.h>
  11. #include <linux/export.h>
  12. #include <linux/dmaengine.h>
  13. #include <linux/platform_device.h>
  14. #include <linux/clk.h>
  15. #include <linux/delay.h>
  16. #include <linux/pm.h>
  17. #include <linux/pm_runtime.h>
  18. #include <linux/err.h>
  19. #include <linux/amba/bus.h>
  20. #include <plat/ste_dma40.h>
  21. #include "ste_dma40_ll.h"
  22. #define D40_NAME "dma40"
  23. #define D40_PHY_CHAN -1
  24. /* For masking out/in 2 bit channel positions */
  25. #define D40_CHAN_POS(chan) (2 * (chan / 2))
  26. #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  27. /* Maximum iterations taken before giving up suspending a channel */
  28. #define D40_SUSPEND_MAX_IT 500
  29. /* Milliseconds */
  30. #define DMA40_AUTOSUSPEND_DELAY 100
  31. /* Hardware requirement on LCLA alignment */
  32. #define LCLA_ALIGNMENT 0x40000
  33. /* Max number of links per event group */
  34. #define D40_LCLA_LINK_PER_EVENT_GRP 128
  35. #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  36. /* Attempts before giving up to trying to get pages that are aligned */
  37. #define MAX_LCLA_ALLOC_ATTEMPTS 256
  38. /* Bit markings for allocation map */
  39. #define D40_ALLOC_FREE (1 << 31)
  40. #define D40_ALLOC_PHY (1 << 30)
  41. #define D40_ALLOC_LOG_FREE 0
  42. /**
  43. * enum 40_command - The different commands and/or statuses.
  44. *
  45. * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
  46. * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
  47. * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
  48. * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
  49. */
  50. enum d40_command {
  51. D40_DMA_STOP = 0,
  52. D40_DMA_RUN = 1,
  53. D40_DMA_SUSPEND_REQ = 2,
  54. D40_DMA_SUSPENDED = 3
  55. };
  56. /*
  57. * These are the registers that has to be saved and later restored
  58. * when the DMA hw is powered off.
  59. * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
  60. */
  61. static u32 d40_backup_regs[] = {
  62. D40_DREG_LCPA,
  63. D40_DREG_LCLA,
  64. D40_DREG_PRMSE,
  65. D40_DREG_PRMSO,
  66. D40_DREG_PRMOE,
  67. D40_DREG_PRMOO,
  68. };
  69. #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
  70. /* TODO: Check if all these registers have to be saved/restored on dma40 v3 */
  71. static u32 d40_backup_regs_v3[] = {
  72. D40_DREG_PSEG1,
  73. D40_DREG_PSEG2,
  74. D40_DREG_PSEG3,
  75. D40_DREG_PSEG4,
  76. D40_DREG_PCEG1,
  77. D40_DREG_PCEG2,
  78. D40_DREG_PCEG3,
  79. D40_DREG_PCEG4,
  80. D40_DREG_RSEG1,
  81. D40_DREG_RSEG2,
  82. D40_DREG_RSEG3,
  83. D40_DREG_RSEG4,
  84. D40_DREG_RCEG1,
  85. D40_DREG_RCEG2,
  86. D40_DREG_RCEG3,
  87. D40_DREG_RCEG4,
  88. };
  89. #define BACKUP_REGS_SZ_V3 ARRAY_SIZE(d40_backup_regs_v3)
  90. static u32 d40_backup_regs_chan[] = {
  91. D40_CHAN_REG_SSCFG,
  92. D40_CHAN_REG_SSELT,
  93. D40_CHAN_REG_SSPTR,
  94. D40_CHAN_REG_SSLNK,
  95. D40_CHAN_REG_SDCFG,
  96. D40_CHAN_REG_SDELT,
  97. D40_CHAN_REG_SDPTR,
  98. D40_CHAN_REG_SDLNK,
  99. };
  100. /**
  101. * struct d40_lli_pool - Structure for keeping LLIs in memory
  102. *
  103. * @base: Pointer to memory area when the pre_alloc_lli's are not large
  104. * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
  105. * pre_alloc_lli is used.
  106. * @dma_addr: DMA address, if mapped
  107. * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
  108. * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
  109. * one buffer to one buffer.
  110. */
  111. struct d40_lli_pool {
  112. void *base;
  113. int size;
  114. dma_addr_t dma_addr;
  115. /* Space for dst and src, plus an extra for padding */
  116. u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
  117. };
  118. /**
  119. * struct d40_desc - A descriptor is one DMA job.
  120. *
  121. * @lli_phy: LLI settings for physical channel. Both src and dst=
  122. * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
  123. * lli_len equals one.
  124. * @lli_log: Same as above but for logical channels.
  125. * @lli_pool: The pool with two entries pre-allocated.
  126. * @lli_len: Number of llis of current descriptor.
  127. * @lli_current: Number of transferred llis.
  128. * @lcla_alloc: Number of LCLA entries allocated.
  129. * @txd: DMA engine struct. Used for among other things for communication
  130. * during a transfer.
  131. * @node: List entry.
  132. * @is_in_client_list: true if the client owns this descriptor.
  133. * @cyclic: true if this is a cyclic job
  134. *
  135. * This descriptor is used for both logical and physical transfers.
  136. */
  137. struct d40_desc {
  138. /* LLI physical */
  139. struct d40_phy_lli_bidir lli_phy;
  140. /* LLI logical */
  141. struct d40_log_lli_bidir lli_log;
  142. struct d40_lli_pool lli_pool;
  143. int lli_len;
  144. int lli_current;
  145. int lcla_alloc;
  146. struct dma_async_tx_descriptor txd;
  147. struct list_head node;
  148. bool is_in_client_list;
  149. bool cyclic;
  150. };
  151. /**
  152. * struct d40_lcla_pool - LCLA pool settings and data.
  153. *
  154. * @base: The virtual address of LCLA. 18 bit aligned.
  155. * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
  156. * This pointer is only there for clean-up on error.
  157. * @pages: The number of pages needed for all physical channels.
  158. * Only used later for clean-up on error
  159. * @lock: Lock to protect the content in this struct.
  160. * @alloc_map: big map over which LCLA entry is own by which job.
  161. */
  162. struct d40_lcla_pool {
  163. void *base;
  164. dma_addr_t dma_addr;
  165. void *base_unaligned;
  166. int pages;
  167. spinlock_t lock;
  168. struct d40_desc **alloc_map;
  169. };
  170. /**
  171. * struct d40_phy_res - struct for handling eventlines mapped to physical
  172. * channels.
  173. *
  174. * @lock: A lock protection this entity.
  175. * @reserved: True if used by secure world or otherwise.
  176. * @num: The physical channel number of this entity.
  177. * @allocated_src: Bit mapped to show which src event line's are mapped to
  178. * this physical channel. Can also be free or physically allocated.
  179. * @allocated_dst: Same as for src but is dst.
  180. * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
  181. * event line number.
  182. */
  183. struct d40_phy_res {
  184. spinlock_t lock;
  185. bool reserved;
  186. int num;
  187. u32 allocated_src;
  188. u32 allocated_dst;
  189. };
  190. struct d40_base;
  191. /**
  192. * struct d40_chan - Struct that describes a channel.
  193. *
  194. * @lock: A spinlock to protect this struct.
  195. * @log_num: The logical number, if any of this channel.
  196. * @completed: Starts with 1, after first interrupt it is set to dma engine's
  197. * current cookie.
  198. * @pending_tx: The number of pending transfers. Used between interrupt handler
  199. * and tasklet.
  200. * @busy: Set to true when transfer is ongoing on this channel.
  201. * @phy_chan: Pointer to physical channel which this instance runs on. If this
  202. * point is NULL, then the channel is not allocated.
  203. * @chan: DMA engine handle.
  204. * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
  205. * transfer and call client callback.
  206. * @client: Cliented owned descriptor list.
  207. * @pending_queue: Submitted jobs, to be issued by issue_pending()
  208. * @active: Active descriptor.
  209. * @queue: Queued jobs.
  210. * @prepare_queue: Prepared jobs.
  211. * @dma_cfg: The client configuration of this dma channel.
  212. * @configured: whether the dma_cfg configuration is valid
  213. * @base: Pointer to the device instance struct.
  214. * @src_def_cfg: Default cfg register setting for src.
  215. * @dst_def_cfg: Default cfg register setting for dst.
  216. * @log_def: Default logical channel settings.
  217. * @lcpa: Pointer to dst and src lcpa settings.
  218. * @runtime_addr: runtime configured address.
  219. * @runtime_direction: runtime configured direction.
  220. *
  221. * This struct can either "be" a logical or a physical channel.
  222. */
  223. struct d40_chan {
  224. spinlock_t lock;
  225. int log_num;
  226. /* ID of the most recent completed transfer */
  227. int completed;
  228. int pending_tx;
  229. bool busy;
  230. struct d40_phy_res *phy_chan;
  231. struct dma_chan chan;
  232. struct tasklet_struct tasklet;
  233. struct list_head client;
  234. struct list_head pending_queue;
  235. struct list_head active;
  236. struct list_head queue;
  237. struct list_head prepare_queue;
  238. struct stedma40_chan_cfg dma_cfg;
  239. bool configured;
  240. struct d40_base *base;
  241. /* Default register configurations */
  242. u32 src_def_cfg;
  243. u32 dst_def_cfg;
  244. struct d40_def_lcsp log_def;
  245. struct d40_log_lli_full *lcpa;
  246. /* Runtime reconfiguration */
  247. dma_addr_t runtime_addr;
  248. enum dma_transfer_direction runtime_direction;
  249. };
  250. /**
  251. * struct d40_base - The big global struct, one for each probe'd instance.
  252. *
  253. * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
  254. * @execmd_lock: Lock for execute command usage since several channels share
  255. * the same physical register.
  256. * @dev: The device structure.
  257. * @virtbase: The virtual base address of the DMA's register.
  258. * @rev: silicon revision detected.
  259. * @clk: Pointer to the DMA clock structure.
  260. * @phy_start: Physical memory start of the DMA registers.
  261. * @phy_size: Size of the DMA register map.
  262. * @irq: The IRQ number.
  263. * @num_phy_chans: The number of physical channels. Read from HW. This
  264. * is the number of available channels for this driver, not counting "Secure
  265. * mode" allocated physical channels.
  266. * @num_log_chans: The number of logical channels. Calculated from
  267. * num_phy_chans.
  268. * @dma_both: dma_device channels that can do both memcpy and slave transfers.
  269. * @dma_slave: dma_device channels that can do only do slave transfers.
  270. * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
  271. * @phy_chans: Room for all possible physical channels in system.
  272. * @log_chans: Room for all possible logical channels in system.
  273. * @lookup_log_chans: Used to map interrupt number to logical channel. Points
  274. * to log_chans entries.
  275. * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
  276. * to phy_chans entries.
  277. * @plat_data: Pointer to provided platform_data which is the driver
  278. * configuration.
  279. * @phy_res: Vector containing all physical channels.
  280. * @lcla_pool: lcla pool settings and data.
  281. * @lcpa_base: The virtual mapped address of LCPA.
  282. * @phy_lcpa: The physical address of the LCPA.
  283. * @lcpa_size: The size of the LCPA area.
  284. * @desc_slab: cache for descriptors.
  285. * @reg_val_backup: Here the values of some hardware registers are stored
  286. * before the DMA is powered off. They are restored when the power is back on.
  287. * @reg_val_backup_v3: Backup of registers that only exits on dma40 v3 and
  288. * later.
  289. * @reg_val_backup_chan: Backup data for standard channel parameter registers.
  290. * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
  291. * @initialized: true if the dma has been initialized
  292. */
  293. struct d40_base {
  294. spinlock_t interrupt_lock;
  295. spinlock_t execmd_lock;
  296. struct device *dev;
  297. void __iomem *virtbase;
  298. u8 rev:4;
  299. struct clk *clk;
  300. phys_addr_t phy_start;
  301. resource_size_t phy_size;
  302. int irq;
  303. int num_phy_chans;
  304. int num_log_chans;
  305. struct dma_device dma_both;
  306. struct dma_device dma_slave;
  307. struct dma_device dma_memcpy;
  308. struct d40_chan *phy_chans;
  309. struct d40_chan *log_chans;
  310. struct d40_chan **lookup_log_chans;
  311. struct d40_chan **lookup_phy_chans;
  312. struct stedma40_platform_data *plat_data;
  313. /* Physical half channels */
  314. struct d40_phy_res *phy_res;
  315. struct d40_lcla_pool lcla_pool;
  316. void *lcpa_base;
  317. dma_addr_t phy_lcpa;
  318. resource_size_t lcpa_size;
  319. struct kmem_cache *desc_slab;
  320. u32 reg_val_backup[BACKUP_REGS_SZ];
  321. u32 reg_val_backup_v3[BACKUP_REGS_SZ_V3];
  322. u32 *reg_val_backup_chan;
  323. u16 gcc_pwr_off_mask;
  324. bool initialized;
  325. };
  326. /**
  327. * struct d40_interrupt_lookup - lookup table for interrupt handler
  328. *
  329. * @src: Interrupt mask register.
  330. * @clr: Interrupt clear register.
  331. * @is_error: true if this is an error interrupt.
  332. * @offset: start delta in the lookup_log_chans in d40_base. If equals to
  333. * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
  334. */
  335. struct d40_interrupt_lookup {
  336. u32 src;
  337. u32 clr;
  338. bool is_error;
  339. int offset;
  340. };
  341. /**
  342. * struct d40_reg_val - simple lookup struct
  343. *
  344. * @reg: The register.
  345. * @val: The value that belongs to the register in reg.
  346. */
  347. struct d40_reg_val {
  348. unsigned int reg;
  349. unsigned int val;
  350. };
  351. static struct device *chan2dev(struct d40_chan *d40c)
  352. {
  353. return &d40c->chan.dev->device;
  354. }
  355. static bool chan_is_physical(struct d40_chan *chan)
  356. {
  357. return chan->log_num == D40_PHY_CHAN;
  358. }
  359. static bool chan_is_logical(struct d40_chan *chan)
  360. {
  361. return !chan_is_physical(chan);
  362. }
  363. static void __iomem *chan_base(struct d40_chan *chan)
  364. {
  365. return chan->base->virtbase + D40_DREG_PCBASE +
  366. chan->phy_chan->num * D40_DREG_PCDELTA;
  367. }
  368. #define d40_err(dev, format, arg...) \
  369. dev_err(dev, "[%s] " format, __func__, ## arg)
  370. #define chan_err(d40c, format, arg...) \
  371. d40_err(chan2dev(d40c), format, ## arg)
  372. static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
  373. int lli_len)
  374. {
  375. bool is_log = chan_is_logical(d40c);
  376. u32 align;
  377. void *base;
  378. if (is_log)
  379. align = sizeof(struct d40_log_lli);
  380. else
  381. align = sizeof(struct d40_phy_lli);
  382. if (lli_len == 1) {
  383. base = d40d->lli_pool.pre_alloc_lli;
  384. d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
  385. d40d->lli_pool.base = NULL;
  386. } else {
  387. d40d->lli_pool.size = lli_len * 2 * align;
  388. base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
  389. d40d->lli_pool.base = base;
  390. if (d40d->lli_pool.base == NULL)
  391. return -ENOMEM;
  392. }
  393. if (is_log) {
  394. d40d->lli_log.src = PTR_ALIGN(base, align);
  395. d40d->lli_log.dst = d40d->lli_log.src + lli_len;
  396. d40d->lli_pool.dma_addr = 0;
  397. } else {
  398. d40d->lli_phy.src = PTR_ALIGN(base, align);
  399. d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
  400. d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
  401. d40d->lli_phy.src,
  402. d40d->lli_pool.size,
  403. DMA_TO_DEVICE);
  404. if (dma_mapping_error(d40c->base->dev,
  405. d40d->lli_pool.dma_addr)) {
  406. kfree(d40d->lli_pool.base);
  407. d40d->lli_pool.base = NULL;
  408. d40d->lli_pool.dma_addr = 0;
  409. return -ENOMEM;
  410. }
  411. }
  412. return 0;
  413. }
  414. static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
  415. {
  416. if (d40d->lli_pool.dma_addr)
  417. dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
  418. d40d->lli_pool.size, DMA_TO_DEVICE);
  419. kfree(d40d->lli_pool.base);
  420. d40d->lli_pool.base = NULL;
  421. d40d->lli_pool.size = 0;
  422. d40d->lli_log.src = NULL;
  423. d40d->lli_log.dst = NULL;
  424. d40d->lli_phy.src = NULL;
  425. d40d->lli_phy.dst = NULL;
  426. }
  427. static int d40_lcla_alloc_one(struct d40_chan *d40c,
  428. struct d40_desc *d40d)
  429. {
  430. unsigned long flags;
  431. int i;
  432. int ret = -EINVAL;
  433. int p;
  434. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  435. p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
  436. /*
  437. * Allocate both src and dst at the same time, therefore the half
  438. * start on 1 since 0 can't be used since zero is used as end marker.
  439. */
  440. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  441. if (!d40c->base->lcla_pool.alloc_map[p + i]) {
  442. d40c->base->lcla_pool.alloc_map[p + i] = d40d;
  443. d40d->lcla_alloc++;
  444. ret = i;
  445. break;
  446. }
  447. }
  448. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  449. return ret;
  450. }
  451. static int d40_lcla_free_all(struct d40_chan *d40c,
  452. struct d40_desc *d40d)
  453. {
  454. unsigned long flags;
  455. int i;
  456. int ret = -EINVAL;
  457. if (chan_is_physical(d40c))
  458. return 0;
  459. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  460. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  461. if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  462. D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
  463. d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  464. D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
  465. d40d->lcla_alloc--;
  466. if (d40d->lcla_alloc == 0) {
  467. ret = 0;
  468. break;
  469. }
  470. }
  471. }
  472. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  473. return ret;
  474. }
  475. static void d40_desc_remove(struct d40_desc *d40d)
  476. {
  477. list_del(&d40d->node);
  478. }
  479. static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
  480. {
  481. struct d40_desc *desc = NULL;
  482. if (!list_empty(&d40c->client)) {
  483. struct d40_desc *d;
  484. struct d40_desc *_d;
  485. list_for_each_entry_safe(d, _d, &d40c->client, node) {
  486. if (async_tx_test_ack(&d->txd)) {
  487. d40_desc_remove(d);
  488. desc = d;
  489. memset(desc, 0, sizeof(*desc));
  490. break;
  491. }
  492. }
  493. }
  494. if (!desc)
  495. desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
  496. if (desc)
  497. INIT_LIST_HEAD(&desc->node);
  498. return desc;
  499. }
  500. static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
  501. {
  502. d40_pool_lli_free(d40c, d40d);
  503. d40_lcla_free_all(d40c, d40d);
  504. kmem_cache_free(d40c->base->desc_slab, d40d);
  505. }
  506. static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
  507. {
  508. list_add_tail(&desc->node, &d40c->active);
  509. }
  510. static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
  511. {
  512. struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
  513. struct d40_phy_lli *lli_src = desc->lli_phy.src;
  514. void __iomem *base = chan_base(chan);
  515. writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
  516. writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
  517. writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
  518. writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
  519. writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
  520. writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
  521. writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
  522. writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
  523. }
  524. static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
  525. {
  526. struct d40_lcla_pool *pool = &chan->base->lcla_pool;
  527. struct d40_log_lli_bidir *lli = &desc->lli_log;
  528. int lli_current = desc->lli_current;
  529. int lli_len = desc->lli_len;
  530. bool cyclic = desc->cyclic;
  531. int curr_lcla = -EINVAL;
  532. int first_lcla = 0;
  533. bool linkback;
  534. /*
  535. * We may have partially running cyclic transfers, in case we did't get
  536. * enough LCLA entries.
  537. */
  538. linkback = cyclic && lli_current == 0;
  539. /*
  540. * For linkback, we need one LCLA even with only one link, because we
  541. * can't link back to the one in LCPA space
  542. */
  543. if (linkback || (lli_len - lli_current > 1)) {
  544. curr_lcla = d40_lcla_alloc_one(chan, desc);
  545. first_lcla = curr_lcla;
  546. }
  547. /*
  548. * For linkback, we normally load the LCPA in the loop since we need to
  549. * link it to the second LCLA and not the first. However, if we
  550. * couldn't even get a first LCLA, then we have to run in LCPA and
  551. * reload manually.
  552. */
  553. if (!linkback || curr_lcla == -EINVAL) {
  554. unsigned int flags = 0;
  555. if (curr_lcla == -EINVAL)
  556. flags |= LLI_TERM_INT;
  557. d40_log_lli_lcpa_write(chan->lcpa,
  558. &lli->dst[lli_current],
  559. &lli->src[lli_current],
  560. curr_lcla,
  561. flags);
  562. lli_current++;
  563. }
  564. if (curr_lcla < 0)
  565. goto out;
  566. for (; lli_current < lli_len; lli_current++) {
  567. unsigned int lcla_offset = chan->phy_chan->num * 1024 +
  568. 8 * curr_lcla * 2;
  569. struct d40_log_lli *lcla = pool->base + lcla_offset;
  570. unsigned int flags = 0;
  571. int next_lcla;
  572. if (lli_current + 1 < lli_len)
  573. next_lcla = d40_lcla_alloc_one(chan, desc);
  574. else
  575. next_lcla = linkback ? first_lcla : -EINVAL;
  576. if (cyclic || next_lcla == -EINVAL)
  577. flags |= LLI_TERM_INT;
  578. if (linkback && curr_lcla == first_lcla) {
  579. /* First link goes in both LCPA and LCLA */
  580. d40_log_lli_lcpa_write(chan->lcpa,
  581. &lli->dst[lli_current],
  582. &lli->src[lli_current],
  583. next_lcla, flags);
  584. }
  585. /*
  586. * One unused LCLA in the cyclic case if the very first
  587. * next_lcla fails...
  588. */
  589. d40_log_lli_lcla_write(lcla,
  590. &lli->dst[lli_current],
  591. &lli->src[lli_current],
  592. next_lcla, flags);
  593. dma_sync_single_range_for_device(chan->base->dev,
  594. pool->dma_addr, lcla_offset,
  595. 2 * sizeof(struct d40_log_lli),
  596. DMA_TO_DEVICE);
  597. curr_lcla = next_lcla;
  598. if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
  599. lli_current++;
  600. break;
  601. }
  602. }
  603. out:
  604. desc->lli_current = lli_current;
  605. }
  606. static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
  607. {
  608. if (chan_is_physical(d40c)) {
  609. d40_phy_lli_load(d40c, d40d);
  610. d40d->lli_current = d40d->lli_len;
  611. } else
  612. d40_log_lli_to_lcxa(d40c, d40d);
  613. }
  614. static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
  615. {
  616. struct d40_desc *d;
  617. if (list_empty(&d40c->active))
  618. return NULL;
  619. d = list_first_entry(&d40c->active,
  620. struct d40_desc,
  621. node);
  622. return d;
  623. }
  624. /* remove desc from current queue and add it to the pending_queue */
  625. static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
  626. {
  627. d40_desc_remove(desc);
  628. desc->is_in_client_list = false;
  629. list_add_tail(&desc->node, &d40c->pending_queue);
  630. }
  631. static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
  632. {
  633. struct d40_desc *d;
  634. if (list_empty(&d40c->pending_queue))
  635. return NULL;
  636. d = list_first_entry(&d40c->pending_queue,
  637. struct d40_desc,
  638. node);
  639. return d;
  640. }
  641. static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
  642. {
  643. struct d40_desc *d;
  644. if (list_empty(&d40c->queue))
  645. return NULL;
  646. d = list_first_entry(&d40c->queue,
  647. struct d40_desc,
  648. node);
  649. return d;
  650. }
  651. static int d40_psize_2_burst_size(bool is_log, int psize)
  652. {
  653. if (is_log) {
  654. if (psize == STEDMA40_PSIZE_LOG_1)
  655. return 1;
  656. } else {
  657. if (psize == STEDMA40_PSIZE_PHY_1)
  658. return 1;
  659. }
  660. return 2 << psize;
  661. }
  662. /*
  663. * The dma only supports transmitting packages up to
  664. * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
  665. * dma elements required to send the entire sg list
  666. */
  667. static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
  668. {
  669. int dmalen;
  670. u32 max_w = max(data_width1, data_width2);
  671. u32 min_w = min(data_width1, data_width2);
  672. u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
  673. if (seg_max > STEDMA40_MAX_SEG_SIZE)
  674. seg_max -= (1 << max_w);
  675. if (!IS_ALIGNED(size, 1 << max_w))
  676. return -EINVAL;
  677. if (size <= seg_max)
  678. dmalen = 1;
  679. else {
  680. dmalen = size / seg_max;
  681. if (dmalen * seg_max < size)
  682. dmalen++;
  683. }
  684. return dmalen;
  685. }
  686. static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
  687. u32 data_width1, u32 data_width2)
  688. {
  689. struct scatterlist *sg;
  690. int i;
  691. int len = 0;
  692. int ret;
  693. for_each_sg(sgl, sg, sg_len, i) {
  694. ret = d40_size_2_dmalen(sg_dma_len(sg),
  695. data_width1, data_width2);
  696. if (ret < 0)
  697. return ret;
  698. len += ret;
  699. }
  700. return len;
  701. }
  702. #ifdef CONFIG_PM
  703. static void dma40_backup(void __iomem *baseaddr, u32 *backup,
  704. u32 *regaddr, int num, bool save)
  705. {
  706. int i;
  707. for (i = 0; i < num; i++) {
  708. void __iomem *addr = baseaddr + regaddr[i];
  709. if (save)
  710. backup[i] = readl_relaxed(addr);
  711. else
  712. writel_relaxed(backup[i], addr);
  713. }
  714. }
  715. static void d40_save_restore_registers(struct d40_base *base, bool save)
  716. {
  717. int i;
  718. /* Save/Restore channel specific registers */
  719. for (i = 0; i < base->num_phy_chans; i++) {
  720. void __iomem *addr;
  721. int idx;
  722. if (base->phy_res[i].reserved)
  723. continue;
  724. addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
  725. idx = i * ARRAY_SIZE(d40_backup_regs_chan);
  726. dma40_backup(addr, &base->reg_val_backup_chan[idx],
  727. d40_backup_regs_chan,
  728. ARRAY_SIZE(d40_backup_regs_chan),
  729. save);
  730. }
  731. /* Save/Restore global registers */
  732. dma40_backup(base->virtbase, base->reg_val_backup,
  733. d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
  734. save);
  735. /* Save/Restore registers only existing on dma40 v3 and later */
  736. if (base->rev >= 3)
  737. dma40_backup(base->virtbase, base->reg_val_backup_v3,
  738. d40_backup_regs_v3,
  739. ARRAY_SIZE(d40_backup_regs_v3),
  740. save);
  741. }
  742. #else
  743. static void d40_save_restore_registers(struct d40_base *base, bool save)
  744. {
  745. }
  746. #endif
  747. static int d40_channel_execute_command(struct d40_chan *d40c,
  748. enum d40_command command)
  749. {
  750. u32 status;
  751. int i;
  752. void __iomem *active_reg;
  753. int ret = 0;
  754. unsigned long flags;
  755. u32 wmask;
  756. spin_lock_irqsave(&d40c->base->execmd_lock, flags);
  757. if (d40c->phy_chan->num % 2 == 0)
  758. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  759. else
  760. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  761. if (command == D40_DMA_SUSPEND_REQ) {
  762. status = (readl(active_reg) &
  763. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  764. D40_CHAN_POS(d40c->phy_chan->num);
  765. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  766. goto done;
  767. }
  768. wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
  769. writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
  770. active_reg);
  771. if (command == D40_DMA_SUSPEND_REQ) {
  772. for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
  773. status = (readl(active_reg) &
  774. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  775. D40_CHAN_POS(d40c->phy_chan->num);
  776. cpu_relax();
  777. /*
  778. * Reduce the number of bus accesses while
  779. * waiting for the DMA to suspend.
  780. */
  781. udelay(3);
  782. if (status == D40_DMA_STOP ||
  783. status == D40_DMA_SUSPENDED)
  784. break;
  785. }
  786. if (i == D40_SUSPEND_MAX_IT) {
  787. chan_err(d40c,
  788. "unable to suspend the chl %d (log: %d) status %x\n",
  789. d40c->phy_chan->num, d40c->log_num,
  790. status);
  791. dump_stack();
  792. ret = -EBUSY;
  793. }
  794. }
  795. done:
  796. spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
  797. return ret;
  798. }
  799. static void d40_term_all(struct d40_chan *d40c)
  800. {
  801. struct d40_desc *d40d;
  802. struct d40_desc *_d;
  803. /* Release active descriptors */
  804. while ((d40d = d40_first_active_get(d40c))) {
  805. d40_desc_remove(d40d);
  806. d40_desc_free(d40c, d40d);
  807. }
  808. /* Release queued descriptors waiting for transfer */
  809. while ((d40d = d40_first_queued(d40c))) {
  810. d40_desc_remove(d40d);
  811. d40_desc_free(d40c, d40d);
  812. }
  813. /* Release pending descriptors */
  814. while ((d40d = d40_first_pending(d40c))) {
  815. d40_desc_remove(d40d);
  816. d40_desc_free(d40c, d40d);
  817. }
  818. /* Release client owned descriptors */
  819. if (!list_empty(&d40c->client))
  820. list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
  821. d40_desc_remove(d40d);
  822. d40_desc_free(d40c, d40d);
  823. }
  824. /* Release descriptors in prepare queue */
  825. if (!list_empty(&d40c->prepare_queue))
  826. list_for_each_entry_safe(d40d, _d,
  827. &d40c->prepare_queue, node) {
  828. d40_desc_remove(d40d);
  829. d40_desc_free(d40c, d40d);
  830. }
  831. d40c->pending_tx = 0;
  832. d40c->busy = false;
  833. }
  834. static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
  835. u32 event, int reg)
  836. {
  837. void __iomem *addr = chan_base(d40c) + reg;
  838. int tries;
  839. if (!enable) {
  840. writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
  841. | ~D40_EVENTLINE_MASK(event), addr);
  842. return;
  843. }
  844. /*
  845. * The hardware sometimes doesn't register the enable when src and dst
  846. * event lines are active on the same logical channel. Retry to ensure
  847. * it does. Usually only one retry is sufficient.
  848. */
  849. tries = 100;
  850. while (--tries) {
  851. writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
  852. | ~D40_EVENTLINE_MASK(event), addr);
  853. if (readl(addr) & D40_EVENTLINE_MASK(event))
  854. break;
  855. }
  856. if (tries != 99)
  857. dev_dbg(chan2dev(d40c),
  858. "[%s] workaround enable S%cLNK (%d tries)\n",
  859. __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
  860. 100 - tries);
  861. WARN_ON(!tries);
  862. }
  863. static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
  864. {
  865. unsigned long flags;
  866. spin_lock_irqsave(&d40c->phy_chan->lock, flags);
  867. /* Enable event line connected to device (or memcpy) */
  868. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  869. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
  870. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  871. __d40_config_set_event(d40c, do_enable, event,
  872. D40_CHAN_REG_SSLNK);
  873. }
  874. if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
  875. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  876. __d40_config_set_event(d40c, do_enable, event,
  877. D40_CHAN_REG_SDLNK);
  878. }
  879. spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
  880. }
  881. static u32 d40_chan_has_events(struct d40_chan *d40c)
  882. {
  883. void __iomem *chanbase = chan_base(d40c);
  884. u32 val;
  885. val = readl(chanbase + D40_CHAN_REG_SSLNK);
  886. val |= readl(chanbase + D40_CHAN_REG_SDLNK);
  887. return val;
  888. }
  889. static u32 d40_get_prmo(struct d40_chan *d40c)
  890. {
  891. static const unsigned int phy_map[] = {
  892. [STEDMA40_PCHAN_BASIC_MODE]
  893. = D40_DREG_PRMO_PCHAN_BASIC,
  894. [STEDMA40_PCHAN_MODULO_MODE]
  895. = D40_DREG_PRMO_PCHAN_MODULO,
  896. [STEDMA40_PCHAN_DOUBLE_DST_MODE]
  897. = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
  898. };
  899. static const unsigned int log_map[] = {
  900. [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
  901. = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
  902. [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
  903. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
  904. [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
  905. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
  906. };
  907. if (chan_is_physical(d40c))
  908. return phy_map[d40c->dma_cfg.mode_opt];
  909. else
  910. return log_map[d40c->dma_cfg.mode_opt];
  911. }
  912. static void d40_config_write(struct d40_chan *d40c)
  913. {
  914. u32 addr_base;
  915. u32 var;
  916. /* Odd addresses are even addresses + 4 */
  917. addr_base = (d40c->phy_chan->num % 2) * 4;
  918. /* Setup channel mode to logical or physical */
  919. var = ((u32)(chan_is_logical(d40c)) + 1) <<
  920. D40_CHAN_POS(d40c->phy_chan->num);
  921. writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
  922. /* Setup operational mode option register */
  923. var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
  924. writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
  925. if (chan_is_logical(d40c)) {
  926. int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
  927. & D40_SREG_ELEM_LOG_LIDX_MASK;
  928. void __iomem *chanbase = chan_base(d40c);
  929. /* Set default config for CFG reg */
  930. writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
  931. writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
  932. /* Set LIDX for lcla */
  933. writel(lidx, chanbase + D40_CHAN_REG_SSELT);
  934. writel(lidx, chanbase + D40_CHAN_REG_SDELT);
  935. }
  936. }
  937. static u32 d40_residue(struct d40_chan *d40c)
  938. {
  939. u32 num_elt;
  940. if (chan_is_logical(d40c))
  941. num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
  942. >> D40_MEM_LCSP2_ECNT_POS;
  943. else {
  944. u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
  945. num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
  946. >> D40_SREG_ELEM_PHY_ECNT_POS;
  947. }
  948. return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
  949. }
  950. static bool d40_tx_is_linked(struct d40_chan *d40c)
  951. {
  952. bool is_link;
  953. if (chan_is_logical(d40c))
  954. is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
  955. else
  956. is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
  957. & D40_SREG_LNK_PHYS_LNK_MASK;
  958. return is_link;
  959. }
  960. static int d40_pause(struct d40_chan *d40c)
  961. {
  962. int res = 0;
  963. unsigned long flags;
  964. if (!d40c->busy)
  965. return 0;
  966. pm_runtime_get_sync(d40c->base->dev);
  967. spin_lock_irqsave(&d40c->lock, flags);
  968. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  969. if (res == 0) {
  970. if (chan_is_logical(d40c)) {
  971. d40_config_set_event(d40c, false);
  972. /* Resume the other logical channels if any */
  973. if (d40_chan_has_events(d40c))
  974. res = d40_channel_execute_command(d40c,
  975. D40_DMA_RUN);
  976. }
  977. }
  978. pm_runtime_mark_last_busy(d40c->base->dev);
  979. pm_runtime_put_autosuspend(d40c->base->dev);
  980. spin_unlock_irqrestore(&d40c->lock, flags);
  981. return res;
  982. }
  983. static int d40_resume(struct d40_chan *d40c)
  984. {
  985. int res = 0;
  986. unsigned long flags;
  987. if (!d40c->busy)
  988. return 0;
  989. spin_lock_irqsave(&d40c->lock, flags);
  990. pm_runtime_get_sync(d40c->base->dev);
  991. if (d40c->base->rev == 0)
  992. if (chan_is_logical(d40c)) {
  993. res = d40_channel_execute_command(d40c,
  994. D40_DMA_SUSPEND_REQ);
  995. goto no_suspend;
  996. }
  997. /* If bytes left to transfer or linked tx resume job */
  998. if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
  999. if (chan_is_logical(d40c))
  1000. d40_config_set_event(d40c, true);
  1001. res = d40_channel_execute_command(d40c, D40_DMA_RUN);
  1002. }
  1003. no_suspend:
  1004. pm_runtime_mark_last_busy(d40c->base->dev);
  1005. pm_runtime_put_autosuspend(d40c->base->dev);
  1006. spin_unlock_irqrestore(&d40c->lock, flags);
  1007. return res;
  1008. }
  1009. static int d40_terminate_all(struct d40_chan *chan)
  1010. {
  1011. unsigned long flags;
  1012. int ret = 0;
  1013. ret = d40_pause(chan);
  1014. if (!ret && chan_is_physical(chan))
  1015. ret = d40_channel_execute_command(chan, D40_DMA_STOP);
  1016. spin_lock_irqsave(&chan->lock, flags);
  1017. d40_term_all(chan);
  1018. spin_unlock_irqrestore(&chan->lock, flags);
  1019. return ret;
  1020. }
  1021. static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
  1022. {
  1023. struct d40_chan *d40c = container_of(tx->chan,
  1024. struct d40_chan,
  1025. chan);
  1026. struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
  1027. unsigned long flags;
  1028. spin_lock_irqsave(&d40c->lock, flags);
  1029. d40c->chan.cookie++;
  1030. if (d40c->chan.cookie < 0)
  1031. d40c->chan.cookie = 1;
  1032. d40d->txd.cookie = d40c->chan.cookie;
  1033. d40_desc_queue(d40c, d40d);
  1034. spin_unlock_irqrestore(&d40c->lock, flags);
  1035. return tx->cookie;
  1036. }
  1037. static int d40_start(struct d40_chan *d40c)
  1038. {
  1039. if (d40c->base->rev == 0) {
  1040. int err;
  1041. if (chan_is_logical(d40c)) {
  1042. err = d40_channel_execute_command(d40c,
  1043. D40_DMA_SUSPEND_REQ);
  1044. if (err)
  1045. return err;
  1046. }
  1047. }
  1048. if (chan_is_logical(d40c))
  1049. d40_config_set_event(d40c, true);
  1050. return d40_channel_execute_command(d40c, D40_DMA_RUN);
  1051. }
  1052. static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
  1053. {
  1054. struct d40_desc *d40d;
  1055. int err;
  1056. /* Start queued jobs, if any */
  1057. d40d = d40_first_queued(d40c);
  1058. if (d40d != NULL) {
  1059. if (!d40c->busy)
  1060. d40c->busy = true;
  1061. pm_runtime_get_sync(d40c->base->dev);
  1062. /* Remove from queue */
  1063. d40_desc_remove(d40d);
  1064. /* Add to active queue */
  1065. d40_desc_submit(d40c, d40d);
  1066. /* Initiate DMA job */
  1067. d40_desc_load(d40c, d40d);
  1068. /* Start dma job */
  1069. err = d40_start(d40c);
  1070. if (err)
  1071. return NULL;
  1072. }
  1073. return d40d;
  1074. }
  1075. /* called from interrupt context */
  1076. static void dma_tc_handle(struct d40_chan *d40c)
  1077. {
  1078. struct d40_desc *d40d;
  1079. /* Get first active entry from list */
  1080. d40d = d40_first_active_get(d40c);
  1081. if (d40d == NULL)
  1082. return;
  1083. if (d40d->cyclic) {
  1084. /*
  1085. * If this was a paritially loaded list, we need to reloaded
  1086. * it, and only when the list is completed. We need to check
  1087. * for done because the interrupt will hit for every link, and
  1088. * not just the last one.
  1089. */
  1090. if (d40d->lli_current < d40d->lli_len
  1091. && !d40_tx_is_linked(d40c)
  1092. && !d40_residue(d40c)) {
  1093. d40_lcla_free_all(d40c, d40d);
  1094. d40_desc_load(d40c, d40d);
  1095. (void) d40_start(d40c);
  1096. if (d40d->lli_current == d40d->lli_len)
  1097. d40d->lli_current = 0;
  1098. }
  1099. } else {
  1100. d40_lcla_free_all(d40c, d40d);
  1101. if (d40d->lli_current < d40d->lli_len) {
  1102. d40_desc_load(d40c, d40d);
  1103. /* Start dma job */
  1104. (void) d40_start(d40c);
  1105. return;
  1106. }
  1107. if (d40_queue_start(d40c) == NULL)
  1108. d40c->busy = false;
  1109. pm_runtime_mark_last_busy(d40c->base->dev);
  1110. pm_runtime_put_autosuspend(d40c->base->dev);
  1111. }
  1112. d40c->pending_tx++;
  1113. tasklet_schedule(&d40c->tasklet);
  1114. }
  1115. static void dma_tasklet(unsigned long data)
  1116. {
  1117. struct d40_chan *d40c = (struct d40_chan *) data;
  1118. struct d40_desc *d40d;
  1119. unsigned long flags;
  1120. dma_async_tx_callback callback;
  1121. void *callback_param;
  1122. spin_lock_irqsave(&d40c->lock, flags);
  1123. /* Get first active entry from list */
  1124. d40d = d40_first_active_get(d40c);
  1125. if (d40d == NULL)
  1126. goto err;
  1127. if (!d40d->cyclic)
  1128. d40c->completed = d40d->txd.cookie;
  1129. /*
  1130. * If terminating a channel pending_tx is set to zero.
  1131. * This prevents any finished active jobs to return to the client.
  1132. */
  1133. if (d40c->pending_tx == 0) {
  1134. spin_unlock_irqrestore(&d40c->lock, flags);
  1135. return;
  1136. }
  1137. /* Callback to client */
  1138. callback = d40d->txd.callback;
  1139. callback_param = d40d->txd.callback_param;
  1140. if (!d40d->cyclic) {
  1141. if (async_tx_test_ack(&d40d->txd)) {
  1142. d40_desc_remove(d40d);
  1143. d40_desc_free(d40c, d40d);
  1144. } else {
  1145. if (!d40d->is_in_client_list) {
  1146. d40_desc_remove(d40d);
  1147. d40_lcla_free_all(d40c, d40d);
  1148. list_add_tail(&d40d->node, &d40c->client);
  1149. d40d->is_in_client_list = true;
  1150. }
  1151. }
  1152. }
  1153. d40c->pending_tx--;
  1154. if (d40c->pending_tx)
  1155. tasklet_schedule(&d40c->tasklet);
  1156. spin_unlock_irqrestore(&d40c->lock, flags);
  1157. if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
  1158. callback(callback_param);
  1159. return;
  1160. err:
  1161. /* Rescue manoeuvre if receiving double interrupts */
  1162. if (d40c->pending_tx > 0)
  1163. d40c->pending_tx--;
  1164. spin_unlock_irqrestore(&d40c->lock, flags);
  1165. }
  1166. static irqreturn_t d40_handle_interrupt(int irq, void *data)
  1167. {
  1168. static const struct d40_interrupt_lookup il[] = {
  1169. {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
  1170. {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
  1171. {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
  1172. {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
  1173. {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
  1174. {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
  1175. {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
  1176. {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
  1177. {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
  1178. {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
  1179. };
  1180. int i;
  1181. u32 regs[ARRAY_SIZE(il)];
  1182. u32 idx;
  1183. u32 row;
  1184. long chan = -1;
  1185. struct d40_chan *d40c;
  1186. unsigned long flags;
  1187. struct d40_base *base = data;
  1188. spin_lock_irqsave(&base->interrupt_lock, flags);
  1189. /* Read interrupt status of both logical and physical channels */
  1190. for (i = 0; i < ARRAY_SIZE(il); i++)
  1191. regs[i] = readl(base->virtbase + il[i].src);
  1192. for (;;) {
  1193. chan = find_next_bit((unsigned long *)regs,
  1194. BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
  1195. /* No more set bits found? */
  1196. if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
  1197. break;
  1198. row = chan / BITS_PER_LONG;
  1199. idx = chan & (BITS_PER_LONG - 1);
  1200. /* ACK interrupt */
  1201. writel(1 << idx, base->virtbase + il[row].clr);
  1202. if (il[row].offset == D40_PHY_CHAN)
  1203. d40c = base->lookup_phy_chans[idx];
  1204. else
  1205. d40c = base->lookup_log_chans[il[row].offset + idx];
  1206. spin_lock(&d40c->lock);
  1207. if (!il[row].is_error)
  1208. dma_tc_handle(d40c);
  1209. else
  1210. d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
  1211. chan, il[row].offset, idx);
  1212. spin_unlock(&d40c->lock);
  1213. }
  1214. spin_unlock_irqrestore(&base->interrupt_lock, flags);
  1215. return IRQ_HANDLED;
  1216. }
  1217. static int d40_validate_conf(struct d40_chan *d40c,
  1218. struct stedma40_chan_cfg *conf)
  1219. {
  1220. int res = 0;
  1221. u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
  1222. u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
  1223. bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
  1224. if (!conf->dir) {
  1225. chan_err(d40c, "Invalid direction.\n");
  1226. res = -EINVAL;
  1227. }
  1228. if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
  1229. d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
  1230. d40c->runtime_addr == 0) {
  1231. chan_err(d40c, "Invalid TX channel address (%d)\n",
  1232. conf->dst_dev_type);
  1233. res = -EINVAL;
  1234. }
  1235. if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
  1236. d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
  1237. d40c->runtime_addr == 0) {
  1238. chan_err(d40c, "Invalid RX channel address (%d)\n",
  1239. conf->src_dev_type);
  1240. res = -EINVAL;
  1241. }
  1242. if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
  1243. dst_event_group == STEDMA40_DEV_DST_MEMORY) {
  1244. chan_err(d40c, "Invalid dst\n");
  1245. res = -EINVAL;
  1246. }
  1247. if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
  1248. src_event_group == STEDMA40_DEV_SRC_MEMORY) {
  1249. chan_err(d40c, "Invalid src\n");
  1250. res = -EINVAL;
  1251. }
  1252. if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
  1253. dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
  1254. chan_err(d40c, "No event line\n");
  1255. res = -EINVAL;
  1256. }
  1257. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
  1258. (src_event_group != dst_event_group)) {
  1259. chan_err(d40c, "Invalid event group\n");
  1260. res = -EINVAL;
  1261. }
  1262. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
  1263. /*
  1264. * DMAC HW supports it. Will be added to this driver,
  1265. * in case any dma client requires it.
  1266. */
  1267. chan_err(d40c, "periph to periph not supported\n");
  1268. res = -EINVAL;
  1269. }
  1270. if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
  1271. (1 << conf->src_info.data_width) !=
  1272. d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
  1273. (1 << conf->dst_info.data_width)) {
  1274. /*
  1275. * The DMAC hardware only supports
  1276. * src (burst x width) == dst (burst x width)
  1277. */
  1278. chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
  1279. res = -EINVAL;
  1280. }
  1281. return res;
  1282. }
  1283. static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
  1284. int log_event_line, bool is_log)
  1285. {
  1286. unsigned long flags;
  1287. spin_lock_irqsave(&phy->lock, flags);
  1288. if (!is_log) {
  1289. /* Physical interrupts are masked per physical full channel */
  1290. if (phy->allocated_src == D40_ALLOC_FREE &&
  1291. phy->allocated_dst == D40_ALLOC_FREE) {
  1292. phy->allocated_dst = D40_ALLOC_PHY;
  1293. phy->allocated_src = D40_ALLOC_PHY;
  1294. goto found;
  1295. } else
  1296. goto not_found;
  1297. }
  1298. /* Logical channel */
  1299. if (is_src) {
  1300. if (phy->allocated_src == D40_ALLOC_PHY)
  1301. goto not_found;
  1302. if (phy->allocated_src == D40_ALLOC_FREE)
  1303. phy->allocated_src = D40_ALLOC_LOG_FREE;
  1304. if (!(phy->allocated_src & (1 << log_event_line))) {
  1305. phy->allocated_src |= 1 << log_event_line;
  1306. goto found;
  1307. } else
  1308. goto not_found;
  1309. } else {
  1310. if (phy->allocated_dst == D40_ALLOC_PHY)
  1311. goto not_found;
  1312. if (phy->allocated_dst == D40_ALLOC_FREE)
  1313. phy->allocated_dst = D40_ALLOC_LOG_FREE;
  1314. if (!(phy->allocated_dst & (1 << log_event_line))) {
  1315. phy->allocated_dst |= 1 << log_event_line;
  1316. goto found;
  1317. } else
  1318. goto not_found;
  1319. }
  1320. not_found:
  1321. spin_unlock_irqrestore(&phy->lock, flags);
  1322. return false;
  1323. found:
  1324. spin_unlock_irqrestore(&phy->lock, flags);
  1325. return true;
  1326. }
  1327. static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
  1328. int log_event_line)
  1329. {
  1330. unsigned long flags;
  1331. bool is_free = false;
  1332. spin_lock_irqsave(&phy->lock, flags);
  1333. if (!log_event_line) {
  1334. phy->allocated_dst = D40_ALLOC_FREE;
  1335. phy->allocated_src = D40_ALLOC_FREE;
  1336. is_free = true;
  1337. goto out;
  1338. }
  1339. /* Logical channel */
  1340. if (is_src) {
  1341. phy->allocated_src &= ~(1 << log_event_line);
  1342. if (phy->allocated_src == D40_ALLOC_LOG_FREE)
  1343. phy->allocated_src = D40_ALLOC_FREE;
  1344. } else {
  1345. phy->allocated_dst &= ~(1 << log_event_line);
  1346. if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
  1347. phy->allocated_dst = D40_ALLOC_FREE;
  1348. }
  1349. is_free = ((phy->allocated_src | phy->allocated_dst) ==
  1350. D40_ALLOC_FREE);
  1351. out:
  1352. spin_unlock_irqrestore(&phy->lock, flags);
  1353. return is_free;
  1354. }
  1355. static int d40_allocate_channel(struct d40_chan *d40c)
  1356. {
  1357. int dev_type;
  1358. int event_group;
  1359. int event_line;
  1360. struct d40_phy_res *phys;
  1361. int i;
  1362. int j;
  1363. int log_num;
  1364. bool is_src;
  1365. bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
  1366. phys = d40c->base->phy_res;
  1367. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1368. dev_type = d40c->dma_cfg.src_dev_type;
  1369. log_num = 2 * dev_type;
  1370. is_src = true;
  1371. } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1372. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1373. /* dst event lines are used for logical memcpy */
  1374. dev_type = d40c->dma_cfg.dst_dev_type;
  1375. log_num = 2 * dev_type + 1;
  1376. is_src = false;
  1377. } else
  1378. return -EINVAL;
  1379. event_group = D40_TYPE_TO_GROUP(dev_type);
  1380. event_line = D40_TYPE_TO_EVENT(dev_type);
  1381. if (!is_log) {
  1382. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1383. /* Find physical half channel */
  1384. for (i = 0; i < d40c->base->num_phy_chans; i++) {
  1385. if (d40_alloc_mask_set(&phys[i], is_src,
  1386. 0, is_log))
  1387. goto found_phy;
  1388. }
  1389. } else
  1390. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1391. int phy_num = j + event_group * 2;
  1392. for (i = phy_num; i < phy_num + 2; i++) {
  1393. if (d40_alloc_mask_set(&phys[i],
  1394. is_src,
  1395. 0,
  1396. is_log))
  1397. goto found_phy;
  1398. }
  1399. }
  1400. return -EINVAL;
  1401. found_phy:
  1402. d40c->phy_chan = &phys[i];
  1403. d40c->log_num = D40_PHY_CHAN;
  1404. goto out;
  1405. }
  1406. if (dev_type == -1)
  1407. return -EINVAL;
  1408. /* Find logical channel */
  1409. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1410. int phy_num = j + event_group * 2;
  1411. /*
  1412. * Spread logical channels across all available physical rather
  1413. * than pack every logical channel at the first available phy
  1414. * channels.
  1415. */
  1416. if (is_src) {
  1417. for (i = phy_num; i < phy_num + 2; i++) {
  1418. if (d40_alloc_mask_set(&phys[i], is_src,
  1419. event_line, is_log))
  1420. goto found_log;
  1421. }
  1422. } else {
  1423. for (i = phy_num + 1; i >= phy_num; i--) {
  1424. if (d40_alloc_mask_set(&phys[i], is_src,
  1425. event_line, is_log))
  1426. goto found_log;
  1427. }
  1428. }
  1429. }
  1430. return -EINVAL;
  1431. found_log:
  1432. d40c->phy_chan = &phys[i];
  1433. d40c->log_num = log_num;
  1434. out:
  1435. if (is_log)
  1436. d40c->base->lookup_log_chans[d40c->log_num] = d40c;
  1437. else
  1438. d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
  1439. return 0;
  1440. }
  1441. static int d40_config_memcpy(struct d40_chan *d40c)
  1442. {
  1443. dma_cap_mask_t cap = d40c->chan.device->cap_mask;
  1444. if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
  1445. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
  1446. d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
  1447. d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
  1448. memcpy[d40c->chan.chan_id];
  1449. } else if (dma_has_cap(DMA_MEMCPY, cap) &&
  1450. dma_has_cap(DMA_SLAVE, cap)) {
  1451. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
  1452. } else {
  1453. chan_err(d40c, "No memcpy\n");
  1454. return -EINVAL;
  1455. }
  1456. return 0;
  1457. }
  1458. static int d40_free_dma(struct d40_chan *d40c)
  1459. {
  1460. int res = 0;
  1461. u32 event;
  1462. struct d40_phy_res *phy = d40c->phy_chan;
  1463. bool is_src;
  1464. /* Terminate all queued and active transfers */
  1465. d40_term_all(d40c);
  1466. if (phy == NULL) {
  1467. chan_err(d40c, "phy == null\n");
  1468. return -EINVAL;
  1469. }
  1470. if (phy->allocated_src == D40_ALLOC_FREE &&
  1471. phy->allocated_dst == D40_ALLOC_FREE) {
  1472. chan_err(d40c, "channel already free\n");
  1473. return -EINVAL;
  1474. }
  1475. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1476. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1477. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1478. is_src = false;
  1479. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1480. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1481. is_src = true;
  1482. } else {
  1483. chan_err(d40c, "Unknown direction\n");
  1484. return -EINVAL;
  1485. }
  1486. pm_runtime_get_sync(d40c->base->dev);
  1487. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  1488. if (res) {
  1489. chan_err(d40c, "suspend failed\n");
  1490. goto out;
  1491. }
  1492. if (chan_is_logical(d40c)) {
  1493. /* Release logical channel, deactivate the event line */
  1494. d40_config_set_event(d40c, false);
  1495. d40c->base->lookup_log_chans[d40c->log_num] = NULL;
  1496. /*
  1497. * Check if there are more logical allocation
  1498. * on this phy channel.
  1499. */
  1500. if (!d40_alloc_mask_free(phy, is_src, event)) {
  1501. /* Resume the other logical channels if any */
  1502. if (d40_chan_has_events(d40c)) {
  1503. res = d40_channel_execute_command(d40c,
  1504. D40_DMA_RUN);
  1505. if (res)
  1506. chan_err(d40c,
  1507. "Executing RUN command\n");
  1508. }
  1509. goto out;
  1510. }
  1511. } else {
  1512. (void) d40_alloc_mask_free(phy, is_src, 0);
  1513. }
  1514. /* Release physical channel */
  1515. res = d40_channel_execute_command(d40c, D40_DMA_STOP);
  1516. if (res) {
  1517. chan_err(d40c, "Failed to stop channel\n");
  1518. goto out;
  1519. }
  1520. if (d40c->busy) {
  1521. pm_runtime_mark_last_busy(d40c->base->dev);
  1522. pm_runtime_put_autosuspend(d40c->base->dev);
  1523. }
  1524. d40c->busy = false;
  1525. d40c->phy_chan = NULL;
  1526. d40c->configured = false;
  1527. d40c->base->lookup_phy_chans[phy->num] = NULL;
  1528. out:
  1529. pm_runtime_mark_last_busy(d40c->base->dev);
  1530. pm_runtime_put_autosuspend(d40c->base->dev);
  1531. return res;
  1532. }
  1533. static bool d40_is_paused(struct d40_chan *d40c)
  1534. {
  1535. void __iomem *chanbase = chan_base(d40c);
  1536. bool is_paused = false;
  1537. unsigned long flags;
  1538. void __iomem *active_reg;
  1539. u32 status;
  1540. u32 event;
  1541. spin_lock_irqsave(&d40c->lock, flags);
  1542. if (chan_is_physical(d40c)) {
  1543. if (d40c->phy_chan->num % 2 == 0)
  1544. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  1545. else
  1546. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  1547. status = (readl(active_reg) &
  1548. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  1549. D40_CHAN_POS(d40c->phy_chan->num);
  1550. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  1551. is_paused = true;
  1552. goto _exit;
  1553. }
  1554. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1555. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1556. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1557. status = readl(chanbase + D40_CHAN_REG_SDLNK);
  1558. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1559. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1560. status = readl(chanbase + D40_CHAN_REG_SSLNK);
  1561. } else {
  1562. chan_err(d40c, "Unknown direction\n");
  1563. goto _exit;
  1564. }
  1565. status = (status & D40_EVENTLINE_MASK(event)) >>
  1566. D40_EVENTLINE_POS(event);
  1567. if (status != D40_DMA_RUN)
  1568. is_paused = true;
  1569. _exit:
  1570. spin_unlock_irqrestore(&d40c->lock, flags);
  1571. return is_paused;
  1572. }
  1573. static u32 stedma40_residue(struct dma_chan *chan)
  1574. {
  1575. struct d40_chan *d40c =
  1576. container_of(chan, struct d40_chan, chan);
  1577. u32 bytes_left;
  1578. unsigned long flags;
  1579. spin_lock_irqsave(&d40c->lock, flags);
  1580. bytes_left = d40_residue(d40c);
  1581. spin_unlock_irqrestore(&d40c->lock, flags);
  1582. return bytes_left;
  1583. }
  1584. static int
  1585. d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
  1586. struct scatterlist *sg_src, struct scatterlist *sg_dst,
  1587. unsigned int sg_len, dma_addr_t src_dev_addr,
  1588. dma_addr_t dst_dev_addr)
  1589. {
  1590. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1591. struct stedma40_half_channel_info *src_info = &cfg->src_info;
  1592. struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
  1593. int ret;
  1594. ret = d40_log_sg_to_lli(sg_src, sg_len,
  1595. src_dev_addr,
  1596. desc->lli_log.src,
  1597. chan->log_def.lcsp1,
  1598. src_info->data_width,
  1599. dst_info->data_width);
  1600. ret = d40_log_sg_to_lli(sg_dst, sg_len,
  1601. dst_dev_addr,
  1602. desc->lli_log.dst,
  1603. chan->log_def.lcsp3,
  1604. dst_info->data_width,
  1605. src_info->data_width);
  1606. return ret < 0 ? ret : 0;
  1607. }
  1608. static int
  1609. d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
  1610. struct scatterlist *sg_src, struct scatterlist *sg_dst,
  1611. unsigned int sg_len, dma_addr_t src_dev_addr,
  1612. dma_addr_t dst_dev_addr)
  1613. {
  1614. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1615. struct stedma40_half_channel_info *src_info = &cfg->src_info;
  1616. struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
  1617. unsigned long flags = 0;
  1618. int ret;
  1619. if (desc->cyclic)
  1620. flags |= LLI_CYCLIC | LLI_TERM_INT;
  1621. ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
  1622. desc->lli_phy.src,
  1623. virt_to_phys(desc->lli_phy.src),
  1624. chan->src_def_cfg,
  1625. src_info, dst_info, flags);
  1626. ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
  1627. desc->lli_phy.dst,
  1628. virt_to_phys(desc->lli_phy.dst),
  1629. chan->dst_def_cfg,
  1630. dst_info, src_info, flags);
  1631. dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
  1632. desc->lli_pool.size, DMA_TO_DEVICE);
  1633. return ret < 0 ? ret : 0;
  1634. }
  1635. static struct d40_desc *
  1636. d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
  1637. unsigned int sg_len, unsigned long dma_flags)
  1638. {
  1639. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1640. struct d40_desc *desc;
  1641. int ret;
  1642. desc = d40_desc_get(chan);
  1643. if (!desc)
  1644. return NULL;
  1645. desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
  1646. cfg->dst_info.data_width);
  1647. if (desc->lli_len < 0) {
  1648. chan_err(chan, "Unaligned size\n");
  1649. goto err;
  1650. }
  1651. ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
  1652. if (ret < 0) {
  1653. chan_err(chan, "Could not allocate lli\n");
  1654. goto err;
  1655. }
  1656. desc->lli_current = 0;
  1657. desc->txd.flags = dma_flags;
  1658. desc->txd.tx_submit = d40_tx_submit;
  1659. dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
  1660. return desc;
  1661. err:
  1662. d40_desc_free(chan, desc);
  1663. return NULL;
  1664. }
  1665. static dma_addr_t
  1666. d40_get_dev_addr(struct d40_chan *chan, enum dma_transfer_direction direction)
  1667. {
  1668. struct stedma40_platform_data *plat = chan->base->plat_data;
  1669. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1670. dma_addr_t addr = 0;
  1671. if (chan->runtime_addr)
  1672. return chan->runtime_addr;
  1673. if (direction == DMA_DEV_TO_MEM)
  1674. addr = plat->dev_rx[cfg->src_dev_type];
  1675. else if (direction == DMA_MEM_TO_DEV)
  1676. addr = plat->dev_tx[cfg->dst_dev_type];
  1677. return addr;
  1678. }
  1679. static struct dma_async_tx_descriptor *
  1680. d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
  1681. struct scatterlist *sg_dst, unsigned int sg_len,
  1682. enum dma_transfer_direction direction, unsigned long dma_flags)
  1683. {
  1684. struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
  1685. dma_addr_t src_dev_addr = 0;
  1686. dma_addr_t dst_dev_addr = 0;
  1687. struct d40_desc *desc;
  1688. unsigned long flags;
  1689. int ret;
  1690. if (!chan->phy_chan) {
  1691. chan_err(chan, "Cannot prepare unallocated channel\n");
  1692. return NULL;
  1693. }
  1694. spin_lock_irqsave(&chan->lock, flags);
  1695. desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
  1696. if (desc == NULL)
  1697. goto err;
  1698. if (sg_next(&sg_src[sg_len - 1]) == sg_src)
  1699. desc->cyclic = true;
  1700. if (direction != DMA_NONE) {
  1701. dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
  1702. if (direction == DMA_DEV_TO_MEM)
  1703. src_dev_addr = dev_addr;
  1704. else if (direction == DMA_MEM_TO_DEV)
  1705. dst_dev_addr = dev_addr;
  1706. }
  1707. if (chan_is_logical(chan))
  1708. ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
  1709. sg_len, src_dev_addr, dst_dev_addr);
  1710. else
  1711. ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
  1712. sg_len, src_dev_addr, dst_dev_addr);
  1713. if (ret) {
  1714. chan_err(chan, "Failed to prepare %s sg job: %d\n",
  1715. chan_is_logical(chan) ? "log" : "phy", ret);
  1716. goto err;
  1717. }
  1718. /*
  1719. * add descriptor to the prepare queue in order to be able
  1720. * to free them later in terminate_all
  1721. */
  1722. list_add_tail(&desc->node, &chan->prepare_queue);
  1723. spin_unlock_irqrestore(&chan->lock, flags);
  1724. return &desc->txd;
  1725. err:
  1726. if (desc)
  1727. d40_desc_free(chan, desc);
  1728. spin_unlock_irqrestore(&chan->lock, flags);
  1729. return NULL;
  1730. }
  1731. bool stedma40_filter(struct dma_chan *chan, void *data)
  1732. {
  1733. struct stedma40_chan_cfg *info = data;
  1734. struct d40_chan *d40c =
  1735. container_of(chan, struct d40_chan, chan);
  1736. int err;
  1737. if (data) {
  1738. err = d40_validate_conf(d40c, info);
  1739. if (!err)
  1740. d40c->dma_cfg = *info;
  1741. } else
  1742. err = d40_config_memcpy(d40c);
  1743. if (!err)
  1744. d40c->configured = true;
  1745. return err == 0;
  1746. }
  1747. EXPORT_SYMBOL(stedma40_filter);
  1748. static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
  1749. {
  1750. bool realtime = d40c->dma_cfg.realtime;
  1751. bool highprio = d40c->dma_cfg.high_priority;
  1752. u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
  1753. u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
  1754. u32 event = D40_TYPE_TO_EVENT(dev_type);
  1755. u32 group = D40_TYPE_TO_GROUP(dev_type);
  1756. u32 bit = 1 << event;
  1757. /* Destination event lines are stored in the upper halfword */
  1758. if (!src)
  1759. bit <<= 16;
  1760. writel(bit, d40c->base->virtbase + prioreg + group * 4);
  1761. writel(bit, d40c->base->virtbase + rtreg + group * 4);
  1762. }
  1763. static void d40_set_prio_realtime(struct d40_chan *d40c)
  1764. {
  1765. if (d40c->base->rev < 3)
  1766. return;
  1767. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  1768. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  1769. __d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
  1770. if ((d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH) ||
  1771. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  1772. __d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
  1773. }
  1774. /* DMA ENGINE functions */
  1775. static int d40_alloc_chan_resources(struct dma_chan *chan)
  1776. {
  1777. int err;
  1778. unsigned long flags;
  1779. struct d40_chan *d40c =
  1780. container_of(chan, struct d40_chan, chan);
  1781. bool is_free_phy;
  1782. spin_lock_irqsave(&d40c->lock, flags);
  1783. d40c->completed = chan->cookie = 1;
  1784. /* If no dma configuration is set use default configuration (memcpy) */
  1785. if (!d40c->configured) {
  1786. err = d40_config_memcpy(d40c);
  1787. if (err) {
  1788. chan_err(d40c, "Failed to configure memcpy channel\n");
  1789. goto fail;
  1790. }
  1791. }
  1792. is_free_phy = (d40c->phy_chan == NULL);
  1793. err = d40_allocate_channel(d40c);
  1794. if (err) {
  1795. chan_err(d40c, "Failed to allocate channel\n");
  1796. d40c->configured = false;
  1797. goto fail;
  1798. }
  1799. pm_runtime_get_sync(d40c->base->dev);
  1800. /* Fill in basic CFG register values */
  1801. d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
  1802. &d40c->dst_def_cfg, chan_is_logical(d40c));
  1803. d40_set_prio_realtime(d40c);
  1804. if (chan_is_logical(d40c)) {
  1805. d40_log_cfg(&d40c->dma_cfg,
  1806. &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  1807. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
  1808. d40c->lcpa = d40c->base->lcpa_base +
  1809. d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
  1810. else
  1811. d40c->lcpa = d40c->base->lcpa_base +
  1812. d40c->dma_cfg.dst_dev_type *
  1813. D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
  1814. }
  1815. /*
  1816. * Only write channel configuration to the DMA if the physical
  1817. * resource is free. In case of multiple logical channels
  1818. * on the same physical resource, only the first write is necessary.
  1819. */
  1820. if (is_free_phy)
  1821. d40_config_write(d40c);
  1822. fail:
  1823. pm_runtime_mark_last_busy(d40c->base->dev);
  1824. pm_runtime_put_autosuspend(d40c->base->dev);
  1825. spin_unlock_irqrestore(&d40c->lock, flags);
  1826. return err;
  1827. }
  1828. static void d40_free_chan_resources(struct dma_chan *chan)
  1829. {
  1830. struct d40_chan *d40c =
  1831. container_of(chan, struct d40_chan, chan);
  1832. int err;
  1833. unsigned long flags;
  1834. if (d40c->phy_chan == NULL) {
  1835. chan_err(d40c, "Cannot free unallocated channel\n");
  1836. return;
  1837. }
  1838. spin_lock_irqsave(&d40c->lock, flags);
  1839. err = d40_free_dma(d40c);
  1840. if (err)
  1841. chan_err(d40c, "Failed to free channel\n");
  1842. spin_unlock_irqrestore(&d40c->lock, flags);
  1843. }
  1844. static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
  1845. dma_addr_t dst,
  1846. dma_addr_t src,
  1847. size_t size,
  1848. unsigned long dma_flags)
  1849. {
  1850. struct scatterlist dst_sg;
  1851. struct scatterlist src_sg;
  1852. sg_init_table(&dst_sg, 1);
  1853. sg_init_table(&src_sg, 1);
  1854. sg_dma_address(&dst_sg) = dst;
  1855. sg_dma_address(&src_sg) = src;
  1856. sg_dma_len(&dst_sg) = size;
  1857. sg_dma_len(&src_sg) = size;
  1858. return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
  1859. }
  1860. static struct dma_async_tx_descriptor *
  1861. d40_prep_memcpy_sg(struct dma_chan *chan,
  1862. struct scatterlist *dst_sg, unsigned int dst_nents,
  1863. struct scatterlist *src_sg, unsigned int src_nents,
  1864. unsigned long dma_flags)
  1865. {
  1866. if (dst_nents != src_nents)
  1867. return NULL;
  1868. return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
  1869. }
  1870. static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
  1871. struct scatterlist *sgl,
  1872. unsigned int sg_len,
  1873. enum dma_transfer_direction direction,
  1874. unsigned long dma_flags)
  1875. {
  1876. if (direction != DMA_DEV_TO_MEM && direction != DMA_MEM_TO_DEV)
  1877. return NULL;
  1878. return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
  1879. }
  1880. static struct dma_async_tx_descriptor *
  1881. dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
  1882. size_t buf_len, size_t period_len,
  1883. enum dma_transfer_direction direction)
  1884. {
  1885. unsigned int periods = buf_len / period_len;
  1886. struct dma_async_tx_descriptor *txd;
  1887. struct scatterlist *sg;
  1888. int i;
  1889. sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
  1890. for (i = 0; i < periods; i++) {
  1891. sg_dma_address(&sg[i]) = dma_addr;
  1892. sg_dma_len(&sg[i]) = period_len;
  1893. dma_addr += period_len;
  1894. }
  1895. sg[periods].offset = 0;
  1896. sg[periods].length = 0;
  1897. sg[periods].page_link =
  1898. ((unsigned long)sg | 0x01) & ~0x02;
  1899. txd = d40_prep_sg(chan, sg, sg, periods, direction,
  1900. DMA_PREP_INTERRUPT);
  1901. kfree(sg);
  1902. return txd;
  1903. }
  1904. static enum dma_status d40_tx_status(struct dma_chan *chan,
  1905. dma_cookie_t cookie,
  1906. struct dma_tx_state *txstate)
  1907. {
  1908. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1909. dma_cookie_t last_used;
  1910. dma_cookie_t last_complete;
  1911. int ret;
  1912. if (d40c->phy_chan == NULL) {
  1913. chan_err(d40c, "Cannot read status of unallocated channel\n");
  1914. return -EINVAL;
  1915. }
  1916. last_complete = d40c->completed;
  1917. last_used = chan->cookie;
  1918. if (d40_is_paused(d40c))
  1919. ret = DMA_PAUSED;
  1920. else
  1921. ret = dma_async_is_complete(cookie, last_complete, last_used);
  1922. dma_set_tx_state(txstate, last_complete, last_used,
  1923. stedma40_residue(chan));
  1924. return ret;
  1925. }
  1926. static void d40_issue_pending(struct dma_chan *chan)
  1927. {
  1928. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1929. unsigned long flags;
  1930. if (d40c->phy_chan == NULL) {
  1931. chan_err(d40c, "Channel is not allocated!\n");
  1932. return;
  1933. }
  1934. spin_lock_irqsave(&d40c->lock, flags);
  1935. list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
  1936. /* Busy means that queued jobs are already being processed */
  1937. if (!d40c->busy)
  1938. (void) d40_queue_start(d40c);
  1939. spin_unlock_irqrestore(&d40c->lock, flags);
  1940. }
  1941. static int
  1942. dma40_config_to_halfchannel(struct d40_chan *d40c,
  1943. struct stedma40_half_channel_info *info,
  1944. enum dma_slave_buswidth width,
  1945. u32 maxburst)
  1946. {
  1947. enum stedma40_periph_data_width addr_width;
  1948. int psize;
  1949. switch (width) {
  1950. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  1951. addr_width = STEDMA40_BYTE_WIDTH;
  1952. break;
  1953. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  1954. addr_width = STEDMA40_HALFWORD_WIDTH;
  1955. break;
  1956. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  1957. addr_width = STEDMA40_WORD_WIDTH;
  1958. break;
  1959. case DMA_SLAVE_BUSWIDTH_8_BYTES:
  1960. addr_width = STEDMA40_DOUBLEWORD_WIDTH;
  1961. break;
  1962. default:
  1963. dev_err(d40c->base->dev,
  1964. "illegal peripheral address width "
  1965. "requested (%d)\n",
  1966. width);
  1967. return -EINVAL;
  1968. }
  1969. if (chan_is_logical(d40c)) {
  1970. if (maxburst >= 16)
  1971. psize = STEDMA40_PSIZE_LOG_16;
  1972. else if (maxburst >= 8)
  1973. psize = STEDMA40_PSIZE_LOG_8;
  1974. else if (maxburst >= 4)
  1975. psize = STEDMA40_PSIZE_LOG_4;
  1976. else
  1977. psize = STEDMA40_PSIZE_LOG_1;
  1978. } else {
  1979. if (maxburst >= 16)
  1980. psize = STEDMA40_PSIZE_PHY_16;
  1981. else if (maxburst >= 8)
  1982. psize = STEDMA40_PSIZE_PHY_8;
  1983. else if (maxburst >= 4)
  1984. psize = STEDMA40_PSIZE_PHY_4;
  1985. else
  1986. psize = STEDMA40_PSIZE_PHY_1;
  1987. }
  1988. info->data_width = addr_width;
  1989. info->psize = psize;
  1990. info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  1991. return 0;
  1992. }
  1993. /* Runtime reconfiguration extension */
  1994. static int d40_set_runtime_config(struct dma_chan *chan,
  1995. struct dma_slave_config *config)
  1996. {
  1997. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1998. struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
  1999. enum dma_slave_buswidth src_addr_width, dst_addr_width;
  2000. dma_addr_t config_addr;
  2001. u32 src_maxburst, dst_maxburst;
  2002. int ret;
  2003. src_addr_width = config->src_addr_width;
  2004. src_maxburst = config->src_maxburst;
  2005. dst_addr_width = config->dst_addr_width;
  2006. dst_maxburst = config->dst_maxburst;
  2007. if (config->direction == DMA_DEV_TO_MEM) {
  2008. dma_addr_t dev_addr_rx =
  2009. d40c->base->plat_data->dev_rx[cfg->src_dev_type];
  2010. config_addr = config->src_addr;
  2011. if (dev_addr_rx)
  2012. dev_dbg(d40c->base->dev,
  2013. "channel has a pre-wired RX address %08x "
  2014. "overriding with %08x\n",
  2015. dev_addr_rx, config_addr);
  2016. if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
  2017. dev_dbg(d40c->base->dev,
  2018. "channel was not configured for peripheral "
  2019. "to memory transfer (%d) overriding\n",
  2020. cfg->dir);
  2021. cfg->dir = STEDMA40_PERIPH_TO_MEM;
  2022. /* Configure the memory side */
  2023. if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
  2024. dst_addr_width = src_addr_width;
  2025. if (dst_maxburst == 0)
  2026. dst_maxburst = src_maxburst;
  2027. } else if (config->direction == DMA_MEM_TO_DEV) {
  2028. dma_addr_t dev_addr_tx =
  2029. d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
  2030. config_addr = config->dst_addr;
  2031. if (dev_addr_tx)
  2032. dev_dbg(d40c->base->dev,
  2033. "channel has a pre-wired TX address %08x "
  2034. "overriding with %08x\n",
  2035. dev_addr_tx, config_addr);
  2036. if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
  2037. dev_dbg(d40c->base->dev,
  2038. "channel was not configured for memory "
  2039. "to peripheral transfer (%d) overriding\n",
  2040. cfg->dir);
  2041. cfg->dir = STEDMA40_MEM_TO_PERIPH;
  2042. /* Configure the memory side */
  2043. if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
  2044. src_addr_width = dst_addr_width;
  2045. if (src_maxburst == 0)
  2046. src_maxburst = dst_maxburst;
  2047. } else {
  2048. dev_err(d40c->base->dev,
  2049. "unrecognized channel direction %d\n",
  2050. config->direction);
  2051. return -EINVAL;
  2052. }
  2053. if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
  2054. dev_err(d40c->base->dev,
  2055. "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
  2056. src_maxburst,
  2057. src_addr_width,
  2058. dst_maxburst,
  2059. dst_addr_width);
  2060. return -EINVAL;
  2061. }
  2062. ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
  2063. src_addr_width,
  2064. src_maxburst);
  2065. if (ret)
  2066. return ret;
  2067. ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
  2068. dst_addr_width,
  2069. dst_maxburst);
  2070. if (ret)
  2071. return ret;
  2072. /* Fill in register values */
  2073. if (chan_is_logical(d40c))
  2074. d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  2075. else
  2076. d40_phy_cfg(cfg, &d40c->src_def_cfg,
  2077. &d40c->dst_def_cfg, false);
  2078. /* These settings will take precedence later */
  2079. d40c->runtime_addr = config_addr;
  2080. d40c->runtime_direction = config->direction;
  2081. dev_dbg(d40c->base->dev,
  2082. "configured channel %s for %s, data width %d/%d, "
  2083. "maxburst %d/%d elements, LE, no flow control\n",
  2084. dma_chan_name(chan),
  2085. (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
  2086. src_addr_width, dst_addr_width,
  2087. src_maxburst, dst_maxburst);
  2088. return 0;
  2089. }
  2090. static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  2091. unsigned long arg)
  2092. {
  2093. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2094. if (d40c->phy_chan == NULL) {
  2095. chan_err(d40c, "Channel is not allocated!\n");
  2096. return -EINVAL;
  2097. }
  2098. switch (cmd) {
  2099. case DMA_TERMINATE_ALL:
  2100. return d40_terminate_all(d40c);
  2101. case DMA_PAUSE:
  2102. return d40_pause(d40c);
  2103. case DMA_RESUME:
  2104. return d40_resume(d40c);
  2105. case DMA_SLAVE_CONFIG:
  2106. return d40_set_runtime_config(chan,
  2107. (struct dma_slave_config *) arg);
  2108. default:
  2109. break;
  2110. }
  2111. /* Other commands are unimplemented */
  2112. return -ENXIO;
  2113. }
  2114. /* Initialization functions */
  2115. static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
  2116. struct d40_chan *chans, int offset,
  2117. int num_chans)
  2118. {
  2119. int i = 0;
  2120. struct d40_chan *d40c;
  2121. INIT_LIST_HEAD(&dma->channels);
  2122. for (i = offset; i < offset + num_chans; i++) {
  2123. d40c = &chans[i];
  2124. d40c->base = base;
  2125. d40c->chan.device = dma;
  2126. spin_lock_init(&d40c->lock);
  2127. d40c->log_num = D40_PHY_CHAN;
  2128. INIT_LIST_HEAD(&d40c->active);
  2129. INIT_LIST_HEAD(&d40c->queue);
  2130. INIT_LIST_HEAD(&d40c->pending_queue);
  2131. INIT_LIST_HEAD(&d40c->client);
  2132. INIT_LIST_HEAD(&d40c->prepare_queue);
  2133. tasklet_init(&d40c->tasklet, dma_tasklet,
  2134. (unsigned long) d40c);
  2135. list_add_tail(&d40c->chan.device_node,
  2136. &dma->channels);
  2137. }
  2138. }
  2139. static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
  2140. {
  2141. if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
  2142. dev->device_prep_slave_sg = d40_prep_slave_sg;
  2143. if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
  2144. dev->device_prep_dma_memcpy = d40_prep_memcpy;
  2145. /*
  2146. * This controller can only access address at even
  2147. * 32bit boundaries, i.e. 2^2
  2148. */
  2149. dev->copy_align = 2;
  2150. }
  2151. if (dma_has_cap(DMA_SG, dev->cap_mask))
  2152. dev->device_prep_dma_sg = d40_prep_memcpy_sg;
  2153. if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
  2154. dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
  2155. dev->device_alloc_chan_resources = d40_alloc_chan_resources;
  2156. dev->device_free_chan_resources = d40_free_chan_resources;
  2157. dev->device_issue_pending = d40_issue_pending;
  2158. dev->device_tx_status = d40_tx_status;
  2159. dev->device_control = d40_control;
  2160. dev->dev = base->dev;
  2161. }
  2162. static int __init d40_dmaengine_init(struct d40_base *base,
  2163. int num_reserved_chans)
  2164. {
  2165. int err ;
  2166. d40_chan_init(base, &base->dma_slave, base->log_chans,
  2167. 0, base->num_log_chans);
  2168. dma_cap_zero(base->dma_slave.cap_mask);
  2169. dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
  2170. dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
  2171. d40_ops_init(base, &base->dma_slave);
  2172. err = dma_async_device_register(&base->dma_slave);
  2173. if (err) {
  2174. d40_err(base->dev, "Failed to register slave channels\n");
  2175. goto failure1;
  2176. }
  2177. d40_chan_init(base, &base->dma_memcpy, base->log_chans,
  2178. base->num_log_chans, base->plat_data->memcpy_len);
  2179. dma_cap_zero(base->dma_memcpy.cap_mask);
  2180. dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
  2181. dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
  2182. d40_ops_init(base, &base->dma_memcpy);
  2183. err = dma_async_device_register(&base->dma_memcpy);
  2184. if (err) {
  2185. d40_err(base->dev,
  2186. "Failed to regsiter memcpy only channels\n");
  2187. goto failure2;
  2188. }
  2189. d40_chan_init(base, &base->dma_both, base->phy_chans,
  2190. 0, num_reserved_chans);
  2191. dma_cap_zero(base->dma_both.cap_mask);
  2192. dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
  2193. dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
  2194. dma_cap_set(DMA_SG, base->dma_both.cap_mask);
  2195. dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
  2196. d40_ops_init(base, &base->dma_both);
  2197. err = dma_async_device_register(&base->dma_both);
  2198. if (err) {
  2199. d40_err(base->dev,
  2200. "Failed to register logical and physical capable channels\n");
  2201. goto failure3;
  2202. }
  2203. return 0;
  2204. failure3:
  2205. dma_async_device_unregister(&base->dma_memcpy);
  2206. failure2:
  2207. dma_async_device_unregister(&base->dma_slave);
  2208. failure1:
  2209. return err;
  2210. }
  2211. /* Suspend resume functionality */
  2212. #ifdef CONFIG_PM
  2213. static int dma40_pm_suspend(struct device *dev)
  2214. {
  2215. if (!pm_runtime_suspended(dev))
  2216. return -EBUSY;
  2217. return 0;
  2218. }
  2219. static int dma40_runtime_suspend(struct device *dev)
  2220. {
  2221. struct platform_device *pdev = to_platform_device(dev);
  2222. struct d40_base *base = platform_get_drvdata(pdev);
  2223. d40_save_restore_registers(base, true);
  2224. /* Don't disable/enable clocks for v1 due to HW bugs */
  2225. if (base->rev != 1)
  2226. writel_relaxed(base->gcc_pwr_off_mask,
  2227. base->virtbase + D40_DREG_GCC);
  2228. return 0;
  2229. }
  2230. static int dma40_runtime_resume(struct device *dev)
  2231. {
  2232. struct platform_device *pdev = to_platform_device(dev);
  2233. struct d40_base *base = platform_get_drvdata(pdev);
  2234. if (base->initialized)
  2235. d40_save_restore_registers(base, false);
  2236. writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
  2237. base->virtbase + D40_DREG_GCC);
  2238. return 0;
  2239. }
  2240. static const struct dev_pm_ops dma40_pm_ops = {
  2241. .suspend = dma40_pm_suspend,
  2242. .runtime_suspend = dma40_runtime_suspend,
  2243. .runtime_resume = dma40_runtime_resume,
  2244. };
  2245. #define DMA40_PM_OPS (&dma40_pm_ops)
  2246. #else
  2247. #define DMA40_PM_OPS NULL
  2248. #endif
  2249. /* Initialization functions. */
  2250. static int __init d40_phy_res_init(struct d40_base *base)
  2251. {
  2252. int i;
  2253. int num_phy_chans_avail = 0;
  2254. u32 val[2];
  2255. int odd_even_bit = -2;
  2256. int gcc = D40_DREG_GCC_ENA;
  2257. val[0] = readl(base->virtbase + D40_DREG_PRSME);
  2258. val[1] = readl(base->virtbase + D40_DREG_PRSMO);
  2259. for (i = 0; i < base->num_phy_chans; i++) {
  2260. base->phy_res[i].num = i;
  2261. odd_even_bit += 2 * ((i % 2) == 0);
  2262. if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
  2263. /* Mark security only channels as occupied */
  2264. base->phy_res[i].allocated_src = D40_ALLOC_PHY;
  2265. base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
  2266. base->phy_res[i].reserved = true;
  2267. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
  2268. D40_DREG_GCC_SRC);
  2269. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
  2270. D40_DREG_GCC_DST);
  2271. } else {
  2272. base->phy_res[i].allocated_src = D40_ALLOC_FREE;
  2273. base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
  2274. base->phy_res[i].reserved = false;
  2275. num_phy_chans_avail++;
  2276. }
  2277. spin_lock_init(&base->phy_res[i].lock);
  2278. }
  2279. /* Mark disabled channels as occupied */
  2280. for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
  2281. int chan = base->plat_data->disabled_channels[i];
  2282. base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
  2283. base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
  2284. base->phy_res[chan].reserved = true;
  2285. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
  2286. D40_DREG_GCC_SRC);
  2287. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
  2288. D40_DREG_GCC_DST);
  2289. num_phy_chans_avail--;
  2290. }
  2291. dev_info(base->dev, "%d of %d physical DMA channels available\n",
  2292. num_phy_chans_avail, base->num_phy_chans);
  2293. /* Verify settings extended vs standard */
  2294. val[0] = readl(base->virtbase + D40_DREG_PRTYP);
  2295. for (i = 0; i < base->num_phy_chans; i++) {
  2296. if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
  2297. (val[0] & 0x3) != 1)
  2298. dev_info(base->dev,
  2299. "[%s] INFO: channel %d is misconfigured (%d)\n",
  2300. __func__, i, val[0] & 0x3);
  2301. val[0] = val[0] >> 2;
  2302. }
  2303. /*
  2304. * To keep things simple, Enable all clocks initially.
  2305. * The clocks will get managed later post channel allocation.
  2306. * The clocks for the event lines on which reserved channels exists
  2307. * are not managed here.
  2308. */
  2309. writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
  2310. base->gcc_pwr_off_mask = gcc;
  2311. return num_phy_chans_avail;
  2312. }
  2313. static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
  2314. {
  2315. struct stedma40_platform_data *plat_data;
  2316. struct clk *clk = NULL;
  2317. void __iomem *virtbase = NULL;
  2318. struct resource *res = NULL;
  2319. struct d40_base *base = NULL;
  2320. int num_log_chans = 0;
  2321. int num_phy_chans;
  2322. int i;
  2323. u32 pid;
  2324. u32 cid;
  2325. u8 rev;
  2326. clk = clk_get(&pdev->dev, NULL);
  2327. if (IS_ERR(clk)) {
  2328. d40_err(&pdev->dev, "No matching clock found\n");
  2329. goto failure;
  2330. }
  2331. clk_enable(clk);
  2332. /* Get IO for DMAC base address */
  2333. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
  2334. if (!res)
  2335. goto failure;
  2336. if (request_mem_region(res->start, resource_size(res),
  2337. D40_NAME " I/O base") == NULL)
  2338. goto failure;
  2339. virtbase = ioremap(res->start, resource_size(res));
  2340. if (!virtbase)
  2341. goto failure;
  2342. /* This is just a regular AMBA PrimeCell ID actually */
  2343. for (pid = 0, i = 0; i < 4; i++)
  2344. pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
  2345. & 255) << (i * 8);
  2346. for (cid = 0, i = 0; i < 4; i++)
  2347. cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
  2348. & 255) << (i * 8);
  2349. if (cid != AMBA_CID) {
  2350. d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
  2351. goto failure;
  2352. }
  2353. if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
  2354. d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
  2355. AMBA_MANF_BITS(pid),
  2356. AMBA_VENDOR_ST);
  2357. goto failure;
  2358. }
  2359. /*
  2360. * HW revision:
  2361. * DB8500ed has revision 0
  2362. * ? has revision 1
  2363. * DB8500v1 has revision 2
  2364. * DB8500v2 has revision 3
  2365. */
  2366. rev = AMBA_REV_BITS(pid);
  2367. /* The number of physical channels on this HW */
  2368. num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
  2369. dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
  2370. rev, res->start);
  2371. plat_data = pdev->dev.platform_data;
  2372. /* Count the number of logical channels in use */
  2373. for (i = 0; i < plat_data->dev_len; i++)
  2374. if (plat_data->dev_rx[i] != 0)
  2375. num_log_chans++;
  2376. for (i = 0; i < plat_data->dev_len; i++)
  2377. if (plat_data->dev_tx[i] != 0)
  2378. num_log_chans++;
  2379. base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
  2380. (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
  2381. sizeof(struct d40_chan), GFP_KERNEL);
  2382. if (base == NULL) {
  2383. d40_err(&pdev->dev, "Out of memory\n");
  2384. goto failure;
  2385. }
  2386. base->rev = rev;
  2387. base->clk = clk;
  2388. base->num_phy_chans = num_phy_chans;
  2389. base->num_log_chans = num_log_chans;
  2390. base->phy_start = res->start;
  2391. base->phy_size = resource_size(res);
  2392. base->virtbase = virtbase;
  2393. base->plat_data = plat_data;
  2394. base->dev = &pdev->dev;
  2395. base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
  2396. base->log_chans = &base->phy_chans[num_phy_chans];
  2397. base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
  2398. GFP_KERNEL);
  2399. if (!base->phy_res)
  2400. goto failure;
  2401. base->lookup_phy_chans = kzalloc(num_phy_chans *
  2402. sizeof(struct d40_chan *),
  2403. GFP_KERNEL);
  2404. if (!base->lookup_phy_chans)
  2405. goto failure;
  2406. if (num_log_chans + plat_data->memcpy_len) {
  2407. /*
  2408. * The max number of logical channels are event lines for all
  2409. * src devices and dst devices
  2410. */
  2411. base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
  2412. sizeof(struct d40_chan *),
  2413. GFP_KERNEL);
  2414. if (!base->lookup_log_chans)
  2415. goto failure;
  2416. }
  2417. base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
  2418. sizeof(d40_backup_regs_chan),
  2419. GFP_KERNEL);
  2420. if (!base->reg_val_backup_chan)
  2421. goto failure;
  2422. base->lcla_pool.alloc_map =
  2423. kzalloc(num_phy_chans * sizeof(struct d40_desc *)
  2424. * D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
  2425. if (!base->lcla_pool.alloc_map)
  2426. goto failure;
  2427. base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
  2428. 0, SLAB_HWCACHE_ALIGN,
  2429. NULL);
  2430. if (base->desc_slab == NULL)
  2431. goto failure;
  2432. return base;
  2433. failure:
  2434. if (!IS_ERR(clk)) {
  2435. clk_disable(clk);
  2436. clk_put(clk);
  2437. }
  2438. if (virtbase)
  2439. iounmap(virtbase);
  2440. if (res)
  2441. release_mem_region(res->start,
  2442. resource_size(res));
  2443. if (virtbase)
  2444. iounmap(virtbase);
  2445. if (base) {
  2446. kfree(base->lcla_pool.alloc_map);
  2447. kfree(base->lookup_log_chans);
  2448. kfree(base->lookup_phy_chans);
  2449. kfree(base->phy_res);
  2450. kfree(base);
  2451. }
  2452. return NULL;
  2453. }
  2454. static void __init d40_hw_init(struct d40_base *base)
  2455. {
  2456. static struct d40_reg_val dma_init_reg[] = {
  2457. /* Clock every part of the DMA block from start */
  2458. { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
  2459. /* Interrupts on all logical channels */
  2460. { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
  2461. { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
  2462. { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
  2463. { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
  2464. { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
  2465. { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
  2466. { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
  2467. { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
  2468. { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
  2469. { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
  2470. { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
  2471. { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
  2472. };
  2473. int i;
  2474. u32 prmseo[2] = {0, 0};
  2475. u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
  2476. u32 pcmis = 0;
  2477. u32 pcicr = 0;
  2478. for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
  2479. writel(dma_init_reg[i].val,
  2480. base->virtbase + dma_init_reg[i].reg);
  2481. /* Configure all our dma channels to default settings */
  2482. for (i = 0; i < base->num_phy_chans; i++) {
  2483. activeo[i % 2] = activeo[i % 2] << 2;
  2484. if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
  2485. == D40_ALLOC_PHY) {
  2486. activeo[i % 2] |= 3;
  2487. continue;
  2488. }
  2489. /* Enable interrupt # */
  2490. pcmis = (pcmis << 1) | 1;
  2491. /* Clear interrupt # */
  2492. pcicr = (pcicr << 1) | 1;
  2493. /* Set channel to physical mode */
  2494. prmseo[i % 2] = prmseo[i % 2] << 2;
  2495. prmseo[i % 2] |= 1;
  2496. }
  2497. writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
  2498. writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
  2499. writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
  2500. writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
  2501. /* Write which interrupt to enable */
  2502. writel(pcmis, base->virtbase + D40_DREG_PCMIS);
  2503. /* Write which interrupt to clear */
  2504. writel(pcicr, base->virtbase + D40_DREG_PCICR);
  2505. }
  2506. static int __init d40_lcla_allocate(struct d40_base *base)
  2507. {
  2508. struct d40_lcla_pool *pool = &base->lcla_pool;
  2509. unsigned long *page_list;
  2510. int i, j;
  2511. int ret = 0;
  2512. /*
  2513. * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
  2514. * To full fill this hardware requirement without wasting 256 kb
  2515. * we allocate pages until we get an aligned one.
  2516. */
  2517. page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
  2518. GFP_KERNEL);
  2519. if (!page_list) {
  2520. ret = -ENOMEM;
  2521. goto failure;
  2522. }
  2523. /* Calculating how many pages that are required */
  2524. base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
  2525. for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
  2526. page_list[i] = __get_free_pages(GFP_KERNEL,
  2527. base->lcla_pool.pages);
  2528. if (!page_list[i]) {
  2529. d40_err(base->dev, "Failed to allocate %d pages.\n",
  2530. base->lcla_pool.pages);
  2531. for (j = 0; j < i; j++)
  2532. free_pages(page_list[j], base->lcla_pool.pages);
  2533. goto failure;
  2534. }
  2535. if ((virt_to_phys((void *)page_list[i]) &
  2536. (LCLA_ALIGNMENT - 1)) == 0)
  2537. break;
  2538. }
  2539. for (j = 0; j < i; j++)
  2540. free_pages(page_list[j], base->lcla_pool.pages);
  2541. if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
  2542. base->lcla_pool.base = (void *)page_list[i];
  2543. } else {
  2544. /*
  2545. * After many attempts and no succees with finding the correct
  2546. * alignment, try with allocating a big buffer.
  2547. */
  2548. dev_warn(base->dev,
  2549. "[%s] Failed to get %d pages @ 18 bit align.\n",
  2550. __func__, base->lcla_pool.pages);
  2551. base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
  2552. base->num_phy_chans +
  2553. LCLA_ALIGNMENT,
  2554. GFP_KERNEL);
  2555. if (!base->lcla_pool.base_unaligned) {
  2556. ret = -ENOMEM;
  2557. goto failure;
  2558. }
  2559. base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
  2560. LCLA_ALIGNMENT);
  2561. }
  2562. pool->dma_addr = dma_map_single(base->dev, pool->base,
  2563. SZ_1K * base->num_phy_chans,
  2564. DMA_TO_DEVICE);
  2565. if (dma_mapping_error(base->dev, pool->dma_addr)) {
  2566. pool->dma_addr = 0;
  2567. ret = -ENOMEM;
  2568. goto failure;
  2569. }
  2570. writel(virt_to_phys(base->lcla_pool.base),
  2571. base->virtbase + D40_DREG_LCLA);
  2572. failure:
  2573. kfree(page_list);
  2574. return ret;
  2575. }
  2576. static int __init d40_probe(struct platform_device *pdev)
  2577. {
  2578. int err;
  2579. int ret = -ENOENT;
  2580. struct d40_base *base;
  2581. struct resource *res = NULL;
  2582. int num_reserved_chans;
  2583. u32 val;
  2584. base = d40_hw_detect_init(pdev);
  2585. if (!base)
  2586. goto failure;
  2587. num_reserved_chans = d40_phy_res_init(base);
  2588. platform_set_drvdata(pdev, base);
  2589. spin_lock_init(&base->interrupt_lock);
  2590. spin_lock_init(&base->execmd_lock);
  2591. /* Get IO for logical channel parameter address */
  2592. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
  2593. if (!res) {
  2594. ret = -ENOENT;
  2595. d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
  2596. goto failure;
  2597. }
  2598. base->lcpa_size = resource_size(res);
  2599. base->phy_lcpa = res->start;
  2600. if (request_mem_region(res->start, resource_size(res),
  2601. D40_NAME " I/O lcpa") == NULL) {
  2602. ret = -EBUSY;
  2603. d40_err(&pdev->dev,
  2604. "Failed to request LCPA region 0x%x-0x%x\n",
  2605. res->start, res->end);
  2606. goto failure;
  2607. }
  2608. /* We make use of ESRAM memory for this. */
  2609. val = readl(base->virtbase + D40_DREG_LCPA);
  2610. if (res->start != val && val != 0) {
  2611. dev_warn(&pdev->dev,
  2612. "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
  2613. __func__, val, res->start);
  2614. } else
  2615. writel(res->start, base->virtbase + D40_DREG_LCPA);
  2616. base->lcpa_base = ioremap(res->start, resource_size(res));
  2617. if (!base->lcpa_base) {
  2618. ret = -ENOMEM;
  2619. d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
  2620. goto failure;
  2621. }
  2622. ret = d40_lcla_allocate(base);
  2623. if (ret) {
  2624. d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
  2625. goto failure;
  2626. }
  2627. spin_lock_init(&base->lcla_pool.lock);
  2628. base->irq = platform_get_irq(pdev, 0);
  2629. ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
  2630. if (ret) {
  2631. d40_err(&pdev->dev, "No IRQ defined\n");
  2632. goto failure;
  2633. }
  2634. pm_runtime_irq_safe(base->dev);
  2635. pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
  2636. pm_runtime_use_autosuspend(base->dev);
  2637. pm_runtime_enable(base->dev);
  2638. pm_runtime_resume(base->dev);
  2639. base->initialized = true;
  2640. err = d40_dmaengine_init(base, num_reserved_chans);
  2641. if (err)
  2642. goto failure;
  2643. d40_hw_init(base);
  2644. dev_info(base->dev, "initialized\n");
  2645. return 0;
  2646. failure:
  2647. if (base) {
  2648. if (base->desc_slab)
  2649. kmem_cache_destroy(base->desc_slab);
  2650. if (base->virtbase)
  2651. iounmap(base->virtbase);
  2652. if (base->lcla_pool.dma_addr)
  2653. dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
  2654. SZ_1K * base->num_phy_chans,
  2655. DMA_TO_DEVICE);
  2656. if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
  2657. free_pages((unsigned long)base->lcla_pool.base,
  2658. base->lcla_pool.pages);
  2659. kfree(base->lcla_pool.base_unaligned);
  2660. if (base->phy_lcpa)
  2661. release_mem_region(base->phy_lcpa,
  2662. base->lcpa_size);
  2663. if (base->phy_start)
  2664. release_mem_region(base->phy_start,
  2665. base->phy_size);
  2666. if (base->clk) {
  2667. clk_disable(base->clk);
  2668. clk_put(base->clk);
  2669. }
  2670. kfree(base->lcla_pool.alloc_map);
  2671. kfree(base->lookup_log_chans);
  2672. kfree(base->lookup_phy_chans);
  2673. kfree(base->phy_res);
  2674. kfree(base);
  2675. }
  2676. d40_err(&pdev->dev, "probe failed\n");
  2677. return ret;
  2678. }
  2679. static struct platform_driver d40_driver = {
  2680. .driver = {
  2681. .owner = THIS_MODULE,
  2682. .name = D40_NAME,
  2683. .pm = DMA40_PM_OPS,
  2684. },
  2685. };
  2686. static int __init stedma40_init(void)
  2687. {
  2688. return platform_driver_probe(&d40_driver, d40_probe);
  2689. }
  2690. subsys_initcall(stedma40_init);