bcm43xx_main.c 118 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333
  1. /*
  2. Broadcom BCM43xx wireless driver
  3. Copyright (c) 2005 Martin Langer <martin-langer@gmx.de>,
  4. Stefano Brivio <st3@riseup.net>
  5. Michael Buesch <mbuesch@freenet.de>
  6. Danny van Dyk <kugelfang@gentoo.org>
  7. Andreas Jaggi <andreas.jaggi@waterwave.ch>
  8. Some parts of the code in this file are derived from the ipw2200
  9. driver Copyright(c) 2003 - 2004 Intel Corporation.
  10. This program is free software; you can redistribute it and/or modify
  11. it under the terms of the GNU General Public License as published by
  12. the Free Software Foundation; either version 2 of the License, or
  13. (at your option) any later version.
  14. This program is distributed in the hope that it will be useful,
  15. but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. GNU General Public License for more details.
  18. You should have received a copy of the GNU General Public License
  19. along with this program; see the file COPYING. If not, write to
  20. the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor,
  21. Boston, MA 02110-1301, USA.
  22. */
  23. #include <linux/delay.h>
  24. #include <linux/init.h>
  25. #include <linux/moduleparam.h>
  26. #include <linux/if_arp.h>
  27. #include <linux/etherdevice.h>
  28. #include <linux/version.h>
  29. #include <linux/firmware.h>
  30. #include <linux/wireless.h>
  31. #include <linux/workqueue.h>
  32. #include <linux/skbuff.h>
  33. #include <linux/dma-mapping.h>
  34. #include <net/iw_handler.h>
  35. #include "bcm43xx.h"
  36. #include "bcm43xx_main.h"
  37. #include "bcm43xx_debugfs.h"
  38. #include "bcm43xx_radio.h"
  39. #include "bcm43xx_phy.h"
  40. #include "bcm43xx_dma.h"
  41. #include "bcm43xx_pio.h"
  42. #include "bcm43xx_power.h"
  43. #include "bcm43xx_wx.h"
  44. #include "bcm43xx_ethtool.h"
  45. #include "bcm43xx_xmit.h"
  46. #include "bcm43xx_sysfs.h"
  47. MODULE_DESCRIPTION("Broadcom BCM43xx wireless driver");
  48. MODULE_AUTHOR("Martin Langer");
  49. MODULE_AUTHOR("Stefano Brivio");
  50. MODULE_AUTHOR("Michael Buesch");
  51. MODULE_LICENSE("GPL");
  52. #ifdef CONFIG_BCM947XX
  53. extern char *nvram_get(char *name);
  54. #endif
  55. #if defined(CONFIG_BCM43XX_DMA) && defined(CONFIG_BCM43XX_PIO)
  56. static int modparam_pio;
  57. module_param_named(pio, modparam_pio, int, 0444);
  58. MODULE_PARM_DESC(pio, "enable(1) / disable(0) PIO mode");
  59. #elif defined(CONFIG_BCM43XX_DMA)
  60. # define modparam_pio 0
  61. #elif defined(CONFIG_BCM43XX_PIO)
  62. # define modparam_pio 1
  63. #endif
  64. static int modparam_bad_frames_preempt;
  65. module_param_named(bad_frames_preempt, modparam_bad_frames_preempt, int, 0444);
  66. MODULE_PARM_DESC(bad_frames_preempt, "enable(1) / disable(0) Bad Frames Preemption");
  67. static int modparam_short_retry = BCM43xx_DEFAULT_SHORT_RETRY_LIMIT;
  68. module_param_named(short_retry, modparam_short_retry, int, 0444);
  69. MODULE_PARM_DESC(short_retry, "Short-Retry-Limit (0 - 15)");
  70. static int modparam_long_retry = BCM43xx_DEFAULT_LONG_RETRY_LIMIT;
  71. module_param_named(long_retry, modparam_long_retry, int, 0444);
  72. MODULE_PARM_DESC(long_retry, "Long-Retry-Limit (0 - 15)");
  73. static int modparam_locale = -1;
  74. module_param_named(locale, modparam_locale, int, 0444);
  75. MODULE_PARM_DESC(country, "Select LocaleCode 0-11 (For travelers)");
  76. static int modparam_noleds;
  77. module_param_named(noleds, modparam_noleds, int, 0444);
  78. MODULE_PARM_DESC(noleds, "Turn off all LED activity");
  79. #ifdef CONFIG_BCM43XX_DEBUG
  80. static char modparam_fwpostfix[64];
  81. module_param_string(fwpostfix, modparam_fwpostfix, 64, 0444);
  82. MODULE_PARM_DESC(fwpostfix, "Postfix for .fw files. Useful for debugging.");
  83. #else
  84. # define modparam_fwpostfix ""
  85. #endif /* CONFIG_BCM43XX_DEBUG*/
  86. /* If you want to debug with just a single device, enable this,
  87. * where the string is the pci device ID (as given by the kernel's
  88. * pci_name function) of the device to be used.
  89. */
  90. //#define DEBUG_SINGLE_DEVICE_ONLY "0001:11:00.0"
  91. /* If you want to enable printing of each MMIO access, enable this. */
  92. //#define DEBUG_ENABLE_MMIO_PRINT
  93. /* If you want to enable printing of MMIO access within
  94. * ucode/pcm upload, initvals write, enable this.
  95. */
  96. //#define DEBUG_ENABLE_UCODE_MMIO_PRINT
  97. /* If you want to enable printing of PCI Config Space access, enable this */
  98. //#define DEBUG_ENABLE_PCILOG
  99. /* Detailed list maintained at:
  100. * http://openfacts.berlios.de/index-en.phtml?title=Bcm43xxDevices
  101. */
  102. static struct pci_device_id bcm43xx_pci_tbl[] = {
  103. /* Broadcom 4303 802.11b */
  104. { PCI_VENDOR_ID_BROADCOM, 0x4301, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  105. /* Broadcom 4307 802.11b */
  106. { PCI_VENDOR_ID_BROADCOM, 0x4307, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  107. /* Broadcom 4311 802.11(a)/b/g */
  108. { PCI_VENDOR_ID_BROADCOM, 0x4311, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  109. /* Broadcom 4312 802.11a/b/g */
  110. { PCI_VENDOR_ID_BROADCOM, 0x4312, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  111. /* Broadcom 4318 802.11b/g */
  112. { PCI_VENDOR_ID_BROADCOM, 0x4318, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  113. /* Broadcom 4319 802.11a/b/g */
  114. { PCI_VENDOR_ID_BROADCOM, 0x4319, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  115. /* Broadcom 4306 802.11b/g */
  116. { PCI_VENDOR_ID_BROADCOM, 0x4320, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  117. /* Broadcom 4306 802.11a */
  118. // { PCI_VENDOR_ID_BROADCOM, 0x4321, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  119. /* Broadcom 4309 802.11a/b/g */
  120. { PCI_VENDOR_ID_BROADCOM, 0x4324, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  121. /* Broadcom 43XG 802.11b/g */
  122. { PCI_VENDOR_ID_BROADCOM, 0x4325, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  123. #ifdef CONFIG_BCM947XX
  124. /* SB bus on BCM947xx */
  125. { PCI_VENDOR_ID_BROADCOM, 0x0800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  126. #endif
  127. { 0 },
  128. };
  129. MODULE_DEVICE_TABLE(pci, bcm43xx_pci_tbl);
  130. static void bcm43xx_ram_write(struct bcm43xx_private *bcm, u16 offset, u32 val)
  131. {
  132. u32 status;
  133. status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  134. if (!(status & BCM43xx_SBF_XFER_REG_BYTESWAP))
  135. val = swab32(val);
  136. bcm43xx_write32(bcm, BCM43xx_MMIO_RAM_CONTROL, offset);
  137. mmiowb();
  138. bcm43xx_write32(bcm, BCM43xx_MMIO_RAM_DATA, val);
  139. }
  140. static inline
  141. void bcm43xx_shm_control_word(struct bcm43xx_private *bcm,
  142. u16 routing, u16 offset)
  143. {
  144. u32 control;
  145. /* "offset" is the WORD offset. */
  146. control = routing;
  147. control <<= 16;
  148. control |= offset;
  149. bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_CONTROL, control);
  150. }
  151. u32 bcm43xx_shm_read32(struct bcm43xx_private *bcm,
  152. u16 routing, u16 offset)
  153. {
  154. u32 ret;
  155. if (routing == BCM43xx_SHM_SHARED) {
  156. if (offset & 0x0003) {
  157. /* Unaligned access */
  158. bcm43xx_shm_control_word(bcm, routing, offset >> 2);
  159. ret = bcm43xx_read16(bcm, BCM43xx_MMIO_SHM_DATA_UNALIGNED);
  160. ret <<= 16;
  161. bcm43xx_shm_control_word(bcm, routing, (offset >> 2) + 1);
  162. ret |= bcm43xx_read16(bcm, BCM43xx_MMIO_SHM_DATA);
  163. return ret;
  164. }
  165. offset >>= 2;
  166. }
  167. bcm43xx_shm_control_word(bcm, routing, offset);
  168. ret = bcm43xx_read32(bcm, BCM43xx_MMIO_SHM_DATA);
  169. return ret;
  170. }
  171. u16 bcm43xx_shm_read16(struct bcm43xx_private *bcm,
  172. u16 routing, u16 offset)
  173. {
  174. u16 ret;
  175. if (routing == BCM43xx_SHM_SHARED) {
  176. if (offset & 0x0003) {
  177. /* Unaligned access */
  178. bcm43xx_shm_control_word(bcm, routing, offset >> 2);
  179. ret = bcm43xx_read16(bcm, BCM43xx_MMIO_SHM_DATA_UNALIGNED);
  180. return ret;
  181. }
  182. offset >>= 2;
  183. }
  184. bcm43xx_shm_control_word(bcm, routing, offset);
  185. ret = bcm43xx_read16(bcm, BCM43xx_MMIO_SHM_DATA);
  186. return ret;
  187. }
  188. void bcm43xx_shm_write32(struct bcm43xx_private *bcm,
  189. u16 routing, u16 offset,
  190. u32 value)
  191. {
  192. if (routing == BCM43xx_SHM_SHARED) {
  193. if (offset & 0x0003) {
  194. /* Unaligned access */
  195. bcm43xx_shm_control_word(bcm, routing, offset >> 2);
  196. mmiowb();
  197. bcm43xx_write16(bcm, BCM43xx_MMIO_SHM_DATA_UNALIGNED,
  198. (value >> 16) & 0xffff);
  199. mmiowb();
  200. bcm43xx_shm_control_word(bcm, routing, (offset >> 2) + 1);
  201. mmiowb();
  202. bcm43xx_write16(bcm, BCM43xx_MMIO_SHM_DATA,
  203. value & 0xffff);
  204. return;
  205. }
  206. offset >>= 2;
  207. }
  208. bcm43xx_shm_control_word(bcm, routing, offset);
  209. mmiowb();
  210. bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_DATA, value);
  211. }
  212. void bcm43xx_shm_write16(struct bcm43xx_private *bcm,
  213. u16 routing, u16 offset,
  214. u16 value)
  215. {
  216. if (routing == BCM43xx_SHM_SHARED) {
  217. if (offset & 0x0003) {
  218. /* Unaligned access */
  219. bcm43xx_shm_control_word(bcm, routing, offset >> 2);
  220. mmiowb();
  221. bcm43xx_write16(bcm, BCM43xx_MMIO_SHM_DATA_UNALIGNED,
  222. value);
  223. return;
  224. }
  225. offset >>= 2;
  226. }
  227. bcm43xx_shm_control_word(bcm, routing, offset);
  228. mmiowb();
  229. bcm43xx_write16(bcm, BCM43xx_MMIO_SHM_DATA, value);
  230. }
  231. void bcm43xx_tsf_read(struct bcm43xx_private *bcm, u64 *tsf)
  232. {
  233. /* We need to be careful. As we read the TSF from multiple
  234. * registers, we should take care of register overflows.
  235. * In theory, the whole tsf read process should be atomic.
  236. * We try to be atomic here, by restaring the read process,
  237. * if any of the high registers changed (overflew).
  238. */
  239. if (bcm->current_core->rev >= 3) {
  240. u32 low, high, high2;
  241. do {
  242. high = bcm43xx_read32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_HIGH);
  243. low = bcm43xx_read32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_LOW);
  244. high2 = bcm43xx_read32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_HIGH);
  245. } while (unlikely(high != high2));
  246. *tsf = high;
  247. *tsf <<= 32;
  248. *tsf |= low;
  249. } else {
  250. u64 tmp;
  251. u16 v0, v1, v2, v3;
  252. u16 test1, test2, test3;
  253. do {
  254. v3 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_3);
  255. v2 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_2);
  256. v1 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_1);
  257. v0 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_0);
  258. test3 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_3);
  259. test2 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_2);
  260. test1 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_1);
  261. } while (v3 != test3 || v2 != test2 || v1 != test1);
  262. *tsf = v3;
  263. *tsf <<= 48;
  264. tmp = v2;
  265. tmp <<= 32;
  266. *tsf |= tmp;
  267. tmp = v1;
  268. tmp <<= 16;
  269. *tsf |= tmp;
  270. *tsf |= v0;
  271. }
  272. }
  273. void bcm43xx_tsf_write(struct bcm43xx_private *bcm, u64 tsf)
  274. {
  275. u32 status;
  276. status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  277. status |= BCM43xx_SBF_TIME_UPDATE;
  278. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, status);
  279. mmiowb();
  280. /* Be careful with the in-progress timer.
  281. * First zero out the low register, so we have a full
  282. * register-overflow duration to complete the operation.
  283. */
  284. if (bcm->current_core->rev >= 3) {
  285. u32 lo = (tsf & 0x00000000FFFFFFFFULL);
  286. u32 hi = (tsf & 0xFFFFFFFF00000000ULL) >> 32;
  287. bcm43xx_write32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_LOW, 0);
  288. mmiowb();
  289. bcm43xx_write32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_HIGH, hi);
  290. mmiowb();
  291. bcm43xx_write32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_LOW, lo);
  292. } else {
  293. u16 v0 = (tsf & 0x000000000000FFFFULL);
  294. u16 v1 = (tsf & 0x00000000FFFF0000ULL) >> 16;
  295. u16 v2 = (tsf & 0x0000FFFF00000000ULL) >> 32;
  296. u16 v3 = (tsf & 0xFFFF000000000000ULL) >> 48;
  297. bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_0, 0);
  298. mmiowb();
  299. bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_3, v3);
  300. mmiowb();
  301. bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_2, v2);
  302. mmiowb();
  303. bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_1, v1);
  304. mmiowb();
  305. bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_0, v0);
  306. }
  307. status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  308. status &= ~BCM43xx_SBF_TIME_UPDATE;
  309. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, status);
  310. }
  311. static
  312. void bcm43xx_macfilter_set(struct bcm43xx_private *bcm,
  313. u16 offset,
  314. const u8 *mac)
  315. {
  316. u16 data;
  317. offset |= 0x0020;
  318. bcm43xx_write16(bcm, BCM43xx_MMIO_MACFILTER_CONTROL, offset);
  319. data = mac[0];
  320. data |= mac[1] << 8;
  321. bcm43xx_write16(bcm, BCM43xx_MMIO_MACFILTER_DATA, data);
  322. data = mac[2];
  323. data |= mac[3] << 8;
  324. bcm43xx_write16(bcm, BCM43xx_MMIO_MACFILTER_DATA, data);
  325. data = mac[4];
  326. data |= mac[5] << 8;
  327. bcm43xx_write16(bcm, BCM43xx_MMIO_MACFILTER_DATA, data);
  328. }
  329. static void bcm43xx_macfilter_clear(struct bcm43xx_private *bcm,
  330. u16 offset)
  331. {
  332. const u8 zero_addr[ETH_ALEN] = { 0 };
  333. bcm43xx_macfilter_set(bcm, offset, zero_addr);
  334. }
  335. static void bcm43xx_write_mac_bssid_templates(struct bcm43xx_private *bcm)
  336. {
  337. const u8 *mac = (const u8 *)(bcm->net_dev->dev_addr);
  338. const u8 *bssid = (const u8 *)(bcm->ieee->bssid);
  339. u8 mac_bssid[ETH_ALEN * 2];
  340. int i;
  341. memcpy(mac_bssid, mac, ETH_ALEN);
  342. memcpy(mac_bssid + ETH_ALEN, bssid, ETH_ALEN);
  343. /* Write our MAC address and BSSID to template ram */
  344. for (i = 0; i < ARRAY_SIZE(mac_bssid); i += sizeof(u32))
  345. bcm43xx_ram_write(bcm, 0x20 + i, *((u32 *)(mac_bssid + i)));
  346. for (i = 0; i < ARRAY_SIZE(mac_bssid); i += sizeof(u32))
  347. bcm43xx_ram_write(bcm, 0x78 + i, *((u32 *)(mac_bssid + i)));
  348. for (i = 0; i < ARRAY_SIZE(mac_bssid); i += sizeof(u32))
  349. bcm43xx_ram_write(bcm, 0x478 + i, *((u32 *)(mac_bssid + i)));
  350. }
  351. //FIXME: Well, we should probably call them from somewhere.
  352. #if 0
  353. static void bcm43xx_set_slot_time(struct bcm43xx_private *bcm, u16 slot_time)
  354. {
  355. /* slot_time is in usec. */
  356. if (bcm43xx_current_phy(bcm)->type != BCM43xx_PHYTYPE_G)
  357. return;
  358. bcm43xx_write16(bcm, 0x684, 510 + slot_time);
  359. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0010, slot_time);
  360. }
  361. static void bcm43xx_short_slot_timing_enable(struct bcm43xx_private *bcm)
  362. {
  363. bcm43xx_set_slot_time(bcm, 9);
  364. }
  365. static void bcm43xx_short_slot_timing_disable(struct bcm43xx_private *bcm)
  366. {
  367. bcm43xx_set_slot_time(bcm, 20);
  368. }
  369. #endif
  370. /* FIXME: To get the MAC-filter working, we need to implement the
  371. * following functions (and rename them :)
  372. */
  373. #if 0
  374. static void bcm43xx_disassociate(struct bcm43xx_private *bcm)
  375. {
  376. bcm43xx_mac_suspend(bcm);
  377. bcm43xx_macfilter_clear(bcm, BCM43xx_MACFILTER_ASSOC);
  378. bcm43xx_ram_write(bcm, 0x0026, 0x0000);
  379. bcm43xx_ram_write(bcm, 0x0028, 0x0000);
  380. bcm43xx_ram_write(bcm, 0x007E, 0x0000);
  381. bcm43xx_ram_write(bcm, 0x0080, 0x0000);
  382. bcm43xx_ram_write(bcm, 0x047E, 0x0000);
  383. bcm43xx_ram_write(bcm, 0x0480, 0x0000);
  384. if (bcm->current_core->rev < 3) {
  385. bcm43xx_write16(bcm, 0x0610, 0x8000);
  386. bcm43xx_write16(bcm, 0x060E, 0x0000);
  387. } else
  388. bcm43xx_write32(bcm, 0x0188, 0x80000000);
  389. bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0004, 0x000003ff);
  390. if (bcm43xx_current_phy(bcm)->type == BCM43xx_PHYTYPE_G &&
  391. ieee80211_is_ofdm_rate(bcm->softmac->txrates.default_rate))
  392. bcm43xx_short_slot_timing_enable(bcm);
  393. bcm43xx_mac_enable(bcm);
  394. }
  395. static void bcm43xx_associate(struct bcm43xx_private *bcm,
  396. const u8 *mac)
  397. {
  398. memcpy(bcm->ieee->bssid, mac, ETH_ALEN);
  399. bcm43xx_mac_suspend(bcm);
  400. bcm43xx_macfilter_set(bcm, BCM43xx_MACFILTER_ASSOC, mac);
  401. bcm43xx_write_mac_bssid_templates(bcm);
  402. bcm43xx_mac_enable(bcm);
  403. }
  404. #endif
  405. /* Enable a Generic IRQ. "mask" is the mask of which IRQs to enable.
  406. * Returns the _previously_ enabled IRQ mask.
  407. */
  408. static inline u32 bcm43xx_interrupt_enable(struct bcm43xx_private *bcm, u32 mask)
  409. {
  410. u32 old_mask;
  411. old_mask = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK);
  412. bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK, old_mask | mask);
  413. return old_mask;
  414. }
  415. /* Disable a Generic IRQ. "mask" is the mask of which IRQs to disable.
  416. * Returns the _previously_ enabled IRQ mask.
  417. */
  418. static inline u32 bcm43xx_interrupt_disable(struct bcm43xx_private *bcm, u32 mask)
  419. {
  420. u32 old_mask;
  421. old_mask = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK);
  422. bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK, old_mask & ~mask);
  423. return old_mask;
  424. }
  425. /* Synchronize IRQ top- and bottom-half.
  426. * IRQs must be masked before calling this.
  427. * This must not be called with the irq_lock held.
  428. */
  429. static void bcm43xx_synchronize_irq(struct bcm43xx_private *bcm)
  430. {
  431. synchronize_irq(bcm->irq);
  432. tasklet_disable(&bcm->isr_tasklet);
  433. }
  434. /* Make sure we don't receive more data from the device. */
  435. static int bcm43xx_disable_interrupts_sync(struct bcm43xx_private *bcm)
  436. {
  437. unsigned long flags;
  438. spin_lock_irqsave(&bcm->irq_lock, flags);
  439. if (unlikely(bcm43xx_status(bcm) != BCM43xx_STAT_INITIALIZED)) {
  440. spin_unlock_irqrestore(&bcm->irq_lock, flags);
  441. return -EBUSY;
  442. }
  443. bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
  444. bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK); /* flush */
  445. spin_unlock_irqrestore(&bcm->irq_lock, flags);
  446. bcm43xx_synchronize_irq(bcm);
  447. return 0;
  448. }
  449. static int bcm43xx_read_radioinfo(struct bcm43xx_private *bcm)
  450. {
  451. struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
  452. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  453. u32 radio_id;
  454. u16 manufact;
  455. u16 version;
  456. u8 revision;
  457. if (bcm->chip_id == 0x4317) {
  458. if (bcm->chip_rev == 0x00)
  459. radio_id = 0x3205017F;
  460. else if (bcm->chip_rev == 0x01)
  461. radio_id = 0x4205017F;
  462. else
  463. radio_id = 0x5205017F;
  464. } else {
  465. bcm43xx_write16(bcm, BCM43xx_MMIO_RADIO_CONTROL, BCM43xx_RADIOCTL_ID);
  466. radio_id = bcm43xx_read16(bcm, BCM43xx_MMIO_RADIO_DATA_HIGH);
  467. radio_id <<= 16;
  468. bcm43xx_write16(bcm, BCM43xx_MMIO_RADIO_CONTROL, BCM43xx_RADIOCTL_ID);
  469. radio_id |= bcm43xx_read16(bcm, BCM43xx_MMIO_RADIO_DATA_LOW);
  470. }
  471. manufact = (radio_id & 0x00000FFF);
  472. version = (radio_id & 0x0FFFF000) >> 12;
  473. revision = (radio_id & 0xF0000000) >> 28;
  474. dprintk(KERN_INFO PFX "Detected Radio: ID: %x (Manuf: %x Ver: %x Rev: %x)\n",
  475. radio_id, manufact, version, revision);
  476. switch (phy->type) {
  477. case BCM43xx_PHYTYPE_A:
  478. if ((version != 0x2060) || (revision != 1) || (manufact != 0x17f))
  479. goto err_unsupported_radio;
  480. break;
  481. case BCM43xx_PHYTYPE_B:
  482. if ((version & 0xFFF0) != 0x2050)
  483. goto err_unsupported_radio;
  484. break;
  485. case BCM43xx_PHYTYPE_G:
  486. if (version != 0x2050)
  487. goto err_unsupported_radio;
  488. break;
  489. }
  490. radio->manufact = manufact;
  491. radio->version = version;
  492. radio->revision = revision;
  493. if (phy->type == BCM43xx_PHYTYPE_A)
  494. radio->txpower_desired = bcm->sprom.maxpower_aphy;
  495. else
  496. radio->txpower_desired = bcm->sprom.maxpower_bgphy;
  497. return 0;
  498. err_unsupported_radio:
  499. printk(KERN_ERR PFX "Unsupported Radio connected to the PHY!\n");
  500. return -ENODEV;
  501. }
  502. static const char * bcm43xx_locale_iso(u8 locale)
  503. {
  504. /* ISO 3166-1 country codes.
  505. * Note that there aren't ISO 3166-1 codes for
  506. * all or locales. (Not all locales are countries)
  507. */
  508. switch (locale) {
  509. case BCM43xx_LOCALE_WORLD:
  510. case BCM43xx_LOCALE_ALL:
  511. return "XX";
  512. case BCM43xx_LOCALE_THAILAND:
  513. return "TH";
  514. case BCM43xx_LOCALE_ISRAEL:
  515. return "IL";
  516. case BCM43xx_LOCALE_JORDAN:
  517. return "JO";
  518. case BCM43xx_LOCALE_CHINA:
  519. return "CN";
  520. case BCM43xx_LOCALE_JAPAN:
  521. case BCM43xx_LOCALE_JAPAN_HIGH:
  522. return "JP";
  523. case BCM43xx_LOCALE_USA_CANADA_ANZ:
  524. case BCM43xx_LOCALE_USA_LOW:
  525. return "US";
  526. case BCM43xx_LOCALE_EUROPE:
  527. return "EU";
  528. case BCM43xx_LOCALE_NONE:
  529. return " ";
  530. }
  531. assert(0);
  532. return " ";
  533. }
  534. static const char * bcm43xx_locale_string(u8 locale)
  535. {
  536. switch (locale) {
  537. case BCM43xx_LOCALE_WORLD:
  538. return "World";
  539. case BCM43xx_LOCALE_THAILAND:
  540. return "Thailand";
  541. case BCM43xx_LOCALE_ISRAEL:
  542. return "Israel";
  543. case BCM43xx_LOCALE_JORDAN:
  544. return "Jordan";
  545. case BCM43xx_LOCALE_CHINA:
  546. return "China";
  547. case BCM43xx_LOCALE_JAPAN:
  548. return "Japan";
  549. case BCM43xx_LOCALE_USA_CANADA_ANZ:
  550. return "USA/Canada/ANZ";
  551. case BCM43xx_LOCALE_EUROPE:
  552. return "Europe";
  553. case BCM43xx_LOCALE_USA_LOW:
  554. return "USAlow";
  555. case BCM43xx_LOCALE_JAPAN_HIGH:
  556. return "JapanHigh";
  557. case BCM43xx_LOCALE_ALL:
  558. return "All";
  559. case BCM43xx_LOCALE_NONE:
  560. return "None";
  561. }
  562. assert(0);
  563. return "";
  564. }
  565. static inline u8 bcm43xx_crc8(u8 crc, u8 data)
  566. {
  567. static const u8 t[] = {
  568. 0x00, 0xF7, 0xB9, 0x4E, 0x25, 0xD2, 0x9C, 0x6B,
  569. 0x4A, 0xBD, 0xF3, 0x04, 0x6F, 0x98, 0xD6, 0x21,
  570. 0x94, 0x63, 0x2D, 0xDA, 0xB1, 0x46, 0x08, 0xFF,
  571. 0xDE, 0x29, 0x67, 0x90, 0xFB, 0x0C, 0x42, 0xB5,
  572. 0x7F, 0x88, 0xC6, 0x31, 0x5A, 0xAD, 0xE3, 0x14,
  573. 0x35, 0xC2, 0x8C, 0x7B, 0x10, 0xE7, 0xA9, 0x5E,
  574. 0xEB, 0x1C, 0x52, 0xA5, 0xCE, 0x39, 0x77, 0x80,
  575. 0xA1, 0x56, 0x18, 0xEF, 0x84, 0x73, 0x3D, 0xCA,
  576. 0xFE, 0x09, 0x47, 0xB0, 0xDB, 0x2C, 0x62, 0x95,
  577. 0xB4, 0x43, 0x0D, 0xFA, 0x91, 0x66, 0x28, 0xDF,
  578. 0x6A, 0x9D, 0xD3, 0x24, 0x4F, 0xB8, 0xF6, 0x01,
  579. 0x20, 0xD7, 0x99, 0x6E, 0x05, 0xF2, 0xBC, 0x4B,
  580. 0x81, 0x76, 0x38, 0xCF, 0xA4, 0x53, 0x1D, 0xEA,
  581. 0xCB, 0x3C, 0x72, 0x85, 0xEE, 0x19, 0x57, 0xA0,
  582. 0x15, 0xE2, 0xAC, 0x5B, 0x30, 0xC7, 0x89, 0x7E,
  583. 0x5F, 0xA8, 0xE6, 0x11, 0x7A, 0x8D, 0xC3, 0x34,
  584. 0xAB, 0x5C, 0x12, 0xE5, 0x8E, 0x79, 0x37, 0xC0,
  585. 0xE1, 0x16, 0x58, 0xAF, 0xC4, 0x33, 0x7D, 0x8A,
  586. 0x3F, 0xC8, 0x86, 0x71, 0x1A, 0xED, 0xA3, 0x54,
  587. 0x75, 0x82, 0xCC, 0x3B, 0x50, 0xA7, 0xE9, 0x1E,
  588. 0xD4, 0x23, 0x6D, 0x9A, 0xF1, 0x06, 0x48, 0xBF,
  589. 0x9E, 0x69, 0x27, 0xD0, 0xBB, 0x4C, 0x02, 0xF5,
  590. 0x40, 0xB7, 0xF9, 0x0E, 0x65, 0x92, 0xDC, 0x2B,
  591. 0x0A, 0xFD, 0xB3, 0x44, 0x2F, 0xD8, 0x96, 0x61,
  592. 0x55, 0xA2, 0xEC, 0x1B, 0x70, 0x87, 0xC9, 0x3E,
  593. 0x1F, 0xE8, 0xA6, 0x51, 0x3A, 0xCD, 0x83, 0x74,
  594. 0xC1, 0x36, 0x78, 0x8F, 0xE4, 0x13, 0x5D, 0xAA,
  595. 0x8B, 0x7C, 0x32, 0xC5, 0xAE, 0x59, 0x17, 0xE0,
  596. 0x2A, 0xDD, 0x93, 0x64, 0x0F, 0xF8, 0xB6, 0x41,
  597. 0x60, 0x97, 0xD9, 0x2E, 0x45, 0xB2, 0xFC, 0x0B,
  598. 0xBE, 0x49, 0x07, 0xF0, 0x9B, 0x6C, 0x22, 0xD5,
  599. 0xF4, 0x03, 0x4D, 0xBA, 0xD1, 0x26, 0x68, 0x9F,
  600. };
  601. return t[crc ^ data];
  602. }
  603. static u8 bcm43xx_sprom_crc(const u16 *sprom)
  604. {
  605. int word;
  606. u8 crc = 0xFF;
  607. for (word = 0; word < BCM43xx_SPROM_SIZE - 1; word++) {
  608. crc = bcm43xx_crc8(crc, sprom[word] & 0x00FF);
  609. crc = bcm43xx_crc8(crc, (sprom[word] & 0xFF00) >> 8);
  610. }
  611. crc = bcm43xx_crc8(crc, sprom[BCM43xx_SPROM_VERSION] & 0x00FF);
  612. crc ^= 0xFF;
  613. return crc;
  614. }
  615. int bcm43xx_sprom_read(struct bcm43xx_private *bcm, u16 *sprom)
  616. {
  617. int i;
  618. u8 crc, expected_crc;
  619. for (i = 0; i < BCM43xx_SPROM_SIZE; i++)
  620. sprom[i] = bcm43xx_read16(bcm, BCM43xx_SPROM_BASE + (i * 2));
  621. /* CRC-8 check. */
  622. crc = bcm43xx_sprom_crc(sprom);
  623. expected_crc = (sprom[BCM43xx_SPROM_VERSION] & 0xFF00) >> 8;
  624. if (crc != expected_crc) {
  625. printk(KERN_WARNING PFX "WARNING: Invalid SPROM checksum "
  626. "(0x%02X, expected: 0x%02X)\n",
  627. crc, expected_crc);
  628. return -EINVAL;
  629. }
  630. return 0;
  631. }
  632. int bcm43xx_sprom_write(struct bcm43xx_private *bcm, const u16 *sprom)
  633. {
  634. int i, err;
  635. u8 crc, expected_crc;
  636. u32 spromctl;
  637. /* CRC-8 validation of the input data. */
  638. crc = bcm43xx_sprom_crc(sprom);
  639. expected_crc = (sprom[BCM43xx_SPROM_VERSION] & 0xFF00) >> 8;
  640. if (crc != expected_crc) {
  641. printk(KERN_ERR PFX "SPROM input data: Invalid CRC\n");
  642. return -EINVAL;
  643. }
  644. printk(KERN_INFO PFX "Writing SPROM. Do NOT turn off the power! Please stand by...\n");
  645. err = bcm43xx_pci_read_config32(bcm, BCM43xx_PCICFG_SPROMCTL, &spromctl);
  646. if (err)
  647. goto err_ctlreg;
  648. spromctl |= 0x10; /* SPROM WRITE enable. */
  649. err = bcm43xx_pci_write_config32(bcm, BCM43xx_PCICFG_SPROMCTL, spromctl);
  650. if (err)
  651. goto err_ctlreg;
  652. /* We must burn lots of CPU cycles here, but that does not
  653. * really matter as one does not write the SPROM every other minute...
  654. */
  655. printk(KERN_INFO PFX "[ 0%%");
  656. mdelay(500);
  657. for (i = 0; i < BCM43xx_SPROM_SIZE; i++) {
  658. if (i == 16)
  659. printk("25%%");
  660. else if (i == 32)
  661. printk("50%%");
  662. else if (i == 48)
  663. printk("75%%");
  664. else if (i % 2)
  665. printk(".");
  666. bcm43xx_write16(bcm, BCM43xx_SPROM_BASE + (i * 2), sprom[i]);
  667. mmiowb();
  668. mdelay(20);
  669. }
  670. spromctl &= ~0x10; /* SPROM WRITE enable. */
  671. err = bcm43xx_pci_write_config32(bcm, BCM43xx_PCICFG_SPROMCTL, spromctl);
  672. if (err)
  673. goto err_ctlreg;
  674. mdelay(500);
  675. printk("100%% ]\n");
  676. printk(KERN_INFO PFX "SPROM written.\n");
  677. bcm43xx_controller_restart(bcm, "SPROM update");
  678. return 0;
  679. err_ctlreg:
  680. printk(KERN_ERR PFX "Could not access SPROM control register.\n");
  681. return -ENODEV;
  682. }
  683. static int bcm43xx_sprom_extract(struct bcm43xx_private *bcm)
  684. {
  685. u16 value;
  686. u16 *sprom;
  687. #ifdef CONFIG_BCM947XX
  688. char *c;
  689. #endif
  690. sprom = kzalloc(BCM43xx_SPROM_SIZE * sizeof(u16),
  691. GFP_KERNEL);
  692. if (!sprom) {
  693. printk(KERN_ERR PFX "sprom_extract OOM\n");
  694. return -ENOMEM;
  695. }
  696. #ifdef CONFIG_BCM947XX
  697. sprom[BCM43xx_SPROM_BOARDFLAGS2] = atoi(nvram_get("boardflags2"));
  698. sprom[BCM43xx_SPROM_BOARDFLAGS] = atoi(nvram_get("boardflags"));
  699. if ((c = nvram_get("il0macaddr")) != NULL)
  700. e_aton(c, (char *) &(sprom[BCM43xx_SPROM_IL0MACADDR]));
  701. if ((c = nvram_get("et1macaddr")) != NULL)
  702. e_aton(c, (char *) &(sprom[BCM43xx_SPROM_ET1MACADDR]));
  703. sprom[BCM43xx_SPROM_PA0B0] = atoi(nvram_get("pa0b0"));
  704. sprom[BCM43xx_SPROM_PA0B1] = atoi(nvram_get("pa0b1"));
  705. sprom[BCM43xx_SPROM_PA0B2] = atoi(nvram_get("pa0b2"));
  706. sprom[BCM43xx_SPROM_PA1B0] = atoi(nvram_get("pa1b0"));
  707. sprom[BCM43xx_SPROM_PA1B1] = atoi(nvram_get("pa1b1"));
  708. sprom[BCM43xx_SPROM_PA1B2] = atoi(nvram_get("pa1b2"));
  709. sprom[BCM43xx_SPROM_BOARDREV] = atoi(nvram_get("boardrev"));
  710. #else
  711. bcm43xx_sprom_read(bcm, sprom);
  712. #endif
  713. /* boardflags2 */
  714. value = sprom[BCM43xx_SPROM_BOARDFLAGS2];
  715. bcm->sprom.boardflags2 = value;
  716. /* il0macaddr */
  717. value = sprom[BCM43xx_SPROM_IL0MACADDR + 0];
  718. *(((u16 *)bcm->sprom.il0macaddr) + 0) = cpu_to_be16(value);
  719. value = sprom[BCM43xx_SPROM_IL0MACADDR + 1];
  720. *(((u16 *)bcm->sprom.il0macaddr) + 1) = cpu_to_be16(value);
  721. value = sprom[BCM43xx_SPROM_IL0MACADDR + 2];
  722. *(((u16 *)bcm->sprom.il0macaddr) + 2) = cpu_to_be16(value);
  723. /* et0macaddr */
  724. value = sprom[BCM43xx_SPROM_ET0MACADDR + 0];
  725. *(((u16 *)bcm->sprom.et0macaddr) + 0) = cpu_to_be16(value);
  726. value = sprom[BCM43xx_SPROM_ET0MACADDR + 1];
  727. *(((u16 *)bcm->sprom.et0macaddr) + 1) = cpu_to_be16(value);
  728. value = sprom[BCM43xx_SPROM_ET0MACADDR + 2];
  729. *(((u16 *)bcm->sprom.et0macaddr) + 2) = cpu_to_be16(value);
  730. /* et1macaddr */
  731. value = sprom[BCM43xx_SPROM_ET1MACADDR + 0];
  732. *(((u16 *)bcm->sprom.et1macaddr) + 0) = cpu_to_be16(value);
  733. value = sprom[BCM43xx_SPROM_ET1MACADDR + 1];
  734. *(((u16 *)bcm->sprom.et1macaddr) + 1) = cpu_to_be16(value);
  735. value = sprom[BCM43xx_SPROM_ET1MACADDR + 2];
  736. *(((u16 *)bcm->sprom.et1macaddr) + 2) = cpu_to_be16(value);
  737. /* ethernet phy settings */
  738. value = sprom[BCM43xx_SPROM_ETHPHY];
  739. bcm->sprom.et0phyaddr = (value & 0x001F);
  740. bcm->sprom.et1phyaddr = (value & 0x03E0) >> 5;
  741. bcm->sprom.et0mdcport = (value & (1 << 14)) >> 14;
  742. bcm->sprom.et1mdcport = (value & (1 << 15)) >> 15;
  743. /* boardrev, antennas, locale */
  744. value = sprom[BCM43xx_SPROM_BOARDREV];
  745. bcm->sprom.boardrev = (value & 0x00FF);
  746. bcm->sprom.locale = (value & 0x0F00) >> 8;
  747. bcm->sprom.antennas_aphy = (value & 0x3000) >> 12;
  748. bcm->sprom.antennas_bgphy = (value & 0xC000) >> 14;
  749. if (modparam_locale != -1) {
  750. if (modparam_locale >= 0 && modparam_locale <= 11) {
  751. bcm->sprom.locale = modparam_locale;
  752. printk(KERN_WARNING PFX "Operating with modified "
  753. "LocaleCode %u (%s)\n",
  754. bcm->sprom.locale,
  755. bcm43xx_locale_string(bcm->sprom.locale));
  756. } else {
  757. printk(KERN_WARNING PFX "Module parameter \"locale\" "
  758. "invalid value. (0 - 11)\n");
  759. }
  760. }
  761. /* pa0b* */
  762. value = sprom[BCM43xx_SPROM_PA0B0];
  763. bcm->sprom.pa0b0 = value;
  764. value = sprom[BCM43xx_SPROM_PA0B1];
  765. bcm->sprom.pa0b1 = value;
  766. value = sprom[BCM43xx_SPROM_PA0B2];
  767. bcm->sprom.pa0b2 = value;
  768. /* wl0gpio* */
  769. value = sprom[BCM43xx_SPROM_WL0GPIO0];
  770. if (value == 0x0000)
  771. value = 0xFFFF;
  772. bcm->sprom.wl0gpio0 = value & 0x00FF;
  773. bcm->sprom.wl0gpio1 = (value & 0xFF00) >> 8;
  774. value = sprom[BCM43xx_SPROM_WL0GPIO2];
  775. if (value == 0x0000)
  776. value = 0xFFFF;
  777. bcm->sprom.wl0gpio2 = value & 0x00FF;
  778. bcm->sprom.wl0gpio3 = (value & 0xFF00) >> 8;
  779. /* maxpower */
  780. value = sprom[BCM43xx_SPROM_MAXPWR];
  781. bcm->sprom.maxpower_aphy = (value & 0xFF00) >> 8;
  782. bcm->sprom.maxpower_bgphy = value & 0x00FF;
  783. /* pa1b* */
  784. value = sprom[BCM43xx_SPROM_PA1B0];
  785. bcm->sprom.pa1b0 = value;
  786. value = sprom[BCM43xx_SPROM_PA1B1];
  787. bcm->sprom.pa1b1 = value;
  788. value = sprom[BCM43xx_SPROM_PA1B2];
  789. bcm->sprom.pa1b2 = value;
  790. /* idle tssi target */
  791. value = sprom[BCM43xx_SPROM_IDL_TSSI_TGT];
  792. bcm->sprom.idle_tssi_tgt_aphy = value & 0x00FF;
  793. bcm->sprom.idle_tssi_tgt_bgphy = (value & 0xFF00) >> 8;
  794. /* boardflags */
  795. value = sprom[BCM43xx_SPROM_BOARDFLAGS];
  796. if (value == 0xFFFF)
  797. value = 0x0000;
  798. bcm->sprom.boardflags = value;
  799. /* boardflags workarounds */
  800. if (bcm->board_vendor == PCI_VENDOR_ID_DELL &&
  801. bcm->chip_id == 0x4301 &&
  802. bcm->board_revision == 0x74)
  803. bcm->sprom.boardflags |= BCM43xx_BFL_BTCOEXIST;
  804. if (bcm->board_vendor == PCI_VENDOR_ID_APPLE &&
  805. bcm->board_type == 0x4E &&
  806. bcm->board_revision > 0x40)
  807. bcm->sprom.boardflags |= BCM43xx_BFL_PACTRL;
  808. /* antenna gain */
  809. value = sprom[BCM43xx_SPROM_ANTENNA_GAIN];
  810. if (value == 0x0000 || value == 0xFFFF)
  811. value = 0x0202;
  812. /* convert values to Q5.2 */
  813. bcm->sprom.antennagain_aphy = ((value & 0xFF00) >> 8) * 4;
  814. bcm->sprom.antennagain_bgphy = (value & 0x00FF) * 4;
  815. kfree(sprom);
  816. return 0;
  817. }
  818. static int bcm43xx_geo_init(struct bcm43xx_private *bcm)
  819. {
  820. struct ieee80211_geo *geo;
  821. struct ieee80211_channel *chan;
  822. int have_a = 0, have_bg = 0;
  823. int i;
  824. u8 channel;
  825. struct bcm43xx_phyinfo *phy;
  826. const char *iso_country;
  827. geo = kzalloc(sizeof(*geo), GFP_KERNEL);
  828. if (!geo)
  829. return -ENOMEM;
  830. for (i = 0; i < bcm->nr_80211_available; i++) {
  831. phy = &(bcm->core_80211_ext[i].phy);
  832. switch (phy->type) {
  833. case BCM43xx_PHYTYPE_B:
  834. case BCM43xx_PHYTYPE_G:
  835. have_bg = 1;
  836. break;
  837. case BCM43xx_PHYTYPE_A:
  838. have_a = 1;
  839. break;
  840. default:
  841. assert(0);
  842. }
  843. }
  844. iso_country = bcm43xx_locale_iso(bcm->sprom.locale);
  845. if (have_a) {
  846. for (i = 0, channel = IEEE80211_52GHZ_MIN_CHANNEL;
  847. channel <= IEEE80211_52GHZ_MAX_CHANNEL; channel++) {
  848. chan = &geo->a[i++];
  849. chan->freq = bcm43xx_channel_to_freq_a(channel);
  850. chan->channel = channel;
  851. }
  852. geo->a_channels = i;
  853. }
  854. if (have_bg) {
  855. for (i = 0, channel = IEEE80211_24GHZ_MIN_CHANNEL;
  856. channel <= IEEE80211_24GHZ_MAX_CHANNEL; channel++) {
  857. chan = &geo->bg[i++];
  858. chan->freq = bcm43xx_channel_to_freq_bg(channel);
  859. chan->channel = channel;
  860. }
  861. geo->bg_channels = i;
  862. }
  863. memcpy(geo->name, iso_country, 2);
  864. if (0 /*TODO: Outdoor use only */)
  865. geo->name[2] = 'O';
  866. else if (0 /*TODO: Indoor use only */)
  867. geo->name[2] = 'I';
  868. else
  869. geo->name[2] = ' ';
  870. geo->name[3] = '\0';
  871. ieee80211_set_geo(bcm->ieee, geo);
  872. kfree(geo);
  873. return 0;
  874. }
  875. /* DummyTransmission function, as documented on
  876. * http://bcm-specs.sipsolutions.net/DummyTransmission
  877. */
  878. void bcm43xx_dummy_transmission(struct bcm43xx_private *bcm)
  879. {
  880. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  881. struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
  882. unsigned int i, max_loop;
  883. u16 value = 0;
  884. u32 buffer[5] = {
  885. 0x00000000,
  886. 0x0000D400,
  887. 0x00000000,
  888. 0x00000001,
  889. 0x00000000,
  890. };
  891. switch (phy->type) {
  892. case BCM43xx_PHYTYPE_A:
  893. max_loop = 0x1E;
  894. buffer[0] = 0xCC010200;
  895. break;
  896. case BCM43xx_PHYTYPE_B:
  897. case BCM43xx_PHYTYPE_G:
  898. max_loop = 0xFA;
  899. buffer[0] = 0x6E840B00;
  900. break;
  901. default:
  902. assert(0);
  903. return;
  904. }
  905. for (i = 0; i < 5; i++)
  906. bcm43xx_ram_write(bcm, i * 4, buffer[i]);
  907. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD); /* dummy read */
  908. bcm43xx_write16(bcm, 0x0568, 0x0000);
  909. bcm43xx_write16(bcm, 0x07C0, 0x0000);
  910. bcm43xx_write16(bcm, 0x050C, ((phy->type == BCM43xx_PHYTYPE_A) ? 1 : 0));
  911. bcm43xx_write16(bcm, 0x0508, 0x0000);
  912. bcm43xx_write16(bcm, 0x050A, 0x0000);
  913. bcm43xx_write16(bcm, 0x054C, 0x0000);
  914. bcm43xx_write16(bcm, 0x056A, 0x0014);
  915. bcm43xx_write16(bcm, 0x0568, 0x0826);
  916. bcm43xx_write16(bcm, 0x0500, 0x0000);
  917. bcm43xx_write16(bcm, 0x0502, 0x0030);
  918. if (radio->version == 0x2050 && radio->revision <= 0x5)
  919. bcm43xx_radio_write16(bcm, 0x0051, 0x0017);
  920. for (i = 0x00; i < max_loop; i++) {
  921. value = bcm43xx_read16(bcm, 0x050E);
  922. if (value & 0x0080)
  923. break;
  924. udelay(10);
  925. }
  926. for (i = 0x00; i < 0x0A; i++) {
  927. value = bcm43xx_read16(bcm, 0x050E);
  928. if (value & 0x0400)
  929. break;
  930. udelay(10);
  931. }
  932. for (i = 0x00; i < 0x0A; i++) {
  933. value = bcm43xx_read16(bcm, 0x0690);
  934. if (!(value & 0x0100))
  935. break;
  936. udelay(10);
  937. }
  938. if (radio->version == 0x2050 && radio->revision <= 0x5)
  939. bcm43xx_radio_write16(bcm, 0x0051, 0x0037);
  940. }
  941. static void key_write(struct bcm43xx_private *bcm,
  942. u8 index, u8 algorithm, const u16 *key)
  943. {
  944. unsigned int i, basic_wep = 0;
  945. u32 offset;
  946. u16 value;
  947. /* Write associated key information */
  948. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x100 + (index * 2),
  949. ((index << 4) | (algorithm & 0x0F)));
  950. /* The first 4 WEP keys need extra love */
  951. if (((algorithm == BCM43xx_SEC_ALGO_WEP) ||
  952. (algorithm == BCM43xx_SEC_ALGO_WEP104)) && (index < 4))
  953. basic_wep = 1;
  954. /* Write key payload, 8 little endian words */
  955. offset = bcm->security_offset + (index * BCM43xx_SEC_KEYSIZE);
  956. for (i = 0; i < (BCM43xx_SEC_KEYSIZE / sizeof(u16)); i++) {
  957. value = cpu_to_le16(key[i]);
  958. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED,
  959. offset + (i * 2), value);
  960. if (!basic_wep)
  961. continue;
  962. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED,
  963. offset + (i * 2) + 4 * BCM43xx_SEC_KEYSIZE,
  964. value);
  965. }
  966. }
  967. static void keymac_write(struct bcm43xx_private *bcm,
  968. u8 index, const u32 *addr)
  969. {
  970. /* for keys 0-3 there is no associated mac address */
  971. if (index < 4)
  972. return;
  973. index -= 4;
  974. if (bcm->current_core->rev >= 5) {
  975. bcm43xx_shm_write32(bcm,
  976. BCM43xx_SHM_HWMAC,
  977. index * 2,
  978. cpu_to_be32(*addr));
  979. bcm43xx_shm_write16(bcm,
  980. BCM43xx_SHM_HWMAC,
  981. (index * 2) + 1,
  982. cpu_to_be16(*((u16 *)(addr + 1))));
  983. } else {
  984. if (index < 8) {
  985. TODO(); /* Put them in the macaddress filter */
  986. } else {
  987. TODO();
  988. /* Put them BCM43xx_SHM_SHARED, stating index 0x0120.
  989. Keep in mind to update the count of keymacs in 0x003E as well! */
  990. }
  991. }
  992. }
  993. static int bcm43xx_key_write(struct bcm43xx_private *bcm,
  994. u8 index, u8 algorithm,
  995. const u8 *_key, int key_len,
  996. const u8 *mac_addr)
  997. {
  998. u8 key[BCM43xx_SEC_KEYSIZE] = { 0 };
  999. if (index >= ARRAY_SIZE(bcm->key))
  1000. return -EINVAL;
  1001. if (key_len > ARRAY_SIZE(key))
  1002. return -EINVAL;
  1003. if (algorithm < 1 || algorithm > 5)
  1004. return -EINVAL;
  1005. memcpy(key, _key, key_len);
  1006. key_write(bcm, index, algorithm, (const u16 *)key);
  1007. keymac_write(bcm, index, (const u32 *)mac_addr);
  1008. bcm->key[index].algorithm = algorithm;
  1009. return 0;
  1010. }
  1011. static void bcm43xx_clear_keys(struct bcm43xx_private *bcm)
  1012. {
  1013. static const u32 zero_mac[2] = { 0 };
  1014. unsigned int i,j, nr_keys = 54;
  1015. u16 offset;
  1016. if (bcm->current_core->rev < 5)
  1017. nr_keys = 16;
  1018. assert(nr_keys <= ARRAY_SIZE(bcm->key));
  1019. for (i = 0; i < nr_keys; i++) {
  1020. bcm->key[i].enabled = 0;
  1021. /* returns for i < 4 immediately */
  1022. keymac_write(bcm, i, zero_mac);
  1023. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED,
  1024. 0x100 + (i * 2), 0x0000);
  1025. for (j = 0; j < 8; j++) {
  1026. offset = bcm->security_offset + (j * 4) + (i * BCM43xx_SEC_KEYSIZE);
  1027. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED,
  1028. offset, 0x0000);
  1029. }
  1030. }
  1031. dprintk(KERN_INFO PFX "Keys cleared\n");
  1032. }
  1033. /* Lowlevel core-switch function. This is only to be used in
  1034. * bcm43xx_switch_core() and bcm43xx_probe_cores()
  1035. */
  1036. static int _switch_core(struct bcm43xx_private *bcm, int core)
  1037. {
  1038. int err;
  1039. int attempts = 0;
  1040. u32 current_core;
  1041. assert(core >= 0);
  1042. while (1) {
  1043. err = bcm43xx_pci_write_config32(bcm, BCM43xx_PCICFG_ACTIVE_CORE,
  1044. (core * 0x1000) + 0x18000000);
  1045. if (unlikely(err))
  1046. goto error;
  1047. err = bcm43xx_pci_read_config32(bcm, BCM43xx_PCICFG_ACTIVE_CORE,
  1048. &current_core);
  1049. if (unlikely(err))
  1050. goto error;
  1051. current_core = (current_core - 0x18000000) / 0x1000;
  1052. if (current_core == core)
  1053. break;
  1054. if (unlikely(attempts++ > BCM43xx_SWITCH_CORE_MAX_RETRIES))
  1055. goto error;
  1056. udelay(10);
  1057. }
  1058. #ifdef CONFIG_BCM947XX
  1059. if (bcm->pci_dev->bus->number == 0)
  1060. bcm->current_core_offset = 0x1000 * core;
  1061. else
  1062. bcm->current_core_offset = 0;
  1063. #endif
  1064. return 0;
  1065. error:
  1066. printk(KERN_ERR PFX "Failed to switch to core %d\n", core);
  1067. return -ENODEV;
  1068. }
  1069. int bcm43xx_switch_core(struct bcm43xx_private *bcm, struct bcm43xx_coreinfo *new_core)
  1070. {
  1071. int err;
  1072. if (unlikely(!new_core))
  1073. return 0;
  1074. if (!new_core->available)
  1075. return -ENODEV;
  1076. if (bcm->current_core == new_core)
  1077. return 0;
  1078. err = _switch_core(bcm, new_core->index);
  1079. if (unlikely(err))
  1080. goto out;
  1081. bcm->current_core = new_core;
  1082. out:
  1083. return err;
  1084. }
  1085. static int bcm43xx_core_enabled(struct bcm43xx_private *bcm)
  1086. {
  1087. u32 value;
  1088. value = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
  1089. value &= BCM43xx_SBTMSTATELOW_CLOCK | BCM43xx_SBTMSTATELOW_RESET
  1090. | BCM43xx_SBTMSTATELOW_REJECT;
  1091. return (value == BCM43xx_SBTMSTATELOW_CLOCK);
  1092. }
  1093. /* disable current core */
  1094. static int bcm43xx_core_disable(struct bcm43xx_private *bcm, u32 core_flags)
  1095. {
  1096. u32 sbtmstatelow;
  1097. u32 sbtmstatehigh;
  1098. int i;
  1099. /* fetch sbtmstatelow from core information registers */
  1100. sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
  1101. /* core is already in reset */
  1102. if (sbtmstatelow & BCM43xx_SBTMSTATELOW_RESET)
  1103. goto out;
  1104. if (sbtmstatelow & BCM43xx_SBTMSTATELOW_CLOCK) {
  1105. sbtmstatelow = BCM43xx_SBTMSTATELOW_CLOCK |
  1106. BCM43xx_SBTMSTATELOW_REJECT;
  1107. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1108. for (i = 0; i < 1000; i++) {
  1109. sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
  1110. if (sbtmstatelow & BCM43xx_SBTMSTATELOW_REJECT) {
  1111. i = -1;
  1112. break;
  1113. }
  1114. udelay(10);
  1115. }
  1116. if (i != -1) {
  1117. printk(KERN_ERR PFX "Error: core_disable() REJECT timeout!\n");
  1118. return -EBUSY;
  1119. }
  1120. for (i = 0; i < 1000; i++) {
  1121. sbtmstatehigh = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATEHIGH);
  1122. if (!(sbtmstatehigh & BCM43xx_SBTMSTATEHIGH_BUSY)) {
  1123. i = -1;
  1124. break;
  1125. }
  1126. udelay(10);
  1127. }
  1128. if (i != -1) {
  1129. printk(KERN_ERR PFX "Error: core_disable() BUSY timeout!\n");
  1130. return -EBUSY;
  1131. }
  1132. sbtmstatelow = BCM43xx_SBTMSTATELOW_FORCE_GATE_CLOCK |
  1133. BCM43xx_SBTMSTATELOW_REJECT |
  1134. BCM43xx_SBTMSTATELOW_RESET |
  1135. BCM43xx_SBTMSTATELOW_CLOCK |
  1136. core_flags;
  1137. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1138. udelay(10);
  1139. }
  1140. sbtmstatelow = BCM43xx_SBTMSTATELOW_RESET |
  1141. BCM43xx_SBTMSTATELOW_REJECT |
  1142. core_flags;
  1143. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1144. out:
  1145. bcm->current_core->enabled = 0;
  1146. return 0;
  1147. }
  1148. /* enable (reset) current core */
  1149. static int bcm43xx_core_enable(struct bcm43xx_private *bcm, u32 core_flags)
  1150. {
  1151. u32 sbtmstatelow;
  1152. u32 sbtmstatehigh;
  1153. u32 sbimstate;
  1154. int err;
  1155. err = bcm43xx_core_disable(bcm, core_flags);
  1156. if (err)
  1157. goto out;
  1158. sbtmstatelow = BCM43xx_SBTMSTATELOW_CLOCK |
  1159. BCM43xx_SBTMSTATELOW_RESET |
  1160. BCM43xx_SBTMSTATELOW_FORCE_GATE_CLOCK |
  1161. core_flags;
  1162. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1163. udelay(1);
  1164. sbtmstatehigh = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATEHIGH);
  1165. if (sbtmstatehigh & BCM43xx_SBTMSTATEHIGH_SERROR) {
  1166. sbtmstatehigh = 0x00000000;
  1167. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATEHIGH, sbtmstatehigh);
  1168. }
  1169. sbimstate = bcm43xx_read32(bcm, BCM43xx_CIR_SBIMSTATE);
  1170. if (sbimstate & (BCM43xx_SBIMSTATE_IB_ERROR | BCM43xx_SBIMSTATE_TIMEOUT)) {
  1171. sbimstate &= ~(BCM43xx_SBIMSTATE_IB_ERROR | BCM43xx_SBIMSTATE_TIMEOUT);
  1172. bcm43xx_write32(bcm, BCM43xx_CIR_SBIMSTATE, sbimstate);
  1173. }
  1174. sbtmstatelow = BCM43xx_SBTMSTATELOW_CLOCK |
  1175. BCM43xx_SBTMSTATELOW_FORCE_GATE_CLOCK |
  1176. core_flags;
  1177. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1178. udelay(1);
  1179. sbtmstatelow = BCM43xx_SBTMSTATELOW_CLOCK | core_flags;
  1180. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1181. udelay(1);
  1182. bcm->current_core->enabled = 1;
  1183. assert(err == 0);
  1184. out:
  1185. return err;
  1186. }
  1187. /* http://bcm-specs.sipsolutions.net/80211CoreReset */
  1188. void bcm43xx_wireless_core_reset(struct bcm43xx_private *bcm, int connect_phy)
  1189. {
  1190. u32 flags = 0x00040000;
  1191. if ((bcm43xx_core_enabled(bcm)) &&
  1192. !bcm43xx_using_pio(bcm)) {
  1193. //FIXME: Do we _really_ want #ifndef CONFIG_BCM947XX here?
  1194. #if 0
  1195. #ifndef CONFIG_BCM947XX
  1196. /* reset all used DMA controllers. */
  1197. bcm43xx_dmacontroller_tx_reset(bcm, BCM43xx_MMIO_DMA1_BASE);
  1198. bcm43xx_dmacontroller_tx_reset(bcm, BCM43xx_MMIO_DMA2_BASE);
  1199. bcm43xx_dmacontroller_tx_reset(bcm, BCM43xx_MMIO_DMA3_BASE);
  1200. bcm43xx_dmacontroller_tx_reset(bcm, BCM43xx_MMIO_DMA4_BASE);
  1201. bcm43xx_dmacontroller_rx_reset(bcm, BCM43xx_MMIO_DMA1_BASE);
  1202. if (bcm->current_core->rev < 5)
  1203. bcm43xx_dmacontroller_rx_reset(bcm, BCM43xx_MMIO_DMA4_BASE);
  1204. #endif
  1205. #endif
  1206. }
  1207. if (bcm43xx_status(bcm) == BCM43xx_STAT_SHUTTINGDOWN) {
  1208. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
  1209. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD)
  1210. & ~(BCM43xx_SBF_MAC_ENABLED | 0x00000002));
  1211. } else {
  1212. if (connect_phy)
  1213. flags |= 0x20000000;
  1214. bcm43xx_phy_connect(bcm, connect_phy);
  1215. bcm43xx_core_enable(bcm, flags);
  1216. bcm43xx_write16(bcm, 0x03E6, 0x0000);
  1217. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
  1218. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD)
  1219. | BCM43xx_SBF_400);
  1220. }
  1221. }
  1222. static void bcm43xx_wireless_core_disable(struct bcm43xx_private *bcm)
  1223. {
  1224. bcm43xx_radio_turn_off(bcm);
  1225. bcm43xx_write16(bcm, 0x03E6, 0x00F4);
  1226. bcm43xx_core_disable(bcm, 0);
  1227. }
  1228. /* Mark the current 80211 core inactive. */
  1229. static void bcm43xx_wireless_core_mark_inactive(struct bcm43xx_private *bcm)
  1230. {
  1231. u32 sbtmstatelow;
  1232. bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
  1233. bcm43xx_radio_turn_off(bcm);
  1234. sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
  1235. sbtmstatelow &= 0xDFF5FFFF;
  1236. sbtmstatelow |= 0x000A0000;
  1237. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1238. udelay(1);
  1239. sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
  1240. sbtmstatelow &= 0xFFF5FFFF;
  1241. sbtmstatelow |= 0x00080000;
  1242. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1243. udelay(1);
  1244. }
  1245. static void handle_irq_transmit_status(struct bcm43xx_private *bcm)
  1246. {
  1247. u32 v0, v1;
  1248. u16 tmp;
  1249. struct bcm43xx_xmitstatus stat;
  1250. while (1) {
  1251. v0 = bcm43xx_read32(bcm, BCM43xx_MMIO_XMITSTAT_0);
  1252. if (!v0)
  1253. break;
  1254. v1 = bcm43xx_read32(bcm, BCM43xx_MMIO_XMITSTAT_1);
  1255. stat.cookie = (v0 >> 16) & 0x0000FFFF;
  1256. tmp = (u16)((v0 & 0xFFF0) | ((v0 & 0xF) >> 1));
  1257. stat.flags = tmp & 0xFF;
  1258. stat.cnt1 = (tmp & 0x0F00) >> 8;
  1259. stat.cnt2 = (tmp & 0xF000) >> 12;
  1260. stat.seq = (u16)(v1 & 0xFFFF);
  1261. stat.unknown = (u16)((v1 >> 16) & 0xFF);
  1262. bcm43xx_debugfs_log_txstat(bcm, &stat);
  1263. if (stat.flags & BCM43xx_TXSTAT_FLAG_IGNORE)
  1264. continue;
  1265. if (!(stat.flags & BCM43xx_TXSTAT_FLAG_ACK)) {
  1266. //TODO: packet was not acked (was lost)
  1267. }
  1268. //TODO: There are more (unknown) flags to test. see bcm43xx_main.h
  1269. if (bcm43xx_using_pio(bcm))
  1270. bcm43xx_pio_handle_xmitstatus(bcm, &stat);
  1271. else
  1272. bcm43xx_dma_handle_xmitstatus(bcm, &stat);
  1273. }
  1274. }
  1275. static void drain_txstatus_queue(struct bcm43xx_private *bcm)
  1276. {
  1277. u32 dummy;
  1278. if (bcm->current_core->rev < 5)
  1279. return;
  1280. /* Read all entries from the microcode TXstatus FIFO
  1281. * and throw them away.
  1282. */
  1283. while (1) {
  1284. dummy = bcm43xx_read32(bcm, BCM43xx_MMIO_XMITSTAT_0);
  1285. if (!dummy)
  1286. break;
  1287. dummy = bcm43xx_read32(bcm, BCM43xx_MMIO_XMITSTAT_1);
  1288. }
  1289. }
  1290. static void bcm43xx_generate_noise_sample(struct bcm43xx_private *bcm)
  1291. {
  1292. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x408, 0x7F7F);
  1293. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x40A, 0x7F7F);
  1294. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD,
  1295. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD) | (1 << 4));
  1296. assert(bcm->noisecalc.core_at_start == bcm->current_core);
  1297. assert(bcm->noisecalc.channel_at_start == bcm43xx_current_radio(bcm)->channel);
  1298. }
  1299. static void bcm43xx_calculate_link_quality(struct bcm43xx_private *bcm)
  1300. {
  1301. /* Top half of Link Quality calculation. */
  1302. if (bcm->noisecalc.calculation_running)
  1303. return;
  1304. bcm->noisecalc.core_at_start = bcm->current_core;
  1305. bcm->noisecalc.channel_at_start = bcm43xx_current_radio(bcm)->channel;
  1306. bcm->noisecalc.calculation_running = 1;
  1307. bcm->noisecalc.nr_samples = 0;
  1308. bcm43xx_generate_noise_sample(bcm);
  1309. }
  1310. static void handle_irq_noise(struct bcm43xx_private *bcm)
  1311. {
  1312. struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
  1313. u16 tmp;
  1314. u8 noise[4];
  1315. u8 i, j;
  1316. s32 average;
  1317. /* Bottom half of Link Quality calculation. */
  1318. assert(bcm->noisecalc.calculation_running);
  1319. if (bcm->noisecalc.core_at_start != bcm->current_core ||
  1320. bcm->noisecalc.channel_at_start != radio->channel)
  1321. goto drop_calculation;
  1322. tmp = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x408);
  1323. noise[0] = (tmp & 0x00FF);
  1324. noise[1] = (tmp & 0xFF00) >> 8;
  1325. tmp = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x40A);
  1326. noise[2] = (tmp & 0x00FF);
  1327. noise[3] = (tmp & 0xFF00) >> 8;
  1328. if (noise[0] == 0x7F || noise[1] == 0x7F ||
  1329. noise[2] == 0x7F || noise[3] == 0x7F)
  1330. goto generate_new;
  1331. /* Get the noise samples. */
  1332. assert(bcm->noisecalc.nr_samples < 8);
  1333. i = bcm->noisecalc.nr_samples;
  1334. noise[0] = limit_value(noise[0], 0, ARRAY_SIZE(radio->nrssi_lt) - 1);
  1335. noise[1] = limit_value(noise[1], 0, ARRAY_SIZE(radio->nrssi_lt) - 1);
  1336. noise[2] = limit_value(noise[2], 0, ARRAY_SIZE(radio->nrssi_lt) - 1);
  1337. noise[3] = limit_value(noise[3], 0, ARRAY_SIZE(radio->nrssi_lt) - 1);
  1338. bcm->noisecalc.samples[i][0] = radio->nrssi_lt[noise[0]];
  1339. bcm->noisecalc.samples[i][1] = radio->nrssi_lt[noise[1]];
  1340. bcm->noisecalc.samples[i][2] = radio->nrssi_lt[noise[2]];
  1341. bcm->noisecalc.samples[i][3] = radio->nrssi_lt[noise[3]];
  1342. bcm->noisecalc.nr_samples++;
  1343. if (bcm->noisecalc.nr_samples == 8) {
  1344. /* Calculate the Link Quality by the noise samples. */
  1345. average = 0;
  1346. for (i = 0; i < 8; i++) {
  1347. for (j = 0; j < 4; j++)
  1348. average += bcm->noisecalc.samples[i][j];
  1349. }
  1350. average /= (8 * 4);
  1351. average *= 125;
  1352. average += 64;
  1353. average /= 128;
  1354. tmp = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x40C);
  1355. tmp = (tmp / 128) & 0x1F;
  1356. if (tmp >= 8)
  1357. average += 2;
  1358. else
  1359. average -= 25;
  1360. if (tmp == 8)
  1361. average -= 72;
  1362. else
  1363. average -= 48;
  1364. bcm->stats.noise = average;
  1365. drop_calculation:
  1366. bcm->noisecalc.calculation_running = 0;
  1367. return;
  1368. }
  1369. generate_new:
  1370. bcm43xx_generate_noise_sample(bcm);
  1371. }
  1372. static void handle_irq_ps(struct bcm43xx_private *bcm)
  1373. {
  1374. if (bcm->ieee->iw_mode == IW_MODE_MASTER) {
  1375. ///TODO: PS TBTT
  1376. } else {
  1377. if (1/*FIXME: the last PSpoll frame was sent successfully */)
  1378. bcm43xx_power_saving_ctl_bits(bcm, -1, -1);
  1379. }
  1380. if (bcm->ieee->iw_mode == IW_MODE_ADHOC)
  1381. bcm->reg124_set_0x4 = 1;
  1382. //FIXME else set to false?
  1383. }
  1384. static void handle_irq_reg124(struct bcm43xx_private *bcm)
  1385. {
  1386. if (!bcm->reg124_set_0x4)
  1387. return;
  1388. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD,
  1389. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD)
  1390. | 0x4);
  1391. //FIXME: reset reg124_set_0x4 to false?
  1392. }
  1393. static void handle_irq_pmq(struct bcm43xx_private *bcm)
  1394. {
  1395. u32 tmp;
  1396. //TODO: AP mode.
  1397. while (1) {
  1398. tmp = bcm43xx_read32(bcm, BCM43xx_MMIO_PS_STATUS);
  1399. if (!(tmp & 0x00000008))
  1400. break;
  1401. }
  1402. /* 16bit write is odd, but correct. */
  1403. bcm43xx_write16(bcm, BCM43xx_MMIO_PS_STATUS, 0x0002);
  1404. }
  1405. static void bcm43xx_generate_beacon_template(struct bcm43xx_private *bcm,
  1406. u16 ram_offset, u16 shm_size_offset)
  1407. {
  1408. u32 value;
  1409. u16 size = 0;
  1410. /* Timestamp. */
  1411. //FIXME: assumption: The chip sets the timestamp
  1412. value = 0;
  1413. bcm43xx_ram_write(bcm, ram_offset++, value);
  1414. bcm43xx_ram_write(bcm, ram_offset++, value);
  1415. size += 8;
  1416. /* Beacon Interval / Capability Information */
  1417. value = 0x0000;//FIXME: Which interval?
  1418. value |= (1 << 0) << 16; /* ESS */
  1419. value |= (1 << 2) << 16; /* CF Pollable */ //FIXME?
  1420. value |= (1 << 3) << 16; /* CF Poll Request */ //FIXME?
  1421. if (!bcm->ieee->open_wep)
  1422. value |= (1 << 4) << 16; /* Privacy */
  1423. bcm43xx_ram_write(bcm, ram_offset++, value);
  1424. size += 4;
  1425. /* SSID */
  1426. //TODO
  1427. /* FH Parameter Set */
  1428. //TODO
  1429. /* DS Parameter Set */
  1430. //TODO
  1431. /* CF Parameter Set */
  1432. //TODO
  1433. /* TIM */
  1434. //TODO
  1435. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, shm_size_offset, size);
  1436. }
  1437. static void handle_irq_beacon(struct bcm43xx_private *bcm)
  1438. {
  1439. u32 status;
  1440. bcm->irq_savedstate &= ~BCM43xx_IRQ_BEACON;
  1441. status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD);
  1442. if ((status & 0x1) && (status & 0x2)) {
  1443. /* ACK beacon IRQ. */
  1444. bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON,
  1445. BCM43xx_IRQ_BEACON);
  1446. bcm->irq_savedstate |= BCM43xx_IRQ_BEACON;
  1447. return;
  1448. }
  1449. if (!(status & 0x1)) {
  1450. bcm43xx_generate_beacon_template(bcm, 0x68, 0x18);
  1451. status |= 0x1;
  1452. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD, status);
  1453. }
  1454. if (!(status & 0x2)) {
  1455. bcm43xx_generate_beacon_template(bcm, 0x468, 0x1A);
  1456. status |= 0x2;
  1457. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD, status);
  1458. }
  1459. }
  1460. /* Interrupt handler bottom-half */
  1461. static void bcm43xx_interrupt_tasklet(struct bcm43xx_private *bcm)
  1462. {
  1463. u32 reason;
  1464. u32 dma_reason[6];
  1465. u32 merged_dma_reason = 0;
  1466. int i, activity = 0;
  1467. unsigned long flags;
  1468. #ifdef CONFIG_BCM43XX_DEBUG
  1469. u32 _handled = 0x00000000;
  1470. # define bcmirq_handled(irq) do { _handled |= (irq); } while (0)
  1471. #else
  1472. # define bcmirq_handled(irq) do { /* nothing */ } while (0)
  1473. #endif /* CONFIG_BCM43XX_DEBUG*/
  1474. spin_lock_irqsave(&bcm->irq_lock, flags);
  1475. reason = bcm->irq_reason;
  1476. for (i = 5; i >= 0; i--) {
  1477. dma_reason[i] = bcm->dma_reason[i];
  1478. merged_dma_reason |= dma_reason[i];
  1479. }
  1480. if (unlikely(reason & BCM43xx_IRQ_XMIT_ERROR)) {
  1481. /* TX error. We get this when Template Ram is written in wrong endianess
  1482. * in dummy_tx(). We also get this if something is wrong with the TX header
  1483. * on DMA or PIO queues.
  1484. * Maybe we get this in other error conditions, too.
  1485. */
  1486. printkl(KERN_ERR PFX "FATAL ERROR: BCM43xx_IRQ_XMIT_ERROR\n");
  1487. bcmirq_handled(BCM43xx_IRQ_XMIT_ERROR);
  1488. }
  1489. if (unlikely(merged_dma_reason & BCM43xx_DMAIRQ_FATALMASK)) {
  1490. printkl(KERN_ERR PFX "FATAL ERROR: Fatal DMA error: "
  1491. "0x%08X, 0x%08X, 0x%08X, "
  1492. "0x%08X, 0x%08X, 0x%08X\n",
  1493. dma_reason[0], dma_reason[1],
  1494. dma_reason[2], dma_reason[3],
  1495. dma_reason[4], dma_reason[5]);
  1496. bcm43xx_controller_restart(bcm, "DMA error");
  1497. mmiowb();
  1498. spin_unlock_irqrestore(&bcm->irq_lock, flags);
  1499. return;
  1500. }
  1501. if (unlikely(merged_dma_reason & BCM43xx_DMAIRQ_NONFATALMASK)) {
  1502. printkl(KERN_ERR PFX "DMA error: "
  1503. "0x%08X, 0x%08X, 0x%08X, "
  1504. "0x%08X, 0x%08X, 0x%08X\n",
  1505. dma_reason[0], dma_reason[1],
  1506. dma_reason[2], dma_reason[3],
  1507. dma_reason[4], dma_reason[5]);
  1508. }
  1509. if (reason & BCM43xx_IRQ_PS) {
  1510. handle_irq_ps(bcm);
  1511. bcmirq_handled(BCM43xx_IRQ_PS);
  1512. }
  1513. if (reason & BCM43xx_IRQ_REG124) {
  1514. handle_irq_reg124(bcm);
  1515. bcmirq_handled(BCM43xx_IRQ_REG124);
  1516. }
  1517. if (reason & BCM43xx_IRQ_BEACON) {
  1518. if (bcm->ieee->iw_mode == IW_MODE_MASTER)
  1519. handle_irq_beacon(bcm);
  1520. bcmirq_handled(BCM43xx_IRQ_BEACON);
  1521. }
  1522. if (reason & BCM43xx_IRQ_PMQ) {
  1523. handle_irq_pmq(bcm);
  1524. bcmirq_handled(BCM43xx_IRQ_PMQ);
  1525. }
  1526. if (reason & BCM43xx_IRQ_SCAN) {
  1527. /*TODO*/
  1528. //bcmirq_handled(BCM43xx_IRQ_SCAN);
  1529. }
  1530. if (reason & BCM43xx_IRQ_NOISE) {
  1531. handle_irq_noise(bcm);
  1532. bcmirq_handled(BCM43xx_IRQ_NOISE);
  1533. }
  1534. /* Check the DMA reason registers for received data. */
  1535. if (dma_reason[0] & BCM43xx_DMAIRQ_RX_DONE) {
  1536. if (bcm43xx_using_pio(bcm))
  1537. bcm43xx_pio_rx(bcm43xx_current_pio(bcm)->queue0);
  1538. else
  1539. bcm43xx_dma_rx(bcm43xx_current_dma(bcm)->rx_ring0);
  1540. /* We intentionally don't set "activity" to 1, here. */
  1541. }
  1542. assert(!(dma_reason[1] & BCM43xx_DMAIRQ_RX_DONE));
  1543. assert(!(dma_reason[2] & BCM43xx_DMAIRQ_RX_DONE));
  1544. if (dma_reason[3] & BCM43xx_DMAIRQ_RX_DONE) {
  1545. if (bcm43xx_using_pio(bcm))
  1546. bcm43xx_pio_rx(bcm43xx_current_pio(bcm)->queue3);
  1547. else
  1548. bcm43xx_dma_rx(bcm43xx_current_dma(bcm)->rx_ring3);
  1549. activity = 1;
  1550. }
  1551. assert(!(dma_reason[4] & BCM43xx_DMAIRQ_RX_DONE));
  1552. assert(!(dma_reason[5] & BCM43xx_DMAIRQ_RX_DONE));
  1553. bcmirq_handled(BCM43xx_IRQ_RX);
  1554. if (reason & BCM43xx_IRQ_XMIT_STATUS) {
  1555. handle_irq_transmit_status(bcm);
  1556. activity = 1;
  1557. //TODO: In AP mode, this also causes sending of powersave responses.
  1558. bcmirq_handled(BCM43xx_IRQ_XMIT_STATUS);
  1559. }
  1560. /* IRQ_PIO_WORKAROUND is handled in the top-half. */
  1561. bcmirq_handled(BCM43xx_IRQ_PIO_WORKAROUND);
  1562. #ifdef CONFIG_BCM43XX_DEBUG
  1563. if (unlikely(reason & ~_handled)) {
  1564. printkl(KERN_WARNING PFX
  1565. "Unhandled IRQ! Reason: 0x%08x, Unhandled: 0x%08x, "
  1566. "DMA: 0x%08x, 0x%08x, 0x%08x, 0x%08x\n",
  1567. reason, (reason & ~_handled),
  1568. dma_reason[0], dma_reason[1],
  1569. dma_reason[2], dma_reason[3]);
  1570. }
  1571. #endif
  1572. #undef bcmirq_handled
  1573. if (!modparam_noleds)
  1574. bcm43xx_leds_update(bcm, activity);
  1575. bcm43xx_interrupt_enable(bcm, bcm->irq_savedstate);
  1576. mmiowb();
  1577. spin_unlock_irqrestore(&bcm->irq_lock, flags);
  1578. }
  1579. static void pio_irq_workaround(struct bcm43xx_private *bcm,
  1580. u16 base, int queueidx)
  1581. {
  1582. u16 rxctl;
  1583. rxctl = bcm43xx_read16(bcm, base + BCM43xx_PIO_RXCTL);
  1584. if (rxctl & BCM43xx_PIO_RXCTL_DATAAVAILABLE)
  1585. bcm->dma_reason[queueidx] |= BCM43xx_DMAIRQ_RX_DONE;
  1586. else
  1587. bcm->dma_reason[queueidx] &= ~BCM43xx_DMAIRQ_RX_DONE;
  1588. }
  1589. static void bcm43xx_interrupt_ack(struct bcm43xx_private *bcm, u32 reason)
  1590. {
  1591. if (bcm43xx_using_pio(bcm) &&
  1592. (bcm->current_core->rev < 3) &&
  1593. (!(reason & BCM43xx_IRQ_PIO_WORKAROUND))) {
  1594. /* Apply a PIO specific workaround to the dma_reasons */
  1595. pio_irq_workaround(bcm, BCM43xx_MMIO_PIO1_BASE, 0);
  1596. pio_irq_workaround(bcm, BCM43xx_MMIO_PIO2_BASE, 1);
  1597. pio_irq_workaround(bcm, BCM43xx_MMIO_PIO3_BASE, 2);
  1598. pio_irq_workaround(bcm, BCM43xx_MMIO_PIO4_BASE, 3);
  1599. }
  1600. bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON, reason);
  1601. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA0_REASON,
  1602. bcm->dma_reason[0]);
  1603. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA1_REASON,
  1604. bcm->dma_reason[1]);
  1605. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA2_REASON,
  1606. bcm->dma_reason[2]);
  1607. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA3_REASON,
  1608. bcm->dma_reason[3]);
  1609. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA4_REASON,
  1610. bcm->dma_reason[4]);
  1611. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA5_REASON,
  1612. bcm->dma_reason[5]);
  1613. }
  1614. /* Interrupt handler top-half */
  1615. static irqreturn_t bcm43xx_interrupt_handler(int irq, void *dev_id)
  1616. {
  1617. irqreturn_t ret = IRQ_HANDLED;
  1618. struct bcm43xx_private *bcm = dev_id;
  1619. u32 reason;
  1620. if (!bcm)
  1621. return IRQ_NONE;
  1622. spin_lock(&bcm->irq_lock);
  1623. assert(bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED);
  1624. assert(bcm->current_core->id == BCM43xx_COREID_80211);
  1625. reason = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON);
  1626. if (reason == 0xffffffff) {
  1627. /* irq not for us (shared irq) */
  1628. ret = IRQ_NONE;
  1629. goto out;
  1630. }
  1631. reason &= bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK);
  1632. if (!reason)
  1633. goto out;
  1634. bcm->dma_reason[0] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA0_REASON)
  1635. & 0x0001DC00;
  1636. bcm->dma_reason[1] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA1_REASON)
  1637. & 0x0000DC00;
  1638. bcm->dma_reason[2] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA2_REASON)
  1639. & 0x0000DC00;
  1640. bcm->dma_reason[3] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA3_REASON)
  1641. & 0x0001DC00;
  1642. bcm->dma_reason[4] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA4_REASON)
  1643. & 0x0000DC00;
  1644. bcm->dma_reason[5] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA5_REASON)
  1645. & 0x0000DC00;
  1646. bcm43xx_interrupt_ack(bcm, reason);
  1647. /* disable all IRQs. They are enabled again in the bottom half. */
  1648. bcm->irq_savedstate = bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
  1649. /* save the reason code and call our bottom half. */
  1650. bcm->irq_reason = reason;
  1651. tasklet_schedule(&bcm->isr_tasklet);
  1652. out:
  1653. mmiowb();
  1654. spin_unlock(&bcm->irq_lock);
  1655. return ret;
  1656. }
  1657. static void bcm43xx_release_firmware(struct bcm43xx_private *bcm, int force)
  1658. {
  1659. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  1660. if (bcm->firmware_norelease && !force)
  1661. return; /* Suspending or controller reset. */
  1662. release_firmware(phy->ucode);
  1663. phy->ucode = NULL;
  1664. release_firmware(phy->pcm);
  1665. phy->pcm = NULL;
  1666. release_firmware(phy->initvals0);
  1667. phy->initvals0 = NULL;
  1668. release_firmware(phy->initvals1);
  1669. phy->initvals1 = NULL;
  1670. }
  1671. static int bcm43xx_request_firmware(struct bcm43xx_private *bcm)
  1672. {
  1673. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  1674. u8 rev = bcm->current_core->rev;
  1675. int err = 0;
  1676. int nr;
  1677. char buf[22 + sizeof(modparam_fwpostfix) - 1] = { 0 };
  1678. if (!phy->ucode) {
  1679. snprintf(buf, ARRAY_SIZE(buf), "bcm43xx_microcode%d%s.fw",
  1680. (rev >= 5 ? 5 : rev),
  1681. modparam_fwpostfix);
  1682. err = request_firmware(&phy->ucode, buf, &bcm->pci_dev->dev);
  1683. if (err) {
  1684. printk(KERN_ERR PFX
  1685. "Error: Microcode \"%s\" not available or load failed.\n",
  1686. buf);
  1687. goto error;
  1688. }
  1689. }
  1690. if (!phy->pcm) {
  1691. snprintf(buf, ARRAY_SIZE(buf),
  1692. "bcm43xx_pcm%d%s.fw",
  1693. (rev < 5 ? 4 : 5),
  1694. modparam_fwpostfix);
  1695. err = request_firmware(&phy->pcm, buf, &bcm->pci_dev->dev);
  1696. if (err) {
  1697. printk(KERN_ERR PFX
  1698. "Error: PCM \"%s\" not available or load failed.\n",
  1699. buf);
  1700. goto error;
  1701. }
  1702. }
  1703. if (!phy->initvals0) {
  1704. if (rev == 2 || rev == 4) {
  1705. switch (phy->type) {
  1706. case BCM43xx_PHYTYPE_A:
  1707. nr = 3;
  1708. break;
  1709. case BCM43xx_PHYTYPE_B:
  1710. case BCM43xx_PHYTYPE_G:
  1711. nr = 1;
  1712. break;
  1713. default:
  1714. goto err_noinitval;
  1715. }
  1716. } else if (rev >= 5) {
  1717. switch (phy->type) {
  1718. case BCM43xx_PHYTYPE_A:
  1719. nr = 7;
  1720. break;
  1721. case BCM43xx_PHYTYPE_B:
  1722. case BCM43xx_PHYTYPE_G:
  1723. nr = 5;
  1724. break;
  1725. default:
  1726. goto err_noinitval;
  1727. }
  1728. } else
  1729. goto err_noinitval;
  1730. snprintf(buf, ARRAY_SIZE(buf), "bcm43xx_initval%02d%s.fw",
  1731. nr, modparam_fwpostfix);
  1732. err = request_firmware(&phy->initvals0, buf, &bcm->pci_dev->dev);
  1733. if (err) {
  1734. printk(KERN_ERR PFX
  1735. "Error: InitVals \"%s\" not available or load failed.\n",
  1736. buf);
  1737. goto error;
  1738. }
  1739. if (phy->initvals0->size % sizeof(struct bcm43xx_initval)) {
  1740. printk(KERN_ERR PFX "InitVals fileformat error.\n");
  1741. goto error;
  1742. }
  1743. }
  1744. if (!phy->initvals1) {
  1745. if (rev >= 5) {
  1746. u32 sbtmstatehigh;
  1747. switch (phy->type) {
  1748. case BCM43xx_PHYTYPE_A:
  1749. sbtmstatehigh = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATEHIGH);
  1750. if (sbtmstatehigh & 0x00010000)
  1751. nr = 9;
  1752. else
  1753. nr = 10;
  1754. break;
  1755. case BCM43xx_PHYTYPE_B:
  1756. case BCM43xx_PHYTYPE_G:
  1757. nr = 6;
  1758. break;
  1759. default:
  1760. goto err_noinitval;
  1761. }
  1762. snprintf(buf, ARRAY_SIZE(buf), "bcm43xx_initval%02d%s.fw",
  1763. nr, modparam_fwpostfix);
  1764. err = request_firmware(&phy->initvals1, buf, &bcm->pci_dev->dev);
  1765. if (err) {
  1766. printk(KERN_ERR PFX
  1767. "Error: InitVals \"%s\" not available or load failed.\n",
  1768. buf);
  1769. goto error;
  1770. }
  1771. if (phy->initvals1->size % sizeof(struct bcm43xx_initval)) {
  1772. printk(KERN_ERR PFX "InitVals fileformat error.\n");
  1773. goto error;
  1774. }
  1775. }
  1776. }
  1777. out:
  1778. return err;
  1779. error:
  1780. bcm43xx_release_firmware(bcm, 1);
  1781. goto out;
  1782. err_noinitval:
  1783. printk(KERN_ERR PFX "Error: No InitVals available!\n");
  1784. err = -ENOENT;
  1785. goto error;
  1786. }
  1787. static void bcm43xx_upload_microcode(struct bcm43xx_private *bcm)
  1788. {
  1789. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  1790. const u32 *data;
  1791. unsigned int i, len;
  1792. /* Upload Microcode. */
  1793. data = (u32 *)(phy->ucode->data);
  1794. len = phy->ucode->size / sizeof(u32);
  1795. bcm43xx_shm_control_word(bcm, BCM43xx_SHM_UCODE, 0x0000);
  1796. for (i = 0; i < len; i++) {
  1797. bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_DATA,
  1798. be32_to_cpu(data[i]));
  1799. udelay(10);
  1800. }
  1801. /* Upload PCM data. */
  1802. data = (u32 *)(phy->pcm->data);
  1803. len = phy->pcm->size / sizeof(u32);
  1804. bcm43xx_shm_control_word(bcm, BCM43xx_SHM_PCM, 0x01ea);
  1805. bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_DATA, 0x00004000);
  1806. bcm43xx_shm_control_word(bcm, BCM43xx_SHM_PCM, 0x01eb);
  1807. for (i = 0; i < len; i++) {
  1808. bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_DATA,
  1809. be32_to_cpu(data[i]));
  1810. udelay(10);
  1811. }
  1812. }
  1813. static int bcm43xx_write_initvals(struct bcm43xx_private *bcm,
  1814. const struct bcm43xx_initval *data,
  1815. const unsigned int len)
  1816. {
  1817. u16 offset, size;
  1818. u32 value;
  1819. unsigned int i;
  1820. for (i = 0; i < len; i++) {
  1821. offset = be16_to_cpu(data[i].offset);
  1822. size = be16_to_cpu(data[i].size);
  1823. value = be32_to_cpu(data[i].value);
  1824. if (unlikely(offset >= 0x1000))
  1825. goto err_format;
  1826. if (size == 2) {
  1827. if (unlikely(value & 0xFFFF0000))
  1828. goto err_format;
  1829. bcm43xx_write16(bcm, offset, (u16)value);
  1830. } else if (size == 4) {
  1831. bcm43xx_write32(bcm, offset, value);
  1832. } else
  1833. goto err_format;
  1834. }
  1835. return 0;
  1836. err_format:
  1837. printk(KERN_ERR PFX "InitVals (bcm43xx_initvalXX.fw) file-format error. "
  1838. "Please fix your bcm43xx firmware files.\n");
  1839. return -EPROTO;
  1840. }
  1841. static int bcm43xx_upload_initvals(struct bcm43xx_private *bcm)
  1842. {
  1843. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  1844. int err;
  1845. err = bcm43xx_write_initvals(bcm, (struct bcm43xx_initval *)phy->initvals0->data,
  1846. phy->initvals0->size / sizeof(struct bcm43xx_initval));
  1847. if (err)
  1848. goto out;
  1849. if (phy->initvals1) {
  1850. err = bcm43xx_write_initvals(bcm, (struct bcm43xx_initval *)phy->initvals1->data,
  1851. phy->initvals1->size / sizeof(struct bcm43xx_initval));
  1852. if (err)
  1853. goto out;
  1854. }
  1855. out:
  1856. return err;
  1857. }
  1858. #ifdef CONFIG_BCM947XX
  1859. static struct pci_device_id bcm43xx_47xx_ids[] = {
  1860. { PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, 0x4324) },
  1861. { 0 }
  1862. };
  1863. #endif
  1864. static int bcm43xx_initialize_irq(struct bcm43xx_private *bcm)
  1865. {
  1866. int err;
  1867. bcm->irq = bcm->pci_dev->irq;
  1868. #ifdef CONFIG_BCM947XX
  1869. if (bcm->pci_dev->bus->number == 0) {
  1870. struct pci_dev *d;
  1871. struct pci_device_id *id;
  1872. for (id = bcm43xx_47xx_ids; id->vendor; id++) {
  1873. d = pci_get_device(id->vendor, id->device, NULL);
  1874. if (d != NULL) {
  1875. bcm->irq = d->irq;
  1876. pci_dev_put(d);
  1877. break;
  1878. }
  1879. }
  1880. }
  1881. #endif
  1882. err = request_irq(bcm->irq, bcm43xx_interrupt_handler,
  1883. IRQF_SHARED, KBUILD_MODNAME, bcm);
  1884. if (err)
  1885. printk(KERN_ERR PFX "Cannot register IRQ%d\n", bcm->irq);
  1886. return err;
  1887. }
  1888. /* Switch to the core used to write the GPIO register.
  1889. * This is either the ChipCommon, or the PCI core.
  1890. */
  1891. static int switch_to_gpio_core(struct bcm43xx_private *bcm)
  1892. {
  1893. int err;
  1894. /* Where to find the GPIO register depends on the chipset.
  1895. * If it has a ChipCommon, its register at offset 0x6c is the GPIO
  1896. * control register. Otherwise the register at offset 0x6c in the
  1897. * PCI core is the GPIO control register.
  1898. */
  1899. err = bcm43xx_switch_core(bcm, &bcm->core_chipcommon);
  1900. if (err == -ENODEV) {
  1901. err = bcm43xx_switch_core(bcm, &bcm->core_pci);
  1902. if (unlikely(err == -ENODEV)) {
  1903. printk(KERN_ERR PFX "gpio error: "
  1904. "Neither ChipCommon nor PCI core available!\n");
  1905. }
  1906. }
  1907. return err;
  1908. }
  1909. /* Initialize the GPIOs
  1910. * http://bcm-specs.sipsolutions.net/GPIO
  1911. */
  1912. static int bcm43xx_gpio_init(struct bcm43xx_private *bcm)
  1913. {
  1914. struct bcm43xx_coreinfo *old_core;
  1915. int err;
  1916. u32 mask, set;
  1917. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
  1918. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD)
  1919. & 0xFFFF3FFF);
  1920. bcm43xx_leds_switch_all(bcm, 0);
  1921. bcm43xx_write16(bcm, BCM43xx_MMIO_GPIO_MASK,
  1922. bcm43xx_read16(bcm, BCM43xx_MMIO_GPIO_MASK) | 0x000F);
  1923. mask = 0x0000001F;
  1924. set = 0x0000000F;
  1925. if (bcm->chip_id == 0x4301) {
  1926. mask |= 0x0060;
  1927. set |= 0x0060;
  1928. }
  1929. if (0 /* FIXME: conditional unknown */) {
  1930. bcm43xx_write16(bcm, BCM43xx_MMIO_GPIO_MASK,
  1931. bcm43xx_read16(bcm, BCM43xx_MMIO_GPIO_MASK)
  1932. | 0x0100);
  1933. mask |= 0x0180;
  1934. set |= 0x0180;
  1935. }
  1936. if (bcm->sprom.boardflags & BCM43xx_BFL_PACTRL) {
  1937. bcm43xx_write16(bcm, BCM43xx_MMIO_GPIO_MASK,
  1938. bcm43xx_read16(bcm, BCM43xx_MMIO_GPIO_MASK)
  1939. | 0x0200);
  1940. mask |= 0x0200;
  1941. set |= 0x0200;
  1942. }
  1943. if (bcm->current_core->rev >= 2)
  1944. mask |= 0x0010; /* FIXME: This is redundant. */
  1945. old_core = bcm->current_core;
  1946. err = switch_to_gpio_core(bcm);
  1947. if (err)
  1948. goto out;
  1949. bcm43xx_write32(bcm, BCM43xx_GPIO_CONTROL,
  1950. (bcm43xx_read32(bcm, BCM43xx_GPIO_CONTROL) & mask) | set);
  1951. err = bcm43xx_switch_core(bcm, old_core);
  1952. out:
  1953. return err;
  1954. }
  1955. /* Turn off all GPIO stuff. Call this on module unload, for example. */
  1956. static int bcm43xx_gpio_cleanup(struct bcm43xx_private *bcm)
  1957. {
  1958. struct bcm43xx_coreinfo *old_core;
  1959. int err;
  1960. old_core = bcm->current_core;
  1961. err = switch_to_gpio_core(bcm);
  1962. if (err)
  1963. return err;
  1964. bcm43xx_write32(bcm, BCM43xx_GPIO_CONTROL, 0x00000000);
  1965. err = bcm43xx_switch_core(bcm, old_core);
  1966. assert(err == 0);
  1967. return 0;
  1968. }
  1969. /* http://bcm-specs.sipsolutions.net/EnableMac */
  1970. void bcm43xx_mac_enable(struct bcm43xx_private *bcm)
  1971. {
  1972. bcm->mac_suspended--;
  1973. assert(bcm->mac_suspended >= 0);
  1974. if (bcm->mac_suspended == 0) {
  1975. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
  1976. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD)
  1977. | BCM43xx_SBF_MAC_ENABLED);
  1978. bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON, BCM43xx_IRQ_READY);
  1979. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD); /* dummy read */
  1980. bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON); /* dummy read */
  1981. bcm43xx_power_saving_ctl_bits(bcm, -1, -1);
  1982. }
  1983. }
  1984. /* http://bcm-specs.sipsolutions.net/SuspendMAC */
  1985. void bcm43xx_mac_suspend(struct bcm43xx_private *bcm)
  1986. {
  1987. int i;
  1988. u32 tmp;
  1989. assert(bcm->mac_suspended >= 0);
  1990. if (bcm->mac_suspended == 0) {
  1991. bcm43xx_power_saving_ctl_bits(bcm, -1, 1);
  1992. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
  1993. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD)
  1994. & ~BCM43xx_SBF_MAC_ENABLED);
  1995. bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON); /* dummy read */
  1996. for (i = 10000; i; i--) {
  1997. tmp = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON);
  1998. if (tmp & BCM43xx_IRQ_READY)
  1999. goto out;
  2000. udelay(1);
  2001. }
  2002. printkl(KERN_ERR PFX "MAC suspend failed\n");
  2003. }
  2004. out:
  2005. bcm->mac_suspended++;
  2006. }
  2007. void bcm43xx_set_iwmode(struct bcm43xx_private *bcm,
  2008. int iw_mode)
  2009. {
  2010. unsigned long flags;
  2011. struct net_device *net_dev = bcm->net_dev;
  2012. u32 status;
  2013. u16 value;
  2014. spin_lock_irqsave(&bcm->ieee->lock, flags);
  2015. bcm->ieee->iw_mode = iw_mode;
  2016. spin_unlock_irqrestore(&bcm->ieee->lock, flags);
  2017. if (iw_mode == IW_MODE_MONITOR)
  2018. net_dev->type = ARPHRD_IEEE80211;
  2019. else
  2020. net_dev->type = ARPHRD_ETHER;
  2021. status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  2022. /* Reset status to infrastructured mode */
  2023. status &= ~(BCM43xx_SBF_MODE_AP | BCM43xx_SBF_MODE_MONITOR);
  2024. status &= ~BCM43xx_SBF_MODE_PROMISC;
  2025. status |= BCM43xx_SBF_MODE_NOTADHOC;
  2026. /* FIXME: Always enable promisc mode, until we get the MAC filters working correctly. */
  2027. status |= BCM43xx_SBF_MODE_PROMISC;
  2028. switch (iw_mode) {
  2029. case IW_MODE_MONITOR:
  2030. status |= BCM43xx_SBF_MODE_MONITOR;
  2031. status |= BCM43xx_SBF_MODE_PROMISC;
  2032. break;
  2033. case IW_MODE_ADHOC:
  2034. status &= ~BCM43xx_SBF_MODE_NOTADHOC;
  2035. break;
  2036. case IW_MODE_MASTER:
  2037. status |= BCM43xx_SBF_MODE_AP;
  2038. break;
  2039. case IW_MODE_SECOND:
  2040. case IW_MODE_REPEAT:
  2041. TODO(); /* TODO */
  2042. break;
  2043. case IW_MODE_INFRA:
  2044. /* nothing to be done here... */
  2045. break;
  2046. default:
  2047. dprintk(KERN_ERR PFX "Unknown mode in set_iwmode: %d\n", iw_mode);
  2048. }
  2049. if (net_dev->flags & IFF_PROMISC)
  2050. status |= BCM43xx_SBF_MODE_PROMISC;
  2051. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, status);
  2052. value = 0x0002;
  2053. if (iw_mode != IW_MODE_ADHOC && iw_mode != IW_MODE_MASTER) {
  2054. if (bcm->chip_id == 0x4306 && bcm->chip_rev == 3)
  2055. value = 0x0064;
  2056. else
  2057. value = 0x0032;
  2058. }
  2059. bcm43xx_write16(bcm, 0x0612, value);
  2060. }
  2061. /* This is the opposite of bcm43xx_chip_init() */
  2062. static void bcm43xx_chip_cleanup(struct bcm43xx_private *bcm)
  2063. {
  2064. bcm43xx_radio_turn_off(bcm);
  2065. if (!modparam_noleds)
  2066. bcm43xx_leds_exit(bcm);
  2067. bcm43xx_gpio_cleanup(bcm);
  2068. bcm43xx_release_firmware(bcm, 0);
  2069. }
  2070. /* Initialize the chip
  2071. * http://bcm-specs.sipsolutions.net/ChipInit
  2072. */
  2073. static int bcm43xx_chip_init(struct bcm43xx_private *bcm)
  2074. {
  2075. struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
  2076. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  2077. int err;
  2078. int i, tmp;
  2079. u32 value32;
  2080. u16 value16;
  2081. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
  2082. BCM43xx_SBF_CORE_READY
  2083. | BCM43xx_SBF_400);
  2084. err = bcm43xx_request_firmware(bcm);
  2085. if (err)
  2086. goto out;
  2087. bcm43xx_upload_microcode(bcm);
  2088. bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON, 0xFFFFFFFF);
  2089. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, 0x00020402);
  2090. i = 0;
  2091. while (1) {
  2092. value32 = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON);
  2093. if (value32 == BCM43xx_IRQ_READY)
  2094. break;
  2095. i++;
  2096. if (i >= BCM43xx_IRQWAIT_MAX_RETRIES) {
  2097. printk(KERN_ERR PFX "IRQ_READY timeout\n");
  2098. err = -ENODEV;
  2099. goto err_release_fw;
  2100. }
  2101. udelay(10);
  2102. }
  2103. bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON); /* dummy read */
  2104. value16 = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED,
  2105. BCM43xx_UCODE_REVISION);
  2106. dprintk(KERN_INFO PFX "Microcode rev 0x%x, pl 0x%x "
  2107. "(20%.2i-%.2i-%.2i %.2i:%.2i:%.2i)\n", value16,
  2108. bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED,
  2109. BCM43xx_UCODE_PATCHLEVEL),
  2110. (bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED,
  2111. BCM43xx_UCODE_DATE) >> 12) & 0xf,
  2112. (bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED,
  2113. BCM43xx_UCODE_DATE) >> 8) & 0xf,
  2114. bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED,
  2115. BCM43xx_UCODE_DATE) & 0xff,
  2116. (bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED,
  2117. BCM43xx_UCODE_TIME) >> 11) & 0x1f,
  2118. (bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED,
  2119. BCM43xx_UCODE_TIME) >> 5) & 0x3f,
  2120. bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED,
  2121. BCM43xx_UCODE_TIME) & 0x1f);
  2122. if ( value16 > 0x128 ) {
  2123. printk(KERN_ERR PFX
  2124. "Firmware: no support for microcode extracted "
  2125. "from version 4.x binary drivers.\n");
  2126. err = -EOPNOTSUPP;
  2127. goto err_release_fw;
  2128. }
  2129. err = bcm43xx_gpio_init(bcm);
  2130. if (err)
  2131. goto err_release_fw;
  2132. err = bcm43xx_upload_initvals(bcm);
  2133. if (err)
  2134. goto err_gpio_cleanup;
  2135. bcm43xx_radio_turn_on(bcm);
  2136. bcm->radio_hw_enable = bcm43xx_is_hw_radio_enabled(bcm);
  2137. dprintk(KERN_INFO PFX "Radio %s by hardware\n",
  2138. (bcm->radio_hw_enable == 0) ? "disabled" : "enabled");
  2139. bcm43xx_write16(bcm, 0x03E6, 0x0000);
  2140. err = bcm43xx_phy_init(bcm);
  2141. if (err)
  2142. goto err_radio_off;
  2143. /* Select initial Interference Mitigation. */
  2144. tmp = radio->interfmode;
  2145. radio->interfmode = BCM43xx_RADIO_INTERFMODE_NONE;
  2146. bcm43xx_radio_set_interference_mitigation(bcm, tmp);
  2147. bcm43xx_phy_set_antenna_diversity(bcm);
  2148. bcm43xx_radio_set_txantenna(bcm, BCM43xx_RADIO_TXANTENNA_DEFAULT);
  2149. if (phy->type == BCM43xx_PHYTYPE_B) {
  2150. value16 = bcm43xx_read16(bcm, 0x005E);
  2151. value16 |= 0x0004;
  2152. bcm43xx_write16(bcm, 0x005E, value16);
  2153. }
  2154. bcm43xx_write32(bcm, 0x0100, 0x01000000);
  2155. if (bcm->current_core->rev < 5)
  2156. bcm43xx_write32(bcm, 0x010C, 0x01000000);
  2157. value32 = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  2158. value32 &= ~ BCM43xx_SBF_MODE_NOTADHOC;
  2159. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, value32);
  2160. value32 = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  2161. value32 |= BCM43xx_SBF_MODE_NOTADHOC;
  2162. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, value32);
  2163. value32 = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  2164. value32 |= 0x100000;
  2165. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, value32);
  2166. if (bcm43xx_using_pio(bcm)) {
  2167. bcm43xx_write32(bcm, 0x0210, 0x00000100);
  2168. bcm43xx_write32(bcm, 0x0230, 0x00000100);
  2169. bcm43xx_write32(bcm, 0x0250, 0x00000100);
  2170. bcm43xx_write32(bcm, 0x0270, 0x00000100);
  2171. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0034, 0x0000);
  2172. }
  2173. /* Probe Response Timeout value */
  2174. /* FIXME: Default to 0, has to be set by ioctl probably... :-/ */
  2175. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0074, 0x0000);
  2176. /* Initially set the wireless operation mode. */
  2177. bcm43xx_set_iwmode(bcm, bcm->ieee->iw_mode);
  2178. if (bcm->current_core->rev < 3) {
  2179. bcm43xx_write16(bcm, 0x060E, 0x0000);
  2180. bcm43xx_write16(bcm, 0x0610, 0x8000);
  2181. bcm43xx_write16(bcm, 0x0604, 0x0000);
  2182. bcm43xx_write16(bcm, 0x0606, 0x0200);
  2183. } else {
  2184. bcm43xx_write32(bcm, 0x0188, 0x80000000);
  2185. bcm43xx_write32(bcm, 0x018C, 0x02000000);
  2186. }
  2187. bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON, 0x00004000);
  2188. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA0_IRQ_MASK, 0x0001DC00);
  2189. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA1_IRQ_MASK, 0x0000DC00);
  2190. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA2_IRQ_MASK, 0x0000DC00);
  2191. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA3_IRQ_MASK, 0x0001DC00);
  2192. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA4_IRQ_MASK, 0x0000DC00);
  2193. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA5_IRQ_MASK, 0x0000DC00);
  2194. value32 = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
  2195. value32 |= 0x00100000;
  2196. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, value32);
  2197. bcm43xx_write16(bcm, BCM43xx_MMIO_POWERUP_DELAY, bcm43xx_pctl_powerup_delay(bcm));
  2198. assert(err == 0);
  2199. dprintk(KERN_INFO PFX "Chip initialized\n");
  2200. out:
  2201. return err;
  2202. err_radio_off:
  2203. bcm43xx_radio_turn_off(bcm);
  2204. err_gpio_cleanup:
  2205. bcm43xx_gpio_cleanup(bcm);
  2206. err_release_fw:
  2207. bcm43xx_release_firmware(bcm, 1);
  2208. goto out;
  2209. }
  2210. /* Validate chip access
  2211. * http://bcm-specs.sipsolutions.net/ValidateChipAccess */
  2212. static int bcm43xx_validate_chip(struct bcm43xx_private *bcm)
  2213. {
  2214. u32 value;
  2215. u32 shm_backup;
  2216. shm_backup = bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED, 0x0000);
  2217. bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED, 0x0000, 0xAA5555AA);
  2218. if (bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED, 0x0000) != 0xAA5555AA)
  2219. goto error;
  2220. bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED, 0x0000, 0x55AAAA55);
  2221. if (bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED, 0x0000) != 0x55AAAA55)
  2222. goto error;
  2223. bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED, 0x0000, shm_backup);
  2224. value = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  2225. if ((value | 0x80000000) != 0x80000400)
  2226. goto error;
  2227. value = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON);
  2228. if (value != 0x00000000)
  2229. goto error;
  2230. return 0;
  2231. error:
  2232. printk(KERN_ERR PFX "Failed to validate the chipaccess\n");
  2233. return -ENODEV;
  2234. }
  2235. static void bcm43xx_init_struct_phyinfo(struct bcm43xx_phyinfo *phy)
  2236. {
  2237. /* Initialize a "phyinfo" structure. The structure is already
  2238. * zeroed out.
  2239. * This is called on insmod time to initialize members.
  2240. */
  2241. phy->savedpctlreg = 0xFFFF;
  2242. spin_lock_init(&phy->lock);
  2243. }
  2244. static void bcm43xx_init_struct_radioinfo(struct bcm43xx_radioinfo *radio)
  2245. {
  2246. /* Initialize a "radioinfo" structure. The structure is already
  2247. * zeroed out.
  2248. * This is called on insmod time to initialize members.
  2249. */
  2250. radio->interfmode = BCM43xx_RADIO_INTERFMODE_NONE;
  2251. radio->channel = 0xFF;
  2252. radio->initial_channel = 0xFF;
  2253. }
  2254. static int bcm43xx_probe_cores(struct bcm43xx_private *bcm)
  2255. {
  2256. int err, i;
  2257. int current_core;
  2258. u32 core_vendor, core_id, core_rev;
  2259. u32 sb_id_hi, chip_id_32 = 0;
  2260. u16 pci_device, chip_id_16;
  2261. u8 core_count;
  2262. memset(&bcm->core_chipcommon, 0, sizeof(struct bcm43xx_coreinfo));
  2263. memset(&bcm->core_pci, 0, sizeof(struct bcm43xx_coreinfo));
  2264. memset(&bcm->core_80211, 0, sizeof(struct bcm43xx_coreinfo)
  2265. * BCM43xx_MAX_80211_CORES);
  2266. memset(&bcm->core_80211_ext, 0, sizeof(struct bcm43xx_coreinfo_80211)
  2267. * BCM43xx_MAX_80211_CORES);
  2268. bcm->nr_80211_available = 0;
  2269. bcm->current_core = NULL;
  2270. bcm->active_80211_core = NULL;
  2271. /* map core 0 */
  2272. err = _switch_core(bcm, 0);
  2273. if (err)
  2274. goto out;
  2275. /* fetch sb_id_hi from core information registers */
  2276. sb_id_hi = bcm43xx_read32(bcm, BCM43xx_CIR_SB_ID_HI);
  2277. core_id = (sb_id_hi & 0x8FF0) >> 4;
  2278. core_rev = (sb_id_hi & 0x7000) >> 8;
  2279. core_rev |= (sb_id_hi & 0xF);
  2280. core_vendor = (sb_id_hi & 0xFFFF0000) >> 16;
  2281. /* if present, chipcommon is always core 0; read the chipid from it */
  2282. if (core_id == BCM43xx_COREID_CHIPCOMMON) {
  2283. chip_id_32 = bcm43xx_read32(bcm, 0);
  2284. chip_id_16 = chip_id_32 & 0xFFFF;
  2285. bcm->core_chipcommon.available = 1;
  2286. bcm->core_chipcommon.id = core_id;
  2287. bcm->core_chipcommon.rev = core_rev;
  2288. bcm->core_chipcommon.index = 0;
  2289. /* While we are at it, also read the capabilities. */
  2290. bcm->chipcommon_capabilities = bcm43xx_read32(bcm, BCM43xx_CHIPCOMMON_CAPABILITIES);
  2291. } else {
  2292. /* without a chipCommon, use a hard coded table. */
  2293. pci_device = bcm->pci_dev->device;
  2294. if (pci_device == 0x4301)
  2295. chip_id_16 = 0x4301;
  2296. else if ((pci_device >= 0x4305) && (pci_device <= 0x4307))
  2297. chip_id_16 = 0x4307;
  2298. else if ((pci_device >= 0x4402) && (pci_device <= 0x4403))
  2299. chip_id_16 = 0x4402;
  2300. else if ((pci_device >= 0x4610) && (pci_device <= 0x4615))
  2301. chip_id_16 = 0x4610;
  2302. else if ((pci_device >= 0x4710) && (pci_device <= 0x4715))
  2303. chip_id_16 = 0x4710;
  2304. #ifdef CONFIG_BCM947XX
  2305. else if ((pci_device >= 0x4320) && (pci_device <= 0x4325))
  2306. chip_id_16 = 0x4309;
  2307. #endif
  2308. else {
  2309. printk(KERN_ERR PFX "Could not determine Chip ID\n");
  2310. return -ENODEV;
  2311. }
  2312. }
  2313. /* ChipCommon with Core Rev >=4 encodes number of cores,
  2314. * otherwise consult hardcoded table */
  2315. if ((core_id == BCM43xx_COREID_CHIPCOMMON) && (core_rev >= 4)) {
  2316. core_count = (chip_id_32 & 0x0F000000) >> 24;
  2317. } else {
  2318. switch (chip_id_16) {
  2319. case 0x4610:
  2320. case 0x4704:
  2321. case 0x4710:
  2322. core_count = 9;
  2323. break;
  2324. case 0x4310:
  2325. core_count = 8;
  2326. break;
  2327. case 0x5365:
  2328. core_count = 7;
  2329. break;
  2330. case 0x4306:
  2331. core_count = 6;
  2332. break;
  2333. case 0x4301:
  2334. case 0x4307:
  2335. core_count = 5;
  2336. break;
  2337. case 0x4402:
  2338. core_count = 3;
  2339. break;
  2340. default:
  2341. /* SOL if we get here */
  2342. assert(0);
  2343. core_count = 1;
  2344. }
  2345. }
  2346. bcm->chip_id = chip_id_16;
  2347. bcm->chip_rev = (chip_id_32 & 0x000F0000) >> 16;
  2348. bcm->chip_package = (chip_id_32 & 0x00F00000) >> 20;
  2349. dprintk(KERN_INFO PFX "Chip ID 0x%x, rev 0x%x\n",
  2350. bcm->chip_id, bcm->chip_rev);
  2351. dprintk(KERN_INFO PFX "Number of cores: %d\n", core_count);
  2352. if (bcm->core_chipcommon.available) {
  2353. dprintk(KERN_INFO PFX "Core 0: ID 0x%x, rev 0x%x, vendor 0x%x\n",
  2354. core_id, core_rev, core_vendor);
  2355. current_core = 1;
  2356. } else
  2357. current_core = 0;
  2358. for ( ; current_core < core_count; current_core++) {
  2359. struct bcm43xx_coreinfo *core;
  2360. struct bcm43xx_coreinfo_80211 *ext_80211;
  2361. err = _switch_core(bcm, current_core);
  2362. if (err)
  2363. goto out;
  2364. /* Gather information */
  2365. /* fetch sb_id_hi from core information registers */
  2366. sb_id_hi = bcm43xx_read32(bcm, BCM43xx_CIR_SB_ID_HI);
  2367. /* extract core_id, core_rev, core_vendor */
  2368. core_id = (sb_id_hi & 0x8FF0) >> 4;
  2369. core_rev = ((sb_id_hi & 0xF) | ((sb_id_hi & 0x7000) >> 8));
  2370. core_vendor = (sb_id_hi & 0xFFFF0000) >> 16;
  2371. dprintk(KERN_INFO PFX "Core %d: ID 0x%x, rev 0x%x, vendor 0x%x\n",
  2372. current_core, core_id, core_rev, core_vendor);
  2373. core = NULL;
  2374. switch (core_id) {
  2375. case BCM43xx_COREID_PCI:
  2376. case BCM43xx_COREID_PCIE:
  2377. core = &bcm->core_pci;
  2378. if (core->available) {
  2379. printk(KERN_WARNING PFX "Multiple PCI cores found.\n");
  2380. continue;
  2381. }
  2382. break;
  2383. case BCM43xx_COREID_80211:
  2384. for (i = 0; i < BCM43xx_MAX_80211_CORES; i++) {
  2385. core = &(bcm->core_80211[i]);
  2386. ext_80211 = &(bcm->core_80211_ext[i]);
  2387. if (!core->available)
  2388. break;
  2389. core = NULL;
  2390. }
  2391. if (!core) {
  2392. printk(KERN_WARNING PFX "More than %d cores of type 802.11 found.\n",
  2393. BCM43xx_MAX_80211_CORES);
  2394. continue;
  2395. }
  2396. if (i != 0) {
  2397. /* More than one 80211 core is only supported
  2398. * by special chips.
  2399. * There are chips with two 80211 cores, but with
  2400. * dangling pins on the second core. Be careful
  2401. * and ignore these cores here.
  2402. */
  2403. if (bcm->pci_dev->device != 0x4324) {
  2404. dprintk(KERN_INFO PFX "Ignoring additional 802.11 core.\n");
  2405. continue;
  2406. }
  2407. }
  2408. switch (core_rev) {
  2409. case 2:
  2410. case 4:
  2411. case 5:
  2412. case 6:
  2413. case 7:
  2414. case 9:
  2415. case 10:
  2416. break;
  2417. default:
  2418. printk(KERN_WARNING PFX
  2419. "Unsupported 80211 core revision %u\n",
  2420. core_rev);
  2421. }
  2422. bcm->nr_80211_available++;
  2423. core->priv = ext_80211;
  2424. bcm43xx_init_struct_phyinfo(&ext_80211->phy);
  2425. bcm43xx_init_struct_radioinfo(&ext_80211->radio);
  2426. break;
  2427. case BCM43xx_COREID_CHIPCOMMON:
  2428. printk(KERN_WARNING PFX "Multiple CHIPCOMMON cores found.\n");
  2429. break;
  2430. }
  2431. if (core) {
  2432. core->available = 1;
  2433. core->id = core_id;
  2434. core->rev = core_rev;
  2435. core->index = current_core;
  2436. }
  2437. }
  2438. if (!bcm->core_80211[0].available) {
  2439. printk(KERN_ERR PFX "Error: No 80211 core found!\n");
  2440. err = -ENODEV;
  2441. goto out;
  2442. }
  2443. err = bcm43xx_switch_core(bcm, &bcm->core_80211[0]);
  2444. assert(err == 0);
  2445. out:
  2446. return err;
  2447. }
  2448. static void bcm43xx_gen_bssid(struct bcm43xx_private *bcm)
  2449. {
  2450. const u8 *mac = (const u8*)(bcm->net_dev->dev_addr);
  2451. u8 *bssid = bcm->ieee->bssid;
  2452. switch (bcm->ieee->iw_mode) {
  2453. case IW_MODE_ADHOC:
  2454. random_ether_addr(bssid);
  2455. break;
  2456. case IW_MODE_MASTER:
  2457. case IW_MODE_INFRA:
  2458. case IW_MODE_REPEAT:
  2459. case IW_MODE_SECOND:
  2460. case IW_MODE_MONITOR:
  2461. memcpy(bssid, mac, ETH_ALEN);
  2462. break;
  2463. default:
  2464. assert(0);
  2465. }
  2466. }
  2467. static void bcm43xx_rate_memory_write(struct bcm43xx_private *bcm,
  2468. u16 rate,
  2469. int is_ofdm)
  2470. {
  2471. u16 offset;
  2472. if (is_ofdm) {
  2473. offset = 0x480;
  2474. offset += (bcm43xx_plcp_get_ratecode_ofdm(rate) & 0x000F) * 2;
  2475. }
  2476. else {
  2477. offset = 0x4C0;
  2478. offset += (bcm43xx_plcp_get_ratecode_cck(rate) & 0x000F) * 2;
  2479. }
  2480. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, offset + 0x20,
  2481. bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, offset));
  2482. }
  2483. static void bcm43xx_rate_memory_init(struct bcm43xx_private *bcm)
  2484. {
  2485. switch (bcm43xx_current_phy(bcm)->type) {
  2486. case BCM43xx_PHYTYPE_A:
  2487. case BCM43xx_PHYTYPE_G:
  2488. bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_6MB, 1);
  2489. bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_12MB, 1);
  2490. bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_18MB, 1);
  2491. bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_24MB, 1);
  2492. bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_36MB, 1);
  2493. bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_48MB, 1);
  2494. bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_54MB, 1);
  2495. case BCM43xx_PHYTYPE_B:
  2496. bcm43xx_rate_memory_write(bcm, IEEE80211_CCK_RATE_1MB, 0);
  2497. bcm43xx_rate_memory_write(bcm, IEEE80211_CCK_RATE_2MB, 0);
  2498. bcm43xx_rate_memory_write(bcm, IEEE80211_CCK_RATE_5MB, 0);
  2499. bcm43xx_rate_memory_write(bcm, IEEE80211_CCK_RATE_11MB, 0);
  2500. break;
  2501. default:
  2502. assert(0);
  2503. }
  2504. }
  2505. static void bcm43xx_wireless_core_cleanup(struct bcm43xx_private *bcm)
  2506. {
  2507. bcm43xx_chip_cleanup(bcm);
  2508. bcm43xx_pio_free(bcm);
  2509. bcm43xx_dma_free(bcm);
  2510. bcm->current_core->initialized = 0;
  2511. }
  2512. /* http://bcm-specs.sipsolutions.net/80211Init */
  2513. static int bcm43xx_wireless_core_init(struct bcm43xx_private *bcm,
  2514. int active_wlcore)
  2515. {
  2516. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  2517. struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
  2518. u32 ucodeflags;
  2519. int err;
  2520. u32 sbimconfiglow;
  2521. u8 limit;
  2522. if (bcm->core_pci.rev <= 5 && bcm->core_pci.id != BCM43xx_COREID_PCIE) {
  2523. sbimconfiglow = bcm43xx_read32(bcm, BCM43xx_CIR_SBIMCONFIGLOW);
  2524. sbimconfiglow &= ~ BCM43xx_SBIMCONFIGLOW_REQUEST_TOUT_MASK;
  2525. sbimconfiglow &= ~ BCM43xx_SBIMCONFIGLOW_SERVICE_TOUT_MASK;
  2526. if (bcm->bustype == BCM43xx_BUSTYPE_PCI)
  2527. sbimconfiglow |= 0x32;
  2528. else
  2529. sbimconfiglow |= 0x53;
  2530. bcm43xx_write32(bcm, BCM43xx_CIR_SBIMCONFIGLOW, sbimconfiglow);
  2531. }
  2532. bcm43xx_phy_calibrate(bcm);
  2533. err = bcm43xx_chip_init(bcm);
  2534. if (err)
  2535. goto out;
  2536. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0016, bcm->current_core->rev);
  2537. ucodeflags = bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED, BCM43xx_UCODEFLAGS_OFFSET);
  2538. if (0 /*FIXME: which condition has to be used here? */)
  2539. ucodeflags |= 0x00000010;
  2540. /* HW decryption needs to be set now */
  2541. ucodeflags |= 0x40000000;
  2542. if (phy->type == BCM43xx_PHYTYPE_G) {
  2543. ucodeflags |= BCM43xx_UCODEFLAG_UNKBGPHY;
  2544. if (phy->rev == 1)
  2545. ucodeflags |= BCM43xx_UCODEFLAG_UNKGPHY;
  2546. if (bcm->sprom.boardflags & BCM43xx_BFL_PACTRL)
  2547. ucodeflags |= BCM43xx_UCODEFLAG_UNKPACTRL;
  2548. } else if (phy->type == BCM43xx_PHYTYPE_B) {
  2549. ucodeflags |= BCM43xx_UCODEFLAG_UNKBGPHY;
  2550. if (phy->rev >= 2 && radio->version == 0x2050)
  2551. ucodeflags &= ~BCM43xx_UCODEFLAG_UNKGPHY;
  2552. }
  2553. if (ucodeflags != bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED,
  2554. BCM43xx_UCODEFLAGS_OFFSET)) {
  2555. bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED,
  2556. BCM43xx_UCODEFLAGS_OFFSET, ucodeflags);
  2557. }
  2558. /* Short/Long Retry Limit.
  2559. * The retry-limit is a 4-bit counter. Enforce this to avoid overflowing
  2560. * the chip-internal counter.
  2561. */
  2562. limit = limit_value(modparam_short_retry, 0, 0xF);
  2563. bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0006, limit);
  2564. limit = limit_value(modparam_long_retry, 0, 0xF);
  2565. bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0007, limit);
  2566. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0044, 3);
  2567. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0046, 2);
  2568. bcm43xx_rate_memory_init(bcm);
  2569. /* Minimum Contention Window */
  2570. if (phy->type == BCM43xx_PHYTYPE_B)
  2571. bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0003, 0x0000001f);
  2572. else
  2573. bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0003, 0x0000000f);
  2574. /* Maximum Contention Window */
  2575. bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0004, 0x000003ff);
  2576. bcm43xx_gen_bssid(bcm);
  2577. bcm43xx_write_mac_bssid_templates(bcm);
  2578. if (bcm->current_core->rev >= 5)
  2579. bcm43xx_write16(bcm, 0x043C, 0x000C);
  2580. if (active_wlcore) {
  2581. if (bcm43xx_using_pio(bcm)) {
  2582. err = bcm43xx_pio_init(bcm);
  2583. } else {
  2584. err = bcm43xx_dma_init(bcm);
  2585. if (err == -ENOSYS)
  2586. err = bcm43xx_pio_init(bcm);
  2587. }
  2588. if (err)
  2589. goto err_chip_cleanup;
  2590. }
  2591. bcm43xx_write16(bcm, 0x0612, 0x0050);
  2592. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0416, 0x0050);
  2593. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0414, 0x01F4);
  2594. if (active_wlcore) {
  2595. if (radio->initial_channel != 0xFF)
  2596. bcm43xx_radio_selectchannel(bcm, radio->initial_channel, 0);
  2597. }
  2598. /* Don't enable MAC/IRQ here, as it will race with the IRQ handler.
  2599. * We enable it later.
  2600. */
  2601. bcm->current_core->initialized = 1;
  2602. out:
  2603. return err;
  2604. err_chip_cleanup:
  2605. bcm43xx_chip_cleanup(bcm);
  2606. goto out;
  2607. }
  2608. static int bcm43xx_chipset_attach(struct bcm43xx_private *bcm)
  2609. {
  2610. int err;
  2611. u16 pci_status;
  2612. err = bcm43xx_pctl_set_crystal(bcm, 1);
  2613. if (err)
  2614. goto out;
  2615. bcm43xx_pci_read_config16(bcm, PCI_STATUS, &pci_status);
  2616. bcm43xx_pci_write_config16(bcm, PCI_STATUS, pci_status & ~PCI_STATUS_SIG_TARGET_ABORT);
  2617. out:
  2618. return err;
  2619. }
  2620. static void bcm43xx_chipset_detach(struct bcm43xx_private *bcm)
  2621. {
  2622. bcm43xx_pctl_set_clock(bcm, BCM43xx_PCTL_CLK_SLOW);
  2623. bcm43xx_pctl_set_crystal(bcm, 0);
  2624. }
  2625. static void bcm43xx_pcicore_broadcast_value(struct bcm43xx_private *bcm,
  2626. u32 address,
  2627. u32 data)
  2628. {
  2629. bcm43xx_write32(bcm, BCM43xx_PCICORE_BCAST_ADDR, address);
  2630. bcm43xx_write32(bcm, BCM43xx_PCICORE_BCAST_DATA, data);
  2631. }
  2632. static int bcm43xx_pcicore_commit_settings(struct bcm43xx_private *bcm)
  2633. {
  2634. int err = 0;
  2635. bcm->irq_savedstate = bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
  2636. if (bcm->core_chipcommon.available) {
  2637. err = bcm43xx_switch_core(bcm, &bcm->core_chipcommon);
  2638. if (err)
  2639. goto out;
  2640. bcm43xx_pcicore_broadcast_value(bcm, 0xfd8, 0x00000000);
  2641. /* this function is always called when a PCI core is mapped */
  2642. err = bcm43xx_switch_core(bcm, &bcm->core_pci);
  2643. if (err)
  2644. goto out;
  2645. } else
  2646. bcm43xx_pcicore_broadcast_value(bcm, 0xfd8, 0x00000000);
  2647. bcm43xx_interrupt_enable(bcm, bcm->irq_savedstate);
  2648. out:
  2649. return err;
  2650. }
  2651. static u32 bcm43xx_pcie_reg_read(struct bcm43xx_private *bcm, u32 address)
  2652. {
  2653. bcm43xx_write32(bcm, BCM43xx_PCIECORE_REG_ADDR, address);
  2654. return bcm43xx_read32(bcm, BCM43xx_PCIECORE_REG_DATA);
  2655. }
  2656. static void bcm43xx_pcie_reg_write(struct bcm43xx_private *bcm, u32 address,
  2657. u32 data)
  2658. {
  2659. bcm43xx_write32(bcm, BCM43xx_PCIECORE_REG_ADDR, address);
  2660. bcm43xx_write32(bcm, BCM43xx_PCIECORE_REG_DATA, data);
  2661. }
  2662. static void bcm43xx_pcie_mdio_write(struct bcm43xx_private *bcm, u8 dev, u8 reg,
  2663. u16 data)
  2664. {
  2665. int i;
  2666. bcm43xx_write32(bcm, BCM43xx_PCIECORE_MDIO_CTL, 0x0082);
  2667. bcm43xx_write32(bcm, BCM43xx_PCIECORE_MDIO_DATA, BCM43xx_PCIE_MDIO_ST |
  2668. BCM43xx_PCIE_MDIO_WT | (dev << BCM43xx_PCIE_MDIO_DEV) |
  2669. (reg << BCM43xx_PCIE_MDIO_REG) | BCM43xx_PCIE_MDIO_TA |
  2670. data);
  2671. udelay(10);
  2672. for (i = 0; i < 10; i++) {
  2673. if (bcm43xx_read32(bcm, BCM43xx_PCIECORE_MDIO_CTL) &
  2674. BCM43xx_PCIE_MDIO_TC)
  2675. break;
  2676. msleep(1);
  2677. }
  2678. bcm43xx_write32(bcm, BCM43xx_PCIECORE_MDIO_CTL, 0);
  2679. }
  2680. /* Make an I/O Core usable. "core_mask" is the bitmask of the cores to enable.
  2681. * To enable core 0, pass a core_mask of 1<<0
  2682. */
  2683. static int bcm43xx_setup_backplane_pci_connection(struct bcm43xx_private *bcm,
  2684. u32 core_mask)
  2685. {
  2686. u32 backplane_flag_nr;
  2687. u32 value;
  2688. struct bcm43xx_coreinfo *old_core;
  2689. int err = 0;
  2690. value = bcm43xx_read32(bcm, BCM43xx_CIR_SBTPSFLAG);
  2691. backplane_flag_nr = value & BCM43xx_BACKPLANE_FLAG_NR_MASK;
  2692. old_core = bcm->current_core;
  2693. err = bcm43xx_switch_core(bcm, &bcm->core_pci);
  2694. if (err)
  2695. goto out;
  2696. if (bcm->current_core->rev < 6 &&
  2697. bcm->current_core->id == BCM43xx_COREID_PCI) {
  2698. value = bcm43xx_read32(bcm, BCM43xx_CIR_SBINTVEC);
  2699. value |= (1 << backplane_flag_nr);
  2700. bcm43xx_write32(bcm, BCM43xx_CIR_SBINTVEC, value);
  2701. } else {
  2702. err = bcm43xx_pci_read_config32(bcm, BCM43xx_PCICFG_ICR, &value);
  2703. if (err) {
  2704. printk(KERN_ERR PFX "Error: ICR setup failure!\n");
  2705. goto out_switch_back;
  2706. }
  2707. value |= core_mask << 8;
  2708. err = bcm43xx_pci_write_config32(bcm, BCM43xx_PCICFG_ICR, value);
  2709. if (err) {
  2710. printk(KERN_ERR PFX "Error: ICR setup failure!\n");
  2711. goto out_switch_back;
  2712. }
  2713. }
  2714. if (bcm->current_core->id == BCM43xx_COREID_PCI) {
  2715. value = bcm43xx_read32(bcm, BCM43xx_PCICORE_SBTOPCI2);
  2716. value |= BCM43xx_SBTOPCI2_PREFETCH | BCM43xx_SBTOPCI2_BURST;
  2717. bcm43xx_write32(bcm, BCM43xx_PCICORE_SBTOPCI2, value);
  2718. if (bcm->current_core->rev < 5) {
  2719. value = bcm43xx_read32(bcm, BCM43xx_CIR_SBIMCONFIGLOW);
  2720. value |= (2 << BCM43xx_SBIMCONFIGLOW_SERVICE_TOUT_SHIFT)
  2721. & BCM43xx_SBIMCONFIGLOW_SERVICE_TOUT_MASK;
  2722. value |= (3 << BCM43xx_SBIMCONFIGLOW_REQUEST_TOUT_SHIFT)
  2723. & BCM43xx_SBIMCONFIGLOW_REQUEST_TOUT_MASK;
  2724. bcm43xx_write32(bcm, BCM43xx_CIR_SBIMCONFIGLOW, value);
  2725. err = bcm43xx_pcicore_commit_settings(bcm);
  2726. assert(err == 0);
  2727. } else if (bcm->current_core->rev >= 11) {
  2728. value = bcm43xx_read32(bcm, BCM43xx_PCICORE_SBTOPCI2);
  2729. value |= BCM43xx_SBTOPCI2_MEMREAD_MULTI;
  2730. bcm43xx_write32(bcm, BCM43xx_PCICORE_SBTOPCI2, value);
  2731. }
  2732. } else {
  2733. if (bcm->current_core->rev == 0 || bcm->current_core->rev == 1) {
  2734. value = bcm43xx_pcie_reg_read(bcm, BCM43xx_PCIE_TLP_WORKAROUND);
  2735. value |= 0x8;
  2736. bcm43xx_pcie_reg_write(bcm, BCM43xx_PCIE_TLP_WORKAROUND,
  2737. value);
  2738. }
  2739. if (bcm->current_core->rev == 0) {
  2740. bcm43xx_pcie_mdio_write(bcm, BCM43xx_MDIO_SERDES_RX,
  2741. BCM43xx_SERDES_RXTIMER, 0x8128);
  2742. bcm43xx_pcie_mdio_write(bcm, BCM43xx_MDIO_SERDES_RX,
  2743. BCM43xx_SERDES_CDR, 0x0100);
  2744. bcm43xx_pcie_mdio_write(bcm, BCM43xx_MDIO_SERDES_RX,
  2745. BCM43xx_SERDES_CDR_BW, 0x1466);
  2746. } else if (bcm->current_core->rev == 1) {
  2747. value = bcm43xx_pcie_reg_read(bcm, BCM43xx_PCIE_DLLP_LINKCTL);
  2748. value |= 0x40;
  2749. bcm43xx_pcie_reg_write(bcm, BCM43xx_PCIE_DLLP_LINKCTL,
  2750. value);
  2751. }
  2752. }
  2753. out_switch_back:
  2754. err = bcm43xx_switch_core(bcm, old_core);
  2755. out:
  2756. return err;
  2757. }
  2758. static void bcm43xx_periodic_every120sec(struct bcm43xx_private *bcm)
  2759. {
  2760. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  2761. if (phy->type != BCM43xx_PHYTYPE_G || phy->rev < 2)
  2762. return;
  2763. bcm43xx_mac_suspend(bcm);
  2764. bcm43xx_phy_lo_g_measure(bcm);
  2765. bcm43xx_mac_enable(bcm);
  2766. }
  2767. static void bcm43xx_periodic_every60sec(struct bcm43xx_private *bcm)
  2768. {
  2769. bcm43xx_phy_lo_mark_all_unused(bcm);
  2770. if (bcm->sprom.boardflags & BCM43xx_BFL_RSSI) {
  2771. bcm43xx_mac_suspend(bcm);
  2772. bcm43xx_calc_nrssi_slope(bcm);
  2773. bcm43xx_mac_enable(bcm);
  2774. }
  2775. }
  2776. static void bcm43xx_periodic_every30sec(struct bcm43xx_private *bcm)
  2777. {
  2778. /* Update device statistics. */
  2779. bcm43xx_calculate_link_quality(bcm);
  2780. }
  2781. static void bcm43xx_periodic_every15sec(struct bcm43xx_private *bcm)
  2782. {
  2783. bcm43xx_phy_xmitpower(bcm); //FIXME: unless scanning?
  2784. //TODO for APHY (temperature?)
  2785. }
  2786. static void bcm43xx_periodic_every1sec(struct bcm43xx_private *bcm)
  2787. {
  2788. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  2789. struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
  2790. int radio_hw_enable;
  2791. /* check if radio hardware enabled status changed */
  2792. radio_hw_enable = bcm43xx_is_hw_radio_enabled(bcm);
  2793. if (unlikely(bcm->radio_hw_enable != radio_hw_enable)) {
  2794. bcm->radio_hw_enable = radio_hw_enable;
  2795. dprintk(KERN_INFO PFX "Radio hardware status changed to %s\n",
  2796. (radio_hw_enable == 0) ? "disabled" : "enabled");
  2797. bcm43xx_leds_update(bcm, 0);
  2798. }
  2799. if (phy->type == BCM43xx_PHYTYPE_G) {
  2800. //TODO: update_aci_moving_average
  2801. if (radio->aci_enable && radio->aci_wlan_automatic) {
  2802. bcm43xx_mac_suspend(bcm);
  2803. if (!radio->aci_enable && 1 /*TODO: not scanning? */) {
  2804. if (0 /*TODO: bunch of conditions*/) {
  2805. bcm43xx_radio_set_interference_mitigation(bcm,
  2806. BCM43xx_RADIO_INTERFMODE_MANUALWLAN);
  2807. }
  2808. } else if (1/*TODO*/) {
  2809. /*
  2810. if ((aci_average > 1000) && !(bcm43xx_radio_aci_scan(bcm))) {
  2811. bcm43xx_radio_set_interference_mitigation(bcm,
  2812. BCM43xx_RADIO_INTERFMODE_NONE);
  2813. }
  2814. */
  2815. }
  2816. bcm43xx_mac_enable(bcm);
  2817. } else if (radio->interfmode == BCM43xx_RADIO_INTERFMODE_NONWLAN &&
  2818. phy->rev == 1) {
  2819. //TODO: implement rev1 workaround
  2820. }
  2821. }
  2822. }
  2823. static void do_periodic_work(struct bcm43xx_private *bcm)
  2824. {
  2825. if (bcm->periodic_state % 120 == 0)
  2826. bcm43xx_periodic_every120sec(bcm);
  2827. if (bcm->periodic_state % 60 == 0)
  2828. bcm43xx_periodic_every60sec(bcm);
  2829. if (bcm->periodic_state % 30 == 0)
  2830. bcm43xx_periodic_every30sec(bcm);
  2831. if (bcm->periodic_state % 15 == 0)
  2832. bcm43xx_periodic_every15sec(bcm);
  2833. bcm43xx_periodic_every1sec(bcm);
  2834. schedule_delayed_work(&bcm->periodic_work, HZ);
  2835. }
  2836. static void bcm43xx_periodic_work_handler(struct work_struct *work)
  2837. {
  2838. struct bcm43xx_private *bcm =
  2839. container_of(work, struct bcm43xx_private, periodic_work.work);
  2840. struct net_device *net_dev = bcm->net_dev;
  2841. unsigned long flags;
  2842. u32 savedirqs = 0;
  2843. unsigned long orig_trans_start = 0;
  2844. mutex_lock(&bcm->mutex);
  2845. if (unlikely(bcm->periodic_state % 60 == 0)) {
  2846. /* Periodic work will take a long time, so we want it to
  2847. * be preemtible.
  2848. */
  2849. netif_tx_lock_bh(net_dev);
  2850. /* We must fake a started transmission here, as we are going to
  2851. * disable TX. If we wouldn't fake a TX, it would be possible to
  2852. * trigger the netdev watchdog, if the last real TX is already
  2853. * some time on the past (slightly less than 5secs)
  2854. */
  2855. orig_trans_start = net_dev->trans_start;
  2856. net_dev->trans_start = jiffies;
  2857. netif_stop_queue(net_dev);
  2858. netif_tx_unlock_bh(net_dev);
  2859. spin_lock_irqsave(&bcm->irq_lock, flags);
  2860. bcm43xx_mac_suspend(bcm);
  2861. if (bcm43xx_using_pio(bcm))
  2862. bcm43xx_pio_freeze_txqueues(bcm);
  2863. savedirqs = bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
  2864. spin_unlock_irqrestore(&bcm->irq_lock, flags);
  2865. bcm43xx_synchronize_irq(bcm);
  2866. } else {
  2867. /* Periodic work should take short time, so we want low
  2868. * locking overhead.
  2869. */
  2870. spin_lock_irqsave(&bcm->irq_lock, flags);
  2871. }
  2872. do_periodic_work(bcm);
  2873. if (unlikely(bcm->periodic_state % 60 == 0)) {
  2874. spin_lock_irqsave(&bcm->irq_lock, flags);
  2875. tasklet_enable(&bcm->isr_tasklet);
  2876. bcm43xx_interrupt_enable(bcm, savedirqs);
  2877. if (bcm43xx_using_pio(bcm))
  2878. bcm43xx_pio_thaw_txqueues(bcm);
  2879. bcm43xx_mac_enable(bcm);
  2880. netif_wake_queue(bcm->net_dev);
  2881. net_dev->trans_start = orig_trans_start;
  2882. }
  2883. mmiowb();
  2884. bcm->periodic_state++;
  2885. spin_unlock_irqrestore(&bcm->irq_lock, flags);
  2886. mutex_unlock(&bcm->mutex);
  2887. }
  2888. void bcm43xx_periodic_tasks_delete(struct bcm43xx_private *bcm)
  2889. {
  2890. cancel_rearming_delayed_work(&bcm->periodic_work);
  2891. }
  2892. void bcm43xx_periodic_tasks_setup(struct bcm43xx_private *bcm)
  2893. {
  2894. struct delayed_work *work = &bcm->periodic_work;
  2895. assert(bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED);
  2896. INIT_DELAYED_WORK(work, bcm43xx_periodic_work_handler);
  2897. schedule_delayed_work(work, 0);
  2898. }
  2899. static void bcm43xx_security_init(struct bcm43xx_private *bcm)
  2900. {
  2901. bcm->security_offset = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED,
  2902. 0x0056) * 2;
  2903. bcm43xx_clear_keys(bcm);
  2904. }
  2905. static int bcm43xx_rng_read(struct hwrng *rng, u32 *data)
  2906. {
  2907. struct bcm43xx_private *bcm = (struct bcm43xx_private *)rng->priv;
  2908. unsigned long flags;
  2909. spin_lock_irqsave(&(bcm)->irq_lock, flags);
  2910. *data = bcm43xx_read16(bcm, BCM43xx_MMIO_RNG);
  2911. spin_unlock_irqrestore(&(bcm)->irq_lock, flags);
  2912. return (sizeof(u16));
  2913. }
  2914. static void bcm43xx_rng_exit(struct bcm43xx_private *bcm)
  2915. {
  2916. hwrng_unregister(&bcm->rng);
  2917. }
  2918. static int bcm43xx_rng_init(struct bcm43xx_private *bcm)
  2919. {
  2920. int err;
  2921. snprintf(bcm->rng_name, ARRAY_SIZE(bcm->rng_name),
  2922. "%s_%s", KBUILD_MODNAME, bcm->net_dev->name);
  2923. bcm->rng.name = bcm->rng_name;
  2924. bcm->rng.data_read = bcm43xx_rng_read;
  2925. bcm->rng.priv = (unsigned long)bcm;
  2926. err = hwrng_register(&bcm->rng);
  2927. if (err)
  2928. printk(KERN_ERR PFX "RNG init failed (%d)\n", err);
  2929. return err;
  2930. }
  2931. static int bcm43xx_shutdown_all_wireless_cores(struct bcm43xx_private *bcm)
  2932. {
  2933. int ret = 0;
  2934. int i, err;
  2935. struct bcm43xx_coreinfo *core;
  2936. bcm43xx_set_status(bcm, BCM43xx_STAT_SHUTTINGDOWN);
  2937. for (i = 0; i < bcm->nr_80211_available; i++) {
  2938. core = &(bcm->core_80211[i]);
  2939. assert(core->available);
  2940. if (!core->initialized)
  2941. continue;
  2942. err = bcm43xx_switch_core(bcm, core);
  2943. if (err) {
  2944. dprintk(KERN_ERR PFX "shutdown_all_wireless_cores "
  2945. "switch_core failed (%d)\n", err);
  2946. ret = err;
  2947. continue;
  2948. }
  2949. bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
  2950. bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON); /* dummy read */
  2951. bcm43xx_wireless_core_cleanup(bcm);
  2952. if (core == bcm->active_80211_core)
  2953. bcm->active_80211_core = NULL;
  2954. }
  2955. free_irq(bcm->irq, bcm);
  2956. bcm43xx_set_status(bcm, BCM43xx_STAT_UNINIT);
  2957. return ret;
  2958. }
  2959. /* This is the opposite of bcm43xx_init_board() */
  2960. static void bcm43xx_free_board(struct bcm43xx_private *bcm)
  2961. {
  2962. bcm43xx_rng_exit(bcm);
  2963. bcm43xx_sysfs_unregister(bcm);
  2964. bcm43xx_periodic_tasks_delete(bcm);
  2965. mutex_lock(&(bcm)->mutex);
  2966. bcm43xx_shutdown_all_wireless_cores(bcm);
  2967. bcm43xx_pctl_set_crystal(bcm, 0);
  2968. mutex_unlock(&(bcm)->mutex);
  2969. }
  2970. static void prepare_phydata_for_init(struct bcm43xx_phyinfo *phy)
  2971. {
  2972. phy->antenna_diversity = 0xFFFF;
  2973. memset(phy->minlowsig, 0xFF, sizeof(phy->minlowsig));
  2974. memset(phy->minlowsigpos, 0, sizeof(phy->minlowsigpos));
  2975. /* Flags */
  2976. phy->calibrated = 0;
  2977. phy->is_locked = 0;
  2978. if (phy->_lo_pairs) {
  2979. memset(phy->_lo_pairs, 0,
  2980. sizeof(struct bcm43xx_lopair) * BCM43xx_LO_COUNT);
  2981. }
  2982. memset(phy->loopback_gain, 0, sizeof(phy->loopback_gain));
  2983. }
  2984. static void prepare_radiodata_for_init(struct bcm43xx_private *bcm,
  2985. struct bcm43xx_radioinfo *radio)
  2986. {
  2987. int i;
  2988. /* Set default attenuation values. */
  2989. radio->baseband_atten = bcm43xx_default_baseband_attenuation(bcm);
  2990. radio->radio_atten = bcm43xx_default_radio_attenuation(bcm);
  2991. radio->txctl1 = bcm43xx_default_txctl1(bcm);
  2992. radio->txctl2 = 0xFFFF;
  2993. radio->txpwr_offset = 0;
  2994. /* NRSSI */
  2995. radio->nrssislope = 0;
  2996. for (i = 0; i < ARRAY_SIZE(radio->nrssi); i++)
  2997. radio->nrssi[i] = -1000;
  2998. for (i = 0; i < ARRAY_SIZE(radio->nrssi_lt); i++)
  2999. radio->nrssi_lt[i] = i;
  3000. radio->lofcal = 0xFFFF;
  3001. radio->initval = 0xFFFF;
  3002. radio->aci_enable = 0;
  3003. radio->aci_wlan_automatic = 0;
  3004. radio->aci_hw_rssi = 0;
  3005. }
  3006. static void prepare_priv_for_init(struct bcm43xx_private *bcm)
  3007. {
  3008. int i;
  3009. struct bcm43xx_coreinfo *core;
  3010. struct bcm43xx_coreinfo_80211 *wlext;
  3011. assert(!bcm->active_80211_core);
  3012. bcm43xx_set_status(bcm, BCM43xx_STAT_INITIALIZING);
  3013. /* Flags */
  3014. bcm->was_initialized = 0;
  3015. bcm->reg124_set_0x4 = 0;
  3016. /* Stats */
  3017. memset(&bcm->stats, 0, sizeof(bcm->stats));
  3018. /* Wireless core data */
  3019. for (i = 0; i < BCM43xx_MAX_80211_CORES; i++) {
  3020. core = &(bcm->core_80211[i]);
  3021. wlext = core->priv;
  3022. if (!core->available)
  3023. continue;
  3024. assert(wlext == &(bcm->core_80211_ext[i]));
  3025. prepare_phydata_for_init(&wlext->phy);
  3026. prepare_radiodata_for_init(bcm, &wlext->radio);
  3027. }
  3028. /* IRQ related flags */
  3029. bcm->irq_reason = 0;
  3030. memset(bcm->dma_reason, 0, sizeof(bcm->dma_reason));
  3031. bcm->irq_savedstate = BCM43xx_IRQ_INITIAL;
  3032. bcm->mac_suspended = 1;
  3033. /* Noise calculation context */
  3034. memset(&bcm->noisecalc, 0, sizeof(bcm->noisecalc));
  3035. /* Periodic work context */
  3036. bcm->periodic_state = 0;
  3037. }
  3038. static int wireless_core_up(struct bcm43xx_private *bcm,
  3039. int active_wlcore)
  3040. {
  3041. int err;
  3042. if (!bcm43xx_core_enabled(bcm))
  3043. bcm43xx_wireless_core_reset(bcm, 1);
  3044. if (!active_wlcore)
  3045. bcm43xx_wireless_core_mark_inactive(bcm);
  3046. err = bcm43xx_wireless_core_init(bcm, active_wlcore);
  3047. if (err)
  3048. goto out;
  3049. if (!active_wlcore)
  3050. bcm43xx_radio_turn_off(bcm);
  3051. out:
  3052. return err;
  3053. }
  3054. /* Select and enable the "to be used" wireless core.
  3055. * Locking: bcm->mutex must be aquired before calling this.
  3056. * bcm->irq_lock must not be aquired.
  3057. */
  3058. int bcm43xx_select_wireless_core(struct bcm43xx_private *bcm,
  3059. int phytype)
  3060. {
  3061. int i, err;
  3062. struct bcm43xx_coreinfo *active_core = NULL;
  3063. struct bcm43xx_coreinfo_80211 *active_wlext = NULL;
  3064. struct bcm43xx_coreinfo *core;
  3065. struct bcm43xx_coreinfo_80211 *wlext;
  3066. int adjust_active_sbtmstatelow = 0;
  3067. might_sleep();
  3068. if (phytype < 0) {
  3069. /* If no phytype is requested, select the first core. */
  3070. assert(bcm->core_80211[0].available);
  3071. wlext = bcm->core_80211[0].priv;
  3072. phytype = wlext->phy.type;
  3073. }
  3074. /* Find the requested core. */
  3075. for (i = 0; i < bcm->nr_80211_available; i++) {
  3076. core = &(bcm->core_80211[i]);
  3077. wlext = core->priv;
  3078. if (wlext->phy.type == phytype) {
  3079. active_core = core;
  3080. active_wlext = wlext;
  3081. break;
  3082. }
  3083. }
  3084. if (!active_core)
  3085. return -ESRCH; /* No such PHYTYPE on this board. */
  3086. if (bcm->active_80211_core) {
  3087. /* We already selected a wl core in the past.
  3088. * So first clean up everything.
  3089. */
  3090. dprintk(KERN_INFO PFX "select_wireless_core: cleanup\n");
  3091. ieee80211softmac_stop(bcm->net_dev);
  3092. bcm43xx_set_status(bcm, BCM43xx_STAT_INITIALIZED);
  3093. err = bcm43xx_disable_interrupts_sync(bcm);
  3094. assert(!err);
  3095. tasklet_enable(&bcm->isr_tasklet);
  3096. err = bcm43xx_shutdown_all_wireless_cores(bcm);
  3097. if (err)
  3098. goto error;
  3099. /* Ok, everything down, continue to re-initialize. */
  3100. bcm43xx_set_status(bcm, BCM43xx_STAT_INITIALIZING);
  3101. }
  3102. /* Reset all data structures. */
  3103. prepare_priv_for_init(bcm);
  3104. err = bcm43xx_pctl_set_clock(bcm, BCM43xx_PCTL_CLK_FAST);
  3105. if (err)
  3106. goto error;
  3107. /* Mark all unused cores "inactive". */
  3108. for (i = 0; i < bcm->nr_80211_available; i++) {
  3109. core = &(bcm->core_80211[i]);
  3110. wlext = core->priv;
  3111. if (core == active_core)
  3112. continue;
  3113. err = bcm43xx_switch_core(bcm, core);
  3114. if (err) {
  3115. dprintk(KERN_ERR PFX "Could not switch to inactive "
  3116. "802.11 core (%d)\n", err);
  3117. goto error;
  3118. }
  3119. err = wireless_core_up(bcm, 0);
  3120. if (err) {
  3121. dprintk(KERN_ERR PFX "core_up for inactive 802.11 core "
  3122. "failed (%d)\n", err);
  3123. goto error;
  3124. }
  3125. adjust_active_sbtmstatelow = 1;
  3126. }
  3127. /* Now initialize the active 802.11 core. */
  3128. err = bcm43xx_switch_core(bcm, active_core);
  3129. if (err) {
  3130. dprintk(KERN_ERR PFX "Could not switch to active "
  3131. "802.11 core (%d)\n", err);
  3132. goto error;
  3133. }
  3134. if (adjust_active_sbtmstatelow &&
  3135. active_wlext->phy.type == BCM43xx_PHYTYPE_G) {
  3136. u32 sbtmstatelow;
  3137. sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
  3138. sbtmstatelow |= 0x20000000;
  3139. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  3140. }
  3141. err = wireless_core_up(bcm, 1);
  3142. if (err) {
  3143. dprintk(KERN_ERR PFX "core_up for active 802.11 core "
  3144. "failed (%d)\n", err);
  3145. goto error;
  3146. }
  3147. err = bcm43xx_pctl_set_clock(bcm, BCM43xx_PCTL_CLK_DYNAMIC);
  3148. if (err)
  3149. goto error;
  3150. bcm->active_80211_core = active_core;
  3151. bcm43xx_macfilter_clear(bcm, BCM43xx_MACFILTER_ASSOC);
  3152. bcm43xx_macfilter_set(bcm, BCM43xx_MACFILTER_SELF, (u8 *)(bcm->net_dev->dev_addr));
  3153. bcm43xx_security_init(bcm);
  3154. drain_txstatus_queue(bcm);
  3155. ieee80211softmac_start(bcm->net_dev);
  3156. /* Let's go! Be careful after enabling the IRQs.
  3157. * Don't switch cores, for example.
  3158. */
  3159. bcm43xx_mac_enable(bcm);
  3160. bcm43xx_set_status(bcm, BCM43xx_STAT_INITIALIZED);
  3161. err = bcm43xx_initialize_irq(bcm);
  3162. if (err)
  3163. goto error;
  3164. bcm43xx_interrupt_enable(bcm, bcm->irq_savedstate);
  3165. dprintk(KERN_INFO PFX "Selected 802.11 core (phytype %d)\n",
  3166. active_wlext->phy.type);
  3167. return 0;
  3168. error:
  3169. bcm43xx_set_status(bcm, BCM43xx_STAT_UNINIT);
  3170. bcm43xx_pctl_set_clock(bcm, BCM43xx_PCTL_CLK_SLOW);
  3171. return err;
  3172. }
  3173. static int bcm43xx_init_board(struct bcm43xx_private *bcm)
  3174. {
  3175. int err;
  3176. mutex_lock(&(bcm)->mutex);
  3177. tasklet_enable(&bcm->isr_tasklet);
  3178. err = bcm43xx_pctl_set_crystal(bcm, 1);
  3179. if (err)
  3180. goto err_tasklet;
  3181. err = bcm43xx_pctl_init(bcm);
  3182. if (err)
  3183. goto err_crystal_off;
  3184. err = bcm43xx_select_wireless_core(bcm, -1);
  3185. if (err)
  3186. goto err_crystal_off;
  3187. err = bcm43xx_sysfs_register(bcm);
  3188. if (err)
  3189. goto err_wlshutdown;
  3190. err = bcm43xx_rng_init(bcm);
  3191. if (err)
  3192. goto err_sysfs_unreg;
  3193. bcm43xx_periodic_tasks_setup(bcm);
  3194. /*FIXME: This should be handled by softmac instead. */
  3195. schedule_delayed_work(&bcm->softmac->associnfo.work, 0);
  3196. out:
  3197. mutex_unlock(&(bcm)->mutex);
  3198. return err;
  3199. err_sysfs_unreg:
  3200. bcm43xx_sysfs_unregister(bcm);
  3201. err_wlshutdown:
  3202. bcm43xx_shutdown_all_wireless_cores(bcm);
  3203. err_crystal_off:
  3204. bcm43xx_pctl_set_crystal(bcm, 0);
  3205. err_tasklet:
  3206. tasklet_disable(&bcm->isr_tasklet);
  3207. goto out;
  3208. }
  3209. static void bcm43xx_detach_board(struct bcm43xx_private *bcm)
  3210. {
  3211. struct pci_dev *pci_dev = bcm->pci_dev;
  3212. int i;
  3213. bcm43xx_chipset_detach(bcm);
  3214. /* Do _not_ access the chip, after it is detached. */
  3215. pci_iounmap(pci_dev, bcm->mmio_addr);
  3216. pci_release_regions(pci_dev);
  3217. pci_disable_device(pci_dev);
  3218. /* Free allocated structures/fields */
  3219. for (i = 0; i < BCM43xx_MAX_80211_CORES; i++) {
  3220. kfree(bcm->core_80211_ext[i].phy._lo_pairs);
  3221. if (bcm->core_80211_ext[i].phy.dyn_tssi_tbl)
  3222. kfree(bcm->core_80211_ext[i].phy.tssi2dbm);
  3223. }
  3224. }
  3225. static int bcm43xx_read_phyinfo(struct bcm43xx_private *bcm)
  3226. {
  3227. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  3228. u16 value;
  3229. u8 phy_version;
  3230. u8 phy_type;
  3231. u8 phy_rev;
  3232. int phy_rev_ok = 1;
  3233. void *p;
  3234. value = bcm43xx_read16(bcm, BCM43xx_MMIO_PHY_VER);
  3235. phy_version = (value & 0xF000) >> 12;
  3236. phy_type = (value & 0x0F00) >> 8;
  3237. phy_rev = (value & 0x000F);
  3238. dprintk(KERN_INFO PFX "Detected PHY: Version: %x, Type %x, Revision %x\n",
  3239. phy_version, phy_type, phy_rev);
  3240. switch (phy_type) {
  3241. case BCM43xx_PHYTYPE_A:
  3242. if (phy_rev >= 4)
  3243. phy_rev_ok = 0;
  3244. /*FIXME: We need to switch the ieee->modulation, etc.. flags,
  3245. * if we switch 80211 cores after init is done.
  3246. * As we do not implement on the fly switching between
  3247. * wireless cores, I will leave this as a future task.
  3248. */
  3249. bcm->ieee->modulation = IEEE80211_OFDM_MODULATION;
  3250. bcm->ieee->mode = IEEE_A;
  3251. bcm->ieee->freq_band = IEEE80211_52GHZ_BAND |
  3252. IEEE80211_24GHZ_BAND;
  3253. break;
  3254. case BCM43xx_PHYTYPE_B:
  3255. if (phy_rev != 2 && phy_rev != 4 && phy_rev != 6 && phy_rev != 7)
  3256. phy_rev_ok = 0;
  3257. bcm->ieee->modulation = IEEE80211_CCK_MODULATION;
  3258. bcm->ieee->mode = IEEE_B;
  3259. bcm->ieee->freq_band = IEEE80211_24GHZ_BAND;
  3260. break;
  3261. case BCM43xx_PHYTYPE_G:
  3262. if (phy_rev > 8)
  3263. phy_rev_ok = 0;
  3264. bcm->ieee->modulation = IEEE80211_OFDM_MODULATION |
  3265. IEEE80211_CCK_MODULATION;
  3266. bcm->ieee->mode = IEEE_G;
  3267. bcm->ieee->freq_band = IEEE80211_24GHZ_BAND;
  3268. break;
  3269. default:
  3270. printk(KERN_ERR PFX "Error: Unknown PHY Type %x\n",
  3271. phy_type);
  3272. return -ENODEV;
  3273. };
  3274. bcm->ieee->perfect_rssi = RX_RSSI_MAX;
  3275. bcm->ieee->worst_rssi = 0;
  3276. if (!phy_rev_ok) {
  3277. printk(KERN_WARNING PFX "Invalid PHY Revision %x\n",
  3278. phy_rev);
  3279. }
  3280. phy->version = phy_version;
  3281. phy->type = phy_type;
  3282. phy->rev = phy_rev;
  3283. if ((phy_type == BCM43xx_PHYTYPE_B) || (phy_type == BCM43xx_PHYTYPE_G)) {
  3284. p = kzalloc(sizeof(struct bcm43xx_lopair) * BCM43xx_LO_COUNT,
  3285. GFP_KERNEL);
  3286. if (!p)
  3287. return -ENOMEM;
  3288. phy->_lo_pairs = p;
  3289. }
  3290. return 0;
  3291. }
  3292. static int bcm43xx_attach_board(struct bcm43xx_private *bcm)
  3293. {
  3294. struct pci_dev *pci_dev = bcm->pci_dev;
  3295. struct net_device *net_dev = bcm->net_dev;
  3296. int err;
  3297. int i;
  3298. u32 coremask;
  3299. err = pci_enable_device(pci_dev);
  3300. if (err) {
  3301. printk(KERN_ERR PFX "pci_enable_device() failed\n");
  3302. goto out;
  3303. }
  3304. err = pci_request_regions(pci_dev, KBUILD_MODNAME);
  3305. if (err) {
  3306. printk(KERN_ERR PFX "pci_request_regions() failed\n");
  3307. goto err_pci_disable;
  3308. }
  3309. /* enable PCI bus-mastering */
  3310. pci_set_master(pci_dev);
  3311. bcm->mmio_addr = pci_iomap(pci_dev, 0, ~0UL);
  3312. if (!bcm->mmio_addr) {
  3313. printk(KERN_ERR PFX "pci_iomap() failed\n");
  3314. err = -EIO;
  3315. goto err_pci_release;
  3316. }
  3317. net_dev->base_addr = (unsigned long)bcm->mmio_addr;
  3318. bcm43xx_pci_read_config16(bcm, PCI_SUBSYSTEM_VENDOR_ID,
  3319. &bcm->board_vendor);
  3320. bcm43xx_pci_read_config16(bcm, PCI_SUBSYSTEM_ID,
  3321. &bcm->board_type);
  3322. bcm43xx_pci_read_config16(bcm, PCI_REVISION_ID,
  3323. &bcm->board_revision);
  3324. err = bcm43xx_chipset_attach(bcm);
  3325. if (err)
  3326. goto err_iounmap;
  3327. err = bcm43xx_pctl_init(bcm);
  3328. if (err)
  3329. goto err_chipset_detach;
  3330. err = bcm43xx_probe_cores(bcm);
  3331. if (err)
  3332. goto err_chipset_detach;
  3333. /* Attach all IO cores to the backplane. */
  3334. coremask = 0;
  3335. for (i = 0; i < bcm->nr_80211_available; i++)
  3336. coremask |= (1 << bcm->core_80211[i].index);
  3337. //FIXME: Also attach some non80211 cores?
  3338. err = bcm43xx_setup_backplane_pci_connection(bcm, coremask);
  3339. if (err) {
  3340. printk(KERN_ERR PFX "Backplane->PCI connection failed!\n");
  3341. goto err_chipset_detach;
  3342. }
  3343. err = bcm43xx_sprom_extract(bcm);
  3344. if (err)
  3345. goto err_chipset_detach;
  3346. err = bcm43xx_leds_init(bcm);
  3347. if (err)
  3348. goto err_chipset_detach;
  3349. for (i = 0; i < bcm->nr_80211_available; i++) {
  3350. err = bcm43xx_switch_core(bcm, &bcm->core_80211[i]);
  3351. assert(err != -ENODEV);
  3352. if (err)
  3353. goto err_80211_unwind;
  3354. /* Enable the selected wireless core.
  3355. * Connect PHY only on the first core.
  3356. */
  3357. bcm43xx_wireless_core_reset(bcm, (i == 0));
  3358. err = bcm43xx_read_phyinfo(bcm);
  3359. if (err && (i == 0))
  3360. goto err_80211_unwind;
  3361. err = bcm43xx_read_radioinfo(bcm);
  3362. if (err && (i == 0))
  3363. goto err_80211_unwind;
  3364. err = bcm43xx_validate_chip(bcm);
  3365. if (err && (i == 0))
  3366. goto err_80211_unwind;
  3367. bcm43xx_radio_turn_off(bcm);
  3368. err = bcm43xx_phy_init_tssi2dbm_table(bcm);
  3369. if (err)
  3370. goto err_80211_unwind;
  3371. bcm43xx_wireless_core_disable(bcm);
  3372. }
  3373. err = bcm43xx_geo_init(bcm);
  3374. if (err)
  3375. goto err_80211_unwind;
  3376. bcm43xx_pctl_set_crystal(bcm, 0);
  3377. /* Set the MAC address in the networking subsystem */
  3378. if (is_valid_ether_addr(bcm->sprom.et1macaddr))
  3379. memcpy(bcm->net_dev->dev_addr, bcm->sprom.et1macaddr, 6);
  3380. else
  3381. memcpy(bcm->net_dev->dev_addr, bcm->sprom.il0macaddr, 6);
  3382. snprintf(bcm->nick, IW_ESSID_MAX_SIZE,
  3383. "Broadcom %04X", bcm->chip_id);
  3384. assert(err == 0);
  3385. out:
  3386. return err;
  3387. err_80211_unwind:
  3388. for (i = 0; i < BCM43xx_MAX_80211_CORES; i++) {
  3389. kfree(bcm->core_80211_ext[i].phy._lo_pairs);
  3390. if (bcm->core_80211_ext[i].phy.dyn_tssi_tbl)
  3391. kfree(bcm->core_80211_ext[i].phy.tssi2dbm);
  3392. }
  3393. err_chipset_detach:
  3394. bcm43xx_chipset_detach(bcm);
  3395. err_iounmap:
  3396. pci_iounmap(pci_dev, bcm->mmio_addr);
  3397. err_pci_release:
  3398. pci_release_regions(pci_dev);
  3399. err_pci_disable:
  3400. pci_disable_device(pci_dev);
  3401. goto out;
  3402. }
  3403. /* Do the Hardware IO operations to send the txb */
  3404. static inline int bcm43xx_tx(struct bcm43xx_private *bcm,
  3405. struct ieee80211_txb *txb)
  3406. {
  3407. int err = -ENODEV;
  3408. if (bcm43xx_using_pio(bcm))
  3409. err = bcm43xx_pio_tx(bcm, txb);
  3410. else
  3411. err = bcm43xx_dma_tx(bcm, txb);
  3412. bcm->net_dev->trans_start = jiffies;
  3413. return err;
  3414. }
  3415. static void bcm43xx_ieee80211_set_chan(struct net_device *net_dev,
  3416. u8 channel)
  3417. {
  3418. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3419. struct bcm43xx_radioinfo *radio;
  3420. unsigned long flags;
  3421. mutex_lock(&bcm->mutex);
  3422. spin_lock_irqsave(&bcm->irq_lock, flags);
  3423. if (bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED) {
  3424. bcm43xx_mac_suspend(bcm);
  3425. bcm43xx_radio_selectchannel(bcm, channel, 0);
  3426. bcm43xx_mac_enable(bcm);
  3427. } else {
  3428. radio = bcm43xx_current_radio(bcm);
  3429. radio->initial_channel = channel;
  3430. }
  3431. spin_unlock_irqrestore(&bcm->irq_lock, flags);
  3432. mutex_unlock(&bcm->mutex);
  3433. }
  3434. /* set_security() callback in struct ieee80211_device */
  3435. static void bcm43xx_ieee80211_set_security(struct net_device *net_dev,
  3436. struct ieee80211_security *sec)
  3437. {
  3438. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3439. struct ieee80211_security *secinfo = &bcm->ieee->sec;
  3440. unsigned long flags;
  3441. int keyidx;
  3442. dprintk(KERN_INFO PFX "set security called");
  3443. mutex_lock(&bcm->mutex);
  3444. spin_lock_irqsave(&bcm->irq_lock, flags);
  3445. for (keyidx = 0; keyidx<WEP_KEYS; keyidx++)
  3446. if (sec->flags & (1<<keyidx)) {
  3447. secinfo->encode_alg[keyidx] = sec->encode_alg[keyidx];
  3448. secinfo->key_sizes[keyidx] = sec->key_sizes[keyidx];
  3449. memcpy(secinfo->keys[keyidx], sec->keys[keyidx], SCM_KEY_LEN);
  3450. }
  3451. if (sec->flags & SEC_ACTIVE_KEY) {
  3452. secinfo->active_key = sec->active_key;
  3453. dprintk(", .active_key = %d", sec->active_key);
  3454. }
  3455. if (sec->flags & SEC_UNICAST_GROUP) {
  3456. secinfo->unicast_uses_group = sec->unicast_uses_group;
  3457. dprintk(", .unicast_uses_group = %d", sec->unicast_uses_group);
  3458. }
  3459. if (sec->flags & SEC_LEVEL) {
  3460. secinfo->level = sec->level;
  3461. dprintk(", .level = %d", sec->level);
  3462. }
  3463. if (sec->flags & SEC_ENABLED) {
  3464. secinfo->enabled = sec->enabled;
  3465. dprintk(", .enabled = %d", sec->enabled);
  3466. }
  3467. if (sec->flags & SEC_ENCRYPT) {
  3468. secinfo->encrypt = sec->encrypt;
  3469. dprintk(", .encrypt = %d", sec->encrypt);
  3470. }
  3471. if (sec->flags & SEC_AUTH_MODE) {
  3472. secinfo->auth_mode = sec->auth_mode;
  3473. dprintk(", .auth_mode = %d", sec->auth_mode);
  3474. }
  3475. dprintk("\n");
  3476. if (bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED &&
  3477. !bcm->ieee->host_encrypt) {
  3478. if (secinfo->enabled) {
  3479. /* upload WEP keys to hardware */
  3480. char null_address[6] = { 0 };
  3481. u8 algorithm = 0;
  3482. for (keyidx = 0; keyidx<WEP_KEYS; keyidx++) {
  3483. if (!(sec->flags & (1<<keyidx)))
  3484. continue;
  3485. switch (sec->encode_alg[keyidx]) {
  3486. case SEC_ALG_NONE: algorithm = BCM43xx_SEC_ALGO_NONE; break;
  3487. case SEC_ALG_WEP:
  3488. algorithm = BCM43xx_SEC_ALGO_WEP;
  3489. if (secinfo->key_sizes[keyidx] == 13)
  3490. algorithm = BCM43xx_SEC_ALGO_WEP104;
  3491. break;
  3492. case SEC_ALG_TKIP:
  3493. FIXME();
  3494. algorithm = BCM43xx_SEC_ALGO_TKIP;
  3495. break;
  3496. case SEC_ALG_CCMP:
  3497. FIXME();
  3498. algorithm = BCM43xx_SEC_ALGO_AES;
  3499. break;
  3500. default:
  3501. assert(0);
  3502. break;
  3503. }
  3504. bcm43xx_key_write(bcm, keyidx, algorithm, sec->keys[keyidx], secinfo->key_sizes[keyidx], &null_address[0]);
  3505. bcm->key[keyidx].enabled = 1;
  3506. bcm->key[keyidx].algorithm = algorithm;
  3507. }
  3508. } else
  3509. bcm43xx_clear_keys(bcm);
  3510. }
  3511. spin_unlock_irqrestore(&bcm->irq_lock, flags);
  3512. mutex_unlock(&bcm->mutex);
  3513. }
  3514. /* hard_start_xmit() callback in struct ieee80211_device */
  3515. static int bcm43xx_ieee80211_hard_start_xmit(struct ieee80211_txb *txb,
  3516. struct net_device *net_dev,
  3517. int pri)
  3518. {
  3519. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3520. int err = -ENODEV;
  3521. unsigned long flags;
  3522. spin_lock_irqsave(&bcm->irq_lock, flags);
  3523. if (likely(bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED))
  3524. err = bcm43xx_tx(bcm, txb);
  3525. spin_unlock_irqrestore(&bcm->irq_lock, flags);
  3526. if (unlikely(err))
  3527. return NETDEV_TX_BUSY;
  3528. return NETDEV_TX_OK;
  3529. }
  3530. static void bcm43xx_net_tx_timeout(struct net_device *net_dev)
  3531. {
  3532. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3533. unsigned long flags;
  3534. spin_lock_irqsave(&bcm->irq_lock, flags);
  3535. bcm43xx_controller_restart(bcm, "TX timeout");
  3536. spin_unlock_irqrestore(&bcm->irq_lock, flags);
  3537. }
  3538. #ifdef CONFIG_NET_POLL_CONTROLLER
  3539. static void bcm43xx_net_poll_controller(struct net_device *net_dev)
  3540. {
  3541. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3542. unsigned long flags;
  3543. local_irq_save(flags);
  3544. if (bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED)
  3545. bcm43xx_interrupt_handler(bcm->irq, bcm);
  3546. local_irq_restore(flags);
  3547. }
  3548. #endif /* CONFIG_NET_POLL_CONTROLLER */
  3549. static int bcm43xx_net_open(struct net_device *net_dev)
  3550. {
  3551. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3552. return bcm43xx_init_board(bcm);
  3553. }
  3554. static int bcm43xx_net_stop(struct net_device *net_dev)
  3555. {
  3556. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3557. int err;
  3558. ieee80211softmac_stop(net_dev);
  3559. err = bcm43xx_disable_interrupts_sync(bcm);
  3560. assert(!err);
  3561. bcm43xx_free_board(bcm);
  3562. flush_scheduled_work();
  3563. return 0;
  3564. }
  3565. static int bcm43xx_init_private(struct bcm43xx_private *bcm,
  3566. struct net_device *net_dev,
  3567. struct pci_dev *pci_dev)
  3568. {
  3569. bcm43xx_set_status(bcm, BCM43xx_STAT_UNINIT);
  3570. bcm->ieee = netdev_priv(net_dev);
  3571. bcm->softmac = ieee80211_priv(net_dev);
  3572. bcm->softmac->set_channel = bcm43xx_ieee80211_set_chan;
  3573. bcm->irq_savedstate = BCM43xx_IRQ_INITIAL;
  3574. bcm->mac_suspended = 1;
  3575. bcm->pci_dev = pci_dev;
  3576. bcm->net_dev = net_dev;
  3577. bcm->bad_frames_preempt = modparam_bad_frames_preempt;
  3578. spin_lock_init(&bcm->irq_lock);
  3579. spin_lock_init(&bcm->leds_lock);
  3580. mutex_init(&bcm->mutex);
  3581. tasklet_init(&bcm->isr_tasklet,
  3582. (void (*)(unsigned long))bcm43xx_interrupt_tasklet,
  3583. (unsigned long)bcm);
  3584. tasklet_disable_nosync(&bcm->isr_tasklet);
  3585. if (modparam_pio)
  3586. bcm->__using_pio = 1;
  3587. bcm->rts_threshold = BCM43xx_DEFAULT_RTS_THRESHOLD;
  3588. /* default to sw encryption for now */
  3589. bcm->ieee->host_build_iv = 0;
  3590. bcm->ieee->host_encrypt = 1;
  3591. bcm->ieee->host_decrypt = 1;
  3592. bcm->ieee->iw_mode = BCM43xx_INITIAL_IWMODE;
  3593. bcm->ieee->tx_headroom = sizeof(struct bcm43xx_txhdr);
  3594. bcm->ieee->set_security = bcm43xx_ieee80211_set_security;
  3595. bcm->ieee->hard_start_xmit = bcm43xx_ieee80211_hard_start_xmit;
  3596. return 0;
  3597. }
  3598. static int __devinit bcm43xx_init_one(struct pci_dev *pdev,
  3599. const struct pci_device_id *ent)
  3600. {
  3601. struct net_device *net_dev;
  3602. struct bcm43xx_private *bcm;
  3603. int err;
  3604. #ifdef CONFIG_BCM947XX
  3605. if ((pdev->bus->number == 0) && (pdev->device != 0x0800))
  3606. return -ENODEV;
  3607. #endif
  3608. #ifdef DEBUG_SINGLE_DEVICE_ONLY
  3609. if (strcmp(pci_name(pdev), DEBUG_SINGLE_DEVICE_ONLY))
  3610. return -ENODEV;
  3611. #endif
  3612. net_dev = alloc_ieee80211softmac(sizeof(*bcm));
  3613. if (!net_dev) {
  3614. printk(KERN_ERR PFX
  3615. "could not allocate ieee80211 device %s\n",
  3616. pci_name(pdev));
  3617. err = -ENOMEM;
  3618. goto out;
  3619. }
  3620. /* initialize the net_device struct */
  3621. SET_MODULE_OWNER(net_dev);
  3622. SET_NETDEV_DEV(net_dev, &pdev->dev);
  3623. net_dev->open = bcm43xx_net_open;
  3624. net_dev->stop = bcm43xx_net_stop;
  3625. net_dev->tx_timeout = bcm43xx_net_tx_timeout;
  3626. #ifdef CONFIG_NET_POLL_CONTROLLER
  3627. net_dev->poll_controller = bcm43xx_net_poll_controller;
  3628. #endif
  3629. net_dev->wireless_handlers = &bcm43xx_wx_handlers_def;
  3630. net_dev->irq = pdev->irq;
  3631. SET_ETHTOOL_OPS(net_dev, &bcm43xx_ethtool_ops);
  3632. /* initialize the bcm43xx_private struct */
  3633. bcm = bcm43xx_priv(net_dev);
  3634. memset(bcm, 0, sizeof(*bcm));
  3635. err = bcm43xx_init_private(bcm, net_dev, pdev);
  3636. if (err)
  3637. goto err_free_netdev;
  3638. pci_set_drvdata(pdev, net_dev);
  3639. err = bcm43xx_attach_board(bcm);
  3640. if (err)
  3641. goto err_free_netdev;
  3642. err = register_netdev(net_dev);
  3643. if (err) {
  3644. printk(KERN_ERR PFX "Cannot register net device, "
  3645. "aborting.\n");
  3646. err = -ENOMEM;
  3647. goto err_detach_board;
  3648. }
  3649. bcm43xx_debugfs_add_device(bcm);
  3650. assert(err == 0);
  3651. out:
  3652. return err;
  3653. err_detach_board:
  3654. bcm43xx_detach_board(bcm);
  3655. err_free_netdev:
  3656. free_ieee80211softmac(net_dev);
  3657. goto out;
  3658. }
  3659. static void __devexit bcm43xx_remove_one(struct pci_dev *pdev)
  3660. {
  3661. struct net_device *net_dev = pci_get_drvdata(pdev);
  3662. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3663. bcm43xx_debugfs_remove_device(bcm);
  3664. unregister_netdev(net_dev);
  3665. bcm43xx_detach_board(bcm);
  3666. free_ieee80211softmac(net_dev);
  3667. }
  3668. /* Hard-reset the chip. Do not call this directly.
  3669. * Use bcm43xx_controller_restart()
  3670. */
  3671. static void bcm43xx_chip_reset(struct work_struct *work)
  3672. {
  3673. struct bcm43xx_private *bcm =
  3674. container_of(work, struct bcm43xx_private, restart_work);
  3675. struct bcm43xx_phyinfo *phy;
  3676. int err = -ENODEV;
  3677. mutex_lock(&(bcm)->mutex);
  3678. if (bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED) {
  3679. bcm43xx_periodic_tasks_delete(bcm);
  3680. phy = bcm43xx_current_phy(bcm);
  3681. err = bcm43xx_select_wireless_core(bcm, phy->type);
  3682. if (!err)
  3683. bcm43xx_periodic_tasks_setup(bcm);
  3684. }
  3685. mutex_unlock(&(bcm)->mutex);
  3686. printk(KERN_ERR PFX "Controller restart%s\n",
  3687. (err == 0) ? "ed" : " failed");
  3688. }
  3689. /* Hard-reset the chip.
  3690. * This can be called from interrupt or process context.
  3691. * bcm->irq_lock must be locked.
  3692. */
  3693. void bcm43xx_controller_restart(struct bcm43xx_private *bcm, const char *reason)
  3694. {
  3695. if (bcm43xx_status(bcm) != BCM43xx_STAT_INITIALIZED)
  3696. return;
  3697. printk(KERN_ERR PFX "Controller RESET (%s) ...\n", reason);
  3698. INIT_WORK(&bcm->restart_work, bcm43xx_chip_reset);
  3699. schedule_work(&bcm->restart_work);
  3700. }
  3701. #ifdef CONFIG_PM
  3702. static int bcm43xx_suspend(struct pci_dev *pdev, pm_message_t state)
  3703. {
  3704. struct net_device *net_dev = pci_get_drvdata(pdev);
  3705. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3706. int err;
  3707. dprintk(KERN_INFO PFX "Suspending...\n");
  3708. netif_device_detach(net_dev);
  3709. bcm->was_initialized = 0;
  3710. if (bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED) {
  3711. bcm->was_initialized = 1;
  3712. ieee80211softmac_stop(net_dev);
  3713. err = bcm43xx_disable_interrupts_sync(bcm);
  3714. if (unlikely(err)) {
  3715. dprintk(KERN_ERR PFX "Suspend failed.\n");
  3716. return -EAGAIN;
  3717. }
  3718. bcm->firmware_norelease = 1;
  3719. bcm43xx_free_board(bcm);
  3720. bcm->firmware_norelease = 0;
  3721. }
  3722. bcm43xx_chipset_detach(bcm);
  3723. pci_save_state(pdev);
  3724. pci_disable_device(pdev);
  3725. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3726. dprintk(KERN_INFO PFX "Device suspended.\n");
  3727. return 0;
  3728. }
  3729. static int bcm43xx_resume(struct pci_dev *pdev)
  3730. {
  3731. struct net_device *net_dev = pci_get_drvdata(pdev);
  3732. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3733. int err = 0;
  3734. dprintk(KERN_INFO PFX "Resuming...\n");
  3735. pci_set_power_state(pdev, 0);
  3736. err = pci_enable_device(pdev);
  3737. if (err) {
  3738. printk(KERN_ERR PFX "Failure with pci_enable_device!\n");
  3739. return err;
  3740. }
  3741. pci_restore_state(pdev);
  3742. bcm43xx_chipset_attach(bcm);
  3743. if (bcm->was_initialized)
  3744. err = bcm43xx_init_board(bcm);
  3745. if (err) {
  3746. printk(KERN_ERR PFX "Resume failed!\n");
  3747. return err;
  3748. }
  3749. netif_device_attach(net_dev);
  3750. dprintk(KERN_INFO PFX "Device resumed.\n");
  3751. return 0;
  3752. }
  3753. #endif /* CONFIG_PM */
  3754. static struct pci_driver bcm43xx_pci_driver = {
  3755. .name = KBUILD_MODNAME,
  3756. .id_table = bcm43xx_pci_tbl,
  3757. .probe = bcm43xx_init_one,
  3758. .remove = __devexit_p(bcm43xx_remove_one),
  3759. #ifdef CONFIG_PM
  3760. .suspend = bcm43xx_suspend,
  3761. .resume = bcm43xx_resume,
  3762. #endif /* CONFIG_PM */
  3763. };
  3764. static int __init bcm43xx_init(void)
  3765. {
  3766. printk(KERN_INFO KBUILD_MODNAME " driver\n");
  3767. bcm43xx_debugfs_init();
  3768. return pci_register_driver(&bcm43xx_pci_driver);
  3769. }
  3770. static void __exit bcm43xx_exit(void)
  3771. {
  3772. pci_unregister_driver(&bcm43xx_pci_driver);
  3773. bcm43xx_debugfs_exit();
  3774. }
  3775. module_init(bcm43xx_init)
  3776. module_exit(bcm43xx_exit)