wmi.c 60 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195
  1. /*
  2. * Copyright (c) 2005-2011 Atheros Communications Inc.
  3. * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for any
  6. * purpose with or without fee is hereby granted, provided that the above
  7. * copyright notice and this permission notice appear in all copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16. */
  17. #include <linux/skbuff.h>
  18. #include "core.h"
  19. #include "htc.h"
  20. #include "debug.h"
  21. #include "wmi.h"
  22. #include "mac.h"
  23. void ath10k_wmi_flush_tx(struct ath10k *ar)
  24. {
  25. int ret;
  26. lockdep_assert_held(&ar->conf_mutex);
  27. if (ar->state == ATH10K_STATE_WEDGED) {
  28. ath10k_warn("wmi flush skipped - device is wedged anyway\n");
  29. return;
  30. }
  31. ret = wait_event_timeout(ar->wmi.wq,
  32. atomic_read(&ar->wmi.pending_tx_count) == 0,
  33. 5*HZ);
  34. if (atomic_read(&ar->wmi.pending_tx_count) == 0)
  35. return;
  36. if (ret == 0)
  37. ret = -ETIMEDOUT;
  38. if (ret < 0)
  39. ath10k_warn("wmi flush failed (%d)\n", ret);
  40. }
  41. int ath10k_wmi_wait_for_service_ready(struct ath10k *ar)
  42. {
  43. int ret;
  44. ret = wait_for_completion_timeout(&ar->wmi.service_ready,
  45. WMI_SERVICE_READY_TIMEOUT_HZ);
  46. return ret;
  47. }
  48. int ath10k_wmi_wait_for_unified_ready(struct ath10k *ar)
  49. {
  50. int ret;
  51. ret = wait_for_completion_timeout(&ar->wmi.unified_ready,
  52. WMI_UNIFIED_READY_TIMEOUT_HZ);
  53. return ret;
  54. }
  55. static struct sk_buff *ath10k_wmi_alloc_skb(u32 len)
  56. {
  57. struct sk_buff *skb;
  58. u32 round_len = roundup(len, 4);
  59. skb = ath10k_htc_alloc_skb(WMI_SKB_HEADROOM + round_len);
  60. if (!skb)
  61. return NULL;
  62. skb_reserve(skb, WMI_SKB_HEADROOM);
  63. if (!IS_ALIGNED((unsigned long)skb->data, 4))
  64. ath10k_warn("Unaligned WMI skb\n");
  65. skb_put(skb, round_len);
  66. memset(skb->data, 0, round_len);
  67. return skb;
  68. }
  69. static void ath10k_wmi_htc_tx_complete(struct ath10k *ar, struct sk_buff *skb)
  70. {
  71. dev_kfree_skb(skb);
  72. if (atomic_sub_return(1, &ar->wmi.pending_tx_count) == 0)
  73. wake_up(&ar->wmi.wq);
  74. }
  75. /* WMI command API */
  76. static int ath10k_wmi_cmd_send(struct ath10k *ar, struct sk_buff *skb,
  77. enum wmi_cmd_id cmd_id)
  78. {
  79. struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(skb);
  80. struct wmi_cmd_hdr *cmd_hdr;
  81. int status;
  82. u32 cmd = 0;
  83. if (skb_push(skb, sizeof(struct wmi_cmd_hdr)) == NULL)
  84. return -ENOMEM;
  85. cmd |= SM(cmd_id, WMI_CMD_HDR_CMD_ID);
  86. cmd_hdr = (struct wmi_cmd_hdr *)skb->data;
  87. cmd_hdr->cmd_id = __cpu_to_le32(cmd);
  88. if (atomic_add_return(1, &ar->wmi.pending_tx_count) >
  89. WMI_MAX_PENDING_TX_COUNT) {
  90. /* avoid using up memory when FW hangs */
  91. dev_kfree_skb(skb);
  92. atomic_dec(&ar->wmi.pending_tx_count);
  93. return -EBUSY;
  94. }
  95. memset(skb_cb, 0, sizeof(*skb_cb));
  96. trace_ath10k_wmi_cmd(cmd_id, skb->data, skb->len);
  97. status = ath10k_htc_send(&ar->htc, ar->wmi.eid, skb);
  98. if (status) {
  99. dev_kfree_skb_any(skb);
  100. atomic_dec(&ar->wmi.pending_tx_count);
  101. return status;
  102. }
  103. return 0;
  104. }
  105. static int ath10k_wmi_event_scan(struct ath10k *ar, struct sk_buff *skb)
  106. {
  107. struct wmi_scan_event *event = (struct wmi_scan_event *)skb->data;
  108. enum wmi_scan_event_type event_type;
  109. enum wmi_scan_completion_reason reason;
  110. u32 freq;
  111. u32 req_id;
  112. u32 scan_id;
  113. u32 vdev_id;
  114. event_type = __le32_to_cpu(event->event_type);
  115. reason = __le32_to_cpu(event->reason);
  116. freq = __le32_to_cpu(event->channel_freq);
  117. req_id = __le32_to_cpu(event->scan_req_id);
  118. scan_id = __le32_to_cpu(event->scan_id);
  119. vdev_id = __le32_to_cpu(event->vdev_id);
  120. ath10k_dbg(ATH10K_DBG_WMI, "WMI_SCAN_EVENTID\n");
  121. ath10k_dbg(ATH10K_DBG_WMI,
  122. "scan event type %d reason %d freq %d req_id %d "
  123. "scan_id %d vdev_id %d\n",
  124. event_type, reason, freq, req_id, scan_id, vdev_id);
  125. spin_lock_bh(&ar->data_lock);
  126. switch (event_type) {
  127. case WMI_SCAN_EVENT_STARTED:
  128. ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_STARTED\n");
  129. if (ar->scan.in_progress && ar->scan.is_roc)
  130. ieee80211_ready_on_channel(ar->hw);
  131. complete(&ar->scan.started);
  132. break;
  133. case WMI_SCAN_EVENT_COMPLETED:
  134. ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_COMPLETED\n");
  135. switch (reason) {
  136. case WMI_SCAN_REASON_COMPLETED:
  137. ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_COMPLETED\n");
  138. break;
  139. case WMI_SCAN_REASON_CANCELLED:
  140. ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_CANCELED\n");
  141. break;
  142. case WMI_SCAN_REASON_PREEMPTED:
  143. ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_PREEMPTED\n");
  144. break;
  145. case WMI_SCAN_REASON_TIMEDOUT:
  146. ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_TIMEDOUT\n");
  147. break;
  148. default:
  149. break;
  150. }
  151. ar->scan_channel = NULL;
  152. if (!ar->scan.in_progress) {
  153. ath10k_warn("no scan requested, ignoring\n");
  154. break;
  155. }
  156. if (ar->scan.is_roc) {
  157. ath10k_offchan_tx_purge(ar);
  158. if (!ar->scan.aborting)
  159. ieee80211_remain_on_channel_expired(ar->hw);
  160. } else {
  161. ieee80211_scan_completed(ar->hw, ar->scan.aborting);
  162. }
  163. del_timer(&ar->scan.timeout);
  164. complete_all(&ar->scan.completed);
  165. ar->scan.in_progress = false;
  166. break;
  167. case WMI_SCAN_EVENT_BSS_CHANNEL:
  168. ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_BSS_CHANNEL\n");
  169. ar->scan_channel = NULL;
  170. break;
  171. case WMI_SCAN_EVENT_FOREIGN_CHANNEL:
  172. ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_FOREIGN_CHANNEL\n");
  173. ar->scan_channel = ieee80211_get_channel(ar->hw->wiphy, freq);
  174. if (ar->scan.in_progress && ar->scan.is_roc &&
  175. ar->scan.roc_freq == freq) {
  176. complete(&ar->scan.on_channel);
  177. }
  178. break;
  179. case WMI_SCAN_EVENT_DEQUEUED:
  180. ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_DEQUEUED\n");
  181. break;
  182. case WMI_SCAN_EVENT_PREEMPTED:
  183. ath10k_dbg(ATH10K_DBG_WMI, "WMI_SCAN_EVENT_PREEMPTED\n");
  184. break;
  185. case WMI_SCAN_EVENT_START_FAILED:
  186. ath10k_dbg(ATH10K_DBG_WMI, "WMI_SCAN_EVENT_START_FAILED\n");
  187. break;
  188. default:
  189. break;
  190. }
  191. spin_unlock_bh(&ar->data_lock);
  192. return 0;
  193. }
  194. static inline enum ieee80211_band phy_mode_to_band(u32 phy_mode)
  195. {
  196. enum ieee80211_band band;
  197. switch (phy_mode) {
  198. case MODE_11A:
  199. case MODE_11NA_HT20:
  200. case MODE_11NA_HT40:
  201. case MODE_11AC_VHT20:
  202. case MODE_11AC_VHT40:
  203. case MODE_11AC_VHT80:
  204. band = IEEE80211_BAND_5GHZ;
  205. break;
  206. case MODE_11G:
  207. case MODE_11B:
  208. case MODE_11GONLY:
  209. case MODE_11NG_HT20:
  210. case MODE_11NG_HT40:
  211. case MODE_11AC_VHT20_2G:
  212. case MODE_11AC_VHT40_2G:
  213. case MODE_11AC_VHT80_2G:
  214. default:
  215. band = IEEE80211_BAND_2GHZ;
  216. }
  217. return band;
  218. }
  219. static inline u8 get_rate_idx(u32 rate, enum ieee80211_band band)
  220. {
  221. u8 rate_idx = 0;
  222. /* rate in Kbps */
  223. switch (rate) {
  224. case 1000:
  225. rate_idx = 0;
  226. break;
  227. case 2000:
  228. rate_idx = 1;
  229. break;
  230. case 5500:
  231. rate_idx = 2;
  232. break;
  233. case 11000:
  234. rate_idx = 3;
  235. break;
  236. case 6000:
  237. rate_idx = 4;
  238. break;
  239. case 9000:
  240. rate_idx = 5;
  241. break;
  242. case 12000:
  243. rate_idx = 6;
  244. break;
  245. case 18000:
  246. rate_idx = 7;
  247. break;
  248. case 24000:
  249. rate_idx = 8;
  250. break;
  251. case 36000:
  252. rate_idx = 9;
  253. break;
  254. case 48000:
  255. rate_idx = 10;
  256. break;
  257. case 54000:
  258. rate_idx = 11;
  259. break;
  260. default:
  261. break;
  262. }
  263. if (band == IEEE80211_BAND_5GHZ) {
  264. if (rate_idx > 3)
  265. /* Omit CCK rates */
  266. rate_idx -= 4;
  267. else
  268. rate_idx = 0;
  269. }
  270. return rate_idx;
  271. }
  272. static int ath10k_wmi_event_mgmt_rx(struct ath10k *ar, struct sk_buff *skb)
  273. {
  274. struct wmi_mgmt_rx_event *event = (struct wmi_mgmt_rx_event *)skb->data;
  275. struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
  276. struct ieee80211_hdr *hdr;
  277. u32 rx_status;
  278. u32 channel;
  279. u32 phy_mode;
  280. u32 snr;
  281. u32 rate;
  282. u32 buf_len;
  283. u16 fc;
  284. channel = __le32_to_cpu(event->hdr.channel);
  285. buf_len = __le32_to_cpu(event->hdr.buf_len);
  286. rx_status = __le32_to_cpu(event->hdr.status);
  287. snr = __le32_to_cpu(event->hdr.snr);
  288. phy_mode = __le32_to_cpu(event->hdr.phy_mode);
  289. rate = __le32_to_cpu(event->hdr.rate);
  290. memset(status, 0, sizeof(*status));
  291. ath10k_dbg(ATH10K_DBG_MGMT,
  292. "event mgmt rx status %08x\n", rx_status);
  293. if (rx_status & WMI_RX_STATUS_ERR_DECRYPT) {
  294. dev_kfree_skb(skb);
  295. return 0;
  296. }
  297. if (rx_status & WMI_RX_STATUS_ERR_KEY_CACHE_MISS) {
  298. dev_kfree_skb(skb);
  299. return 0;
  300. }
  301. if (rx_status & WMI_RX_STATUS_ERR_CRC)
  302. status->flag |= RX_FLAG_FAILED_FCS_CRC;
  303. if (rx_status & WMI_RX_STATUS_ERR_MIC)
  304. status->flag |= RX_FLAG_MMIC_ERROR;
  305. status->band = phy_mode_to_band(phy_mode);
  306. status->freq = ieee80211_channel_to_frequency(channel, status->band);
  307. status->signal = snr + ATH10K_DEFAULT_NOISE_FLOOR;
  308. status->rate_idx = get_rate_idx(rate, status->band);
  309. skb_pull(skb, sizeof(event->hdr));
  310. hdr = (struct ieee80211_hdr *)skb->data;
  311. fc = le16_to_cpu(hdr->frame_control);
  312. if (fc & IEEE80211_FCTL_PROTECTED) {
  313. status->flag |= RX_FLAG_DECRYPTED | RX_FLAG_IV_STRIPPED |
  314. RX_FLAG_MMIC_STRIPPED;
  315. hdr->frame_control = __cpu_to_le16(fc &
  316. ~IEEE80211_FCTL_PROTECTED);
  317. }
  318. ath10k_dbg(ATH10K_DBG_MGMT,
  319. "event mgmt rx skb %p len %d ftype %02x stype %02x\n",
  320. skb, skb->len,
  321. fc & IEEE80211_FCTL_FTYPE, fc & IEEE80211_FCTL_STYPE);
  322. ath10k_dbg(ATH10K_DBG_MGMT,
  323. "event mgmt rx freq %d band %d snr %d, rate_idx %d\n",
  324. status->freq, status->band, status->signal,
  325. status->rate_idx);
  326. /*
  327. * packets from HTC come aligned to 4byte boundaries
  328. * because they can originally come in along with a trailer
  329. */
  330. skb_trim(skb, buf_len);
  331. ieee80211_rx(ar->hw, skb);
  332. return 0;
  333. }
  334. static int freq_to_idx(struct ath10k *ar, int freq)
  335. {
  336. struct ieee80211_supported_band *sband;
  337. int band, ch, idx = 0;
  338. for (band = IEEE80211_BAND_2GHZ; band < IEEE80211_NUM_BANDS; band++) {
  339. sband = ar->hw->wiphy->bands[band];
  340. if (!sband)
  341. continue;
  342. for (ch = 0; ch < sband->n_channels; ch++, idx++)
  343. if (sband->channels[ch].center_freq == freq)
  344. goto exit;
  345. }
  346. exit:
  347. return idx;
  348. }
  349. static void ath10k_wmi_event_chan_info(struct ath10k *ar, struct sk_buff *skb)
  350. {
  351. struct wmi_chan_info_event *ev;
  352. struct survey_info *survey;
  353. u32 err_code, freq, cmd_flags, noise_floor, rx_clear_count, cycle_count;
  354. int idx;
  355. ev = (struct wmi_chan_info_event *)skb->data;
  356. err_code = __le32_to_cpu(ev->err_code);
  357. freq = __le32_to_cpu(ev->freq);
  358. cmd_flags = __le32_to_cpu(ev->cmd_flags);
  359. noise_floor = __le32_to_cpu(ev->noise_floor);
  360. rx_clear_count = __le32_to_cpu(ev->rx_clear_count);
  361. cycle_count = __le32_to_cpu(ev->cycle_count);
  362. ath10k_dbg(ATH10K_DBG_WMI,
  363. "chan info err_code %d freq %d cmd_flags %d noise_floor %d rx_clear_count %d cycle_count %d\n",
  364. err_code, freq, cmd_flags, noise_floor, rx_clear_count,
  365. cycle_count);
  366. spin_lock_bh(&ar->data_lock);
  367. if (!ar->scan.in_progress) {
  368. ath10k_warn("chan info event without a scan request?\n");
  369. goto exit;
  370. }
  371. idx = freq_to_idx(ar, freq);
  372. if (idx >= ARRAY_SIZE(ar->survey)) {
  373. ath10k_warn("chan info: invalid frequency %d (idx %d out of bounds)\n",
  374. freq, idx);
  375. goto exit;
  376. }
  377. if (cmd_flags & WMI_CHAN_INFO_FLAG_COMPLETE) {
  378. /* During scanning chan info is reported twice for each
  379. * visited channel. The reported cycle count is global
  380. * and per-channel cycle count must be calculated */
  381. cycle_count -= ar->survey_last_cycle_count;
  382. rx_clear_count -= ar->survey_last_rx_clear_count;
  383. survey = &ar->survey[idx];
  384. survey->channel_time = WMI_CHAN_INFO_MSEC(cycle_count);
  385. survey->channel_time_rx = WMI_CHAN_INFO_MSEC(rx_clear_count);
  386. survey->noise = noise_floor;
  387. survey->filled = SURVEY_INFO_CHANNEL_TIME |
  388. SURVEY_INFO_CHANNEL_TIME_RX |
  389. SURVEY_INFO_NOISE_DBM;
  390. }
  391. ar->survey_last_rx_clear_count = rx_clear_count;
  392. ar->survey_last_cycle_count = cycle_count;
  393. exit:
  394. spin_unlock_bh(&ar->data_lock);
  395. }
  396. static void ath10k_wmi_event_echo(struct ath10k *ar, struct sk_buff *skb)
  397. {
  398. ath10k_dbg(ATH10K_DBG_WMI, "WMI_ECHO_EVENTID\n");
  399. }
  400. static void ath10k_wmi_event_debug_mesg(struct ath10k *ar, struct sk_buff *skb)
  401. {
  402. ath10k_dbg(ATH10K_DBG_WMI, "WMI_DEBUG_MESG_EVENTID\n");
  403. }
  404. static void ath10k_wmi_event_update_stats(struct ath10k *ar,
  405. struct sk_buff *skb)
  406. {
  407. struct wmi_stats_event *ev = (struct wmi_stats_event *)skb->data;
  408. ath10k_dbg(ATH10K_DBG_WMI, "WMI_UPDATE_STATS_EVENTID\n");
  409. ath10k_debug_read_target_stats(ar, ev);
  410. }
  411. static void ath10k_wmi_event_vdev_start_resp(struct ath10k *ar,
  412. struct sk_buff *skb)
  413. {
  414. struct wmi_vdev_start_response_event *ev;
  415. ath10k_dbg(ATH10K_DBG_WMI, "WMI_VDEV_START_RESP_EVENTID\n");
  416. ev = (struct wmi_vdev_start_response_event *)skb->data;
  417. if (WARN_ON(__le32_to_cpu(ev->status)))
  418. return;
  419. complete(&ar->vdev_setup_done);
  420. }
  421. static void ath10k_wmi_event_vdev_stopped(struct ath10k *ar,
  422. struct sk_buff *skb)
  423. {
  424. ath10k_dbg(ATH10K_DBG_WMI, "WMI_VDEV_STOPPED_EVENTID\n");
  425. complete(&ar->vdev_setup_done);
  426. }
  427. static void ath10k_wmi_event_peer_sta_kickout(struct ath10k *ar,
  428. struct sk_buff *skb)
  429. {
  430. ath10k_dbg(ATH10K_DBG_WMI, "WMI_PEER_STA_KICKOUT_EVENTID\n");
  431. }
  432. /*
  433. * FIXME
  434. *
  435. * We don't report to mac80211 sleep state of connected
  436. * stations. Due to this mac80211 can't fill in TIM IE
  437. * correctly.
  438. *
  439. * I know of no way of getting nullfunc frames that contain
  440. * sleep transition from connected stations - these do not
  441. * seem to be sent from the target to the host. There also
  442. * doesn't seem to be a dedicated event for that. So the
  443. * only way left to do this would be to read tim_bitmap
  444. * during SWBA.
  445. *
  446. * We could probably try using tim_bitmap from SWBA to tell
  447. * mac80211 which stations are asleep and which are not. The
  448. * problem here is calling mac80211 functions so many times
  449. * could take too long and make us miss the time to submit
  450. * the beacon to the target.
  451. *
  452. * So as a workaround we try to extend the TIM IE if there
  453. * is unicast buffered for stations with aid > 7 and fill it
  454. * in ourselves.
  455. */
  456. static void ath10k_wmi_update_tim(struct ath10k *ar,
  457. struct ath10k_vif *arvif,
  458. struct sk_buff *bcn,
  459. struct wmi_bcn_info *bcn_info)
  460. {
  461. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)bcn->data;
  462. struct ieee80211_tim_ie *tim;
  463. u8 *ies, *ie;
  464. u8 ie_len, pvm_len;
  465. /* if next SWBA has no tim_changed the tim_bitmap is garbage.
  466. * we must copy the bitmap upon change and reuse it later */
  467. if (__le32_to_cpu(bcn_info->tim_info.tim_changed)) {
  468. int i;
  469. BUILD_BUG_ON(sizeof(arvif->u.ap.tim_bitmap) !=
  470. sizeof(bcn_info->tim_info.tim_bitmap));
  471. for (i = 0; i < sizeof(arvif->u.ap.tim_bitmap); i++) {
  472. __le32 t = bcn_info->tim_info.tim_bitmap[i / 4];
  473. u32 v = __le32_to_cpu(t);
  474. arvif->u.ap.tim_bitmap[i] = (v >> ((i % 4) * 8)) & 0xFF;
  475. }
  476. /* FW reports either length 0 or 16
  477. * so we calculate this on our own */
  478. arvif->u.ap.tim_len = 0;
  479. for (i = 0; i < sizeof(arvif->u.ap.tim_bitmap); i++)
  480. if (arvif->u.ap.tim_bitmap[i])
  481. arvif->u.ap.tim_len = i;
  482. arvif->u.ap.tim_len++;
  483. }
  484. ies = bcn->data;
  485. ies += ieee80211_hdrlen(hdr->frame_control);
  486. ies += 12; /* fixed parameters */
  487. ie = (u8 *)cfg80211_find_ie(WLAN_EID_TIM, ies,
  488. (u8 *)skb_tail_pointer(bcn) - ies);
  489. if (!ie) {
  490. if (arvif->vdev_type != WMI_VDEV_TYPE_IBSS)
  491. ath10k_warn("no tim ie found;\n");
  492. return;
  493. }
  494. tim = (void *)ie + 2;
  495. ie_len = ie[1];
  496. pvm_len = ie_len - 3; /* exclude dtim count, dtim period, bmap ctl */
  497. if (pvm_len < arvif->u.ap.tim_len) {
  498. int expand_size = sizeof(arvif->u.ap.tim_bitmap) - pvm_len;
  499. int move_size = skb_tail_pointer(bcn) - (ie + 2 + ie_len);
  500. void *next_ie = ie + 2 + ie_len;
  501. if (skb_put(bcn, expand_size)) {
  502. memmove(next_ie + expand_size, next_ie, move_size);
  503. ie[1] += expand_size;
  504. ie_len += expand_size;
  505. pvm_len += expand_size;
  506. } else {
  507. ath10k_warn("tim expansion failed\n");
  508. }
  509. }
  510. if (pvm_len > sizeof(arvif->u.ap.tim_bitmap)) {
  511. ath10k_warn("tim pvm length is too great (%d)\n", pvm_len);
  512. return;
  513. }
  514. tim->bitmap_ctrl = !!__le32_to_cpu(bcn_info->tim_info.tim_mcast);
  515. memcpy(tim->virtual_map, arvif->u.ap.tim_bitmap, pvm_len);
  516. ath10k_dbg(ATH10K_DBG_MGMT, "dtim %d/%d mcast %d pvmlen %d\n",
  517. tim->dtim_count, tim->dtim_period,
  518. tim->bitmap_ctrl, pvm_len);
  519. }
  520. static void ath10k_p2p_fill_noa_ie(u8 *data, u32 len,
  521. struct wmi_p2p_noa_info *noa)
  522. {
  523. struct ieee80211_p2p_noa_attr *noa_attr;
  524. u8 ctwindow_oppps = noa->ctwindow_oppps;
  525. u8 ctwindow = ctwindow_oppps >> WMI_P2P_OPPPS_CTWINDOW_OFFSET;
  526. bool oppps = !!(ctwindow_oppps & WMI_P2P_OPPPS_ENABLE_BIT);
  527. __le16 *noa_attr_len;
  528. u16 attr_len;
  529. u8 noa_descriptors = noa->num_descriptors;
  530. int i;
  531. /* P2P IE */
  532. data[0] = WLAN_EID_VENDOR_SPECIFIC;
  533. data[1] = len - 2;
  534. data[2] = (WLAN_OUI_WFA >> 16) & 0xff;
  535. data[3] = (WLAN_OUI_WFA >> 8) & 0xff;
  536. data[4] = (WLAN_OUI_WFA >> 0) & 0xff;
  537. data[5] = WLAN_OUI_TYPE_WFA_P2P;
  538. /* NOA ATTR */
  539. data[6] = IEEE80211_P2P_ATTR_ABSENCE_NOTICE;
  540. noa_attr_len = (__le16 *)&data[7]; /* 2 bytes */
  541. noa_attr = (struct ieee80211_p2p_noa_attr *)&data[9];
  542. noa_attr->index = noa->index;
  543. noa_attr->oppps_ctwindow = ctwindow;
  544. if (oppps)
  545. noa_attr->oppps_ctwindow |= IEEE80211_P2P_OPPPS_ENABLE_BIT;
  546. for (i = 0; i < noa_descriptors; i++) {
  547. noa_attr->desc[i].count =
  548. __le32_to_cpu(noa->descriptors[i].type_count);
  549. noa_attr->desc[i].duration = noa->descriptors[i].duration;
  550. noa_attr->desc[i].interval = noa->descriptors[i].interval;
  551. noa_attr->desc[i].start_time = noa->descriptors[i].start_time;
  552. }
  553. attr_len = 2; /* index + oppps_ctwindow */
  554. attr_len += noa_descriptors * sizeof(struct ieee80211_p2p_noa_desc);
  555. *noa_attr_len = __cpu_to_le16(attr_len);
  556. }
  557. static u32 ath10k_p2p_calc_noa_ie_len(struct wmi_p2p_noa_info *noa)
  558. {
  559. u32 len = 0;
  560. u8 noa_descriptors = noa->num_descriptors;
  561. u8 opp_ps_info = noa->ctwindow_oppps;
  562. bool opps_enabled = !!(opp_ps_info & WMI_P2P_OPPPS_ENABLE_BIT);
  563. if (!noa_descriptors && !opps_enabled)
  564. return len;
  565. len += 1 + 1 + 4; /* EID + len + OUI */
  566. len += 1 + 2; /* noa attr + attr len */
  567. len += 1 + 1; /* index + oppps_ctwindow */
  568. len += noa_descriptors * sizeof(struct ieee80211_p2p_noa_desc);
  569. return len;
  570. }
  571. static void ath10k_wmi_update_noa(struct ath10k *ar, struct ath10k_vif *arvif,
  572. struct sk_buff *bcn,
  573. struct wmi_bcn_info *bcn_info)
  574. {
  575. struct wmi_p2p_noa_info *noa = &bcn_info->p2p_noa_info;
  576. u8 *new_data, *old_data = arvif->u.ap.noa_data;
  577. u32 new_len;
  578. if (arvif->vdev_subtype != WMI_VDEV_SUBTYPE_P2P_GO)
  579. return;
  580. ath10k_dbg(ATH10K_DBG_MGMT, "noa changed: %d\n", noa->changed);
  581. if (noa->changed & WMI_P2P_NOA_CHANGED_BIT) {
  582. new_len = ath10k_p2p_calc_noa_ie_len(noa);
  583. if (!new_len)
  584. goto cleanup;
  585. new_data = kmalloc(new_len, GFP_ATOMIC);
  586. if (!new_data)
  587. goto cleanup;
  588. ath10k_p2p_fill_noa_ie(new_data, new_len, noa);
  589. spin_lock_bh(&ar->data_lock);
  590. arvif->u.ap.noa_data = new_data;
  591. arvif->u.ap.noa_len = new_len;
  592. spin_unlock_bh(&ar->data_lock);
  593. kfree(old_data);
  594. }
  595. if (arvif->u.ap.noa_data)
  596. if (!pskb_expand_head(bcn, 0, arvif->u.ap.noa_len, GFP_ATOMIC))
  597. memcpy(skb_put(bcn, arvif->u.ap.noa_len),
  598. arvif->u.ap.noa_data,
  599. arvif->u.ap.noa_len);
  600. return;
  601. cleanup:
  602. spin_lock_bh(&ar->data_lock);
  603. arvif->u.ap.noa_data = NULL;
  604. arvif->u.ap.noa_len = 0;
  605. spin_unlock_bh(&ar->data_lock);
  606. kfree(old_data);
  607. }
  608. static void ath10k_wmi_event_host_swba(struct ath10k *ar, struct sk_buff *skb)
  609. {
  610. struct wmi_host_swba_event *ev;
  611. u32 map;
  612. int i = -1;
  613. struct wmi_bcn_info *bcn_info;
  614. struct ath10k_vif *arvif;
  615. struct wmi_bcn_tx_arg arg;
  616. struct sk_buff *bcn;
  617. int vdev_id = 0;
  618. int ret;
  619. ath10k_dbg(ATH10K_DBG_MGMT, "WMI_HOST_SWBA_EVENTID\n");
  620. ev = (struct wmi_host_swba_event *)skb->data;
  621. map = __le32_to_cpu(ev->vdev_map);
  622. ath10k_dbg(ATH10K_DBG_MGMT, "host swba:\n"
  623. "-vdev map 0x%x\n",
  624. ev->vdev_map);
  625. for (; map; map >>= 1, vdev_id++) {
  626. if (!(map & 0x1))
  627. continue;
  628. i++;
  629. if (i >= WMI_MAX_AP_VDEV) {
  630. ath10k_warn("swba has corrupted vdev map\n");
  631. break;
  632. }
  633. bcn_info = &ev->bcn_info[i];
  634. ath10k_dbg(ATH10K_DBG_MGMT,
  635. "-bcn_info[%d]:\n"
  636. "--tim_len %d\n"
  637. "--tim_mcast %d\n"
  638. "--tim_changed %d\n"
  639. "--tim_num_ps_pending %d\n"
  640. "--tim_bitmap 0x%08x%08x%08x%08x\n",
  641. i,
  642. __le32_to_cpu(bcn_info->tim_info.tim_len),
  643. __le32_to_cpu(bcn_info->tim_info.tim_mcast),
  644. __le32_to_cpu(bcn_info->tim_info.tim_changed),
  645. __le32_to_cpu(bcn_info->tim_info.tim_num_ps_pending),
  646. __le32_to_cpu(bcn_info->tim_info.tim_bitmap[3]),
  647. __le32_to_cpu(bcn_info->tim_info.tim_bitmap[2]),
  648. __le32_to_cpu(bcn_info->tim_info.tim_bitmap[1]),
  649. __le32_to_cpu(bcn_info->tim_info.tim_bitmap[0]));
  650. arvif = ath10k_get_arvif(ar, vdev_id);
  651. if (arvif == NULL) {
  652. ath10k_warn("no vif for vdev_id %d found\n", vdev_id);
  653. continue;
  654. }
  655. bcn = ieee80211_beacon_get(ar->hw, arvif->vif);
  656. if (!bcn) {
  657. ath10k_warn("could not get mac80211 beacon\n");
  658. continue;
  659. }
  660. ath10k_tx_h_seq_no(bcn);
  661. ath10k_wmi_update_tim(ar, arvif, bcn, bcn_info);
  662. ath10k_wmi_update_noa(ar, arvif, bcn, bcn_info);
  663. arg.vdev_id = arvif->vdev_id;
  664. arg.tx_rate = 0;
  665. arg.tx_power = 0;
  666. arg.bcn = bcn->data;
  667. arg.bcn_len = bcn->len;
  668. ret = ath10k_wmi_beacon_send(ar, &arg);
  669. if (ret)
  670. ath10k_warn("could not send beacon (%d)\n", ret);
  671. dev_kfree_skb_any(bcn);
  672. }
  673. }
  674. static void ath10k_wmi_event_tbttoffset_update(struct ath10k *ar,
  675. struct sk_buff *skb)
  676. {
  677. ath10k_dbg(ATH10K_DBG_WMI, "WMI_TBTTOFFSET_UPDATE_EVENTID\n");
  678. }
  679. static void ath10k_wmi_event_phyerr(struct ath10k *ar, struct sk_buff *skb)
  680. {
  681. ath10k_dbg(ATH10K_DBG_WMI, "WMI_PHYERR_EVENTID\n");
  682. }
  683. static void ath10k_wmi_event_roam(struct ath10k *ar, struct sk_buff *skb)
  684. {
  685. ath10k_dbg(ATH10K_DBG_WMI, "WMI_ROAM_EVENTID\n");
  686. }
  687. static void ath10k_wmi_event_profile_match(struct ath10k *ar,
  688. struct sk_buff *skb)
  689. {
  690. ath10k_dbg(ATH10K_DBG_WMI, "WMI_PROFILE_MATCH\n");
  691. }
  692. static void ath10k_wmi_event_debug_print(struct ath10k *ar,
  693. struct sk_buff *skb)
  694. {
  695. ath10k_dbg(ATH10K_DBG_WMI, "WMI_DEBUG_PRINT_EVENTID\n");
  696. }
  697. static void ath10k_wmi_event_pdev_qvit(struct ath10k *ar, struct sk_buff *skb)
  698. {
  699. ath10k_dbg(ATH10K_DBG_WMI, "WMI_PDEV_QVIT_EVENTID\n");
  700. }
  701. static void ath10k_wmi_event_wlan_profile_data(struct ath10k *ar,
  702. struct sk_buff *skb)
  703. {
  704. ath10k_dbg(ATH10K_DBG_WMI, "WMI_WLAN_PROFILE_DATA_EVENTID\n");
  705. }
  706. static void ath10k_wmi_event_rtt_measurement_report(struct ath10k *ar,
  707. struct sk_buff *skb)
  708. {
  709. ath10k_dbg(ATH10K_DBG_WMI, "WMI_RTT_MEASUREMENT_REPORT_EVENTID\n");
  710. }
  711. static void ath10k_wmi_event_tsf_measurement_report(struct ath10k *ar,
  712. struct sk_buff *skb)
  713. {
  714. ath10k_dbg(ATH10K_DBG_WMI, "WMI_TSF_MEASUREMENT_REPORT_EVENTID\n");
  715. }
  716. static void ath10k_wmi_event_rtt_error_report(struct ath10k *ar,
  717. struct sk_buff *skb)
  718. {
  719. ath10k_dbg(ATH10K_DBG_WMI, "WMI_RTT_ERROR_REPORT_EVENTID\n");
  720. }
  721. static void ath10k_wmi_event_wow_wakeup_host(struct ath10k *ar,
  722. struct sk_buff *skb)
  723. {
  724. ath10k_dbg(ATH10K_DBG_WMI, "WMI_WOW_WAKEUP_HOST_EVENTID\n");
  725. }
  726. static void ath10k_wmi_event_dcs_interference(struct ath10k *ar,
  727. struct sk_buff *skb)
  728. {
  729. ath10k_dbg(ATH10K_DBG_WMI, "WMI_DCS_INTERFERENCE_EVENTID\n");
  730. }
  731. static void ath10k_wmi_event_pdev_tpc_config(struct ath10k *ar,
  732. struct sk_buff *skb)
  733. {
  734. ath10k_dbg(ATH10K_DBG_WMI, "WMI_PDEV_TPC_CONFIG_EVENTID\n");
  735. }
  736. static void ath10k_wmi_event_pdev_ftm_intg(struct ath10k *ar,
  737. struct sk_buff *skb)
  738. {
  739. ath10k_dbg(ATH10K_DBG_WMI, "WMI_PDEV_FTM_INTG_EVENTID\n");
  740. }
  741. static void ath10k_wmi_event_gtk_offload_status(struct ath10k *ar,
  742. struct sk_buff *skb)
  743. {
  744. ath10k_dbg(ATH10K_DBG_WMI, "WMI_GTK_OFFLOAD_STATUS_EVENTID\n");
  745. }
  746. static void ath10k_wmi_event_gtk_rekey_fail(struct ath10k *ar,
  747. struct sk_buff *skb)
  748. {
  749. ath10k_dbg(ATH10K_DBG_WMI, "WMI_GTK_REKEY_FAIL_EVENTID\n");
  750. }
  751. static void ath10k_wmi_event_delba_complete(struct ath10k *ar,
  752. struct sk_buff *skb)
  753. {
  754. ath10k_dbg(ATH10K_DBG_WMI, "WMI_TX_DELBA_COMPLETE_EVENTID\n");
  755. }
  756. static void ath10k_wmi_event_addba_complete(struct ath10k *ar,
  757. struct sk_buff *skb)
  758. {
  759. ath10k_dbg(ATH10K_DBG_WMI, "WMI_TX_ADDBA_COMPLETE_EVENTID\n");
  760. }
  761. static void ath10k_wmi_event_vdev_install_key_complete(struct ath10k *ar,
  762. struct sk_buff *skb)
  763. {
  764. ath10k_dbg(ATH10K_DBG_WMI, "WMI_VDEV_INSTALL_KEY_COMPLETE_EVENTID\n");
  765. }
  766. static void ath10k_wmi_service_ready_event_rx(struct ath10k *ar,
  767. struct sk_buff *skb)
  768. {
  769. struct wmi_service_ready_event *ev = (void *)skb->data;
  770. if (skb->len < sizeof(*ev)) {
  771. ath10k_warn("Service ready event was %d B but expected %zu B. Wrong firmware version?\n",
  772. skb->len, sizeof(*ev));
  773. return;
  774. }
  775. ar->hw_min_tx_power = __le32_to_cpu(ev->hw_min_tx_power);
  776. ar->hw_max_tx_power = __le32_to_cpu(ev->hw_max_tx_power);
  777. ar->ht_cap_info = __le32_to_cpu(ev->ht_cap_info);
  778. ar->vht_cap_info = __le32_to_cpu(ev->vht_cap_info);
  779. ar->fw_version_major =
  780. (__le32_to_cpu(ev->sw_version) & 0xff000000) >> 24;
  781. ar->fw_version_minor = (__le32_to_cpu(ev->sw_version) & 0x00ffffff);
  782. ar->fw_version_release =
  783. (__le32_to_cpu(ev->sw_version_1) & 0xffff0000) >> 16;
  784. ar->fw_version_build = (__le32_to_cpu(ev->sw_version_1) & 0x0000ffff);
  785. ar->phy_capability = __le32_to_cpu(ev->phy_capability);
  786. ar->num_rf_chains = __le32_to_cpu(ev->num_rf_chains);
  787. if (ar->num_rf_chains > WMI_MAX_SPATIAL_STREAM) {
  788. ath10k_warn("hardware advertises support for more spatial streams than it should (%d > %d)\n",
  789. ar->num_rf_chains, WMI_MAX_SPATIAL_STREAM);
  790. ar->num_rf_chains = WMI_MAX_SPATIAL_STREAM;
  791. }
  792. ar->ath_common.regulatory.current_rd =
  793. __le32_to_cpu(ev->hal_reg_capabilities.eeprom_rd);
  794. ath10k_debug_read_service_map(ar, ev->wmi_service_bitmap,
  795. sizeof(ev->wmi_service_bitmap));
  796. if (strlen(ar->hw->wiphy->fw_version) == 0) {
  797. snprintf(ar->hw->wiphy->fw_version,
  798. sizeof(ar->hw->wiphy->fw_version),
  799. "%u.%u.%u.%u",
  800. ar->fw_version_major,
  801. ar->fw_version_minor,
  802. ar->fw_version_release,
  803. ar->fw_version_build);
  804. }
  805. /* FIXME: it probably should be better to support this */
  806. if (__le32_to_cpu(ev->num_mem_reqs) > 0) {
  807. ath10k_warn("target requested %d memory chunks; ignoring\n",
  808. __le32_to_cpu(ev->num_mem_reqs));
  809. }
  810. ath10k_dbg(ATH10K_DBG_WMI,
  811. "wmi event service ready sw_ver 0x%08x sw_ver1 0x%08x abi_ver %u phy_cap 0x%08x ht_cap 0x%08x vht_cap 0x%08x vht_supp_msc 0x%08x sys_cap_info 0x%08x mem_reqs %u num_rf_chains %u\n",
  812. __le32_to_cpu(ev->sw_version),
  813. __le32_to_cpu(ev->sw_version_1),
  814. __le32_to_cpu(ev->abi_version),
  815. __le32_to_cpu(ev->phy_capability),
  816. __le32_to_cpu(ev->ht_cap_info),
  817. __le32_to_cpu(ev->vht_cap_info),
  818. __le32_to_cpu(ev->vht_supp_mcs),
  819. __le32_to_cpu(ev->sys_cap_info),
  820. __le32_to_cpu(ev->num_mem_reqs),
  821. __le32_to_cpu(ev->num_rf_chains));
  822. complete(&ar->wmi.service_ready);
  823. }
  824. static int ath10k_wmi_ready_event_rx(struct ath10k *ar, struct sk_buff *skb)
  825. {
  826. struct wmi_ready_event *ev = (struct wmi_ready_event *)skb->data;
  827. if (WARN_ON(skb->len < sizeof(*ev)))
  828. return -EINVAL;
  829. memcpy(ar->mac_addr, ev->mac_addr.addr, ETH_ALEN);
  830. ath10k_dbg(ATH10K_DBG_WMI,
  831. "wmi event ready sw_version %u abi_version %u mac_addr %pM status %d\n",
  832. __le32_to_cpu(ev->sw_version),
  833. __le32_to_cpu(ev->abi_version),
  834. ev->mac_addr.addr,
  835. __le32_to_cpu(ev->status));
  836. complete(&ar->wmi.unified_ready);
  837. return 0;
  838. }
  839. static void ath10k_wmi_event_process(struct ath10k *ar, struct sk_buff *skb)
  840. {
  841. struct wmi_cmd_hdr *cmd_hdr;
  842. enum wmi_event_id id;
  843. u16 len;
  844. cmd_hdr = (struct wmi_cmd_hdr *)skb->data;
  845. id = MS(__le32_to_cpu(cmd_hdr->cmd_id), WMI_CMD_HDR_CMD_ID);
  846. if (skb_pull(skb, sizeof(struct wmi_cmd_hdr)) == NULL)
  847. return;
  848. len = skb->len;
  849. trace_ath10k_wmi_event(id, skb->data, skb->len);
  850. switch (id) {
  851. case WMI_MGMT_RX_EVENTID:
  852. ath10k_wmi_event_mgmt_rx(ar, skb);
  853. /* mgmt_rx() owns the skb now! */
  854. return;
  855. case WMI_SCAN_EVENTID:
  856. ath10k_wmi_event_scan(ar, skb);
  857. break;
  858. case WMI_CHAN_INFO_EVENTID:
  859. ath10k_wmi_event_chan_info(ar, skb);
  860. break;
  861. case WMI_ECHO_EVENTID:
  862. ath10k_wmi_event_echo(ar, skb);
  863. break;
  864. case WMI_DEBUG_MESG_EVENTID:
  865. ath10k_wmi_event_debug_mesg(ar, skb);
  866. break;
  867. case WMI_UPDATE_STATS_EVENTID:
  868. ath10k_wmi_event_update_stats(ar, skb);
  869. break;
  870. case WMI_VDEV_START_RESP_EVENTID:
  871. ath10k_wmi_event_vdev_start_resp(ar, skb);
  872. break;
  873. case WMI_VDEV_STOPPED_EVENTID:
  874. ath10k_wmi_event_vdev_stopped(ar, skb);
  875. break;
  876. case WMI_PEER_STA_KICKOUT_EVENTID:
  877. ath10k_wmi_event_peer_sta_kickout(ar, skb);
  878. break;
  879. case WMI_HOST_SWBA_EVENTID:
  880. ath10k_wmi_event_host_swba(ar, skb);
  881. break;
  882. case WMI_TBTTOFFSET_UPDATE_EVENTID:
  883. ath10k_wmi_event_tbttoffset_update(ar, skb);
  884. break;
  885. case WMI_PHYERR_EVENTID:
  886. ath10k_wmi_event_phyerr(ar, skb);
  887. break;
  888. case WMI_ROAM_EVENTID:
  889. ath10k_wmi_event_roam(ar, skb);
  890. break;
  891. case WMI_PROFILE_MATCH:
  892. ath10k_wmi_event_profile_match(ar, skb);
  893. break;
  894. case WMI_DEBUG_PRINT_EVENTID:
  895. ath10k_wmi_event_debug_print(ar, skb);
  896. break;
  897. case WMI_PDEV_QVIT_EVENTID:
  898. ath10k_wmi_event_pdev_qvit(ar, skb);
  899. break;
  900. case WMI_WLAN_PROFILE_DATA_EVENTID:
  901. ath10k_wmi_event_wlan_profile_data(ar, skb);
  902. break;
  903. case WMI_RTT_MEASUREMENT_REPORT_EVENTID:
  904. ath10k_wmi_event_rtt_measurement_report(ar, skb);
  905. break;
  906. case WMI_TSF_MEASUREMENT_REPORT_EVENTID:
  907. ath10k_wmi_event_tsf_measurement_report(ar, skb);
  908. break;
  909. case WMI_RTT_ERROR_REPORT_EVENTID:
  910. ath10k_wmi_event_rtt_error_report(ar, skb);
  911. break;
  912. case WMI_WOW_WAKEUP_HOST_EVENTID:
  913. ath10k_wmi_event_wow_wakeup_host(ar, skb);
  914. break;
  915. case WMI_DCS_INTERFERENCE_EVENTID:
  916. ath10k_wmi_event_dcs_interference(ar, skb);
  917. break;
  918. case WMI_PDEV_TPC_CONFIG_EVENTID:
  919. ath10k_wmi_event_pdev_tpc_config(ar, skb);
  920. break;
  921. case WMI_PDEV_FTM_INTG_EVENTID:
  922. ath10k_wmi_event_pdev_ftm_intg(ar, skb);
  923. break;
  924. case WMI_GTK_OFFLOAD_STATUS_EVENTID:
  925. ath10k_wmi_event_gtk_offload_status(ar, skb);
  926. break;
  927. case WMI_GTK_REKEY_FAIL_EVENTID:
  928. ath10k_wmi_event_gtk_rekey_fail(ar, skb);
  929. break;
  930. case WMI_TX_DELBA_COMPLETE_EVENTID:
  931. ath10k_wmi_event_delba_complete(ar, skb);
  932. break;
  933. case WMI_TX_ADDBA_COMPLETE_EVENTID:
  934. ath10k_wmi_event_addba_complete(ar, skb);
  935. break;
  936. case WMI_VDEV_INSTALL_KEY_COMPLETE_EVENTID:
  937. ath10k_wmi_event_vdev_install_key_complete(ar, skb);
  938. break;
  939. case WMI_SERVICE_READY_EVENTID:
  940. ath10k_wmi_service_ready_event_rx(ar, skb);
  941. break;
  942. case WMI_READY_EVENTID:
  943. ath10k_wmi_ready_event_rx(ar, skb);
  944. break;
  945. default:
  946. ath10k_warn("Unknown eventid: %d\n", id);
  947. break;
  948. }
  949. dev_kfree_skb(skb);
  950. }
  951. static void ath10k_wmi_event_work(struct work_struct *work)
  952. {
  953. struct ath10k *ar = container_of(work, struct ath10k,
  954. wmi.wmi_event_work);
  955. struct sk_buff *skb;
  956. for (;;) {
  957. skb = skb_dequeue(&ar->wmi.wmi_event_list);
  958. if (!skb)
  959. break;
  960. ath10k_wmi_event_process(ar, skb);
  961. }
  962. }
  963. static void ath10k_wmi_process_rx(struct ath10k *ar, struct sk_buff *skb)
  964. {
  965. struct wmi_cmd_hdr *cmd_hdr = (struct wmi_cmd_hdr *)skb->data;
  966. enum wmi_event_id event_id;
  967. event_id = MS(__le32_to_cpu(cmd_hdr->cmd_id), WMI_CMD_HDR_CMD_ID);
  968. /* some events require to be handled ASAP
  969. * thus can't be defered to a worker thread */
  970. switch (event_id) {
  971. case WMI_HOST_SWBA_EVENTID:
  972. case WMI_MGMT_RX_EVENTID:
  973. ath10k_wmi_event_process(ar, skb);
  974. return;
  975. default:
  976. break;
  977. }
  978. skb_queue_tail(&ar->wmi.wmi_event_list, skb);
  979. queue_work(ar->workqueue, &ar->wmi.wmi_event_work);
  980. }
  981. /* WMI Initialization functions */
  982. int ath10k_wmi_attach(struct ath10k *ar)
  983. {
  984. init_completion(&ar->wmi.service_ready);
  985. init_completion(&ar->wmi.unified_ready);
  986. init_waitqueue_head(&ar->wmi.wq);
  987. skb_queue_head_init(&ar->wmi.wmi_event_list);
  988. INIT_WORK(&ar->wmi.wmi_event_work, ath10k_wmi_event_work);
  989. return 0;
  990. }
  991. void ath10k_wmi_detach(struct ath10k *ar)
  992. {
  993. /* HTC should've drained the packets already */
  994. if (WARN_ON(atomic_read(&ar->wmi.pending_tx_count) > 0))
  995. ath10k_warn("there are still pending packets\n");
  996. cancel_work_sync(&ar->wmi.wmi_event_work);
  997. skb_queue_purge(&ar->wmi.wmi_event_list);
  998. }
  999. int ath10k_wmi_connect_htc_service(struct ath10k *ar)
  1000. {
  1001. int status;
  1002. struct ath10k_htc_svc_conn_req conn_req;
  1003. struct ath10k_htc_svc_conn_resp conn_resp;
  1004. memset(&conn_req, 0, sizeof(conn_req));
  1005. memset(&conn_resp, 0, sizeof(conn_resp));
  1006. /* these fields are the same for all service endpoints */
  1007. conn_req.ep_ops.ep_tx_complete = ath10k_wmi_htc_tx_complete;
  1008. conn_req.ep_ops.ep_rx_complete = ath10k_wmi_process_rx;
  1009. /* connect to control service */
  1010. conn_req.service_id = ATH10K_HTC_SVC_ID_WMI_CONTROL;
  1011. status = ath10k_htc_connect_service(&ar->htc, &conn_req, &conn_resp);
  1012. if (status) {
  1013. ath10k_warn("failed to connect to WMI CONTROL service status: %d\n",
  1014. status);
  1015. return status;
  1016. }
  1017. ar->wmi.eid = conn_resp.eid;
  1018. return 0;
  1019. }
  1020. int ath10k_wmi_pdev_set_regdomain(struct ath10k *ar, u16 rd, u16 rd2g,
  1021. u16 rd5g, u16 ctl2g, u16 ctl5g)
  1022. {
  1023. struct wmi_pdev_set_regdomain_cmd *cmd;
  1024. struct sk_buff *skb;
  1025. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1026. if (!skb)
  1027. return -ENOMEM;
  1028. cmd = (struct wmi_pdev_set_regdomain_cmd *)skb->data;
  1029. cmd->reg_domain = __cpu_to_le32(rd);
  1030. cmd->reg_domain_2G = __cpu_to_le32(rd2g);
  1031. cmd->reg_domain_5G = __cpu_to_le32(rd5g);
  1032. cmd->conformance_test_limit_2G = __cpu_to_le32(ctl2g);
  1033. cmd->conformance_test_limit_5G = __cpu_to_le32(ctl5g);
  1034. ath10k_dbg(ATH10K_DBG_WMI,
  1035. "wmi pdev regdomain rd %x rd2g %x rd5g %x ctl2g %x ctl5g %x\n",
  1036. rd, rd2g, rd5g, ctl2g, ctl5g);
  1037. return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_REGDOMAIN_CMDID);
  1038. }
  1039. int ath10k_wmi_pdev_set_channel(struct ath10k *ar,
  1040. const struct wmi_channel_arg *arg)
  1041. {
  1042. struct wmi_set_channel_cmd *cmd;
  1043. struct sk_buff *skb;
  1044. if (arg->passive)
  1045. return -EINVAL;
  1046. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1047. if (!skb)
  1048. return -ENOMEM;
  1049. cmd = (struct wmi_set_channel_cmd *)skb->data;
  1050. cmd->chan.mhz = __cpu_to_le32(arg->freq);
  1051. cmd->chan.band_center_freq1 = __cpu_to_le32(arg->freq);
  1052. cmd->chan.mode = arg->mode;
  1053. cmd->chan.min_power = arg->min_power;
  1054. cmd->chan.max_power = arg->max_power;
  1055. cmd->chan.reg_power = arg->max_reg_power;
  1056. cmd->chan.reg_classid = arg->reg_class_id;
  1057. cmd->chan.antenna_max = arg->max_antenna_gain;
  1058. ath10k_dbg(ATH10K_DBG_WMI,
  1059. "wmi set channel mode %d freq %d\n",
  1060. arg->mode, arg->freq);
  1061. return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_CHANNEL_CMDID);
  1062. }
  1063. int ath10k_wmi_pdev_suspend_target(struct ath10k *ar)
  1064. {
  1065. struct wmi_pdev_suspend_cmd *cmd;
  1066. struct sk_buff *skb;
  1067. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1068. if (!skb)
  1069. return -ENOMEM;
  1070. cmd = (struct wmi_pdev_suspend_cmd *)skb->data;
  1071. cmd->suspend_opt = WMI_PDEV_SUSPEND;
  1072. return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SUSPEND_CMDID);
  1073. }
  1074. int ath10k_wmi_pdev_resume_target(struct ath10k *ar)
  1075. {
  1076. struct sk_buff *skb;
  1077. skb = ath10k_wmi_alloc_skb(0);
  1078. if (skb == NULL)
  1079. return -ENOMEM;
  1080. return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_RESUME_CMDID);
  1081. }
  1082. int ath10k_wmi_pdev_set_param(struct ath10k *ar, enum wmi_pdev_param id,
  1083. u32 value)
  1084. {
  1085. struct wmi_pdev_set_param_cmd *cmd;
  1086. struct sk_buff *skb;
  1087. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1088. if (!skb)
  1089. return -ENOMEM;
  1090. cmd = (struct wmi_pdev_set_param_cmd *)skb->data;
  1091. cmd->param_id = __cpu_to_le32(id);
  1092. cmd->param_value = __cpu_to_le32(value);
  1093. ath10k_dbg(ATH10K_DBG_WMI, "wmi pdev set param %d value %d\n",
  1094. id, value);
  1095. return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_PARAM_CMDID);
  1096. }
  1097. int ath10k_wmi_cmd_init(struct ath10k *ar)
  1098. {
  1099. struct wmi_init_cmd *cmd;
  1100. struct sk_buff *buf;
  1101. struct wmi_resource_config config = {};
  1102. u32 val;
  1103. config.num_vdevs = __cpu_to_le32(TARGET_NUM_VDEVS);
  1104. config.num_peers = __cpu_to_le32(TARGET_NUM_PEERS + TARGET_NUM_VDEVS);
  1105. config.num_offload_peers = __cpu_to_le32(TARGET_NUM_OFFLOAD_PEERS);
  1106. config.num_offload_reorder_bufs =
  1107. __cpu_to_le32(TARGET_NUM_OFFLOAD_REORDER_BUFS);
  1108. config.num_peer_keys = __cpu_to_le32(TARGET_NUM_PEER_KEYS);
  1109. config.num_tids = __cpu_to_le32(TARGET_NUM_TIDS);
  1110. config.ast_skid_limit = __cpu_to_le32(TARGET_AST_SKID_LIMIT);
  1111. config.tx_chain_mask = __cpu_to_le32(TARGET_TX_CHAIN_MASK);
  1112. config.rx_chain_mask = __cpu_to_le32(TARGET_RX_CHAIN_MASK);
  1113. config.rx_timeout_pri_vo = __cpu_to_le32(TARGET_RX_TIMEOUT_LO_PRI);
  1114. config.rx_timeout_pri_vi = __cpu_to_le32(TARGET_RX_TIMEOUT_LO_PRI);
  1115. config.rx_timeout_pri_be = __cpu_to_le32(TARGET_RX_TIMEOUT_LO_PRI);
  1116. config.rx_timeout_pri_bk = __cpu_to_le32(TARGET_RX_TIMEOUT_HI_PRI);
  1117. config.rx_decap_mode = __cpu_to_le32(TARGET_RX_DECAP_MODE);
  1118. config.scan_max_pending_reqs =
  1119. __cpu_to_le32(TARGET_SCAN_MAX_PENDING_REQS);
  1120. config.bmiss_offload_max_vdev =
  1121. __cpu_to_le32(TARGET_BMISS_OFFLOAD_MAX_VDEV);
  1122. config.roam_offload_max_vdev =
  1123. __cpu_to_le32(TARGET_ROAM_OFFLOAD_MAX_VDEV);
  1124. config.roam_offload_max_ap_profiles =
  1125. __cpu_to_le32(TARGET_ROAM_OFFLOAD_MAX_AP_PROFILES);
  1126. config.num_mcast_groups = __cpu_to_le32(TARGET_NUM_MCAST_GROUPS);
  1127. config.num_mcast_table_elems =
  1128. __cpu_to_le32(TARGET_NUM_MCAST_TABLE_ELEMS);
  1129. config.mcast2ucast_mode = __cpu_to_le32(TARGET_MCAST2UCAST_MODE);
  1130. config.tx_dbg_log_size = __cpu_to_le32(TARGET_TX_DBG_LOG_SIZE);
  1131. config.num_wds_entries = __cpu_to_le32(TARGET_NUM_WDS_ENTRIES);
  1132. config.dma_burst_size = __cpu_to_le32(TARGET_DMA_BURST_SIZE);
  1133. config.mac_aggr_delim = __cpu_to_le32(TARGET_MAC_AGGR_DELIM);
  1134. val = TARGET_RX_SKIP_DEFRAG_TIMEOUT_DUP_DETECTION_CHECK;
  1135. config.rx_skip_defrag_timeout_dup_detection_check = __cpu_to_le32(val);
  1136. config.vow_config = __cpu_to_le32(TARGET_VOW_CONFIG);
  1137. config.gtk_offload_max_vdev =
  1138. __cpu_to_le32(TARGET_GTK_OFFLOAD_MAX_VDEV);
  1139. config.num_msdu_desc = __cpu_to_le32(TARGET_NUM_MSDU_DESC);
  1140. config.max_frag_entries = __cpu_to_le32(TARGET_MAX_FRAG_ENTRIES);
  1141. buf = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1142. if (!buf)
  1143. return -ENOMEM;
  1144. cmd = (struct wmi_init_cmd *)buf->data;
  1145. cmd->num_host_mem_chunks = 0;
  1146. memcpy(&cmd->resource_config, &config, sizeof(config));
  1147. ath10k_dbg(ATH10K_DBG_WMI, "wmi init\n");
  1148. return ath10k_wmi_cmd_send(ar, buf, WMI_INIT_CMDID);
  1149. }
  1150. static int ath10k_wmi_start_scan_calc_len(const struct wmi_start_scan_arg *arg)
  1151. {
  1152. int len;
  1153. len = sizeof(struct wmi_start_scan_cmd);
  1154. if (arg->ie_len) {
  1155. if (!arg->ie)
  1156. return -EINVAL;
  1157. if (arg->ie_len > WLAN_SCAN_PARAMS_MAX_IE_LEN)
  1158. return -EINVAL;
  1159. len += sizeof(struct wmi_ie_data);
  1160. len += roundup(arg->ie_len, 4);
  1161. }
  1162. if (arg->n_channels) {
  1163. if (!arg->channels)
  1164. return -EINVAL;
  1165. if (arg->n_channels > ARRAY_SIZE(arg->channels))
  1166. return -EINVAL;
  1167. len += sizeof(struct wmi_chan_list);
  1168. len += sizeof(__le32) * arg->n_channels;
  1169. }
  1170. if (arg->n_ssids) {
  1171. if (!arg->ssids)
  1172. return -EINVAL;
  1173. if (arg->n_ssids > WLAN_SCAN_PARAMS_MAX_SSID)
  1174. return -EINVAL;
  1175. len += sizeof(struct wmi_ssid_list);
  1176. len += sizeof(struct wmi_ssid) * arg->n_ssids;
  1177. }
  1178. if (arg->n_bssids) {
  1179. if (!arg->bssids)
  1180. return -EINVAL;
  1181. if (arg->n_bssids > WLAN_SCAN_PARAMS_MAX_BSSID)
  1182. return -EINVAL;
  1183. len += sizeof(struct wmi_bssid_list);
  1184. len += sizeof(struct wmi_mac_addr) * arg->n_bssids;
  1185. }
  1186. return len;
  1187. }
  1188. int ath10k_wmi_start_scan(struct ath10k *ar,
  1189. const struct wmi_start_scan_arg *arg)
  1190. {
  1191. struct wmi_start_scan_cmd *cmd;
  1192. struct sk_buff *skb;
  1193. struct wmi_ie_data *ie;
  1194. struct wmi_chan_list *channels;
  1195. struct wmi_ssid_list *ssids;
  1196. struct wmi_bssid_list *bssids;
  1197. u32 scan_id;
  1198. u32 scan_req_id;
  1199. int off;
  1200. int len = 0;
  1201. int i;
  1202. len = ath10k_wmi_start_scan_calc_len(arg);
  1203. if (len < 0)
  1204. return len; /* len contains error code here */
  1205. skb = ath10k_wmi_alloc_skb(len);
  1206. if (!skb)
  1207. return -ENOMEM;
  1208. scan_id = WMI_HOST_SCAN_REQ_ID_PREFIX;
  1209. scan_id |= arg->scan_id;
  1210. scan_req_id = WMI_HOST_SCAN_REQUESTOR_ID_PREFIX;
  1211. scan_req_id |= arg->scan_req_id;
  1212. cmd = (struct wmi_start_scan_cmd *)skb->data;
  1213. cmd->scan_id = __cpu_to_le32(scan_id);
  1214. cmd->scan_req_id = __cpu_to_le32(scan_req_id);
  1215. cmd->vdev_id = __cpu_to_le32(arg->vdev_id);
  1216. cmd->scan_priority = __cpu_to_le32(arg->scan_priority);
  1217. cmd->notify_scan_events = __cpu_to_le32(arg->notify_scan_events);
  1218. cmd->dwell_time_active = __cpu_to_le32(arg->dwell_time_active);
  1219. cmd->dwell_time_passive = __cpu_to_le32(arg->dwell_time_passive);
  1220. cmd->min_rest_time = __cpu_to_le32(arg->min_rest_time);
  1221. cmd->max_rest_time = __cpu_to_le32(arg->max_rest_time);
  1222. cmd->repeat_probe_time = __cpu_to_le32(arg->repeat_probe_time);
  1223. cmd->probe_spacing_time = __cpu_to_le32(arg->probe_spacing_time);
  1224. cmd->idle_time = __cpu_to_le32(arg->idle_time);
  1225. cmd->max_scan_time = __cpu_to_le32(arg->max_scan_time);
  1226. cmd->probe_delay = __cpu_to_le32(arg->probe_delay);
  1227. cmd->scan_ctrl_flags = __cpu_to_le32(arg->scan_ctrl_flags);
  1228. /* TLV list starts after fields included in the struct */
  1229. off = sizeof(*cmd);
  1230. if (arg->n_channels) {
  1231. channels = (void *)skb->data + off;
  1232. channels->tag = __cpu_to_le32(WMI_CHAN_LIST_TAG);
  1233. channels->num_chan = __cpu_to_le32(arg->n_channels);
  1234. for (i = 0; i < arg->n_channels; i++)
  1235. channels->channel_list[i] =
  1236. __cpu_to_le32(arg->channels[i]);
  1237. off += sizeof(*channels);
  1238. off += sizeof(__le32) * arg->n_channels;
  1239. }
  1240. if (arg->n_ssids) {
  1241. ssids = (void *)skb->data + off;
  1242. ssids->tag = __cpu_to_le32(WMI_SSID_LIST_TAG);
  1243. ssids->num_ssids = __cpu_to_le32(arg->n_ssids);
  1244. for (i = 0; i < arg->n_ssids; i++) {
  1245. ssids->ssids[i].ssid_len =
  1246. __cpu_to_le32(arg->ssids[i].len);
  1247. memcpy(&ssids->ssids[i].ssid,
  1248. arg->ssids[i].ssid,
  1249. arg->ssids[i].len);
  1250. }
  1251. off += sizeof(*ssids);
  1252. off += sizeof(struct wmi_ssid) * arg->n_ssids;
  1253. }
  1254. if (arg->n_bssids) {
  1255. bssids = (void *)skb->data + off;
  1256. bssids->tag = __cpu_to_le32(WMI_BSSID_LIST_TAG);
  1257. bssids->num_bssid = __cpu_to_le32(arg->n_bssids);
  1258. for (i = 0; i < arg->n_bssids; i++)
  1259. memcpy(&bssids->bssid_list[i],
  1260. arg->bssids[i].bssid,
  1261. ETH_ALEN);
  1262. off += sizeof(*bssids);
  1263. off += sizeof(struct wmi_mac_addr) * arg->n_bssids;
  1264. }
  1265. if (arg->ie_len) {
  1266. ie = (void *)skb->data + off;
  1267. ie->tag = __cpu_to_le32(WMI_IE_TAG);
  1268. ie->ie_len = __cpu_to_le32(arg->ie_len);
  1269. memcpy(ie->ie_data, arg->ie, arg->ie_len);
  1270. off += sizeof(*ie);
  1271. off += roundup(arg->ie_len, 4);
  1272. }
  1273. if (off != skb->len) {
  1274. dev_kfree_skb(skb);
  1275. return -EINVAL;
  1276. }
  1277. ath10k_dbg(ATH10K_DBG_WMI, "wmi start scan\n");
  1278. return ath10k_wmi_cmd_send(ar, skb, WMI_START_SCAN_CMDID);
  1279. }
  1280. void ath10k_wmi_start_scan_init(struct ath10k *ar,
  1281. struct wmi_start_scan_arg *arg)
  1282. {
  1283. /* setup commonly used values */
  1284. arg->scan_req_id = 1;
  1285. arg->scan_priority = WMI_SCAN_PRIORITY_LOW;
  1286. arg->dwell_time_active = 50;
  1287. arg->dwell_time_passive = 150;
  1288. arg->min_rest_time = 50;
  1289. arg->max_rest_time = 500;
  1290. arg->repeat_probe_time = 0;
  1291. arg->probe_spacing_time = 0;
  1292. arg->idle_time = 0;
  1293. arg->max_scan_time = 5000;
  1294. arg->probe_delay = 5;
  1295. arg->notify_scan_events = WMI_SCAN_EVENT_STARTED
  1296. | WMI_SCAN_EVENT_COMPLETED
  1297. | WMI_SCAN_EVENT_BSS_CHANNEL
  1298. | WMI_SCAN_EVENT_FOREIGN_CHANNEL
  1299. | WMI_SCAN_EVENT_DEQUEUED;
  1300. arg->scan_ctrl_flags |= WMI_SCAN_ADD_OFDM_RATES;
  1301. arg->scan_ctrl_flags |= WMI_SCAN_CHAN_STAT_EVENT;
  1302. arg->n_bssids = 1;
  1303. arg->bssids[0].bssid = "\xFF\xFF\xFF\xFF\xFF\xFF";
  1304. }
  1305. int ath10k_wmi_stop_scan(struct ath10k *ar, const struct wmi_stop_scan_arg *arg)
  1306. {
  1307. struct wmi_stop_scan_cmd *cmd;
  1308. struct sk_buff *skb;
  1309. u32 scan_id;
  1310. u32 req_id;
  1311. if (arg->req_id > 0xFFF)
  1312. return -EINVAL;
  1313. if (arg->req_type == WMI_SCAN_STOP_ONE && arg->u.scan_id > 0xFFF)
  1314. return -EINVAL;
  1315. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1316. if (!skb)
  1317. return -ENOMEM;
  1318. scan_id = arg->u.scan_id;
  1319. scan_id |= WMI_HOST_SCAN_REQ_ID_PREFIX;
  1320. req_id = arg->req_id;
  1321. req_id |= WMI_HOST_SCAN_REQUESTOR_ID_PREFIX;
  1322. cmd = (struct wmi_stop_scan_cmd *)skb->data;
  1323. cmd->req_type = __cpu_to_le32(arg->req_type);
  1324. cmd->vdev_id = __cpu_to_le32(arg->u.vdev_id);
  1325. cmd->scan_id = __cpu_to_le32(scan_id);
  1326. cmd->scan_req_id = __cpu_to_le32(req_id);
  1327. ath10k_dbg(ATH10K_DBG_WMI,
  1328. "wmi stop scan reqid %d req_type %d vdev/scan_id %d\n",
  1329. arg->req_id, arg->req_type, arg->u.scan_id);
  1330. return ath10k_wmi_cmd_send(ar, skb, WMI_STOP_SCAN_CMDID);
  1331. }
  1332. int ath10k_wmi_vdev_create(struct ath10k *ar, u32 vdev_id,
  1333. enum wmi_vdev_type type,
  1334. enum wmi_vdev_subtype subtype,
  1335. const u8 macaddr[ETH_ALEN])
  1336. {
  1337. struct wmi_vdev_create_cmd *cmd;
  1338. struct sk_buff *skb;
  1339. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1340. if (!skb)
  1341. return -ENOMEM;
  1342. cmd = (struct wmi_vdev_create_cmd *)skb->data;
  1343. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1344. cmd->vdev_type = __cpu_to_le32(type);
  1345. cmd->vdev_subtype = __cpu_to_le32(subtype);
  1346. memcpy(cmd->vdev_macaddr.addr, macaddr, ETH_ALEN);
  1347. ath10k_dbg(ATH10K_DBG_WMI,
  1348. "WMI vdev create: id %d type %d subtype %d macaddr %pM\n",
  1349. vdev_id, type, subtype, macaddr);
  1350. return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_CREATE_CMDID);
  1351. }
  1352. int ath10k_wmi_vdev_delete(struct ath10k *ar, u32 vdev_id)
  1353. {
  1354. struct wmi_vdev_delete_cmd *cmd;
  1355. struct sk_buff *skb;
  1356. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1357. if (!skb)
  1358. return -ENOMEM;
  1359. cmd = (struct wmi_vdev_delete_cmd *)skb->data;
  1360. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1361. ath10k_dbg(ATH10K_DBG_WMI,
  1362. "WMI vdev delete id %d\n", vdev_id);
  1363. return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_DELETE_CMDID);
  1364. }
  1365. static int ath10k_wmi_vdev_start_restart(struct ath10k *ar,
  1366. const struct wmi_vdev_start_request_arg *arg,
  1367. enum wmi_cmd_id cmd_id)
  1368. {
  1369. struct wmi_vdev_start_request_cmd *cmd;
  1370. struct sk_buff *skb;
  1371. const char *cmdname;
  1372. u32 flags = 0;
  1373. if (cmd_id != WMI_VDEV_START_REQUEST_CMDID &&
  1374. cmd_id != WMI_VDEV_RESTART_REQUEST_CMDID)
  1375. return -EINVAL;
  1376. if (WARN_ON(arg->ssid && arg->ssid_len == 0))
  1377. return -EINVAL;
  1378. if (WARN_ON(arg->hidden_ssid && !arg->ssid))
  1379. return -EINVAL;
  1380. if (WARN_ON(arg->ssid_len > sizeof(cmd->ssid.ssid)))
  1381. return -EINVAL;
  1382. if (cmd_id == WMI_VDEV_START_REQUEST_CMDID)
  1383. cmdname = "start";
  1384. else if (cmd_id == WMI_VDEV_RESTART_REQUEST_CMDID)
  1385. cmdname = "restart";
  1386. else
  1387. return -EINVAL; /* should not happen, we already check cmd_id */
  1388. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1389. if (!skb)
  1390. return -ENOMEM;
  1391. if (arg->hidden_ssid)
  1392. flags |= WMI_VDEV_START_HIDDEN_SSID;
  1393. if (arg->pmf_enabled)
  1394. flags |= WMI_VDEV_START_PMF_ENABLED;
  1395. cmd = (struct wmi_vdev_start_request_cmd *)skb->data;
  1396. cmd->vdev_id = __cpu_to_le32(arg->vdev_id);
  1397. cmd->disable_hw_ack = __cpu_to_le32(arg->disable_hw_ack);
  1398. cmd->beacon_interval = __cpu_to_le32(arg->bcn_intval);
  1399. cmd->dtim_period = __cpu_to_le32(arg->dtim_period);
  1400. cmd->flags = __cpu_to_le32(flags);
  1401. cmd->bcn_tx_rate = __cpu_to_le32(arg->bcn_tx_rate);
  1402. cmd->bcn_tx_power = __cpu_to_le32(arg->bcn_tx_power);
  1403. if (arg->ssid) {
  1404. cmd->ssid.ssid_len = __cpu_to_le32(arg->ssid_len);
  1405. memcpy(cmd->ssid.ssid, arg->ssid, arg->ssid_len);
  1406. }
  1407. cmd->chan.mhz = __cpu_to_le32(arg->channel.freq);
  1408. cmd->chan.band_center_freq1 =
  1409. __cpu_to_le32(arg->channel.band_center_freq1);
  1410. cmd->chan.mode = arg->channel.mode;
  1411. cmd->chan.min_power = arg->channel.min_power;
  1412. cmd->chan.max_power = arg->channel.max_power;
  1413. cmd->chan.reg_power = arg->channel.max_reg_power;
  1414. cmd->chan.reg_classid = arg->channel.reg_class_id;
  1415. cmd->chan.antenna_max = arg->channel.max_antenna_gain;
  1416. ath10k_dbg(ATH10K_DBG_WMI,
  1417. "wmi vdev %s id 0x%x freq %d, mode %d, ch_flags: 0x%0X,"
  1418. "max_power: %d\n", cmdname, arg->vdev_id, arg->channel.freq,
  1419. arg->channel.mode, flags, arg->channel.max_power);
  1420. return ath10k_wmi_cmd_send(ar, skb, cmd_id);
  1421. }
  1422. int ath10k_wmi_vdev_start(struct ath10k *ar,
  1423. const struct wmi_vdev_start_request_arg *arg)
  1424. {
  1425. return ath10k_wmi_vdev_start_restart(ar, arg,
  1426. WMI_VDEV_START_REQUEST_CMDID);
  1427. }
  1428. int ath10k_wmi_vdev_restart(struct ath10k *ar,
  1429. const struct wmi_vdev_start_request_arg *arg)
  1430. {
  1431. return ath10k_wmi_vdev_start_restart(ar, arg,
  1432. WMI_VDEV_RESTART_REQUEST_CMDID);
  1433. }
  1434. int ath10k_wmi_vdev_stop(struct ath10k *ar, u32 vdev_id)
  1435. {
  1436. struct wmi_vdev_stop_cmd *cmd;
  1437. struct sk_buff *skb;
  1438. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1439. if (!skb)
  1440. return -ENOMEM;
  1441. cmd = (struct wmi_vdev_stop_cmd *)skb->data;
  1442. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1443. ath10k_dbg(ATH10K_DBG_WMI, "wmi vdev stop id 0x%x\n", vdev_id);
  1444. return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_STOP_CMDID);
  1445. }
  1446. int ath10k_wmi_vdev_up(struct ath10k *ar, u32 vdev_id, u32 aid, const u8 *bssid)
  1447. {
  1448. struct wmi_vdev_up_cmd *cmd;
  1449. struct sk_buff *skb;
  1450. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1451. if (!skb)
  1452. return -ENOMEM;
  1453. cmd = (struct wmi_vdev_up_cmd *)skb->data;
  1454. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1455. cmd->vdev_assoc_id = __cpu_to_le32(aid);
  1456. memcpy(&cmd->vdev_bssid.addr, bssid, 6);
  1457. ath10k_dbg(ATH10K_DBG_WMI,
  1458. "wmi mgmt vdev up id 0x%x assoc id %d bssid %pM\n",
  1459. vdev_id, aid, bssid);
  1460. return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_UP_CMDID);
  1461. }
  1462. int ath10k_wmi_vdev_down(struct ath10k *ar, u32 vdev_id)
  1463. {
  1464. struct wmi_vdev_down_cmd *cmd;
  1465. struct sk_buff *skb;
  1466. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1467. if (!skb)
  1468. return -ENOMEM;
  1469. cmd = (struct wmi_vdev_down_cmd *)skb->data;
  1470. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1471. ath10k_dbg(ATH10K_DBG_WMI,
  1472. "wmi mgmt vdev down id 0x%x\n", vdev_id);
  1473. return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_DOWN_CMDID);
  1474. }
  1475. int ath10k_wmi_vdev_set_param(struct ath10k *ar, u32 vdev_id,
  1476. enum wmi_vdev_param param_id, u32 param_value)
  1477. {
  1478. struct wmi_vdev_set_param_cmd *cmd;
  1479. struct sk_buff *skb;
  1480. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1481. if (!skb)
  1482. return -ENOMEM;
  1483. cmd = (struct wmi_vdev_set_param_cmd *)skb->data;
  1484. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1485. cmd->param_id = __cpu_to_le32(param_id);
  1486. cmd->param_value = __cpu_to_le32(param_value);
  1487. ath10k_dbg(ATH10K_DBG_WMI,
  1488. "wmi vdev id 0x%x set param %d value %d\n",
  1489. vdev_id, param_id, param_value);
  1490. return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_SET_PARAM_CMDID);
  1491. }
  1492. int ath10k_wmi_vdev_install_key(struct ath10k *ar,
  1493. const struct wmi_vdev_install_key_arg *arg)
  1494. {
  1495. struct wmi_vdev_install_key_cmd *cmd;
  1496. struct sk_buff *skb;
  1497. if (arg->key_cipher == WMI_CIPHER_NONE && arg->key_data != NULL)
  1498. return -EINVAL;
  1499. if (arg->key_cipher != WMI_CIPHER_NONE && arg->key_data == NULL)
  1500. return -EINVAL;
  1501. skb = ath10k_wmi_alloc_skb(sizeof(*cmd) + arg->key_len);
  1502. if (!skb)
  1503. return -ENOMEM;
  1504. cmd = (struct wmi_vdev_install_key_cmd *)skb->data;
  1505. cmd->vdev_id = __cpu_to_le32(arg->vdev_id);
  1506. cmd->key_idx = __cpu_to_le32(arg->key_idx);
  1507. cmd->key_flags = __cpu_to_le32(arg->key_flags);
  1508. cmd->key_cipher = __cpu_to_le32(arg->key_cipher);
  1509. cmd->key_len = __cpu_to_le32(arg->key_len);
  1510. cmd->key_txmic_len = __cpu_to_le32(arg->key_txmic_len);
  1511. cmd->key_rxmic_len = __cpu_to_le32(arg->key_rxmic_len);
  1512. if (arg->macaddr)
  1513. memcpy(cmd->peer_macaddr.addr, arg->macaddr, ETH_ALEN);
  1514. if (arg->key_data)
  1515. memcpy(cmd->key_data, arg->key_data, arg->key_len);
  1516. ath10k_dbg(ATH10K_DBG_WMI,
  1517. "wmi vdev install key idx %d cipher %d len %d\n",
  1518. arg->key_idx, arg->key_cipher, arg->key_len);
  1519. return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_INSTALL_KEY_CMDID);
  1520. }
  1521. int ath10k_wmi_peer_create(struct ath10k *ar, u32 vdev_id,
  1522. const u8 peer_addr[ETH_ALEN])
  1523. {
  1524. struct wmi_peer_create_cmd *cmd;
  1525. struct sk_buff *skb;
  1526. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1527. if (!skb)
  1528. return -ENOMEM;
  1529. cmd = (struct wmi_peer_create_cmd *)skb->data;
  1530. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1531. memcpy(cmd->peer_macaddr.addr, peer_addr, ETH_ALEN);
  1532. ath10k_dbg(ATH10K_DBG_WMI,
  1533. "wmi peer create vdev_id %d peer_addr %pM\n",
  1534. vdev_id, peer_addr);
  1535. return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_CREATE_CMDID);
  1536. }
  1537. int ath10k_wmi_peer_delete(struct ath10k *ar, u32 vdev_id,
  1538. const u8 peer_addr[ETH_ALEN])
  1539. {
  1540. struct wmi_peer_delete_cmd *cmd;
  1541. struct sk_buff *skb;
  1542. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1543. if (!skb)
  1544. return -ENOMEM;
  1545. cmd = (struct wmi_peer_delete_cmd *)skb->data;
  1546. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1547. memcpy(cmd->peer_macaddr.addr, peer_addr, ETH_ALEN);
  1548. ath10k_dbg(ATH10K_DBG_WMI,
  1549. "wmi peer delete vdev_id %d peer_addr %pM\n",
  1550. vdev_id, peer_addr);
  1551. return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_DELETE_CMDID);
  1552. }
  1553. int ath10k_wmi_peer_flush(struct ath10k *ar, u32 vdev_id,
  1554. const u8 peer_addr[ETH_ALEN], u32 tid_bitmap)
  1555. {
  1556. struct wmi_peer_flush_tids_cmd *cmd;
  1557. struct sk_buff *skb;
  1558. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1559. if (!skb)
  1560. return -ENOMEM;
  1561. cmd = (struct wmi_peer_flush_tids_cmd *)skb->data;
  1562. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1563. cmd->peer_tid_bitmap = __cpu_to_le32(tid_bitmap);
  1564. memcpy(cmd->peer_macaddr.addr, peer_addr, ETH_ALEN);
  1565. ath10k_dbg(ATH10K_DBG_WMI,
  1566. "wmi peer flush vdev_id %d peer_addr %pM tids %08x\n",
  1567. vdev_id, peer_addr, tid_bitmap);
  1568. return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_FLUSH_TIDS_CMDID);
  1569. }
  1570. int ath10k_wmi_peer_set_param(struct ath10k *ar, u32 vdev_id,
  1571. const u8 *peer_addr, enum wmi_peer_param param_id,
  1572. u32 param_value)
  1573. {
  1574. struct wmi_peer_set_param_cmd *cmd;
  1575. struct sk_buff *skb;
  1576. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1577. if (!skb)
  1578. return -ENOMEM;
  1579. cmd = (struct wmi_peer_set_param_cmd *)skb->data;
  1580. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1581. cmd->param_id = __cpu_to_le32(param_id);
  1582. cmd->param_value = __cpu_to_le32(param_value);
  1583. memcpy(&cmd->peer_macaddr.addr, peer_addr, 6);
  1584. ath10k_dbg(ATH10K_DBG_WMI,
  1585. "wmi vdev %d peer 0x%pM set param %d value %d\n",
  1586. vdev_id, peer_addr, param_id, param_value);
  1587. return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_SET_PARAM_CMDID);
  1588. }
  1589. int ath10k_wmi_set_psmode(struct ath10k *ar, u32 vdev_id,
  1590. enum wmi_sta_ps_mode psmode)
  1591. {
  1592. struct wmi_sta_powersave_mode_cmd *cmd;
  1593. struct sk_buff *skb;
  1594. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1595. if (!skb)
  1596. return -ENOMEM;
  1597. cmd = (struct wmi_sta_powersave_mode_cmd *)skb->data;
  1598. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1599. cmd->sta_ps_mode = __cpu_to_le32(psmode);
  1600. ath10k_dbg(ATH10K_DBG_WMI,
  1601. "wmi set powersave id 0x%x mode %d\n",
  1602. vdev_id, psmode);
  1603. return ath10k_wmi_cmd_send(ar, skb, WMI_STA_POWERSAVE_MODE_CMDID);
  1604. }
  1605. int ath10k_wmi_set_sta_ps_param(struct ath10k *ar, u32 vdev_id,
  1606. enum wmi_sta_powersave_param param_id,
  1607. u32 value)
  1608. {
  1609. struct wmi_sta_powersave_param_cmd *cmd;
  1610. struct sk_buff *skb;
  1611. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1612. if (!skb)
  1613. return -ENOMEM;
  1614. cmd = (struct wmi_sta_powersave_param_cmd *)skb->data;
  1615. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1616. cmd->param_id = __cpu_to_le32(param_id);
  1617. cmd->param_value = __cpu_to_le32(value);
  1618. ath10k_dbg(ATH10K_DBG_WMI,
  1619. "wmi sta ps param vdev_id 0x%x param %d value %d\n",
  1620. vdev_id, param_id, value);
  1621. return ath10k_wmi_cmd_send(ar, skb, WMI_STA_POWERSAVE_PARAM_CMDID);
  1622. }
  1623. int ath10k_wmi_set_ap_ps_param(struct ath10k *ar, u32 vdev_id, const u8 *mac,
  1624. enum wmi_ap_ps_peer_param param_id, u32 value)
  1625. {
  1626. struct wmi_ap_ps_peer_cmd *cmd;
  1627. struct sk_buff *skb;
  1628. if (!mac)
  1629. return -EINVAL;
  1630. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1631. if (!skb)
  1632. return -ENOMEM;
  1633. cmd = (struct wmi_ap_ps_peer_cmd *)skb->data;
  1634. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1635. cmd->param_id = __cpu_to_le32(param_id);
  1636. cmd->param_value = __cpu_to_le32(value);
  1637. memcpy(&cmd->peer_macaddr, mac, ETH_ALEN);
  1638. ath10k_dbg(ATH10K_DBG_WMI,
  1639. "wmi ap ps param vdev_id 0x%X param %d value %d mac_addr %pM\n",
  1640. vdev_id, param_id, value, mac);
  1641. return ath10k_wmi_cmd_send(ar, skb, WMI_AP_PS_PEER_PARAM_CMDID);
  1642. }
  1643. int ath10k_wmi_scan_chan_list(struct ath10k *ar,
  1644. const struct wmi_scan_chan_list_arg *arg)
  1645. {
  1646. struct wmi_scan_chan_list_cmd *cmd;
  1647. struct sk_buff *skb;
  1648. struct wmi_channel_arg *ch;
  1649. struct wmi_channel *ci;
  1650. int len;
  1651. int i;
  1652. len = sizeof(*cmd) + arg->n_channels * sizeof(struct wmi_channel);
  1653. skb = ath10k_wmi_alloc_skb(len);
  1654. if (!skb)
  1655. return -EINVAL;
  1656. cmd = (struct wmi_scan_chan_list_cmd *)skb->data;
  1657. cmd->num_scan_chans = __cpu_to_le32(arg->n_channels);
  1658. for (i = 0; i < arg->n_channels; i++) {
  1659. u32 flags = 0;
  1660. ch = &arg->channels[i];
  1661. ci = &cmd->chan_info[i];
  1662. if (ch->passive)
  1663. flags |= WMI_CHAN_FLAG_PASSIVE;
  1664. if (ch->allow_ibss)
  1665. flags |= WMI_CHAN_FLAG_ADHOC_ALLOWED;
  1666. if (ch->allow_ht)
  1667. flags |= WMI_CHAN_FLAG_ALLOW_HT;
  1668. if (ch->allow_vht)
  1669. flags |= WMI_CHAN_FLAG_ALLOW_VHT;
  1670. if (ch->ht40plus)
  1671. flags |= WMI_CHAN_FLAG_HT40_PLUS;
  1672. ci->mhz = __cpu_to_le32(ch->freq);
  1673. ci->band_center_freq1 = __cpu_to_le32(ch->freq);
  1674. ci->band_center_freq2 = 0;
  1675. ci->min_power = ch->min_power;
  1676. ci->max_power = ch->max_power;
  1677. ci->reg_power = ch->max_reg_power;
  1678. ci->antenna_max = ch->max_antenna_gain;
  1679. ci->antenna_max = 0;
  1680. /* mode & flags share storage */
  1681. ci->mode = ch->mode;
  1682. ci->flags |= __cpu_to_le32(flags);
  1683. }
  1684. return ath10k_wmi_cmd_send(ar, skb, WMI_SCAN_CHAN_LIST_CMDID);
  1685. }
  1686. int ath10k_wmi_peer_assoc(struct ath10k *ar,
  1687. const struct wmi_peer_assoc_complete_arg *arg)
  1688. {
  1689. struct wmi_peer_assoc_complete_cmd *cmd;
  1690. struct sk_buff *skb;
  1691. if (arg->peer_mpdu_density > 16)
  1692. return -EINVAL;
  1693. if (arg->peer_legacy_rates.num_rates > MAX_SUPPORTED_RATES)
  1694. return -EINVAL;
  1695. if (arg->peer_ht_rates.num_rates > MAX_SUPPORTED_RATES)
  1696. return -EINVAL;
  1697. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1698. if (!skb)
  1699. return -ENOMEM;
  1700. cmd = (struct wmi_peer_assoc_complete_cmd *)skb->data;
  1701. cmd->vdev_id = __cpu_to_le32(arg->vdev_id);
  1702. cmd->peer_new_assoc = __cpu_to_le32(arg->peer_reassoc ? 0 : 1);
  1703. cmd->peer_associd = __cpu_to_le32(arg->peer_aid);
  1704. cmd->peer_flags = __cpu_to_le32(arg->peer_flags);
  1705. cmd->peer_caps = __cpu_to_le32(arg->peer_caps);
  1706. cmd->peer_listen_intval = __cpu_to_le32(arg->peer_listen_intval);
  1707. cmd->peer_ht_caps = __cpu_to_le32(arg->peer_ht_caps);
  1708. cmd->peer_max_mpdu = __cpu_to_le32(arg->peer_max_mpdu);
  1709. cmd->peer_mpdu_density = __cpu_to_le32(arg->peer_mpdu_density);
  1710. cmd->peer_rate_caps = __cpu_to_le32(arg->peer_rate_caps);
  1711. cmd->peer_nss = __cpu_to_le32(arg->peer_num_spatial_streams);
  1712. cmd->peer_vht_caps = __cpu_to_le32(arg->peer_vht_caps);
  1713. cmd->peer_phymode = __cpu_to_le32(arg->peer_phymode);
  1714. memcpy(cmd->peer_macaddr.addr, arg->addr, ETH_ALEN);
  1715. cmd->peer_legacy_rates.num_rates =
  1716. __cpu_to_le32(arg->peer_legacy_rates.num_rates);
  1717. memcpy(cmd->peer_legacy_rates.rates, arg->peer_legacy_rates.rates,
  1718. arg->peer_legacy_rates.num_rates);
  1719. cmd->peer_ht_rates.num_rates =
  1720. __cpu_to_le32(arg->peer_ht_rates.num_rates);
  1721. memcpy(cmd->peer_ht_rates.rates, arg->peer_ht_rates.rates,
  1722. arg->peer_ht_rates.num_rates);
  1723. cmd->peer_vht_rates.rx_max_rate =
  1724. __cpu_to_le32(arg->peer_vht_rates.rx_max_rate);
  1725. cmd->peer_vht_rates.rx_mcs_set =
  1726. __cpu_to_le32(arg->peer_vht_rates.rx_mcs_set);
  1727. cmd->peer_vht_rates.tx_max_rate =
  1728. __cpu_to_le32(arg->peer_vht_rates.tx_max_rate);
  1729. cmd->peer_vht_rates.tx_mcs_set =
  1730. __cpu_to_le32(arg->peer_vht_rates.tx_mcs_set);
  1731. ath10k_dbg(ATH10K_DBG_WMI,
  1732. "wmi peer assoc vdev %d addr %pM\n",
  1733. arg->vdev_id, arg->addr);
  1734. return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_ASSOC_CMDID);
  1735. }
  1736. int ath10k_wmi_beacon_send(struct ath10k *ar, const struct wmi_bcn_tx_arg *arg)
  1737. {
  1738. struct wmi_bcn_tx_cmd *cmd;
  1739. struct sk_buff *skb;
  1740. skb = ath10k_wmi_alloc_skb(sizeof(*cmd) + arg->bcn_len);
  1741. if (!skb)
  1742. return -ENOMEM;
  1743. cmd = (struct wmi_bcn_tx_cmd *)skb->data;
  1744. cmd->hdr.vdev_id = __cpu_to_le32(arg->vdev_id);
  1745. cmd->hdr.tx_rate = __cpu_to_le32(arg->tx_rate);
  1746. cmd->hdr.tx_power = __cpu_to_le32(arg->tx_power);
  1747. cmd->hdr.bcn_len = __cpu_to_le32(arg->bcn_len);
  1748. memcpy(cmd->bcn, arg->bcn, arg->bcn_len);
  1749. return ath10k_wmi_cmd_send(ar, skb, WMI_BCN_TX_CMDID);
  1750. }
  1751. static void ath10k_wmi_pdev_set_wmm_param(struct wmi_wmm_params *params,
  1752. const struct wmi_wmm_params_arg *arg)
  1753. {
  1754. params->cwmin = __cpu_to_le32(arg->cwmin);
  1755. params->cwmax = __cpu_to_le32(arg->cwmax);
  1756. params->aifs = __cpu_to_le32(arg->aifs);
  1757. params->txop = __cpu_to_le32(arg->txop);
  1758. params->acm = __cpu_to_le32(arg->acm);
  1759. params->no_ack = __cpu_to_le32(arg->no_ack);
  1760. }
  1761. int ath10k_wmi_pdev_set_wmm_params(struct ath10k *ar,
  1762. const struct wmi_pdev_set_wmm_params_arg *arg)
  1763. {
  1764. struct wmi_pdev_set_wmm_params *cmd;
  1765. struct sk_buff *skb;
  1766. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1767. if (!skb)
  1768. return -ENOMEM;
  1769. cmd = (struct wmi_pdev_set_wmm_params *)skb->data;
  1770. ath10k_wmi_pdev_set_wmm_param(&cmd->ac_be, &arg->ac_be);
  1771. ath10k_wmi_pdev_set_wmm_param(&cmd->ac_bk, &arg->ac_bk);
  1772. ath10k_wmi_pdev_set_wmm_param(&cmd->ac_vi, &arg->ac_vi);
  1773. ath10k_wmi_pdev_set_wmm_param(&cmd->ac_vo, &arg->ac_vo);
  1774. ath10k_dbg(ATH10K_DBG_WMI, "wmi pdev set wmm params\n");
  1775. return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_WMM_PARAMS_CMDID);
  1776. }
  1777. int ath10k_wmi_request_stats(struct ath10k *ar, enum wmi_stats_id stats_id)
  1778. {
  1779. struct wmi_request_stats_cmd *cmd;
  1780. struct sk_buff *skb;
  1781. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1782. if (!skb)
  1783. return -ENOMEM;
  1784. cmd = (struct wmi_request_stats_cmd *)skb->data;
  1785. cmd->stats_id = __cpu_to_le32(stats_id);
  1786. ath10k_dbg(ATH10K_DBG_WMI, "wmi request stats %d\n", (int)stats_id);
  1787. return ath10k_wmi_cmd_send(ar, skb, WMI_REQUEST_STATS_CMDID);
  1788. }
  1789. int ath10k_wmi_force_fw_hang(struct ath10k *ar,
  1790. enum wmi_force_fw_hang_type type, u32 delay_ms)
  1791. {
  1792. struct wmi_force_fw_hang_cmd *cmd;
  1793. struct sk_buff *skb;
  1794. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1795. if (!skb)
  1796. return -ENOMEM;
  1797. cmd = (struct wmi_force_fw_hang_cmd *)skb->data;
  1798. cmd->type = __cpu_to_le32(type);
  1799. cmd->delay_ms = __cpu_to_le32(delay_ms);
  1800. ath10k_dbg(ATH10K_DBG_WMI, "wmi force fw hang %d delay %d\n",
  1801. type, delay_ms);
  1802. return ath10k_wmi_cmd_send(ar, skb, WMI_FORCE_FW_HANG_CMDID);
  1803. }