spi-pxa2xx.c 42 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634
  1. /*
  2. * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17. */
  18. #include <linux/init.h>
  19. #include <linux/module.h>
  20. #include <linux/device.h>
  21. #include <linux/ioport.h>
  22. #include <linux/errno.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/spi/pxa2xx_spi.h>
  26. #include <linux/dma-mapping.h>
  27. #include <linux/spi/spi.h>
  28. #include <linux/workqueue.h>
  29. #include <linux/delay.h>
  30. #include <linux/gpio.h>
  31. #include <linux/slab.h>
  32. #include <asm/io.h>
  33. #include <asm/irq.h>
  34. #include <asm/delay.h>
  35. MODULE_AUTHOR("Stephen Street");
  36. MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  37. MODULE_LICENSE("GPL");
  38. MODULE_ALIAS("platform:pxa2xx-spi");
  39. #define MAX_BUSES 3
  40. #define TIMOUT_DFLT 1000
  41. #define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
  42. #define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK)
  43. #define IS_DMA_ALIGNED(x) IS_ALIGNED((unsigned long)(x), DMA_ALIGNMENT)
  44. #define MAX_DMA_LEN 8191
  45. #define DMA_ALIGNMENT 8
  46. /*
  47. * for testing SSCR1 changes that require SSP restart, basically
  48. * everything except the service and interrupt enables, the pxa270 developer
  49. * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  50. * list, but the PXA255 dev man says all bits without really meaning the
  51. * service and interrupt enables
  52. */
  53. #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  54. | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  55. | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  56. | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  57. | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  58. | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  59. #define DEFINE_SSP_REG(reg, off) \
  60. static inline u32 read_##reg(void const __iomem *p) \
  61. { return __raw_readl(p + (off)); } \
  62. \
  63. static inline void write_##reg(u32 v, void __iomem *p) \
  64. { __raw_writel(v, p + (off)); }
  65. DEFINE_SSP_REG(SSCR0, 0x00)
  66. DEFINE_SSP_REG(SSCR1, 0x04)
  67. DEFINE_SSP_REG(SSSR, 0x08)
  68. DEFINE_SSP_REG(SSITR, 0x0c)
  69. DEFINE_SSP_REG(SSDR, 0x10)
  70. DEFINE_SSP_REG(SSTO, 0x28)
  71. DEFINE_SSP_REG(SSPSP, 0x2c)
  72. #define START_STATE ((void*)0)
  73. #define RUNNING_STATE ((void*)1)
  74. #define DONE_STATE ((void*)2)
  75. #define ERROR_STATE ((void*)-1)
  76. struct driver_data {
  77. /* Driver model hookup */
  78. struct platform_device *pdev;
  79. /* SSP Info */
  80. struct ssp_device *ssp;
  81. /* SPI framework hookup */
  82. enum pxa_ssp_type ssp_type;
  83. struct spi_master *master;
  84. /* PXA hookup */
  85. struct pxa2xx_spi_master *master_info;
  86. /* DMA setup stuff */
  87. int rx_channel;
  88. int tx_channel;
  89. u32 *null_dma_buf;
  90. /* SSP register addresses */
  91. void __iomem *ioaddr;
  92. u32 ssdr_physical;
  93. /* SSP masks*/
  94. u32 dma_cr1;
  95. u32 int_cr1;
  96. u32 clear_sr;
  97. u32 mask_sr;
  98. /* Message Transfer pump */
  99. struct tasklet_struct pump_transfers;
  100. /* Current message transfer state info */
  101. struct spi_message* cur_msg;
  102. struct spi_transfer* cur_transfer;
  103. struct chip_data *cur_chip;
  104. size_t len;
  105. void *tx;
  106. void *tx_end;
  107. void *rx;
  108. void *rx_end;
  109. int dma_mapped;
  110. dma_addr_t rx_dma;
  111. dma_addr_t tx_dma;
  112. size_t rx_map_len;
  113. size_t tx_map_len;
  114. u8 n_bytes;
  115. u32 dma_width;
  116. int (*write)(struct driver_data *drv_data);
  117. int (*read)(struct driver_data *drv_data);
  118. irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
  119. void (*cs_control)(u32 command);
  120. };
  121. struct chip_data {
  122. u32 cr0;
  123. u32 cr1;
  124. u32 psp;
  125. u32 timeout;
  126. u8 n_bytes;
  127. u32 dma_width;
  128. u32 dma_burst_size;
  129. u32 threshold;
  130. u32 dma_threshold;
  131. u8 enable_dma;
  132. u8 bits_per_word;
  133. u32 speed_hz;
  134. union {
  135. int gpio_cs;
  136. unsigned int frm;
  137. };
  138. int gpio_cs_inverted;
  139. int (*write)(struct driver_data *drv_data);
  140. int (*read)(struct driver_data *drv_data);
  141. void (*cs_control)(u32 command);
  142. };
  143. static void cs_assert(struct driver_data *drv_data)
  144. {
  145. struct chip_data *chip = drv_data->cur_chip;
  146. if (drv_data->ssp_type == CE4100_SSP) {
  147. write_SSSR(drv_data->cur_chip->frm, drv_data->ioaddr);
  148. return;
  149. }
  150. if (chip->cs_control) {
  151. chip->cs_control(PXA2XX_CS_ASSERT);
  152. return;
  153. }
  154. if (gpio_is_valid(chip->gpio_cs))
  155. gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
  156. }
  157. static void cs_deassert(struct driver_data *drv_data)
  158. {
  159. struct chip_data *chip = drv_data->cur_chip;
  160. if (drv_data->ssp_type == CE4100_SSP)
  161. return;
  162. if (chip->cs_control) {
  163. chip->cs_control(PXA2XX_CS_DEASSERT);
  164. return;
  165. }
  166. if (gpio_is_valid(chip->gpio_cs))
  167. gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
  168. }
  169. static void write_SSSR_CS(struct driver_data *drv_data, u32 val)
  170. {
  171. void __iomem *reg = drv_data->ioaddr;
  172. if (drv_data->ssp_type == CE4100_SSP)
  173. val |= read_SSSR(reg) & SSSR_ALT_FRM_MASK;
  174. write_SSSR(val, reg);
  175. }
  176. static int pxa25x_ssp_comp(struct driver_data *drv_data)
  177. {
  178. if (drv_data->ssp_type == PXA25x_SSP)
  179. return 1;
  180. if (drv_data->ssp_type == CE4100_SSP)
  181. return 1;
  182. return 0;
  183. }
  184. static int flush(struct driver_data *drv_data)
  185. {
  186. unsigned long limit = loops_per_jiffy << 1;
  187. void __iomem *reg = drv_data->ioaddr;
  188. do {
  189. while (read_SSSR(reg) & SSSR_RNE) {
  190. read_SSDR(reg);
  191. }
  192. } while ((read_SSSR(reg) & SSSR_BSY) && --limit);
  193. write_SSSR_CS(drv_data, SSSR_ROR);
  194. return limit;
  195. }
  196. static int null_writer(struct driver_data *drv_data)
  197. {
  198. void __iomem *reg = drv_data->ioaddr;
  199. u8 n_bytes = drv_data->n_bytes;
  200. if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
  201. || (drv_data->tx == drv_data->tx_end))
  202. return 0;
  203. write_SSDR(0, reg);
  204. drv_data->tx += n_bytes;
  205. return 1;
  206. }
  207. static int null_reader(struct driver_data *drv_data)
  208. {
  209. void __iomem *reg = drv_data->ioaddr;
  210. u8 n_bytes = drv_data->n_bytes;
  211. while ((read_SSSR(reg) & SSSR_RNE)
  212. && (drv_data->rx < drv_data->rx_end)) {
  213. read_SSDR(reg);
  214. drv_data->rx += n_bytes;
  215. }
  216. return drv_data->rx == drv_data->rx_end;
  217. }
  218. static int u8_writer(struct driver_data *drv_data)
  219. {
  220. void __iomem *reg = drv_data->ioaddr;
  221. if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
  222. || (drv_data->tx == drv_data->tx_end))
  223. return 0;
  224. write_SSDR(*(u8 *)(drv_data->tx), reg);
  225. ++drv_data->tx;
  226. return 1;
  227. }
  228. static int u8_reader(struct driver_data *drv_data)
  229. {
  230. void __iomem *reg = drv_data->ioaddr;
  231. while ((read_SSSR(reg) & SSSR_RNE)
  232. && (drv_data->rx < drv_data->rx_end)) {
  233. *(u8 *)(drv_data->rx) = read_SSDR(reg);
  234. ++drv_data->rx;
  235. }
  236. return drv_data->rx == drv_data->rx_end;
  237. }
  238. static int u16_writer(struct driver_data *drv_data)
  239. {
  240. void __iomem *reg = drv_data->ioaddr;
  241. if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
  242. || (drv_data->tx == drv_data->tx_end))
  243. return 0;
  244. write_SSDR(*(u16 *)(drv_data->tx), reg);
  245. drv_data->tx += 2;
  246. return 1;
  247. }
  248. static int u16_reader(struct driver_data *drv_data)
  249. {
  250. void __iomem *reg = drv_data->ioaddr;
  251. while ((read_SSSR(reg) & SSSR_RNE)
  252. && (drv_data->rx < drv_data->rx_end)) {
  253. *(u16 *)(drv_data->rx) = read_SSDR(reg);
  254. drv_data->rx += 2;
  255. }
  256. return drv_data->rx == drv_data->rx_end;
  257. }
  258. static int u32_writer(struct driver_data *drv_data)
  259. {
  260. void __iomem *reg = drv_data->ioaddr;
  261. if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
  262. || (drv_data->tx == drv_data->tx_end))
  263. return 0;
  264. write_SSDR(*(u32 *)(drv_data->tx), reg);
  265. drv_data->tx += 4;
  266. return 1;
  267. }
  268. static int u32_reader(struct driver_data *drv_data)
  269. {
  270. void __iomem *reg = drv_data->ioaddr;
  271. while ((read_SSSR(reg) & SSSR_RNE)
  272. && (drv_data->rx < drv_data->rx_end)) {
  273. *(u32 *)(drv_data->rx) = read_SSDR(reg);
  274. drv_data->rx += 4;
  275. }
  276. return drv_data->rx == drv_data->rx_end;
  277. }
  278. static void *next_transfer(struct driver_data *drv_data)
  279. {
  280. struct spi_message *msg = drv_data->cur_msg;
  281. struct spi_transfer *trans = drv_data->cur_transfer;
  282. /* Move to next transfer */
  283. if (trans->transfer_list.next != &msg->transfers) {
  284. drv_data->cur_transfer =
  285. list_entry(trans->transfer_list.next,
  286. struct spi_transfer,
  287. transfer_list);
  288. return RUNNING_STATE;
  289. } else
  290. return DONE_STATE;
  291. }
  292. static int map_dma_buffers(struct driver_data *drv_data)
  293. {
  294. struct spi_message *msg = drv_data->cur_msg;
  295. struct device *dev = &msg->spi->dev;
  296. if (!drv_data->cur_chip->enable_dma)
  297. return 0;
  298. if (msg->is_dma_mapped)
  299. return drv_data->rx_dma && drv_data->tx_dma;
  300. if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
  301. return 0;
  302. /* Modify setup if rx buffer is null */
  303. if (drv_data->rx == NULL) {
  304. *drv_data->null_dma_buf = 0;
  305. drv_data->rx = drv_data->null_dma_buf;
  306. drv_data->rx_map_len = 4;
  307. } else
  308. drv_data->rx_map_len = drv_data->len;
  309. /* Modify setup if tx buffer is null */
  310. if (drv_data->tx == NULL) {
  311. *drv_data->null_dma_buf = 0;
  312. drv_data->tx = drv_data->null_dma_buf;
  313. drv_data->tx_map_len = 4;
  314. } else
  315. drv_data->tx_map_len = drv_data->len;
  316. /* Stream map the tx buffer. Always do DMA_TO_DEVICE first
  317. * so we flush the cache *before* invalidating it, in case
  318. * the tx and rx buffers overlap.
  319. */
  320. drv_data->tx_dma = dma_map_single(dev, drv_data->tx,
  321. drv_data->tx_map_len, DMA_TO_DEVICE);
  322. if (dma_mapping_error(dev, drv_data->tx_dma))
  323. return 0;
  324. /* Stream map the rx buffer */
  325. drv_data->rx_dma = dma_map_single(dev, drv_data->rx,
  326. drv_data->rx_map_len, DMA_FROM_DEVICE);
  327. if (dma_mapping_error(dev, drv_data->rx_dma)) {
  328. dma_unmap_single(dev, drv_data->tx_dma,
  329. drv_data->tx_map_len, DMA_TO_DEVICE);
  330. return 0;
  331. }
  332. return 1;
  333. }
  334. static void unmap_dma_buffers(struct driver_data *drv_data)
  335. {
  336. struct device *dev;
  337. if (!drv_data->dma_mapped)
  338. return;
  339. if (!drv_data->cur_msg->is_dma_mapped) {
  340. dev = &drv_data->cur_msg->spi->dev;
  341. dma_unmap_single(dev, drv_data->rx_dma,
  342. drv_data->rx_map_len, DMA_FROM_DEVICE);
  343. dma_unmap_single(dev, drv_data->tx_dma,
  344. drv_data->tx_map_len, DMA_TO_DEVICE);
  345. }
  346. drv_data->dma_mapped = 0;
  347. }
  348. /* caller already set message->status; dma and pio irqs are blocked */
  349. static void giveback(struct driver_data *drv_data)
  350. {
  351. struct spi_transfer* last_transfer;
  352. struct spi_message *msg;
  353. msg = drv_data->cur_msg;
  354. drv_data->cur_msg = NULL;
  355. drv_data->cur_transfer = NULL;
  356. last_transfer = list_entry(msg->transfers.prev,
  357. struct spi_transfer,
  358. transfer_list);
  359. /* Delay if requested before any change in chip select */
  360. if (last_transfer->delay_usecs)
  361. udelay(last_transfer->delay_usecs);
  362. /* Drop chip select UNLESS cs_change is true or we are returning
  363. * a message with an error, or next message is for another chip
  364. */
  365. if (!last_transfer->cs_change)
  366. cs_deassert(drv_data);
  367. else {
  368. struct spi_message *next_msg;
  369. /* Holding of cs was hinted, but we need to make sure
  370. * the next message is for the same chip. Don't waste
  371. * time with the following tests unless this was hinted.
  372. *
  373. * We cannot postpone this until pump_messages, because
  374. * after calling msg->complete (below) the driver that
  375. * sent the current message could be unloaded, which
  376. * could invalidate the cs_control() callback...
  377. */
  378. /* get a pointer to the next message, if any */
  379. next_msg = spi_get_next_queued_message(drv_data->master);
  380. /* see if the next and current messages point
  381. * to the same chip
  382. */
  383. if (next_msg && next_msg->spi != msg->spi)
  384. next_msg = NULL;
  385. if (!next_msg || msg->state == ERROR_STATE)
  386. cs_deassert(drv_data);
  387. }
  388. spi_finalize_current_message(drv_data->master);
  389. drv_data->cur_chip = NULL;
  390. }
  391. static int wait_ssp_rx_stall(void const __iomem *ioaddr)
  392. {
  393. unsigned long limit = loops_per_jiffy << 1;
  394. while ((read_SSSR(ioaddr) & SSSR_BSY) && --limit)
  395. cpu_relax();
  396. return limit;
  397. }
  398. static int wait_dma_channel_stop(int channel)
  399. {
  400. unsigned long limit = loops_per_jiffy << 1;
  401. while (!(DCSR(channel) & DCSR_STOPSTATE) && --limit)
  402. cpu_relax();
  403. return limit;
  404. }
  405. static void dma_error_stop(struct driver_data *drv_data, const char *msg)
  406. {
  407. void __iomem *reg = drv_data->ioaddr;
  408. /* Stop and reset */
  409. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  410. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  411. write_SSSR_CS(drv_data, drv_data->clear_sr);
  412. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  413. if (!pxa25x_ssp_comp(drv_data))
  414. write_SSTO(0, reg);
  415. flush(drv_data);
  416. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  417. unmap_dma_buffers(drv_data);
  418. dev_err(&drv_data->pdev->dev, "%s\n", msg);
  419. drv_data->cur_msg->state = ERROR_STATE;
  420. tasklet_schedule(&drv_data->pump_transfers);
  421. }
  422. static void dma_transfer_complete(struct driver_data *drv_data)
  423. {
  424. void __iomem *reg = drv_data->ioaddr;
  425. struct spi_message *msg = drv_data->cur_msg;
  426. /* Clear and disable interrupts on SSP and DMA channels*/
  427. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  428. write_SSSR_CS(drv_data, drv_data->clear_sr);
  429. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  430. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  431. if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
  432. dev_err(&drv_data->pdev->dev,
  433. "dma_handler: dma rx channel stop failed\n");
  434. if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
  435. dev_err(&drv_data->pdev->dev,
  436. "dma_transfer: ssp rx stall failed\n");
  437. unmap_dma_buffers(drv_data);
  438. /* update the buffer pointer for the amount completed in dma */
  439. drv_data->rx += drv_data->len -
  440. (DCMD(drv_data->rx_channel) & DCMD_LENGTH);
  441. /* read trailing data from fifo, it does not matter how many
  442. * bytes are in the fifo just read until buffer is full
  443. * or fifo is empty, which ever occurs first */
  444. drv_data->read(drv_data);
  445. /* return count of what was actually read */
  446. msg->actual_length += drv_data->len -
  447. (drv_data->rx_end - drv_data->rx);
  448. /* Transfer delays and chip select release are
  449. * handled in pump_transfers or giveback
  450. */
  451. /* Move to next transfer */
  452. msg->state = next_transfer(drv_data);
  453. /* Schedule transfer tasklet */
  454. tasklet_schedule(&drv_data->pump_transfers);
  455. }
  456. static void dma_handler(int channel, void *data)
  457. {
  458. struct driver_data *drv_data = data;
  459. u32 irq_status = DCSR(channel) & DMA_INT_MASK;
  460. if (irq_status & DCSR_BUSERR) {
  461. if (channel == drv_data->tx_channel)
  462. dma_error_stop(drv_data,
  463. "dma_handler: "
  464. "bad bus address on tx channel");
  465. else
  466. dma_error_stop(drv_data,
  467. "dma_handler: "
  468. "bad bus address on rx channel");
  469. return;
  470. }
  471. /* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
  472. if ((channel == drv_data->tx_channel)
  473. && (irq_status & DCSR_ENDINTR)
  474. && (drv_data->ssp_type == PXA25x_SSP)) {
  475. /* Wait for rx to stall */
  476. if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
  477. dev_err(&drv_data->pdev->dev,
  478. "dma_handler: ssp rx stall failed\n");
  479. /* finish this transfer, start the next */
  480. dma_transfer_complete(drv_data);
  481. }
  482. }
  483. static irqreturn_t dma_transfer(struct driver_data *drv_data)
  484. {
  485. u32 irq_status;
  486. void __iomem *reg = drv_data->ioaddr;
  487. irq_status = read_SSSR(reg) & drv_data->mask_sr;
  488. if (irq_status & SSSR_ROR) {
  489. dma_error_stop(drv_data, "dma_transfer: fifo overrun");
  490. return IRQ_HANDLED;
  491. }
  492. /* Check for false positive timeout */
  493. if ((irq_status & SSSR_TINT)
  494. && (DCSR(drv_data->tx_channel) & DCSR_RUN)) {
  495. write_SSSR(SSSR_TINT, reg);
  496. return IRQ_HANDLED;
  497. }
  498. if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) {
  499. /* Clear and disable timeout interrupt, do the rest in
  500. * dma_transfer_complete */
  501. if (!pxa25x_ssp_comp(drv_data))
  502. write_SSTO(0, reg);
  503. /* finish this transfer, start the next */
  504. dma_transfer_complete(drv_data);
  505. return IRQ_HANDLED;
  506. }
  507. /* Opps problem detected */
  508. return IRQ_NONE;
  509. }
  510. static void reset_sccr1(struct driver_data *drv_data)
  511. {
  512. void __iomem *reg = drv_data->ioaddr;
  513. struct chip_data *chip = drv_data->cur_chip;
  514. u32 sccr1_reg;
  515. sccr1_reg = read_SSCR1(reg) & ~drv_data->int_cr1;
  516. sccr1_reg &= ~SSCR1_RFT;
  517. sccr1_reg |= chip->threshold;
  518. write_SSCR1(sccr1_reg, reg);
  519. }
  520. static void int_error_stop(struct driver_data *drv_data, const char* msg)
  521. {
  522. void __iomem *reg = drv_data->ioaddr;
  523. /* Stop and reset SSP */
  524. write_SSSR_CS(drv_data, drv_data->clear_sr);
  525. reset_sccr1(drv_data);
  526. if (!pxa25x_ssp_comp(drv_data))
  527. write_SSTO(0, reg);
  528. flush(drv_data);
  529. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  530. dev_err(&drv_data->pdev->dev, "%s\n", msg);
  531. drv_data->cur_msg->state = ERROR_STATE;
  532. tasklet_schedule(&drv_data->pump_transfers);
  533. }
  534. static void int_transfer_complete(struct driver_data *drv_data)
  535. {
  536. void __iomem *reg = drv_data->ioaddr;
  537. /* Stop SSP */
  538. write_SSSR_CS(drv_data, drv_data->clear_sr);
  539. reset_sccr1(drv_data);
  540. if (!pxa25x_ssp_comp(drv_data))
  541. write_SSTO(0, reg);
  542. /* Update total byte transferred return count actual bytes read */
  543. drv_data->cur_msg->actual_length += drv_data->len -
  544. (drv_data->rx_end - drv_data->rx);
  545. /* Transfer delays and chip select release are
  546. * handled in pump_transfers or giveback
  547. */
  548. /* Move to next transfer */
  549. drv_data->cur_msg->state = next_transfer(drv_data);
  550. /* Schedule transfer tasklet */
  551. tasklet_schedule(&drv_data->pump_transfers);
  552. }
  553. static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
  554. {
  555. void __iomem *reg = drv_data->ioaddr;
  556. u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
  557. drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
  558. u32 irq_status = read_SSSR(reg) & irq_mask;
  559. if (irq_status & SSSR_ROR) {
  560. int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
  561. return IRQ_HANDLED;
  562. }
  563. if (irq_status & SSSR_TINT) {
  564. write_SSSR(SSSR_TINT, reg);
  565. if (drv_data->read(drv_data)) {
  566. int_transfer_complete(drv_data);
  567. return IRQ_HANDLED;
  568. }
  569. }
  570. /* Drain rx fifo, Fill tx fifo and prevent overruns */
  571. do {
  572. if (drv_data->read(drv_data)) {
  573. int_transfer_complete(drv_data);
  574. return IRQ_HANDLED;
  575. }
  576. } while (drv_data->write(drv_data));
  577. if (drv_data->read(drv_data)) {
  578. int_transfer_complete(drv_data);
  579. return IRQ_HANDLED;
  580. }
  581. if (drv_data->tx == drv_data->tx_end) {
  582. u32 bytes_left;
  583. u32 sccr1_reg;
  584. sccr1_reg = read_SSCR1(reg);
  585. sccr1_reg &= ~SSCR1_TIE;
  586. /*
  587. * PXA25x_SSP has no timeout, set up rx threshould for the
  588. * remaining RX bytes.
  589. */
  590. if (pxa25x_ssp_comp(drv_data)) {
  591. sccr1_reg &= ~SSCR1_RFT;
  592. bytes_left = drv_data->rx_end - drv_data->rx;
  593. switch (drv_data->n_bytes) {
  594. case 4:
  595. bytes_left >>= 1;
  596. case 2:
  597. bytes_left >>= 1;
  598. }
  599. if (bytes_left > RX_THRESH_DFLT)
  600. bytes_left = RX_THRESH_DFLT;
  601. sccr1_reg |= SSCR1_RxTresh(bytes_left);
  602. }
  603. write_SSCR1(sccr1_reg, reg);
  604. }
  605. /* We did something */
  606. return IRQ_HANDLED;
  607. }
  608. static irqreturn_t ssp_int(int irq, void *dev_id)
  609. {
  610. struct driver_data *drv_data = dev_id;
  611. void __iomem *reg = drv_data->ioaddr;
  612. u32 sccr1_reg = read_SSCR1(reg);
  613. u32 mask = drv_data->mask_sr;
  614. u32 status;
  615. status = read_SSSR(reg);
  616. /* Ignore possible writes if we don't need to write */
  617. if (!(sccr1_reg & SSCR1_TIE))
  618. mask &= ~SSSR_TFS;
  619. if (!(status & mask))
  620. return IRQ_NONE;
  621. if (!drv_data->cur_msg) {
  622. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  623. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  624. if (!pxa25x_ssp_comp(drv_data))
  625. write_SSTO(0, reg);
  626. write_SSSR_CS(drv_data, drv_data->clear_sr);
  627. dev_err(&drv_data->pdev->dev, "bad message state "
  628. "in interrupt handler\n");
  629. /* Never fail */
  630. return IRQ_HANDLED;
  631. }
  632. return drv_data->transfer_handler(drv_data);
  633. }
  634. static int set_dma_burst_and_threshold(struct chip_data *chip,
  635. struct spi_device *spi,
  636. u8 bits_per_word, u32 *burst_code,
  637. u32 *threshold)
  638. {
  639. struct pxa2xx_spi_chip *chip_info =
  640. (struct pxa2xx_spi_chip *)spi->controller_data;
  641. int bytes_per_word;
  642. int burst_bytes;
  643. int thresh_words;
  644. int req_burst_size;
  645. int retval = 0;
  646. /* Set the threshold (in registers) to equal the same amount of data
  647. * as represented by burst size (in bytes). The computation below
  648. * is (burst_size rounded up to nearest 8 byte, word or long word)
  649. * divided by (bytes/register); the tx threshold is the inverse of
  650. * the rx, so that there will always be enough data in the rx fifo
  651. * to satisfy a burst, and there will always be enough space in the
  652. * tx fifo to accept a burst (a tx burst will overwrite the fifo if
  653. * there is not enough space), there must always remain enough empty
  654. * space in the rx fifo for any data loaded to the tx fifo.
  655. * Whenever burst_size (in bytes) equals bits/word, the fifo threshold
  656. * will be 8, or half the fifo;
  657. * The threshold can only be set to 2, 4 or 8, but not 16, because
  658. * to burst 16 to the tx fifo, the fifo would have to be empty;
  659. * however, the minimum fifo trigger level is 1, and the tx will
  660. * request service when the fifo is at this level, with only 15 spaces.
  661. */
  662. /* find bytes/word */
  663. if (bits_per_word <= 8)
  664. bytes_per_word = 1;
  665. else if (bits_per_word <= 16)
  666. bytes_per_word = 2;
  667. else
  668. bytes_per_word = 4;
  669. /* use struct pxa2xx_spi_chip->dma_burst_size if available */
  670. if (chip_info)
  671. req_burst_size = chip_info->dma_burst_size;
  672. else {
  673. switch (chip->dma_burst_size) {
  674. default:
  675. /* if the default burst size is not set,
  676. * do it now */
  677. chip->dma_burst_size = DCMD_BURST8;
  678. case DCMD_BURST8:
  679. req_burst_size = 8;
  680. break;
  681. case DCMD_BURST16:
  682. req_burst_size = 16;
  683. break;
  684. case DCMD_BURST32:
  685. req_burst_size = 32;
  686. break;
  687. }
  688. }
  689. if (req_burst_size <= 8) {
  690. *burst_code = DCMD_BURST8;
  691. burst_bytes = 8;
  692. } else if (req_burst_size <= 16) {
  693. if (bytes_per_word == 1) {
  694. /* don't burst more than 1/2 the fifo */
  695. *burst_code = DCMD_BURST8;
  696. burst_bytes = 8;
  697. retval = 1;
  698. } else {
  699. *burst_code = DCMD_BURST16;
  700. burst_bytes = 16;
  701. }
  702. } else {
  703. if (bytes_per_word == 1) {
  704. /* don't burst more than 1/2 the fifo */
  705. *burst_code = DCMD_BURST8;
  706. burst_bytes = 8;
  707. retval = 1;
  708. } else if (bytes_per_word == 2) {
  709. /* don't burst more than 1/2 the fifo */
  710. *burst_code = DCMD_BURST16;
  711. burst_bytes = 16;
  712. retval = 1;
  713. } else {
  714. *burst_code = DCMD_BURST32;
  715. burst_bytes = 32;
  716. }
  717. }
  718. thresh_words = burst_bytes / bytes_per_word;
  719. /* thresh_words will be between 2 and 8 */
  720. *threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT)
  721. | (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT);
  722. return retval;
  723. }
  724. static unsigned int ssp_get_clk_div(struct ssp_device *ssp, int rate)
  725. {
  726. unsigned long ssp_clk = clk_get_rate(ssp->clk);
  727. if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
  728. return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
  729. else
  730. return ((ssp_clk / rate - 1) & 0xfff) << 8;
  731. }
  732. static void pump_transfers(unsigned long data)
  733. {
  734. struct driver_data *drv_data = (struct driver_data *)data;
  735. struct spi_message *message = NULL;
  736. struct spi_transfer *transfer = NULL;
  737. struct spi_transfer *previous = NULL;
  738. struct chip_data *chip = NULL;
  739. struct ssp_device *ssp = drv_data->ssp;
  740. void __iomem *reg = drv_data->ioaddr;
  741. u32 clk_div = 0;
  742. u8 bits = 0;
  743. u32 speed = 0;
  744. u32 cr0;
  745. u32 cr1;
  746. u32 dma_thresh = drv_data->cur_chip->dma_threshold;
  747. u32 dma_burst = drv_data->cur_chip->dma_burst_size;
  748. /* Get current state information */
  749. message = drv_data->cur_msg;
  750. transfer = drv_data->cur_transfer;
  751. chip = drv_data->cur_chip;
  752. /* Handle for abort */
  753. if (message->state == ERROR_STATE) {
  754. message->status = -EIO;
  755. giveback(drv_data);
  756. return;
  757. }
  758. /* Handle end of message */
  759. if (message->state == DONE_STATE) {
  760. message->status = 0;
  761. giveback(drv_data);
  762. return;
  763. }
  764. /* Delay if requested at end of transfer before CS change */
  765. if (message->state == RUNNING_STATE) {
  766. previous = list_entry(transfer->transfer_list.prev,
  767. struct spi_transfer,
  768. transfer_list);
  769. if (previous->delay_usecs)
  770. udelay(previous->delay_usecs);
  771. /* Drop chip select only if cs_change is requested */
  772. if (previous->cs_change)
  773. cs_deassert(drv_data);
  774. }
  775. /* Check for transfers that need multiple DMA segments */
  776. if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
  777. /* reject already-mapped transfers; PIO won't always work */
  778. if (message->is_dma_mapped
  779. || transfer->rx_dma || transfer->tx_dma) {
  780. dev_err(&drv_data->pdev->dev,
  781. "pump_transfers: mapped transfer length "
  782. "of %u is greater than %d\n",
  783. transfer->len, MAX_DMA_LEN);
  784. message->status = -EINVAL;
  785. giveback(drv_data);
  786. return;
  787. }
  788. /* warn ... we force this to PIO mode */
  789. if (printk_ratelimit())
  790. dev_warn(&message->spi->dev, "pump_transfers: "
  791. "DMA disabled for transfer length %ld "
  792. "greater than %d\n",
  793. (long)drv_data->len, MAX_DMA_LEN);
  794. }
  795. /* Setup the transfer state based on the type of transfer */
  796. if (flush(drv_data) == 0) {
  797. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  798. message->status = -EIO;
  799. giveback(drv_data);
  800. return;
  801. }
  802. drv_data->n_bytes = chip->n_bytes;
  803. drv_data->dma_width = chip->dma_width;
  804. drv_data->tx = (void *)transfer->tx_buf;
  805. drv_data->tx_end = drv_data->tx + transfer->len;
  806. drv_data->rx = transfer->rx_buf;
  807. drv_data->rx_end = drv_data->rx + transfer->len;
  808. drv_data->rx_dma = transfer->rx_dma;
  809. drv_data->tx_dma = transfer->tx_dma;
  810. drv_data->len = transfer->len & DCMD_LENGTH;
  811. drv_data->write = drv_data->tx ? chip->write : null_writer;
  812. drv_data->read = drv_data->rx ? chip->read : null_reader;
  813. /* Change speed and bit per word on a per transfer */
  814. cr0 = chip->cr0;
  815. if (transfer->speed_hz || transfer->bits_per_word) {
  816. bits = chip->bits_per_word;
  817. speed = chip->speed_hz;
  818. if (transfer->speed_hz)
  819. speed = transfer->speed_hz;
  820. if (transfer->bits_per_word)
  821. bits = transfer->bits_per_word;
  822. clk_div = ssp_get_clk_div(ssp, speed);
  823. if (bits <= 8) {
  824. drv_data->n_bytes = 1;
  825. drv_data->dma_width = DCMD_WIDTH1;
  826. drv_data->read = drv_data->read != null_reader ?
  827. u8_reader : null_reader;
  828. drv_data->write = drv_data->write != null_writer ?
  829. u8_writer : null_writer;
  830. } else if (bits <= 16) {
  831. drv_data->n_bytes = 2;
  832. drv_data->dma_width = DCMD_WIDTH2;
  833. drv_data->read = drv_data->read != null_reader ?
  834. u16_reader : null_reader;
  835. drv_data->write = drv_data->write != null_writer ?
  836. u16_writer : null_writer;
  837. } else if (bits <= 32) {
  838. drv_data->n_bytes = 4;
  839. drv_data->dma_width = DCMD_WIDTH4;
  840. drv_data->read = drv_data->read != null_reader ?
  841. u32_reader : null_reader;
  842. drv_data->write = drv_data->write != null_writer ?
  843. u32_writer : null_writer;
  844. }
  845. /* if bits/word is changed in dma mode, then must check the
  846. * thresholds and burst also */
  847. if (chip->enable_dma) {
  848. if (set_dma_burst_and_threshold(chip, message->spi,
  849. bits, &dma_burst,
  850. &dma_thresh))
  851. if (printk_ratelimit())
  852. dev_warn(&message->spi->dev,
  853. "pump_transfers: "
  854. "DMA burst size reduced to "
  855. "match bits_per_word\n");
  856. }
  857. cr0 = clk_div
  858. | SSCR0_Motorola
  859. | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
  860. | SSCR0_SSE
  861. | (bits > 16 ? SSCR0_EDSS : 0);
  862. }
  863. message->state = RUNNING_STATE;
  864. /* Try to map dma buffer and do a dma transfer if successful, but
  865. * only if the length is non-zero and less than MAX_DMA_LEN.
  866. *
  867. * Zero-length non-descriptor DMA is illegal on PXA2xx; force use
  868. * of PIO instead. Care is needed above because the transfer may
  869. * have have been passed with buffers that are already dma mapped.
  870. * A zero-length transfer in PIO mode will not try to write/read
  871. * to/from the buffers
  872. *
  873. * REVISIT large transfers are exactly where we most want to be
  874. * using DMA. If this happens much, split those transfers into
  875. * multiple DMA segments rather than forcing PIO.
  876. */
  877. drv_data->dma_mapped = 0;
  878. if (drv_data->len > 0 && drv_data->len <= MAX_DMA_LEN)
  879. drv_data->dma_mapped = map_dma_buffers(drv_data);
  880. if (drv_data->dma_mapped) {
  881. /* Ensure we have the correct interrupt handler */
  882. drv_data->transfer_handler = dma_transfer;
  883. /* Setup rx DMA Channel */
  884. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  885. DSADR(drv_data->rx_channel) = drv_data->ssdr_physical;
  886. DTADR(drv_data->rx_channel) = drv_data->rx_dma;
  887. if (drv_data->rx == drv_data->null_dma_buf)
  888. /* No target address increment */
  889. DCMD(drv_data->rx_channel) = DCMD_FLOWSRC
  890. | drv_data->dma_width
  891. | dma_burst
  892. | drv_data->len;
  893. else
  894. DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR
  895. | DCMD_FLOWSRC
  896. | drv_data->dma_width
  897. | dma_burst
  898. | drv_data->len;
  899. /* Setup tx DMA Channel */
  900. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  901. DSADR(drv_data->tx_channel) = drv_data->tx_dma;
  902. DTADR(drv_data->tx_channel) = drv_data->ssdr_physical;
  903. if (drv_data->tx == drv_data->null_dma_buf)
  904. /* No source address increment */
  905. DCMD(drv_data->tx_channel) = DCMD_FLOWTRG
  906. | drv_data->dma_width
  907. | dma_burst
  908. | drv_data->len;
  909. else
  910. DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR
  911. | DCMD_FLOWTRG
  912. | drv_data->dma_width
  913. | dma_burst
  914. | drv_data->len;
  915. /* Enable dma end irqs on SSP to detect end of transfer */
  916. if (drv_data->ssp_type == PXA25x_SSP)
  917. DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN;
  918. /* Clear status and start DMA engine */
  919. cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
  920. write_SSSR(drv_data->clear_sr, reg);
  921. DCSR(drv_data->rx_channel) |= DCSR_RUN;
  922. DCSR(drv_data->tx_channel) |= DCSR_RUN;
  923. } else {
  924. /* Ensure we have the correct interrupt handler */
  925. drv_data->transfer_handler = interrupt_transfer;
  926. /* Clear status */
  927. cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
  928. write_SSSR_CS(drv_data, drv_data->clear_sr);
  929. }
  930. /* see if we need to reload the config registers */
  931. if ((read_SSCR0(reg) != cr0)
  932. || (read_SSCR1(reg) & SSCR1_CHANGE_MASK) !=
  933. (cr1 & SSCR1_CHANGE_MASK)) {
  934. /* stop the SSP, and update the other bits */
  935. write_SSCR0(cr0 & ~SSCR0_SSE, reg);
  936. if (!pxa25x_ssp_comp(drv_data))
  937. write_SSTO(chip->timeout, reg);
  938. /* first set CR1 without interrupt and service enables */
  939. write_SSCR1(cr1 & SSCR1_CHANGE_MASK, reg);
  940. /* restart the SSP */
  941. write_SSCR0(cr0, reg);
  942. } else {
  943. if (!pxa25x_ssp_comp(drv_data))
  944. write_SSTO(chip->timeout, reg);
  945. }
  946. cs_assert(drv_data);
  947. /* after chip select, release the data by enabling service
  948. * requests and interrupts, without changing any mode bits */
  949. write_SSCR1(cr1, reg);
  950. }
  951. static int pxa2xx_spi_transfer_one_message(struct spi_master *master,
  952. struct spi_message *msg)
  953. {
  954. struct driver_data *drv_data = spi_master_get_devdata(master);
  955. drv_data->cur_msg = msg;
  956. /* Initial message state*/
  957. drv_data->cur_msg->state = START_STATE;
  958. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  959. struct spi_transfer,
  960. transfer_list);
  961. /* prepare to setup the SSP, in pump_transfers, using the per
  962. * chip configuration */
  963. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  964. /* Mark as busy and launch transfers */
  965. tasklet_schedule(&drv_data->pump_transfers);
  966. return 0;
  967. }
  968. static int setup_cs(struct spi_device *spi, struct chip_data *chip,
  969. struct pxa2xx_spi_chip *chip_info)
  970. {
  971. int err = 0;
  972. if (chip == NULL || chip_info == NULL)
  973. return 0;
  974. /* NOTE: setup() can be called multiple times, possibly with
  975. * different chip_info, release previously requested GPIO
  976. */
  977. if (gpio_is_valid(chip->gpio_cs))
  978. gpio_free(chip->gpio_cs);
  979. /* If (*cs_control) is provided, ignore GPIO chip select */
  980. if (chip_info->cs_control) {
  981. chip->cs_control = chip_info->cs_control;
  982. return 0;
  983. }
  984. if (gpio_is_valid(chip_info->gpio_cs)) {
  985. err = gpio_request(chip_info->gpio_cs, "SPI_CS");
  986. if (err) {
  987. dev_err(&spi->dev, "failed to request chip select "
  988. "GPIO%d\n", chip_info->gpio_cs);
  989. return err;
  990. }
  991. chip->gpio_cs = chip_info->gpio_cs;
  992. chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
  993. err = gpio_direction_output(chip->gpio_cs,
  994. !chip->gpio_cs_inverted);
  995. }
  996. return err;
  997. }
  998. static int setup(struct spi_device *spi)
  999. {
  1000. struct pxa2xx_spi_chip *chip_info = NULL;
  1001. struct chip_data *chip;
  1002. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  1003. struct ssp_device *ssp = drv_data->ssp;
  1004. unsigned int clk_div;
  1005. uint tx_thres = TX_THRESH_DFLT;
  1006. uint rx_thres = RX_THRESH_DFLT;
  1007. if (!pxa25x_ssp_comp(drv_data)
  1008. && (spi->bits_per_word < 4 || spi->bits_per_word > 32)) {
  1009. dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
  1010. "b/w not 4-32 for type non-PXA25x_SSP\n",
  1011. drv_data->ssp_type, spi->bits_per_word);
  1012. return -EINVAL;
  1013. } else if (pxa25x_ssp_comp(drv_data)
  1014. && (spi->bits_per_word < 4
  1015. || spi->bits_per_word > 16)) {
  1016. dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
  1017. "b/w not 4-16 for type PXA25x_SSP\n",
  1018. drv_data->ssp_type, spi->bits_per_word);
  1019. return -EINVAL;
  1020. }
  1021. /* Only alloc on first setup */
  1022. chip = spi_get_ctldata(spi);
  1023. if (!chip) {
  1024. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  1025. if (!chip) {
  1026. dev_err(&spi->dev,
  1027. "failed setup: can't allocate chip data\n");
  1028. return -ENOMEM;
  1029. }
  1030. if (drv_data->ssp_type == CE4100_SSP) {
  1031. if (spi->chip_select > 4) {
  1032. dev_err(&spi->dev, "failed setup: "
  1033. "cs number must not be > 4.\n");
  1034. kfree(chip);
  1035. return -EINVAL;
  1036. }
  1037. chip->frm = spi->chip_select;
  1038. } else
  1039. chip->gpio_cs = -1;
  1040. chip->enable_dma = 0;
  1041. chip->timeout = TIMOUT_DFLT;
  1042. chip->dma_burst_size = drv_data->master_info->enable_dma ?
  1043. DCMD_BURST8 : 0;
  1044. }
  1045. /* protocol drivers may change the chip settings, so...
  1046. * if chip_info exists, use it */
  1047. chip_info = spi->controller_data;
  1048. /* chip_info isn't always needed */
  1049. chip->cr1 = 0;
  1050. if (chip_info) {
  1051. if (chip_info->timeout)
  1052. chip->timeout = chip_info->timeout;
  1053. if (chip_info->tx_threshold)
  1054. tx_thres = chip_info->tx_threshold;
  1055. if (chip_info->rx_threshold)
  1056. rx_thres = chip_info->rx_threshold;
  1057. chip->enable_dma = drv_data->master_info->enable_dma;
  1058. chip->dma_threshold = 0;
  1059. if (chip_info->enable_loopback)
  1060. chip->cr1 = SSCR1_LBM;
  1061. }
  1062. chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
  1063. (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
  1064. /* set dma burst and threshold outside of chip_info path so that if
  1065. * chip_info goes away after setting chip->enable_dma, the
  1066. * burst and threshold can still respond to changes in bits_per_word */
  1067. if (chip->enable_dma) {
  1068. /* set up legal burst and threshold for dma */
  1069. if (set_dma_burst_and_threshold(chip, spi, spi->bits_per_word,
  1070. &chip->dma_burst_size,
  1071. &chip->dma_threshold)) {
  1072. dev_warn(&spi->dev, "in setup: DMA burst size reduced "
  1073. "to match bits_per_word\n");
  1074. }
  1075. }
  1076. clk_div = ssp_get_clk_div(ssp, spi->max_speed_hz);
  1077. chip->speed_hz = spi->max_speed_hz;
  1078. chip->cr0 = clk_div
  1079. | SSCR0_Motorola
  1080. | SSCR0_DataSize(spi->bits_per_word > 16 ?
  1081. spi->bits_per_word - 16 : spi->bits_per_word)
  1082. | SSCR0_SSE
  1083. | (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
  1084. chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
  1085. chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
  1086. | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
  1087. /* NOTE: PXA25x_SSP _could_ use external clocking ... */
  1088. if (!pxa25x_ssp_comp(drv_data))
  1089. dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
  1090. clk_get_rate(ssp->clk)
  1091. / (1 + ((chip->cr0 & SSCR0_SCR(0xfff)) >> 8)),
  1092. chip->enable_dma ? "DMA" : "PIO");
  1093. else
  1094. dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
  1095. clk_get_rate(ssp->clk) / 2
  1096. / (1 + ((chip->cr0 & SSCR0_SCR(0x0ff)) >> 8)),
  1097. chip->enable_dma ? "DMA" : "PIO");
  1098. if (spi->bits_per_word <= 8) {
  1099. chip->n_bytes = 1;
  1100. chip->dma_width = DCMD_WIDTH1;
  1101. chip->read = u8_reader;
  1102. chip->write = u8_writer;
  1103. } else if (spi->bits_per_word <= 16) {
  1104. chip->n_bytes = 2;
  1105. chip->dma_width = DCMD_WIDTH2;
  1106. chip->read = u16_reader;
  1107. chip->write = u16_writer;
  1108. } else if (spi->bits_per_word <= 32) {
  1109. chip->cr0 |= SSCR0_EDSS;
  1110. chip->n_bytes = 4;
  1111. chip->dma_width = DCMD_WIDTH4;
  1112. chip->read = u32_reader;
  1113. chip->write = u32_writer;
  1114. } else {
  1115. dev_err(&spi->dev, "invalid wordsize\n");
  1116. return -ENODEV;
  1117. }
  1118. chip->bits_per_word = spi->bits_per_word;
  1119. spi_set_ctldata(spi, chip);
  1120. if (drv_data->ssp_type == CE4100_SSP)
  1121. return 0;
  1122. return setup_cs(spi, chip, chip_info);
  1123. }
  1124. static void cleanup(struct spi_device *spi)
  1125. {
  1126. struct chip_data *chip = spi_get_ctldata(spi);
  1127. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  1128. if (!chip)
  1129. return;
  1130. if (drv_data->ssp_type != CE4100_SSP && gpio_is_valid(chip->gpio_cs))
  1131. gpio_free(chip->gpio_cs);
  1132. kfree(chip);
  1133. }
  1134. static int pxa2xx_spi_probe(struct platform_device *pdev)
  1135. {
  1136. struct device *dev = &pdev->dev;
  1137. struct pxa2xx_spi_master *platform_info;
  1138. struct spi_master *master;
  1139. struct driver_data *drv_data;
  1140. struct ssp_device *ssp;
  1141. int status;
  1142. platform_info = dev_get_platdata(dev);
  1143. if (!platform_info) {
  1144. dev_err(&pdev->dev, "missing platform data\n");
  1145. return -ENODEV;
  1146. }
  1147. ssp = pxa_ssp_request(pdev->id, pdev->name);
  1148. if (!ssp)
  1149. ssp = &platform_info->ssp;
  1150. if (!ssp->mmio_base) {
  1151. dev_err(&pdev->dev, "failed to get ssp\n");
  1152. return -ENODEV;
  1153. }
  1154. /* Allocate master with space for drv_data and null dma buffer */
  1155. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  1156. if (!master) {
  1157. dev_err(&pdev->dev, "cannot alloc spi_master\n");
  1158. pxa_ssp_free(ssp);
  1159. return -ENOMEM;
  1160. }
  1161. drv_data = spi_master_get_devdata(master);
  1162. drv_data->master = master;
  1163. drv_data->master_info = platform_info;
  1164. drv_data->pdev = pdev;
  1165. drv_data->ssp = ssp;
  1166. master->dev.parent = &pdev->dev;
  1167. master->dev.of_node = pdev->dev.of_node;
  1168. /* the spi->mode bits understood by this driver: */
  1169. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
  1170. master->bus_num = ssp->port_id;
  1171. master->num_chipselect = platform_info->num_chipselect;
  1172. master->dma_alignment = DMA_ALIGNMENT;
  1173. master->cleanup = cleanup;
  1174. master->setup = setup;
  1175. master->transfer_one_message = pxa2xx_spi_transfer_one_message;
  1176. drv_data->ssp_type = ssp->type;
  1177. drv_data->null_dma_buf = (u32 *)PTR_ALIGN(&drv_data[1], DMA_ALIGNMENT);
  1178. drv_data->ioaddr = ssp->mmio_base;
  1179. drv_data->ssdr_physical = ssp->phys_base + SSDR;
  1180. if (pxa25x_ssp_comp(drv_data)) {
  1181. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
  1182. drv_data->dma_cr1 = 0;
  1183. drv_data->clear_sr = SSSR_ROR;
  1184. drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
  1185. } else {
  1186. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
  1187. drv_data->dma_cr1 = SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE;
  1188. drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
  1189. drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
  1190. }
  1191. status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
  1192. drv_data);
  1193. if (status < 0) {
  1194. dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
  1195. goto out_error_master_alloc;
  1196. }
  1197. /* Setup DMA if requested */
  1198. drv_data->tx_channel = -1;
  1199. drv_data->rx_channel = -1;
  1200. if (platform_info->enable_dma) {
  1201. /* Get two DMA channels (rx and tx) */
  1202. drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx",
  1203. DMA_PRIO_HIGH,
  1204. dma_handler,
  1205. drv_data);
  1206. if (drv_data->rx_channel < 0) {
  1207. dev_err(dev, "problem (%d) requesting rx channel\n",
  1208. drv_data->rx_channel);
  1209. status = -ENODEV;
  1210. goto out_error_irq_alloc;
  1211. }
  1212. drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx",
  1213. DMA_PRIO_MEDIUM,
  1214. dma_handler,
  1215. drv_data);
  1216. if (drv_data->tx_channel < 0) {
  1217. dev_err(dev, "problem (%d) requesting tx channel\n",
  1218. drv_data->tx_channel);
  1219. status = -ENODEV;
  1220. goto out_error_dma_alloc;
  1221. }
  1222. DRCMR(ssp->drcmr_rx) = DRCMR_MAPVLD | drv_data->rx_channel;
  1223. DRCMR(ssp->drcmr_tx) = DRCMR_MAPVLD | drv_data->tx_channel;
  1224. }
  1225. /* Enable SOC clock */
  1226. clk_enable(ssp->clk);
  1227. /* Load default SSP configuration */
  1228. write_SSCR0(0, drv_data->ioaddr);
  1229. write_SSCR1(SSCR1_RxTresh(RX_THRESH_DFLT) |
  1230. SSCR1_TxTresh(TX_THRESH_DFLT),
  1231. drv_data->ioaddr);
  1232. write_SSCR0(SSCR0_SCR(2)
  1233. | SSCR0_Motorola
  1234. | SSCR0_DataSize(8),
  1235. drv_data->ioaddr);
  1236. if (!pxa25x_ssp_comp(drv_data))
  1237. write_SSTO(0, drv_data->ioaddr);
  1238. write_SSPSP(0, drv_data->ioaddr);
  1239. tasklet_init(&drv_data->pump_transfers, pump_transfers,
  1240. (unsigned long)drv_data);
  1241. /* Register with the SPI framework */
  1242. platform_set_drvdata(pdev, drv_data);
  1243. status = spi_register_master(master);
  1244. if (status != 0) {
  1245. dev_err(&pdev->dev, "problem registering spi master\n");
  1246. goto out_error_clock_enabled;
  1247. }
  1248. return status;
  1249. out_error_clock_enabled:
  1250. clk_disable(ssp->clk);
  1251. out_error_dma_alloc:
  1252. if (drv_data->tx_channel != -1)
  1253. pxa_free_dma(drv_data->tx_channel);
  1254. if (drv_data->rx_channel != -1)
  1255. pxa_free_dma(drv_data->rx_channel);
  1256. out_error_irq_alloc:
  1257. free_irq(ssp->irq, drv_data);
  1258. out_error_master_alloc:
  1259. spi_master_put(master);
  1260. pxa_ssp_free(ssp);
  1261. return status;
  1262. }
  1263. static int pxa2xx_spi_remove(struct platform_device *pdev)
  1264. {
  1265. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1266. struct ssp_device *ssp;
  1267. if (!drv_data)
  1268. return 0;
  1269. ssp = drv_data->ssp;
  1270. /* Disable the SSP at the peripheral and SOC level */
  1271. write_SSCR0(0, drv_data->ioaddr);
  1272. clk_disable(ssp->clk);
  1273. /* Release DMA */
  1274. if (drv_data->master_info->enable_dma) {
  1275. DRCMR(ssp->drcmr_rx) = 0;
  1276. DRCMR(ssp->drcmr_tx) = 0;
  1277. pxa_free_dma(drv_data->tx_channel);
  1278. pxa_free_dma(drv_data->rx_channel);
  1279. }
  1280. /* Release IRQ */
  1281. free_irq(ssp->irq, drv_data);
  1282. /* Release SSP */
  1283. pxa_ssp_free(ssp);
  1284. /* Disconnect from the SPI framework */
  1285. spi_unregister_master(drv_data->master);
  1286. /* Prevent double remove */
  1287. platform_set_drvdata(pdev, NULL);
  1288. return 0;
  1289. }
  1290. static void pxa2xx_spi_shutdown(struct platform_device *pdev)
  1291. {
  1292. int status = 0;
  1293. if ((status = pxa2xx_spi_remove(pdev)) != 0)
  1294. dev_err(&pdev->dev, "shutdown failed with %d\n", status);
  1295. }
  1296. #ifdef CONFIG_PM
  1297. static int pxa2xx_spi_suspend(struct device *dev)
  1298. {
  1299. struct driver_data *drv_data = dev_get_drvdata(dev);
  1300. struct ssp_device *ssp = drv_data->ssp;
  1301. int status = 0;
  1302. status = spi_master_suspend(drv_data->master);
  1303. if (status != 0)
  1304. return status;
  1305. write_SSCR0(0, drv_data->ioaddr);
  1306. clk_disable(ssp->clk);
  1307. return 0;
  1308. }
  1309. static int pxa2xx_spi_resume(struct device *dev)
  1310. {
  1311. struct driver_data *drv_data = dev_get_drvdata(dev);
  1312. struct ssp_device *ssp = drv_data->ssp;
  1313. int status = 0;
  1314. if (drv_data->rx_channel != -1)
  1315. DRCMR(drv_data->ssp->drcmr_rx) =
  1316. DRCMR_MAPVLD | drv_data->rx_channel;
  1317. if (drv_data->tx_channel != -1)
  1318. DRCMR(drv_data->ssp->drcmr_tx) =
  1319. DRCMR_MAPVLD | drv_data->tx_channel;
  1320. /* Enable the SSP clock */
  1321. clk_enable(ssp->clk);
  1322. /* Start the queue running */
  1323. status = spi_master_resume(drv_data->master);
  1324. if (status != 0) {
  1325. dev_err(dev, "problem starting queue (%d)\n", status);
  1326. return status;
  1327. }
  1328. return 0;
  1329. }
  1330. static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
  1331. .suspend = pxa2xx_spi_suspend,
  1332. .resume = pxa2xx_spi_resume,
  1333. };
  1334. #endif
  1335. static struct platform_driver driver = {
  1336. .driver = {
  1337. .name = "pxa2xx-spi",
  1338. .owner = THIS_MODULE,
  1339. #ifdef CONFIG_PM
  1340. .pm = &pxa2xx_spi_pm_ops,
  1341. #endif
  1342. },
  1343. .probe = pxa2xx_spi_probe,
  1344. .remove = pxa2xx_spi_remove,
  1345. .shutdown = pxa2xx_spi_shutdown,
  1346. };
  1347. static int __init pxa2xx_spi_init(void)
  1348. {
  1349. return platform_driver_register(&driver);
  1350. }
  1351. subsys_initcall(pxa2xx_spi_init);
  1352. static void __exit pxa2xx_spi_exit(void)
  1353. {
  1354. platform_driver_unregister(&driver);
  1355. }
  1356. module_exit(pxa2xx_spi_exit);