mtdpart.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739
  1. /*
  2. * Simple MTD partitioning layer
  3. *
  4. * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
  5. * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
  6. * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. */
  23. #include <linux/module.h>
  24. #include <linux/types.h>
  25. #include <linux/kernel.h>
  26. #include <linux/slab.h>
  27. #include <linux/list.h>
  28. #include <linux/kmod.h>
  29. #include <linux/mtd/mtd.h>
  30. #include <linux/mtd/partitions.h>
  31. #include <linux/err.h>
  32. /* Our partition linked list */
  33. static LIST_HEAD(mtd_partitions);
  34. static DEFINE_MUTEX(mtd_partitions_mutex);
  35. /* Our partition node structure */
  36. struct mtd_part {
  37. struct mtd_info mtd;
  38. struct mtd_info *master;
  39. uint64_t offset;
  40. struct list_head list;
  41. };
  42. /*
  43. * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
  44. * the pointer to that structure with this macro.
  45. */
  46. #define PART(x) ((struct mtd_part *)(x))
  47. /*
  48. * MTD methods which simply translate the effective address and pass through
  49. * to the _real_ device.
  50. */
  51. static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
  52. size_t *retlen, u_char *buf)
  53. {
  54. struct mtd_part *part = PART(mtd);
  55. struct mtd_ecc_stats stats;
  56. int res;
  57. stats = part->master->ecc_stats;
  58. if (from >= mtd->size)
  59. len = 0;
  60. else if (from + len > mtd->size)
  61. len = mtd->size - from;
  62. res = part->master->read(part->master, from + part->offset,
  63. len, retlen, buf);
  64. if (unlikely(res)) {
  65. if (res == -EUCLEAN)
  66. mtd->ecc_stats.corrected += part->master->ecc_stats.corrected - stats.corrected;
  67. if (res == -EBADMSG)
  68. mtd->ecc_stats.failed += part->master->ecc_stats.failed - stats.failed;
  69. }
  70. return res;
  71. }
  72. static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
  73. size_t *retlen, void **virt, resource_size_t *phys)
  74. {
  75. struct mtd_part *part = PART(mtd);
  76. if (from >= mtd->size)
  77. len = 0;
  78. else if (from + len > mtd->size)
  79. len = mtd->size - from;
  80. return part->master->point (part->master, from + part->offset,
  81. len, retlen, virt, phys);
  82. }
  83. static void part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
  84. {
  85. struct mtd_part *part = PART(mtd);
  86. part->master->unpoint(part->master, from + part->offset, len);
  87. }
  88. static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
  89. unsigned long len,
  90. unsigned long offset,
  91. unsigned long flags)
  92. {
  93. struct mtd_part *part = PART(mtd);
  94. offset += part->offset;
  95. return part->master->get_unmapped_area(part->master, len, offset,
  96. flags);
  97. }
  98. static int part_read_oob(struct mtd_info *mtd, loff_t from,
  99. struct mtd_oob_ops *ops)
  100. {
  101. struct mtd_part *part = PART(mtd);
  102. int res;
  103. if (from >= mtd->size)
  104. return -EINVAL;
  105. if (ops->datbuf && from + ops->len > mtd->size)
  106. return -EINVAL;
  107. res = part->master->read_oob(part->master, from + part->offset, ops);
  108. if (unlikely(res)) {
  109. if (res == -EUCLEAN)
  110. mtd->ecc_stats.corrected++;
  111. if (res == -EBADMSG)
  112. mtd->ecc_stats.failed++;
  113. }
  114. return res;
  115. }
  116. static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
  117. size_t len, size_t *retlen, u_char *buf)
  118. {
  119. struct mtd_part *part = PART(mtd);
  120. return part->master->read_user_prot_reg(part->master, from,
  121. len, retlen, buf);
  122. }
  123. static int part_get_user_prot_info(struct mtd_info *mtd,
  124. struct otp_info *buf, size_t len)
  125. {
  126. struct mtd_part *part = PART(mtd);
  127. return part->master->get_user_prot_info(part->master, buf, len);
  128. }
  129. static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
  130. size_t len, size_t *retlen, u_char *buf)
  131. {
  132. struct mtd_part *part = PART(mtd);
  133. return part->master->read_fact_prot_reg(part->master, from,
  134. len, retlen, buf);
  135. }
  136. static int part_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
  137. size_t len)
  138. {
  139. struct mtd_part *part = PART(mtd);
  140. return part->master->get_fact_prot_info(part->master, buf, len);
  141. }
  142. static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
  143. size_t *retlen, const u_char *buf)
  144. {
  145. struct mtd_part *part = PART(mtd);
  146. if (!(mtd->flags & MTD_WRITEABLE))
  147. return -EROFS;
  148. if (to >= mtd->size)
  149. len = 0;
  150. else if (to + len > mtd->size)
  151. len = mtd->size - to;
  152. return part->master->write(part->master, to + part->offset,
  153. len, retlen, buf);
  154. }
  155. static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
  156. size_t *retlen, const u_char *buf)
  157. {
  158. struct mtd_part *part = PART(mtd);
  159. if (!(mtd->flags & MTD_WRITEABLE))
  160. return -EROFS;
  161. if (to >= mtd->size)
  162. len = 0;
  163. else if (to + len > mtd->size)
  164. len = mtd->size - to;
  165. return part->master->panic_write(part->master, to + part->offset,
  166. len, retlen, buf);
  167. }
  168. static int part_write_oob(struct mtd_info *mtd, loff_t to,
  169. struct mtd_oob_ops *ops)
  170. {
  171. struct mtd_part *part = PART(mtd);
  172. if (!(mtd->flags & MTD_WRITEABLE))
  173. return -EROFS;
  174. if (to >= mtd->size)
  175. return -EINVAL;
  176. if (ops->datbuf && to + ops->len > mtd->size)
  177. return -EINVAL;
  178. return part->master->write_oob(part->master, to + part->offset, ops);
  179. }
  180. static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
  181. size_t len, size_t *retlen, u_char *buf)
  182. {
  183. struct mtd_part *part = PART(mtd);
  184. return part->master->write_user_prot_reg(part->master, from,
  185. len, retlen, buf);
  186. }
  187. static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
  188. size_t len)
  189. {
  190. struct mtd_part *part = PART(mtd);
  191. return part->master->lock_user_prot_reg(part->master, from, len);
  192. }
  193. static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
  194. unsigned long count, loff_t to, size_t *retlen)
  195. {
  196. struct mtd_part *part = PART(mtd);
  197. if (!(mtd->flags & MTD_WRITEABLE))
  198. return -EROFS;
  199. return part->master->writev(part->master, vecs, count,
  200. to + part->offset, retlen);
  201. }
  202. static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
  203. {
  204. struct mtd_part *part = PART(mtd);
  205. int ret;
  206. if (!(mtd->flags & MTD_WRITEABLE))
  207. return -EROFS;
  208. if (instr->addr >= mtd->size)
  209. return -EINVAL;
  210. instr->addr += part->offset;
  211. ret = part->master->erase(part->master, instr);
  212. if (ret) {
  213. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  214. instr->fail_addr -= part->offset;
  215. instr->addr -= part->offset;
  216. }
  217. return ret;
  218. }
  219. void mtd_erase_callback(struct erase_info *instr)
  220. {
  221. if (instr->mtd->erase == part_erase) {
  222. struct mtd_part *part = PART(instr->mtd);
  223. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  224. instr->fail_addr -= part->offset;
  225. instr->addr -= part->offset;
  226. }
  227. if (instr->callback)
  228. instr->callback(instr);
  229. }
  230. EXPORT_SYMBOL_GPL(mtd_erase_callback);
  231. static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  232. {
  233. struct mtd_part *part = PART(mtd);
  234. if ((len + ofs) > mtd->size)
  235. return -EINVAL;
  236. return part->master->lock(part->master, ofs + part->offset, len);
  237. }
  238. static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  239. {
  240. struct mtd_part *part = PART(mtd);
  241. if ((len + ofs) > mtd->size)
  242. return -EINVAL;
  243. return part->master->unlock(part->master, ofs + part->offset, len);
  244. }
  245. static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  246. {
  247. struct mtd_part *part = PART(mtd);
  248. if ((len + ofs) > mtd->size)
  249. return -EINVAL;
  250. return part->master->is_locked(part->master, ofs + part->offset, len);
  251. }
  252. static void part_sync(struct mtd_info *mtd)
  253. {
  254. struct mtd_part *part = PART(mtd);
  255. part->master->sync(part->master);
  256. }
  257. static int part_suspend(struct mtd_info *mtd)
  258. {
  259. struct mtd_part *part = PART(mtd);
  260. return part->master->suspend(part->master);
  261. }
  262. static void part_resume(struct mtd_info *mtd)
  263. {
  264. struct mtd_part *part = PART(mtd);
  265. part->master->resume(part->master);
  266. }
  267. static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
  268. {
  269. struct mtd_part *part = PART(mtd);
  270. if (ofs >= mtd->size)
  271. return -EINVAL;
  272. ofs += part->offset;
  273. return part->master->block_isbad(part->master, ofs);
  274. }
  275. static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
  276. {
  277. struct mtd_part *part = PART(mtd);
  278. int res;
  279. if (!(mtd->flags & MTD_WRITEABLE))
  280. return -EROFS;
  281. if (ofs >= mtd->size)
  282. return -EINVAL;
  283. ofs += part->offset;
  284. res = part->master->block_markbad(part->master, ofs);
  285. if (!res)
  286. mtd->ecc_stats.badblocks++;
  287. return res;
  288. }
  289. static inline void free_partition(struct mtd_part *p)
  290. {
  291. kfree(p->mtd.name);
  292. kfree(p);
  293. }
  294. /*
  295. * This function unregisters and destroy all slave MTD objects which are
  296. * attached to the given master MTD object.
  297. */
  298. int del_mtd_partitions(struct mtd_info *master)
  299. {
  300. struct mtd_part *slave, *next;
  301. int ret, err = 0;
  302. mutex_lock(&mtd_partitions_mutex);
  303. list_for_each_entry_safe(slave, next, &mtd_partitions, list)
  304. if (slave->master == master) {
  305. ret = del_mtd_device(&slave->mtd);
  306. if (ret < 0) {
  307. err = ret;
  308. continue;
  309. }
  310. list_del(&slave->list);
  311. free_partition(slave);
  312. }
  313. mutex_unlock(&mtd_partitions_mutex);
  314. return err;
  315. }
  316. EXPORT_SYMBOL(del_mtd_partitions);
  317. static struct mtd_part *allocate_partition(struct mtd_info *master,
  318. const struct mtd_partition *part, int partno,
  319. uint64_t cur_offset)
  320. {
  321. struct mtd_part *slave;
  322. char *name;
  323. /* allocate the partition structure */
  324. slave = kzalloc(sizeof(*slave), GFP_KERNEL);
  325. name = kstrdup(part->name, GFP_KERNEL);
  326. if (!name || !slave) {
  327. printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
  328. master->name);
  329. kfree(name);
  330. kfree(slave);
  331. return ERR_PTR(-ENOMEM);
  332. }
  333. /* set up the MTD object for this partition */
  334. slave->mtd.type = master->type;
  335. slave->mtd.flags = master->flags & ~part->mask_flags;
  336. slave->mtd.size = part->size;
  337. slave->mtd.writesize = master->writesize;
  338. slave->mtd.writebufsize = master->writebufsize;
  339. slave->mtd.oobsize = master->oobsize;
  340. slave->mtd.oobavail = master->oobavail;
  341. slave->mtd.subpage_sft = master->subpage_sft;
  342. slave->mtd.name = name;
  343. slave->mtd.owner = master->owner;
  344. slave->mtd.backing_dev_info = master->backing_dev_info;
  345. /* NOTE: we don't arrange MTDs as a tree; it'd be error-prone
  346. * to have the same data be in two different partitions.
  347. */
  348. slave->mtd.dev.parent = master->dev.parent;
  349. slave->mtd.read = part_read;
  350. slave->mtd.write = part_write;
  351. if (master->panic_write)
  352. slave->mtd.panic_write = part_panic_write;
  353. if (master->point && master->unpoint) {
  354. slave->mtd.point = part_point;
  355. slave->mtd.unpoint = part_unpoint;
  356. }
  357. if (master->get_unmapped_area)
  358. slave->mtd.get_unmapped_area = part_get_unmapped_area;
  359. if (master->read_oob)
  360. slave->mtd.read_oob = part_read_oob;
  361. if (master->write_oob)
  362. slave->mtd.write_oob = part_write_oob;
  363. if (master->read_user_prot_reg)
  364. slave->mtd.read_user_prot_reg = part_read_user_prot_reg;
  365. if (master->read_fact_prot_reg)
  366. slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg;
  367. if (master->write_user_prot_reg)
  368. slave->mtd.write_user_prot_reg = part_write_user_prot_reg;
  369. if (master->lock_user_prot_reg)
  370. slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg;
  371. if (master->get_user_prot_info)
  372. slave->mtd.get_user_prot_info = part_get_user_prot_info;
  373. if (master->get_fact_prot_info)
  374. slave->mtd.get_fact_prot_info = part_get_fact_prot_info;
  375. if (master->sync)
  376. slave->mtd.sync = part_sync;
  377. if (!partno && !master->dev.class && master->suspend && master->resume) {
  378. slave->mtd.suspend = part_suspend;
  379. slave->mtd.resume = part_resume;
  380. }
  381. if (master->writev)
  382. slave->mtd.writev = part_writev;
  383. if (master->lock)
  384. slave->mtd.lock = part_lock;
  385. if (master->unlock)
  386. slave->mtd.unlock = part_unlock;
  387. if (master->is_locked)
  388. slave->mtd.is_locked = part_is_locked;
  389. if (master->block_isbad)
  390. slave->mtd.block_isbad = part_block_isbad;
  391. if (master->block_markbad)
  392. slave->mtd.block_markbad = part_block_markbad;
  393. slave->mtd.erase = part_erase;
  394. slave->master = master;
  395. slave->offset = part->offset;
  396. if (slave->offset == MTDPART_OFS_APPEND)
  397. slave->offset = cur_offset;
  398. if (slave->offset == MTDPART_OFS_NXTBLK) {
  399. slave->offset = cur_offset;
  400. if (mtd_mod_by_eb(cur_offset, master) != 0) {
  401. /* Round up to next erasesize */
  402. slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
  403. printk(KERN_NOTICE "Moving partition %d: "
  404. "0x%012llx -> 0x%012llx\n", partno,
  405. (unsigned long long)cur_offset, (unsigned long long)slave->offset);
  406. }
  407. }
  408. if (slave->mtd.size == MTDPART_SIZ_FULL)
  409. slave->mtd.size = master->size - slave->offset;
  410. printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
  411. (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
  412. /* let's do some sanity checks */
  413. if (slave->offset >= master->size) {
  414. /* let's register it anyway to preserve ordering */
  415. slave->offset = 0;
  416. slave->mtd.size = 0;
  417. printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
  418. part->name);
  419. goto out_register;
  420. }
  421. if (slave->offset + slave->mtd.size > master->size) {
  422. slave->mtd.size = master->size - slave->offset;
  423. printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
  424. part->name, master->name, (unsigned long long)slave->mtd.size);
  425. }
  426. if (master->numeraseregions > 1) {
  427. /* Deal with variable erase size stuff */
  428. int i, max = master->numeraseregions;
  429. u64 end = slave->offset + slave->mtd.size;
  430. struct mtd_erase_region_info *regions = master->eraseregions;
  431. /* Find the first erase regions which is part of this
  432. * partition. */
  433. for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
  434. ;
  435. /* The loop searched for the region _behind_ the first one */
  436. if (i > 0)
  437. i--;
  438. /* Pick biggest erasesize */
  439. for (; i < max && regions[i].offset < end; i++) {
  440. if (slave->mtd.erasesize < regions[i].erasesize) {
  441. slave->mtd.erasesize = regions[i].erasesize;
  442. }
  443. }
  444. BUG_ON(slave->mtd.erasesize == 0);
  445. } else {
  446. /* Single erase size */
  447. slave->mtd.erasesize = master->erasesize;
  448. }
  449. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  450. mtd_mod_by_eb(slave->offset, &slave->mtd)) {
  451. /* Doesn't start on a boundary of major erase size */
  452. /* FIXME: Let it be writable if it is on a boundary of
  453. * _minor_ erase size though */
  454. slave->mtd.flags &= ~MTD_WRITEABLE;
  455. printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
  456. part->name);
  457. }
  458. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  459. mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
  460. slave->mtd.flags &= ~MTD_WRITEABLE;
  461. printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
  462. part->name);
  463. }
  464. slave->mtd.ecclayout = master->ecclayout;
  465. if (master->block_isbad) {
  466. uint64_t offs = 0;
  467. while (offs < slave->mtd.size) {
  468. if (master->block_isbad(master,
  469. offs + slave->offset))
  470. slave->mtd.ecc_stats.badblocks++;
  471. offs += slave->mtd.erasesize;
  472. }
  473. }
  474. out_register:
  475. return slave;
  476. }
  477. int mtd_add_partition(struct mtd_info *master, char *name,
  478. long long offset, long long length)
  479. {
  480. struct mtd_partition part;
  481. struct mtd_part *p, *new;
  482. uint64_t start, end;
  483. int ret = 0;
  484. /* the direct offset is expected */
  485. if (offset == MTDPART_OFS_APPEND ||
  486. offset == MTDPART_OFS_NXTBLK)
  487. return -EINVAL;
  488. if (length == MTDPART_SIZ_FULL)
  489. length = master->size - offset;
  490. if (length <= 0)
  491. return -EINVAL;
  492. part.name = name;
  493. part.size = length;
  494. part.offset = offset;
  495. part.mask_flags = 0;
  496. part.ecclayout = NULL;
  497. new = allocate_partition(master, &part, -1, offset);
  498. if (IS_ERR(new))
  499. return PTR_ERR(new);
  500. start = offset;
  501. end = offset + length;
  502. mutex_lock(&mtd_partitions_mutex);
  503. list_for_each_entry(p, &mtd_partitions, list)
  504. if (p->master == master) {
  505. if ((start >= p->offset) &&
  506. (start < (p->offset + p->mtd.size)))
  507. goto err_inv;
  508. if ((end >= p->offset) &&
  509. (end < (p->offset + p->mtd.size)))
  510. goto err_inv;
  511. }
  512. list_add(&new->list, &mtd_partitions);
  513. mutex_unlock(&mtd_partitions_mutex);
  514. add_mtd_device(&new->mtd);
  515. return ret;
  516. err_inv:
  517. mutex_unlock(&mtd_partitions_mutex);
  518. free_partition(new);
  519. return -EINVAL;
  520. }
  521. EXPORT_SYMBOL_GPL(mtd_add_partition);
  522. int mtd_del_partition(struct mtd_info *master, int partno)
  523. {
  524. struct mtd_part *slave, *next;
  525. int ret = -EINVAL;
  526. mutex_lock(&mtd_partitions_mutex);
  527. list_for_each_entry_safe(slave, next, &mtd_partitions, list)
  528. if ((slave->master == master) &&
  529. (slave->mtd.index == partno)) {
  530. ret = del_mtd_device(&slave->mtd);
  531. if (ret < 0)
  532. break;
  533. list_del(&slave->list);
  534. free_partition(slave);
  535. break;
  536. }
  537. mutex_unlock(&mtd_partitions_mutex);
  538. return ret;
  539. }
  540. EXPORT_SYMBOL_GPL(mtd_del_partition);
  541. /*
  542. * This function, given a master MTD object and a partition table, creates
  543. * and registers slave MTD objects which are bound to the master according to
  544. * the partition definitions.
  545. *
  546. * We don't register the master, or expect the caller to have done so,
  547. * for reasons of data integrity.
  548. */
  549. int add_mtd_partitions(struct mtd_info *master,
  550. const struct mtd_partition *parts,
  551. int nbparts)
  552. {
  553. struct mtd_part *slave;
  554. uint64_t cur_offset = 0;
  555. int i;
  556. printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
  557. for (i = 0; i < nbparts; i++) {
  558. slave = allocate_partition(master, parts + i, i, cur_offset);
  559. if (IS_ERR(slave))
  560. return PTR_ERR(slave);
  561. mutex_lock(&mtd_partitions_mutex);
  562. list_add(&slave->list, &mtd_partitions);
  563. mutex_unlock(&mtd_partitions_mutex);
  564. add_mtd_device(&slave->mtd);
  565. cur_offset = slave->offset + slave->mtd.size;
  566. }
  567. return 0;
  568. }
  569. EXPORT_SYMBOL(add_mtd_partitions);
  570. static DEFINE_SPINLOCK(part_parser_lock);
  571. static LIST_HEAD(part_parsers);
  572. static struct mtd_part_parser *get_partition_parser(const char *name)
  573. {
  574. struct mtd_part_parser *p, *ret = NULL;
  575. spin_lock(&part_parser_lock);
  576. list_for_each_entry(p, &part_parsers, list)
  577. if (!strcmp(p->name, name) && try_module_get(p->owner)) {
  578. ret = p;
  579. break;
  580. }
  581. spin_unlock(&part_parser_lock);
  582. return ret;
  583. }
  584. int register_mtd_parser(struct mtd_part_parser *p)
  585. {
  586. spin_lock(&part_parser_lock);
  587. list_add(&p->list, &part_parsers);
  588. spin_unlock(&part_parser_lock);
  589. return 0;
  590. }
  591. EXPORT_SYMBOL_GPL(register_mtd_parser);
  592. int deregister_mtd_parser(struct mtd_part_parser *p)
  593. {
  594. spin_lock(&part_parser_lock);
  595. list_del(&p->list);
  596. spin_unlock(&part_parser_lock);
  597. return 0;
  598. }
  599. EXPORT_SYMBOL_GPL(deregister_mtd_parser);
  600. int parse_mtd_partitions(struct mtd_info *master, const char **types,
  601. struct mtd_partition **pparts, unsigned long origin)
  602. {
  603. struct mtd_part_parser *parser;
  604. int ret = 0;
  605. for ( ; ret <= 0 && *types; types++) {
  606. parser = get_partition_parser(*types);
  607. if (!parser && !request_module("%s", *types))
  608. parser = get_partition_parser(*types);
  609. if (!parser) {
  610. printk(KERN_NOTICE "%s partition parsing not available\n",
  611. *types);
  612. continue;
  613. }
  614. ret = (*parser->parse_fn)(master, pparts, origin);
  615. if (ret > 0) {
  616. printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
  617. ret, parser->name, master->name);
  618. }
  619. put_partition_parser(parser);
  620. }
  621. return ret;
  622. }
  623. EXPORT_SYMBOL_GPL(parse_mtd_partitions);
  624. int mtd_is_partition(struct mtd_info *mtd)
  625. {
  626. struct mtd_part *part;
  627. int ispart = 0;
  628. mutex_lock(&mtd_partitions_mutex);
  629. list_for_each_entry(part, &mtd_partitions, list)
  630. if (&part->mtd == mtd) {
  631. ispart = 1;
  632. break;
  633. }
  634. mutex_unlock(&mtd_partitions_mutex);
  635. return ispart;
  636. }
  637. EXPORT_SYMBOL_GPL(mtd_is_partition);