t3_hw.c 99 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354
  1. /*
  2. * This file is part of the Chelsio T3 Ethernet driver.
  3. *
  4. * Copyright (C) 2003-2006 Chelsio Communications. All rights reserved.
  5. *
  6. * This program is distributed in the hope that it will be useful, but WITHOUT
  7. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  8. * FITNESS FOR A PARTICULAR PURPOSE. See the LICENSE file included in this
  9. * release for licensing terms and conditions.
  10. */
  11. #include "common.h"
  12. #include "regs.h"
  13. #include "sge_defs.h"
  14. #include "firmware_exports.h"
  15. /**
  16. * t3_wait_op_done_val - wait until an operation is completed
  17. * @adapter: the adapter performing the operation
  18. * @reg: the register to check for completion
  19. * @mask: a single-bit field within @reg that indicates completion
  20. * @polarity: the value of the field when the operation is completed
  21. * @attempts: number of check iterations
  22. * @delay: delay in usecs between iterations
  23. * @valp: where to store the value of the register at completion time
  24. *
  25. * Wait until an operation is completed by checking a bit in a register
  26. * up to @attempts times. If @valp is not NULL the value of the register
  27. * at the time it indicated completion is stored there. Returns 0 if the
  28. * operation completes and -EAGAIN otherwise.
  29. */
  30. int t3_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
  31. int polarity, int attempts, int delay, u32 *valp)
  32. {
  33. while (1) {
  34. u32 val = t3_read_reg(adapter, reg);
  35. if (!!(val & mask) == polarity) {
  36. if (valp)
  37. *valp = val;
  38. return 0;
  39. }
  40. if (--attempts == 0)
  41. return -EAGAIN;
  42. if (delay)
  43. udelay(delay);
  44. }
  45. }
  46. /**
  47. * t3_write_regs - write a bunch of registers
  48. * @adapter: the adapter to program
  49. * @p: an array of register address/register value pairs
  50. * @n: the number of address/value pairs
  51. * @offset: register address offset
  52. *
  53. * Takes an array of register address/register value pairs and writes each
  54. * value to the corresponding register. Register addresses are adjusted
  55. * by the supplied offset.
  56. */
  57. void t3_write_regs(struct adapter *adapter, const struct addr_val_pair *p,
  58. int n, unsigned int offset)
  59. {
  60. while (n--) {
  61. t3_write_reg(adapter, p->reg_addr + offset, p->val);
  62. p++;
  63. }
  64. }
  65. /**
  66. * t3_set_reg_field - set a register field to a value
  67. * @adapter: the adapter to program
  68. * @addr: the register address
  69. * @mask: specifies the portion of the register to modify
  70. * @val: the new value for the register field
  71. *
  72. * Sets a register field specified by the supplied mask to the
  73. * given value.
  74. */
  75. void t3_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
  76. u32 val)
  77. {
  78. u32 v = t3_read_reg(adapter, addr) & ~mask;
  79. t3_write_reg(adapter, addr, v | val);
  80. t3_read_reg(adapter, addr); /* flush */
  81. }
  82. /**
  83. * t3_read_indirect - read indirectly addressed registers
  84. * @adap: the adapter
  85. * @addr_reg: register holding the indirect address
  86. * @data_reg: register holding the value of the indirect register
  87. * @vals: where the read register values are stored
  88. * @start_idx: index of first indirect register to read
  89. * @nregs: how many indirect registers to read
  90. *
  91. * Reads registers that are accessed indirectly through an address/data
  92. * register pair.
  93. */
  94. void t3_read_indirect(struct adapter *adap, unsigned int addr_reg,
  95. unsigned int data_reg, u32 *vals, unsigned int nregs,
  96. unsigned int start_idx)
  97. {
  98. while (nregs--) {
  99. t3_write_reg(adap, addr_reg, start_idx);
  100. *vals++ = t3_read_reg(adap, data_reg);
  101. start_idx++;
  102. }
  103. }
  104. /**
  105. * t3_mc7_bd_read - read from MC7 through backdoor accesses
  106. * @mc7: identifies MC7 to read from
  107. * @start: index of first 64-bit word to read
  108. * @n: number of 64-bit words to read
  109. * @buf: where to store the read result
  110. *
  111. * Read n 64-bit words from MC7 starting at word start, using backdoor
  112. * accesses.
  113. */
  114. int t3_mc7_bd_read(struct mc7 *mc7, unsigned int start, unsigned int n,
  115. u64 *buf)
  116. {
  117. static const int shift[] = { 0, 0, 16, 24 };
  118. static const int step[] = { 0, 32, 16, 8 };
  119. unsigned int size64 = mc7->size / 8; /* # of 64-bit words */
  120. struct adapter *adap = mc7->adapter;
  121. if (start >= size64 || start + n > size64)
  122. return -EINVAL;
  123. start *= (8 << mc7->width);
  124. while (n--) {
  125. int i;
  126. u64 val64 = 0;
  127. for (i = (1 << mc7->width) - 1; i >= 0; --i) {
  128. int attempts = 10;
  129. u32 val;
  130. t3_write_reg(adap, mc7->offset + A_MC7_BD_ADDR, start);
  131. t3_write_reg(adap, mc7->offset + A_MC7_BD_OP, 0);
  132. val = t3_read_reg(adap, mc7->offset + A_MC7_BD_OP);
  133. while ((val & F_BUSY) && attempts--)
  134. val = t3_read_reg(adap,
  135. mc7->offset + A_MC7_BD_OP);
  136. if (val & F_BUSY)
  137. return -EIO;
  138. val = t3_read_reg(adap, mc7->offset + A_MC7_BD_DATA1);
  139. if (mc7->width == 0) {
  140. val64 = t3_read_reg(adap,
  141. mc7->offset +
  142. A_MC7_BD_DATA0);
  143. val64 |= (u64) val << 32;
  144. } else {
  145. if (mc7->width > 1)
  146. val >>= shift[mc7->width];
  147. val64 |= (u64) val << (step[mc7->width] * i);
  148. }
  149. start += 8;
  150. }
  151. *buf++ = val64;
  152. }
  153. return 0;
  154. }
  155. /*
  156. * Initialize MI1.
  157. */
  158. static void mi1_init(struct adapter *adap, const struct adapter_info *ai)
  159. {
  160. u32 clkdiv = adap->params.vpd.cclk / (2 * adap->params.vpd.mdc) - 1;
  161. u32 val = F_PREEN | V_MDIINV(ai->mdiinv) | V_MDIEN(ai->mdien) |
  162. V_CLKDIV(clkdiv);
  163. if (!(ai->caps & SUPPORTED_10000baseT_Full))
  164. val |= V_ST(1);
  165. t3_write_reg(adap, A_MI1_CFG, val);
  166. }
  167. #define MDIO_ATTEMPTS 10
  168. /*
  169. * MI1 read/write operations for direct-addressed PHYs.
  170. */
  171. static int mi1_read(struct adapter *adapter, int phy_addr, int mmd_addr,
  172. int reg_addr, unsigned int *valp)
  173. {
  174. int ret;
  175. u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
  176. if (mmd_addr)
  177. return -EINVAL;
  178. mutex_lock(&adapter->mdio_lock);
  179. t3_write_reg(adapter, A_MI1_ADDR, addr);
  180. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(2));
  181. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
  182. if (!ret)
  183. *valp = t3_read_reg(adapter, A_MI1_DATA);
  184. mutex_unlock(&adapter->mdio_lock);
  185. return ret;
  186. }
  187. static int mi1_write(struct adapter *adapter, int phy_addr, int mmd_addr,
  188. int reg_addr, unsigned int val)
  189. {
  190. int ret;
  191. u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
  192. if (mmd_addr)
  193. return -EINVAL;
  194. mutex_lock(&adapter->mdio_lock);
  195. t3_write_reg(adapter, A_MI1_ADDR, addr);
  196. t3_write_reg(adapter, A_MI1_DATA, val);
  197. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
  198. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
  199. mutex_unlock(&adapter->mdio_lock);
  200. return ret;
  201. }
  202. static const struct mdio_ops mi1_mdio_ops = {
  203. mi1_read,
  204. mi1_write
  205. };
  206. /*
  207. * MI1 read/write operations for indirect-addressed PHYs.
  208. */
  209. static int mi1_ext_read(struct adapter *adapter, int phy_addr, int mmd_addr,
  210. int reg_addr, unsigned int *valp)
  211. {
  212. int ret;
  213. u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
  214. mutex_lock(&adapter->mdio_lock);
  215. t3_write_reg(adapter, A_MI1_ADDR, addr);
  216. t3_write_reg(adapter, A_MI1_DATA, reg_addr);
  217. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
  218. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
  219. if (!ret) {
  220. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(3));
  221. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
  222. MDIO_ATTEMPTS, 20);
  223. if (!ret)
  224. *valp = t3_read_reg(adapter, A_MI1_DATA);
  225. }
  226. mutex_unlock(&adapter->mdio_lock);
  227. return ret;
  228. }
  229. static int mi1_ext_write(struct adapter *adapter, int phy_addr, int mmd_addr,
  230. int reg_addr, unsigned int val)
  231. {
  232. int ret;
  233. u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
  234. mutex_lock(&adapter->mdio_lock);
  235. t3_write_reg(adapter, A_MI1_ADDR, addr);
  236. t3_write_reg(adapter, A_MI1_DATA, reg_addr);
  237. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
  238. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
  239. if (!ret) {
  240. t3_write_reg(adapter, A_MI1_DATA, val);
  241. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
  242. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
  243. MDIO_ATTEMPTS, 20);
  244. }
  245. mutex_unlock(&adapter->mdio_lock);
  246. return ret;
  247. }
  248. static const struct mdio_ops mi1_mdio_ext_ops = {
  249. mi1_ext_read,
  250. mi1_ext_write
  251. };
  252. /**
  253. * t3_mdio_change_bits - modify the value of a PHY register
  254. * @phy: the PHY to operate on
  255. * @mmd: the device address
  256. * @reg: the register address
  257. * @clear: what part of the register value to mask off
  258. * @set: what part of the register value to set
  259. *
  260. * Changes the value of a PHY register by applying a mask to its current
  261. * value and ORing the result with a new value.
  262. */
  263. int t3_mdio_change_bits(struct cphy *phy, int mmd, int reg, unsigned int clear,
  264. unsigned int set)
  265. {
  266. int ret;
  267. unsigned int val;
  268. ret = mdio_read(phy, mmd, reg, &val);
  269. if (!ret) {
  270. val &= ~clear;
  271. ret = mdio_write(phy, mmd, reg, val | set);
  272. }
  273. return ret;
  274. }
  275. /**
  276. * t3_phy_reset - reset a PHY block
  277. * @phy: the PHY to operate on
  278. * @mmd: the device address of the PHY block to reset
  279. * @wait: how long to wait for the reset to complete in 1ms increments
  280. *
  281. * Resets a PHY block and optionally waits for the reset to complete.
  282. * @mmd should be 0 for 10/100/1000 PHYs and the device address to reset
  283. * for 10G PHYs.
  284. */
  285. int t3_phy_reset(struct cphy *phy, int mmd, int wait)
  286. {
  287. int err;
  288. unsigned int ctl;
  289. err = t3_mdio_change_bits(phy, mmd, MII_BMCR, BMCR_PDOWN, BMCR_RESET);
  290. if (err || !wait)
  291. return err;
  292. do {
  293. err = mdio_read(phy, mmd, MII_BMCR, &ctl);
  294. if (err)
  295. return err;
  296. ctl &= BMCR_RESET;
  297. if (ctl)
  298. msleep(1);
  299. } while (ctl && --wait);
  300. return ctl ? -1 : 0;
  301. }
  302. /**
  303. * t3_phy_advertise - set the PHY advertisement registers for autoneg
  304. * @phy: the PHY to operate on
  305. * @advert: bitmap of capabilities the PHY should advertise
  306. *
  307. * Sets a 10/100/1000 PHY's advertisement registers to advertise the
  308. * requested capabilities.
  309. */
  310. int t3_phy_advertise(struct cphy *phy, unsigned int advert)
  311. {
  312. int err;
  313. unsigned int val = 0;
  314. err = mdio_read(phy, 0, MII_CTRL1000, &val);
  315. if (err)
  316. return err;
  317. val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
  318. if (advert & ADVERTISED_1000baseT_Half)
  319. val |= ADVERTISE_1000HALF;
  320. if (advert & ADVERTISED_1000baseT_Full)
  321. val |= ADVERTISE_1000FULL;
  322. err = mdio_write(phy, 0, MII_CTRL1000, val);
  323. if (err)
  324. return err;
  325. val = 1;
  326. if (advert & ADVERTISED_10baseT_Half)
  327. val |= ADVERTISE_10HALF;
  328. if (advert & ADVERTISED_10baseT_Full)
  329. val |= ADVERTISE_10FULL;
  330. if (advert & ADVERTISED_100baseT_Half)
  331. val |= ADVERTISE_100HALF;
  332. if (advert & ADVERTISED_100baseT_Full)
  333. val |= ADVERTISE_100FULL;
  334. if (advert & ADVERTISED_Pause)
  335. val |= ADVERTISE_PAUSE_CAP;
  336. if (advert & ADVERTISED_Asym_Pause)
  337. val |= ADVERTISE_PAUSE_ASYM;
  338. return mdio_write(phy, 0, MII_ADVERTISE, val);
  339. }
  340. /**
  341. * t3_set_phy_speed_duplex - force PHY speed and duplex
  342. * @phy: the PHY to operate on
  343. * @speed: requested PHY speed
  344. * @duplex: requested PHY duplex
  345. *
  346. * Force a 10/100/1000 PHY's speed and duplex. This also disables
  347. * auto-negotiation except for GigE, where auto-negotiation is mandatory.
  348. */
  349. int t3_set_phy_speed_duplex(struct cphy *phy, int speed, int duplex)
  350. {
  351. int err;
  352. unsigned int ctl;
  353. err = mdio_read(phy, 0, MII_BMCR, &ctl);
  354. if (err)
  355. return err;
  356. if (speed >= 0) {
  357. ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE);
  358. if (speed == SPEED_100)
  359. ctl |= BMCR_SPEED100;
  360. else if (speed == SPEED_1000)
  361. ctl |= BMCR_SPEED1000;
  362. }
  363. if (duplex >= 0) {
  364. ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE);
  365. if (duplex == DUPLEX_FULL)
  366. ctl |= BMCR_FULLDPLX;
  367. }
  368. if (ctl & BMCR_SPEED1000) /* auto-negotiation required for GigE */
  369. ctl |= BMCR_ANENABLE;
  370. return mdio_write(phy, 0, MII_BMCR, ctl);
  371. }
  372. static const struct adapter_info t3_adap_info[] = {
  373. {2, 0, 0, 0,
  374. F_GPIO2_OEN | F_GPIO4_OEN |
  375. F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, F_GPIO3 | F_GPIO5,
  376. SUPPORTED_OFFLOAD,
  377. &mi1_mdio_ops, "Chelsio PE9000"},
  378. {2, 0, 0, 0,
  379. F_GPIO2_OEN | F_GPIO4_OEN |
  380. F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, F_GPIO3 | F_GPIO5,
  381. SUPPORTED_OFFLOAD,
  382. &mi1_mdio_ops, "Chelsio T302"},
  383. {1, 0, 0, 0,
  384. F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN | F_GPIO10_OEN |
  385. F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 0,
  386. SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_OFFLOAD,
  387. &mi1_mdio_ext_ops, "Chelsio T310"},
  388. {2, 0, 0, 0,
  389. F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO5_OEN | F_GPIO6_OEN |
  390. F_GPIO7_OEN | F_GPIO10_OEN | F_GPIO11_OEN | F_GPIO1_OUT_VAL |
  391. F_GPIO5_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 0,
  392. SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_OFFLOAD,
  393. &mi1_mdio_ext_ops, "Chelsio T320"},
  394. };
  395. /*
  396. * Return the adapter_info structure with a given index. Out-of-range indices
  397. * return NULL.
  398. */
  399. const struct adapter_info *t3_get_adapter_info(unsigned int id)
  400. {
  401. return id < ARRAY_SIZE(t3_adap_info) ? &t3_adap_info[id] : NULL;
  402. }
  403. #define CAPS_1G (SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full | \
  404. SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_MII)
  405. #define CAPS_10G (SUPPORTED_10000baseT_Full | SUPPORTED_AUI)
  406. static const struct port_type_info port_types[] = {
  407. {NULL},
  408. {t3_ael1002_phy_prep, CAPS_10G | SUPPORTED_FIBRE,
  409. "10GBASE-XR"},
  410. {t3_vsc8211_phy_prep, CAPS_1G | SUPPORTED_TP | SUPPORTED_IRQ,
  411. "10/100/1000BASE-T"},
  412. {NULL, CAPS_1G | SUPPORTED_TP | SUPPORTED_IRQ,
  413. "10/100/1000BASE-T"},
  414. {t3_xaui_direct_phy_prep, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"},
  415. {NULL, CAPS_10G, "10GBASE-KX4"},
  416. {t3_qt2045_phy_prep, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"},
  417. {t3_ael1006_phy_prep, CAPS_10G | SUPPORTED_FIBRE,
  418. "10GBASE-SR"},
  419. {NULL, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"},
  420. };
  421. #undef CAPS_1G
  422. #undef CAPS_10G
  423. #define VPD_ENTRY(name, len) \
  424. u8 name##_kword[2]; u8 name##_len; u8 name##_data[len]
  425. /*
  426. * Partial EEPROM Vital Product Data structure. Includes only the ID and
  427. * VPD-R sections.
  428. */
  429. struct t3_vpd {
  430. u8 id_tag;
  431. u8 id_len[2];
  432. u8 id_data[16];
  433. u8 vpdr_tag;
  434. u8 vpdr_len[2];
  435. VPD_ENTRY(pn, 16); /* part number */
  436. VPD_ENTRY(ec, 16); /* EC level */
  437. VPD_ENTRY(sn, 16); /* serial number */
  438. VPD_ENTRY(na, 12); /* MAC address base */
  439. VPD_ENTRY(cclk, 6); /* core clock */
  440. VPD_ENTRY(mclk, 6); /* mem clock */
  441. VPD_ENTRY(uclk, 6); /* uP clk */
  442. VPD_ENTRY(mdc, 6); /* MDIO clk */
  443. VPD_ENTRY(mt, 2); /* mem timing */
  444. VPD_ENTRY(xaui0cfg, 6); /* XAUI0 config */
  445. VPD_ENTRY(xaui1cfg, 6); /* XAUI1 config */
  446. VPD_ENTRY(port0, 2); /* PHY0 complex */
  447. VPD_ENTRY(port1, 2); /* PHY1 complex */
  448. VPD_ENTRY(port2, 2); /* PHY2 complex */
  449. VPD_ENTRY(port3, 2); /* PHY3 complex */
  450. VPD_ENTRY(rv, 1); /* csum */
  451. u32 pad; /* for multiple-of-4 sizing and alignment */
  452. };
  453. #define EEPROM_MAX_POLL 4
  454. #define EEPROM_STAT_ADDR 0x4000
  455. #define VPD_BASE 0xc00
  456. /**
  457. * t3_seeprom_read - read a VPD EEPROM location
  458. * @adapter: adapter to read
  459. * @addr: EEPROM address
  460. * @data: where to store the read data
  461. *
  462. * Read a 32-bit word from a location in VPD EEPROM using the card's PCI
  463. * VPD ROM capability. A zero is written to the flag bit when the
  464. * addres is written to the control register. The hardware device will
  465. * set the flag to 1 when 4 bytes have been read into the data register.
  466. */
  467. int t3_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
  468. {
  469. u16 val;
  470. int attempts = EEPROM_MAX_POLL;
  471. unsigned int base = adapter->params.pci.vpd_cap_addr;
  472. if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
  473. return -EINVAL;
  474. pci_write_config_word(adapter->pdev, base + PCI_VPD_ADDR, addr);
  475. do {
  476. udelay(10);
  477. pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
  478. } while (!(val & PCI_VPD_ADDR_F) && --attempts);
  479. if (!(val & PCI_VPD_ADDR_F)) {
  480. CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr);
  481. return -EIO;
  482. }
  483. pci_read_config_dword(adapter->pdev, base + PCI_VPD_DATA, data);
  484. *data = le32_to_cpu(*data);
  485. return 0;
  486. }
  487. /**
  488. * t3_seeprom_write - write a VPD EEPROM location
  489. * @adapter: adapter to write
  490. * @addr: EEPROM address
  491. * @data: value to write
  492. *
  493. * Write a 32-bit word to a location in VPD EEPROM using the card's PCI
  494. * VPD ROM capability.
  495. */
  496. int t3_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
  497. {
  498. u16 val;
  499. int attempts = EEPROM_MAX_POLL;
  500. unsigned int base = adapter->params.pci.vpd_cap_addr;
  501. if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
  502. return -EINVAL;
  503. pci_write_config_dword(adapter->pdev, base + PCI_VPD_DATA,
  504. cpu_to_le32(data));
  505. pci_write_config_word(adapter->pdev,base + PCI_VPD_ADDR,
  506. addr | PCI_VPD_ADDR_F);
  507. do {
  508. msleep(1);
  509. pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
  510. } while ((val & PCI_VPD_ADDR_F) && --attempts);
  511. if (val & PCI_VPD_ADDR_F) {
  512. CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr);
  513. return -EIO;
  514. }
  515. return 0;
  516. }
  517. /**
  518. * t3_seeprom_wp - enable/disable EEPROM write protection
  519. * @adapter: the adapter
  520. * @enable: 1 to enable write protection, 0 to disable it
  521. *
  522. * Enables or disables write protection on the serial EEPROM.
  523. */
  524. int t3_seeprom_wp(struct adapter *adapter, int enable)
  525. {
  526. return t3_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
  527. }
  528. /*
  529. * Convert a character holding a hex digit to a number.
  530. */
  531. static unsigned int hex2int(unsigned char c)
  532. {
  533. return isdigit(c) ? c - '0' : toupper(c) - 'A' + 10;
  534. }
  535. /**
  536. * get_vpd_params - read VPD parameters from VPD EEPROM
  537. * @adapter: adapter to read
  538. * @p: where to store the parameters
  539. *
  540. * Reads card parameters stored in VPD EEPROM.
  541. */
  542. static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
  543. {
  544. int i, addr, ret;
  545. struct t3_vpd vpd;
  546. /*
  547. * Card information is normally at VPD_BASE but some early cards had
  548. * it at 0.
  549. */
  550. ret = t3_seeprom_read(adapter, VPD_BASE, (u32 *)&vpd);
  551. if (ret)
  552. return ret;
  553. addr = vpd.id_tag == 0x82 ? VPD_BASE : 0;
  554. for (i = 0; i < sizeof(vpd); i += 4) {
  555. ret = t3_seeprom_read(adapter, addr + i,
  556. (u32 *)((u8 *)&vpd + i));
  557. if (ret)
  558. return ret;
  559. }
  560. p->cclk = simple_strtoul(vpd.cclk_data, NULL, 10);
  561. p->mclk = simple_strtoul(vpd.mclk_data, NULL, 10);
  562. p->uclk = simple_strtoul(vpd.uclk_data, NULL, 10);
  563. p->mdc = simple_strtoul(vpd.mdc_data, NULL, 10);
  564. p->mem_timing = simple_strtoul(vpd.mt_data, NULL, 10);
  565. /* Old eeproms didn't have port information */
  566. if (adapter->params.rev == 0 && !vpd.port0_data[0]) {
  567. p->port_type[0] = uses_xaui(adapter) ? 1 : 2;
  568. p->port_type[1] = uses_xaui(adapter) ? 6 : 2;
  569. } else {
  570. p->port_type[0] = hex2int(vpd.port0_data[0]);
  571. p->port_type[1] = hex2int(vpd.port1_data[0]);
  572. p->xauicfg[0] = simple_strtoul(vpd.xaui0cfg_data, NULL, 16);
  573. p->xauicfg[1] = simple_strtoul(vpd.xaui1cfg_data, NULL, 16);
  574. }
  575. for (i = 0; i < 6; i++)
  576. p->eth_base[i] = hex2int(vpd.na_data[2 * i]) * 16 +
  577. hex2int(vpd.na_data[2 * i + 1]);
  578. return 0;
  579. }
  580. /* serial flash and firmware constants */
  581. enum {
  582. SF_ATTEMPTS = 5, /* max retries for SF1 operations */
  583. SF_SEC_SIZE = 64 * 1024, /* serial flash sector size */
  584. SF_SIZE = SF_SEC_SIZE * 8, /* serial flash size */
  585. /* flash command opcodes */
  586. SF_PROG_PAGE = 2, /* program page */
  587. SF_WR_DISABLE = 4, /* disable writes */
  588. SF_RD_STATUS = 5, /* read status register */
  589. SF_WR_ENABLE = 6, /* enable writes */
  590. SF_RD_DATA_FAST = 0xb, /* read flash */
  591. SF_ERASE_SECTOR = 0xd8, /* erase sector */
  592. FW_FLASH_BOOT_ADDR = 0x70000, /* start address of FW in flash */
  593. FW_VERS_ADDR = 0x77ffc /* flash address holding FW version */
  594. };
  595. /**
  596. * sf1_read - read data from the serial flash
  597. * @adapter: the adapter
  598. * @byte_cnt: number of bytes to read
  599. * @cont: whether another operation will be chained
  600. * @valp: where to store the read data
  601. *
  602. * Reads up to 4 bytes of data from the serial flash. The location of
  603. * the read needs to be specified prior to calling this by issuing the
  604. * appropriate commands to the serial flash.
  605. */
  606. static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
  607. u32 *valp)
  608. {
  609. int ret;
  610. if (!byte_cnt || byte_cnt > 4)
  611. return -EINVAL;
  612. if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
  613. return -EBUSY;
  614. t3_write_reg(adapter, A_SF_OP, V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
  615. ret = t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
  616. if (!ret)
  617. *valp = t3_read_reg(adapter, A_SF_DATA);
  618. return ret;
  619. }
  620. /**
  621. * sf1_write - write data to the serial flash
  622. * @adapter: the adapter
  623. * @byte_cnt: number of bytes to write
  624. * @cont: whether another operation will be chained
  625. * @val: value to write
  626. *
  627. * Writes up to 4 bytes of data to the serial flash. The location of
  628. * the write needs to be specified prior to calling this by issuing the
  629. * appropriate commands to the serial flash.
  630. */
  631. static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
  632. u32 val)
  633. {
  634. if (!byte_cnt || byte_cnt > 4)
  635. return -EINVAL;
  636. if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
  637. return -EBUSY;
  638. t3_write_reg(adapter, A_SF_DATA, val);
  639. t3_write_reg(adapter, A_SF_OP,
  640. V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
  641. return t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
  642. }
  643. /**
  644. * flash_wait_op - wait for a flash operation to complete
  645. * @adapter: the adapter
  646. * @attempts: max number of polls of the status register
  647. * @delay: delay between polls in ms
  648. *
  649. * Wait for a flash operation to complete by polling the status register.
  650. */
  651. static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
  652. {
  653. int ret;
  654. u32 status;
  655. while (1) {
  656. if ((ret = sf1_write(adapter, 1, 1, SF_RD_STATUS)) != 0 ||
  657. (ret = sf1_read(adapter, 1, 0, &status)) != 0)
  658. return ret;
  659. if (!(status & 1))
  660. return 0;
  661. if (--attempts == 0)
  662. return -EAGAIN;
  663. if (delay)
  664. msleep(delay);
  665. }
  666. }
  667. /**
  668. * t3_read_flash - read words from serial flash
  669. * @adapter: the adapter
  670. * @addr: the start address for the read
  671. * @nwords: how many 32-bit words to read
  672. * @data: where to store the read data
  673. * @byte_oriented: whether to store data as bytes or as words
  674. *
  675. * Read the specified number of 32-bit words from the serial flash.
  676. * If @byte_oriented is set the read data is stored as a byte array
  677. * (i.e., big-endian), otherwise as 32-bit words in the platform's
  678. * natural endianess.
  679. */
  680. int t3_read_flash(struct adapter *adapter, unsigned int addr,
  681. unsigned int nwords, u32 *data, int byte_oriented)
  682. {
  683. int ret;
  684. if (addr + nwords * sizeof(u32) > SF_SIZE || (addr & 3))
  685. return -EINVAL;
  686. addr = swab32(addr) | SF_RD_DATA_FAST;
  687. if ((ret = sf1_write(adapter, 4, 1, addr)) != 0 ||
  688. (ret = sf1_read(adapter, 1, 1, data)) != 0)
  689. return ret;
  690. for (; nwords; nwords--, data++) {
  691. ret = sf1_read(adapter, 4, nwords > 1, data);
  692. if (ret)
  693. return ret;
  694. if (byte_oriented)
  695. *data = htonl(*data);
  696. }
  697. return 0;
  698. }
  699. /**
  700. * t3_write_flash - write up to a page of data to the serial flash
  701. * @adapter: the adapter
  702. * @addr: the start address to write
  703. * @n: length of data to write
  704. * @data: the data to write
  705. *
  706. * Writes up to a page of data (256 bytes) to the serial flash starting
  707. * at the given address.
  708. */
  709. static int t3_write_flash(struct adapter *adapter, unsigned int addr,
  710. unsigned int n, const u8 *data)
  711. {
  712. int ret;
  713. u32 buf[64];
  714. unsigned int i, c, left, val, offset = addr & 0xff;
  715. if (addr + n > SF_SIZE || offset + n > 256)
  716. return -EINVAL;
  717. val = swab32(addr) | SF_PROG_PAGE;
  718. if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
  719. (ret = sf1_write(adapter, 4, 1, val)) != 0)
  720. return ret;
  721. for (left = n; left; left -= c) {
  722. c = min(left, 4U);
  723. for (val = 0, i = 0; i < c; ++i)
  724. val = (val << 8) + *data++;
  725. ret = sf1_write(adapter, c, c != left, val);
  726. if (ret)
  727. return ret;
  728. }
  729. if ((ret = flash_wait_op(adapter, 5, 1)) != 0)
  730. return ret;
  731. /* Read the page to verify the write succeeded */
  732. ret = t3_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
  733. if (ret)
  734. return ret;
  735. if (memcmp(data - n, (u8 *) buf + offset, n))
  736. return -EIO;
  737. return 0;
  738. }
  739. /**
  740. * t3_get_fw_version - read the firmware version
  741. * @adapter: the adapter
  742. * @vers: where to place the version
  743. *
  744. * Reads the FW version from flash.
  745. */
  746. int t3_get_fw_version(struct adapter *adapter, u32 *vers)
  747. {
  748. return t3_read_flash(adapter, FW_VERS_ADDR, 1, vers, 0);
  749. }
  750. /**
  751. * t3_check_fw_version - check if the FW is compatible with this driver
  752. * @adapter: the adapter
  753. *
  754. * Checks if an adapter's FW is compatible with the driver. Returns 0
  755. * if the versions are compatible, a negative error otherwise.
  756. */
  757. int t3_check_fw_version(struct adapter *adapter)
  758. {
  759. int ret;
  760. u32 vers;
  761. ret = t3_get_fw_version(adapter, &vers);
  762. if (ret)
  763. return ret;
  764. /* Minor 0xfff means the FW is an internal development-only version. */
  765. if ((vers & 0xfff) == 0xfff)
  766. return 0;
  767. if (vers == 0x1002009)
  768. return 0;
  769. CH_ERR(adapter, "found wrong FW version, driver needs version 2.9\n");
  770. return -EINVAL;
  771. }
  772. /**
  773. * t3_flash_erase_sectors - erase a range of flash sectors
  774. * @adapter: the adapter
  775. * @start: the first sector to erase
  776. * @end: the last sector to erase
  777. *
  778. * Erases the sectors in the given range.
  779. */
  780. static int t3_flash_erase_sectors(struct adapter *adapter, int start, int end)
  781. {
  782. while (start <= end) {
  783. int ret;
  784. if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
  785. (ret = sf1_write(adapter, 4, 0,
  786. SF_ERASE_SECTOR | (start << 8))) != 0 ||
  787. (ret = flash_wait_op(adapter, 5, 500)) != 0)
  788. return ret;
  789. start++;
  790. }
  791. return 0;
  792. }
  793. /*
  794. * t3_load_fw - download firmware
  795. * @adapter: the adapter
  796. * @fw_data: the firrware image to write
  797. * @size: image size
  798. *
  799. * Write the supplied firmware image to the card's serial flash.
  800. * The FW image has the following sections: @size - 8 bytes of code and
  801. * data, followed by 4 bytes of FW version, followed by the 32-bit
  802. * 1's complement checksum of the whole image.
  803. */
  804. int t3_load_fw(struct adapter *adapter, const u8 *fw_data, unsigned int size)
  805. {
  806. u32 csum;
  807. unsigned int i;
  808. const u32 *p = (const u32 *)fw_data;
  809. int ret, addr, fw_sector = FW_FLASH_BOOT_ADDR >> 16;
  810. if (size & 3)
  811. return -EINVAL;
  812. if (size > FW_VERS_ADDR + 8 - FW_FLASH_BOOT_ADDR)
  813. return -EFBIG;
  814. for (csum = 0, i = 0; i < size / sizeof(csum); i++)
  815. csum += ntohl(p[i]);
  816. if (csum != 0xffffffff) {
  817. CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
  818. csum);
  819. return -EINVAL;
  820. }
  821. ret = t3_flash_erase_sectors(adapter, fw_sector, fw_sector);
  822. if (ret)
  823. goto out;
  824. size -= 8; /* trim off version and checksum */
  825. for (addr = FW_FLASH_BOOT_ADDR; size;) {
  826. unsigned int chunk_size = min(size, 256U);
  827. ret = t3_write_flash(adapter, addr, chunk_size, fw_data);
  828. if (ret)
  829. goto out;
  830. addr += chunk_size;
  831. fw_data += chunk_size;
  832. size -= chunk_size;
  833. }
  834. ret = t3_write_flash(adapter, FW_VERS_ADDR, 4, fw_data);
  835. out:
  836. if (ret)
  837. CH_ERR(adapter, "firmware download failed, error %d\n", ret);
  838. return ret;
  839. }
  840. #define CIM_CTL_BASE 0x2000
  841. /**
  842. * t3_cim_ctl_blk_read - read a block from CIM control region
  843. *
  844. * @adap: the adapter
  845. * @addr: the start address within the CIM control region
  846. * @n: number of words to read
  847. * @valp: where to store the result
  848. *
  849. * Reads a block of 4-byte words from the CIM control region.
  850. */
  851. int t3_cim_ctl_blk_read(struct adapter *adap, unsigned int addr,
  852. unsigned int n, unsigned int *valp)
  853. {
  854. int ret = 0;
  855. if (t3_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
  856. return -EBUSY;
  857. for ( ; !ret && n--; addr += 4) {
  858. t3_write_reg(adap, A_CIM_HOST_ACC_CTRL, CIM_CTL_BASE + addr);
  859. ret = t3_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
  860. 0, 5, 2);
  861. if (!ret)
  862. *valp++ = t3_read_reg(adap, A_CIM_HOST_ACC_DATA);
  863. }
  864. return ret;
  865. }
  866. /**
  867. * t3_link_changed - handle interface link changes
  868. * @adapter: the adapter
  869. * @port_id: the port index that changed link state
  870. *
  871. * Called when a port's link settings change to propagate the new values
  872. * to the associated PHY and MAC. After performing the common tasks it
  873. * invokes an OS-specific handler.
  874. */
  875. void t3_link_changed(struct adapter *adapter, int port_id)
  876. {
  877. int link_ok, speed, duplex, fc;
  878. struct port_info *pi = adap2pinfo(adapter, port_id);
  879. struct cphy *phy = &pi->phy;
  880. struct cmac *mac = &pi->mac;
  881. struct link_config *lc = &pi->link_config;
  882. phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
  883. if (link_ok != lc->link_ok && adapter->params.rev > 0 &&
  884. uses_xaui(adapter)) {
  885. if (link_ok)
  886. t3b_pcs_reset(mac);
  887. t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
  888. link_ok ? F_TXACTENABLE | F_RXEN : 0);
  889. }
  890. lc->link_ok = link_ok;
  891. lc->speed = speed < 0 ? SPEED_INVALID : speed;
  892. lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
  893. if (lc->requested_fc & PAUSE_AUTONEG)
  894. fc &= lc->requested_fc;
  895. else
  896. fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  897. if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) {
  898. /* Set MAC speed, duplex, and flow control to match PHY. */
  899. t3_mac_set_speed_duplex_fc(mac, speed, duplex, fc);
  900. lc->fc = fc;
  901. }
  902. t3_os_link_changed(adapter, port_id, link_ok, speed, duplex, fc);
  903. }
  904. /**
  905. * t3_link_start - apply link configuration to MAC/PHY
  906. * @phy: the PHY to setup
  907. * @mac: the MAC to setup
  908. * @lc: the requested link configuration
  909. *
  910. * Set up a port's MAC and PHY according to a desired link configuration.
  911. * - If the PHY can auto-negotiate first decide what to advertise, then
  912. * enable/disable auto-negotiation as desired, and reset.
  913. * - If the PHY does not auto-negotiate just reset it.
  914. * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
  915. * otherwise do it later based on the outcome of auto-negotiation.
  916. */
  917. int t3_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc)
  918. {
  919. unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  920. lc->link_ok = 0;
  921. if (lc->supported & SUPPORTED_Autoneg) {
  922. lc->advertising &= ~(ADVERTISED_Asym_Pause | ADVERTISED_Pause);
  923. if (fc) {
  924. lc->advertising |= ADVERTISED_Asym_Pause;
  925. if (fc & PAUSE_RX)
  926. lc->advertising |= ADVERTISED_Pause;
  927. }
  928. phy->ops->advertise(phy, lc->advertising);
  929. if (lc->autoneg == AUTONEG_DISABLE) {
  930. lc->speed = lc->requested_speed;
  931. lc->duplex = lc->requested_duplex;
  932. lc->fc = (unsigned char)fc;
  933. t3_mac_set_speed_duplex_fc(mac, lc->speed, lc->duplex,
  934. fc);
  935. /* Also disables autoneg */
  936. phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex);
  937. phy->ops->reset(phy, 0);
  938. } else
  939. phy->ops->autoneg_enable(phy);
  940. } else {
  941. t3_mac_set_speed_duplex_fc(mac, -1, -1, fc);
  942. lc->fc = (unsigned char)fc;
  943. phy->ops->reset(phy, 0);
  944. }
  945. return 0;
  946. }
  947. /**
  948. * t3_set_vlan_accel - control HW VLAN extraction
  949. * @adapter: the adapter
  950. * @ports: bitmap of adapter ports to operate on
  951. * @on: enable (1) or disable (0) HW VLAN extraction
  952. *
  953. * Enables or disables HW extraction of VLAN tags for the given port.
  954. */
  955. void t3_set_vlan_accel(struct adapter *adapter, unsigned int ports, int on)
  956. {
  957. t3_set_reg_field(adapter, A_TP_OUT_CONFIG,
  958. ports << S_VLANEXTRACTIONENABLE,
  959. on ? (ports << S_VLANEXTRACTIONENABLE) : 0);
  960. }
  961. struct intr_info {
  962. unsigned int mask; /* bits to check in interrupt status */
  963. const char *msg; /* message to print or NULL */
  964. short stat_idx; /* stat counter to increment or -1 */
  965. unsigned short fatal:1; /* whether the condition reported is fatal */
  966. };
  967. /**
  968. * t3_handle_intr_status - table driven interrupt handler
  969. * @adapter: the adapter that generated the interrupt
  970. * @reg: the interrupt status register to process
  971. * @mask: a mask to apply to the interrupt status
  972. * @acts: table of interrupt actions
  973. * @stats: statistics counters tracking interrupt occurences
  974. *
  975. * A table driven interrupt handler that applies a set of masks to an
  976. * interrupt status word and performs the corresponding actions if the
  977. * interrupts described by the mask have occured. The actions include
  978. * optionally printing a warning or alert message, and optionally
  979. * incrementing a stat counter. The table is terminated by an entry
  980. * specifying mask 0. Returns the number of fatal interrupt conditions.
  981. */
  982. static int t3_handle_intr_status(struct adapter *adapter, unsigned int reg,
  983. unsigned int mask,
  984. const struct intr_info *acts,
  985. unsigned long *stats)
  986. {
  987. int fatal = 0;
  988. unsigned int status = t3_read_reg(adapter, reg) & mask;
  989. for (; acts->mask; ++acts) {
  990. if (!(status & acts->mask))
  991. continue;
  992. if (acts->fatal) {
  993. fatal++;
  994. CH_ALERT(adapter, "%s (0x%x)\n",
  995. acts->msg, status & acts->mask);
  996. } else if (acts->msg)
  997. CH_WARN(adapter, "%s (0x%x)\n",
  998. acts->msg, status & acts->mask);
  999. if (acts->stat_idx >= 0)
  1000. stats[acts->stat_idx]++;
  1001. }
  1002. if (status) /* clear processed interrupts */
  1003. t3_write_reg(adapter, reg, status);
  1004. return fatal;
  1005. }
  1006. #define SGE_INTR_MASK (F_RSPQDISABLED)
  1007. #define MC5_INTR_MASK (F_PARITYERR | F_ACTRGNFULL | F_UNKNOWNCMD | \
  1008. F_REQQPARERR | F_DISPQPARERR | F_DELACTEMPTY | \
  1009. F_NFASRCHFAIL)
  1010. #define MC7_INTR_MASK (F_AE | F_UE | F_CE | V_PE(M_PE))
  1011. #define XGM_INTR_MASK (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
  1012. V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR) | \
  1013. F_TXFIFO_UNDERRUN | F_RXFIFO_OVERFLOW)
  1014. #define PCIX_INTR_MASK (F_MSTDETPARERR | F_SIGTARABT | F_RCVTARABT | \
  1015. F_RCVMSTABT | F_SIGSYSERR | F_DETPARERR | \
  1016. F_SPLCMPDIS | F_UNXSPLCMP | F_RCVSPLCMPERR | \
  1017. F_DETCORECCERR | F_DETUNCECCERR | F_PIOPARERR | \
  1018. V_WFPARERR(M_WFPARERR) | V_RFPARERR(M_RFPARERR) | \
  1019. V_CFPARERR(M_CFPARERR) /* | V_MSIXPARERR(M_MSIXPARERR) */)
  1020. #define PCIE_INTR_MASK (F_UNXSPLCPLERRR | F_UNXSPLCPLERRC | F_PCIE_PIOPARERR |\
  1021. F_PCIE_WFPARERR | F_PCIE_RFPARERR | F_PCIE_CFPARERR | \
  1022. /* V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR) | */ \
  1023. V_BISTERR(M_BISTERR) | F_PEXERR)
  1024. #define ULPRX_INTR_MASK F_PARERR
  1025. #define ULPTX_INTR_MASK 0
  1026. #define CPLSW_INTR_MASK (F_TP_FRAMING_ERROR | \
  1027. F_SGE_FRAMING_ERROR | F_CIM_FRAMING_ERROR | \
  1028. F_ZERO_SWITCH_ERROR)
  1029. #define CIM_INTR_MASK (F_BLKWRPLINT | F_BLKRDPLINT | F_BLKWRCTLINT | \
  1030. F_BLKRDCTLINT | F_BLKWRFLASHINT | F_BLKRDFLASHINT | \
  1031. F_SGLWRFLASHINT | F_WRBLKFLASHINT | F_BLKWRBOOTINT | \
  1032. F_FLASHRANGEINT | F_SDRAMRANGEINT | F_RSVDSPACEINT)
  1033. #define PMTX_INTR_MASK (F_ZERO_C_CMD_ERROR | ICSPI_FRM_ERR | OESPI_FRM_ERR | \
  1034. V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR) | \
  1035. V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR))
  1036. #define PMRX_INTR_MASK (F_ZERO_E_CMD_ERROR | IESPI_FRM_ERR | OCSPI_FRM_ERR | \
  1037. V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR) | \
  1038. V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR))
  1039. #define MPS_INTR_MASK (V_TX0TPPARERRENB(M_TX0TPPARERRENB) | \
  1040. V_TX1TPPARERRENB(M_TX1TPPARERRENB) | \
  1041. V_RXTPPARERRENB(M_RXTPPARERRENB) | \
  1042. V_MCAPARERRENB(M_MCAPARERRENB))
  1043. #define PL_INTR_MASK (F_T3DBG | F_XGMAC0_0 | F_XGMAC0_1 | F_MC5A | F_PM1_TX | \
  1044. F_PM1_RX | F_ULP2_TX | F_ULP2_RX | F_TP1 | F_CIM | \
  1045. F_MC7_CM | F_MC7_PMTX | F_MC7_PMRX | F_SGE3 | F_PCIM0 | \
  1046. F_MPS0 | F_CPL_SWITCH)
  1047. /*
  1048. * Interrupt handler for the PCIX1 module.
  1049. */
  1050. static void pci_intr_handler(struct adapter *adapter)
  1051. {
  1052. static const struct intr_info pcix1_intr_info[] = {
  1053. { F_PEXERR, "PCI PEX error", -1, 1 },
  1054. {F_MSTDETPARERR, "PCI master detected parity error", -1, 1},
  1055. {F_SIGTARABT, "PCI signaled target abort", -1, 1},
  1056. {F_RCVTARABT, "PCI received target abort", -1, 1},
  1057. {F_RCVMSTABT, "PCI received master abort", -1, 1},
  1058. {F_SIGSYSERR, "PCI signaled system error", -1, 1},
  1059. {F_DETPARERR, "PCI detected parity error", -1, 1},
  1060. {F_SPLCMPDIS, "PCI split completion discarded", -1, 1},
  1061. {F_UNXSPLCMP, "PCI unexpected split completion error", -1, 1},
  1062. {F_RCVSPLCMPERR, "PCI received split completion error", -1,
  1063. 1},
  1064. {F_DETCORECCERR, "PCI correctable ECC error",
  1065. STAT_PCI_CORR_ECC, 0},
  1066. {F_DETUNCECCERR, "PCI uncorrectable ECC error", -1, 1},
  1067. {F_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
  1068. {V_WFPARERR(M_WFPARERR), "PCI write FIFO parity error", -1,
  1069. 1},
  1070. {V_RFPARERR(M_RFPARERR), "PCI read FIFO parity error", -1,
  1071. 1},
  1072. {V_CFPARERR(M_CFPARERR), "PCI command FIFO parity error", -1,
  1073. 1},
  1074. {V_MSIXPARERR(M_MSIXPARERR), "PCI MSI-X table/PBA parity "
  1075. "error", -1, 1},
  1076. {0}
  1077. };
  1078. if (t3_handle_intr_status(adapter, A_PCIX_INT_CAUSE, PCIX_INTR_MASK,
  1079. pcix1_intr_info, adapter->irq_stats))
  1080. t3_fatal_err(adapter);
  1081. }
  1082. /*
  1083. * Interrupt handler for the PCIE module.
  1084. */
  1085. static void pcie_intr_handler(struct adapter *adapter)
  1086. {
  1087. static const struct intr_info pcie_intr_info[] = {
  1088. {F_UNXSPLCPLERRR,
  1089. "PCI unexpected split completion DMA read error", -1, 1},
  1090. {F_UNXSPLCPLERRC,
  1091. "PCI unexpected split completion DMA command error", -1, 1},
  1092. {F_PCIE_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
  1093. {F_PCIE_WFPARERR, "PCI write FIFO parity error", -1, 1},
  1094. {F_PCIE_RFPARERR, "PCI read FIFO parity error", -1, 1},
  1095. {F_PCIE_CFPARERR, "PCI command FIFO parity error", -1, 1},
  1096. {V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR),
  1097. "PCI MSI-X table/PBA parity error", -1, 1},
  1098. {V_BISTERR(M_BISTERR), "PCI BIST error", -1, 1},
  1099. {0}
  1100. };
  1101. if (t3_handle_intr_status(adapter, A_PCIE_INT_CAUSE, PCIE_INTR_MASK,
  1102. pcie_intr_info, adapter->irq_stats))
  1103. t3_fatal_err(adapter);
  1104. }
  1105. /*
  1106. * TP interrupt handler.
  1107. */
  1108. static void tp_intr_handler(struct adapter *adapter)
  1109. {
  1110. static const struct intr_info tp_intr_info[] = {
  1111. {0xffffff, "TP parity error", -1, 1},
  1112. {0x1000000, "TP out of Rx pages", -1, 1},
  1113. {0x2000000, "TP out of Tx pages", -1, 1},
  1114. {0}
  1115. };
  1116. if (t3_handle_intr_status(adapter, A_TP_INT_CAUSE, 0xffffffff,
  1117. tp_intr_info, NULL))
  1118. t3_fatal_err(adapter);
  1119. }
  1120. /*
  1121. * CIM interrupt handler.
  1122. */
  1123. static void cim_intr_handler(struct adapter *adapter)
  1124. {
  1125. static const struct intr_info cim_intr_info[] = {
  1126. {F_RSVDSPACEINT, "CIM reserved space write", -1, 1},
  1127. {F_SDRAMRANGEINT, "CIM SDRAM address out of range", -1, 1},
  1128. {F_FLASHRANGEINT, "CIM flash address out of range", -1, 1},
  1129. {F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1},
  1130. {F_WRBLKFLASHINT, "CIM write to cached flash space", -1, 1},
  1131. {F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1},
  1132. {F_BLKRDFLASHINT, "CIM block read from flash space", -1, 1},
  1133. {F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1},
  1134. {F_BLKRDCTLINT, "CIM block read from CTL space", -1, 1},
  1135. {F_BLKWRCTLINT, "CIM block write to CTL space", -1, 1},
  1136. {F_BLKRDPLINT, "CIM block read from PL space", -1, 1},
  1137. {F_BLKWRPLINT, "CIM block write to PL space", -1, 1},
  1138. {0}
  1139. };
  1140. if (t3_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE, 0xffffffff,
  1141. cim_intr_info, NULL))
  1142. t3_fatal_err(adapter);
  1143. }
  1144. /*
  1145. * ULP RX interrupt handler.
  1146. */
  1147. static void ulprx_intr_handler(struct adapter *adapter)
  1148. {
  1149. static const struct intr_info ulprx_intr_info[] = {
  1150. {F_PARERR, "ULP RX parity error", -1, 1},
  1151. {0}
  1152. };
  1153. if (t3_handle_intr_status(adapter, A_ULPRX_INT_CAUSE, 0xffffffff,
  1154. ulprx_intr_info, NULL))
  1155. t3_fatal_err(adapter);
  1156. }
  1157. /*
  1158. * ULP TX interrupt handler.
  1159. */
  1160. static void ulptx_intr_handler(struct adapter *adapter)
  1161. {
  1162. static const struct intr_info ulptx_intr_info[] = {
  1163. {F_PBL_BOUND_ERR_CH0, "ULP TX channel 0 PBL out of bounds",
  1164. STAT_ULP_CH0_PBL_OOB, 0},
  1165. {F_PBL_BOUND_ERR_CH1, "ULP TX channel 1 PBL out of bounds",
  1166. STAT_ULP_CH1_PBL_OOB, 0},
  1167. {0}
  1168. };
  1169. if (t3_handle_intr_status(adapter, A_ULPTX_INT_CAUSE, 0xffffffff,
  1170. ulptx_intr_info, adapter->irq_stats))
  1171. t3_fatal_err(adapter);
  1172. }
  1173. #define ICSPI_FRM_ERR (F_ICSPI0_FIFO2X_RX_FRAMING_ERROR | \
  1174. F_ICSPI1_FIFO2X_RX_FRAMING_ERROR | F_ICSPI0_RX_FRAMING_ERROR | \
  1175. F_ICSPI1_RX_FRAMING_ERROR | F_ICSPI0_TX_FRAMING_ERROR | \
  1176. F_ICSPI1_TX_FRAMING_ERROR)
  1177. #define OESPI_FRM_ERR (F_OESPI0_RX_FRAMING_ERROR | \
  1178. F_OESPI1_RX_FRAMING_ERROR | F_OESPI0_TX_FRAMING_ERROR | \
  1179. F_OESPI1_TX_FRAMING_ERROR | F_OESPI0_OFIFO2X_TX_FRAMING_ERROR | \
  1180. F_OESPI1_OFIFO2X_TX_FRAMING_ERROR)
  1181. /*
  1182. * PM TX interrupt handler.
  1183. */
  1184. static void pmtx_intr_handler(struct adapter *adapter)
  1185. {
  1186. static const struct intr_info pmtx_intr_info[] = {
  1187. {F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1},
  1188. {ICSPI_FRM_ERR, "PMTX ispi framing error", -1, 1},
  1189. {OESPI_FRM_ERR, "PMTX ospi framing error", -1, 1},
  1190. {V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR),
  1191. "PMTX ispi parity error", -1, 1},
  1192. {V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR),
  1193. "PMTX ospi parity error", -1, 1},
  1194. {0}
  1195. };
  1196. if (t3_handle_intr_status(adapter, A_PM1_TX_INT_CAUSE, 0xffffffff,
  1197. pmtx_intr_info, NULL))
  1198. t3_fatal_err(adapter);
  1199. }
  1200. #define IESPI_FRM_ERR (F_IESPI0_FIFO2X_RX_FRAMING_ERROR | \
  1201. F_IESPI1_FIFO2X_RX_FRAMING_ERROR | F_IESPI0_RX_FRAMING_ERROR | \
  1202. F_IESPI1_RX_FRAMING_ERROR | F_IESPI0_TX_FRAMING_ERROR | \
  1203. F_IESPI1_TX_FRAMING_ERROR)
  1204. #define OCSPI_FRM_ERR (F_OCSPI0_RX_FRAMING_ERROR | \
  1205. F_OCSPI1_RX_FRAMING_ERROR | F_OCSPI0_TX_FRAMING_ERROR | \
  1206. F_OCSPI1_TX_FRAMING_ERROR | F_OCSPI0_OFIFO2X_TX_FRAMING_ERROR | \
  1207. F_OCSPI1_OFIFO2X_TX_FRAMING_ERROR)
  1208. /*
  1209. * PM RX interrupt handler.
  1210. */
  1211. static void pmrx_intr_handler(struct adapter *adapter)
  1212. {
  1213. static const struct intr_info pmrx_intr_info[] = {
  1214. {F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1},
  1215. {IESPI_FRM_ERR, "PMRX ispi framing error", -1, 1},
  1216. {OCSPI_FRM_ERR, "PMRX ospi framing error", -1, 1},
  1217. {V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR),
  1218. "PMRX ispi parity error", -1, 1},
  1219. {V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR),
  1220. "PMRX ospi parity error", -1, 1},
  1221. {0}
  1222. };
  1223. if (t3_handle_intr_status(adapter, A_PM1_RX_INT_CAUSE, 0xffffffff,
  1224. pmrx_intr_info, NULL))
  1225. t3_fatal_err(adapter);
  1226. }
  1227. /*
  1228. * CPL switch interrupt handler.
  1229. */
  1230. static void cplsw_intr_handler(struct adapter *adapter)
  1231. {
  1232. static const struct intr_info cplsw_intr_info[] = {
  1233. /* { F_CIM_OVFL_ERROR, "CPL switch CIM overflow", -1, 1 }, */
  1234. {F_TP_FRAMING_ERROR, "CPL switch TP framing error", -1, 1},
  1235. {F_SGE_FRAMING_ERROR, "CPL switch SGE framing error", -1, 1},
  1236. {F_CIM_FRAMING_ERROR, "CPL switch CIM framing error", -1, 1},
  1237. {F_ZERO_SWITCH_ERROR, "CPL switch no-switch error", -1, 1},
  1238. {0}
  1239. };
  1240. if (t3_handle_intr_status(adapter, A_CPL_INTR_CAUSE, 0xffffffff,
  1241. cplsw_intr_info, NULL))
  1242. t3_fatal_err(adapter);
  1243. }
  1244. /*
  1245. * MPS interrupt handler.
  1246. */
  1247. static void mps_intr_handler(struct adapter *adapter)
  1248. {
  1249. static const struct intr_info mps_intr_info[] = {
  1250. {0x1ff, "MPS parity error", -1, 1},
  1251. {0}
  1252. };
  1253. if (t3_handle_intr_status(adapter, A_MPS_INT_CAUSE, 0xffffffff,
  1254. mps_intr_info, NULL))
  1255. t3_fatal_err(adapter);
  1256. }
  1257. #define MC7_INTR_FATAL (F_UE | V_PE(M_PE) | F_AE)
  1258. /*
  1259. * MC7 interrupt handler.
  1260. */
  1261. static void mc7_intr_handler(struct mc7 *mc7)
  1262. {
  1263. struct adapter *adapter = mc7->adapter;
  1264. u32 cause = t3_read_reg(adapter, mc7->offset + A_MC7_INT_CAUSE);
  1265. if (cause & F_CE) {
  1266. mc7->stats.corr_err++;
  1267. CH_WARN(adapter, "%s MC7 correctable error at addr 0x%x, "
  1268. "data 0x%x 0x%x 0x%x\n", mc7->name,
  1269. t3_read_reg(adapter, mc7->offset + A_MC7_CE_ADDR),
  1270. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA0),
  1271. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA1),
  1272. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA2));
  1273. }
  1274. if (cause & F_UE) {
  1275. mc7->stats.uncorr_err++;
  1276. CH_ALERT(adapter, "%s MC7 uncorrectable error at addr 0x%x, "
  1277. "data 0x%x 0x%x 0x%x\n", mc7->name,
  1278. t3_read_reg(adapter, mc7->offset + A_MC7_UE_ADDR),
  1279. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA0),
  1280. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA1),
  1281. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA2));
  1282. }
  1283. if (G_PE(cause)) {
  1284. mc7->stats.parity_err++;
  1285. CH_ALERT(adapter, "%s MC7 parity error 0x%x\n",
  1286. mc7->name, G_PE(cause));
  1287. }
  1288. if (cause & F_AE) {
  1289. u32 addr = 0;
  1290. if (adapter->params.rev > 0)
  1291. addr = t3_read_reg(adapter,
  1292. mc7->offset + A_MC7_ERR_ADDR);
  1293. mc7->stats.addr_err++;
  1294. CH_ALERT(adapter, "%s MC7 address error: 0x%x\n",
  1295. mc7->name, addr);
  1296. }
  1297. if (cause & MC7_INTR_FATAL)
  1298. t3_fatal_err(adapter);
  1299. t3_write_reg(adapter, mc7->offset + A_MC7_INT_CAUSE, cause);
  1300. }
  1301. #define XGM_INTR_FATAL (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
  1302. V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR))
  1303. /*
  1304. * XGMAC interrupt handler.
  1305. */
  1306. static int mac_intr_handler(struct adapter *adap, unsigned int idx)
  1307. {
  1308. struct cmac *mac = &adap2pinfo(adap, idx)->mac;
  1309. u32 cause = t3_read_reg(adap, A_XGM_INT_CAUSE + mac->offset);
  1310. if (cause & V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR)) {
  1311. mac->stats.tx_fifo_parity_err++;
  1312. CH_ALERT(adap, "port%d: MAC TX FIFO parity error\n", idx);
  1313. }
  1314. if (cause & V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) {
  1315. mac->stats.rx_fifo_parity_err++;
  1316. CH_ALERT(adap, "port%d: MAC RX FIFO parity error\n", idx);
  1317. }
  1318. if (cause & F_TXFIFO_UNDERRUN)
  1319. mac->stats.tx_fifo_urun++;
  1320. if (cause & F_RXFIFO_OVERFLOW)
  1321. mac->stats.rx_fifo_ovfl++;
  1322. if (cause & V_SERDES_LOS(M_SERDES_LOS))
  1323. mac->stats.serdes_signal_loss++;
  1324. if (cause & F_XAUIPCSCTCERR)
  1325. mac->stats.xaui_pcs_ctc_err++;
  1326. if (cause & F_XAUIPCSALIGNCHANGE)
  1327. mac->stats.xaui_pcs_align_change++;
  1328. t3_write_reg(adap, A_XGM_INT_CAUSE + mac->offset, cause);
  1329. if (cause & XGM_INTR_FATAL)
  1330. t3_fatal_err(adap);
  1331. return cause != 0;
  1332. }
  1333. /*
  1334. * Interrupt handler for PHY events.
  1335. */
  1336. int t3_phy_intr_handler(struct adapter *adapter)
  1337. {
  1338. static const int intr_gpio_bits[] = { 8, 0x20 };
  1339. u32 i, cause = t3_read_reg(adapter, A_T3DBG_INT_CAUSE);
  1340. for_each_port(adapter, i) {
  1341. if (cause & intr_gpio_bits[i]) {
  1342. struct cphy *phy = &adap2pinfo(adapter, i)->phy;
  1343. int phy_cause = phy->ops->intr_handler(phy);
  1344. if (phy_cause & cphy_cause_link_change)
  1345. t3_link_changed(adapter, i);
  1346. if (phy_cause & cphy_cause_fifo_error)
  1347. phy->fifo_errors++;
  1348. }
  1349. }
  1350. t3_write_reg(adapter, A_T3DBG_INT_CAUSE, cause);
  1351. return 0;
  1352. }
  1353. /*
  1354. * T3 slow path (non-data) interrupt handler.
  1355. */
  1356. int t3_slow_intr_handler(struct adapter *adapter)
  1357. {
  1358. u32 cause = t3_read_reg(adapter, A_PL_INT_CAUSE0);
  1359. cause &= adapter->slow_intr_mask;
  1360. if (!cause)
  1361. return 0;
  1362. if (cause & F_PCIM0) {
  1363. if (is_pcie(adapter))
  1364. pcie_intr_handler(adapter);
  1365. else
  1366. pci_intr_handler(adapter);
  1367. }
  1368. if (cause & F_SGE3)
  1369. t3_sge_err_intr_handler(adapter);
  1370. if (cause & F_MC7_PMRX)
  1371. mc7_intr_handler(&adapter->pmrx);
  1372. if (cause & F_MC7_PMTX)
  1373. mc7_intr_handler(&adapter->pmtx);
  1374. if (cause & F_MC7_CM)
  1375. mc7_intr_handler(&adapter->cm);
  1376. if (cause & F_CIM)
  1377. cim_intr_handler(adapter);
  1378. if (cause & F_TP1)
  1379. tp_intr_handler(adapter);
  1380. if (cause & F_ULP2_RX)
  1381. ulprx_intr_handler(adapter);
  1382. if (cause & F_ULP2_TX)
  1383. ulptx_intr_handler(adapter);
  1384. if (cause & F_PM1_RX)
  1385. pmrx_intr_handler(adapter);
  1386. if (cause & F_PM1_TX)
  1387. pmtx_intr_handler(adapter);
  1388. if (cause & F_CPL_SWITCH)
  1389. cplsw_intr_handler(adapter);
  1390. if (cause & F_MPS0)
  1391. mps_intr_handler(adapter);
  1392. if (cause & F_MC5A)
  1393. t3_mc5_intr_handler(&adapter->mc5);
  1394. if (cause & F_XGMAC0_0)
  1395. mac_intr_handler(adapter, 0);
  1396. if (cause & F_XGMAC0_1)
  1397. mac_intr_handler(adapter, 1);
  1398. if (cause & F_T3DBG)
  1399. t3_os_ext_intr_handler(adapter);
  1400. /* Clear the interrupts just processed. */
  1401. t3_write_reg(adapter, A_PL_INT_CAUSE0, cause);
  1402. t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
  1403. return 1;
  1404. }
  1405. /**
  1406. * t3_intr_enable - enable interrupts
  1407. * @adapter: the adapter whose interrupts should be enabled
  1408. *
  1409. * Enable interrupts by setting the interrupt enable registers of the
  1410. * various HW modules and then enabling the top-level interrupt
  1411. * concentrator.
  1412. */
  1413. void t3_intr_enable(struct adapter *adapter)
  1414. {
  1415. static const struct addr_val_pair intr_en_avp[] = {
  1416. {A_SG_INT_ENABLE, SGE_INTR_MASK},
  1417. {A_MC7_INT_ENABLE, MC7_INTR_MASK},
  1418. {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
  1419. MC7_INTR_MASK},
  1420. {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
  1421. MC7_INTR_MASK},
  1422. {A_MC5_DB_INT_ENABLE, MC5_INTR_MASK},
  1423. {A_ULPRX_INT_ENABLE, ULPRX_INTR_MASK},
  1424. {A_TP_INT_ENABLE, 0x3bfffff},
  1425. {A_PM1_TX_INT_ENABLE, PMTX_INTR_MASK},
  1426. {A_PM1_RX_INT_ENABLE, PMRX_INTR_MASK},
  1427. {A_CIM_HOST_INT_ENABLE, CIM_INTR_MASK},
  1428. {A_MPS_INT_ENABLE, MPS_INTR_MASK},
  1429. };
  1430. adapter->slow_intr_mask = PL_INTR_MASK;
  1431. t3_write_regs(adapter, intr_en_avp, ARRAY_SIZE(intr_en_avp), 0);
  1432. if (adapter->params.rev > 0) {
  1433. t3_write_reg(adapter, A_CPL_INTR_ENABLE,
  1434. CPLSW_INTR_MASK | F_CIM_OVFL_ERROR);
  1435. t3_write_reg(adapter, A_ULPTX_INT_ENABLE,
  1436. ULPTX_INTR_MASK | F_PBL_BOUND_ERR_CH0 |
  1437. F_PBL_BOUND_ERR_CH1);
  1438. } else {
  1439. t3_write_reg(adapter, A_CPL_INTR_ENABLE, CPLSW_INTR_MASK);
  1440. t3_write_reg(adapter, A_ULPTX_INT_ENABLE, ULPTX_INTR_MASK);
  1441. }
  1442. t3_write_reg(adapter, A_T3DBG_GPIO_ACT_LOW,
  1443. adapter_info(adapter)->gpio_intr);
  1444. t3_write_reg(adapter, A_T3DBG_INT_ENABLE,
  1445. adapter_info(adapter)->gpio_intr);
  1446. if (is_pcie(adapter))
  1447. t3_write_reg(adapter, A_PCIE_INT_ENABLE, PCIE_INTR_MASK);
  1448. else
  1449. t3_write_reg(adapter, A_PCIX_INT_ENABLE, PCIX_INTR_MASK);
  1450. t3_write_reg(adapter, A_PL_INT_ENABLE0, adapter->slow_intr_mask);
  1451. t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
  1452. }
  1453. /**
  1454. * t3_intr_disable - disable a card's interrupts
  1455. * @adapter: the adapter whose interrupts should be disabled
  1456. *
  1457. * Disable interrupts. We only disable the top-level interrupt
  1458. * concentrator and the SGE data interrupts.
  1459. */
  1460. void t3_intr_disable(struct adapter *adapter)
  1461. {
  1462. t3_write_reg(adapter, A_PL_INT_ENABLE0, 0);
  1463. t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
  1464. adapter->slow_intr_mask = 0;
  1465. }
  1466. /**
  1467. * t3_intr_clear - clear all interrupts
  1468. * @adapter: the adapter whose interrupts should be cleared
  1469. *
  1470. * Clears all interrupts.
  1471. */
  1472. void t3_intr_clear(struct adapter *adapter)
  1473. {
  1474. static const unsigned int cause_reg_addr[] = {
  1475. A_SG_INT_CAUSE,
  1476. A_SG_RSPQ_FL_STATUS,
  1477. A_PCIX_INT_CAUSE,
  1478. A_MC7_INT_CAUSE,
  1479. A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
  1480. A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
  1481. A_CIM_HOST_INT_CAUSE,
  1482. A_TP_INT_CAUSE,
  1483. A_MC5_DB_INT_CAUSE,
  1484. A_ULPRX_INT_CAUSE,
  1485. A_ULPTX_INT_CAUSE,
  1486. A_CPL_INTR_CAUSE,
  1487. A_PM1_TX_INT_CAUSE,
  1488. A_PM1_RX_INT_CAUSE,
  1489. A_MPS_INT_CAUSE,
  1490. A_T3DBG_INT_CAUSE,
  1491. };
  1492. unsigned int i;
  1493. /* Clear PHY and MAC interrupts for each port. */
  1494. for_each_port(adapter, i)
  1495. t3_port_intr_clear(adapter, i);
  1496. for (i = 0; i < ARRAY_SIZE(cause_reg_addr); ++i)
  1497. t3_write_reg(adapter, cause_reg_addr[i], 0xffffffff);
  1498. t3_write_reg(adapter, A_PL_INT_CAUSE0, 0xffffffff);
  1499. t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
  1500. }
  1501. /**
  1502. * t3_port_intr_enable - enable port-specific interrupts
  1503. * @adapter: associated adapter
  1504. * @idx: index of port whose interrupts should be enabled
  1505. *
  1506. * Enable port-specific (i.e., MAC and PHY) interrupts for the given
  1507. * adapter port.
  1508. */
  1509. void t3_port_intr_enable(struct adapter *adapter, int idx)
  1510. {
  1511. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1512. t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), XGM_INTR_MASK);
  1513. t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
  1514. phy->ops->intr_enable(phy);
  1515. }
  1516. /**
  1517. * t3_port_intr_disable - disable port-specific interrupts
  1518. * @adapter: associated adapter
  1519. * @idx: index of port whose interrupts should be disabled
  1520. *
  1521. * Disable port-specific (i.e., MAC and PHY) interrupts for the given
  1522. * adapter port.
  1523. */
  1524. void t3_port_intr_disable(struct adapter *adapter, int idx)
  1525. {
  1526. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1527. t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), 0);
  1528. t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
  1529. phy->ops->intr_disable(phy);
  1530. }
  1531. /**
  1532. * t3_port_intr_clear - clear port-specific interrupts
  1533. * @adapter: associated adapter
  1534. * @idx: index of port whose interrupts to clear
  1535. *
  1536. * Clear port-specific (i.e., MAC and PHY) interrupts for the given
  1537. * adapter port.
  1538. */
  1539. void t3_port_intr_clear(struct adapter *adapter, int idx)
  1540. {
  1541. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1542. t3_write_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx), 0xffffffff);
  1543. t3_read_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx)); /* flush */
  1544. phy->ops->intr_clear(phy);
  1545. }
  1546. /**
  1547. * t3_sge_write_context - write an SGE context
  1548. * @adapter: the adapter
  1549. * @id: the context id
  1550. * @type: the context type
  1551. *
  1552. * Program an SGE context with the values already loaded in the
  1553. * CONTEXT_DATA? registers.
  1554. */
  1555. static int t3_sge_write_context(struct adapter *adapter, unsigned int id,
  1556. unsigned int type)
  1557. {
  1558. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
  1559. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
  1560. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0xffffffff);
  1561. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
  1562. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1563. V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
  1564. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1565. 0, 5, 1);
  1566. }
  1567. /**
  1568. * t3_sge_init_ecntxt - initialize an SGE egress context
  1569. * @adapter: the adapter to configure
  1570. * @id: the context id
  1571. * @gts_enable: whether to enable GTS for the context
  1572. * @type: the egress context type
  1573. * @respq: associated response queue
  1574. * @base_addr: base address of queue
  1575. * @size: number of queue entries
  1576. * @token: uP token
  1577. * @gen: initial generation value for the context
  1578. * @cidx: consumer pointer
  1579. *
  1580. * Initialize an SGE egress context and make it ready for use. If the
  1581. * platform allows concurrent context operations, the caller is
  1582. * responsible for appropriate locking.
  1583. */
  1584. int t3_sge_init_ecntxt(struct adapter *adapter, unsigned int id, int gts_enable,
  1585. enum sge_context_type type, int respq, u64 base_addr,
  1586. unsigned int size, unsigned int token, int gen,
  1587. unsigned int cidx)
  1588. {
  1589. unsigned int credits = type == SGE_CNTXT_OFLD ? 0 : FW_WR_NUM;
  1590. if (base_addr & 0xfff) /* must be 4K aligned */
  1591. return -EINVAL;
  1592. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1593. return -EBUSY;
  1594. base_addr >>= 12;
  1595. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_EC_INDEX(cidx) |
  1596. V_EC_CREDITS(credits) | V_EC_GTS(gts_enable));
  1597. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, V_EC_SIZE(size) |
  1598. V_EC_BASE_LO(base_addr & 0xffff));
  1599. base_addr >>= 16;
  1600. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, base_addr);
  1601. base_addr >>= 32;
  1602. t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
  1603. V_EC_BASE_HI(base_addr & 0xf) | V_EC_RESPQ(respq) |
  1604. V_EC_TYPE(type) | V_EC_GEN(gen) | V_EC_UP_TOKEN(token) |
  1605. F_EC_VALID);
  1606. return t3_sge_write_context(adapter, id, F_EGRESS);
  1607. }
  1608. /**
  1609. * t3_sge_init_flcntxt - initialize an SGE free-buffer list context
  1610. * @adapter: the adapter to configure
  1611. * @id: the context id
  1612. * @gts_enable: whether to enable GTS for the context
  1613. * @base_addr: base address of queue
  1614. * @size: number of queue entries
  1615. * @bsize: size of each buffer for this queue
  1616. * @cong_thres: threshold to signal congestion to upstream producers
  1617. * @gen: initial generation value for the context
  1618. * @cidx: consumer pointer
  1619. *
  1620. * Initialize an SGE free list context and make it ready for use. The
  1621. * caller is responsible for ensuring only one context operation occurs
  1622. * at a time.
  1623. */
  1624. int t3_sge_init_flcntxt(struct adapter *adapter, unsigned int id,
  1625. int gts_enable, u64 base_addr, unsigned int size,
  1626. unsigned int bsize, unsigned int cong_thres, int gen,
  1627. unsigned int cidx)
  1628. {
  1629. if (base_addr & 0xfff) /* must be 4K aligned */
  1630. return -EINVAL;
  1631. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1632. return -EBUSY;
  1633. base_addr >>= 12;
  1634. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, base_addr);
  1635. base_addr >>= 32;
  1636. t3_write_reg(adapter, A_SG_CONTEXT_DATA1,
  1637. V_FL_BASE_HI((u32) base_addr) |
  1638. V_FL_INDEX_LO(cidx & M_FL_INDEX_LO));
  1639. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, V_FL_SIZE(size) |
  1640. V_FL_GEN(gen) | V_FL_INDEX_HI(cidx >> 12) |
  1641. V_FL_ENTRY_SIZE_LO(bsize & M_FL_ENTRY_SIZE_LO));
  1642. t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
  1643. V_FL_ENTRY_SIZE_HI(bsize >> (32 - S_FL_ENTRY_SIZE_LO)) |
  1644. V_FL_CONG_THRES(cong_thres) | V_FL_GTS(gts_enable));
  1645. return t3_sge_write_context(adapter, id, F_FREELIST);
  1646. }
  1647. /**
  1648. * t3_sge_init_rspcntxt - initialize an SGE response queue context
  1649. * @adapter: the adapter to configure
  1650. * @id: the context id
  1651. * @irq_vec_idx: MSI-X interrupt vector index, 0 if no MSI-X, -1 if no IRQ
  1652. * @base_addr: base address of queue
  1653. * @size: number of queue entries
  1654. * @fl_thres: threshold for selecting the normal or jumbo free list
  1655. * @gen: initial generation value for the context
  1656. * @cidx: consumer pointer
  1657. *
  1658. * Initialize an SGE response queue context and make it ready for use.
  1659. * The caller is responsible for ensuring only one context operation
  1660. * occurs at a time.
  1661. */
  1662. int t3_sge_init_rspcntxt(struct adapter *adapter, unsigned int id,
  1663. int irq_vec_idx, u64 base_addr, unsigned int size,
  1664. unsigned int fl_thres, int gen, unsigned int cidx)
  1665. {
  1666. unsigned int intr = 0;
  1667. if (base_addr & 0xfff) /* must be 4K aligned */
  1668. return -EINVAL;
  1669. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1670. return -EBUSY;
  1671. base_addr >>= 12;
  1672. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size) |
  1673. V_CQ_INDEX(cidx));
  1674. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
  1675. base_addr >>= 32;
  1676. if (irq_vec_idx >= 0)
  1677. intr = V_RQ_MSI_VEC(irq_vec_idx) | F_RQ_INTR_EN;
  1678. t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
  1679. V_CQ_BASE_HI((u32) base_addr) | intr | V_RQ_GEN(gen));
  1680. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, fl_thres);
  1681. return t3_sge_write_context(adapter, id, F_RESPONSEQ);
  1682. }
  1683. /**
  1684. * t3_sge_init_cqcntxt - initialize an SGE completion queue context
  1685. * @adapter: the adapter to configure
  1686. * @id: the context id
  1687. * @base_addr: base address of queue
  1688. * @size: number of queue entries
  1689. * @rspq: response queue for async notifications
  1690. * @ovfl_mode: CQ overflow mode
  1691. * @credits: completion queue credits
  1692. * @credit_thres: the credit threshold
  1693. *
  1694. * Initialize an SGE completion queue context and make it ready for use.
  1695. * The caller is responsible for ensuring only one context operation
  1696. * occurs at a time.
  1697. */
  1698. int t3_sge_init_cqcntxt(struct adapter *adapter, unsigned int id, u64 base_addr,
  1699. unsigned int size, int rspq, int ovfl_mode,
  1700. unsigned int credits, unsigned int credit_thres)
  1701. {
  1702. if (base_addr & 0xfff) /* must be 4K aligned */
  1703. return -EINVAL;
  1704. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1705. return -EBUSY;
  1706. base_addr >>= 12;
  1707. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size));
  1708. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
  1709. base_addr >>= 32;
  1710. t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
  1711. V_CQ_BASE_HI((u32) base_addr) | V_CQ_RSPQ(rspq) |
  1712. V_CQ_GEN(1) | V_CQ_OVERFLOW_MODE(ovfl_mode));
  1713. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_CQ_CREDITS(credits) |
  1714. V_CQ_CREDIT_THRES(credit_thres));
  1715. return t3_sge_write_context(adapter, id, F_CQ);
  1716. }
  1717. /**
  1718. * t3_sge_enable_ecntxt - enable/disable an SGE egress context
  1719. * @adapter: the adapter
  1720. * @id: the egress context id
  1721. * @enable: enable (1) or disable (0) the context
  1722. *
  1723. * Enable or disable an SGE egress context. The caller is responsible for
  1724. * ensuring only one context operation occurs at a time.
  1725. */
  1726. int t3_sge_enable_ecntxt(struct adapter *adapter, unsigned int id, int enable)
  1727. {
  1728. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1729. return -EBUSY;
  1730. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
  1731. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  1732. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  1733. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, F_EC_VALID);
  1734. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_EC_VALID(enable));
  1735. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1736. V_CONTEXT_CMD_OPCODE(1) | F_EGRESS | V_CONTEXT(id));
  1737. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1738. 0, 5, 1);
  1739. }
  1740. /**
  1741. * t3_sge_disable_fl - disable an SGE free-buffer list
  1742. * @adapter: the adapter
  1743. * @id: the free list context id
  1744. *
  1745. * Disable an SGE free-buffer list. The caller is responsible for
  1746. * ensuring only one context operation occurs at a time.
  1747. */
  1748. int t3_sge_disable_fl(struct adapter *adapter, unsigned int id)
  1749. {
  1750. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1751. return -EBUSY;
  1752. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
  1753. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  1754. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, V_FL_SIZE(M_FL_SIZE));
  1755. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  1756. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 0);
  1757. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1758. V_CONTEXT_CMD_OPCODE(1) | F_FREELIST | V_CONTEXT(id));
  1759. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1760. 0, 5, 1);
  1761. }
  1762. /**
  1763. * t3_sge_disable_rspcntxt - disable an SGE response queue
  1764. * @adapter: the adapter
  1765. * @id: the response queue context id
  1766. *
  1767. * Disable an SGE response queue. The caller is responsible for
  1768. * ensuring only one context operation occurs at a time.
  1769. */
  1770. int t3_sge_disable_rspcntxt(struct adapter *adapter, unsigned int id)
  1771. {
  1772. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1773. return -EBUSY;
  1774. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
  1775. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  1776. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  1777. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  1778. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
  1779. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1780. V_CONTEXT_CMD_OPCODE(1) | F_RESPONSEQ | V_CONTEXT(id));
  1781. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1782. 0, 5, 1);
  1783. }
  1784. /**
  1785. * t3_sge_disable_cqcntxt - disable an SGE completion queue
  1786. * @adapter: the adapter
  1787. * @id: the completion queue context id
  1788. *
  1789. * Disable an SGE completion queue. The caller is responsible for
  1790. * ensuring only one context operation occurs at a time.
  1791. */
  1792. int t3_sge_disable_cqcntxt(struct adapter *adapter, unsigned int id)
  1793. {
  1794. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1795. return -EBUSY;
  1796. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
  1797. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  1798. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  1799. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  1800. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
  1801. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1802. V_CONTEXT_CMD_OPCODE(1) | F_CQ | V_CONTEXT(id));
  1803. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1804. 0, 5, 1);
  1805. }
  1806. /**
  1807. * t3_sge_cqcntxt_op - perform an operation on a completion queue context
  1808. * @adapter: the adapter
  1809. * @id: the context id
  1810. * @op: the operation to perform
  1811. *
  1812. * Perform the selected operation on an SGE completion queue context.
  1813. * The caller is responsible for ensuring only one context operation
  1814. * occurs at a time.
  1815. */
  1816. int t3_sge_cqcntxt_op(struct adapter *adapter, unsigned int id, unsigned int op,
  1817. unsigned int credits)
  1818. {
  1819. u32 val;
  1820. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1821. return -EBUSY;
  1822. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, credits << 16);
  1823. t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(op) |
  1824. V_CONTEXT(id) | F_CQ);
  1825. if (t3_wait_op_done_val(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1826. 0, 5, 1, &val))
  1827. return -EIO;
  1828. if (op >= 2 && op < 7) {
  1829. if (adapter->params.rev > 0)
  1830. return G_CQ_INDEX(val);
  1831. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1832. V_CONTEXT_CMD_OPCODE(0) | F_CQ | V_CONTEXT(id));
  1833. if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD,
  1834. F_CONTEXT_CMD_BUSY, 0, 5, 1))
  1835. return -EIO;
  1836. return G_CQ_INDEX(t3_read_reg(adapter, A_SG_CONTEXT_DATA0));
  1837. }
  1838. return 0;
  1839. }
  1840. /**
  1841. * t3_sge_read_context - read an SGE context
  1842. * @type: the context type
  1843. * @adapter: the adapter
  1844. * @id: the context id
  1845. * @data: holds the retrieved context
  1846. *
  1847. * Read an SGE egress context. The caller is responsible for ensuring
  1848. * only one context operation occurs at a time.
  1849. */
  1850. static int t3_sge_read_context(unsigned int type, struct adapter *adapter,
  1851. unsigned int id, u32 data[4])
  1852. {
  1853. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1854. return -EBUSY;
  1855. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1856. V_CONTEXT_CMD_OPCODE(0) | type | V_CONTEXT(id));
  1857. if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 0,
  1858. 5, 1))
  1859. return -EIO;
  1860. data[0] = t3_read_reg(adapter, A_SG_CONTEXT_DATA0);
  1861. data[1] = t3_read_reg(adapter, A_SG_CONTEXT_DATA1);
  1862. data[2] = t3_read_reg(adapter, A_SG_CONTEXT_DATA2);
  1863. data[3] = t3_read_reg(adapter, A_SG_CONTEXT_DATA3);
  1864. return 0;
  1865. }
  1866. /**
  1867. * t3_sge_read_ecntxt - read an SGE egress context
  1868. * @adapter: the adapter
  1869. * @id: the context id
  1870. * @data: holds the retrieved context
  1871. *
  1872. * Read an SGE egress context. The caller is responsible for ensuring
  1873. * only one context operation occurs at a time.
  1874. */
  1875. int t3_sge_read_ecntxt(struct adapter *adapter, unsigned int id, u32 data[4])
  1876. {
  1877. if (id >= 65536)
  1878. return -EINVAL;
  1879. return t3_sge_read_context(F_EGRESS, adapter, id, data);
  1880. }
  1881. /**
  1882. * t3_sge_read_cq - read an SGE CQ context
  1883. * @adapter: the adapter
  1884. * @id: the context id
  1885. * @data: holds the retrieved context
  1886. *
  1887. * Read an SGE CQ context. The caller is responsible for ensuring
  1888. * only one context operation occurs at a time.
  1889. */
  1890. int t3_sge_read_cq(struct adapter *adapter, unsigned int id, u32 data[4])
  1891. {
  1892. if (id >= 65536)
  1893. return -EINVAL;
  1894. return t3_sge_read_context(F_CQ, adapter, id, data);
  1895. }
  1896. /**
  1897. * t3_sge_read_fl - read an SGE free-list context
  1898. * @adapter: the adapter
  1899. * @id: the context id
  1900. * @data: holds the retrieved context
  1901. *
  1902. * Read an SGE free-list context. The caller is responsible for ensuring
  1903. * only one context operation occurs at a time.
  1904. */
  1905. int t3_sge_read_fl(struct adapter *adapter, unsigned int id, u32 data[4])
  1906. {
  1907. if (id >= SGE_QSETS * 2)
  1908. return -EINVAL;
  1909. return t3_sge_read_context(F_FREELIST, adapter, id, data);
  1910. }
  1911. /**
  1912. * t3_sge_read_rspq - read an SGE response queue context
  1913. * @adapter: the adapter
  1914. * @id: the context id
  1915. * @data: holds the retrieved context
  1916. *
  1917. * Read an SGE response queue context. The caller is responsible for
  1918. * ensuring only one context operation occurs at a time.
  1919. */
  1920. int t3_sge_read_rspq(struct adapter *adapter, unsigned int id, u32 data[4])
  1921. {
  1922. if (id >= SGE_QSETS)
  1923. return -EINVAL;
  1924. return t3_sge_read_context(F_RESPONSEQ, adapter, id, data);
  1925. }
  1926. /**
  1927. * t3_config_rss - configure Rx packet steering
  1928. * @adapter: the adapter
  1929. * @rss_config: RSS settings (written to TP_RSS_CONFIG)
  1930. * @cpus: values for the CPU lookup table (0xff terminated)
  1931. * @rspq: values for the response queue lookup table (0xffff terminated)
  1932. *
  1933. * Programs the receive packet steering logic. @cpus and @rspq provide
  1934. * the values for the CPU and response queue lookup tables. If they
  1935. * provide fewer values than the size of the tables the supplied values
  1936. * are used repeatedly until the tables are fully populated.
  1937. */
  1938. void t3_config_rss(struct adapter *adapter, unsigned int rss_config,
  1939. const u8 * cpus, const u16 *rspq)
  1940. {
  1941. int i, j, cpu_idx = 0, q_idx = 0;
  1942. if (cpus)
  1943. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  1944. u32 val = i << 16;
  1945. for (j = 0; j < 2; ++j) {
  1946. val |= (cpus[cpu_idx++] & 0x3f) << (8 * j);
  1947. if (cpus[cpu_idx] == 0xff)
  1948. cpu_idx = 0;
  1949. }
  1950. t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, val);
  1951. }
  1952. if (rspq)
  1953. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  1954. t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
  1955. (i << 16) | rspq[q_idx++]);
  1956. if (rspq[q_idx] == 0xffff)
  1957. q_idx = 0;
  1958. }
  1959. t3_write_reg(adapter, A_TP_RSS_CONFIG, rss_config);
  1960. }
  1961. /**
  1962. * t3_read_rss - read the contents of the RSS tables
  1963. * @adapter: the adapter
  1964. * @lkup: holds the contents of the RSS lookup table
  1965. * @map: holds the contents of the RSS map table
  1966. *
  1967. * Reads the contents of the receive packet steering tables.
  1968. */
  1969. int t3_read_rss(struct adapter *adapter, u8 * lkup, u16 *map)
  1970. {
  1971. int i;
  1972. u32 val;
  1973. if (lkup)
  1974. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  1975. t3_write_reg(adapter, A_TP_RSS_LKP_TABLE,
  1976. 0xffff0000 | i);
  1977. val = t3_read_reg(adapter, A_TP_RSS_LKP_TABLE);
  1978. if (!(val & 0x80000000))
  1979. return -EAGAIN;
  1980. *lkup++ = val;
  1981. *lkup++ = (val >> 8);
  1982. }
  1983. if (map)
  1984. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  1985. t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
  1986. 0xffff0000 | i);
  1987. val = t3_read_reg(adapter, A_TP_RSS_MAP_TABLE);
  1988. if (!(val & 0x80000000))
  1989. return -EAGAIN;
  1990. *map++ = val;
  1991. }
  1992. return 0;
  1993. }
  1994. /**
  1995. * t3_tp_set_offload_mode - put TP in NIC/offload mode
  1996. * @adap: the adapter
  1997. * @enable: 1 to select offload mode, 0 for regular NIC
  1998. *
  1999. * Switches TP to NIC/offload mode.
  2000. */
  2001. void t3_tp_set_offload_mode(struct adapter *adap, int enable)
  2002. {
  2003. if (is_offload(adap) || !enable)
  2004. t3_set_reg_field(adap, A_TP_IN_CONFIG, F_NICMODE,
  2005. V_NICMODE(!enable));
  2006. }
  2007. /**
  2008. * pm_num_pages - calculate the number of pages of the payload memory
  2009. * @mem_size: the size of the payload memory
  2010. * @pg_size: the size of each payload memory page
  2011. *
  2012. * Calculate the number of pages, each of the given size, that fit in a
  2013. * memory of the specified size, respecting the HW requirement that the
  2014. * number of pages must be a multiple of 24.
  2015. */
  2016. static inline unsigned int pm_num_pages(unsigned int mem_size,
  2017. unsigned int pg_size)
  2018. {
  2019. unsigned int n = mem_size / pg_size;
  2020. return n - n % 24;
  2021. }
  2022. #define mem_region(adap, start, size, reg) \
  2023. t3_write_reg((adap), A_ ## reg, (start)); \
  2024. start += size
  2025. /*
  2026. * partition_mem - partition memory and configure TP memory settings
  2027. * @adap: the adapter
  2028. * @p: the TP parameters
  2029. *
  2030. * Partitions context and payload memory and configures TP's memory
  2031. * registers.
  2032. */
  2033. static void partition_mem(struct adapter *adap, const struct tp_params *p)
  2034. {
  2035. unsigned int m, pstructs, tids = t3_mc5_size(&adap->mc5);
  2036. unsigned int timers = 0, timers_shift = 22;
  2037. if (adap->params.rev > 0) {
  2038. if (tids <= 16 * 1024) {
  2039. timers = 1;
  2040. timers_shift = 16;
  2041. } else if (tids <= 64 * 1024) {
  2042. timers = 2;
  2043. timers_shift = 18;
  2044. } else if (tids <= 256 * 1024) {
  2045. timers = 3;
  2046. timers_shift = 20;
  2047. }
  2048. }
  2049. t3_write_reg(adap, A_TP_PMM_SIZE,
  2050. p->chan_rx_size | (p->chan_tx_size >> 16));
  2051. t3_write_reg(adap, A_TP_PMM_TX_BASE, 0);
  2052. t3_write_reg(adap, A_TP_PMM_TX_PAGE_SIZE, p->tx_pg_size);
  2053. t3_write_reg(adap, A_TP_PMM_TX_MAX_PAGE, p->tx_num_pgs);
  2054. t3_set_reg_field(adap, A_TP_PARA_REG3, V_TXDATAACKIDX(M_TXDATAACKIDX),
  2055. V_TXDATAACKIDX(fls(p->tx_pg_size) - 12));
  2056. t3_write_reg(adap, A_TP_PMM_RX_BASE, 0);
  2057. t3_write_reg(adap, A_TP_PMM_RX_PAGE_SIZE, p->rx_pg_size);
  2058. t3_write_reg(adap, A_TP_PMM_RX_MAX_PAGE, p->rx_num_pgs);
  2059. pstructs = p->rx_num_pgs + p->tx_num_pgs;
  2060. /* Add a bit of headroom and make multiple of 24 */
  2061. pstructs += 48;
  2062. pstructs -= pstructs % 24;
  2063. t3_write_reg(adap, A_TP_CMM_MM_MAX_PSTRUCT, pstructs);
  2064. m = tids * TCB_SIZE;
  2065. mem_region(adap, m, (64 << 10) * 64, SG_EGR_CNTX_BADDR);
  2066. mem_region(adap, m, (64 << 10) * 64, SG_CQ_CONTEXT_BADDR);
  2067. t3_write_reg(adap, A_TP_CMM_TIMER_BASE, V_CMTIMERMAXNUM(timers) | m);
  2068. m += ((p->ntimer_qs - 1) << timers_shift) + (1 << 22);
  2069. mem_region(adap, m, pstructs * 64, TP_CMM_MM_BASE);
  2070. mem_region(adap, m, 64 * (pstructs / 24), TP_CMM_MM_PS_FLST_BASE);
  2071. mem_region(adap, m, 64 * (p->rx_num_pgs / 24), TP_CMM_MM_RX_FLST_BASE);
  2072. mem_region(adap, m, 64 * (p->tx_num_pgs / 24), TP_CMM_MM_TX_FLST_BASE);
  2073. m = (m + 4095) & ~0xfff;
  2074. t3_write_reg(adap, A_CIM_SDRAM_BASE_ADDR, m);
  2075. t3_write_reg(adap, A_CIM_SDRAM_ADDR_SIZE, p->cm_size - m);
  2076. tids = (p->cm_size - m - (3 << 20)) / 3072 - 32;
  2077. m = t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
  2078. adap->params.mc5.nfilters - adap->params.mc5.nroutes;
  2079. if (tids < m)
  2080. adap->params.mc5.nservers += m - tids;
  2081. }
  2082. static inline void tp_wr_indirect(struct adapter *adap, unsigned int addr,
  2083. u32 val)
  2084. {
  2085. t3_write_reg(adap, A_TP_PIO_ADDR, addr);
  2086. t3_write_reg(adap, A_TP_PIO_DATA, val);
  2087. }
  2088. static void tp_config(struct adapter *adap, const struct tp_params *p)
  2089. {
  2090. unsigned int v;
  2091. t3_write_reg(adap, A_TP_GLOBAL_CONFIG, F_TXPACINGENABLE | F_PATHMTU |
  2092. F_IPCHECKSUMOFFLOAD | F_UDPCHECKSUMOFFLOAD |
  2093. F_TCPCHECKSUMOFFLOAD | V_IPTTL(64));
  2094. t3_write_reg(adap, A_TP_TCP_OPTIONS, V_MTUDEFAULT(576) |
  2095. F_MTUENABLE | V_WINDOWSCALEMODE(1) |
  2096. V_TIMESTAMPSMODE(1) | V_SACKMODE(1) | V_SACKRX(1));
  2097. t3_write_reg(adap, A_TP_DACK_CONFIG, V_AUTOSTATE3(1) |
  2098. V_AUTOSTATE2(1) | V_AUTOSTATE1(0) |
  2099. V_BYTETHRESHOLD(16384) | V_MSSTHRESHOLD(2) |
  2100. F_AUTOCAREFUL | F_AUTOENABLE | V_DACK_MODE(1));
  2101. t3_set_reg_field(adap, A_TP_IN_CONFIG, F_IPV6ENABLE | F_NICMODE,
  2102. F_IPV6ENABLE | F_NICMODE);
  2103. t3_write_reg(adap, A_TP_TX_RESOURCE_LIMIT, 0x18141814);
  2104. t3_write_reg(adap, A_TP_PARA_REG4, 0x5050105);
  2105. t3_set_reg_field(adap, A_TP_PARA_REG6,
  2106. adap->params.rev > 0 ? F_ENABLEESND : F_T3A_ENABLEESND,
  2107. 0);
  2108. v = t3_read_reg(adap, A_TP_PC_CONFIG);
  2109. v &= ~(F_ENABLEEPCMDAFULL | F_ENABLEOCSPIFULL);
  2110. t3_write_reg(adap, A_TP_PC_CONFIG, v | F_TXDEFERENABLE |
  2111. F_MODULATEUNIONMODE | F_HEARBEATDACK |
  2112. F_TXCONGESTIONMODE | F_RXCONGESTIONMODE);
  2113. v = t3_read_reg(adap, A_TP_PC_CONFIG2);
  2114. v &= ~F_CHDRAFULL;
  2115. t3_write_reg(adap, A_TP_PC_CONFIG2, v);
  2116. if (adap->params.rev > 0) {
  2117. tp_wr_indirect(adap, A_TP_EGRESS_CONFIG, F_REWRITEFORCETOSIZE);
  2118. t3_set_reg_field(adap, A_TP_PARA_REG3, F_TXPACEAUTO,
  2119. F_TXPACEAUTO);
  2120. t3_set_reg_field(adap, A_TP_PC_CONFIG, F_LOCKTID, F_LOCKTID);
  2121. t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEAUTOSTRICT);
  2122. } else
  2123. t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEFIXED);
  2124. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT1, 0x12121212);
  2125. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0, 0x12121212);
  2126. t3_write_reg(adap, A_TP_MOD_CHANNEL_WEIGHT, 0x1212);
  2127. }
  2128. /* Desired TP timer resolution in usec */
  2129. #define TP_TMR_RES 50
  2130. /* TCP timer values in ms */
  2131. #define TP_DACK_TIMER 50
  2132. #define TP_RTO_MIN 250
  2133. /**
  2134. * tp_set_timers - set TP timing parameters
  2135. * @adap: the adapter to set
  2136. * @core_clk: the core clock frequency in Hz
  2137. *
  2138. * Set TP's timing parameters, such as the various timer resolutions and
  2139. * the TCP timer values.
  2140. */
  2141. static void tp_set_timers(struct adapter *adap, unsigned int core_clk)
  2142. {
  2143. unsigned int tre = fls(core_clk / (1000000 / TP_TMR_RES)) - 1;
  2144. unsigned int dack_re = fls(core_clk / 5000) - 1; /* 200us */
  2145. unsigned int tstamp_re = fls(core_clk / 1000); /* 1ms, at least */
  2146. unsigned int tps = core_clk >> tre;
  2147. t3_write_reg(adap, A_TP_TIMER_RESOLUTION, V_TIMERRESOLUTION(tre) |
  2148. V_DELAYEDACKRESOLUTION(dack_re) |
  2149. V_TIMESTAMPRESOLUTION(tstamp_re));
  2150. t3_write_reg(adap, A_TP_DACK_TIMER,
  2151. (core_clk >> dack_re) / (1000 / TP_DACK_TIMER));
  2152. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG0, 0x3020100);
  2153. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG1, 0x7060504);
  2154. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG2, 0xb0a0908);
  2155. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG3, 0xf0e0d0c);
  2156. t3_write_reg(adap, A_TP_SHIFT_CNT, V_SYNSHIFTMAX(6) |
  2157. V_RXTSHIFTMAXR1(4) | V_RXTSHIFTMAXR2(15) |
  2158. V_PERSHIFTBACKOFFMAX(8) | V_PERSHIFTMAX(8) |
  2159. V_KEEPALIVEMAX(9));
  2160. #define SECONDS * tps
  2161. t3_write_reg(adap, A_TP_MSL, adap->params.rev > 0 ? 0 : 2 SECONDS);
  2162. t3_write_reg(adap, A_TP_RXT_MIN, tps / (1000 / TP_RTO_MIN));
  2163. t3_write_reg(adap, A_TP_RXT_MAX, 64 SECONDS);
  2164. t3_write_reg(adap, A_TP_PERS_MIN, 5 SECONDS);
  2165. t3_write_reg(adap, A_TP_PERS_MAX, 64 SECONDS);
  2166. t3_write_reg(adap, A_TP_KEEP_IDLE, 7200 SECONDS);
  2167. t3_write_reg(adap, A_TP_KEEP_INTVL, 75 SECONDS);
  2168. t3_write_reg(adap, A_TP_INIT_SRTT, 3 SECONDS);
  2169. t3_write_reg(adap, A_TP_FINWAIT2_TIMER, 600 SECONDS);
  2170. #undef SECONDS
  2171. }
  2172. /**
  2173. * t3_tp_set_coalescing_size - set receive coalescing size
  2174. * @adap: the adapter
  2175. * @size: the receive coalescing size
  2176. * @psh: whether a set PSH bit should deliver coalesced data
  2177. *
  2178. * Set the receive coalescing size and PSH bit handling.
  2179. */
  2180. int t3_tp_set_coalescing_size(struct adapter *adap, unsigned int size, int psh)
  2181. {
  2182. u32 val;
  2183. if (size > MAX_RX_COALESCING_LEN)
  2184. return -EINVAL;
  2185. val = t3_read_reg(adap, A_TP_PARA_REG3);
  2186. val &= ~(F_RXCOALESCEENABLE | F_RXCOALESCEPSHEN);
  2187. if (size) {
  2188. val |= F_RXCOALESCEENABLE;
  2189. if (psh)
  2190. val |= F_RXCOALESCEPSHEN;
  2191. t3_write_reg(adap, A_TP_PARA_REG2, V_RXCOALESCESIZE(size) |
  2192. V_MAXRXDATA(MAX_RX_COALESCING_LEN));
  2193. }
  2194. t3_write_reg(adap, A_TP_PARA_REG3, val);
  2195. return 0;
  2196. }
  2197. /**
  2198. * t3_tp_set_max_rxsize - set the max receive size
  2199. * @adap: the adapter
  2200. * @size: the max receive size
  2201. *
  2202. * Set TP's max receive size. This is the limit that applies when
  2203. * receive coalescing is disabled.
  2204. */
  2205. void t3_tp_set_max_rxsize(struct adapter *adap, unsigned int size)
  2206. {
  2207. t3_write_reg(adap, A_TP_PARA_REG7,
  2208. V_PMMAXXFERLEN0(size) | V_PMMAXXFERLEN1(size));
  2209. }
  2210. static void __devinit init_mtus(unsigned short mtus[])
  2211. {
  2212. /*
  2213. * See draft-mathis-plpmtud-00.txt for the values. The min is 88 so
  2214. * it can accomodate max size TCP/IP headers when SACK and timestamps
  2215. * are enabled and still have at least 8 bytes of payload.
  2216. */
  2217. mtus[0] = 88;
  2218. mtus[1] = 256;
  2219. mtus[2] = 512;
  2220. mtus[3] = 576;
  2221. mtus[4] = 808;
  2222. mtus[5] = 1024;
  2223. mtus[6] = 1280;
  2224. mtus[7] = 1492;
  2225. mtus[8] = 1500;
  2226. mtus[9] = 2002;
  2227. mtus[10] = 2048;
  2228. mtus[11] = 4096;
  2229. mtus[12] = 4352;
  2230. mtus[13] = 8192;
  2231. mtus[14] = 9000;
  2232. mtus[15] = 9600;
  2233. }
  2234. /*
  2235. * Initial congestion control parameters.
  2236. */
  2237. static void __devinit init_cong_ctrl(unsigned short *a, unsigned short *b)
  2238. {
  2239. a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
  2240. a[9] = 2;
  2241. a[10] = 3;
  2242. a[11] = 4;
  2243. a[12] = 5;
  2244. a[13] = 6;
  2245. a[14] = 7;
  2246. a[15] = 8;
  2247. a[16] = 9;
  2248. a[17] = 10;
  2249. a[18] = 14;
  2250. a[19] = 17;
  2251. a[20] = 21;
  2252. a[21] = 25;
  2253. a[22] = 30;
  2254. a[23] = 35;
  2255. a[24] = 45;
  2256. a[25] = 60;
  2257. a[26] = 80;
  2258. a[27] = 100;
  2259. a[28] = 200;
  2260. a[29] = 300;
  2261. a[30] = 400;
  2262. a[31] = 500;
  2263. b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
  2264. b[9] = b[10] = 1;
  2265. b[11] = b[12] = 2;
  2266. b[13] = b[14] = b[15] = b[16] = 3;
  2267. b[17] = b[18] = b[19] = b[20] = b[21] = 4;
  2268. b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
  2269. b[28] = b[29] = 6;
  2270. b[30] = b[31] = 7;
  2271. }
  2272. /* The minimum additive increment value for the congestion control table */
  2273. #define CC_MIN_INCR 2U
  2274. /**
  2275. * t3_load_mtus - write the MTU and congestion control HW tables
  2276. * @adap: the adapter
  2277. * @mtus: the unrestricted values for the MTU table
  2278. * @alphs: the values for the congestion control alpha parameter
  2279. * @beta: the values for the congestion control beta parameter
  2280. * @mtu_cap: the maximum permitted effective MTU
  2281. *
  2282. * Write the MTU table with the supplied MTUs capping each at &mtu_cap.
  2283. * Update the high-speed congestion control table with the supplied alpha,
  2284. * beta, and MTUs.
  2285. */
  2286. void t3_load_mtus(struct adapter *adap, unsigned short mtus[NMTUS],
  2287. unsigned short alpha[NCCTRL_WIN],
  2288. unsigned short beta[NCCTRL_WIN], unsigned short mtu_cap)
  2289. {
  2290. static const unsigned int avg_pkts[NCCTRL_WIN] = {
  2291. 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
  2292. 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
  2293. 28672, 40960, 57344, 81920, 114688, 163840, 229376
  2294. };
  2295. unsigned int i, w;
  2296. for (i = 0; i < NMTUS; ++i) {
  2297. unsigned int mtu = min(mtus[i], mtu_cap);
  2298. unsigned int log2 = fls(mtu);
  2299. if (!(mtu & ((1 << log2) >> 2))) /* round */
  2300. log2--;
  2301. t3_write_reg(adap, A_TP_MTU_TABLE,
  2302. (i << 24) | (log2 << 16) | mtu);
  2303. for (w = 0; w < NCCTRL_WIN; ++w) {
  2304. unsigned int inc;
  2305. inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
  2306. CC_MIN_INCR);
  2307. t3_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
  2308. (w << 16) | (beta[w] << 13) | inc);
  2309. }
  2310. }
  2311. }
  2312. /**
  2313. * t3_read_hw_mtus - returns the values in the HW MTU table
  2314. * @adap: the adapter
  2315. * @mtus: where to store the HW MTU values
  2316. *
  2317. * Reads the HW MTU table.
  2318. */
  2319. void t3_read_hw_mtus(struct adapter *adap, unsigned short mtus[NMTUS])
  2320. {
  2321. int i;
  2322. for (i = 0; i < NMTUS; ++i) {
  2323. unsigned int val;
  2324. t3_write_reg(adap, A_TP_MTU_TABLE, 0xff000000 | i);
  2325. val = t3_read_reg(adap, A_TP_MTU_TABLE);
  2326. mtus[i] = val & 0x3fff;
  2327. }
  2328. }
  2329. /**
  2330. * t3_get_cong_cntl_tab - reads the congestion control table
  2331. * @adap: the adapter
  2332. * @incr: where to store the alpha values
  2333. *
  2334. * Reads the additive increments programmed into the HW congestion
  2335. * control table.
  2336. */
  2337. void t3_get_cong_cntl_tab(struct adapter *adap,
  2338. unsigned short incr[NMTUS][NCCTRL_WIN])
  2339. {
  2340. unsigned int mtu, w;
  2341. for (mtu = 0; mtu < NMTUS; ++mtu)
  2342. for (w = 0; w < NCCTRL_WIN; ++w) {
  2343. t3_write_reg(adap, A_TP_CCTRL_TABLE,
  2344. 0xffff0000 | (mtu << 5) | w);
  2345. incr[mtu][w] = t3_read_reg(adap, A_TP_CCTRL_TABLE) &
  2346. 0x1fff;
  2347. }
  2348. }
  2349. /**
  2350. * t3_tp_get_mib_stats - read TP's MIB counters
  2351. * @adap: the adapter
  2352. * @tps: holds the returned counter values
  2353. *
  2354. * Returns the values of TP's MIB counters.
  2355. */
  2356. void t3_tp_get_mib_stats(struct adapter *adap, struct tp_mib_stats *tps)
  2357. {
  2358. t3_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_RDATA, (u32 *) tps,
  2359. sizeof(*tps) / sizeof(u32), 0);
  2360. }
  2361. #define ulp_region(adap, name, start, len) \
  2362. t3_write_reg((adap), A_ULPRX_ ## name ## _LLIMIT, (start)); \
  2363. t3_write_reg((adap), A_ULPRX_ ## name ## _ULIMIT, \
  2364. (start) + (len) - 1); \
  2365. start += len
  2366. #define ulptx_region(adap, name, start, len) \
  2367. t3_write_reg((adap), A_ULPTX_ ## name ## _LLIMIT, (start)); \
  2368. t3_write_reg((adap), A_ULPTX_ ## name ## _ULIMIT, \
  2369. (start) + (len) - 1)
  2370. static void ulp_config(struct adapter *adap, const struct tp_params *p)
  2371. {
  2372. unsigned int m = p->chan_rx_size;
  2373. ulp_region(adap, ISCSI, m, p->chan_rx_size / 8);
  2374. ulp_region(adap, TDDP, m, p->chan_rx_size / 8);
  2375. ulptx_region(adap, TPT, m, p->chan_rx_size / 4);
  2376. ulp_region(adap, STAG, m, p->chan_rx_size / 4);
  2377. ulp_region(adap, RQ, m, p->chan_rx_size / 4);
  2378. ulptx_region(adap, PBL, m, p->chan_rx_size / 4);
  2379. ulp_region(adap, PBL, m, p->chan_rx_size / 4);
  2380. t3_write_reg(adap, A_ULPRX_TDDP_TAGMASK, 0xffffffff);
  2381. }
  2382. void t3_config_trace_filter(struct adapter *adapter,
  2383. const struct trace_params *tp, int filter_index,
  2384. int invert, int enable)
  2385. {
  2386. u32 addr, key[4], mask[4];
  2387. key[0] = tp->sport | (tp->sip << 16);
  2388. key[1] = (tp->sip >> 16) | (tp->dport << 16);
  2389. key[2] = tp->dip;
  2390. key[3] = tp->proto | (tp->vlan << 8) | (tp->intf << 20);
  2391. mask[0] = tp->sport_mask | (tp->sip_mask << 16);
  2392. mask[1] = (tp->sip_mask >> 16) | (tp->dport_mask << 16);
  2393. mask[2] = tp->dip_mask;
  2394. mask[3] = tp->proto_mask | (tp->vlan_mask << 8) | (tp->intf_mask << 20);
  2395. if (invert)
  2396. key[3] |= (1 << 29);
  2397. if (enable)
  2398. key[3] |= (1 << 28);
  2399. addr = filter_index ? A_TP_RX_TRC_KEY0 : A_TP_TX_TRC_KEY0;
  2400. tp_wr_indirect(adapter, addr++, key[0]);
  2401. tp_wr_indirect(adapter, addr++, mask[0]);
  2402. tp_wr_indirect(adapter, addr++, key[1]);
  2403. tp_wr_indirect(adapter, addr++, mask[1]);
  2404. tp_wr_indirect(adapter, addr++, key[2]);
  2405. tp_wr_indirect(adapter, addr++, mask[2]);
  2406. tp_wr_indirect(adapter, addr++, key[3]);
  2407. tp_wr_indirect(adapter, addr, mask[3]);
  2408. t3_read_reg(adapter, A_TP_PIO_DATA);
  2409. }
  2410. /**
  2411. * t3_config_sched - configure a HW traffic scheduler
  2412. * @adap: the adapter
  2413. * @kbps: target rate in Kbps
  2414. * @sched: the scheduler index
  2415. *
  2416. * Configure a HW scheduler for the target rate
  2417. */
  2418. int t3_config_sched(struct adapter *adap, unsigned int kbps, int sched)
  2419. {
  2420. unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
  2421. unsigned int clk = adap->params.vpd.cclk * 1000;
  2422. unsigned int selected_cpt = 0, selected_bpt = 0;
  2423. if (kbps > 0) {
  2424. kbps *= 125; /* -> bytes */
  2425. for (cpt = 1; cpt <= 255; cpt++) {
  2426. tps = clk / cpt;
  2427. bpt = (kbps + tps / 2) / tps;
  2428. if (bpt > 0 && bpt <= 255) {
  2429. v = bpt * tps;
  2430. delta = v >= kbps ? v - kbps : kbps - v;
  2431. if (delta <= mindelta) {
  2432. mindelta = delta;
  2433. selected_cpt = cpt;
  2434. selected_bpt = bpt;
  2435. }
  2436. } else if (selected_cpt)
  2437. break;
  2438. }
  2439. if (!selected_cpt)
  2440. return -EINVAL;
  2441. }
  2442. t3_write_reg(adap, A_TP_TM_PIO_ADDR,
  2443. A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
  2444. v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
  2445. if (sched & 1)
  2446. v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
  2447. else
  2448. v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
  2449. t3_write_reg(adap, A_TP_TM_PIO_DATA, v);
  2450. return 0;
  2451. }
  2452. static int tp_init(struct adapter *adap, const struct tp_params *p)
  2453. {
  2454. int busy = 0;
  2455. tp_config(adap, p);
  2456. t3_set_vlan_accel(adap, 3, 0);
  2457. if (is_offload(adap)) {
  2458. tp_set_timers(adap, adap->params.vpd.cclk * 1000);
  2459. t3_write_reg(adap, A_TP_RESET, F_FLSTINITENABLE);
  2460. busy = t3_wait_op_done(adap, A_TP_RESET, F_FLSTINITENABLE,
  2461. 0, 1000, 5);
  2462. if (busy)
  2463. CH_ERR(adap, "TP initialization timed out\n");
  2464. }
  2465. if (!busy)
  2466. t3_write_reg(adap, A_TP_RESET, F_TPRESET);
  2467. return busy;
  2468. }
  2469. int t3_mps_set_active_ports(struct adapter *adap, unsigned int port_mask)
  2470. {
  2471. if (port_mask & ~((1 << adap->params.nports) - 1))
  2472. return -EINVAL;
  2473. t3_set_reg_field(adap, A_MPS_CFG, F_PORT1ACTIVE | F_PORT0ACTIVE,
  2474. port_mask << S_PORT0ACTIVE);
  2475. return 0;
  2476. }
  2477. /*
  2478. * Perform the bits of HW initialization that are dependent on the number
  2479. * of available ports.
  2480. */
  2481. static void init_hw_for_avail_ports(struct adapter *adap, int nports)
  2482. {
  2483. int i;
  2484. if (nports == 1) {
  2485. t3_set_reg_field(adap, A_ULPRX_CTL, F_ROUND_ROBIN, 0);
  2486. t3_set_reg_field(adap, A_ULPTX_CONFIG, F_CFG_RR_ARB, 0);
  2487. t3_write_reg(adap, A_MPS_CFG, F_TPRXPORTEN | F_TPTXPORT0EN |
  2488. F_PORT0ACTIVE | F_ENFORCEPKT);
  2489. t3_write_reg(adap, A_PM1_TX_CFG, 0xc000c000);
  2490. } else {
  2491. t3_set_reg_field(adap, A_ULPRX_CTL, 0, F_ROUND_ROBIN);
  2492. t3_set_reg_field(adap, A_ULPTX_CONFIG, 0, F_CFG_RR_ARB);
  2493. t3_write_reg(adap, A_ULPTX_DMA_WEIGHT,
  2494. V_D1_WEIGHT(16) | V_D0_WEIGHT(16));
  2495. t3_write_reg(adap, A_MPS_CFG, F_TPTXPORT0EN | F_TPTXPORT1EN |
  2496. F_TPRXPORTEN | F_PORT0ACTIVE | F_PORT1ACTIVE |
  2497. F_ENFORCEPKT);
  2498. t3_write_reg(adap, A_PM1_TX_CFG, 0x80008000);
  2499. t3_set_reg_field(adap, A_TP_PC_CONFIG, 0, F_TXTOSQUEUEMAPMODE);
  2500. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
  2501. V_TX_MOD_QUEUE_REQ_MAP(0xaa));
  2502. for (i = 0; i < 16; i++)
  2503. t3_write_reg(adap, A_TP_TX_MOD_QUE_TABLE,
  2504. (i << 16) | 0x1010);
  2505. }
  2506. }
  2507. static int calibrate_xgm(struct adapter *adapter)
  2508. {
  2509. if (uses_xaui(adapter)) {
  2510. unsigned int v, i;
  2511. for (i = 0; i < 5; ++i) {
  2512. t3_write_reg(adapter, A_XGM_XAUI_IMP, 0);
  2513. t3_read_reg(adapter, A_XGM_XAUI_IMP);
  2514. msleep(1);
  2515. v = t3_read_reg(adapter, A_XGM_XAUI_IMP);
  2516. if (!(v & (F_XGM_CALFAULT | F_CALBUSY))) {
  2517. t3_write_reg(adapter, A_XGM_XAUI_IMP,
  2518. V_XAUIIMP(G_CALIMP(v) >> 2));
  2519. return 0;
  2520. }
  2521. }
  2522. CH_ERR(adapter, "MAC calibration failed\n");
  2523. return -1;
  2524. } else {
  2525. t3_write_reg(adapter, A_XGM_RGMII_IMP,
  2526. V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
  2527. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
  2528. F_XGM_IMPSETUPDATE);
  2529. }
  2530. return 0;
  2531. }
  2532. static void calibrate_xgm_t3b(struct adapter *adapter)
  2533. {
  2534. if (!uses_xaui(adapter)) {
  2535. t3_write_reg(adapter, A_XGM_RGMII_IMP, F_CALRESET |
  2536. F_CALUPDATE | V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
  2537. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALRESET, 0);
  2538. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0,
  2539. F_XGM_IMPSETUPDATE);
  2540. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
  2541. 0);
  2542. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALUPDATE, 0);
  2543. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, F_CALUPDATE);
  2544. }
  2545. }
  2546. struct mc7_timing_params {
  2547. unsigned char ActToPreDly;
  2548. unsigned char ActToRdWrDly;
  2549. unsigned char PreCyc;
  2550. unsigned char RefCyc[5];
  2551. unsigned char BkCyc;
  2552. unsigned char WrToRdDly;
  2553. unsigned char RdToWrDly;
  2554. };
  2555. /*
  2556. * Write a value to a register and check that the write completed. These
  2557. * writes normally complete in a cycle or two, so one read should suffice.
  2558. * The very first read exists to flush the posted write to the device.
  2559. */
  2560. static int wrreg_wait(struct adapter *adapter, unsigned int addr, u32 val)
  2561. {
  2562. t3_write_reg(adapter, addr, val);
  2563. t3_read_reg(adapter, addr); /* flush */
  2564. if (!(t3_read_reg(adapter, addr) & F_BUSY))
  2565. return 0;
  2566. CH_ERR(adapter, "write to MC7 register 0x%x timed out\n", addr);
  2567. return -EIO;
  2568. }
  2569. static int mc7_init(struct mc7 *mc7, unsigned int mc7_clock, int mem_type)
  2570. {
  2571. static const unsigned int mc7_mode[] = {
  2572. 0x632, 0x642, 0x652, 0x432, 0x442
  2573. };
  2574. static const struct mc7_timing_params mc7_timings[] = {
  2575. {12, 3, 4, {20, 28, 34, 52, 0}, 15, 6, 4},
  2576. {12, 4, 5, {20, 28, 34, 52, 0}, 16, 7, 4},
  2577. {12, 5, 6, {20, 28, 34, 52, 0}, 17, 8, 4},
  2578. {9, 3, 4, {15, 21, 26, 39, 0}, 12, 6, 4},
  2579. {9, 4, 5, {15, 21, 26, 39, 0}, 13, 7, 4}
  2580. };
  2581. u32 val;
  2582. unsigned int width, density, slow, attempts;
  2583. struct adapter *adapter = mc7->adapter;
  2584. const struct mc7_timing_params *p = &mc7_timings[mem_type];
  2585. val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
  2586. slow = val & F_SLOW;
  2587. width = G_WIDTH(val);
  2588. density = G_DEN(val);
  2589. t3_write_reg(adapter, mc7->offset + A_MC7_CFG, val | F_IFEN);
  2590. val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
  2591. msleep(1);
  2592. if (!slow) {
  2593. t3_write_reg(adapter, mc7->offset + A_MC7_CAL, F_SGL_CAL_EN);
  2594. t3_read_reg(adapter, mc7->offset + A_MC7_CAL);
  2595. msleep(1);
  2596. if (t3_read_reg(adapter, mc7->offset + A_MC7_CAL) &
  2597. (F_BUSY | F_SGL_CAL_EN | F_CAL_FAULT)) {
  2598. CH_ERR(adapter, "%s MC7 calibration timed out\n",
  2599. mc7->name);
  2600. goto out_fail;
  2601. }
  2602. }
  2603. t3_write_reg(adapter, mc7->offset + A_MC7_PARM,
  2604. V_ACTTOPREDLY(p->ActToPreDly) |
  2605. V_ACTTORDWRDLY(p->ActToRdWrDly) | V_PRECYC(p->PreCyc) |
  2606. V_REFCYC(p->RefCyc[density]) | V_BKCYC(p->BkCyc) |
  2607. V_WRTORDDLY(p->WrToRdDly) | V_RDTOWRDLY(p->RdToWrDly));
  2608. t3_write_reg(adapter, mc7->offset + A_MC7_CFG,
  2609. val | F_CLKEN | F_TERM150);
  2610. t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
  2611. if (!slow)
  2612. t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLENB,
  2613. F_DLLENB);
  2614. udelay(1);
  2615. val = slow ? 3 : 6;
  2616. if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
  2617. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE2, 0) ||
  2618. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE3, 0) ||
  2619. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
  2620. goto out_fail;
  2621. if (!slow) {
  2622. t3_write_reg(adapter, mc7->offset + A_MC7_MODE, 0x100);
  2623. t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLRST, 0);
  2624. udelay(5);
  2625. }
  2626. if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
  2627. wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
  2628. wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
  2629. wrreg_wait(adapter, mc7->offset + A_MC7_MODE,
  2630. mc7_mode[mem_type]) ||
  2631. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val | 0x380) ||
  2632. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
  2633. goto out_fail;
  2634. /* clock value is in KHz */
  2635. mc7_clock = mc7_clock * 7812 + mc7_clock / 2; /* ns */
  2636. mc7_clock /= 1000000; /* KHz->MHz, ns->us */
  2637. t3_write_reg(adapter, mc7->offset + A_MC7_REF,
  2638. F_PERREFEN | V_PREREFDIV(mc7_clock));
  2639. t3_read_reg(adapter, mc7->offset + A_MC7_REF); /* flush */
  2640. t3_write_reg(adapter, mc7->offset + A_MC7_ECC, F_ECCGENEN | F_ECCCHKEN);
  2641. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_DATA, 0);
  2642. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_BEG, 0);
  2643. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_END,
  2644. (mc7->size << width) - 1);
  2645. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_OP, V_OP(1));
  2646. t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP); /* flush */
  2647. attempts = 50;
  2648. do {
  2649. msleep(250);
  2650. val = t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP);
  2651. } while ((val & F_BUSY) && --attempts);
  2652. if (val & F_BUSY) {
  2653. CH_ERR(adapter, "%s MC7 BIST timed out\n", mc7->name);
  2654. goto out_fail;
  2655. }
  2656. /* Enable normal memory accesses. */
  2657. t3_set_reg_field(adapter, mc7->offset + A_MC7_CFG, 0, F_RDY);
  2658. return 0;
  2659. out_fail:
  2660. return -1;
  2661. }
  2662. static void config_pcie(struct adapter *adap)
  2663. {
  2664. static const u16 ack_lat[4][6] = {
  2665. {237, 416, 559, 1071, 2095, 4143},
  2666. {128, 217, 289, 545, 1057, 2081},
  2667. {73, 118, 154, 282, 538, 1050},
  2668. {67, 107, 86, 150, 278, 534}
  2669. };
  2670. static const u16 rpl_tmr[4][6] = {
  2671. {711, 1248, 1677, 3213, 6285, 12429},
  2672. {384, 651, 867, 1635, 3171, 6243},
  2673. {219, 354, 462, 846, 1614, 3150},
  2674. {201, 321, 258, 450, 834, 1602}
  2675. };
  2676. u16 val;
  2677. unsigned int log2_width, pldsize;
  2678. unsigned int fst_trn_rx, fst_trn_tx, acklat, rpllmt;
  2679. pci_read_config_word(adap->pdev,
  2680. adap->params.pci.pcie_cap_addr + PCI_EXP_DEVCTL,
  2681. &val);
  2682. pldsize = (val & PCI_EXP_DEVCTL_PAYLOAD) >> 5;
  2683. pci_read_config_word(adap->pdev,
  2684. adap->params.pci.pcie_cap_addr + PCI_EXP_LNKCTL,
  2685. &val);
  2686. fst_trn_tx = G_NUMFSTTRNSEQ(t3_read_reg(adap, A_PCIE_PEX_CTRL0));
  2687. fst_trn_rx = adap->params.rev == 0 ? fst_trn_tx :
  2688. G_NUMFSTTRNSEQRX(t3_read_reg(adap, A_PCIE_MODE));
  2689. log2_width = fls(adap->params.pci.width) - 1;
  2690. acklat = ack_lat[log2_width][pldsize];
  2691. if (val & 1) /* check LOsEnable */
  2692. acklat += fst_trn_tx * 4;
  2693. rpllmt = rpl_tmr[log2_width][pldsize] + fst_trn_rx * 4;
  2694. if (adap->params.rev == 0)
  2695. t3_set_reg_field(adap, A_PCIE_PEX_CTRL1,
  2696. V_T3A_ACKLAT(M_T3A_ACKLAT),
  2697. V_T3A_ACKLAT(acklat));
  2698. else
  2699. t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, V_ACKLAT(M_ACKLAT),
  2700. V_ACKLAT(acklat));
  2701. t3_set_reg_field(adap, A_PCIE_PEX_CTRL0, V_REPLAYLMT(M_REPLAYLMT),
  2702. V_REPLAYLMT(rpllmt));
  2703. t3_write_reg(adap, A_PCIE_PEX_ERR, 0xffffffff);
  2704. t3_set_reg_field(adap, A_PCIE_CFG, F_PCIE_CLIDECEN, F_PCIE_CLIDECEN);
  2705. }
  2706. /*
  2707. * Initialize and configure T3 HW modules. This performs the
  2708. * initialization steps that need to be done once after a card is reset.
  2709. * MAC and PHY initialization is handled separarely whenever a port is enabled.
  2710. *
  2711. * fw_params are passed to FW and their value is platform dependent. Only the
  2712. * top 8 bits are available for use, the rest must be 0.
  2713. */
  2714. int t3_init_hw(struct adapter *adapter, u32 fw_params)
  2715. {
  2716. int err = -EIO, attempts = 100;
  2717. const struct vpd_params *vpd = &adapter->params.vpd;
  2718. if (adapter->params.rev > 0)
  2719. calibrate_xgm_t3b(adapter);
  2720. else if (calibrate_xgm(adapter))
  2721. goto out_err;
  2722. if (vpd->mclk) {
  2723. partition_mem(adapter, &adapter->params.tp);
  2724. if (mc7_init(&adapter->pmrx, vpd->mclk, vpd->mem_timing) ||
  2725. mc7_init(&adapter->pmtx, vpd->mclk, vpd->mem_timing) ||
  2726. mc7_init(&adapter->cm, vpd->mclk, vpd->mem_timing) ||
  2727. t3_mc5_init(&adapter->mc5, adapter->params.mc5.nservers,
  2728. adapter->params.mc5.nfilters,
  2729. adapter->params.mc5.nroutes))
  2730. goto out_err;
  2731. }
  2732. if (tp_init(adapter, &adapter->params.tp))
  2733. goto out_err;
  2734. t3_tp_set_coalescing_size(adapter,
  2735. min(adapter->params.sge.max_pkt_size,
  2736. MAX_RX_COALESCING_LEN), 1);
  2737. t3_tp_set_max_rxsize(adapter,
  2738. min(adapter->params.sge.max_pkt_size, 16384U));
  2739. ulp_config(adapter, &adapter->params.tp);
  2740. if (is_pcie(adapter))
  2741. config_pcie(adapter);
  2742. else
  2743. t3_set_reg_field(adapter, A_PCIX_CFG, 0, F_CLIDECEN);
  2744. t3_write_reg(adapter, A_PM1_RX_CFG, 0xf000f000);
  2745. init_hw_for_avail_ports(adapter, adapter->params.nports);
  2746. t3_sge_init(adapter, &adapter->params.sge);
  2747. t3_write_reg(adapter, A_CIM_HOST_ACC_DATA, vpd->uclk | fw_params);
  2748. t3_write_reg(adapter, A_CIM_BOOT_CFG,
  2749. V_BOOTADDR(FW_FLASH_BOOT_ADDR >> 2));
  2750. t3_read_reg(adapter, A_CIM_BOOT_CFG); /* flush */
  2751. do { /* wait for uP to initialize */
  2752. msleep(20);
  2753. } while (t3_read_reg(adapter, A_CIM_HOST_ACC_DATA) && --attempts);
  2754. if (!attempts)
  2755. goto out_err;
  2756. err = 0;
  2757. out_err:
  2758. return err;
  2759. }
  2760. /**
  2761. * get_pci_mode - determine a card's PCI mode
  2762. * @adapter: the adapter
  2763. * @p: where to store the PCI settings
  2764. *
  2765. * Determines a card's PCI mode and associated parameters, such as speed
  2766. * and width.
  2767. */
  2768. static void __devinit get_pci_mode(struct adapter *adapter,
  2769. struct pci_params *p)
  2770. {
  2771. static unsigned short speed_map[] = { 33, 66, 100, 133 };
  2772. u32 pci_mode, pcie_cap;
  2773. pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
  2774. if (pcie_cap) {
  2775. u16 val;
  2776. p->variant = PCI_VARIANT_PCIE;
  2777. p->pcie_cap_addr = pcie_cap;
  2778. pci_read_config_word(adapter->pdev, pcie_cap + PCI_EXP_LNKSTA,
  2779. &val);
  2780. p->width = (val >> 4) & 0x3f;
  2781. return;
  2782. }
  2783. pci_mode = t3_read_reg(adapter, A_PCIX_MODE);
  2784. p->speed = speed_map[G_PCLKRANGE(pci_mode)];
  2785. p->width = (pci_mode & F_64BIT) ? 64 : 32;
  2786. pci_mode = G_PCIXINITPAT(pci_mode);
  2787. if (pci_mode == 0)
  2788. p->variant = PCI_VARIANT_PCI;
  2789. else if (pci_mode < 4)
  2790. p->variant = PCI_VARIANT_PCIX_MODE1_PARITY;
  2791. else if (pci_mode < 8)
  2792. p->variant = PCI_VARIANT_PCIX_MODE1_ECC;
  2793. else
  2794. p->variant = PCI_VARIANT_PCIX_266_MODE2;
  2795. }
  2796. /**
  2797. * init_link_config - initialize a link's SW state
  2798. * @lc: structure holding the link state
  2799. * @ai: information about the current card
  2800. *
  2801. * Initializes the SW state maintained for each link, including the link's
  2802. * capabilities and default speed/duplex/flow-control/autonegotiation
  2803. * settings.
  2804. */
  2805. static void __devinit init_link_config(struct link_config *lc,
  2806. unsigned int caps)
  2807. {
  2808. lc->supported = caps;
  2809. lc->requested_speed = lc->speed = SPEED_INVALID;
  2810. lc->requested_duplex = lc->duplex = DUPLEX_INVALID;
  2811. lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
  2812. if (lc->supported & SUPPORTED_Autoneg) {
  2813. lc->advertising = lc->supported;
  2814. lc->autoneg = AUTONEG_ENABLE;
  2815. lc->requested_fc |= PAUSE_AUTONEG;
  2816. } else {
  2817. lc->advertising = 0;
  2818. lc->autoneg = AUTONEG_DISABLE;
  2819. }
  2820. }
  2821. /**
  2822. * mc7_calc_size - calculate MC7 memory size
  2823. * @cfg: the MC7 configuration
  2824. *
  2825. * Calculates the size of an MC7 memory in bytes from the value of its
  2826. * configuration register.
  2827. */
  2828. static unsigned int __devinit mc7_calc_size(u32 cfg)
  2829. {
  2830. unsigned int width = G_WIDTH(cfg);
  2831. unsigned int banks = !!(cfg & F_BKS) + 1;
  2832. unsigned int org = !!(cfg & F_ORG) + 1;
  2833. unsigned int density = G_DEN(cfg);
  2834. unsigned int MBs = ((256 << density) * banks) / (org << width);
  2835. return MBs << 20;
  2836. }
  2837. static void __devinit mc7_prep(struct adapter *adapter, struct mc7 *mc7,
  2838. unsigned int base_addr, const char *name)
  2839. {
  2840. u32 cfg;
  2841. mc7->adapter = adapter;
  2842. mc7->name = name;
  2843. mc7->offset = base_addr - MC7_PMRX_BASE_ADDR;
  2844. cfg = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
  2845. mc7->size = mc7_calc_size(cfg);
  2846. mc7->width = G_WIDTH(cfg);
  2847. }
  2848. void mac_prep(struct cmac *mac, struct adapter *adapter, int index)
  2849. {
  2850. mac->adapter = adapter;
  2851. mac->offset = (XGMAC0_1_BASE_ADDR - XGMAC0_0_BASE_ADDR) * index;
  2852. mac->nucast = 1;
  2853. if (adapter->params.rev == 0 && uses_xaui(adapter)) {
  2854. t3_write_reg(adapter, A_XGM_SERDES_CTRL + mac->offset,
  2855. is_10G(adapter) ? 0x2901c04 : 0x2301c04);
  2856. t3_set_reg_field(adapter, A_XGM_PORT_CFG + mac->offset,
  2857. F_ENRGMII, 0);
  2858. }
  2859. }
  2860. void early_hw_init(struct adapter *adapter, const struct adapter_info *ai)
  2861. {
  2862. u32 val = V_PORTSPEED(is_10G(adapter) ? 3 : 2);
  2863. mi1_init(adapter, ai);
  2864. t3_write_reg(adapter, A_I2C_CFG, /* set for 80KHz */
  2865. V_I2C_CLKDIV(adapter->params.vpd.cclk / 80 - 1));
  2866. t3_write_reg(adapter, A_T3DBG_GPIO_EN,
  2867. ai->gpio_out | F_GPIO0_OEN | F_GPIO0_OUT_VAL);
  2868. if (adapter->params.rev == 0 || !uses_xaui(adapter))
  2869. val |= F_ENRGMII;
  2870. /* Enable MAC clocks so we can access the registers */
  2871. t3_write_reg(adapter, A_XGM_PORT_CFG, val);
  2872. t3_read_reg(adapter, A_XGM_PORT_CFG);
  2873. val |= F_CLKDIVRESET_;
  2874. t3_write_reg(adapter, A_XGM_PORT_CFG, val);
  2875. t3_read_reg(adapter, A_XGM_PORT_CFG);
  2876. t3_write_reg(adapter, XGM_REG(A_XGM_PORT_CFG, 1), val);
  2877. t3_read_reg(adapter, A_XGM_PORT_CFG);
  2878. }
  2879. /*
  2880. * Reset the adapter. PCIe cards lose their config space during reset, PCI-X
  2881. * ones don't.
  2882. */
  2883. int t3_reset_adapter(struct adapter *adapter)
  2884. {
  2885. int i;
  2886. uint16_t devid = 0;
  2887. if (is_pcie(adapter))
  2888. pci_save_state(adapter->pdev);
  2889. t3_write_reg(adapter, A_PL_RST, F_CRSTWRM | F_CRSTWRMMODE);
  2890. /*
  2891. * Delay. Give Some time to device to reset fully.
  2892. * XXX The delay time should be modified.
  2893. */
  2894. for (i = 0; i < 10; i++) {
  2895. msleep(50);
  2896. pci_read_config_word(adapter->pdev, 0x00, &devid);
  2897. if (devid == 0x1425)
  2898. break;
  2899. }
  2900. if (devid != 0x1425)
  2901. return -1;
  2902. if (is_pcie(adapter))
  2903. pci_restore_state(adapter->pdev);
  2904. return 0;
  2905. }
  2906. /*
  2907. * Initialize adapter SW state for the various HW modules, set initial values
  2908. * for some adapter tunables, take PHYs out of reset, and initialize the MDIO
  2909. * interface.
  2910. */
  2911. int __devinit t3_prep_adapter(struct adapter *adapter,
  2912. const struct adapter_info *ai, int reset)
  2913. {
  2914. int ret;
  2915. unsigned int i, j = 0;
  2916. get_pci_mode(adapter, &adapter->params.pci);
  2917. adapter->params.info = ai;
  2918. adapter->params.nports = ai->nports;
  2919. adapter->params.rev = t3_read_reg(adapter, A_PL_REV);
  2920. adapter->params.linkpoll_period = 0;
  2921. adapter->params.stats_update_period = is_10G(adapter) ?
  2922. MAC_STATS_ACCUM_SECS : (MAC_STATS_ACCUM_SECS * 10);
  2923. adapter->params.pci.vpd_cap_addr =
  2924. pci_find_capability(adapter->pdev, PCI_CAP_ID_VPD);
  2925. ret = get_vpd_params(adapter, &adapter->params.vpd);
  2926. if (ret < 0)
  2927. return ret;
  2928. if (reset && t3_reset_adapter(adapter))
  2929. return -1;
  2930. t3_sge_prep(adapter, &adapter->params.sge);
  2931. if (adapter->params.vpd.mclk) {
  2932. struct tp_params *p = &adapter->params.tp;
  2933. mc7_prep(adapter, &adapter->pmrx, MC7_PMRX_BASE_ADDR, "PMRX");
  2934. mc7_prep(adapter, &adapter->pmtx, MC7_PMTX_BASE_ADDR, "PMTX");
  2935. mc7_prep(adapter, &adapter->cm, MC7_CM_BASE_ADDR, "CM");
  2936. p->nchan = ai->nports;
  2937. p->pmrx_size = t3_mc7_size(&adapter->pmrx);
  2938. p->pmtx_size = t3_mc7_size(&adapter->pmtx);
  2939. p->cm_size = t3_mc7_size(&adapter->cm);
  2940. p->chan_rx_size = p->pmrx_size / 2; /* only 1 Rx channel */
  2941. p->chan_tx_size = p->pmtx_size / p->nchan;
  2942. p->rx_pg_size = 64 * 1024;
  2943. p->tx_pg_size = is_10G(adapter) ? 64 * 1024 : 16 * 1024;
  2944. p->rx_num_pgs = pm_num_pages(p->chan_rx_size, p->rx_pg_size);
  2945. p->tx_num_pgs = pm_num_pages(p->chan_tx_size, p->tx_pg_size);
  2946. p->ntimer_qs = p->cm_size >= (128 << 20) ||
  2947. adapter->params.rev > 0 ? 12 : 6;
  2948. adapter->params.mc5.nservers = DEFAULT_NSERVERS;
  2949. adapter->params.mc5.nfilters = adapter->params.rev > 0 ?
  2950. DEFAULT_NFILTERS : 0;
  2951. adapter->params.mc5.nroutes = 0;
  2952. t3_mc5_prep(adapter, &adapter->mc5, MC5_MODE_144_BIT);
  2953. init_mtus(adapter->params.mtus);
  2954. init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
  2955. }
  2956. early_hw_init(adapter, ai);
  2957. for_each_port(adapter, i) {
  2958. u8 hw_addr[6];
  2959. struct port_info *p = adap2pinfo(adapter, i);
  2960. while (!adapter->params.vpd.port_type[j])
  2961. ++j;
  2962. p->port_type = &port_types[adapter->params.vpd.port_type[j]];
  2963. p->port_type->phy_prep(&p->phy, adapter, ai->phy_base_addr + j,
  2964. ai->mdio_ops);
  2965. mac_prep(&p->mac, adapter, j);
  2966. ++j;
  2967. /*
  2968. * The VPD EEPROM stores the base Ethernet address for the
  2969. * card. A port's address is derived from the base by adding
  2970. * the port's index to the base's low octet.
  2971. */
  2972. memcpy(hw_addr, adapter->params.vpd.eth_base, 5);
  2973. hw_addr[5] = adapter->params.vpd.eth_base[5] + i;
  2974. memcpy(adapter->port[i]->dev_addr, hw_addr,
  2975. ETH_ALEN);
  2976. memcpy(adapter->port[i]->perm_addr, hw_addr,
  2977. ETH_ALEN);
  2978. init_link_config(&p->link_config, p->port_type->caps);
  2979. p->phy.ops->power_down(&p->phy, 1);
  2980. if (!(p->port_type->caps & SUPPORTED_IRQ))
  2981. adapter->params.linkpoll_period = 10;
  2982. }
  2983. return 0;
  2984. }
  2985. void t3_led_ready(struct adapter *adapter)
  2986. {
  2987. t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
  2988. F_GPIO0_OUT_VAL);
  2989. }