rmap.c 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_mutex (while writing or truncating, not reading or faulting)
  23. * inode->i_alloc_sem (vmtruncate_range)
  24. * mm->mmap_sem
  25. * page->flags PG_locked (lock_page)
  26. * mapping->i_mmap_lock
  27. * anon_vma->lock
  28. * mm->page_table_lock or pte_lock
  29. * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  30. * swap_lock (in swap_duplicate, swap_info_get)
  31. * mmlist_lock (in mmput, drain_mmlist and others)
  32. * mapping->private_lock (in __set_page_dirty_buffers)
  33. * inode_lock (in set_page_dirty's __mark_inode_dirty)
  34. * sb_lock (within inode_lock in fs/fs-writeback.c)
  35. * mapping->tree_lock (widely used, in set_page_dirty,
  36. * in arch-dependent flush_dcache_mmap_lock,
  37. * within inode_lock in __sync_single_inode)
  38. *
  39. * (code doesn't rely on that order so it could be switched around)
  40. * ->tasklist_lock
  41. * anon_vma->lock (memory_failure, collect_procs_anon)
  42. * pte map lock
  43. */
  44. #include <linux/mm.h>
  45. #include <linux/pagemap.h>
  46. #include <linux/swap.h>
  47. #include <linux/swapops.h>
  48. #include <linux/slab.h>
  49. #include <linux/init.h>
  50. #include <linux/ksm.h>
  51. #include <linux/rmap.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/module.h>
  54. #include <linux/memcontrol.h>
  55. #include <linux/mmu_notifier.h>
  56. #include <linux/migrate.h>
  57. #include <asm/tlbflush.h>
  58. #include "internal.h"
  59. static struct kmem_cache *anon_vma_cachep;
  60. static struct kmem_cache *anon_vma_chain_cachep;
  61. static inline struct anon_vma *anon_vma_alloc(void)
  62. {
  63. return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  64. }
  65. void anon_vma_free(struct anon_vma *anon_vma)
  66. {
  67. kmem_cache_free(anon_vma_cachep, anon_vma);
  68. }
  69. static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
  70. {
  71. return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
  72. }
  73. void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
  74. {
  75. kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
  76. }
  77. /**
  78. * anon_vma_prepare - attach an anon_vma to a memory region
  79. * @vma: the memory region in question
  80. *
  81. * This makes sure the memory mapping described by 'vma' has
  82. * an 'anon_vma' attached to it, so that we can associate the
  83. * anonymous pages mapped into it with that anon_vma.
  84. *
  85. * The common case will be that we already have one, but if
  86. * if not we either need to find an adjacent mapping that we
  87. * can re-use the anon_vma from (very common when the only
  88. * reason for splitting a vma has been mprotect()), or we
  89. * allocate a new one.
  90. *
  91. * Anon-vma allocations are very subtle, because we may have
  92. * optimistically looked up an anon_vma in page_lock_anon_vma()
  93. * and that may actually touch the spinlock even in the newly
  94. * allocated vma (it depends on RCU to make sure that the
  95. * anon_vma isn't actually destroyed).
  96. *
  97. * As a result, we need to do proper anon_vma locking even
  98. * for the new allocation. At the same time, we do not want
  99. * to do any locking for the common case of already having
  100. * an anon_vma.
  101. *
  102. * This must be called with the mmap_sem held for reading.
  103. */
  104. int anon_vma_prepare(struct vm_area_struct *vma)
  105. {
  106. struct anon_vma *anon_vma = vma->anon_vma;
  107. struct anon_vma_chain *avc;
  108. might_sleep();
  109. if (unlikely(!anon_vma)) {
  110. struct mm_struct *mm = vma->vm_mm;
  111. struct anon_vma *allocated;
  112. avc = anon_vma_chain_alloc();
  113. if (!avc)
  114. goto out_enomem;
  115. anon_vma = find_mergeable_anon_vma(vma);
  116. allocated = NULL;
  117. if (!anon_vma) {
  118. anon_vma = anon_vma_alloc();
  119. if (unlikely(!anon_vma))
  120. goto out_enomem_free_avc;
  121. allocated = anon_vma;
  122. }
  123. spin_lock(&anon_vma->lock);
  124. /* page_table_lock to protect against threads */
  125. spin_lock(&mm->page_table_lock);
  126. if (likely(!vma->anon_vma)) {
  127. vma->anon_vma = anon_vma;
  128. avc->anon_vma = anon_vma;
  129. avc->vma = vma;
  130. list_add(&avc->same_vma, &vma->anon_vma_chain);
  131. list_add(&avc->same_anon_vma, &anon_vma->head);
  132. allocated = NULL;
  133. avc = NULL;
  134. }
  135. spin_unlock(&mm->page_table_lock);
  136. spin_unlock(&anon_vma->lock);
  137. if (unlikely(allocated))
  138. anon_vma_free(allocated);
  139. if (unlikely(avc))
  140. anon_vma_chain_free(avc);
  141. }
  142. return 0;
  143. out_enomem_free_avc:
  144. anon_vma_chain_free(avc);
  145. out_enomem:
  146. return -ENOMEM;
  147. }
  148. static void anon_vma_chain_link(struct vm_area_struct *vma,
  149. struct anon_vma_chain *avc,
  150. struct anon_vma *anon_vma)
  151. {
  152. avc->vma = vma;
  153. avc->anon_vma = anon_vma;
  154. list_add(&avc->same_vma, &vma->anon_vma_chain);
  155. spin_lock(&anon_vma->lock);
  156. list_add_tail(&avc->same_anon_vma, &anon_vma->head);
  157. spin_unlock(&anon_vma->lock);
  158. }
  159. /*
  160. * Attach the anon_vmas from src to dst.
  161. * Returns 0 on success, -ENOMEM on failure.
  162. */
  163. int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
  164. {
  165. struct anon_vma_chain *avc, *pavc;
  166. list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
  167. avc = anon_vma_chain_alloc();
  168. if (!avc)
  169. goto enomem_failure;
  170. anon_vma_chain_link(dst, avc, pavc->anon_vma);
  171. }
  172. return 0;
  173. enomem_failure:
  174. unlink_anon_vmas(dst);
  175. return -ENOMEM;
  176. }
  177. /*
  178. * Attach vma to its own anon_vma, as well as to the anon_vmas that
  179. * the corresponding VMA in the parent process is attached to.
  180. * Returns 0 on success, non-zero on failure.
  181. */
  182. int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
  183. {
  184. struct anon_vma_chain *avc;
  185. struct anon_vma *anon_vma;
  186. /* Don't bother if the parent process has no anon_vma here. */
  187. if (!pvma->anon_vma)
  188. return 0;
  189. /*
  190. * First, attach the new VMA to the parent VMA's anon_vmas,
  191. * so rmap can find non-COWed pages in child processes.
  192. */
  193. if (anon_vma_clone(vma, pvma))
  194. return -ENOMEM;
  195. /* Then add our own anon_vma. */
  196. anon_vma = anon_vma_alloc();
  197. if (!anon_vma)
  198. goto out_error;
  199. avc = anon_vma_chain_alloc();
  200. if (!avc)
  201. goto out_error_free_anon_vma;
  202. anon_vma_chain_link(vma, avc, anon_vma);
  203. /* Mark this anon_vma as the one where our new (COWed) pages go. */
  204. vma->anon_vma = anon_vma;
  205. return 0;
  206. out_error_free_anon_vma:
  207. anon_vma_free(anon_vma);
  208. out_error:
  209. unlink_anon_vmas(vma);
  210. return -ENOMEM;
  211. }
  212. static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
  213. {
  214. struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
  215. int empty;
  216. /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
  217. if (!anon_vma)
  218. return;
  219. spin_lock(&anon_vma->lock);
  220. list_del(&anon_vma_chain->same_anon_vma);
  221. /* We must garbage collect the anon_vma if it's empty */
  222. empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma);
  223. spin_unlock(&anon_vma->lock);
  224. if (empty)
  225. anon_vma_free(anon_vma);
  226. }
  227. void unlink_anon_vmas(struct vm_area_struct *vma)
  228. {
  229. struct anon_vma_chain *avc, *next;
  230. /* Unlink each anon_vma chained to the VMA. */
  231. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  232. anon_vma_unlink(avc);
  233. list_del(&avc->same_vma);
  234. anon_vma_chain_free(avc);
  235. }
  236. }
  237. static void anon_vma_ctor(void *data)
  238. {
  239. struct anon_vma *anon_vma = data;
  240. spin_lock_init(&anon_vma->lock);
  241. anonvma_external_refcount_init(anon_vma);
  242. INIT_LIST_HEAD(&anon_vma->head);
  243. }
  244. void __init anon_vma_init(void)
  245. {
  246. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  247. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
  248. anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
  249. }
  250. /*
  251. * Getting a lock on a stable anon_vma from a page off the LRU is
  252. * tricky: page_lock_anon_vma rely on RCU to guard against the races.
  253. */
  254. struct anon_vma *page_lock_anon_vma(struct page *page)
  255. {
  256. struct anon_vma *anon_vma;
  257. unsigned long anon_mapping;
  258. rcu_read_lock();
  259. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  260. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  261. goto out;
  262. if (!page_mapped(page))
  263. goto out;
  264. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  265. spin_lock(&anon_vma->lock);
  266. return anon_vma;
  267. out:
  268. rcu_read_unlock();
  269. return NULL;
  270. }
  271. void page_unlock_anon_vma(struct anon_vma *anon_vma)
  272. {
  273. spin_unlock(&anon_vma->lock);
  274. rcu_read_unlock();
  275. }
  276. /*
  277. * At what user virtual address is page expected in @vma?
  278. * Returns virtual address or -EFAULT if page's index/offset is not
  279. * within the range mapped the @vma.
  280. */
  281. static inline unsigned long
  282. vma_address(struct page *page, struct vm_area_struct *vma)
  283. {
  284. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  285. unsigned long address;
  286. address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  287. if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
  288. /* page should be within @vma mapping range */
  289. return -EFAULT;
  290. }
  291. return address;
  292. }
  293. /*
  294. * At what user virtual address is page expected in vma?
  295. * Caller should check the page is actually part of the vma.
  296. */
  297. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  298. {
  299. if (PageAnon(page))
  300. ;
  301. else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  302. if (!vma->vm_file ||
  303. vma->vm_file->f_mapping != page->mapping)
  304. return -EFAULT;
  305. } else
  306. return -EFAULT;
  307. return vma_address(page, vma);
  308. }
  309. /*
  310. * Check that @page is mapped at @address into @mm.
  311. *
  312. * If @sync is false, page_check_address may perform a racy check to avoid
  313. * the page table lock when the pte is not present (helpful when reclaiming
  314. * highly shared pages).
  315. *
  316. * On success returns with pte mapped and locked.
  317. */
  318. pte_t *page_check_address(struct page *page, struct mm_struct *mm,
  319. unsigned long address, spinlock_t **ptlp, int sync)
  320. {
  321. pgd_t *pgd;
  322. pud_t *pud;
  323. pmd_t *pmd;
  324. pte_t *pte;
  325. spinlock_t *ptl;
  326. pgd = pgd_offset(mm, address);
  327. if (!pgd_present(*pgd))
  328. return NULL;
  329. pud = pud_offset(pgd, address);
  330. if (!pud_present(*pud))
  331. return NULL;
  332. pmd = pmd_offset(pud, address);
  333. if (!pmd_present(*pmd))
  334. return NULL;
  335. pte = pte_offset_map(pmd, address);
  336. /* Make a quick check before getting the lock */
  337. if (!sync && !pte_present(*pte)) {
  338. pte_unmap(pte);
  339. return NULL;
  340. }
  341. ptl = pte_lockptr(mm, pmd);
  342. spin_lock(ptl);
  343. if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
  344. *ptlp = ptl;
  345. return pte;
  346. }
  347. pte_unmap_unlock(pte, ptl);
  348. return NULL;
  349. }
  350. /**
  351. * page_mapped_in_vma - check whether a page is really mapped in a VMA
  352. * @page: the page to test
  353. * @vma: the VMA to test
  354. *
  355. * Returns 1 if the page is mapped into the page tables of the VMA, 0
  356. * if the page is not mapped into the page tables of this VMA. Only
  357. * valid for normal file or anonymous VMAs.
  358. */
  359. int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
  360. {
  361. unsigned long address;
  362. pte_t *pte;
  363. spinlock_t *ptl;
  364. address = vma_address(page, vma);
  365. if (address == -EFAULT) /* out of vma range */
  366. return 0;
  367. pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
  368. if (!pte) /* the page is not in this mm */
  369. return 0;
  370. pte_unmap_unlock(pte, ptl);
  371. return 1;
  372. }
  373. /*
  374. * Subfunctions of page_referenced: page_referenced_one called
  375. * repeatedly from either page_referenced_anon or page_referenced_file.
  376. */
  377. int page_referenced_one(struct page *page, struct vm_area_struct *vma,
  378. unsigned long address, unsigned int *mapcount,
  379. unsigned long *vm_flags)
  380. {
  381. struct mm_struct *mm = vma->vm_mm;
  382. pte_t *pte;
  383. spinlock_t *ptl;
  384. int referenced = 0;
  385. pte = page_check_address(page, mm, address, &ptl, 0);
  386. if (!pte)
  387. goto out;
  388. /*
  389. * Don't want to elevate referenced for mlocked page that gets this far,
  390. * in order that it progresses to try_to_unmap and is moved to the
  391. * unevictable list.
  392. */
  393. if (vma->vm_flags & VM_LOCKED) {
  394. *mapcount = 1; /* break early from loop */
  395. *vm_flags |= VM_LOCKED;
  396. goto out_unmap;
  397. }
  398. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  399. /*
  400. * Don't treat a reference through a sequentially read
  401. * mapping as such. If the page has been used in
  402. * another mapping, we will catch it; if this other
  403. * mapping is already gone, the unmap path will have
  404. * set PG_referenced or activated the page.
  405. */
  406. if (likely(!VM_SequentialReadHint(vma)))
  407. referenced++;
  408. }
  409. /* Pretend the page is referenced if the task has the
  410. swap token and is in the middle of a page fault. */
  411. if (mm != current->mm && has_swap_token(mm) &&
  412. rwsem_is_locked(&mm->mmap_sem))
  413. referenced++;
  414. out_unmap:
  415. (*mapcount)--;
  416. pte_unmap_unlock(pte, ptl);
  417. if (referenced)
  418. *vm_flags |= vma->vm_flags;
  419. out:
  420. return referenced;
  421. }
  422. static int page_referenced_anon(struct page *page,
  423. struct mem_cgroup *mem_cont,
  424. unsigned long *vm_flags)
  425. {
  426. unsigned int mapcount;
  427. struct anon_vma *anon_vma;
  428. struct anon_vma_chain *avc;
  429. int referenced = 0;
  430. anon_vma = page_lock_anon_vma(page);
  431. if (!anon_vma)
  432. return referenced;
  433. mapcount = page_mapcount(page);
  434. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  435. struct vm_area_struct *vma = avc->vma;
  436. unsigned long address = vma_address(page, vma);
  437. if (address == -EFAULT)
  438. continue;
  439. /*
  440. * If we are reclaiming on behalf of a cgroup, skip
  441. * counting on behalf of references from different
  442. * cgroups
  443. */
  444. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  445. continue;
  446. referenced += page_referenced_one(page, vma, address,
  447. &mapcount, vm_flags);
  448. if (!mapcount)
  449. break;
  450. }
  451. page_unlock_anon_vma(anon_vma);
  452. return referenced;
  453. }
  454. /**
  455. * page_referenced_file - referenced check for object-based rmap
  456. * @page: the page we're checking references on.
  457. * @mem_cont: target memory controller
  458. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  459. *
  460. * For an object-based mapped page, find all the places it is mapped and
  461. * check/clear the referenced flag. This is done by following the page->mapping
  462. * pointer, then walking the chain of vmas it holds. It returns the number
  463. * of references it found.
  464. *
  465. * This function is only called from page_referenced for object-based pages.
  466. */
  467. static int page_referenced_file(struct page *page,
  468. struct mem_cgroup *mem_cont,
  469. unsigned long *vm_flags)
  470. {
  471. unsigned int mapcount;
  472. struct address_space *mapping = page->mapping;
  473. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  474. struct vm_area_struct *vma;
  475. struct prio_tree_iter iter;
  476. int referenced = 0;
  477. /*
  478. * The caller's checks on page->mapping and !PageAnon have made
  479. * sure that this is a file page: the check for page->mapping
  480. * excludes the case just before it gets set on an anon page.
  481. */
  482. BUG_ON(PageAnon(page));
  483. /*
  484. * The page lock not only makes sure that page->mapping cannot
  485. * suddenly be NULLified by truncation, it makes sure that the
  486. * structure at mapping cannot be freed and reused yet,
  487. * so we can safely take mapping->i_mmap_lock.
  488. */
  489. BUG_ON(!PageLocked(page));
  490. spin_lock(&mapping->i_mmap_lock);
  491. /*
  492. * i_mmap_lock does not stabilize mapcount at all, but mapcount
  493. * is more likely to be accurate if we note it after spinning.
  494. */
  495. mapcount = page_mapcount(page);
  496. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  497. unsigned long address = vma_address(page, vma);
  498. if (address == -EFAULT)
  499. continue;
  500. /*
  501. * If we are reclaiming on behalf of a cgroup, skip
  502. * counting on behalf of references from different
  503. * cgroups
  504. */
  505. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  506. continue;
  507. referenced += page_referenced_one(page, vma, address,
  508. &mapcount, vm_flags);
  509. if (!mapcount)
  510. break;
  511. }
  512. spin_unlock(&mapping->i_mmap_lock);
  513. return referenced;
  514. }
  515. /**
  516. * page_referenced - test if the page was referenced
  517. * @page: the page to test
  518. * @is_locked: caller holds lock on the page
  519. * @mem_cont: target memory controller
  520. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  521. *
  522. * Quick test_and_clear_referenced for all mappings to a page,
  523. * returns the number of ptes which referenced the page.
  524. */
  525. int page_referenced(struct page *page,
  526. int is_locked,
  527. struct mem_cgroup *mem_cont,
  528. unsigned long *vm_flags)
  529. {
  530. int referenced = 0;
  531. int we_locked = 0;
  532. *vm_flags = 0;
  533. if (page_mapped(page) && page_rmapping(page)) {
  534. if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
  535. we_locked = trylock_page(page);
  536. if (!we_locked) {
  537. referenced++;
  538. goto out;
  539. }
  540. }
  541. if (unlikely(PageKsm(page)))
  542. referenced += page_referenced_ksm(page, mem_cont,
  543. vm_flags);
  544. else if (PageAnon(page))
  545. referenced += page_referenced_anon(page, mem_cont,
  546. vm_flags);
  547. else if (page->mapping)
  548. referenced += page_referenced_file(page, mem_cont,
  549. vm_flags);
  550. if (we_locked)
  551. unlock_page(page);
  552. }
  553. out:
  554. if (page_test_and_clear_young(page))
  555. referenced++;
  556. return referenced;
  557. }
  558. static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
  559. unsigned long address)
  560. {
  561. struct mm_struct *mm = vma->vm_mm;
  562. pte_t *pte;
  563. spinlock_t *ptl;
  564. int ret = 0;
  565. pte = page_check_address(page, mm, address, &ptl, 1);
  566. if (!pte)
  567. goto out;
  568. if (pte_dirty(*pte) || pte_write(*pte)) {
  569. pte_t entry;
  570. flush_cache_page(vma, address, pte_pfn(*pte));
  571. entry = ptep_clear_flush_notify(vma, address, pte);
  572. entry = pte_wrprotect(entry);
  573. entry = pte_mkclean(entry);
  574. set_pte_at(mm, address, pte, entry);
  575. ret = 1;
  576. }
  577. pte_unmap_unlock(pte, ptl);
  578. out:
  579. return ret;
  580. }
  581. static int page_mkclean_file(struct address_space *mapping, struct page *page)
  582. {
  583. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  584. struct vm_area_struct *vma;
  585. struct prio_tree_iter iter;
  586. int ret = 0;
  587. BUG_ON(PageAnon(page));
  588. spin_lock(&mapping->i_mmap_lock);
  589. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  590. if (vma->vm_flags & VM_SHARED) {
  591. unsigned long address = vma_address(page, vma);
  592. if (address == -EFAULT)
  593. continue;
  594. ret += page_mkclean_one(page, vma, address);
  595. }
  596. }
  597. spin_unlock(&mapping->i_mmap_lock);
  598. return ret;
  599. }
  600. int page_mkclean(struct page *page)
  601. {
  602. int ret = 0;
  603. BUG_ON(!PageLocked(page));
  604. if (page_mapped(page)) {
  605. struct address_space *mapping = page_mapping(page);
  606. if (mapping) {
  607. ret = page_mkclean_file(mapping, page);
  608. if (page_test_dirty(page)) {
  609. page_clear_dirty(page);
  610. ret = 1;
  611. }
  612. }
  613. }
  614. return ret;
  615. }
  616. EXPORT_SYMBOL_GPL(page_mkclean);
  617. /**
  618. * page_move_anon_rmap - move a page to our anon_vma
  619. * @page: the page to move to our anon_vma
  620. * @vma: the vma the page belongs to
  621. * @address: the user virtual address mapped
  622. *
  623. * When a page belongs exclusively to one process after a COW event,
  624. * that page can be moved into the anon_vma that belongs to just that
  625. * process, so the rmap code will not search the parent or sibling
  626. * processes.
  627. */
  628. void page_move_anon_rmap(struct page *page,
  629. struct vm_area_struct *vma, unsigned long address)
  630. {
  631. struct anon_vma *anon_vma = vma->anon_vma;
  632. VM_BUG_ON(!PageLocked(page));
  633. VM_BUG_ON(!anon_vma);
  634. VM_BUG_ON(page->index != linear_page_index(vma, address));
  635. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  636. page->mapping = (struct address_space *) anon_vma;
  637. }
  638. /**
  639. * __page_set_anon_rmap - setup new anonymous rmap
  640. * @page: the page to add the mapping to
  641. * @vma: the vm area in which the mapping is added
  642. * @address: the user virtual address mapped
  643. * @exclusive: the page is exclusively owned by the current process
  644. */
  645. static void __page_set_anon_rmap(struct page *page,
  646. struct vm_area_struct *vma, unsigned long address, int exclusive)
  647. {
  648. struct anon_vma *anon_vma = vma->anon_vma;
  649. BUG_ON(!anon_vma);
  650. /*
  651. * If the page isn't exclusively mapped into this vma,
  652. * we must use the _oldest_ possible anon_vma for the
  653. * page mapping!
  654. *
  655. * So take the last AVC chain entry in the vma, which is
  656. * the deepest ancestor, and use the anon_vma from that.
  657. */
  658. if (!exclusive) {
  659. struct anon_vma_chain *avc;
  660. avc = list_entry(vma->anon_vma_chain.prev, struct anon_vma_chain, same_vma);
  661. anon_vma = avc->anon_vma;
  662. }
  663. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  664. page->mapping = (struct address_space *) anon_vma;
  665. page->index = linear_page_index(vma, address);
  666. }
  667. /**
  668. * __page_check_anon_rmap - sanity check anonymous rmap addition
  669. * @page: the page to add the mapping to
  670. * @vma: the vm area in which the mapping is added
  671. * @address: the user virtual address mapped
  672. */
  673. static void __page_check_anon_rmap(struct page *page,
  674. struct vm_area_struct *vma, unsigned long address)
  675. {
  676. #ifdef CONFIG_DEBUG_VM
  677. /*
  678. * The page's anon-rmap details (mapping and index) are guaranteed to
  679. * be set up correctly at this point.
  680. *
  681. * We have exclusion against page_add_anon_rmap because the caller
  682. * always holds the page locked, except if called from page_dup_rmap,
  683. * in which case the page is already known to be setup.
  684. *
  685. * We have exclusion against page_add_new_anon_rmap because those pages
  686. * are initially only visible via the pagetables, and the pte is locked
  687. * over the call to page_add_new_anon_rmap.
  688. */
  689. BUG_ON(page->index != linear_page_index(vma, address));
  690. #endif
  691. }
  692. /**
  693. * page_add_anon_rmap - add pte mapping to an anonymous page
  694. * @page: the page to add the mapping to
  695. * @vma: the vm area in which the mapping is added
  696. * @address: the user virtual address mapped
  697. *
  698. * The caller needs to hold the pte lock, and the page must be locked in
  699. * the anon_vma case: to serialize mapping,index checking after setting,
  700. * and to ensure that PageAnon is not being upgraded racily to PageKsm
  701. * (but PageKsm is never downgraded to PageAnon).
  702. */
  703. void page_add_anon_rmap(struct page *page,
  704. struct vm_area_struct *vma, unsigned long address)
  705. {
  706. int first = atomic_inc_and_test(&page->_mapcount);
  707. if (first)
  708. __inc_zone_page_state(page, NR_ANON_PAGES);
  709. if (unlikely(PageKsm(page)))
  710. return;
  711. VM_BUG_ON(!PageLocked(page));
  712. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  713. if (first)
  714. __page_set_anon_rmap(page, vma, address, 0);
  715. else
  716. __page_check_anon_rmap(page, vma, address);
  717. }
  718. /**
  719. * page_add_new_anon_rmap - add pte mapping to a new anonymous page
  720. * @page: the page to add the mapping to
  721. * @vma: the vm area in which the mapping is added
  722. * @address: the user virtual address mapped
  723. *
  724. * Same as page_add_anon_rmap but must only be called on *new* pages.
  725. * This means the inc-and-test can be bypassed.
  726. * Page does not have to be locked.
  727. */
  728. void page_add_new_anon_rmap(struct page *page,
  729. struct vm_area_struct *vma, unsigned long address)
  730. {
  731. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  732. SetPageSwapBacked(page);
  733. atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
  734. __inc_zone_page_state(page, NR_ANON_PAGES);
  735. __page_set_anon_rmap(page, vma, address, 1);
  736. if (page_evictable(page, vma))
  737. lru_cache_add_lru(page, LRU_ACTIVE_ANON);
  738. else
  739. add_page_to_unevictable_list(page);
  740. }
  741. /**
  742. * page_add_file_rmap - add pte mapping to a file page
  743. * @page: the page to add the mapping to
  744. *
  745. * The caller needs to hold the pte lock.
  746. */
  747. void page_add_file_rmap(struct page *page)
  748. {
  749. if (atomic_inc_and_test(&page->_mapcount)) {
  750. __inc_zone_page_state(page, NR_FILE_MAPPED);
  751. mem_cgroup_update_file_mapped(page, 1);
  752. }
  753. }
  754. /**
  755. * page_remove_rmap - take down pte mapping from a page
  756. * @page: page to remove mapping from
  757. *
  758. * The caller needs to hold the pte lock.
  759. */
  760. void page_remove_rmap(struct page *page)
  761. {
  762. /* page still mapped by someone else? */
  763. if (!atomic_add_negative(-1, &page->_mapcount))
  764. return;
  765. /*
  766. * Now that the last pte has gone, s390 must transfer dirty
  767. * flag from storage key to struct page. We can usually skip
  768. * this if the page is anon, so about to be freed; but perhaps
  769. * not if it's in swapcache - there might be another pte slot
  770. * containing the swap entry, but page not yet written to swap.
  771. */
  772. if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
  773. page_clear_dirty(page);
  774. set_page_dirty(page);
  775. }
  776. if (PageAnon(page)) {
  777. mem_cgroup_uncharge_page(page);
  778. __dec_zone_page_state(page, NR_ANON_PAGES);
  779. } else {
  780. __dec_zone_page_state(page, NR_FILE_MAPPED);
  781. mem_cgroup_update_file_mapped(page, -1);
  782. }
  783. /*
  784. * It would be tidy to reset the PageAnon mapping here,
  785. * but that might overwrite a racing page_add_anon_rmap
  786. * which increments mapcount after us but sets mapping
  787. * before us: so leave the reset to free_hot_cold_page,
  788. * and remember that it's only reliable while mapped.
  789. * Leaving it set also helps swapoff to reinstate ptes
  790. * faster for those pages still in swapcache.
  791. */
  792. }
  793. /*
  794. * Subfunctions of try_to_unmap: try_to_unmap_one called
  795. * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
  796. */
  797. int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
  798. unsigned long address, enum ttu_flags flags)
  799. {
  800. struct mm_struct *mm = vma->vm_mm;
  801. pte_t *pte;
  802. pte_t pteval;
  803. spinlock_t *ptl;
  804. int ret = SWAP_AGAIN;
  805. pte = page_check_address(page, mm, address, &ptl, 0);
  806. if (!pte)
  807. goto out;
  808. /*
  809. * If the page is mlock()d, we cannot swap it out.
  810. * If it's recently referenced (perhaps page_referenced
  811. * skipped over this mm) then we should reactivate it.
  812. */
  813. if (!(flags & TTU_IGNORE_MLOCK)) {
  814. if (vma->vm_flags & VM_LOCKED)
  815. goto out_mlock;
  816. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  817. goto out_unmap;
  818. }
  819. if (!(flags & TTU_IGNORE_ACCESS)) {
  820. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  821. ret = SWAP_FAIL;
  822. goto out_unmap;
  823. }
  824. }
  825. /* Nuke the page table entry. */
  826. flush_cache_page(vma, address, page_to_pfn(page));
  827. pteval = ptep_clear_flush_notify(vma, address, pte);
  828. /* Move the dirty bit to the physical page now the pte is gone. */
  829. if (pte_dirty(pteval))
  830. set_page_dirty(page);
  831. /* Update high watermark before we lower rss */
  832. update_hiwater_rss(mm);
  833. if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
  834. if (PageAnon(page))
  835. dec_mm_counter(mm, MM_ANONPAGES);
  836. else
  837. dec_mm_counter(mm, MM_FILEPAGES);
  838. set_pte_at(mm, address, pte,
  839. swp_entry_to_pte(make_hwpoison_entry(page)));
  840. } else if (PageAnon(page)) {
  841. swp_entry_t entry = { .val = page_private(page) };
  842. if (PageSwapCache(page)) {
  843. /*
  844. * Store the swap location in the pte.
  845. * See handle_pte_fault() ...
  846. */
  847. if (swap_duplicate(entry) < 0) {
  848. set_pte_at(mm, address, pte, pteval);
  849. ret = SWAP_FAIL;
  850. goto out_unmap;
  851. }
  852. if (list_empty(&mm->mmlist)) {
  853. spin_lock(&mmlist_lock);
  854. if (list_empty(&mm->mmlist))
  855. list_add(&mm->mmlist, &init_mm.mmlist);
  856. spin_unlock(&mmlist_lock);
  857. }
  858. dec_mm_counter(mm, MM_ANONPAGES);
  859. inc_mm_counter(mm, MM_SWAPENTS);
  860. } else if (PAGE_MIGRATION) {
  861. /*
  862. * Store the pfn of the page in a special migration
  863. * pte. do_swap_page() will wait until the migration
  864. * pte is removed and then restart fault handling.
  865. */
  866. BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
  867. entry = make_migration_entry(page, pte_write(pteval));
  868. }
  869. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  870. BUG_ON(pte_file(*pte));
  871. } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
  872. /* Establish migration entry for a file page */
  873. swp_entry_t entry;
  874. entry = make_migration_entry(page, pte_write(pteval));
  875. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  876. } else
  877. dec_mm_counter(mm, MM_FILEPAGES);
  878. page_remove_rmap(page);
  879. page_cache_release(page);
  880. out_unmap:
  881. pte_unmap_unlock(pte, ptl);
  882. out:
  883. return ret;
  884. out_mlock:
  885. pte_unmap_unlock(pte, ptl);
  886. /*
  887. * We need mmap_sem locking, Otherwise VM_LOCKED check makes
  888. * unstable result and race. Plus, We can't wait here because
  889. * we now hold anon_vma->lock or mapping->i_mmap_lock.
  890. * if trylock failed, the page remain in evictable lru and later
  891. * vmscan could retry to move the page to unevictable lru if the
  892. * page is actually mlocked.
  893. */
  894. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  895. if (vma->vm_flags & VM_LOCKED) {
  896. mlock_vma_page(page);
  897. ret = SWAP_MLOCK;
  898. }
  899. up_read(&vma->vm_mm->mmap_sem);
  900. }
  901. return ret;
  902. }
  903. /*
  904. * objrmap doesn't work for nonlinear VMAs because the assumption that
  905. * offset-into-file correlates with offset-into-virtual-addresses does not hold.
  906. * Consequently, given a particular page and its ->index, we cannot locate the
  907. * ptes which are mapping that page without an exhaustive linear search.
  908. *
  909. * So what this code does is a mini "virtual scan" of each nonlinear VMA which
  910. * maps the file to which the target page belongs. The ->vm_private_data field
  911. * holds the current cursor into that scan. Successive searches will circulate
  912. * around the vma's virtual address space.
  913. *
  914. * So as more replacement pressure is applied to the pages in a nonlinear VMA,
  915. * more scanning pressure is placed against them as well. Eventually pages
  916. * will become fully unmapped and are eligible for eviction.
  917. *
  918. * For very sparsely populated VMAs this is a little inefficient - chances are
  919. * there there won't be many ptes located within the scan cluster. In this case
  920. * maybe we could scan further - to the end of the pte page, perhaps.
  921. *
  922. * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
  923. * acquire it without blocking. If vma locked, mlock the pages in the cluster,
  924. * rather than unmapping them. If we encounter the "check_page" that vmscan is
  925. * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
  926. */
  927. #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
  928. #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
  929. static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
  930. struct vm_area_struct *vma, struct page *check_page)
  931. {
  932. struct mm_struct *mm = vma->vm_mm;
  933. pgd_t *pgd;
  934. pud_t *pud;
  935. pmd_t *pmd;
  936. pte_t *pte;
  937. pte_t pteval;
  938. spinlock_t *ptl;
  939. struct page *page;
  940. unsigned long address;
  941. unsigned long end;
  942. int ret = SWAP_AGAIN;
  943. int locked_vma = 0;
  944. address = (vma->vm_start + cursor) & CLUSTER_MASK;
  945. end = address + CLUSTER_SIZE;
  946. if (address < vma->vm_start)
  947. address = vma->vm_start;
  948. if (end > vma->vm_end)
  949. end = vma->vm_end;
  950. pgd = pgd_offset(mm, address);
  951. if (!pgd_present(*pgd))
  952. return ret;
  953. pud = pud_offset(pgd, address);
  954. if (!pud_present(*pud))
  955. return ret;
  956. pmd = pmd_offset(pud, address);
  957. if (!pmd_present(*pmd))
  958. return ret;
  959. /*
  960. * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
  961. * keep the sem while scanning the cluster for mlocking pages.
  962. */
  963. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  964. locked_vma = (vma->vm_flags & VM_LOCKED);
  965. if (!locked_vma)
  966. up_read(&vma->vm_mm->mmap_sem); /* don't need it */
  967. }
  968. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  969. /* Update high watermark before we lower rss */
  970. update_hiwater_rss(mm);
  971. for (; address < end; pte++, address += PAGE_SIZE) {
  972. if (!pte_present(*pte))
  973. continue;
  974. page = vm_normal_page(vma, address, *pte);
  975. BUG_ON(!page || PageAnon(page));
  976. if (locked_vma) {
  977. mlock_vma_page(page); /* no-op if already mlocked */
  978. if (page == check_page)
  979. ret = SWAP_MLOCK;
  980. continue; /* don't unmap */
  981. }
  982. if (ptep_clear_flush_young_notify(vma, address, pte))
  983. continue;
  984. /* Nuke the page table entry. */
  985. flush_cache_page(vma, address, pte_pfn(*pte));
  986. pteval = ptep_clear_flush_notify(vma, address, pte);
  987. /* If nonlinear, store the file page offset in the pte. */
  988. if (page->index != linear_page_index(vma, address))
  989. set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
  990. /* Move the dirty bit to the physical page now the pte is gone. */
  991. if (pte_dirty(pteval))
  992. set_page_dirty(page);
  993. page_remove_rmap(page);
  994. page_cache_release(page);
  995. dec_mm_counter(mm, MM_FILEPAGES);
  996. (*mapcount)--;
  997. }
  998. pte_unmap_unlock(pte - 1, ptl);
  999. if (locked_vma)
  1000. up_read(&vma->vm_mm->mmap_sem);
  1001. return ret;
  1002. }
  1003. /**
  1004. * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
  1005. * rmap method
  1006. * @page: the page to unmap/unlock
  1007. * @flags: action and flags
  1008. *
  1009. * Find all the mappings of a page using the mapping pointer and the vma chains
  1010. * contained in the anon_vma struct it points to.
  1011. *
  1012. * This function is only called from try_to_unmap/try_to_munlock for
  1013. * anonymous pages.
  1014. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1015. * where the page was found will be held for write. So, we won't recheck
  1016. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1017. * 'LOCKED.
  1018. */
  1019. static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
  1020. {
  1021. struct anon_vma *anon_vma;
  1022. struct anon_vma_chain *avc;
  1023. int ret = SWAP_AGAIN;
  1024. anon_vma = page_lock_anon_vma(page);
  1025. if (!anon_vma)
  1026. return ret;
  1027. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1028. struct vm_area_struct *vma = avc->vma;
  1029. unsigned long address = vma_address(page, vma);
  1030. if (address == -EFAULT)
  1031. continue;
  1032. ret = try_to_unmap_one(page, vma, address, flags);
  1033. if (ret != SWAP_AGAIN || !page_mapped(page))
  1034. break;
  1035. }
  1036. page_unlock_anon_vma(anon_vma);
  1037. return ret;
  1038. }
  1039. /**
  1040. * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
  1041. * @page: the page to unmap/unlock
  1042. * @flags: action and flags
  1043. *
  1044. * Find all the mappings of a page using the mapping pointer and the vma chains
  1045. * contained in the address_space struct it points to.
  1046. *
  1047. * This function is only called from try_to_unmap/try_to_munlock for
  1048. * object-based pages.
  1049. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1050. * where the page was found will be held for write. So, we won't recheck
  1051. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1052. * 'LOCKED.
  1053. */
  1054. static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
  1055. {
  1056. struct address_space *mapping = page->mapping;
  1057. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1058. struct vm_area_struct *vma;
  1059. struct prio_tree_iter iter;
  1060. int ret = SWAP_AGAIN;
  1061. unsigned long cursor;
  1062. unsigned long max_nl_cursor = 0;
  1063. unsigned long max_nl_size = 0;
  1064. unsigned int mapcount;
  1065. spin_lock(&mapping->i_mmap_lock);
  1066. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1067. unsigned long address = vma_address(page, vma);
  1068. if (address == -EFAULT)
  1069. continue;
  1070. ret = try_to_unmap_one(page, vma, address, flags);
  1071. if (ret != SWAP_AGAIN || !page_mapped(page))
  1072. goto out;
  1073. }
  1074. if (list_empty(&mapping->i_mmap_nonlinear))
  1075. goto out;
  1076. /*
  1077. * We don't bother to try to find the munlocked page in nonlinears.
  1078. * It's costly. Instead, later, page reclaim logic may call
  1079. * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
  1080. */
  1081. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  1082. goto out;
  1083. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1084. shared.vm_set.list) {
  1085. cursor = (unsigned long) vma->vm_private_data;
  1086. if (cursor > max_nl_cursor)
  1087. max_nl_cursor = cursor;
  1088. cursor = vma->vm_end - vma->vm_start;
  1089. if (cursor > max_nl_size)
  1090. max_nl_size = cursor;
  1091. }
  1092. if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
  1093. ret = SWAP_FAIL;
  1094. goto out;
  1095. }
  1096. /*
  1097. * We don't try to search for this page in the nonlinear vmas,
  1098. * and page_referenced wouldn't have found it anyway. Instead
  1099. * just walk the nonlinear vmas trying to age and unmap some.
  1100. * The mapcount of the page we came in with is irrelevant,
  1101. * but even so use it as a guide to how hard we should try?
  1102. */
  1103. mapcount = page_mapcount(page);
  1104. if (!mapcount)
  1105. goto out;
  1106. cond_resched_lock(&mapping->i_mmap_lock);
  1107. max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
  1108. if (max_nl_cursor == 0)
  1109. max_nl_cursor = CLUSTER_SIZE;
  1110. do {
  1111. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1112. shared.vm_set.list) {
  1113. cursor = (unsigned long) vma->vm_private_data;
  1114. while ( cursor < max_nl_cursor &&
  1115. cursor < vma->vm_end - vma->vm_start) {
  1116. if (try_to_unmap_cluster(cursor, &mapcount,
  1117. vma, page) == SWAP_MLOCK)
  1118. ret = SWAP_MLOCK;
  1119. cursor += CLUSTER_SIZE;
  1120. vma->vm_private_data = (void *) cursor;
  1121. if ((int)mapcount <= 0)
  1122. goto out;
  1123. }
  1124. vma->vm_private_data = (void *) max_nl_cursor;
  1125. }
  1126. cond_resched_lock(&mapping->i_mmap_lock);
  1127. max_nl_cursor += CLUSTER_SIZE;
  1128. } while (max_nl_cursor <= max_nl_size);
  1129. /*
  1130. * Don't loop forever (perhaps all the remaining pages are
  1131. * in locked vmas). Reset cursor on all unreserved nonlinear
  1132. * vmas, now forgetting on which ones it had fallen behind.
  1133. */
  1134. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  1135. vma->vm_private_data = NULL;
  1136. out:
  1137. spin_unlock(&mapping->i_mmap_lock);
  1138. return ret;
  1139. }
  1140. /**
  1141. * try_to_unmap - try to remove all page table mappings to a page
  1142. * @page: the page to get unmapped
  1143. * @flags: action and flags
  1144. *
  1145. * Tries to remove all the page table entries which are mapping this
  1146. * page, used in the pageout path. Caller must hold the page lock.
  1147. * Return values are:
  1148. *
  1149. * SWAP_SUCCESS - we succeeded in removing all mappings
  1150. * SWAP_AGAIN - we missed a mapping, try again later
  1151. * SWAP_FAIL - the page is unswappable
  1152. * SWAP_MLOCK - page is mlocked.
  1153. */
  1154. int try_to_unmap(struct page *page, enum ttu_flags flags)
  1155. {
  1156. int ret;
  1157. BUG_ON(!PageLocked(page));
  1158. if (unlikely(PageKsm(page)))
  1159. ret = try_to_unmap_ksm(page, flags);
  1160. else if (PageAnon(page))
  1161. ret = try_to_unmap_anon(page, flags);
  1162. else
  1163. ret = try_to_unmap_file(page, flags);
  1164. if (ret != SWAP_MLOCK && !page_mapped(page))
  1165. ret = SWAP_SUCCESS;
  1166. return ret;
  1167. }
  1168. /**
  1169. * try_to_munlock - try to munlock a page
  1170. * @page: the page to be munlocked
  1171. *
  1172. * Called from munlock code. Checks all of the VMAs mapping the page
  1173. * to make sure nobody else has this page mlocked. The page will be
  1174. * returned with PG_mlocked cleared if no other vmas have it mlocked.
  1175. *
  1176. * Return values are:
  1177. *
  1178. * SWAP_AGAIN - no vma is holding page mlocked, or,
  1179. * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
  1180. * SWAP_FAIL - page cannot be located at present
  1181. * SWAP_MLOCK - page is now mlocked.
  1182. */
  1183. int try_to_munlock(struct page *page)
  1184. {
  1185. VM_BUG_ON(!PageLocked(page) || PageLRU(page));
  1186. if (unlikely(PageKsm(page)))
  1187. return try_to_unmap_ksm(page, TTU_MUNLOCK);
  1188. else if (PageAnon(page))
  1189. return try_to_unmap_anon(page, TTU_MUNLOCK);
  1190. else
  1191. return try_to_unmap_file(page, TTU_MUNLOCK);
  1192. }
  1193. #ifdef CONFIG_MIGRATION
  1194. /*
  1195. * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
  1196. * Called by migrate.c to remove migration ptes, but might be used more later.
  1197. */
  1198. static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
  1199. struct vm_area_struct *, unsigned long, void *), void *arg)
  1200. {
  1201. struct anon_vma *anon_vma;
  1202. struct anon_vma_chain *avc;
  1203. int ret = SWAP_AGAIN;
  1204. /*
  1205. * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
  1206. * because that depends on page_mapped(); but not all its usages
  1207. * are holding mmap_sem. Users without mmap_sem are required to
  1208. * take a reference count to prevent the anon_vma disappearing
  1209. */
  1210. anon_vma = page_anon_vma(page);
  1211. if (!anon_vma)
  1212. return ret;
  1213. spin_lock(&anon_vma->lock);
  1214. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1215. struct vm_area_struct *vma = avc->vma;
  1216. unsigned long address = vma_address(page, vma);
  1217. if (address == -EFAULT)
  1218. continue;
  1219. ret = rmap_one(page, vma, address, arg);
  1220. if (ret != SWAP_AGAIN)
  1221. break;
  1222. }
  1223. spin_unlock(&anon_vma->lock);
  1224. return ret;
  1225. }
  1226. static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
  1227. struct vm_area_struct *, unsigned long, void *), void *arg)
  1228. {
  1229. struct address_space *mapping = page->mapping;
  1230. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1231. struct vm_area_struct *vma;
  1232. struct prio_tree_iter iter;
  1233. int ret = SWAP_AGAIN;
  1234. if (!mapping)
  1235. return ret;
  1236. spin_lock(&mapping->i_mmap_lock);
  1237. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1238. unsigned long address = vma_address(page, vma);
  1239. if (address == -EFAULT)
  1240. continue;
  1241. ret = rmap_one(page, vma, address, arg);
  1242. if (ret != SWAP_AGAIN)
  1243. break;
  1244. }
  1245. /*
  1246. * No nonlinear handling: being always shared, nonlinear vmas
  1247. * never contain migration ptes. Decide what to do about this
  1248. * limitation to linear when we need rmap_walk() on nonlinear.
  1249. */
  1250. spin_unlock(&mapping->i_mmap_lock);
  1251. return ret;
  1252. }
  1253. int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
  1254. struct vm_area_struct *, unsigned long, void *), void *arg)
  1255. {
  1256. VM_BUG_ON(!PageLocked(page));
  1257. if (unlikely(PageKsm(page)))
  1258. return rmap_walk_ksm(page, rmap_one, arg);
  1259. else if (PageAnon(page))
  1260. return rmap_walk_anon(page, rmap_one, arg);
  1261. else
  1262. return rmap_walk_file(page, rmap_one, arg);
  1263. }
  1264. #endif /* CONFIG_MIGRATION */