qlge_main.c 112 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214
  1. /*
  2. * QLogic qlge NIC HBA Driver
  3. * Copyright (c) 2003-2008 QLogic Corporation
  4. * See LICENSE.qlge for copyright and licensing details.
  5. * Author: Linux qlge network device driver by
  6. * Ron Mercer <ron.mercer@qlogic.com>
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/init.h>
  10. #include <linux/types.h>
  11. #include <linux/module.h>
  12. #include <linux/list.h>
  13. #include <linux/pci.h>
  14. #include <linux/dma-mapping.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/sched.h>
  17. #include <linux/slab.h>
  18. #include <linux/dmapool.h>
  19. #include <linux/mempool.h>
  20. #include <linux/spinlock.h>
  21. #include <linux/kthread.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/errno.h>
  24. #include <linux/ioport.h>
  25. #include <linux/in.h>
  26. #include <linux/ip.h>
  27. #include <linux/ipv6.h>
  28. #include <net/ipv6.h>
  29. #include <linux/tcp.h>
  30. #include <linux/udp.h>
  31. #include <linux/if_arp.h>
  32. #include <linux/if_ether.h>
  33. #include <linux/netdevice.h>
  34. #include <linux/etherdevice.h>
  35. #include <linux/ethtool.h>
  36. #include <linux/skbuff.h>
  37. #include <linux/rtnetlink.h>
  38. #include <linux/if_vlan.h>
  39. #include <linux/delay.h>
  40. #include <linux/mm.h>
  41. #include <linux/vmalloc.h>
  42. #include <net/ip6_checksum.h>
  43. #include "qlge.h"
  44. char qlge_driver_name[] = DRV_NAME;
  45. const char qlge_driver_version[] = DRV_VERSION;
  46. MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
  47. MODULE_DESCRIPTION(DRV_STRING " ");
  48. MODULE_LICENSE("GPL");
  49. MODULE_VERSION(DRV_VERSION);
  50. static const u32 default_msg =
  51. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
  52. /* NETIF_MSG_TIMER | */
  53. NETIF_MSG_IFDOWN |
  54. NETIF_MSG_IFUP |
  55. NETIF_MSG_RX_ERR |
  56. NETIF_MSG_TX_ERR |
  57. /* NETIF_MSG_TX_QUEUED | */
  58. /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
  59. /* NETIF_MSG_PKTDATA | */
  60. NETIF_MSG_HW | NETIF_MSG_WOL | 0;
  61. static int debug = 0x00007fff; /* defaults above */
  62. module_param(debug, int, 0);
  63. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  64. #define MSIX_IRQ 0
  65. #define MSI_IRQ 1
  66. #define LEG_IRQ 2
  67. static int irq_type = MSIX_IRQ;
  68. module_param(irq_type, int, MSIX_IRQ);
  69. MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
  70. static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
  71. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
  72. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
  73. /* required last entry */
  74. {0,}
  75. };
  76. MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
  77. /* This hardware semaphore causes exclusive access to
  78. * resources shared between the NIC driver, MPI firmware,
  79. * FCOE firmware and the FC driver.
  80. */
  81. static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
  82. {
  83. u32 sem_bits = 0;
  84. switch (sem_mask) {
  85. case SEM_XGMAC0_MASK:
  86. sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
  87. break;
  88. case SEM_XGMAC1_MASK:
  89. sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
  90. break;
  91. case SEM_ICB_MASK:
  92. sem_bits = SEM_SET << SEM_ICB_SHIFT;
  93. break;
  94. case SEM_MAC_ADDR_MASK:
  95. sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
  96. break;
  97. case SEM_FLASH_MASK:
  98. sem_bits = SEM_SET << SEM_FLASH_SHIFT;
  99. break;
  100. case SEM_PROBE_MASK:
  101. sem_bits = SEM_SET << SEM_PROBE_SHIFT;
  102. break;
  103. case SEM_RT_IDX_MASK:
  104. sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
  105. break;
  106. case SEM_PROC_REG_MASK:
  107. sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
  108. break;
  109. default:
  110. QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
  111. return -EINVAL;
  112. }
  113. ql_write32(qdev, SEM, sem_bits | sem_mask);
  114. return !(ql_read32(qdev, SEM) & sem_bits);
  115. }
  116. int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
  117. {
  118. unsigned int wait_count = 30;
  119. do {
  120. if (!ql_sem_trylock(qdev, sem_mask))
  121. return 0;
  122. udelay(100);
  123. } while (--wait_count);
  124. return -ETIMEDOUT;
  125. }
  126. void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
  127. {
  128. ql_write32(qdev, SEM, sem_mask);
  129. ql_read32(qdev, SEM); /* flush */
  130. }
  131. /* This function waits for a specific bit to come ready
  132. * in a given register. It is used mostly by the initialize
  133. * process, but is also used in kernel thread API such as
  134. * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
  135. */
  136. int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
  137. {
  138. u32 temp;
  139. int count = UDELAY_COUNT;
  140. while (count) {
  141. temp = ql_read32(qdev, reg);
  142. /* check for errors */
  143. if (temp & err_bit) {
  144. QPRINTK(qdev, PROBE, ALERT,
  145. "register 0x%.08x access error, value = 0x%.08x!.\n",
  146. reg, temp);
  147. return -EIO;
  148. } else if (temp & bit)
  149. return 0;
  150. udelay(UDELAY_DELAY);
  151. count--;
  152. }
  153. QPRINTK(qdev, PROBE, ALERT,
  154. "Timed out waiting for reg %x to come ready.\n", reg);
  155. return -ETIMEDOUT;
  156. }
  157. /* The CFG register is used to download TX and RX control blocks
  158. * to the chip. This function waits for an operation to complete.
  159. */
  160. static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
  161. {
  162. int count = UDELAY_COUNT;
  163. u32 temp;
  164. while (count) {
  165. temp = ql_read32(qdev, CFG);
  166. if (temp & CFG_LE)
  167. return -EIO;
  168. if (!(temp & bit))
  169. return 0;
  170. udelay(UDELAY_DELAY);
  171. count--;
  172. }
  173. return -ETIMEDOUT;
  174. }
  175. /* Used to issue init control blocks to hw. Maps control block,
  176. * sets address, triggers download, waits for completion.
  177. */
  178. int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
  179. u16 q_id)
  180. {
  181. u64 map;
  182. int status = 0;
  183. int direction;
  184. u32 mask;
  185. u32 value;
  186. direction =
  187. (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
  188. PCI_DMA_FROMDEVICE;
  189. map = pci_map_single(qdev->pdev, ptr, size, direction);
  190. if (pci_dma_mapping_error(qdev->pdev, map)) {
  191. QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
  192. return -ENOMEM;
  193. }
  194. status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
  195. if (status)
  196. return status;
  197. status = ql_wait_cfg(qdev, bit);
  198. if (status) {
  199. QPRINTK(qdev, IFUP, ERR,
  200. "Timed out waiting for CFG to come ready.\n");
  201. goto exit;
  202. }
  203. ql_write32(qdev, ICB_L, (u32) map);
  204. ql_write32(qdev, ICB_H, (u32) (map >> 32));
  205. mask = CFG_Q_MASK | (bit << 16);
  206. value = bit | (q_id << CFG_Q_SHIFT);
  207. ql_write32(qdev, CFG, (mask | value));
  208. /*
  209. * Wait for the bit to clear after signaling hw.
  210. */
  211. status = ql_wait_cfg(qdev, bit);
  212. exit:
  213. ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
  214. pci_unmap_single(qdev->pdev, map, size, direction);
  215. return status;
  216. }
  217. /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
  218. int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
  219. u32 *value)
  220. {
  221. u32 offset = 0;
  222. int status;
  223. switch (type) {
  224. case MAC_ADDR_TYPE_MULTI_MAC:
  225. case MAC_ADDR_TYPE_CAM_MAC:
  226. {
  227. status =
  228. ql_wait_reg_rdy(qdev,
  229. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  230. if (status)
  231. goto exit;
  232. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  233. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  234. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  235. status =
  236. ql_wait_reg_rdy(qdev,
  237. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  238. if (status)
  239. goto exit;
  240. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  241. status =
  242. ql_wait_reg_rdy(qdev,
  243. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  244. if (status)
  245. goto exit;
  246. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  247. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  248. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  249. status =
  250. ql_wait_reg_rdy(qdev,
  251. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  252. if (status)
  253. goto exit;
  254. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  255. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  256. status =
  257. ql_wait_reg_rdy(qdev,
  258. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  259. if (status)
  260. goto exit;
  261. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  262. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  263. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  264. status =
  265. ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
  266. MAC_ADDR_MR, 0);
  267. if (status)
  268. goto exit;
  269. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  270. }
  271. break;
  272. }
  273. case MAC_ADDR_TYPE_VLAN:
  274. case MAC_ADDR_TYPE_MULTI_FLTR:
  275. default:
  276. QPRINTK(qdev, IFUP, CRIT,
  277. "Address type %d not yet supported.\n", type);
  278. status = -EPERM;
  279. }
  280. exit:
  281. return status;
  282. }
  283. /* Set up a MAC, multicast or VLAN address for the
  284. * inbound frame matching.
  285. */
  286. static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
  287. u16 index)
  288. {
  289. u32 offset = 0;
  290. int status = 0;
  291. switch (type) {
  292. case MAC_ADDR_TYPE_MULTI_MAC:
  293. case MAC_ADDR_TYPE_CAM_MAC:
  294. {
  295. u32 cam_output;
  296. u32 upper = (addr[0] << 8) | addr[1];
  297. u32 lower =
  298. (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
  299. (addr[5]);
  300. QPRINTK(qdev, IFUP, DEBUG,
  301. "Adding %s address %pM"
  302. " at index %d in the CAM.\n",
  303. ((type ==
  304. MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
  305. "UNICAST"), addr, index);
  306. status =
  307. ql_wait_reg_rdy(qdev,
  308. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  309. if (status)
  310. goto exit;
  311. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  312. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  313. type); /* type */
  314. ql_write32(qdev, MAC_ADDR_DATA, lower);
  315. status =
  316. ql_wait_reg_rdy(qdev,
  317. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  318. if (status)
  319. goto exit;
  320. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  321. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  322. type); /* type */
  323. ql_write32(qdev, MAC_ADDR_DATA, upper);
  324. status =
  325. ql_wait_reg_rdy(qdev,
  326. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  327. if (status)
  328. goto exit;
  329. ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
  330. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  331. type); /* type */
  332. /* This field should also include the queue id
  333. and possibly the function id. Right now we hardcode
  334. the route field to NIC core.
  335. */
  336. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  337. cam_output = (CAM_OUT_ROUTE_NIC |
  338. (qdev->
  339. func << CAM_OUT_FUNC_SHIFT) |
  340. (qdev->
  341. rss_ring_first_cq_id <<
  342. CAM_OUT_CQ_ID_SHIFT));
  343. if (qdev->vlgrp)
  344. cam_output |= CAM_OUT_RV;
  345. /* route to NIC core */
  346. ql_write32(qdev, MAC_ADDR_DATA, cam_output);
  347. }
  348. break;
  349. }
  350. case MAC_ADDR_TYPE_VLAN:
  351. {
  352. u32 enable_bit = *((u32 *) &addr[0]);
  353. /* For VLAN, the addr actually holds a bit that
  354. * either enables or disables the vlan id we are
  355. * addressing. It's either MAC_ADDR_E on or off.
  356. * That's bit-27 we're talking about.
  357. */
  358. QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
  359. (enable_bit ? "Adding" : "Removing"),
  360. index, (enable_bit ? "to" : "from"));
  361. status =
  362. ql_wait_reg_rdy(qdev,
  363. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  364. if (status)
  365. goto exit;
  366. ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
  367. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  368. type | /* type */
  369. enable_bit); /* enable/disable */
  370. break;
  371. }
  372. case MAC_ADDR_TYPE_MULTI_FLTR:
  373. default:
  374. QPRINTK(qdev, IFUP, CRIT,
  375. "Address type %d not yet supported.\n", type);
  376. status = -EPERM;
  377. }
  378. exit:
  379. return status;
  380. }
  381. /* Set or clear MAC address in hardware. We sometimes
  382. * have to clear it to prevent wrong frame routing
  383. * especially in a bonding environment.
  384. */
  385. static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
  386. {
  387. int status;
  388. char zero_mac_addr[ETH_ALEN];
  389. char *addr;
  390. if (set) {
  391. addr = &qdev->ndev->dev_addr[0];
  392. QPRINTK(qdev, IFUP, DEBUG,
  393. "Set Mac addr %02x:%02x:%02x:%02x:%02x:%02x\n",
  394. addr[0], addr[1], addr[2], addr[3],
  395. addr[4], addr[5]);
  396. } else {
  397. memset(zero_mac_addr, 0, ETH_ALEN);
  398. addr = &zero_mac_addr[0];
  399. QPRINTK(qdev, IFUP, DEBUG,
  400. "Clearing MAC address on %s\n",
  401. qdev->ndev->name);
  402. }
  403. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  404. if (status)
  405. return status;
  406. status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
  407. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  408. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  409. if (status)
  410. QPRINTK(qdev, IFUP, ERR, "Failed to init mac "
  411. "address.\n");
  412. return status;
  413. }
  414. /* Get a specific frame routing value from the CAM.
  415. * Used for debug and reg dump.
  416. */
  417. int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
  418. {
  419. int status = 0;
  420. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  421. if (status)
  422. goto exit;
  423. ql_write32(qdev, RT_IDX,
  424. RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
  425. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
  426. if (status)
  427. goto exit;
  428. *value = ql_read32(qdev, RT_DATA);
  429. exit:
  430. return status;
  431. }
  432. /* The NIC function for this chip has 16 routing indexes. Each one can be used
  433. * to route different frame types to various inbound queues. We send broadcast/
  434. * multicast/error frames to the default queue for slow handling,
  435. * and CAM hit/RSS frames to the fast handling queues.
  436. */
  437. static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
  438. int enable)
  439. {
  440. int status = -EINVAL; /* Return error if no mask match. */
  441. u32 value = 0;
  442. QPRINTK(qdev, IFUP, DEBUG,
  443. "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
  444. (enable ? "Adding" : "Removing"),
  445. ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
  446. ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
  447. ((index ==
  448. RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
  449. ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
  450. ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
  451. ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
  452. ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
  453. ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
  454. ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
  455. ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
  456. ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
  457. ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
  458. ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
  459. ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
  460. ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
  461. ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
  462. (enable ? "to" : "from"));
  463. switch (mask) {
  464. case RT_IDX_CAM_HIT:
  465. {
  466. value = RT_IDX_DST_CAM_Q | /* dest */
  467. RT_IDX_TYPE_NICQ | /* type */
  468. (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
  469. break;
  470. }
  471. case RT_IDX_VALID: /* Promiscuous Mode frames. */
  472. {
  473. value = RT_IDX_DST_DFLT_Q | /* dest */
  474. RT_IDX_TYPE_NICQ | /* type */
  475. (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
  476. break;
  477. }
  478. case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
  479. {
  480. value = RT_IDX_DST_DFLT_Q | /* dest */
  481. RT_IDX_TYPE_NICQ | /* type */
  482. (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
  483. break;
  484. }
  485. case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
  486. {
  487. value = RT_IDX_DST_DFLT_Q | /* dest */
  488. RT_IDX_TYPE_NICQ | /* type */
  489. (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
  490. break;
  491. }
  492. case RT_IDX_MCAST: /* Pass up All Multicast frames. */
  493. {
  494. value = RT_IDX_DST_CAM_Q | /* dest */
  495. RT_IDX_TYPE_NICQ | /* type */
  496. (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
  497. break;
  498. }
  499. case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
  500. {
  501. value = RT_IDX_DST_CAM_Q | /* dest */
  502. RT_IDX_TYPE_NICQ | /* type */
  503. (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  504. break;
  505. }
  506. case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
  507. {
  508. value = RT_IDX_DST_RSS | /* dest */
  509. RT_IDX_TYPE_NICQ | /* type */
  510. (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  511. break;
  512. }
  513. case 0: /* Clear the E-bit on an entry. */
  514. {
  515. value = RT_IDX_DST_DFLT_Q | /* dest */
  516. RT_IDX_TYPE_NICQ | /* type */
  517. (index << RT_IDX_IDX_SHIFT);/* index */
  518. break;
  519. }
  520. default:
  521. QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
  522. mask);
  523. status = -EPERM;
  524. goto exit;
  525. }
  526. if (value) {
  527. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  528. if (status)
  529. goto exit;
  530. value |= (enable ? RT_IDX_E : 0);
  531. ql_write32(qdev, RT_IDX, value);
  532. ql_write32(qdev, RT_DATA, enable ? mask : 0);
  533. }
  534. exit:
  535. return status;
  536. }
  537. static void ql_enable_interrupts(struct ql_adapter *qdev)
  538. {
  539. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
  540. }
  541. static void ql_disable_interrupts(struct ql_adapter *qdev)
  542. {
  543. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
  544. }
  545. /* If we're running with multiple MSI-X vectors then we enable on the fly.
  546. * Otherwise, we may have multiple outstanding workers and don't want to
  547. * enable until the last one finishes. In this case, the irq_cnt gets
  548. * incremented everytime we queue a worker and decremented everytime
  549. * a worker finishes. Once it hits zero we enable the interrupt.
  550. */
  551. u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  552. {
  553. u32 var = 0;
  554. unsigned long hw_flags = 0;
  555. struct intr_context *ctx = qdev->intr_context + intr;
  556. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
  557. /* Always enable if we're MSIX multi interrupts and
  558. * it's not the default (zeroeth) interrupt.
  559. */
  560. ql_write32(qdev, INTR_EN,
  561. ctx->intr_en_mask);
  562. var = ql_read32(qdev, STS);
  563. return var;
  564. }
  565. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  566. if (atomic_dec_and_test(&ctx->irq_cnt)) {
  567. ql_write32(qdev, INTR_EN,
  568. ctx->intr_en_mask);
  569. var = ql_read32(qdev, STS);
  570. }
  571. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  572. return var;
  573. }
  574. static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  575. {
  576. u32 var = 0;
  577. struct intr_context *ctx;
  578. /* HW disables for us if we're MSIX multi interrupts and
  579. * it's not the default (zeroeth) interrupt.
  580. */
  581. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
  582. return 0;
  583. ctx = qdev->intr_context + intr;
  584. spin_lock(&qdev->hw_lock);
  585. if (!atomic_read(&ctx->irq_cnt)) {
  586. ql_write32(qdev, INTR_EN,
  587. ctx->intr_dis_mask);
  588. var = ql_read32(qdev, STS);
  589. }
  590. atomic_inc(&ctx->irq_cnt);
  591. spin_unlock(&qdev->hw_lock);
  592. return var;
  593. }
  594. static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
  595. {
  596. int i;
  597. for (i = 0; i < qdev->intr_count; i++) {
  598. /* The enable call does a atomic_dec_and_test
  599. * and enables only if the result is zero.
  600. * So we precharge it here.
  601. */
  602. if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
  603. i == 0))
  604. atomic_set(&qdev->intr_context[i].irq_cnt, 1);
  605. ql_enable_completion_interrupt(qdev, i);
  606. }
  607. }
  608. static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
  609. {
  610. int status, i;
  611. u16 csum = 0;
  612. __le16 *flash = (__le16 *)&qdev->flash;
  613. status = strncmp((char *)&qdev->flash, str, 4);
  614. if (status) {
  615. QPRINTK(qdev, IFUP, ERR, "Invalid flash signature.\n");
  616. return status;
  617. }
  618. for (i = 0; i < size; i++)
  619. csum += le16_to_cpu(*flash++);
  620. if (csum)
  621. QPRINTK(qdev, IFUP, ERR,
  622. "Invalid flash checksum, csum = 0x%.04x.\n", csum);
  623. return csum;
  624. }
  625. static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
  626. {
  627. int status = 0;
  628. /* wait for reg to come ready */
  629. status = ql_wait_reg_rdy(qdev,
  630. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  631. if (status)
  632. goto exit;
  633. /* set up for reg read */
  634. ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
  635. /* wait for reg to come ready */
  636. status = ql_wait_reg_rdy(qdev,
  637. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  638. if (status)
  639. goto exit;
  640. /* This data is stored on flash as an array of
  641. * __le32. Since ql_read32() returns cpu endian
  642. * we need to swap it back.
  643. */
  644. *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
  645. exit:
  646. return status;
  647. }
  648. static int ql_get_8000_flash_params(struct ql_adapter *qdev)
  649. {
  650. u32 i, size;
  651. int status;
  652. __le32 *p = (__le32 *)&qdev->flash;
  653. u32 offset;
  654. u8 mac_addr[6];
  655. /* Get flash offset for function and adjust
  656. * for dword access.
  657. */
  658. if (!qdev->port)
  659. offset = FUNC0_FLASH_OFFSET / sizeof(u32);
  660. else
  661. offset = FUNC1_FLASH_OFFSET / sizeof(u32);
  662. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  663. return -ETIMEDOUT;
  664. size = sizeof(struct flash_params_8000) / sizeof(u32);
  665. for (i = 0; i < size; i++, p++) {
  666. status = ql_read_flash_word(qdev, i+offset, p);
  667. if (status) {
  668. QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
  669. goto exit;
  670. }
  671. }
  672. status = ql_validate_flash(qdev,
  673. sizeof(struct flash_params_8000) / sizeof(u16),
  674. "8000");
  675. if (status) {
  676. QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
  677. status = -EINVAL;
  678. goto exit;
  679. }
  680. /* Extract either manufacturer or BOFM modified
  681. * MAC address.
  682. */
  683. if (qdev->flash.flash_params_8000.data_type1 == 2)
  684. memcpy(mac_addr,
  685. qdev->flash.flash_params_8000.mac_addr1,
  686. qdev->ndev->addr_len);
  687. else
  688. memcpy(mac_addr,
  689. qdev->flash.flash_params_8000.mac_addr,
  690. qdev->ndev->addr_len);
  691. if (!is_valid_ether_addr(mac_addr)) {
  692. QPRINTK(qdev, IFUP, ERR, "Invalid MAC address.\n");
  693. status = -EINVAL;
  694. goto exit;
  695. }
  696. memcpy(qdev->ndev->dev_addr,
  697. mac_addr,
  698. qdev->ndev->addr_len);
  699. exit:
  700. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  701. return status;
  702. }
  703. static int ql_get_8012_flash_params(struct ql_adapter *qdev)
  704. {
  705. int i;
  706. int status;
  707. __le32 *p = (__le32 *)&qdev->flash;
  708. u32 offset = 0;
  709. u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
  710. /* Second function's parameters follow the first
  711. * function's.
  712. */
  713. if (qdev->port)
  714. offset = size;
  715. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  716. return -ETIMEDOUT;
  717. for (i = 0; i < size; i++, p++) {
  718. status = ql_read_flash_word(qdev, i+offset, p);
  719. if (status) {
  720. QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
  721. goto exit;
  722. }
  723. }
  724. status = ql_validate_flash(qdev,
  725. sizeof(struct flash_params_8012) / sizeof(u16),
  726. "8012");
  727. if (status) {
  728. QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
  729. status = -EINVAL;
  730. goto exit;
  731. }
  732. if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
  733. status = -EINVAL;
  734. goto exit;
  735. }
  736. memcpy(qdev->ndev->dev_addr,
  737. qdev->flash.flash_params_8012.mac_addr,
  738. qdev->ndev->addr_len);
  739. exit:
  740. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  741. return status;
  742. }
  743. /* xgmac register are located behind the xgmac_addr and xgmac_data
  744. * register pair. Each read/write requires us to wait for the ready
  745. * bit before reading/writing the data.
  746. */
  747. static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
  748. {
  749. int status;
  750. /* wait for reg to come ready */
  751. status = ql_wait_reg_rdy(qdev,
  752. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  753. if (status)
  754. return status;
  755. /* write the data to the data reg */
  756. ql_write32(qdev, XGMAC_DATA, data);
  757. /* trigger the write */
  758. ql_write32(qdev, XGMAC_ADDR, reg);
  759. return status;
  760. }
  761. /* xgmac register are located behind the xgmac_addr and xgmac_data
  762. * register pair. Each read/write requires us to wait for the ready
  763. * bit before reading/writing the data.
  764. */
  765. int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
  766. {
  767. int status = 0;
  768. /* wait for reg to come ready */
  769. status = ql_wait_reg_rdy(qdev,
  770. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  771. if (status)
  772. goto exit;
  773. /* set up for reg read */
  774. ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
  775. /* wait for reg to come ready */
  776. status = ql_wait_reg_rdy(qdev,
  777. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  778. if (status)
  779. goto exit;
  780. /* get the data */
  781. *data = ql_read32(qdev, XGMAC_DATA);
  782. exit:
  783. return status;
  784. }
  785. /* This is used for reading the 64-bit statistics regs. */
  786. int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
  787. {
  788. int status = 0;
  789. u32 hi = 0;
  790. u32 lo = 0;
  791. status = ql_read_xgmac_reg(qdev, reg, &lo);
  792. if (status)
  793. goto exit;
  794. status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
  795. if (status)
  796. goto exit;
  797. *data = (u64) lo | ((u64) hi << 32);
  798. exit:
  799. return status;
  800. }
  801. static int ql_8000_port_initialize(struct ql_adapter *qdev)
  802. {
  803. int status;
  804. /*
  805. * Get MPI firmware version for driver banner
  806. * and ethool info.
  807. */
  808. status = ql_mb_about_fw(qdev);
  809. if (status)
  810. goto exit;
  811. status = ql_mb_get_fw_state(qdev);
  812. if (status)
  813. goto exit;
  814. /* Wake up a worker to get/set the TX/RX frame sizes. */
  815. queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
  816. exit:
  817. return status;
  818. }
  819. /* Take the MAC Core out of reset.
  820. * Enable statistics counting.
  821. * Take the transmitter/receiver out of reset.
  822. * This functionality may be done in the MPI firmware at a
  823. * later date.
  824. */
  825. static int ql_8012_port_initialize(struct ql_adapter *qdev)
  826. {
  827. int status = 0;
  828. u32 data;
  829. if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
  830. /* Another function has the semaphore, so
  831. * wait for the port init bit to come ready.
  832. */
  833. QPRINTK(qdev, LINK, INFO,
  834. "Another function has the semaphore, so wait for the port init bit to come ready.\n");
  835. status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
  836. if (status) {
  837. QPRINTK(qdev, LINK, CRIT,
  838. "Port initialize timed out.\n");
  839. }
  840. return status;
  841. }
  842. QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
  843. /* Set the core reset. */
  844. status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
  845. if (status)
  846. goto end;
  847. data |= GLOBAL_CFG_RESET;
  848. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  849. if (status)
  850. goto end;
  851. /* Clear the core reset and turn on jumbo for receiver. */
  852. data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
  853. data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
  854. data |= GLOBAL_CFG_TX_STAT_EN;
  855. data |= GLOBAL_CFG_RX_STAT_EN;
  856. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  857. if (status)
  858. goto end;
  859. /* Enable transmitter, and clear it's reset. */
  860. status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
  861. if (status)
  862. goto end;
  863. data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
  864. data |= TX_CFG_EN; /* Enable the transmitter. */
  865. status = ql_write_xgmac_reg(qdev, TX_CFG, data);
  866. if (status)
  867. goto end;
  868. /* Enable receiver and clear it's reset. */
  869. status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
  870. if (status)
  871. goto end;
  872. data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
  873. data |= RX_CFG_EN; /* Enable the receiver. */
  874. status = ql_write_xgmac_reg(qdev, RX_CFG, data);
  875. if (status)
  876. goto end;
  877. /* Turn on jumbo. */
  878. status =
  879. ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
  880. if (status)
  881. goto end;
  882. status =
  883. ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
  884. if (status)
  885. goto end;
  886. /* Signal to the world that the port is enabled. */
  887. ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
  888. end:
  889. ql_sem_unlock(qdev, qdev->xg_sem_mask);
  890. return status;
  891. }
  892. /* Get the next large buffer. */
  893. static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
  894. {
  895. struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
  896. rx_ring->lbq_curr_idx++;
  897. if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
  898. rx_ring->lbq_curr_idx = 0;
  899. rx_ring->lbq_free_cnt++;
  900. return lbq_desc;
  901. }
  902. /* Get the next small buffer. */
  903. static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
  904. {
  905. struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
  906. rx_ring->sbq_curr_idx++;
  907. if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
  908. rx_ring->sbq_curr_idx = 0;
  909. rx_ring->sbq_free_cnt++;
  910. return sbq_desc;
  911. }
  912. /* Update an rx ring index. */
  913. static void ql_update_cq(struct rx_ring *rx_ring)
  914. {
  915. rx_ring->cnsmr_idx++;
  916. rx_ring->curr_entry++;
  917. if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
  918. rx_ring->cnsmr_idx = 0;
  919. rx_ring->curr_entry = rx_ring->cq_base;
  920. }
  921. }
  922. static void ql_write_cq_idx(struct rx_ring *rx_ring)
  923. {
  924. ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
  925. }
  926. /* Process (refill) a large buffer queue. */
  927. static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  928. {
  929. u32 clean_idx = rx_ring->lbq_clean_idx;
  930. u32 start_idx = clean_idx;
  931. struct bq_desc *lbq_desc;
  932. u64 map;
  933. int i;
  934. while (rx_ring->lbq_free_cnt > 16) {
  935. for (i = 0; i < 16; i++) {
  936. QPRINTK(qdev, RX_STATUS, DEBUG,
  937. "lbq: try cleaning clean_idx = %d.\n",
  938. clean_idx);
  939. lbq_desc = &rx_ring->lbq[clean_idx];
  940. if (lbq_desc->p.lbq_page == NULL) {
  941. QPRINTK(qdev, RX_STATUS, DEBUG,
  942. "lbq: getting new page for index %d.\n",
  943. lbq_desc->index);
  944. lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
  945. if (lbq_desc->p.lbq_page == NULL) {
  946. rx_ring->lbq_clean_idx = clean_idx;
  947. QPRINTK(qdev, RX_STATUS, ERR,
  948. "Couldn't get a page.\n");
  949. return;
  950. }
  951. map = pci_map_page(qdev->pdev,
  952. lbq_desc->p.lbq_page,
  953. 0, PAGE_SIZE,
  954. PCI_DMA_FROMDEVICE);
  955. if (pci_dma_mapping_error(qdev->pdev, map)) {
  956. rx_ring->lbq_clean_idx = clean_idx;
  957. put_page(lbq_desc->p.lbq_page);
  958. lbq_desc->p.lbq_page = NULL;
  959. QPRINTK(qdev, RX_STATUS, ERR,
  960. "PCI mapping failed.\n");
  961. return;
  962. }
  963. pci_unmap_addr_set(lbq_desc, mapaddr, map);
  964. pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
  965. *lbq_desc->addr = cpu_to_le64(map);
  966. }
  967. clean_idx++;
  968. if (clean_idx == rx_ring->lbq_len)
  969. clean_idx = 0;
  970. }
  971. rx_ring->lbq_clean_idx = clean_idx;
  972. rx_ring->lbq_prod_idx += 16;
  973. if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
  974. rx_ring->lbq_prod_idx = 0;
  975. rx_ring->lbq_free_cnt -= 16;
  976. }
  977. if (start_idx != clean_idx) {
  978. QPRINTK(qdev, RX_STATUS, DEBUG,
  979. "lbq: updating prod idx = %d.\n",
  980. rx_ring->lbq_prod_idx);
  981. ql_write_db_reg(rx_ring->lbq_prod_idx,
  982. rx_ring->lbq_prod_idx_db_reg);
  983. }
  984. }
  985. /* Process (refill) a small buffer queue. */
  986. static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  987. {
  988. u32 clean_idx = rx_ring->sbq_clean_idx;
  989. u32 start_idx = clean_idx;
  990. struct bq_desc *sbq_desc;
  991. u64 map;
  992. int i;
  993. while (rx_ring->sbq_free_cnt > 16) {
  994. for (i = 0; i < 16; i++) {
  995. sbq_desc = &rx_ring->sbq[clean_idx];
  996. QPRINTK(qdev, RX_STATUS, DEBUG,
  997. "sbq: try cleaning clean_idx = %d.\n",
  998. clean_idx);
  999. if (sbq_desc->p.skb == NULL) {
  1000. QPRINTK(qdev, RX_STATUS, DEBUG,
  1001. "sbq: getting new skb for index %d.\n",
  1002. sbq_desc->index);
  1003. sbq_desc->p.skb =
  1004. netdev_alloc_skb(qdev->ndev,
  1005. rx_ring->sbq_buf_size);
  1006. if (sbq_desc->p.skb == NULL) {
  1007. QPRINTK(qdev, PROBE, ERR,
  1008. "Couldn't get an skb.\n");
  1009. rx_ring->sbq_clean_idx = clean_idx;
  1010. return;
  1011. }
  1012. skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
  1013. map = pci_map_single(qdev->pdev,
  1014. sbq_desc->p.skb->data,
  1015. rx_ring->sbq_buf_size /
  1016. 2, PCI_DMA_FROMDEVICE);
  1017. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1018. QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
  1019. rx_ring->sbq_clean_idx = clean_idx;
  1020. dev_kfree_skb_any(sbq_desc->p.skb);
  1021. sbq_desc->p.skb = NULL;
  1022. return;
  1023. }
  1024. pci_unmap_addr_set(sbq_desc, mapaddr, map);
  1025. pci_unmap_len_set(sbq_desc, maplen,
  1026. rx_ring->sbq_buf_size / 2);
  1027. *sbq_desc->addr = cpu_to_le64(map);
  1028. }
  1029. clean_idx++;
  1030. if (clean_idx == rx_ring->sbq_len)
  1031. clean_idx = 0;
  1032. }
  1033. rx_ring->sbq_clean_idx = clean_idx;
  1034. rx_ring->sbq_prod_idx += 16;
  1035. if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
  1036. rx_ring->sbq_prod_idx = 0;
  1037. rx_ring->sbq_free_cnt -= 16;
  1038. }
  1039. if (start_idx != clean_idx) {
  1040. QPRINTK(qdev, RX_STATUS, DEBUG,
  1041. "sbq: updating prod idx = %d.\n",
  1042. rx_ring->sbq_prod_idx);
  1043. ql_write_db_reg(rx_ring->sbq_prod_idx,
  1044. rx_ring->sbq_prod_idx_db_reg);
  1045. }
  1046. }
  1047. static void ql_update_buffer_queues(struct ql_adapter *qdev,
  1048. struct rx_ring *rx_ring)
  1049. {
  1050. ql_update_sbq(qdev, rx_ring);
  1051. ql_update_lbq(qdev, rx_ring);
  1052. }
  1053. /* Unmaps tx buffers. Can be called from send() if a pci mapping
  1054. * fails at some stage, or from the interrupt when a tx completes.
  1055. */
  1056. static void ql_unmap_send(struct ql_adapter *qdev,
  1057. struct tx_ring_desc *tx_ring_desc, int mapped)
  1058. {
  1059. int i;
  1060. for (i = 0; i < mapped; i++) {
  1061. if (i == 0 || (i == 7 && mapped > 7)) {
  1062. /*
  1063. * Unmap the skb->data area, or the
  1064. * external sglist (AKA the Outbound
  1065. * Address List (OAL)).
  1066. * If its the zeroeth element, then it's
  1067. * the skb->data area. If it's the 7th
  1068. * element and there is more than 6 frags,
  1069. * then its an OAL.
  1070. */
  1071. if (i == 7) {
  1072. QPRINTK(qdev, TX_DONE, DEBUG,
  1073. "unmapping OAL area.\n");
  1074. }
  1075. pci_unmap_single(qdev->pdev,
  1076. pci_unmap_addr(&tx_ring_desc->map[i],
  1077. mapaddr),
  1078. pci_unmap_len(&tx_ring_desc->map[i],
  1079. maplen),
  1080. PCI_DMA_TODEVICE);
  1081. } else {
  1082. QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
  1083. i);
  1084. pci_unmap_page(qdev->pdev,
  1085. pci_unmap_addr(&tx_ring_desc->map[i],
  1086. mapaddr),
  1087. pci_unmap_len(&tx_ring_desc->map[i],
  1088. maplen), PCI_DMA_TODEVICE);
  1089. }
  1090. }
  1091. }
  1092. /* Map the buffers for this transmit. This will return
  1093. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  1094. */
  1095. static int ql_map_send(struct ql_adapter *qdev,
  1096. struct ob_mac_iocb_req *mac_iocb_ptr,
  1097. struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
  1098. {
  1099. int len = skb_headlen(skb);
  1100. dma_addr_t map;
  1101. int frag_idx, err, map_idx = 0;
  1102. struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
  1103. int frag_cnt = skb_shinfo(skb)->nr_frags;
  1104. if (frag_cnt) {
  1105. QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
  1106. }
  1107. /*
  1108. * Map the skb buffer first.
  1109. */
  1110. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1111. err = pci_dma_mapping_error(qdev->pdev, map);
  1112. if (err) {
  1113. QPRINTK(qdev, TX_QUEUED, ERR,
  1114. "PCI mapping failed with error: %d\n", err);
  1115. return NETDEV_TX_BUSY;
  1116. }
  1117. tbd->len = cpu_to_le32(len);
  1118. tbd->addr = cpu_to_le64(map);
  1119. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1120. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
  1121. map_idx++;
  1122. /*
  1123. * This loop fills the remainder of the 8 address descriptors
  1124. * in the IOCB. If there are more than 7 fragments, then the
  1125. * eighth address desc will point to an external list (OAL).
  1126. * When this happens, the remainder of the frags will be stored
  1127. * in this list.
  1128. */
  1129. for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
  1130. skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
  1131. tbd++;
  1132. if (frag_idx == 6 && frag_cnt > 7) {
  1133. /* Let's tack on an sglist.
  1134. * Our control block will now
  1135. * look like this:
  1136. * iocb->seg[0] = skb->data
  1137. * iocb->seg[1] = frag[0]
  1138. * iocb->seg[2] = frag[1]
  1139. * iocb->seg[3] = frag[2]
  1140. * iocb->seg[4] = frag[3]
  1141. * iocb->seg[5] = frag[4]
  1142. * iocb->seg[6] = frag[5]
  1143. * iocb->seg[7] = ptr to OAL (external sglist)
  1144. * oal->seg[0] = frag[6]
  1145. * oal->seg[1] = frag[7]
  1146. * oal->seg[2] = frag[8]
  1147. * oal->seg[3] = frag[9]
  1148. * oal->seg[4] = frag[10]
  1149. * etc...
  1150. */
  1151. /* Tack on the OAL in the eighth segment of IOCB. */
  1152. map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
  1153. sizeof(struct oal),
  1154. PCI_DMA_TODEVICE);
  1155. err = pci_dma_mapping_error(qdev->pdev, map);
  1156. if (err) {
  1157. QPRINTK(qdev, TX_QUEUED, ERR,
  1158. "PCI mapping outbound address list with error: %d\n",
  1159. err);
  1160. goto map_error;
  1161. }
  1162. tbd->addr = cpu_to_le64(map);
  1163. /*
  1164. * The length is the number of fragments
  1165. * that remain to be mapped times the length
  1166. * of our sglist (OAL).
  1167. */
  1168. tbd->len =
  1169. cpu_to_le32((sizeof(struct tx_buf_desc) *
  1170. (frag_cnt - frag_idx)) | TX_DESC_C);
  1171. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
  1172. map);
  1173. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1174. sizeof(struct oal));
  1175. tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
  1176. map_idx++;
  1177. }
  1178. map =
  1179. pci_map_page(qdev->pdev, frag->page,
  1180. frag->page_offset, frag->size,
  1181. PCI_DMA_TODEVICE);
  1182. err = pci_dma_mapping_error(qdev->pdev, map);
  1183. if (err) {
  1184. QPRINTK(qdev, TX_QUEUED, ERR,
  1185. "PCI mapping frags failed with error: %d.\n",
  1186. err);
  1187. goto map_error;
  1188. }
  1189. tbd->addr = cpu_to_le64(map);
  1190. tbd->len = cpu_to_le32(frag->size);
  1191. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1192. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1193. frag->size);
  1194. }
  1195. /* Save the number of segments we've mapped. */
  1196. tx_ring_desc->map_cnt = map_idx;
  1197. /* Terminate the last segment. */
  1198. tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
  1199. return NETDEV_TX_OK;
  1200. map_error:
  1201. /*
  1202. * If the first frag mapping failed, then i will be zero.
  1203. * This causes the unmap of the skb->data area. Otherwise
  1204. * we pass in the number of frags that mapped successfully
  1205. * so they can be umapped.
  1206. */
  1207. ql_unmap_send(qdev, tx_ring_desc, map_idx);
  1208. return NETDEV_TX_BUSY;
  1209. }
  1210. static void ql_realign_skb(struct sk_buff *skb, int len)
  1211. {
  1212. void *temp_addr = skb->data;
  1213. /* Undo the skb_reserve(skb,32) we did before
  1214. * giving to hardware, and realign data on
  1215. * a 2-byte boundary.
  1216. */
  1217. skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
  1218. skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
  1219. skb_copy_to_linear_data(skb, temp_addr,
  1220. (unsigned int)len);
  1221. }
  1222. /*
  1223. * This function builds an skb for the given inbound
  1224. * completion. It will be rewritten for readability in the near
  1225. * future, but for not it works well.
  1226. */
  1227. static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
  1228. struct rx_ring *rx_ring,
  1229. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1230. {
  1231. struct bq_desc *lbq_desc;
  1232. struct bq_desc *sbq_desc;
  1233. struct sk_buff *skb = NULL;
  1234. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1235. u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
  1236. /*
  1237. * Handle the header buffer if present.
  1238. */
  1239. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
  1240. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1241. QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
  1242. /*
  1243. * Headers fit nicely into a small buffer.
  1244. */
  1245. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1246. pci_unmap_single(qdev->pdev,
  1247. pci_unmap_addr(sbq_desc, mapaddr),
  1248. pci_unmap_len(sbq_desc, maplen),
  1249. PCI_DMA_FROMDEVICE);
  1250. skb = sbq_desc->p.skb;
  1251. ql_realign_skb(skb, hdr_len);
  1252. skb_put(skb, hdr_len);
  1253. sbq_desc->p.skb = NULL;
  1254. }
  1255. /*
  1256. * Handle the data buffer(s).
  1257. */
  1258. if (unlikely(!length)) { /* Is there data too? */
  1259. QPRINTK(qdev, RX_STATUS, DEBUG,
  1260. "No Data buffer in this packet.\n");
  1261. return skb;
  1262. }
  1263. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1264. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1265. QPRINTK(qdev, RX_STATUS, DEBUG,
  1266. "Headers in small, data of %d bytes in small, combine them.\n", length);
  1267. /*
  1268. * Data is less than small buffer size so it's
  1269. * stuffed in a small buffer.
  1270. * For this case we append the data
  1271. * from the "data" small buffer to the "header" small
  1272. * buffer.
  1273. */
  1274. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1275. pci_dma_sync_single_for_cpu(qdev->pdev,
  1276. pci_unmap_addr
  1277. (sbq_desc, mapaddr),
  1278. pci_unmap_len
  1279. (sbq_desc, maplen),
  1280. PCI_DMA_FROMDEVICE);
  1281. memcpy(skb_put(skb, length),
  1282. sbq_desc->p.skb->data, length);
  1283. pci_dma_sync_single_for_device(qdev->pdev,
  1284. pci_unmap_addr
  1285. (sbq_desc,
  1286. mapaddr),
  1287. pci_unmap_len
  1288. (sbq_desc,
  1289. maplen),
  1290. PCI_DMA_FROMDEVICE);
  1291. } else {
  1292. QPRINTK(qdev, RX_STATUS, DEBUG,
  1293. "%d bytes in a single small buffer.\n", length);
  1294. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1295. skb = sbq_desc->p.skb;
  1296. ql_realign_skb(skb, length);
  1297. skb_put(skb, length);
  1298. pci_unmap_single(qdev->pdev,
  1299. pci_unmap_addr(sbq_desc,
  1300. mapaddr),
  1301. pci_unmap_len(sbq_desc,
  1302. maplen),
  1303. PCI_DMA_FROMDEVICE);
  1304. sbq_desc->p.skb = NULL;
  1305. }
  1306. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1307. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1308. QPRINTK(qdev, RX_STATUS, DEBUG,
  1309. "Header in small, %d bytes in large. Chain large to small!\n", length);
  1310. /*
  1311. * The data is in a single large buffer. We
  1312. * chain it to the header buffer's skb and let
  1313. * it rip.
  1314. */
  1315. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1316. pci_unmap_page(qdev->pdev,
  1317. pci_unmap_addr(lbq_desc,
  1318. mapaddr),
  1319. pci_unmap_len(lbq_desc, maplen),
  1320. PCI_DMA_FROMDEVICE);
  1321. QPRINTK(qdev, RX_STATUS, DEBUG,
  1322. "Chaining page to skb.\n");
  1323. skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
  1324. 0, length);
  1325. skb->len += length;
  1326. skb->data_len += length;
  1327. skb->truesize += length;
  1328. lbq_desc->p.lbq_page = NULL;
  1329. } else {
  1330. /*
  1331. * The headers and data are in a single large buffer. We
  1332. * copy it to a new skb and let it go. This can happen with
  1333. * jumbo mtu on a non-TCP/UDP frame.
  1334. */
  1335. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1336. skb = netdev_alloc_skb(qdev->ndev, length);
  1337. if (skb == NULL) {
  1338. QPRINTK(qdev, PROBE, DEBUG,
  1339. "No skb available, drop the packet.\n");
  1340. return NULL;
  1341. }
  1342. pci_unmap_page(qdev->pdev,
  1343. pci_unmap_addr(lbq_desc,
  1344. mapaddr),
  1345. pci_unmap_len(lbq_desc, maplen),
  1346. PCI_DMA_FROMDEVICE);
  1347. skb_reserve(skb, NET_IP_ALIGN);
  1348. QPRINTK(qdev, RX_STATUS, DEBUG,
  1349. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
  1350. skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
  1351. 0, length);
  1352. skb->len += length;
  1353. skb->data_len += length;
  1354. skb->truesize += length;
  1355. length -= length;
  1356. lbq_desc->p.lbq_page = NULL;
  1357. __pskb_pull_tail(skb,
  1358. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1359. VLAN_ETH_HLEN : ETH_HLEN);
  1360. }
  1361. } else {
  1362. /*
  1363. * The data is in a chain of large buffers
  1364. * pointed to by a small buffer. We loop
  1365. * thru and chain them to the our small header
  1366. * buffer's skb.
  1367. * frags: There are 18 max frags and our small
  1368. * buffer will hold 32 of them. The thing is,
  1369. * we'll use 3 max for our 9000 byte jumbo
  1370. * frames. If the MTU goes up we could
  1371. * eventually be in trouble.
  1372. */
  1373. int size, offset, i = 0;
  1374. __le64 *bq, bq_array[8];
  1375. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1376. pci_unmap_single(qdev->pdev,
  1377. pci_unmap_addr(sbq_desc, mapaddr),
  1378. pci_unmap_len(sbq_desc, maplen),
  1379. PCI_DMA_FROMDEVICE);
  1380. if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
  1381. /*
  1382. * This is an non TCP/UDP IP frame, so
  1383. * the headers aren't split into a small
  1384. * buffer. We have to use the small buffer
  1385. * that contains our sg list as our skb to
  1386. * send upstairs. Copy the sg list here to
  1387. * a local buffer and use it to find the
  1388. * pages to chain.
  1389. */
  1390. QPRINTK(qdev, RX_STATUS, DEBUG,
  1391. "%d bytes of headers & data in chain of large.\n", length);
  1392. skb = sbq_desc->p.skb;
  1393. bq = &bq_array[0];
  1394. memcpy(bq, skb->data, sizeof(bq_array));
  1395. sbq_desc->p.skb = NULL;
  1396. skb_reserve(skb, NET_IP_ALIGN);
  1397. } else {
  1398. QPRINTK(qdev, RX_STATUS, DEBUG,
  1399. "Headers in small, %d bytes of data in chain of large.\n", length);
  1400. bq = (__le64 *)sbq_desc->p.skb->data;
  1401. }
  1402. while (length > 0) {
  1403. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1404. pci_unmap_page(qdev->pdev,
  1405. pci_unmap_addr(lbq_desc,
  1406. mapaddr),
  1407. pci_unmap_len(lbq_desc,
  1408. maplen),
  1409. PCI_DMA_FROMDEVICE);
  1410. size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
  1411. offset = 0;
  1412. QPRINTK(qdev, RX_STATUS, DEBUG,
  1413. "Adding page %d to skb for %d bytes.\n",
  1414. i, size);
  1415. skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
  1416. offset, size);
  1417. skb->len += size;
  1418. skb->data_len += size;
  1419. skb->truesize += size;
  1420. length -= size;
  1421. lbq_desc->p.lbq_page = NULL;
  1422. bq++;
  1423. i++;
  1424. }
  1425. __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1426. VLAN_ETH_HLEN : ETH_HLEN);
  1427. }
  1428. return skb;
  1429. }
  1430. /* Process an inbound completion from an rx ring. */
  1431. static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
  1432. struct rx_ring *rx_ring,
  1433. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1434. {
  1435. struct net_device *ndev = qdev->ndev;
  1436. struct sk_buff *skb = NULL;
  1437. u16 vlan_id = (le16_to_cpu(ib_mac_rsp->vlan_id) &
  1438. IB_MAC_IOCB_RSP_VLAN_MASK)
  1439. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1440. skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
  1441. if (unlikely(!skb)) {
  1442. QPRINTK(qdev, RX_STATUS, DEBUG,
  1443. "No skb available, drop packet.\n");
  1444. return;
  1445. }
  1446. /* Frame error, so drop the packet. */
  1447. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1448. QPRINTK(qdev, DRV, ERR, "Receive error, flags2 = 0x%x\n",
  1449. ib_mac_rsp->flags2);
  1450. dev_kfree_skb_any(skb);
  1451. return;
  1452. }
  1453. /* The max framesize filter on this chip is set higher than
  1454. * MTU since FCoE uses 2k frames.
  1455. */
  1456. if (skb->len > ndev->mtu + ETH_HLEN) {
  1457. dev_kfree_skb_any(skb);
  1458. return;
  1459. }
  1460. prefetch(skb->data);
  1461. skb->dev = ndev;
  1462. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1463. QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
  1464. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1465. IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
  1466. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1467. IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
  1468. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1469. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1470. }
  1471. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
  1472. QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
  1473. }
  1474. skb->protocol = eth_type_trans(skb, ndev);
  1475. skb->ip_summed = CHECKSUM_NONE;
  1476. /* If rx checksum is on, and there are no
  1477. * csum or frame errors.
  1478. */
  1479. if (qdev->rx_csum &&
  1480. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1481. /* TCP frame. */
  1482. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1483. QPRINTK(qdev, RX_STATUS, DEBUG,
  1484. "TCP checksum done!\n");
  1485. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1486. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1487. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1488. /* Unfragmented ipv4 UDP frame. */
  1489. struct iphdr *iph = (struct iphdr *) skb->data;
  1490. if (!(iph->frag_off &
  1491. cpu_to_be16(IP_MF|IP_OFFSET))) {
  1492. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1493. QPRINTK(qdev, RX_STATUS, DEBUG,
  1494. "TCP checksum done!\n");
  1495. }
  1496. }
  1497. }
  1498. qdev->stats.rx_packets++;
  1499. qdev->stats.rx_bytes += skb->len;
  1500. skb_record_rx_queue(skb,
  1501. rx_ring->cq_id - qdev->rss_ring_first_cq_id);
  1502. if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
  1503. if (qdev->vlgrp &&
  1504. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
  1505. (vlan_id != 0))
  1506. vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
  1507. vlan_id, skb);
  1508. else
  1509. napi_gro_receive(&rx_ring->napi, skb);
  1510. } else {
  1511. if (qdev->vlgrp &&
  1512. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
  1513. (vlan_id != 0))
  1514. vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
  1515. else
  1516. netif_receive_skb(skb);
  1517. }
  1518. }
  1519. /* Process an outbound completion from an rx ring. */
  1520. static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
  1521. struct ob_mac_iocb_rsp *mac_rsp)
  1522. {
  1523. struct tx_ring *tx_ring;
  1524. struct tx_ring_desc *tx_ring_desc;
  1525. QL_DUMP_OB_MAC_RSP(mac_rsp);
  1526. tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
  1527. tx_ring_desc = &tx_ring->q[mac_rsp->tid];
  1528. ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
  1529. qdev->stats.tx_bytes += (tx_ring_desc->skb)->len;
  1530. qdev->stats.tx_packets++;
  1531. dev_kfree_skb(tx_ring_desc->skb);
  1532. tx_ring_desc->skb = NULL;
  1533. if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
  1534. OB_MAC_IOCB_RSP_S |
  1535. OB_MAC_IOCB_RSP_L |
  1536. OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
  1537. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
  1538. QPRINTK(qdev, TX_DONE, WARNING,
  1539. "Total descriptor length did not match transfer length.\n");
  1540. }
  1541. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
  1542. QPRINTK(qdev, TX_DONE, WARNING,
  1543. "Frame too short to be legal, not sent.\n");
  1544. }
  1545. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
  1546. QPRINTK(qdev, TX_DONE, WARNING,
  1547. "Frame too long, but sent anyway.\n");
  1548. }
  1549. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
  1550. QPRINTK(qdev, TX_DONE, WARNING,
  1551. "PCI backplane error. Frame not sent.\n");
  1552. }
  1553. }
  1554. atomic_inc(&tx_ring->tx_count);
  1555. }
  1556. /* Fire up a handler to reset the MPI processor. */
  1557. void ql_queue_fw_error(struct ql_adapter *qdev)
  1558. {
  1559. netif_carrier_off(qdev->ndev);
  1560. queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
  1561. }
  1562. void ql_queue_asic_error(struct ql_adapter *qdev)
  1563. {
  1564. netif_carrier_off(qdev->ndev);
  1565. ql_disable_interrupts(qdev);
  1566. /* Clear adapter up bit to signal the recovery
  1567. * process that it shouldn't kill the reset worker
  1568. * thread
  1569. */
  1570. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  1571. queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
  1572. }
  1573. static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
  1574. struct ib_ae_iocb_rsp *ib_ae_rsp)
  1575. {
  1576. switch (ib_ae_rsp->event) {
  1577. case MGMT_ERR_EVENT:
  1578. QPRINTK(qdev, RX_ERR, ERR,
  1579. "Management Processor Fatal Error.\n");
  1580. ql_queue_fw_error(qdev);
  1581. return;
  1582. case CAM_LOOKUP_ERR_EVENT:
  1583. QPRINTK(qdev, LINK, ERR,
  1584. "Multiple CAM hits lookup occurred.\n");
  1585. QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
  1586. ql_queue_asic_error(qdev);
  1587. return;
  1588. case SOFT_ECC_ERROR_EVENT:
  1589. QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
  1590. ql_queue_asic_error(qdev);
  1591. break;
  1592. case PCI_ERR_ANON_BUF_RD:
  1593. QPRINTK(qdev, RX_ERR, ERR,
  1594. "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
  1595. ib_ae_rsp->q_id);
  1596. ql_queue_asic_error(qdev);
  1597. break;
  1598. default:
  1599. QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
  1600. ib_ae_rsp->event);
  1601. ql_queue_asic_error(qdev);
  1602. break;
  1603. }
  1604. }
  1605. static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
  1606. {
  1607. struct ql_adapter *qdev = rx_ring->qdev;
  1608. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1609. struct ob_mac_iocb_rsp *net_rsp = NULL;
  1610. int count = 0;
  1611. struct tx_ring *tx_ring;
  1612. /* While there are entries in the completion queue. */
  1613. while (prod != rx_ring->cnsmr_idx) {
  1614. QPRINTK(qdev, RX_STATUS, DEBUG,
  1615. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1616. prod, rx_ring->cnsmr_idx);
  1617. net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
  1618. rmb();
  1619. switch (net_rsp->opcode) {
  1620. case OPCODE_OB_MAC_TSO_IOCB:
  1621. case OPCODE_OB_MAC_IOCB:
  1622. ql_process_mac_tx_intr(qdev, net_rsp);
  1623. break;
  1624. default:
  1625. QPRINTK(qdev, RX_STATUS, DEBUG,
  1626. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1627. net_rsp->opcode);
  1628. }
  1629. count++;
  1630. ql_update_cq(rx_ring);
  1631. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1632. }
  1633. ql_write_cq_idx(rx_ring);
  1634. tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
  1635. if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id) &&
  1636. net_rsp != NULL) {
  1637. if (atomic_read(&tx_ring->queue_stopped) &&
  1638. (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
  1639. /*
  1640. * The queue got stopped because the tx_ring was full.
  1641. * Wake it up, because it's now at least 25% empty.
  1642. */
  1643. netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
  1644. }
  1645. return count;
  1646. }
  1647. static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
  1648. {
  1649. struct ql_adapter *qdev = rx_ring->qdev;
  1650. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1651. struct ql_net_rsp_iocb *net_rsp;
  1652. int count = 0;
  1653. /* While there are entries in the completion queue. */
  1654. while (prod != rx_ring->cnsmr_idx) {
  1655. QPRINTK(qdev, RX_STATUS, DEBUG,
  1656. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1657. prod, rx_ring->cnsmr_idx);
  1658. net_rsp = rx_ring->curr_entry;
  1659. rmb();
  1660. switch (net_rsp->opcode) {
  1661. case OPCODE_IB_MAC_IOCB:
  1662. ql_process_mac_rx_intr(qdev, rx_ring,
  1663. (struct ib_mac_iocb_rsp *)
  1664. net_rsp);
  1665. break;
  1666. case OPCODE_IB_AE_IOCB:
  1667. ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
  1668. net_rsp);
  1669. break;
  1670. default:
  1671. {
  1672. QPRINTK(qdev, RX_STATUS, DEBUG,
  1673. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1674. net_rsp->opcode);
  1675. }
  1676. }
  1677. count++;
  1678. ql_update_cq(rx_ring);
  1679. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1680. if (count == budget)
  1681. break;
  1682. }
  1683. ql_update_buffer_queues(qdev, rx_ring);
  1684. ql_write_cq_idx(rx_ring);
  1685. return count;
  1686. }
  1687. static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
  1688. {
  1689. struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
  1690. struct ql_adapter *qdev = rx_ring->qdev;
  1691. int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
  1692. QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
  1693. rx_ring->cq_id);
  1694. if (work_done < budget) {
  1695. napi_complete(napi);
  1696. ql_enable_completion_interrupt(qdev, rx_ring->irq);
  1697. }
  1698. return work_done;
  1699. }
  1700. static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
  1701. {
  1702. struct ql_adapter *qdev = netdev_priv(ndev);
  1703. qdev->vlgrp = grp;
  1704. if (grp) {
  1705. QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
  1706. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
  1707. NIC_RCV_CFG_VLAN_MATCH_AND_NON);
  1708. } else {
  1709. QPRINTK(qdev, IFUP, DEBUG,
  1710. "Turning off VLAN in NIC_RCV_CFG.\n");
  1711. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
  1712. }
  1713. }
  1714. static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
  1715. {
  1716. struct ql_adapter *qdev = netdev_priv(ndev);
  1717. u32 enable_bit = MAC_ADDR_E;
  1718. int status;
  1719. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  1720. if (status)
  1721. return;
  1722. spin_lock(&qdev->hw_lock);
  1723. if (ql_set_mac_addr_reg
  1724. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1725. QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
  1726. }
  1727. spin_unlock(&qdev->hw_lock);
  1728. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  1729. }
  1730. static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
  1731. {
  1732. struct ql_adapter *qdev = netdev_priv(ndev);
  1733. u32 enable_bit = 0;
  1734. int status;
  1735. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  1736. if (status)
  1737. return;
  1738. spin_lock(&qdev->hw_lock);
  1739. if (ql_set_mac_addr_reg
  1740. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1741. QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
  1742. }
  1743. spin_unlock(&qdev->hw_lock);
  1744. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  1745. }
  1746. /* Worker thread to process a given rx_ring that is dedicated
  1747. * to outbound completions.
  1748. */
  1749. static void ql_tx_clean(struct work_struct *work)
  1750. {
  1751. struct rx_ring *rx_ring =
  1752. container_of(work, struct rx_ring, rx_work.work);
  1753. ql_clean_outbound_rx_ring(rx_ring);
  1754. ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
  1755. }
  1756. /* Worker thread to process a given rx_ring that is dedicated
  1757. * to inbound completions.
  1758. */
  1759. static void ql_rx_clean(struct work_struct *work)
  1760. {
  1761. struct rx_ring *rx_ring =
  1762. container_of(work, struct rx_ring, rx_work.work);
  1763. ql_clean_inbound_rx_ring(rx_ring, 64);
  1764. ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
  1765. }
  1766. /* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
  1767. static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
  1768. {
  1769. struct rx_ring *rx_ring = dev_id;
  1770. queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
  1771. &rx_ring->rx_work, 0);
  1772. return IRQ_HANDLED;
  1773. }
  1774. /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
  1775. static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
  1776. {
  1777. struct rx_ring *rx_ring = dev_id;
  1778. napi_schedule(&rx_ring->napi);
  1779. return IRQ_HANDLED;
  1780. }
  1781. /* This handles a fatal error, MPI activity, and the default
  1782. * rx_ring in an MSI-X multiple vector environment.
  1783. * In MSI/Legacy environment it also process the rest of
  1784. * the rx_rings.
  1785. */
  1786. static irqreturn_t qlge_isr(int irq, void *dev_id)
  1787. {
  1788. struct rx_ring *rx_ring = dev_id;
  1789. struct ql_adapter *qdev = rx_ring->qdev;
  1790. struct intr_context *intr_context = &qdev->intr_context[0];
  1791. u32 var;
  1792. int i;
  1793. int work_done = 0;
  1794. spin_lock(&qdev->hw_lock);
  1795. if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
  1796. QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
  1797. spin_unlock(&qdev->hw_lock);
  1798. return IRQ_NONE;
  1799. }
  1800. spin_unlock(&qdev->hw_lock);
  1801. var = ql_disable_completion_interrupt(qdev, intr_context->intr);
  1802. /*
  1803. * Check for fatal error.
  1804. */
  1805. if (var & STS_FE) {
  1806. ql_queue_asic_error(qdev);
  1807. QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
  1808. var = ql_read32(qdev, ERR_STS);
  1809. QPRINTK(qdev, INTR, ERR,
  1810. "Resetting chip. Error Status Register = 0x%x\n", var);
  1811. return IRQ_HANDLED;
  1812. }
  1813. /*
  1814. * Check MPI processor activity.
  1815. */
  1816. if (var & STS_PI) {
  1817. /*
  1818. * We've got an async event or mailbox completion.
  1819. * Handle it and clear the source of the interrupt.
  1820. */
  1821. QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
  1822. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1823. queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
  1824. &qdev->mpi_work, 0);
  1825. work_done++;
  1826. }
  1827. /*
  1828. * Check the default queue and wake handler if active.
  1829. */
  1830. rx_ring = &qdev->rx_ring[0];
  1831. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
  1832. QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
  1833. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1834. queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
  1835. &rx_ring->rx_work, 0);
  1836. work_done++;
  1837. }
  1838. if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  1839. /*
  1840. * Start the DPC for each active queue.
  1841. */
  1842. for (i = 1; i < qdev->rx_ring_count; i++) {
  1843. rx_ring = &qdev->rx_ring[i];
  1844. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
  1845. rx_ring->cnsmr_idx) {
  1846. QPRINTK(qdev, INTR, INFO,
  1847. "Waking handler for rx_ring[%d].\n", i);
  1848. ql_disable_completion_interrupt(qdev,
  1849. intr_context->
  1850. intr);
  1851. if (i < qdev->rss_ring_first_cq_id)
  1852. queue_delayed_work_on(rx_ring->cpu,
  1853. qdev->q_workqueue,
  1854. &rx_ring->rx_work,
  1855. 0);
  1856. else
  1857. napi_schedule(&rx_ring->napi);
  1858. work_done++;
  1859. }
  1860. }
  1861. }
  1862. ql_enable_completion_interrupt(qdev, intr_context->intr);
  1863. return work_done ? IRQ_HANDLED : IRQ_NONE;
  1864. }
  1865. static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1866. {
  1867. if (skb_is_gso(skb)) {
  1868. int err;
  1869. if (skb_header_cloned(skb)) {
  1870. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  1871. if (err)
  1872. return err;
  1873. }
  1874. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1875. mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
  1876. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1877. mac_iocb_ptr->total_hdrs_len =
  1878. cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
  1879. mac_iocb_ptr->net_trans_offset =
  1880. cpu_to_le16(skb_network_offset(skb) |
  1881. skb_transport_offset(skb)
  1882. << OB_MAC_TRANSPORT_HDR_SHIFT);
  1883. mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
  1884. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
  1885. if (likely(skb->protocol == htons(ETH_P_IP))) {
  1886. struct iphdr *iph = ip_hdr(skb);
  1887. iph->check = 0;
  1888. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1889. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  1890. iph->daddr, 0,
  1891. IPPROTO_TCP,
  1892. 0);
  1893. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  1894. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
  1895. tcp_hdr(skb)->check =
  1896. ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  1897. &ipv6_hdr(skb)->daddr,
  1898. 0, IPPROTO_TCP, 0);
  1899. }
  1900. return 1;
  1901. }
  1902. return 0;
  1903. }
  1904. static void ql_hw_csum_setup(struct sk_buff *skb,
  1905. struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1906. {
  1907. int len;
  1908. struct iphdr *iph = ip_hdr(skb);
  1909. __sum16 *check;
  1910. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1911. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1912. mac_iocb_ptr->net_trans_offset =
  1913. cpu_to_le16(skb_network_offset(skb) |
  1914. skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
  1915. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1916. len = (ntohs(iph->tot_len) - (iph->ihl << 2));
  1917. if (likely(iph->protocol == IPPROTO_TCP)) {
  1918. check = &(tcp_hdr(skb)->check);
  1919. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
  1920. mac_iocb_ptr->total_hdrs_len =
  1921. cpu_to_le16(skb_transport_offset(skb) +
  1922. (tcp_hdr(skb)->doff << 2));
  1923. } else {
  1924. check = &(udp_hdr(skb)->check);
  1925. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
  1926. mac_iocb_ptr->total_hdrs_len =
  1927. cpu_to_le16(skb_transport_offset(skb) +
  1928. sizeof(struct udphdr));
  1929. }
  1930. *check = ~csum_tcpudp_magic(iph->saddr,
  1931. iph->daddr, len, iph->protocol, 0);
  1932. }
  1933. static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
  1934. {
  1935. struct tx_ring_desc *tx_ring_desc;
  1936. struct ob_mac_iocb_req *mac_iocb_ptr;
  1937. struct ql_adapter *qdev = netdev_priv(ndev);
  1938. int tso;
  1939. struct tx_ring *tx_ring;
  1940. u32 tx_ring_idx = (u32) skb->queue_mapping;
  1941. tx_ring = &qdev->tx_ring[tx_ring_idx];
  1942. if (skb_padto(skb, ETH_ZLEN))
  1943. return NETDEV_TX_OK;
  1944. if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
  1945. QPRINTK(qdev, TX_QUEUED, INFO,
  1946. "%s: shutting down tx queue %d du to lack of resources.\n",
  1947. __func__, tx_ring_idx);
  1948. netif_stop_subqueue(ndev, tx_ring->wq_id);
  1949. atomic_inc(&tx_ring->queue_stopped);
  1950. return NETDEV_TX_BUSY;
  1951. }
  1952. tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
  1953. mac_iocb_ptr = tx_ring_desc->queue_entry;
  1954. memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
  1955. mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
  1956. mac_iocb_ptr->tid = tx_ring_desc->index;
  1957. /* We use the upper 32-bits to store the tx queue for this IO.
  1958. * When we get the completion we can use it to establish the context.
  1959. */
  1960. mac_iocb_ptr->txq_idx = tx_ring_idx;
  1961. tx_ring_desc->skb = skb;
  1962. mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
  1963. if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
  1964. QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
  1965. vlan_tx_tag_get(skb));
  1966. mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
  1967. mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
  1968. }
  1969. tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  1970. if (tso < 0) {
  1971. dev_kfree_skb_any(skb);
  1972. return NETDEV_TX_OK;
  1973. } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
  1974. ql_hw_csum_setup(skb,
  1975. (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  1976. }
  1977. if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
  1978. NETDEV_TX_OK) {
  1979. QPRINTK(qdev, TX_QUEUED, ERR,
  1980. "Could not map the segments.\n");
  1981. return NETDEV_TX_BUSY;
  1982. }
  1983. QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
  1984. tx_ring->prod_idx++;
  1985. if (tx_ring->prod_idx == tx_ring->wq_len)
  1986. tx_ring->prod_idx = 0;
  1987. wmb();
  1988. ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
  1989. QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
  1990. tx_ring->prod_idx, skb->len);
  1991. atomic_dec(&tx_ring->tx_count);
  1992. return NETDEV_TX_OK;
  1993. }
  1994. static void ql_free_shadow_space(struct ql_adapter *qdev)
  1995. {
  1996. if (qdev->rx_ring_shadow_reg_area) {
  1997. pci_free_consistent(qdev->pdev,
  1998. PAGE_SIZE,
  1999. qdev->rx_ring_shadow_reg_area,
  2000. qdev->rx_ring_shadow_reg_dma);
  2001. qdev->rx_ring_shadow_reg_area = NULL;
  2002. }
  2003. if (qdev->tx_ring_shadow_reg_area) {
  2004. pci_free_consistent(qdev->pdev,
  2005. PAGE_SIZE,
  2006. qdev->tx_ring_shadow_reg_area,
  2007. qdev->tx_ring_shadow_reg_dma);
  2008. qdev->tx_ring_shadow_reg_area = NULL;
  2009. }
  2010. }
  2011. static int ql_alloc_shadow_space(struct ql_adapter *qdev)
  2012. {
  2013. qdev->rx_ring_shadow_reg_area =
  2014. pci_alloc_consistent(qdev->pdev,
  2015. PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
  2016. if (qdev->rx_ring_shadow_reg_area == NULL) {
  2017. QPRINTK(qdev, IFUP, ERR,
  2018. "Allocation of RX shadow space failed.\n");
  2019. return -ENOMEM;
  2020. }
  2021. memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
  2022. qdev->tx_ring_shadow_reg_area =
  2023. pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
  2024. &qdev->tx_ring_shadow_reg_dma);
  2025. if (qdev->tx_ring_shadow_reg_area == NULL) {
  2026. QPRINTK(qdev, IFUP, ERR,
  2027. "Allocation of TX shadow space failed.\n");
  2028. goto err_wqp_sh_area;
  2029. }
  2030. memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
  2031. return 0;
  2032. err_wqp_sh_area:
  2033. pci_free_consistent(qdev->pdev,
  2034. PAGE_SIZE,
  2035. qdev->rx_ring_shadow_reg_area,
  2036. qdev->rx_ring_shadow_reg_dma);
  2037. return -ENOMEM;
  2038. }
  2039. static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2040. {
  2041. struct tx_ring_desc *tx_ring_desc;
  2042. int i;
  2043. struct ob_mac_iocb_req *mac_iocb_ptr;
  2044. mac_iocb_ptr = tx_ring->wq_base;
  2045. tx_ring_desc = tx_ring->q;
  2046. for (i = 0; i < tx_ring->wq_len; i++) {
  2047. tx_ring_desc->index = i;
  2048. tx_ring_desc->skb = NULL;
  2049. tx_ring_desc->queue_entry = mac_iocb_ptr;
  2050. mac_iocb_ptr++;
  2051. tx_ring_desc++;
  2052. }
  2053. atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
  2054. atomic_set(&tx_ring->queue_stopped, 0);
  2055. }
  2056. static void ql_free_tx_resources(struct ql_adapter *qdev,
  2057. struct tx_ring *tx_ring)
  2058. {
  2059. if (tx_ring->wq_base) {
  2060. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2061. tx_ring->wq_base, tx_ring->wq_base_dma);
  2062. tx_ring->wq_base = NULL;
  2063. }
  2064. kfree(tx_ring->q);
  2065. tx_ring->q = NULL;
  2066. }
  2067. static int ql_alloc_tx_resources(struct ql_adapter *qdev,
  2068. struct tx_ring *tx_ring)
  2069. {
  2070. tx_ring->wq_base =
  2071. pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
  2072. &tx_ring->wq_base_dma);
  2073. if ((tx_ring->wq_base == NULL)
  2074. || tx_ring->wq_base_dma & WQ_ADDR_ALIGN) {
  2075. QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
  2076. return -ENOMEM;
  2077. }
  2078. tx_ring->q =
  2079. kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
  2080. if (tx_ring->q == NULL)
  2081. goto err;
  2082. return 0;
  2083. err:
  2084. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2085. tx_ring->wq_base, tx_ring->wq_base_dma);
  2086. return -ENOMEM;
  2087. }
  2088. static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2089. {
  2090. int i;
  2091. struct bq_desc *lbq_desc;
  2092. for (i = 0; i < rx_ring->lbq_len; i++) {
  2093. lbq_desc = &rx_ring->lbq[i];
  2094. if (lbq_desc->p.lbq_page) {
  2095. pci_unmap_page(qdev->pdev,
  2096. pci_unmap_addr(lbq_desc, mapaddr),
  2097. pci_unmap_len(lbq_desc, maplen),
  2098. PCI_DMA_FROMDEVICE);
  2099. put_page(lbq_desc->p.lbq_page);
  2100. lbq_desc->p.lbq_page = NULL;
  2101. }
  2102. }
  2103. }
  2104. static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2105. {
  2106. int i;
  2107. struct bq_desc *sbq_desc;
  2108. for (i = 0; i < rx_ring->sbq_len; i++) {
  2109. sbq_desc = &rx_ring->sbq[i];
  2110. if (sbq_desc == NULL) {
  2111. QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
  2112. return;
  2113. }
  2114. if (sbq_desc->p.skb) {
  2115. pci_unmap_single(qdev->pdev,
  2116. pci_unmap_addr(sbq_desc, mapaddr),
  2117. pci_unmap_len(sbq_desc, maplen),
  2118. PCI_DMA_FROMDEVICE);
  2119. dev_kfree_skb(sbq_desc->p.skb);
  2120. sbq_desc->p.skb = NULL;
  2121. }
  2122. }
  2123. }
  2124. /* Free all large and small rx buffers associated
  2125. * with the completion queues for this device.
  2126. */
  2127. static void ql_free_rx_buffers(struct ql_adapter *qdev)
  2128. {
  2129. int i;
  2130. struct rx_ring *rx_ring;
  2131. for (i = 0; i < qdev->rx_ring_count; i++) {
  2132. rx_ring = &qdev->rx_ring[i];
  2133. if (rx_ring->lbq)
  2134. ql_free_lbq_buffers(qdev, rx_ring);
  2135. if (rx_ring->sbq)
  2136. ql_free_sbq_buffers(qdev, rx_ring);
  2137. }
  2138. }
  2139. static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
  2140. {
  2141. struct rx_ring *rx_ring;
  2142. int i;
  2143. for (i = 0; i < qdev->rx_ring_count; i++) {
  2144. rx_ring = &qdev->rx_ring[i];
  2145. if (rx_ring->type != TX_Q)
  2146. ql_update_buffer_queues(qdev, rx_ring);
  2147. }
  2148. }
  2149. static void ql_init_lbq_ring(struct ql_adapter *qdev,
  2150. struct rx_ring *rx_ring)
  2151. {
  2152. int i;
  2153. struct bq_desc *lbq_desc;
  2154. __le64 *bq = rx_ring->lbq_base;
  2155. memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
  2156. for (i = 0; i < rx_ring->lbq_len; i++) {
  2157. lbq_desc = &rx_ring->lbq[i];
  2158. memset(lbq_desc, 0, sizeof(*lbq_desc));
  2159. lbq_desc->index = i;
  2160. lbq_desc->addr = bq;
  2161. bq++;
  2162. }
  2163. }
  2164. static void ql_init_sbq_ring(struct ql_adapter *qdev,
  2165. struct rx_ring *rx_ring)
  2166. {
  2167. int i;
  2168. struct bq_desc *sbq_desc;
  2169. __le64 *bq = rx_ring->sbq_base;
  2170. memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
  2171. for (i = 0; i < rx_ring->sbq_len; i++) {
  2172. sbq_desc = &rx_ring->sbq[i];
  2173. memset(sbq_desc, 0, sizeof(*sbq_desc));
  2174. sbq_desc->index = i;
  2175. sbq_desc->addr = bq;
  2176. bq++;
  2177. }
  2178. }
  2179. static void ql_free_rx_resources(struct ql_adapter *qdev,
  2180. struct rx_ring *rx_ring)
  2181. {
  2182. /* Free the small buffer queue. */
  2183. if (rx_ring->sbq_base) {
  2184. pci_free_consistent(qdev->pdev,
  2185. rx_ring->sbq_size,
  2186. rx_ring->sbq_base, rx_ring->sbq_base_dma);
  2187. rx_ring->sbq_base = NULL;
  2188. }
  2189. /* Free the small buffer queue control blocks. */
  2190. kfree(rx_ring->sbq);
  2191. rx_ring->sbq = NULL;
  2192. /* Free the large buffer queue. */
  2193. if (rx_ring->lbq_base) {
  2194. pci_free_consistent(qdev->pdev,
  2195. rx_ring->lbq_size,
  2196. rx_ring->lbq_base, rx_ring->lbq_base_dma);
  2197. rx_ring->lbq_base = NULL;
  2198. }
  2199. /* Free the large buffer queue control blocks. */
  2200. kfree(rx_ring->lbq);
  2201. rx_ring->lbq = NULL;
  2202. /* Free the rx queue. */
  2203. if (rx_ring->cq_base) {
  2204. pci_free_consistent(qdev->pdev,
  2205. rx_ring->cq_size,
  2206. rx_ring->cq_base, rx_ring->cq_base_dma);
  2207. rx_ring->cq_base = NULL;
  2208. }
  2209. }
  2210. /* Allocate queues and buffers for this completions queue based
  2211. * on the values in the parameter structure. */
  2212. static int ql_alloc_rx_resources(struct ql_adapter *qdev,
  2213. struct rx_ring *rx_ring)
  2214. {
  2215. /*
  2216. * Allocate the completion queue for this rx_ring.
  2217. */
  2218. rx_ring->cq_base =
  2219. pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
  2220. &rx_ring->cq_base_dma);
  2221. if (rx_ring->cq_base == NULL) {
  2222. QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
  2223. return -ENOMEM;
  2224. }
  2225. if (rx_ring->sbq_len) {
  2226. /*
  2227. * Allocate small buffer queue.
  2228. */
  2229. rx_ring->sbq_base =
  2230. pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
  2231. &rx_ring->sbq_base_dma);
  2232. if (rx_ring->sbq_base == NULL) {
  2233. QPRINTK(qdev, IFUP, ERR,
  2234. "Small buffer queue allocation failed.\n");
  2235. goto err_mem;
  2236. }
  2237. /*
  2238. * Allocate small buffer queue control blocks.
  2239. */
  2240. rx_ring->sbq =
  2241. kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
  2242. GFP_KERNEL);
  2243. if (rx_ring->sbq == NULL) {
  2244. QPRINTK(qdev, IFUP, ERR,
  2245. "Small buffer queue control block allocation failed.\n");
  2246. goto err_mem;
  2247. }
  2248. ql_init_sbq_ring(qdev, rx_ring);
  2249. }
  2250. if (rx_ring->lbq_len) {
  2251. /*
  2252. * Allocate large buffer queue.
  2253. */
  2254. rx_ring->lbq_base =
  2255. pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
  2256. &rx_ring->lbq_base_dma);
  2257. if (rx_ring->lbq_base == NULL) {
  2258. QPRINTK(qdev, IFUP, ERR,
  2259. "Large buffer queue allocation failed.\n");
  2260. goto err_mem;
  2261. }
  2262. /*
  2263. * Allocate large buffer queue control blocks.
  2264. */
  2265. rx_ring->lbq =
  2266. kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
  2267. GFP_KERNEL);
  2268. if (rx_ring->lbq == NULL) {
  2269. QPRINTK(qdev, IFUP, ERR,
  2270. "Large buffer queue control block allocation failed.\n");
  2271. goto err_mem;
  2272. }
  2273. ql_init_lbq_ring(qdev, rx_ring);
  2274. }
  2275. return 0;
  2276. err_mem:
  2277. ql_free_rx_resources(qdev, rx_ring);
  2278. return -ENOMEM;
  2279. }
  2280. static void ql_tx_ring_clean(struct ql_adapter *qdev)
  2281. {
  2282. struct tx_ring *tx_ring;
  2283. struct tx_ring_desc *tx_ring_desc;
  2284. int i, j;
  2285. /*
  2286. * Loop through all queues and free
  2287. * any resources.
  2288. */
  2289. for (j = 0; j < qdev->tx_ring_count; j++) {
  2290. tx_ring = &qdev->tx_ring[j];
  2291. for (i = 0; i < tx_ring->wq_len; i++) {
  2292. tx_ring_desc = &tx_ring->q[i];
  2293. if (tx_ring_desc && tx_ring_desc->skb) {
  2294. QPRINTK(qdev, IFDOWN, ERR,
  2295. "Freeing lost SKB %p, from queue %d, index %d.\n",
  2296. tx_ring_desc->skb, j,
  2297. tx_ring_desc->index);
  2298. ql_unmap_send(qdev, tx_ring_desc,
  2299. tx_ring_desc->map_cnt);
  2300. dev_kfree_skb(tx_ring_desc->skb);
  2301. tx_ring_desc->skb = NULL;
  2302. }
  2303. }
  2304. }
  2305. }
  2306. static void ql_free_mem_resources(struct ql_adapter *qdev)
  2307. {
  2308. int i;
  2309. for (i = 0; i < qdev->tx_ring_count; i++)
  2310. ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
  2311. for (i = 0; i < qdev->rx_ring_count; i++)
  2312. ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
  2313. ql_free_shadow_space(qdev);
  2314. }
  2315. static int ql_alloc_mem_resources(struct ql_adapter *qdev)
  2316. {
  2317. int i;
  2318. /* Allocate space for our shadow registers and such. */
  2319. if (ql_alloc_shadow_space(qdev))
  2320. return -ENOMEM;
  2321. for (i = 0; i < qdev->rx_ring_count; i++) {
  2322. if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
  2323. QPRINTK(qdev, IFUP, ERR,
  2324. "RX resource allocation failed.\n");
  2325. goto err_mem;
  2326. }
  2327. }
  2328. /* Allocate tx queue resources */
  2329. for (i = 0; i < qdev->tx_ring_count; i++) {
  2330. if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
  2331. QPRINTK(qdev, IFUP, ERR,
  2332. "TX resource allocation failed.\n");
  2333. goto err_mem;
  2334. }
  2335. }
  2336. return 0;
  2337. err_mem:
  2338. ql_free_mem_resources(qdev);
  2339. return -ENOMEM;
  2340. }
  2341. /* Set up the rx ring control block and pass it to the chip.
  2342. * The control block is defined as
  2343. * "Completion Queue Initialization Control Block", or cqicb.
  2344. */
  2345. static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2346. {
  2347. struct cqicb *cqicb = &rx_ring->cqicb;
  2348. void *shadow_reg = qdev->rx_ring_shadow_reg_area +
  2349. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2350. u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
  2351. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2352. void __iomem *doorbell_area =
  2353. qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
  2354. int err = 0;
  2355. u16 bq_len;
  2356. u64 tmp;
  2357. __le64 *base_indirect_ptr;
  2358. int page_entries;
  2359. /* Set up the shadow registers for this ring. */
  2360. rx_ring->prod_idx_sh_reg = shadow_reg;
  2361. rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
  2362. shadow_reg += sizeof(u64);
  2363. shadow_reg_dma += sizeof(u64);
  2364. rx_ring->lbq_base_indirect = shadow_reg;
  2365. rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
  2366. shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2367. shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2368. rx_ring->sbq_base_indirect = shadow_reg;
  2369. rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
  2370. /* PCI doorbell mem area + 0x00 for consumer index register */
  2371. rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
  2372. rx_ring->cnsmr_idx = 0;
  2373. rx_ring->curr_entry = rx_ring->cq_base;
  2374. /* PCI doorbell mem area + 0x04 for valid register */
  2375. rx_ring->valid_db_reg = doorbell_area + 0x04;
  2376. /* PCI doorbell mem area + 0x18 for large buffer consumer */
  2377. rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
  2378. /* PCI doorbell mem area + 0x1c */
  2379. rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
  2380. memset((void *)cqicb, 0, sizeof(struct cqicb));
  2381. cqicb->msix_vect = rx_ring->irq;
  2382. bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
  2383. cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
  2384. cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
  2385. cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
  2386. /*
  2387. * Set up the control block load flags.
  2388. */
  2389. cqicb->flags = FLAGS_LC | /* Load queue base address */
  2390. FLAGS_LV | /* Load MSI-X vector */
  2391. FLAGS_LI; /* Load irq delay values */
  2392. if (rx_ring->lbq_len) {
  2393. cqicb->flags |= FLAGS_LL; /* Load lbq values */
  2394. tmp = (u64)rx_ring->lbq_base_dma;;
  2395. base_indirect_ptr = (__le64 *) rx_ring->lbq_base_indirect;
  2396. page_entries = 0;
  2397. do {
  2398. *base_indirect_ptr = cpu_to_le64(tmp);
  2399. tmp += DB_PAGE_SIZE;
  2400. base_indirect_ptr++;
  2401. page_entries++;
  2402. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2403. cqicb->lbq_addr =
  2404. cpu_to_le64(rx_ring->lbq_base_indirect_dma);
  2405. bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
  2406. (u16) rx_ring->lbq_buf_size;
  2407. cqicb->lbq_buf_size = cpu_to_le16(bq_len);
  2408. bq_len = (rx_ring->lbq_len == 65536) ? 0 :
  2409. (u16) rx_ring->lbq_len;
  2410. cqicb->lbq_len = cpu_to_le16(bq_len);
  2411. rx_ring->lbq_prod_idx = 0;
  2412. rx_ring->lbq_curr_idx = 0;
  2413. rx_ring->lbq_clean_idx = 0;
  2414. rx_ring->lbq_free_cnt = rx_ring->lbq_len;
  2415. }
  2416. if (rx_ring->sbq_len) {
  2417. cqicb->flags |= FLAGS_LS; /* Load sbq values */
  2418. tmp = (u64)rx_ring->sbq_base_dma;;
  2419. base_indirect_ptr = (__le64 *) rx_ring->sbq_base_indirect;
  2420. page_entries = 0;
  2421. do {
  2422. *base_indirect_ptr = cpu_to_le64(tmp);
  2423. tmp += DB_PAGE_SIZE;
  2424. base_indirect_ptr++;
  2425. page_entries++;
  2426. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
  2427. cqicb->sbq_addr =
  2428. cpu_to_le64(rx_ring->sbq_base_indirect_dma);
  2429. cqicb->sbq_buf_size =
  2430. cpu_to_le16((u16)(rx_ring->sbq_buf_size/2));
  2431. bq_len = (rx_ring->sbq_len == 65536) ? 0 :
  2432. (u16) rx_ring->sbq_len;
  2433. cqicb->sbq_len = cpu_to_le16(bq_len);
  2434. rx_ring->sbq_prod_idx = 0;
  2435. rx_ring->sbq_curr_idx = 0;
  2436. rx_ring->sbq_clean_idx = 0;
  2437. rx_ring->sbq_free_cnt = rx_ring->sbq_len;
  2438. }
  2439. switch (rx_ring->type) {
  2440. case TX_Q:
  2441. /* If there's only one interrupt, then we use
  2442. * worker threads to process the outbound
  2443. * completion handling rx_rings. We do this so
  2444. * they can be run on multiple CPUs. There is
  2445. * room to play with this more where we would only
  2446. * run in a worker if there are more than x number
  2447. * of outbound completions on the queue and more
  2448. * than one queue active. Some threshold that
  2449. * would indicate a benefit in spite of the cost
  2450. * of a context switch.
  2451. * If there's more than one interrupt, then the
  2452. * outbound completions are processed in the ISR.
  2453. */
  2454. if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
  2455. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
  2456. else {
  2457. /* With all debug warnings on we see a WARN_ON message
  2458. * when we free the skb in the interrupt context.
  2459. */
  2460. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
  2461. }
  2462. cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
  2463. cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
  2464. break;
  2465. case DEFAULT_Q:
  2466. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
  2467. cqicb->irq_delay = 0;
  2468. cqicb->pkt_delay = 0;
  2469. break;
  2470. case RX_Q:
  2471. /* Inbound completion handling rx_rings run in
  2472. * separate NAPI contexts.
  2473. */
  2474. netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
  2475. 64);
  2476. cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
  2477. cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
  2478. break;
  2479. default:
  2480. QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
  2481. rx_ring->type);
  2482. }
  2483. QPRINTK(qdev, IFUP, DEBUG, "Initializing rx work queue.\n");
  2484. err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
  2485. CFG_LCQ, rx_ring->cq_id);
  2486. if (err) {
  2487. QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
  2488. return err;
  2489. }
  2490. return err;
  2491. }
  2492. static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2493. {
  2494. struct wqicb *wqicb = (struct wqicb *)tx_ring;
  2495. void __iomem *doorbell_area =
  2496. qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
  2497. void *shadow_reg = qdev->tx_ring_shadow_reg_area +
  2498. (tx_ring->wq_id * sizeof(u64));
  2499. u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
  2500. (tx_ring->wq_id * sizeof(u64));
  2501. int err = 0;
  2502. /*
  2503. * Assign doorbell registers for this tx_ring.
  2504. */
  2505. /* TX PCI doorbell mem area for tx producer index */
  2506. tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
  2507. tx_ring->prod_idx = 0;
  2508. /* TX PCI doorbell mem area + 0x04 */
  2509. tx_ring->valid_db_reg = doorbell_area + 0x04;
  2510. /*
  2511. * Assign shadow registers for this tx_ring.
  2512. */
  2513. tx_ring->cnsmr_idx_sh_reg = shadow_reg;
  2514. tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
  2515. wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
  2516. wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
  2517. Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
  2518. wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
  2519. wqicb->rid = 0;
  2520. wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
  2521. wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
  2522. ql_init_tx_ring(qdev, tx_ring);
  2523. err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
  2524. (u16) tx_ring->wq_id);
  2525. if (err) {
  2526. QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
  2527. return err;
  2528. }
  2529. QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded WQICB.\n");
  2530. return err;
  2531. }
  2532. static void ql_disable_msix(struct ql_adapter *qdev)
  2533. {
  2534. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2535. pci_disable_msix(qdev->pdev);
  2536. clear_bit(QL_MSIX_ENABLED, &qdev->flags);
  2537. kfree(qdev->msi_x_entry);
  2538. qdev->msi_x_entry = NULL;
  2539. } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2540. pci_disable_msi(qdev->pdev);
  2541. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2542. }
  2543. }
  2544. static void ql_enable_msix(struct ql_adapter *qdev)
  2545. {
  2546. int i;
  2547. qdev->intr_count = 1;
  2548. /* Get the MSIX vectors. */
  2549. if (irq_type == MSIX_IRQ) {
  2550. /* Try to alloc space for the msix struct,
  2551. * if it fails then go to MSI/legacy.
  2552. */
  2553. qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
  2554. sizeof(struct msix_entry),
  2555. GFP_KERNEL);
  2556. if (!qdev->msi_x_entry) {
  2557. irq_type = MSI_IRQ;
  2558. goto msi;
  2559. }
  2560. for (i = 0; i < qdev->rx_ring_count; i++)
  2561. qdev->msi_x_entry[i].entry = i;
  2562. if (!pci_enable_msix
  2563. (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
  2564. set_bit(QL_MSIX_ENABLED, &qdev->flags);
  2565. qdev->intr_count = qdev->rx_ring_count;
  2566. QPRINTK(qdev, IFUP, DEBUG,
  2567. "MSI-X Enabled, got %d vectors.\n",
  2568. qdev->intr_count);
  2569. return;
  2570. } else {
  2571. kfree(qdev->msi_x_entry);
  2572. qdev->msi_x_entry = NULL;
  2573. QPRINTK(qdev, IFUP, WARNING,
  2574. "MSI-X Enable failed, trying MSI.\n");
  2575. irq_type = MSI_IRQ;
  2576. }
  2577. }
  2578. msi:
  2579. if (irq_type == MSI_IRQ) {
  2580. if (!pci_enable_msi(qdev->pdev)) {
  2581. set_bit(QL_MSI_ENABLED, &qdev->flags);
  2582. QPRINTK(qdev, IFUP, INFO,
  2583. "Running with MSI interrupts.\n");
  2584. return;
  2585. }
  2586. }
  2587. irq_type = LEG_IRQ;
  2588. QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
  2589. }
  2590. /*
  2591. * Here we build the intr_context structures based on
  2592. * our rx_ring count and intr vector count.
  2593. * The intr_context structure is used to hook each vector
  2594. * to possibly different handlers.
  2595. */
  2596. static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
  2597. {
  2598. int i = 0;
  2599. struct intr_context *intr_context = &qdev->intr_context[0];
  2600. ql_enable_msix(qdev);
  2601. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2602. /* Each rx_ring has it's
  2603. * own intr_context since we have separate
  2604. * vectors for each queue.
  2605. * This only true when MSI-X is enabled.
  2606. */
  2607. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2608. qdev->rx_ring[i].irq = i;
  2609. intr_context->intr = i;
  2610. intr_context->qdev = qdev;
  2611. /*
  2612. * We set up each vectors enable/disable/read bits so
  2613. * there's no bit/mask calculations in the critical path.
  2614. */
  2615. intr_context->intr_en_mask =
  2616. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2617. INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
  2618. | i;
  2619. intr_context->intr_dis_mask =
  2620. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2621. INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
  2622. INTR_EN_IHD | i;
  2623. intr_context->intr_read_mask =
  2624. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2625. INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
  2626. i;
  2627. if (i == 0) {
  2628. /*
  2629. * Default queue handles bcast/mcast plus
  2630. * async events. Needs buffers.
  2631. */
  2632. intr_context->handler = qlge_isr;
  2633. sprintf(intr_context->name, "%s-default-queue",
  2634. qdev->ndev->name);
  2635. } else if (i < qdev->rss_ring_first_cq_id) {
  2636. /*
  2637. * Outbound queue is for outbound completions only.
  2638. */
  2639. intr_context->handler = qlge_msix_tx_isr;
  2640. sprintf(intr_context->name, "%s-tx-%d",
  2641. qdev->ndev->name, i);
  2642. } else {
  2643. /*
  2644. * Inbound queues handle unicast frames only.
  2645. */
  2646. intr_context->handler = qlge_msix_rx_isr;
  2647. sprintf(intr_context->name, "%s-rx-%d",
  2648. qdev->ndev->name, i);
  2649. }
  2650. }
  2651. } else {
  2652. /*
  2653. * All rx_rings use the same intr_context since
  2654. * there is only one vector.
  2655. */
  2656. intr_context->intr = 0;
  2657. intr_context->qdev = qdev;
  2658. /*
  2659. * We set up each vectors enable/disable/read bits so
  2660. * there's no bit/mask calculations in the critical path.
  2661. */
  2662. intr_context->intr_en_mask =
  2663. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
  2664. intr_context->intr_dis_mask =
  2665. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2666. INTR_EN_TYPE_DISABLE;
  2667. intr_context->intr_read_mask =
  2668. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
  2669. /*
  2670. * Single interrupt means one handler for all rings.
  2671. */
  2672. intr_context->handler = qlge_isr;
  2673. sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
  2674. for (i = 0; i < qdev->rx_ring_count; i++)
  2675. qdev->rx_ring[i].irq = 0;
  2676. }
  2677. }
  2678. static void ql_free_irq(struct ql_adapter *qdev)
  2679. {
  2680. int i;
  2681. struct intr_context *intr_context = &qdev->intr_context[0];
  2682. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2683. if (intr_context->hooked) {
  2684. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2685. free_irq(qdev->msi_x_entry[i].vector,
  2686. &qdev->rx_ring[i]);
  2687. QPRINTK(qdev, IFDOWN, DEBUG,
  2688. "freeing msix interrupt %d.\n", i);
  2689. } else {
  2690. free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
  2691. QPRINTK(qdev, IFDOWN, DEBUG,
  2692. "freeing msi interrupt %d.\n", i);
  2693. }
  2694. }
  2695. }
  2696. ql_disable_msix(qdev);
  2697. }
  2698. static int ql_request_irq(struct ql_adapter *qdev)
  2699. {
  2700. int i;
  2701. int status = 0;
  2702. struct pci_dev *pdev = qdev->pdev;
  2703. struct intr_context *intr_context = &qdev->intr_context[0];
  2704. ql_resolve_queues_to_irqs(qdev);
  2705. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2706. atomic_set(&intr_context->irq_cnt, 0);
  2707. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2708. status = request_irq(qdev->msi_x_entry[i].vector,
  2709. intr_context->handler,
  2710. 0,
  2711. intr_context->name,
  2712. &qdev->rx_ring[i]);
  2713. if (status) {
  2714. QPRINTK(qdev, IFUP, ERR,
  2715. "Failed request for MSIX interrupt %d.\n",
  2716. i);
  2717. goto err_irq;
  2718. } else {
  2719. QPRINTK(qdev, IFUP, DEBUG,
  2720. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2721. i,
  2722. qdev->rx_ring[i].type ==
  2723. DEFAULT_Q ? "DEFAULT_Q" : "",
  2724. qdev->rx_ring[i].type ==
  2725. TX_Q ? "TX_Q" : "",
  2726. qdev->rx_ring[i].type ==
  2727. RX_Q ? "RX_Q" : "", intr_context->name);
  2728. }
  2729. } else {
  2730. QPRINTK(qdev, IFUP, DEBUG,
  2731. "trying msi or legacy interrupts.\n");
  2732. QPRINTK(qdev, IFUP, DEBUG,
  2733. "%s: irq = %d.\n", __func__, pdev->irq);
  2734. QPRINTK(qdev, IFUP, DEBUG,
  2735. "%s: context->name = %s.\n", __func__,
  2736. intr_context->name);
  2737. QPRINTK(qdev, IFUP, DEBUG,
  2738. "%s: dev_id = 0x%p.\n", __func__,
  2739. &qdev->rx_ring[0]);
  2740. status =
  2741. request_irq(pdev->irq, qlge_isr,
  2742. test_bit(QL_MSI_ENABLED,
  2743. &qdev->
  2744. flags) ? 0 : IRQF_SHARED,
  2745. intr_context->name, &qdev->rx_ring[0]);
  2746. if (status)
  2747. goto err_irq;
  2748. QPRINTK(qdev, IFUP, ERR,
  2749. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2750. i,
  2751. qdev->rx_ring[0].type ==
  2752. DEFAULT_Q ? "DEFAULT_Q" : "",
  2753. qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
  2754. qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
  2755. intr_context->name);
  2756. }
  2757. intr_context->hooked = 1;
  2758. }
  2759. return status;
  2760. err_irq:
  2761. QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
  2762. ql_free_irq(qdev);
  2763. return status;
  2764. }
  2765. static int ql_start_rss(struct ql_adapter *qdev)
  2766. {
  2767. struct ricb *ricb = &qdev->ricb;
  2768. int status = 0;
  2769. int i;
  2770. u8 *hash_id = (u8 *) ricb->hash_cq_id;
  2771. memset((void *)ricb, 0, sizeof(ricb));
  2772. ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
  2773. ricb->flags =
  2774. (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
  2775. RSS_RT6);
  2776. ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
  2777. /*
  2778. * Fill out the Indirection Table.
  2779. */
  2780. for (i = 0; i < 256; i++)
  2781. hash_id[i] = i & (qdev->rss_ring_count - 1);
  2782. /*
  2783. * Random values for the IPv6 and IPv4 Hash Keys.
  2784. */
  2785. get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
  2786. get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
  2787. QPRINTK(qdev, IFUP, DEBUG, "Initializing RSS.\n");
  2788. status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
  2789. if (status) {
  2790. QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
  2791. return status;
  2792. }
  2793. QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded RICB.\n");
  2794. return status;
  2795. }
  2796. static int ql_clear_routing_entries(struct ql_adapter *qdev)
  2797. {
  2798. int i, status = 0;
  2799. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  2800. if (status)
  2801. return status;
  2802. /* Clear all the entries in the routing table. */
  2803. for (i = 0; i < 16; i++) {
  2804. status = ql_set_routing_reg(qdev, i, 0, 0);
  2805. if (status) {
  2806. QPRINTK(qdev, IFUP, ERR,
  2807. "Failed to init routing register for CAM "
  2808. "packets.\n");
  2809. break;
  2810. }
  2811. }
  2812. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  2813. return status;
  2814. }
  2815. /* Initialize the frame-to-queue routing. */
  2816. static int ql_route_initialize(struct ql_adapter *qdev)
  2817. {
  2818. int status = 0;
  2819. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  2820. if (status)
  2821. return status;
  2822. /* Clear all the entries in the routing table. */
  2823. status = ql_clear_routing_entries(qdev);
  2824. if (status)
  2825. goto exit;
  2826. status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
  2827. if (status) {
  2828. QPRINTK(qdev, IFUP, ERR,
  2829. "Failed to init routing register for error packets.\n");
  2830. goto exit;
  2831. }
  2832. status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
  2833. if (status) {
  2834. QPRINTK(qdev, IFUP, ERR,
  2835. "Failed to init routing register for broadcast packets.\n");
  2836. goto exit;
  2837. }
  2838. /* If we have more than one inbound queue, then turn on RSS in the
  2839. * routing block.
  2840. */
  2841. if (qdev->rss_ring_count > 1) {
  2842. status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
  2843. RT_IDX_RSS_MATCH, 1);
  2844. if (status) {
  2845. QPRINTK(qdev, IFUP, ERR,
  2846. "Failed to init routing register for MATCH RSS packets.\n");
  2847. goto exit;
  2848. }
  2849. }
  2850. status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
  2851. RT_IDX_CAM_HIT, 1);
  2852. if (status)
  2853. QPRINTK(qdev, IFUP, ERR,
  2854. "Failed to init routing register for CAM packets.\n");
  2855. exit:
  2856. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  2857. return status;
  2858. }
  2859. int ql_cam_route_initialize(struct ql_adapter *qdev)
  2860. {
  2861. int status, set;
  2862. /* If check if the link is up and use to
  2863. * determine if we are setting or clearing
  2864. * the MAC address in the CAM.
  2865. */
  2866. set = ql_read32(qdev, STS);
  2867. set &= qdev->port_link_up;
  2868. status = ql_set_mac_addr(qdev, set);
  2869. if (status) {
  2870. QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
  2871. return status;
  2872. }
  2873. status = ql_route_initialize(qdev);
  2874. if (status)
  2875. QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
  2876. return status;
  2877. }
  2878. static int ql_adapter_initialize(struct ql_adapter *qdev)
  2879. {
  2880. u32 value, mask;
  2881. int i;
  2882. int status = 0;
  2883. /*
  2884. * Set up the System register to halt on errors.
  2885. */
  2886. value = SYS_EFE | SYS_FAE;
  2887. mask = value << 16;
  2888. ql_write32(qdev, SYS, mask | value);
  2889. /* Set the default queue, and VLAN behavior. */
  2890. value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
  2891. mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
  2892. ql_write32(qdev, NIC_RCV_CFG, (mask | value));
  2893. /* Set the MPI interrupt to enabled. */
  2894. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
  2895. /* Enable the function, set pagesize, enable error checking. */
  2896. value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
  2897. FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
  2898. /* Set/clear header splitting. */
  2899. mask = FSC_VM_PAGESIZE_MASK |
  2900. FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
  2901. ql_write32(qdev, FSC, mask | value);
  2902. ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
  2903. min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
  2904. /* Start up the rx queues. */
  2905. for (i = 0; i < qdev->rx_ring_count; i++) {
  2906. status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
  2907. if (status) {
  2908. QPRINTK(qdev, IFUP, ERR,
  2909. "Failed to start rx ring[%d].\n", i);
  2910. return status;
  2911. }
  2912. }
  2913. /* If there is more than one inbound completion queue
  2914. * then download a RICB to configure RSS.
  2915. */
  2916. if (qdev->rss_ring_count > 1) {
  2917. status = ql_start_rss(qdev);
  2918. if (status) {
  2919. QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
  2920. return status;
  2921. }
  2922. }
  2923. /* Start up the tx queues. */
  2924. for (i = 0; i < qdev->tx_ring_count; i++) {
  2925. status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
  2926. if (status) {
  2927. QPRINTK(qdev, IFUP, ERR,
  2928. "Failed to start tx ring[%d].\n", i);
  2929. return status;
  2930. }
  2931. }
  2932. /* Initialize the port and set the max framesize. */
  2933. status = qdev->nic_ops->port_initialize(qdev);
  2934. if (status) {
  2935. QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
  2936. return status;
  2937. }
  2938. /* Set up the MAC address and frame routing filter. */
  2939. status = ql_cam_route_initialize(qdev);
  2940. if (status) {
  2941. QPRINTK(qdev, IFUP, ERR,
  2942. "Failed to init CAM/Routing tables.\n");
  2943. return status;
  2944. }
  2945. /* Start NAPI for the RSS queues. */
  2946. for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
  2947. QPRINTK(qdev, IFUP, DEBUG, "Enabling NAPI for rx_ring[%d].\n",
  2948. i);
  2949. napi_enable(&qdev->rx_ring[i].napi);
  2950. }
  2951. return status;
  2952. }
  2953. /* Issue soft reset to chip. */
  2954. static int ql_adapter_reset(struct ql_adapter *qdev)
  2955. {
  2956. u32 value;
  2957. int status = 0;
  2958. unsigned long end_jiffies;
  2959. /* Clear all the entries in the routing table. */
  2960. status = ql_clear_routing_entries(qdev);
  2961. if (status) {
  2962. QPRINTK(qdev, IFUP, ERR, "Failed to clear routing bits.\n");
  2963. return status;
  2964. }
  2965. end_jiffies = jiffies +
  2966. max((unsigned long)1, usecs_to_jiffies(30));
  2967. ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
  2968. do {
  2969. value = ql_read32(qdev, RST_FO);
  2970. if ((value & RST_FO_FR) == 0)
  2971. break;
  2972. cpu_relax();
  2973. } while (time_before(jiffies, end_jiffies));
  2974. if (value & RST_FO_FR) {
  2975. QPRINTK(qdev, IFDOWN, ERR,
  2976. "ETIMEDOUT!!! errored out of resetting the chip!\n");
  2977. status = -ETIMEDOUT;
  2978. }
  2979. return status;
  2980. }
  2981. static void ql_display_dev_info(struct net_device *ndev)
  2982. {
  2983. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  2984. QPRINTK(qdev, PROBE, INFO,
  2985. "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
  2986. "XG Roll = %d, XG Rev = %d.\n",
  2987. qdev->func,
  2988. qdev->port,
  2989. qdev->chip_rev_id & 0x0000000f,
  2990. qdev->chip_rev_id >> 4 & 0x0000000f,
  2991. qdev->chip_rev_id >> 8 & 0x0000000f,
  2992. qdev->chip_rev_id >> 12 & 0x0000000f);
  2993. QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
  2994. }
  2995. static int ql_adapter_down(struct ql_adapter *qdev)
  2996. {
  2997. int i, status = 0;
  2998. struct rx_ring *rx_ring;
  2999. netif_carrier_off(qdev->ndev);
  3000. /* Don't kill the reset worker thread if we
  3001. * are in the process of recovery.
  3002. */
  3003. if (test_bit(QL_ADAPTER_UP, &qdev->flags))
  3004. cancel_delayed_work_sync(&qdev->asic_reset_work);
  3005. cancel_delayed_work_sync(&qdev->mpi_reset_work);
  3006. cancel_delayed_work_sync(&qdev->mpi_work);
  3007. cancel_delayed_work_sync(&qdev->mpi_idc_work);
  3008. cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
  3009. /* The default queue at index 0 is always processed in
  3010. * a workqueue.
  3011. */
  3012. cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
  3013. /* The rest of the rx_rings are processed in
  3014. * a workqueue only if it's a single interrupt
  3015. * environment (MSI/Legacy).
  3016. */
  3017. for (i = 1; i < qdev->rx_ring_count; i++) {
  3018. rx_ring = &qdev->rx_ring[i];
  3019. /* Only the RSS rings use NAPI on multi irq
  3020. * environment. Outbound completion processing
  3021. * is done in interrupt context.
  3022. */
  3023. if (i >= qdev->rss_ring_first_cq_id) {
  3024. napi_disable(&rx_ring->napi);
  3025. } else {
  3026. cancel_delayed_work_sync(&rx_ring->rx_work);
  3027. }
  3028. }
  3029. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  3030. ql_disable_interrupts(qdev);
  3031. ql_tx_ring_clean(qdev);
  3032. /* Call netif_napi_del() from common point.
  3033. */
  3034. for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++)
  3035. netif_napi_del(&qdev->rx_ring[i].napi);
  3036. ql_free_rx_buffers(qdev);
  3037. spin_lock(&qdev->hw_lock);
  3038. status = ql_adapter_reset(qdev);
  3039. if (status)
  3040. QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
  3041. qdev->func);
  3042. spin_unlock(&qdev->hw_lock);
  3043. return status;
  3044. }
  3045. static int ql_adapter_up(struct ql_adapter *qdev)
  3046. {
  3047. int err = 0;
  3048. err = ql_adapter_initialize(qdev);
  3049. if (err) {
  3050. QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
  3051. goto err_init;
  3052. }
  3053. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3054. ql_alloc_rx_buffers(qdev);
  3055. /* If the port is initialized and the
  3056. * link is up the turn on the carrier.
  3057. */
  3058. if ((ql_read32(qdev, STS) & qdev->port_init) &&
  3059. (ql_read32(qdev, STS) & qdev->port_link_up))
  3060. netif_carrier_on(qdev->ndev);
  3061. ql_enable_interrupts(qdev);
  3062. ql_enable_all_completion_interrupts(qdev);
  3063. netif_tx_start_all_queues(qdev->ndev);
  3064. return 0;
  3065. err_init:
  3066. ql_adapter_reset(qdev);
  3067. return err;
  3068. }
  3069. static void ql_release_adapter_resources(struct ql_adapter *qdev)
  3070. {
  3071. ql_free_mem_resources(qdev);
  3072. ql_free_irq(qdev);
  3073. }
  3074. static int ql_get_adapter_resources(struct ql_adapter *qdev)
  3075. {
  3076. int status = 0;
  3077. if (ql_alloc_mem_resources(qdev)) {
  3078. QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
  3079. return -ENOMEM;
  3080. }
  3081. status = ql_request_irq(qdev);
  3082. return status;
  3083. }
  3084. static int qlge_close(struct net_device *ndev)
  3085. {
  3086. struct ql_adapter *qdev = netdev_priv(ndev);
  3087. /*
  3088. * Wait for device to recover from a reset.
  3089. * (Rarely happens, but possible.)
  3090. */
  3091. while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
  3092. msleep(1);
  3093. ql_adapter_down(qdev);
  3094. ql_release_adapter_resources(qdev);
  3095. return 0;
  3096. }
  3097. static int ql_configure_rings(struct ql_adapter *qdev)
  3098. {
  3099. int i;
  3100. struct rx_ring *rx_ring;
  3101. struct tx_ring *tx_ring;
  3102. int cpu_cnt = num_online_cpus();
  3103. /*
  3104. * For each processor present we allocate one
  3105. * rx_ring for outbound completions, and one
  3106. * rx_ring for inbound completions. Plus there is
  3107. * always the one default queue. For the CPU
  3108. * counts we end up with the following rx_rings:
  3109. * rx_ring count =
  3110. * one default queue +
  3111. * (CPU count * outbound completion rx_ring) +
  3112. * (CPU count * inbound (RSS) completion rx_ring)
  3113. * To keep it simple we limit the total number of
  3114. * queues to < 32, so we truncate CPU to 8.
  3115. * This limitation can be removed when requested.
  3116. */
  3117. if (cpu_cnt > MAX_CPUS)
  3118. cpu_cnt = MAX_CPUS;
  3119. /*
  3120. * rx_ring[0] is always the default queue.
  3121. */
  3122. /* Allocate outbound completion ring for each CPU. */
  3123. qdev->tx_ring_count = cpu_cnt;
  3124. /* Allocate inbound completion (RSS) ring for each CPU. */
  3125. qdev->rss_ring_count = cpu_cnt;
  3126. /* cq_id for the first inbound ring handler. */
  3127. qdev->rss_ring_first_cq_id = cpu_cnt + 1;
  3128. /*
  3129. * qdev->rx_ring_count:
  3130. * Total number of rx_rings. This includes the one
  3131. * default queue, a number of outbound completion
  3132. * handler rx_rings, and the number of inbound
  3133. * completion handler rx_rings.
  3134. */
  3135. qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
  3136. for (i = 0; i < qdev->tx_ring_count; i++) {
  3137. tx_ring = &qdev->tx_ring[i];
  3138. memset((void *)tx_ring, 0, sizeof(tx_ring));
  3139. tx_ring->qdev = qdev;
  3140. tx_ring->wq_id = i;
  3141. tx_ring->wq_len = qdev->tx_ring_size;
  3142. tx_ring->wq_size =
  3143. tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
  3144. /*
  3145. * The completion queue ID for the tx rings start
  3146. * immediately after the default Q ID, which is zero.
  3147. */
  3148. tx_ring->cq_id = i + 1;
  3149. }
  3150. for (i = 0; i < qdev->rx_ring_count; i++) {
  3151. rx_ring = &qdev->rx_ring[i];
  3152. memset((void *)rx_ring, 0, sizeof(rx_ring));
  3153. rx_ring->qdev = qdev;
  3154. rx_ring->cq_id = i;
  3155. rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
  3156. if (i == 0) { /* Default queue at index 0. */
  3157. /*
  3158. * Default queue handles bcast/mcast plus
  3159. * async events. Needs buffers.
  3160. */
  3161. rx_ring->cq_len = qdev->rx_ring_size;
  3162. rx_ring->cq_size =
  3163. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3164. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3165. rx_ring->lbq_size =
  3166. rx_ring->lbq_len * sizeof(__le64);
  3167. rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
  3168. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3169. rx_ring->sbq_size =
  3170. rx_ring->sbq_len * sizeof(__le64);
  3171. rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
  3172. rx_ring->type = DEFAULT_Q;
  3173. } else if (i < qdev->rss_ring_first_cq_id) {
  3174. /*
  3175. * Outbound queue handles outbound completions only.
  3176. */
  3177. /* outbound cq is same size as tx_ring it services. */
  3178. rx_ring->cq_len = qdev->tx_ring_size;
  3179. rx_ring->cq_size =
  3180. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3181. rx_ring->lbq_len = 0;
  3182. rx_ring->lbq_size = 0;
  3183. rx_ring->lbq_buf_size = 0;
  3184. rx_ring->sbq_len = 0;
  3185. rx_ring->sbq_size = 0;
  3186. rx_ring->sbq_buf_size = 0;
  3187. rx_ring->type = TX_Q;
  3188. } else { /* Inbound completions (RSS) queues */
  3189. /*
  3190. * Inbound queues handle unicast frames only.
  3191. */
  3192. rx_ring->cq_len = qdev->rx_ring_size;
  3193. rx_ring->cq_size =
  3194. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3195. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3196. rx_ring->lbq_size =
  3197. rx_ring->lbq_len * sizeof(__le64);
  3198. rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
  3199. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3200. rx_ring->sbq_size =
  3201. rx_ring->sbq_len * sizeof(__le64);
  3202. rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
  3203. rx_ring->type = RX_Q;
  3204. }
  3205. }
  3206. return 0;
  3207. }
  3208. static int qlge_open(struct net_device *ndev)
  3209. {
  3210. int err = 0;
  3211. struct ql_adapter *qdev = netdev_priv(ndev);
  3212. err = ql_configure_rings(qdev);
  3213. if (err)
  3214. return err;
  3215. err = ql_get_adapter_resources(qdev);
  3216. if (err)
  3217. goto error_up;
  3218. err = ql_adapter_up(qdev);
  3219. if (err)
  3220. goto error_up;
  3221. return err;
  3222. error_up:
  3223. ql_release_adapter_resources(qdev);
  3224. return err;
  3225. }
  3226. static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
  3227. {
  3228. struct ql_adapter *qdev = netdev_priv(ndev);
  3229. if (ndev->mtu == 1500 && new_mtu == 9000) {
  3230. QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
  3231. queue_delayed_work(qdev->workqueue,
  3232. &qdev->mpi_port_cfg_work, 0);
  3233. } else if (ndev->mtu == 9000 && new_mtu == 1500) {
  3234. QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
  3235. } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
  3236. (ndev->mtu == 9000 && new_mtu == 9000)) {
  3237. return 0;
  3238. } else
  3239. return -EINVAL;
  3240. ndev->mtu = new_mtu;
  3241. return 0;
  3242. }
  3243. static struct net_device_stats *qlge_get_stats(struct net_device
  3244. *ndev)
  3245. {
  3246. struct ql_adapter *qdev = netdev_priv(ndev);
  3247. return &qdev->stats;
  3248. }
  3249. static void qlge_set_multicast_list(struct net_device *ndev)
  3250. {
  3251. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3252. struct dev_mc_list *mc_ptr;
  3253. int i, status;
  3254. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3255. if (status)
  3256. return;
  3257. spin_lock(&qdev->hw_lock);
  3258. /*
  3259. * Set or clear promiscuous mode if a
  3260. * transition is taking place.
  3261. */
  3262. if (ndev->flags & IFF_PROMISC) {
  3263. if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3264. if (ql_set_routing_reg
  3265. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
  3266. QPRINTK(qdev, HW, ERR,
  3267. "Failed to set promiscous mode.\n");
  3268. } else {
  3269. set_bit(QL_PROMISCUOUS, &qdev->flags);
  3270. }
  3271. }
  3272. } else {
  3273. if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3274. if (ql_set_routing_reg
  3275. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
  3276. QPRINTK(qdev, HW, ERR,
  3277. "Failed to clear promiscous mode.\n");
  3278. } else {
  3279. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3280. }
  3281. }
  3282. }
  3283. /*
  3284. * Set or clear all multicast mode if a
  3285. * transition is taking place.
  3286. */
  3287. if ((ndev->flags & IFF_ALLMULTI) ||
  3288. (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
  3289. if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
  3290. if (ql_set_routing_reg
  3291. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
  3292. QPRINTK(qdev, HW, ERR,
  3293. "Failed to set all-multi mode.\n");
  3294. } else {
  3295. set_bit(QL_ALLMULTI, &qdev->flags);
  3296. }
  3297. }
  3298. } else {
  3299. if (test_bit(QL_ALLMULTI, &qdev->flags)) {
  3300. if (ql_set_routing_reg
  3301. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
  3302. QPRINTK(qdev, HW, ERR,
  3303. "Failed to clear all-multi mode.\n");
  3304. } else {
  3305. clear_bit(QL_ALLMULTI, &qdev->flags);
  3306. }
  3307. }
  3308. }
  3309. if (ndev->mc_count) {
  3310. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3311. if (status)
  3312. goto exit;
  3313. for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
  3314. i++, mc_ptr = mc_ptr->next)
  3315. if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
  3316. MAC_ADDR_TYPE_MULTI_MAC, i)) {
  3317. QPRINTK(qdev, HW, ERR,
  3318. "Failed to loadmulticast address.\n");
  3319. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3320. goto exit;
  3321. }
  3322. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3323. if (ql_set_routing_reg
  3324. (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
  3325. QPRINTK(qdev, HW, ERR,
  3326. "Failed to set multicast match mode.\n");
  3327. } else {
  3328. set_bit(QL_ALLMULTI, &qdev->flags);
  3329. }
  3330. }
  3331. exit:
  3332. spin_unlock(&qdev->hw_lock);
  3333. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3334. }
  3335. static int qlge_set_mac_address(struct net_device *ndev, void *p)
  3336. {
  3337. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3338. struct sockaddr *addr = p;
  3339. int status;
  3340. if (netif_running(ndev))
  3341. return -EBUSY;
  3342. if (!is_valid_ether_addr(addr->sa_data))
  3343. return -EADDRNOTAVAIL;
  3344. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3345. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3346. if (status)
  3347. return status;
  3348. spin_lock(&qdev->hw_lock);
  3349. status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
  3350. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  3351. spin_unlock(&qdev->hw_lock);
  3352. if (status)
  3353. QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
  3354. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3355. return status;
  3356. }
  3357. static void qlge_tx_timeout(struct net_device *ndev)
  3358. {
  3359. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3360. ql_queue_asic_error(qdev);
  3361. }
  3362. static void ql_asic_reset_work(struct work_struct *work)
  3363. {
  3364. struct ql_adapter *qdev =
  3365. container_of(work, struct ql_adapter, asic_reset_work.work);
  3366. int status;
  3367. status = ql_adapter_down(qdev);
  3368. if (status)
  3369. goto error;
  3370. status = ql_adapter_up(qdev);
  3371. if (status)
  3372. goto error;
  3373. return;
  3374. error:
  3375. QPRINTK(qdev, IFUP, ALERT,
  3376. "Driver up/down cycle failed, closing device\n");
  3377. rtnl_lock();
  3378. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3379. dev_close(qdev->ndev);
  3380. rtnl_unlock();
  3381. }
  3382. static struct nic_operations qla8012_nic_ops = {
  3383. .get_flash = ql_get_8012_flash_params,
  3384. .port_initialize = ql_8012_port_initialize,
  3385. };
  3386. static struct nic_operations qla8000_nic_ops = {
  3387. .get_flash = ql_get_8000_flash_params,
  3388. .port_initialize = ql_8000_port_initialize,
  3389. };
  3390. /* Find the pcie function number for the other NIC
  3391. * on this chip. Since both NIC functions share a
  3392. * common firmware we have the lowest enabled function
  3393. * do any common work. Examples would be resetting
  3394. * after a fatal firmware error, or doing a firmware
  3395. * coredump.
  3396. */
  3397. static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
  3398. {
  3399. int status = 0;
  3400. u32 temp;
  3401. u32 nic_func1, nic_func2;
  3402. status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
  3403. &temp);
  3404. if (status)
  3405. return status;
  3406. nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
  3407. MPI_TEST_NIC_FUNC_MASK);
  3408. nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
  3409. MPI_TEST_NIC_FUNC_MASK);
  3410. if (qdev->func == nic_func1)
  3411. qdev->alt_func = nic_func2;
  3412. else if (qdev->func == nic_func2)
  3413. qdev->alt_func = nic_func1;
  3414. else
  3415. status = -EIO;
  3416. return status;
  3417. }
  3418. static int ql_get_board_info(struct ql_adapter *qdev)
  3419. {
  3420. int status;
  3421. qdev->func =
  3422. (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
  3423. if (qdev->func > 3)
  3424. return -EIO;
  3425. status = ql_get_alt_pcie_func(qdev);
  3426. if (status)
  3427. return status;
  3428. qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
  3429. if (qdev->port) {
  3430. qdev->xg_sem_mask = SEM_XGMAC1_MASK;
  3431. qdev->port_link_up = STS_PL1;
  3432. qdev->port_init = STS_PI1;
  3433. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
  3434. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
  3435. } else {
  3436. qdev->xg_sem_mask = SEM_XGMAC0_MASK;
  3437. qdev->port_link_up = STS_PL0;
  3438. qdev->port_init = STS_PI0;
  3439. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
  3440. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
  3441. }
  3442. qdev->chip_rev_id = ql_read32(qdev, REV_ID);
  3443. qdev->device_id = qdev->pdev->device;
  3444. if (qdev->device_id == QLGE_DEVICE_ID_8012)
  3445. qdev->nic_ops = &qla8012_nic_ops;
  3446. else if (qdev->device_id == QLGE_DEVICE_ID_8000)
  3447. qdev->nic_ops = &qla8000_nic_ops;
  3448. return status;
  3449. }
  3450. static void ql_release_all(struct pci_dev *pdev)
  3451. {
  3452. struct net_device *ndev = pci_get_drvdata(pdev);
  3453. struct ql_adapter *qdev = netdev_priv(ndev);
  3454. if (qdev->workqueue) {
  3455. destroy_workqueue(qdev->workqueue);
  3456. qdev->workqueue = NULL;
  3457. }
  3458. if (qdev->q_workqueue) {
  3459. destroy_workqueue(qdev->q_workqueue);
  3460. qdev->q_workqueue = NULL;
  3461. }
  3462. if (qdev->reg_base)
  3463. iounmap(qdev->reg_base);
  3464. if (qdev->doorbell_area)
  3465. iounmap(qdev->doorbell_area);
  3466. pci_release_regions(pdev);
  3467. pci_set_drvdata(pdev, NULL);
  3468. }
  3469. static int __devinit ql_init_device(struct pci_dev *pdev,
  3470. struct net_device *ndev, int cards_found)
  3471. {
  3472. struct ql_adapter *qdev = netdev_priv(ndev);
  3473. int pos, err = 0;
  3474. u16 val16;
  3475. memset((void *)qdev, 0, sizeof(qdev));
  3476. err = pci_enable_device(pdev);
  3477. if (err) {
  3478. dev_err(&pdev->dev, "PCI device enable failed.\n");
  3479. return err;
  3480. }
  3481. pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
  3482. if (pos <= 0) {
  3483. dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
  3484. "aborting.\n");
  3485. goto err_out;
  3486. } else {
  3487. pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
  3488. val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
  3489. val16 |= (PCI_EXP_DEVCTL_CERE |
  3490. PCI_EXP_DEVCTL_NFERE |
  3491. PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
  3492. pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
  3493. }
  3494. err = pci_request_regions(pdev, DRV_NAME);
  3495. if (err) {
  3496. dev_err(&pdev->dev, "PCI region request failed.\n");
  3497. goto err_out;
  3498. }
  3499. pci_set_master(pdev);
  3500. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  3501. set_bit(QL_DMA64, &qdev->flags);
  3502. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  3503. } else {
  3504. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  3505. if (!err)
  3506. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  3507. }
  3508. if (err) {
  3509. dev_err(&pdev->dev, "No usable DMA configuration.\n");
  3510. goto err_out;
  3511. }
  3512. pci_set_drvdata(pdev, ndev);
  3513. qdev->reg_base =
  3514. ioremap_nocache(pci_resource_start(pdev, 1),
  3515. pci_resource_len(pdev, 1));
  3516. if (!qdev->reg_base) {
  3517. dev_err(&pdev->dev, "Register mapping failed.\n");
  3518. err = -ENOMEM;
  3519. goto err_out;
  3520. }
  3521. qdev->doorbell_area_size = pci_resource_len(pdev, 3);
  3522. qdev->doorbell_area =
  3523. ioremap_nocache(pci_resource_start(pdev, 3),
  3524. pci_resource_len(pdev, 3));
  3525. if (!qdev->doorbell_area) {
  3526. dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
  3527. err = -ENOMEM;
  3528. goto err_out;
  3529. }
  3530. qdev->ndev = ndev;
  3531. qdev->pdev = pdev;
  3532. err = ql_get_board_info(qdev);
  3533. if (err) {
  3534. dev_err(&pdev->dev, "Register access failed.\n");
  3535. err = -EIO;
  3536. goto err_out;
  3537. }
  3538. qdev->msg_enable = netif_msg_init(debug, default_msg);
  3539. spin_lock_init(&qdev->hw_lock);
  3540. spin_lock_init(&qdev->stats_lock);
  3541. /* make sure the EEPROM is good */
  3542. err = qdev->nic_ops->get_flash(qdev);
  3543. if (err) {
  3544. dev_err(&pdev->dev, "Invalid FLASH.\n");
  3545. goto err_out;
  3546. }
  3547. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3548. /* Set up the default ring sizes. */
  3549. qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
  3550. qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
  3551. /* Set up the coalescing parameters. */
  3552. qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3553. qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3554. qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3555. qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3556. /*
  3557. * Set up the operating parameters.
  3558. */
  3559. qdev->rx_csum = 1;
  3560. qdev->q_workqueue = create_workqueue(ndev->name);
  3561. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  3562. INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
  3563. INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
  3564. INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
  3565. INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
  3566. INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
  3567. mutex_init(&qdev->mpi_mutex);
  3568. init_completion(&qdev->ide_completion);
  3569. if (!cards_found) {
  3570. dev_info(&pdev->dev, "%s\n", DRV_STRING);
  3571. dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
  3572. DRV_NAME, DRV_VERSION);
  3573. }
  3574. return 0;
  3575. err_out:
  3576. ql_release_all(pdev);
  3577. pci_disable_device(pdev);
  3578. return err;
  3579. }
  3580. static const struct net_device_ops qlge_netdev_ops = {
  3581. .ndo_open = qlge_open,
  3582. .ndo_stop = qlge_close,
  3583. .ndo_start_xmit = qlge_send,
  3584. .ndo_change_mtu = qlge_change_mtu,
  3585. .ndo_get_stats = qlge_get_stats,
  3586. .ndo_set_multicast_list = qlge_set_multicast_list,
  3587. .ndo_set_mac_address = qlge_set_mac_address,
  3588. .ndo_validate_addr = eth_validate_addr,
  3589. .ndo_tx_timeout = qlge_tx_timeout,
  3590. .ndo_vlan_rx_register = ql_vlan_rx_register,
  3591. .ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid,
  3592. .ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid,
  3593. };
  3594. static int __devinit qlge_probe(struct pci_dev *pdev,
  3595. const struct pci_device_id *pci_entry)
  3596. {
  3597. struct net_device *ndev = NULL;
  3598. struct ql_adapter *qdev = NULL;
  3599. static int cards_found = 0;
  3600. int err = 0;
  3601. ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
  3602. min(MAX_CPUS, (int)num_online_cpus()));
  3603. if (!ndev)
  3604. return -ENOMEM;
  3605. err = ql_init_device(pdev, ndev, cards_found);
  3606. if (err < 0) {
  3607. free_netdev(ndev);
  3608. return err;
  3609. }
  3610. qdev = netdev_priv(ndev);
  3611. SET_NETDEV_DEV(ndev, &pdev->dev);
  3612. ndev->features = (0
  3613. | NETIF_F_IP_CSUM
  3614. | NETIF_F_SG
  3615. | NETIF_F_TSO
  3616. | NETIF_F_TSO6
  3617. | NETIF_F_TSO_ECN
  3618. | NETIF_F_HW_VLAN_TX
  3619. | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
  3620. ndev->features |= NETIF_F_GRO;
  3621. if (test_bit(QL_DMA64, &qdev->flags))
  3622. ndev->features |= NETIF_F_HIGHDMA;
  3623. /*
  3624. * Set up net_device structure.
  3625. */
  3626. ndev->tx_queue_len = qdev->tx_ring_size;
  3627. ndev->irq = pdev->irq;
  3628. ndev->netdev_ops = &qlge_netdev_ops;
  3629. SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
  3630. ndev->watchdog_timeo = 10 * HZ;
  3631. err = register_netdev(ndev);
  3632. if (err) {
  3633. dev_err(&pdev->dev, "net device registration failed.\n");
  3634. ql_release_all(pdev);
  3635. pci_disable_device(pdev);
  3636. return err;
  3637. }
  3638. netif_carrier_off(ndev);
  3639. ql_display_dev_info(ndev);
  3640. cards_found++;
  3641. return 0;
  3642. }
  3643. static void __devexit qlge_remove(struct pci_dev *pdev)
  3644. {
  3645. struct net_device *ndev = pci_get_drvdata(pdev);
  3646. unregister_netdev(ndev);
  3647. ql_release_all(pdev);
  3648. pci_disable_device(pdev);
  3649. free_netdev(ndev);
  3650. }
  3651. /*
  3652. * This callback is called by the PCI subsystem whenever
  3653. * a PCI bus error is detected.
  3654. */
  3655. static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
  3656. enum pci_channel_state state)
  3657. {
  3658. struct net_device *ndev = pci_get_drvdata(pdev);
  3659. struct ql_adapter *qdev = netdev_priv(ndev);
  3660. if (netif_running(ndev))
  3661. ql_adapter_down(qdev);
  3662. pci_disable_device(pdev);
  3663. /* Request a slot reset. */
  3664. return PCI_ERS_RESULT_NEED_RESET;
  3665. }
  3666. /*
  3667. * This callback is called after the PCI buss has been reset.
  3668. * Basically, this tries to restart the card from scratch.
  3669. * This is a shortened version of the device probe/discovery code,
  3670. * it resembles the first-half of the () routine.
  3671. */
  3672. static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
  3673. {
  3674. struct net_device *ndev = pci_get_drvdata(pdev);
  3675. struct ql_adapter *qdev = netdev_priv(ndev);
  3676. if (pci_enable_device(pdev)) {
  3677. QPRINTK(qdev, IFUP, ERR,
  3678. "Cannot re-enable PCI device after reset.\n");
  3679. return PCI_ERS_RESULT_DISCONNECT;
  3680. }
  3681. pci_set_master(pdev);
  3682. netif_carrier_off(ndev);
  3683. ql_adapter_reset(qdev);
  3684. /* Make sure the EEPROM is good */
  3685. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3686. if (!is_valid_ether_addr(ndev->perm_addr)) {
  3687. QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
  3688. return PCI_ERS_RESULT_DISCONNECT;
  3689. }
  3690. return PCI_ERS_RESULT_RECOVERED;
  3691. }
  3692. static void qlge_io_resume(struct pci_dev *pdev)
  3693. {
  3694. struct net_device *ndev = pci_get_drvdata(pdev);
  3695. struct ql_adapter *qdev = netdev_priv(ndev);
  3696. pci_set_master(pdev);
  3697. if (netif_running(ndev)) {
  3698. if (ql_adapter_up(qdev)) {
  3699. QPRINTK(qdev, IFUP, ERR,
  3700. "Device initialization failed after reset.\n");
  3701. return;
  3702. }
  3703. }
  3704. netif_device_attach(ndev);
  3705. }
  3706. static struct pci_error_handlers qlge_err_handler = {
  3707. .error_detected = qlge_io_error_detected,
  3708. .slot_reset = qlge_io_slot_reset,
  3709. .resume = qlge_io_resume,
  3710. };
  3711. static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
  3712. {
  3713. struct net_device *ndev = pci_get_drvdata(pdev);
  3714. struct ql_adapter *qdev = netdev_priv(ndev);
  3715. int err;
  3716. netif_device_detach(ndev);
  3717. if (netif_running(ndev)) {
  3718. err = ql_adapter_down(qdev);
  3719. if (!err)
  3720. return err;
  3721. }
  3722. err = pci_save_state(pdev);
  3723. if (err)
  3724. return err;
  3725. pci_disable_device(pdev);
  3726. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3727. return 0;
  3728. }
  3729. #ifdef CONFIG_PM
  3730. static int qlge_resume(struct pci_dev *pdev)
  3731. {
  3732. struct net_device *ndev = pci_get_drvdata(pdev);
  3733. struct ql_adapter *qdev = netdev_priv(ndev);
  3734. int err;
  3735. pci_set_power_state(pdev, PCI_D0);
  3736. pci_restore_state(pdev);
  3737. err = pci_enable_device(pdev);
  3738. if (err) {
  3739. QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
  3740. return err;
  3741. }
  3742. pci_set_master(pdev);
  3743. pci_enable_wake(pdev, PCI_D3hot, 0);
  3744. pci_enable_wake(pdev, PCI_D3cold, 0);
  3745. if (netif_running(ndev)) {
  3746. err = ql_adapter_up(qdev);
  3747. if (err)
  3748. return err;
  3749. }
  3750. netif_device_attach(ndev);
  3751. return 0;
  3752. }
  3753. #endif /* CONFIG_PM */
  3754. static void qlge_shutdown(struct pci_dev *pdev)
  3755. {
  3756. qlge_suspend(pdev, PMSG_SUSPEND);
  3757. }
  3758. static struct pci_driver qlge_driver = {
  3759. .name = DRV_NAME,
  3760. .id_table = qlge_pci_tbl,
  3761. .probe = qlge_probe,
  3762. .remove = __devexit_p(qlge_remove),
  3763. #ifdef CONFIG_PM
  3764. .suspend = qlge_suspend,
  3765. .resume = qlge_resume,
  3766. #endif
  3767. .shutdown = qlge_shutdown,
  3768. .err_handler = &qlge_err_handler
  3769. };
  3770. static int __init qlge_init_module(void)
  3771. {
  3772. return pci_register_driver(&qlge_driver);
  3773. }
  3774. static void __exit qlge_exit(void)
  3775. {
  3776. pci_unregister_driver(&qlge_driver);
  3777. }
  3778. module_init(qlge_init_module);
  3779. module_exit(qlge_exit);