pch_can.c 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339
  1. /*
  2. * Copyright (C) 1999 - 2010 Intel Corporation.
  3. * Copyright (C) 2010 OKI SEMICONDUCTOR Co., LTD.
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; version 2 of the License.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
  17. */
  18. #include <linux/interrupt.h>
  19. #include <linux/delay.h>
  20. #include <linux/io.h>
  21. #include <linux/module.h>
  22. #include <linux/sched.h>
  23. #include <linux/pci.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/types.h>
  27. #include <linux/errno.h>
  28. #include <linux/netdevice.h>
  29. #include <linux/skbuff.h>
  30. #include <linux/can.h>
  31. #include <linux/can/dev.h>
  32. #include <linux/can/error.h>
  33. #define PCH_ENABLE 1 /* The enable flag */
  34. #define PCH_DISABLE 0 /* The disable flag */
  35. #define PCH_CTRL_INIT BIT(0) /* The INIT bit of CANCONT register. */
  36. #define PCH_CTRL_IE BIT(1) /* The IE bit of CAN control register */
  37. #define PCH_CTRL_IE_SIE_EIE (BIT(3) | BIT(2) | BIT(1))
  38. #define PCH_CTRL_CCE BIT(6)
  39. #define PCH_CTRL_OPT BIT(7) /* The OPT bit of CANCONT register. */
  40. #define PCH_OPT_SILENT BIT(3) /* The Silent bit of CANOPT reg. */
  41. #define PCH_OPT_LBACK BIT(4) /* The LoopBack bit of CANOPT reg. */
  42. #define PCH_CMASK_RX_TX_SET 0x00f3
  43. #define PCH_CMASK_RX_TX_GET 0x0073
  44. #define PCH_CMASK_ALL 0xff
  45. #define PCH_CMASK_NEWDAT BIT(2)
  46. #define PCH_CMASK_CLRINTPND BIT(3)
  47. #define PCH_CMASK_CTRL BIT(4)
  48. #define PCH_CMASK_ARB BIT(5)
  49. #define PCH_CMASK_MASK BIT(6)
  50. #define PCH_CMASK_RDWR BIT(7)
  51. #define PCH_IF_MCONT_NEWDAT BIT(15)
  52. #define PCH_IF_MCONT_MSGLOST BIT(14)
  53. #define PCH_IF_MCONT_INTPND BIT(13)
  54. #define PCH_IF_MCONT_UMASK BIT(12)
  55. #define PCH_IF_MCONT_TXIE BIT(11)
  56. #define PCH_IF_MCONT_RXIE BIT(10)
  57. #define PCH_IF_MCONT_RMTEN BIT(9)
  58. #define PCH_IF_MCONT_TXRQXT BIT(8)
  59. #define PCH_IF_MCONT_EOB BIT(7)
  60. #define PCH_IF_MCONT_DLC (BIT(0) | BIT(1) | BIT(2) | BIT(3))
  61. #define PCH_MASK2_MDIR_MXTD (BIT(14) | BIT(15))
  62. #define PCH_ID2_DIR BIT(13)
  63. #define PCH_ID2_XTD BIT(14)
  64. #define PCH_ID_MSGVAL BIT(15)
  65. #define PCH_IF_CREQ_BUSY BIT(15)
  66. #define PCH_STATUS_INT 0x8000
  67. #define PCH_REC 0x00007f00
  68. #define PCH_TEC 0x000000ff
  69. #define PCH_TX_OK BIT(3)
  70. #define PCH_RX_OK BIT(4)
  71. #define PCH_EPASSIV BIT(5)
  72. #define PCH_EWARN BIT(6)
  73. #define PCH_BUS_OFF BIT(7)
  74. /* bit position of certain controller bits. */
  75. #define PCH_BIT_BRP 0
  76. #define PCH_BIT_SJW 6
  77. #define PCH_BIT_TSEG1 8
  78. #define PCH_BIT_TSEG2 12
  79. #define PCH_BIT_BRPE_BRPE 6
  80. #define PCH_MSK_BITT_BRP 0x3f
  81. #define PCH_MSK_BRPE_BRPE 0x3c0
  82. #define PCH_MSK_CTRL_IE_SIE_EIE 0x07
  83. #define PCH_COUNTER_LIMIT 10
  84. #define PCH_CAN_CLK 50000000 /* 50MHz */
  85. /* Define the number of message object.
  86. * PCH CAN communications are done via Message RAM.
  87. * The Message RAM consists of 32 message objects. */
  88. #define PCH_RX_OBJ_NUM 26
  89. #define PCH_TX_OBJ_NUM 6
  90. #define PCH_RX_OBJ_START 1
  91. #define PCH_RX_OBJ_END PCH_RX_OBJ_NUM
  92. #define PCH_TX_OBJ_START (PCH_RX_OBJ_END + 1)
  93. #define PCH_TX_OBJ_END (PCH_RX_OBJ_NUM + PCH_TX_OBJ_NUM)
  94. #define PCH_FIFO_THRESH 16
  95. /* TxRqst2 show status of MsgObjNo.17~32 */
  96. #define PCH_TREQ2_TX_MASK (((1 << PCH_TX_OBJ_NUM) - 1) <<\
  97. (PCH_RX_OBJ_END - 16))
  98. enum pch_ifreg {
  99. PCH_RX_IFREG,
  100. PCH_TX_IFREG,
  101. };
  102. enum pch_can_err {
  103. PCH_STUF_ERR = 1,
  104. PCH_FORM_ERR,
  105. PCH_ACK_ERR,
  106. PCH_BIT1_ERR,
  107. PCH_BIT0_ERR,
  108. PCH_CRC_ERR,
  109. PCH_LEC_ALL,
  110. };
  111. enum pch_can_mode {
  112. PCH_CAN_ENABLE,
  113. PCH_CAN_DISABLE,
  114. PCH_CAN_ALL,
  115. PCH_CAN_NONE,
  116. PCH_CAN_STOP,
  117. PCH_CAN_RUN
  118. };
  119. struct pch_can_if_regs {
  120. u32 creq;
  121. u32 cmask;
  122. u32 mask1;
  123. u32 mask2;
  124. u32 id1;
  125. u32 id2;
  126. u32 mcont;
  127. u32 data[4];
  128. u32 rsv[13];
  129. };
  130. struct pch_can_regs {
  131. u32 cont;
  132. u32 stat;
  133. u32 errc;
  134. u32 bitt;
  135. u32 intr;
  136. u32 opt;
  137. u32 brpe;
  138. u32 reserve;
  139. struct pch_can_if_regs ifregs[2]; /* [0]=if1 [1]=if2 */
  140. u32 reserve1[8];
  141. u32 treq1;
  142. u32 treq2;
  143. u32 reserve2[6];
  144. u32 data1;
  145. u32 data2;
  146. u32 reserve3[6];
  147. u32 canipend1;
  148. u32 canipend2;
  149. u32 reserve4[6];
  150. u32 canmval1;
  151. u32 canmval2;
  152. u32 reserve5[37];
  153. u32 srst;
  154. };
  155. struct pch_can_priv {
  156. struct can_priv can;
  157. unsigned int can_num;
  158. struct pci_dev *dev;
  159. int tx_enable[PCH_TX_OBJ_END];
  160. int rx_enable[PCH_TX_OBJ_END];
  161. int rx_link[PCH_TX_OBJ_END];
  162. unsigned int int_enables;
  163. unsigned int int_stat;
  164. struct net_device *ndev;
  165. unsigned int msg_obj[PCH_TX_OBJ_END];
  166. struct pch_can_regs __iomem *regs;
  167. struct napi_struct napi;
  168. unsigned int tx_obj; /* Point next Tx Obj index */
  169. unsigned int use_msi;
  170. };
  171. static struct can_bittiming_const pch_can_bittiming_const = {
  172. .name = KBUILD_MODNAME,
  173. .tseg1_min = 1,
  174. .tseg1_max = 16,
  175. .tseg2_min = 1,
  176. .tseg2_max = 8,
  177. .sjw_max = 4,
  178. .brp_min = 1,
  179. .brp_max = 1024, /* 6bit + extended 4bit */
  180. .brp_inc = 1,
  181. };
  182. static DEFINE_PCI_DEVICE_TABLE(pch_pci_tbl) = {
  183. {PCI_VENDOR_ID_INTEL, 0x8818, PCI_ANY_ID, PCI_ANY_ID,},
  184. {0,}
  185. };
  186. MODULE_DEVICE_TABLE(pci, pch_pci_tbl);
  187. static inline void pch_can_bit_set(void __iomem *addr, u32 mask)
  188. {
  189. iowrite32(ioread32(addr) | mask, addr);
  190. }
  191. static inline void pch_can_bit_clear(void __iomem *addr, u32 mask)
  192. {
  193. iowrite32(ioread32(addr) & ~mask, addr);
  194. }
  195. static void pch_can_set_run_mode(struct pch_can_priv *priv,
  196. enum pch_can_mode mode)
  197. {
  198. switch (mode) {
  199. case PCH_CAN_RUN:
  200. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_INIT);
  201. break;
  202. case PCH_CAN_STOP:
  203. pch_can_bit_set(&priv->regs->cont, PCH_CTRL_INIT);
  204. break;
  205. default:
  206. dev_err(&priv->ndev->dev, "%s -> Invalid Mode.\n", __func__);
  207. break;
  208. }
  209. }
  210. static void pch_can_set_optmode(struct pch_can_priv *priv)
  211. {
  212. u32 reg_val = ioread32(&priv->regs->opt);
  213. if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
  214. reg_val |= PCH_OPT_SILENT;
  215. if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
  216. reg_val |= PCH_OPT_LBACK;
  217. pch_can_bit_set(&priv->regs->cont, PCH_CTRL_OPT);
  218. iowrite32(reg_val, &priv->regs->opt);
  219. }
  220. static void pch_can_set_int_enables(struct pch_can_priv *priv,
  221. enum pch_can_mode interrupt_no)
  222. {
  223. switch (interrupt_no) {
  224. case PCH_CAN_ENABLE:
  225. pch_can_bit_set(&priv->regs->cont, PCH_CTRL_IE);
  226. break;
  227. case PCH_CAN_DISABLE:
  228. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE);
  229. break;
  230. case PCH_CAN_ALL:
  231. pch_can_bit_set(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
  232. break;
  233. case PCH_CAN_NONE:
  234. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
  235. break;
  236. default:
  237. dev_err(&priv->ndev->dev, "Invalid interrupt number.\n");
  238. break;
  239. }
  240. }
  241. static void pch_can_check_if_busy(u32 __iomem *creq_addr, u32 num)
  242. {
  243. u32 counter = PCH_COUNTER_LIMIT;
  244. u32 ifx_creq;
  245. iowrite32(num, creq_addr);
  246. while (counter) {
  247. ifx_creq = ioread32(creq_addr) & PCH_IF_CREQ_BUSY;
  248. if (!ifx_creq)
  249. break;
  250. counter--;
  251. udelay(1);
  252. }
  253. if (!counter)
  254. pr_err("%s:IF1 BUSY Flag is set forever.\n", __func__);
  255. }
  256. static void pch_can_set_rxtx(struct pch_can_priv *priv, u32 buff_num,
  257. u32 set, enum pch_ifreg dir)
  258. {
  259. u32 ie;
  260. if (dir)
  261. ie = PCH_IF_MCONT_TXIE;
  262. else
  263. ie = PCH_IF_MCONT_RXIE;
  264. /* Reading the receive buffer data from RAM to Interface1 registers */
  265. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[dir].cmask);
  266. pch_can_check_if_busy(&priv->regs->ifregs[dir].creq, buff_num);
  267. /* Setting the IF1MASK1 register to access MsgVal and RxIE bits */
  268. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_ARB | PCH_CMASK_CTRL,
  269. &priv->regs->ifregs[dir].cmask);
  270. if (set == PCH_ENABLE) {
  271. /* Setting the MsgVal and RxIE bits */
  272. pch_can_bit_set(&priv->regs->ifregs[dir].mcont, ie);
  273. pch_can_bit_set(&priv->regs->ifregs[dir].id2, PCH_ID_MSGVAL);
  274. } else if (set == PCH_DISABLE) {
  275. /* Resetting the MsgVal and RxIE bits */
  276. pch_can_bit_clear(&priv->regs->ifregs[dir].mcont, ie);
  277. pch_can_bit_clear(&priv->regs->ifregs[dir].id2, PCH_ID_MSGVAL);
  278. }
  279. pch_can_check_if_busy(&priv->regs->ifregs[dir].creq, buff_num);
  280. }
  281. static void pch_can_set_rx_all(struct pch_can_priv *priv, u32 set)
  282. {
  283. int i;
  284. /* Traversing to obtain the object configured as receivers. */
  285. for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++)
  286. pch_can_set_rxtx(priv, i, set, PCH_RX_IFREG);
  287. }
  288. static void pch_can_set_tx_all(struct pch_can_priv *priv, u32 set)
  289. {
  290. int i;
  291. /* Traversing to obtain the object configured as transmit object. */
  292. for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
  293. pch_can_set_rxtx(priv, i, set, PCH_TX_IFREG);
  294. }
  295. static int pch_can_int_pending(struct pch_can_priv *priv)
  296. {
  297. return ioread32(&priv->regs->intr) & 0xffff;
  298. }
  299. static void pch_can_clear_buffers(struct pch_can_priv *priv)
  300. {
  301. int i;
  302. for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
  303. iowrite32(PCH_CMASK_RX_TX_SET, &priv->regs->ifregs[0].cmask);
  304. iowrite32(0xffff, &priv->regs->ifregs[0].mask1);
  305. iowrite32(0xffff, &priv->regs->ifregs[0].mask2);
  306. iowrite32(0x0, &priv->regs->ifregs[0].id1);
  307. iowrite32(0x0, &priv->regs->ifregs[0].id2);
  308. iowrite32(0x0, &priv->regs->ifregs[0].mcont);
  309. iowrite32(0x0, &priv->regs->ifregs[0].data[0]);
  310. iowrite32(0x0, &priv->regs->ifregs[0].data[1]);
  311. iowrite32(0x0, &priv->regs->ifregs[0].data[2]);
  312. iowrite32(0x0, &priv->regs->ifregs[0].data[3]);
  313. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK |
  314. PCH_CMASK_ARB | PCH_CMASK_CTRL,
  315. &priv->regs->ifregs[0].cmask);
  316. pch_can_check_if_busy(&priv->regs->ifregs[0].creq, i);
  317. }
  318. for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++) {
  319. iowrite32(PCH_CMASK_RX_TX_SET, &priv->regs->ifregs[1].cmask);
  320. iowrite32(0xffff, &priv->regs->ifregs[1].mask1);
  321. iowrite32(0xffff, &priv->regs->ifregs[1].mask2);
  322. iowrite32(0x0, &priv->regs->ifregs[1].id1);
  323. iowrite32(0x0, &priv->regs->ifregs[1].id2);
  324. iowrite32(0x0, &priv->regs->ifregs[1].mcont);
  325. iowrite32(0x0, &priv->regs->ifregs[1].data[0]);
  326. iowrite32(0x0, &priv->regs->ifregs[1].data[1]);
  327. iowrite32(0x0, &priv->regs->ifregs[1].data[2]);
  328. iowrite32(0x0, &priv->regs->ifregs[1].data[3]);
  329. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK |
  330. PCH_CMASK_ARB | PCH_CMASK_CTRL,
  331. &priv->regs->ifregs[1].cmask);
  332. pch_can_check_if_busy(&priv->regs->ifregs[1].creq, i);
  333. }
  334. }
  335. static void pch_can_config_rx_tx_buffers(struct pch_can_priv *priv)
  336. {
  337. int i;
  338. for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
  339. iowrite32(PCH_CMASK_RX_TX_GET,
  340. &priv->regs->ifregs[0].cmask);
  341. pch_can_check_if_busy(&priv->regs->ifregs[0].creq, i);
  342. iowrite32(0x0, &priv->regs->ifregs[0].id1);
  343. iowrite32(0x0, &priv->regs->ifregs[0].id2);
  344. pch_can_bit_set(&priv->regs->ifregs[0].mcont,
  345. PCH_IF_MCONT_UMASK);
  346. /* Set FIFO mode set to 0 except last Rx Obj*/
  347. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  348. PCH_IF_MCONT_EOB);
  349. /* In case FIFO mode, Last EoB of Rx Obj must be 1 */
  350. if (i == PCH_RX_OBJ_END)
  351. pch_can_bit_set(&priv->regs->ifregs[0].mcont,
  352. PCH_IF_MCONT_EOB);
  353. iowrite32(0, &priv->regs->ifregs[0].mask1);
  354. pch_can_bit_clear(&priv->regs->ifregs[0].mask2,
  355. 0x1fff | PCH_MASK2_MDIR_MXTD);
  356. /* Setting CMASK for writing */
  357. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK |
  358. PCH_CMASK_ARB | PCH_CMASK_CTRL,
  359. &priv->regs->ifregs[0].cmask);
  360. pch_can_check_if_busy(&priv->regs->ifregs[0].creq, i);
  361. }
  362. for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++) {
  363. iowrite32(PCH_CMASK_RX_TX_GET,
  364. &priv->regs->ifregs[1].cmask);
  365. pch_can_check_if_busy(&priv->regs->ifregs[1].creq, i);
  366. /* Resetting DIR bit for reception */
  367. iowrite32(0x0, &priv->regs->ifregs[1].id1);
  368. iowrite32(0x0, &priv->regs->ifregs[1].id2);
  369. pch_can_bit_set(&priv->regs->ifregs[1].id2, PCH_ID2_DIR);
  370. /* Setting EOB bit for transmitter */
  371. iowrite32(PCH_IF_MCONT_EOB, &priv->regs->ifregs[1].mcont);
  372. pch_can_bit_set(&priv->regs->ifregs[1].mcont,
  373. PCH_IF_MCONT_UMASK);
  374. iowrite32(0, &priv->regs->ifregs[1].mask1);
  375. pch_can_bit_clear(&priv->regs->ifregs[1].mask2, 0x1fff);
  376. /* Setting CMASK for writing */
  377. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK |
  378. PCH_CMASK_ARB | PCH_CMASK_CTRL,
  379. &priv->regs->ifregs[1].cmask);
  380. pch_can_check_if_busy(&priv->regs->ifregs[1].creq, i);
  381. }
  382. }
  383. static void pch_can_init(struct pch_can_priv *priv)
  384. {
  385. /* Stopping the Can device. */
  386. pch_can_set_run_mode(priv, PCH_CAN_STOP);
  387. /* Clearing all the message object buffers. */
  388. pch_can_clear_buffers(priv);
  389. /* Configuring the respective message object as either rx/tx object. */
  390. pch_can_config_rx_tx_buffers(priv);
  391. /* Enabling the interrupts. */
  392. pch_can_set_int_enables(priv, PCH_CAN_ALL);
  393. }
  394. static void pch_can_release(struct pch_can_priv *priv)
  395. {
  396. /* Stooping the CAN device. */
  397. pch_can_set_run_mode(priv, PCH_CAN_STOP);
  398. /* Disabling the interrupts. */
  399. pch_can_set_int_enables(priv, PCH_CAN_NONE);
  400. /* Disabling all the receive object. */
  401. pch_can_set_rx_all(priv, 0);
  402. /* Disabling all the transmit object. */
  403. pch_can_set_tx_all(priv, 0);
  404. }
  405. /* This function clears interrupt(s) from the CAN device. */
  406. static void pch_can_int_clr(struct pch_can_priv *priv, u32 mask)
  407. {
  408. if (mask == PCH_STATUS_INT) {
  409. ioread32(&priv->regs->stat);
  410. return;
  411. }
  412. /* Clear interrupt for transmit object */
  413. if ((mask >= PCH_RX_OBJ_START) && (mask <= PCH_RX_OBJ_END)) {
  414. /* Setting CMASK for clearing the reception interrupts. */
  415. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL | PCH_CMASK_ARB,
  416. &priv->regs->ifregs[0].cmask);
  417. /* Clearing the Dir bit. */
  418. pch_can_bit_clear(&priv->regs->ifregs[0].id2, PCH_ID2_DIR);
  419. /* Clearing NewDat & IntPnd */
  420. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  421. PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_INTPND);
  422. pch_can_check_if_busy(&priv->regs->ifregs[0].creq, mask);
  423. } else if ((mask >= PCH_TX_OBJ_START) && (mask <= PCH_TX_OBJ_END)) {
  424. /* Setting CMASK for clearing interrupts for
  425. frame transmission. */
  426. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL | PCH_CMASK_ARB,
  427. &priv->regs->ifregs[1].cmask);
  428. /* Resetting the ID registers. */
  429. pch_can_bit_set(&priv->regs->ifregs[1].id2,
  430. PCH_ID2_DIR | (0x7ff << 2));
  431. iowrite32(0x0, &priv->regs->ifregs[1].id1);
  432. /* Claring NewDat, TxRqst & IntPnd */
  433. pch_can_bit_clear(&priv->regs->ifregs[1].mcont,
  434. PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_INTPND |
  435. PCH_IF_MCONT_TXRQXT);
  436. pch_can_check_if_busy(&priv->regs->ifregs[1].creq, mask);
  437. }
  438. }
  439. static void pch_can_reset(struct pch_can_priv *priv)
  440. {
  441. /* write to sw reset register */
  442. iowrite32(1, &priv->regs->srst);
  443. iowrite32(0, &priv->regs->srst);
  444. }
  445. static void pch_can_error(struct net_device *ndev, u32 status)
  446. {
  447. struct sk_buff *skb;
  448. struct pch_can_priv *priv = netdev_priv(ndev);
  449. struct can_frame *cf;
  450. u32 errc, lec;
  451. struct net_device_stats *stats = &(priv->ndev->stats);
  452. enum can_state state = priv->can.state;
  453. skb = alloc_can_err_skb(ndev, &cf);
  454. if (!skb)
  455. return;
  456. if (status & PCH_BUS_OFF) {
  457. pch_can_set_tx_all(priv, 0);
  458. pch_can_set_rx_all(priv, 0);
  459. state = CAN_STATE_BUS_OFF;
  460. cf->can_id |= CAN_ERR_BUSOFF;
  461. can_bus_off(ndev);
  462. pch_can_set_run_mode(priv, PCH_CAN_RUN);
  463. dev_err(&ndev->dev, "%s -> Bus Off occurres.\n", __func__);
  464. }
  465. /* Warning interrupt. */
  466. if (status & PCH_EWARN) {
  467. state = CAN_STATE_ERROR_WARNING;
  468. priv->can.can_stats.error_warning++;
  469. cf->can_id |= CAN_ERR_CRTL;
  470. errc = ioread32(&priv->regs->errc);
  471. if (((errc & PCH_REC) >> 8) > 96)
  472. cf->data[1] |= CAN_ERR_CRTL_RX_WARNING;
  473. if ((errc & PCH_TEC) > 96)
  474. cf->data[1] |= CAN_ERR_CRTL_TX_WARNING;
  475. dev_warn(&ndev->dev,
  476. "%s -> Error Counter is more than 96.\n", __func__);
  477. }
  478. /* Error passive interrupt. */
  479. if (status & PCH_EPASSIV) {
  480. priv->can.can_stats.error_passive++;
  481. state = CAN_STATE_ERROR_PASSIVE;
  482. cf->can_id |= CAN_ERR_CRTL;
  483. errc = ioread32(&priv->regs->errc);
  484. if (((errc & PCH_REC) >> 8) > 127)
  485. cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
  486. if ((errc & PCH_TEC) > 127)
  487. cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
  488. dev_err(&ndev->dev,
  489. "%s -> CAN controller is ERROR PASSIVE .\n", __func__);
  490. }
  491. lec = status & PCH_LEC_ALL;
  492. switch (lec) {
  493. case PCH_STUF_ERR:
  494. cf->data[2] |= CAN_ERR_PROT_STUFF;
  495. priv->can.can_stats.bus_error++;
  496. stats->rx_errors++;
  497. break;
  498. case PCH_FORM_ERR:
  499. cf->data[2] |= CAN_ERR_PROT_FORM;
  500. priv->can.can_stats.bus_error++;
  501. stats->rx_errors++;
  502. break;
  503. case PCH_ACK_ERR:
  504. cf->can_id |= CAN_ERR_ACK;
  505. priv->can.can_stats.bus_error++;
  506. stats->rx_errors++;
  507. break;
  508. case PCH_BIT1_ERR:
  509. case PCH_BIT0_ERR:
  510. cf->data[2] |= CAN_ERR_PROT_BIT;
  511. priv->can.can_stats.bus_error++;
  512. stats->rx_errors++;
  513. break;
  514. case PCH_CRC_ERR:
  515. cf->data[2] |= CAN_ERR_PROT_LOC_CRC_SEQ |
  516. CAN_ERR_PROT_LOC_CRC_DEL;
  517. priv->can.can_stats.bus_error++;
  518. stats->rx_errors++;
  519. break;
  520. case PCH_LEC_ALL: /* Written by CPU. No error status */
  521. break;
  522. }
  523. priv->can.state = state;
  524. netif_rx(skb);
  525. stats->rx_packets++;
  526. stats->rx_bytes += cf->can_dlc;
  527. }
  528. static irqreturn_t pch_can_interrupt(int irq, void *dev_id)
  529. {
  530. struct net_device *ndev = (struct net_device *)dev_id;
  531. struct pch_can_priv *priv = netdev_priv(ndev);
  532. pch_can_set_int_enables(priv, PCH_CAN_NONE);
  533. napi_schedule(&priv->napi);
  534. return IRQ_HANDLED;
  535. }
  536. static void pch_fifo_thresh(struct pch_can_priv *priv, int obj_id)
  537. {
  538. if (obj_id < PCH_FIFO_THRESH) {
  539. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL |
  540. PCH_CMASK_ARB, &priv->regs->ifregs[0].cmask);
  541. /* Clearing the Dir bit. */
  542. pch_can_bit_clear(&priv->regs->ifregs[0].id2, PCH_ID2_DIR);
  543. /* Clearing NewDat & IntPnd */
  544. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  545. PCH_IF_MCONT_INTPND);
  546. pch_can_check_if_busy(&priv->regs->ifregs[0].creq, obj_id);
  547. } else if (obj_id > PCH_FIFO_THRESH) {
  548. pch_can_int_clr(priv, obj_id);
  549. } else if (obj_id == PCH_FIFO_THRESH) {
  550. int cnt;
  551. for (cnt = 0; cnt < PCH_FIFO_THRESH; cnt++)
  552. pch_can_int_clr(priv, cnt + 1);
  553. }
  554. }
  555. static void pch_can_rx_msg_lost(struct net_device *ndev, int obj_id)
  556. {
  557. struct pch_can_priv *priv = netdev_priv(ndev);
  558. struct net_device_stats *stats = &(priv->ndev->stats);
  559. struct sk_buff *skb;
  560. struct can_frame *cf;
  561. netdev_dbg(priv->ndev, "Msg Obj is overwritten.\n");
  562. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  563. PCH_IF_MCONT_MSGLOST);
  564. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL,
  565. &priv->regs->ifregs[0].cmask);
  566. pch_can_check_if_busy(&priv->regs->ifregs[0].creq, obj_id);
  567. skb = alloc_can_err_skb(ndev, &cf);
  568. if (!skb)
  569. return;
  570. cf->can_id |= CAN_ERR_CRTL;
  571. cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
  572. stats->rx_over_errors++;
  573. stats->rx_errors++;
  574. netif_receive_skb(skb);
  575. }
  576. static int pch_can_rx_normal(struct net_device *ndev, u32 obj_num, int quota)
  577. {
  578. u32 reg;
  579. canid_t id;
  580. int rcv_pkts = 0;
  581. struct sk_buff *skb;
  582. struct can_frame *cf;
  583. struct pch_can_priv *priv = netdev_priv(ndev);
  584. struct net_device_stats *stats = &(priv->ndev->stats);
  585. int i;
  586. u32 id2;
  587. u16 data_reg;
  588. do {
  589. /* Reading the messsage object from the Message RAM */
  590. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
  591. pch_can_check_if_busy(&priv->regs->ifregs[0].creq, obj_num);
  592. /* Reading the MCONT register. */
  593. reg = ioread32(&priv->regs->ifregs[0].mcont);
  594. if (reg & PCH_IF_MCONT_EOB)
  595. break;
  596. /* If MsgLost bit set. */
  597. if (reg & PCH_IF_MCONT_MSGLOST) {
  598. pch_can_rx_msg_lost(ndev, obj_num);
  599. rcv_pkts++;
  600. quota--;
  601. obj_num++;
  602. continue;
  603. } else if (!(reg & PCH_IF_MCONT_NEWDAT)) {
  604. obj_num++;
  605. continue;
  606. }
  607. skb = alloc_can_skb(priv->ndev, &cf);
  608. if (!skb)
  609. return -ENOMEM;
  610. /* Get Received data */
  611. id2 = ioread32(&priv->regs->ifregs[0].id2);
  612. if (id2 & PCH_ID2_XTD) {
  613. id = (ioread32(&priv->regs->ifregs[0].id1) & 0xffff);
  614. id |= (((id2) & 0x1fff) << 16);
  615. cf->can_id = id | CAN_EFF_FLAG;
  616. } else {
  617. id = (id2 >> 2) & CAN_SFF_MASK;
  618. cf->can_id = id;
  619. }
  620. if (id2 & PCH_ID2_DIR)
  621. cf->can_id |= CAN_RTR_FLAG;
  622. cf->can_dlc = get_can_dlc((ioread32(&priv->regs->
  623. ifregs[0].mcont)) & 0xF);
  624. for (i = 0; i < cf->can_dlc; i += 2) {
  625. data_reg = ioread16(&priv->regs->ifregs[0].data[i / 2]);
  626. cf->data[i] = data_reg;
  627. cf->data[i + 1] = data_reg >> 8;
  628. }
  629. netif_receive_skb(skb);
  630. rcv_pkts++;
  631. stats->rx_packets++;
  632. quota--;
  633. stats->rx_bytes += cf->can_dlc;
  634. pch_fifo_thresh(priv, obj_num);
  635. obj_num++;
  636. } while (quota > 0);
  637. return rcv_pkts;
  638. }
  639. static void pch_can_tx_complete(struct net_device *ndev, u32 int_stat)
  640. {
  641. struct pch_can_priv *priv = netdev_priv(ndev);
  642. struct net_device_stats *stats = &(priv->ndev->stats);
  643. u32 dlc;
  644. can_get_echo_skb(ndev, int_stat - PCH_RX_OBJ_END - 1);
  645. iowrite32(PCH_CMASK_RX_TX_GET | PCH_CMASK_CLRINTPND,
  646. &priv->regs->ifregs[1].cmask);
  647. pch_can_check_if_busy(&priv->regs->ifregs[1].creq, int_stat);
  648. dlc = get_can_dlc(ioread32(&priv->regs->ifregs[1].mcont) &
  649. PCH_IF_MCONT_DLC);
  650. stats->tx_bytes += dlc;
  651. stats->tx_packets++;
  652. if (int_stat == PCH_TX_OBJ_END)
  653. netif_wake_queue(ndev);
  654. }
  655. static int pch_can_rx_poll(struct napi_struct *napi, int quota)
  656. {
  657. struct net_device *ndev = napi->dev;
  658. struct pch_can_priv *priv = netdev_priv(ndev);
  659. u32 int_stat;
  660. int rcv_pkts = 0;
  661. u32 reg_stat;
  662. int_stat = pch_can_int_pending(priv);
  663. if (!int_stat)
  664. goto end;
  665. if ((int_stat == PCH_STATUS_INT) && (quota > 0)) {
  666. reg_stat = ioread32(&priv->regs->stat);
  667. if (reg_stat & (PCH_BUS_OFF | PCH_LEC_ALL)) {
  668. if (reg_stat & PCH_BUS_OFF ||
  669. (reg_stat & PCH_LEC_ALL) != PCH_LEC_ALL) {
  670. pch_can_error(ndev, reg_stat);
  671. quota--;
  672. }
  673. }
  674. if (reg_stat & PCH_TX_OK)
  675. pch_can_bit_clear(&priv->regs->stat, PCH_TX_OK);
  676. if (reg_stat & PCH_RX_OK)
  677. pch_can_bit_clear(&priv->regs->stat, PCH_RX_OK);
  678. int_stat = pch_can_int_pending(priv);
  679. }
  680. if (quota == 0)
  681. goto end;
  682. if ((int_stat >= PCH_RX_OBJ_START) && (int_stat <= PCH_RX_OBJ_END)) {
  683. rcv_pkts += pch_can_rx_normal(ndev, int_stat, quota);
  684. quota -= rcv_pkts;
  685. if (quota < 0)
  686. goto end;
  687. } else if ((int_stat >= PCH_TX_OBJ_START) &&
  688. (int_stat <= PCH_TX_OBJ_END)) {
  689. /* Handle transmission interrupt */
  690. pch_can_tx_complete(ndev, int_stat);
  691. }
  692. end:
  693. napi_complete(napi);
  694. pch_can_set_int_enables(priv, PCH_CAN_ALL);
  695. return rcv_pkts;
  696. }
  697. static int pch_set_bittiming(struct net_device *ndev)
  698. {
  699. struct pch_can_priv *priv = netdev_priv(ndev);
  700. const struct can_bittiming *bt = &priv->can.bittiming;
  701. u32 canbit;
  702. u32 bepe;
  703. u32 brp;
  704. /* Setting the CCE bit for accessing the Can Timing register. */
  705. pch_can_bit_set(&priv->regs->cont, PCH_CTRL_CCE);
  706. brp = (bt->tq) / (1000000000/PCH_CAN_CLK) - 1;
  707. canbit = brp & PCH_MSK_BITT_BRP;
  708. canbit |= (bt->sjw - 1) << PCH_BIT_SJW;
  709. canbit |= (bt->phase_seg1 + bt->prop_seg - 1) << PCH_BIT_TSEG1;
  710. canbit |= (bt->phase_seg2 - 1) << PCH_BIT_TSEG2;
  711. bepe = (brp & PCH_MSK_BRPE_BRPE) >> PCH_BIT_BRPE_BRPE;
  712. iowrite32(canbit, &priv->regs->bitt);
  713. iowrite32(bepe, &priv->regs->brpe);
  714. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_CCE);
  715. return 0;
  716. }
  717. static void pch_can_start(struct net_device *ndev)
  718. {
  719. struct pch_can_priv *priv = netdev_priv(ndev);
  720. if (priv->can.state != CAN_STATE_STOPPED)
  721. pch_can_reset(priv);
  722. pch_set_bittiming(ndev);
  723. pch_can_set_optmode(priv);
  724. pch_can_set_tx_all(priv, 1);
  725. pch_can_set_rx_all(priv, 1);
  726. /* Setting the CAN to run mode. */
  727. pch_can_set_run_mode(priv, PCH_CAN_RUN);
  728. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  729. return;
  730. }
  731. static int pch_can_do_set_mode(struct net_device *ndev, enum can_mode mode)
  732. {
  733. int ret = 0;
  734. switch (mode) {
  735. case CAN_MODE_START:
  736. pch_can_start(ndev);
  737. netif_wake_queue(ndev);
  738. break;
  739. default:
  740. ret = -EOPNOTSUPP;
  741. break;
  742. }
  743. return ret;
  744. }
  745. static int pch_can_open(struct net_device *ndev)
  746. {
  747. struct pch_can_priv *priv = netdev_priv(ndev);
  748. int retval;
  749. retval = pci_enable_msi(priv->dev);
  750. if (retval) {
  751. dev_info(&ndev->dev, "PCH CAN opened without MSI\n");
  752. priv->use_msi = 0;
  753. } else {
  754. dev_info(&ndev->dev, "PCH CAN opened with MSI\n");
  755. priv->use_msi = 1;
  756. }
  757. /* Regsitering the interrupt. */
  758. retval = request_irq(priv->dev->irq, pch_can_interrupt, IRQF_SHARED,
  759. ndev->name, ndev);
  760. if (retval) {
  761. dev_err(&ndev->dev, "request_irq failed.\n");
  762. goto req_irq_err;
  763. }
  764. /* Open common can device */
  765. retval = open_candev(ndev);
  766. if (retval) {
  767. dev_err(ndev->dev.parent, "open_candev() failed %d\n", retval);
  768. goto err_open_candev;
  769. }
  770. pch_can_init(priv);
  771. pch_can_start(ndev);
  772. napi_enable(&priv->napi);
  773. netif_start_queue(ndev);
  774. return 0;
  775. err_open_candev:
  776. free_irq(priv->dev->irq, ndev);
  777. req_irq_err:
  778. if (priv->use_msi)
  779. pci_disable_msi(priv->dev);
  780. pch_can_release(priv);
  781. return retval;
  782. }
  783. static int pch_close(struct net_device *ndev)
  784. {
  785. struct pch_can_priv *priv = netdev_priv(ndev);
  786. netif_stop_queue(ndev);
  787. napi_disable(&priv->napi);
  788. pch_can_release(priv);
  789. free_irq(priv->dev->irq, ndev);
  790. if (priv->use_msi)
  791. pci_disable_msi(priv->dev);
  792. close_candev(ndev);
  793. priv->can.state = CAN_STATE_STOPPED;
  794. return 0;
  795. }
  796. static netdev_tx_t pch_xmit(struct sk_buff *skb, struct net_device *ndev)
  797. {
  798. struct pch_can_priv *priv = netdev_priv(ndev);
  799. struct can_frame *cf = (struct can_frame *)skb->data;
  800. int tx_buffer_avail = 0;
  801. int i;
  802. if (can_dropped_invalid_skb(ndev, skb))
  803. return NETDEV_TX_OK;
  804. if (priv->tx_obj == PCH_TX_OBJ_END) {
  805. if (ioread32(&priv->regs->treq2) & PCH_TREQ2_TX_MASK)
  806. netif_stop_queue(ndev);
  807. tx_buffer_avail = priv->tx_obj;
  808. priv->tx_obj = PCH_TX_OBJ_START;
  809. } else {
  810. tx_buffer_avail = priv->tx_obj;
  811. priv->tx_obj++;
  812. }
  813. /* Reading the Msg Obj from the Msg RAM to the Interface register. */
  814. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[1].cmask);
  815. pch_can_check_if_busy(&priv->regs->ifregs[1].creq, tx_buffer_avail);
  816. /* Setting the CMASK register. */
  817. pch_can_bit_set(&priv->regs->ifregs[1].cmask, PCH_CMASK_ALL);
  818. /* If ID extended is set. */
  819. pch_can_bit_clear(&priv->regs->ifregs[1].id1, 0xffff);
  820. pch_can_bit_clear(&priv->regs->ifregs[1].id2, 0x1fff | PCH_ID2_XTD);
  821. if (cf->can_id & CAN_EFF_FLAG) {
  822. pch_can_bit_set(&priv->regs->ifregs[1].id1,
  823. cf->can_id & 0xffff);
  824. pch_can_bit_set(&priv->regs->ifregs[1].id2,
  825. ((cf->can_id >> 16) & 0x1fff) | PCH_ID2_XTD);
  826. } else {
  827. pch_can_bit_set(&priv->regs->ifregs[1].id1, 0);
  828. pch_can_bit_set(&priv->regs->ifregs[1].id2,
  829. (cf->can_id & CAN_SFF_MASK) << 2);
  830. }
  831. /* If remote frame has to be transmitted.. */
  832. if (cf->can_id & CAN_RTR_FLAG)
  833. pch_can_bit_clear(&priv->regs->ifregs[1].id2, PCH_ID2_DIR);
  834. /* Copy data to register */
  835. for (i = 0; i < cf->can_dlc; i += 2) {
  836. iowrite16(cf->data[i] | (cf->data[i + 1] << 8),
  837. &priv->regs->ifregs[1].data[i / 2]);
  838. }
  839. can_put_echo_skb(skb, ndev, tx_buffer_avail - PCH_RX_OBJ_END - 1);
  840. /* Updating the size of the data. */
  841. pch_can_bit_clear(&priv->regs->ifregs[1].mcont, 0x0f);
  842. pch_can_bit_set(&priv->regs->ifregs[1].mcont, cf->can_dlc);
  843. /* Clearing IntPend, NewDat & TxRqst */
  844. pch_can_bit_clear(&priv->regs->ifregs[1].mcont,
  845. PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_INTPND |
  846. PCH_IF_MCONT_TXRQXT);
  847. /* Setting NewDat, TxRqst bits */
  848. pch_can_bit_set(&priv->regs->ifregs[1].mcont,
  849. PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_TXRQXT);
  850. pch_can_check_if_busy(&priv->regs->ifregs[1].creq, tx_buffer_avail);
  851. return NETDEV_TX_OK;
  852. }
  853. static const struct net_device_ops pch_can_netdev_ops = {
  854. .ndo_open = pch_can_open,
  855. .ndo_stop = pch_close,
  856. .ndo_start_xmit = pch_xmit,
  857. };
  858. static void __devexit pch_can_remove(struct pci_dev *pdev)
  859. {
  860. struct net_device *ndev = pci_get_drvdata(pdev);
  861. struct pch_can_priv *priv = netdev_priv(ndev);
  862. unregister_candev(priv->ndev);
  863. free_candev(priv->ndev);
  864. pci_iounmap(pdev, priv->regs);
  865. pci_release_regions(pdev);
  866. pci_disable_device(pdev);
  867. pci_set_drvdata(pdev, NULL);
  868. pch_can_reset(priv);
  869. }
  870. #ifdef CONFIG_PM
  871. static void pch_can_set_int_custom(struct pch_can_priv *priv)
  872. {
  873. /* Clearing the IE, SIE and EIE bits of Can control register. */
  874. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
  875. /* Appropriately setting them. */
  876. pch_can_bit_set(&priv->regs->cont,
  877. ((priv->int_enables & PCH_MSK_CTRL_IE_SIE_EIE) << 1));
  878. }
  879. /* This function retrieves interrupt enabled for the CAN device. */
  880. static void pch_can_get_int_enables(struct pch_can_priv *priv, u32 *enables)
  881. {
  882. /* Obtaining the status of IE, SIE and EIE interrupt bits. */
  883. *enables = ((ioread32(&priv->regs->cont) & PCH_CTRL_IE_SIE_EIE) >> 1);
  884. }
  885. static u32 pch_can_get_rxtx_ir(struct pch_can_priv *priv, u32 buff_num,
  886. enum pch_ifreg dir)
  887. {
  888. u32 ie, enable;
  889. if (dir)
  890. ie = PCH_IF_MCONT_RXIE;
  891. else
  892. ie = PCH_IF_MCONT_TXIE;
  893. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[dir].cmask);
  894. pch_can_check_if_busy(&priv->regs->ifregs[dir].creq, buff_num);
  895. if (((ioread32(&priv->regs->ifregs[dir].id2)) & PCH_ID_MSGVAL) &&
  896. ((ioread32(&priv->regs->ifregs[dir].mcont)) & ie)) {
  897. enable = 1;
  898. } else {
  899. enable = 0;
  900. }
  901. return enable;
  902. }
  903. static void pch_can_set_rx_buffer_link(struct pch_can_priv *priv,
  904. u32 buffer_num, u32 set)
  905. {
  906. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
  907. pch_can_check_if_busy(&priv->regs->ifregs[0].creq, buffer_num);
  908. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL,
  909. &priv->regs->ifregs[0].cmask);
  910. if (set == PCH_ENABLE)
  911. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  912. PCH_IF_MCONT_EOB);
  913. else
  914. pch_can_bit_set(&priv->regs->ifregs[0].mcont, PCH_IF_MCONT_EOB);
  915. pch_can_check_if_busy(&priv->regs->ifregs[0].creq, buffer_num);
  916. }
  917. static void pch_can_get_rx_buffer_link(struct pch_can_priv *priv,
  918. u32 buffer_num, u32 *link)
  919. {
  920. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
  921. pch_can_check_if_busy(&priv->regs->ifregs[0].creq, buffer_num);
  922. if (ioread32(&priv->regs->ifregs[0].mcont) & PCH_IF_MCONT_EOB)
  923. *link = PCH_DISABLE;
  924. else
  925. *link = PCH_ENABLE;
  926. }
  927. static int pch_can_get_buffer_status(struct pch_can_priv *priv)
  928. {
  929. return (ioread32(&priv->regs->treq1) & 0xffff) |
  930. ((ioread32(&priv->regs->treq2) & 0xffff) << 16);
  931. }
  932. static int pch_can_suspend(struct pci_dev *pdev, pm_message_t state)
  933. {
  934. int i; /* Counter variable. */
  935. int retval; /* Return value. */
  936. u32 buf_stat; /* Variable for reading the transmit buffer status. */
  937. u32 counter = 0xFFFFFF;
  938. struct net_device *dev = pci_get_drvdata(pdev);
  939. struct pch_can_priv *priv = netdev_priv(dev);
  940. /* Stop the CAN controller */
  941. pch_can_set_run_mode(priv, PCH_CAN_STOP);
  942. /* Indicate that we are aboutto/in suspend */
  943. priv->can.state = CAN_STATE_SLEEPING;
  944. /* Waiting for all transmission to complete. */
  945. while (counter) {
  946. buf_stat = pch_can_get_buffer_status(priv);
  947. if (!buf_stat)
  948. break;
  949. counter--;
  950. udelay(1);
  951. }
  952. if (!counter)
  953. dev_err(&pdev->dev, "%s -> Transmission time out.\n", __func__);
  954. /* Save interrupt configuration and then disable them */
  955. pch_can_get_int_enables(priv, &(priv->int_enables));
  956. pch_can_set_int_enables(priv, PCH_CAN_DISABLE);
  957. /* Save Tx buffer enable state */
  958. for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
  959. priv->tx_enable[i] = pch_can_get_rxtx_ir(priv, i, PCH_TX_IFREG);
  960. /* Disable all Transmit buffers */
  961. pch_can_set_tx_all(priv, 0);
  962. /* Save Rx buffer enable state */
  963. for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
  964. priv->rx_enable[i] = pch_can_get_rxtx_ir(priv, i, PCH_RX_IFREG);
  965. pch_can_get_rx_buffer_link(priv, i, &priv->rx_link[i]);
  966. }
  967. /* Disable all Receive buffers */
  968. pch_can_set_rx_all(priv, 0);
  969. retval = pci_save_state(pdev);
  970. if (retval) {
  971. dev_err(&pdev->dev, "pci_save_state failed.\n");
  972. } else {
  973. pci_enable_wake(pdev, PCI_D3hot, 0);
  974. pci_disable_device(pdev);
  975. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  976. }
  977. return retval;
  978. }
  979. static int pch_can_resume(struct pci_dev *pdev)
  980. {
  981. int i; /* Counter variable. */
  982. int retval; /* Return variable. */
  983. struct net_device *dev = pci_get_drvdata(pdev);
  984. struct pch_can_priv *priv = netdev_priv(dev);
  985. pci_set_power_state(pdev, PCI_D0);
  986. pci_restore_state(pdev);
  987. retval = pci_enable_device(pdev);
  988. if (retval) {
  989. dev_err(&pdev->dev, "pci_enable_device failed.\n");
  990. return retval;
  991. }
  992. pci_enable_wake(pdev, PCI_D3hot, 0);
  993. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  994. /* Disabling all interrupts. */
  995. pch_can_set_int_enables(priv, PCH_CAN_DISABLE);
  996. /* Setting the CAN device in Stop Mode. */
  997. pch_can_set_run_mode(priv, PCH_CAN_STOP);
  998. /* Configuring the transmit and receive buffers. */
  999. pch_can_config_rx_tx_buffers(priv);
  1000. /* Restore the CAN state */
  1001. pch_set_bittiming(dev);
  1002. /* Listen/Active */
  1003. pch_can_set_optmode(priv);
  1004. /* Enabling the transmit buffer. */
  1005. for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
  1006. pch_can_set_rxtx(priv, i, priv->tx_enable[i], PCH_TX_IFREG);
  1007. /* Configuring the receive buffer and enabling them. */
  1008. for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
  1009. /* Restore buffer link */
  1010. pch_can_set_rx_buffer_link(priv, i, priv->rx_link[i]);
  1011. /* Restore buffer enables */
  1012. pch_can_set_rxtx(priv, i, priv->rx_enable[i], PCH_RX_IFREG);
  1013. }
  1014. /* Enable CAN Interrupts */
  1015. pch_can_set_int_custom(priv);
  1016. /* Restore Run Mode */
  1017. pch_can_set_run_mode(priv, PCH_CAN_RUN);
  1018. return retval;
  1019. }
  1020. #else
  1021. #define pch_can_suspend NULL
  1022. #define pch_can_resume NULL
  1023. #endif
  1024. static int pch_can_get_berr_counter(const struct net_device *dev,
  1025. struct can_berr_counter *bec)
  1026. {
  1027. struct pch_can_priv *priv = netdev_priv(dev);
  1028. bec->txerr = ioread32(&priv->regs->errc) & PCH_TEC;
  1029. bec->rxerr = (ioread32(&priv->regs->errc) & PCH_REC) >> 8;
  1030. return 0;
  1031. }
  1032. static int __devinit pch_can_probe(struct pci_dev *pdev,
  1033. const struct pci_device_id *id)
  1034. {
  1035. struct net_device *ndev;
  1036. struct pch_can_priv *priv;
  1037. int rc;
  1038. void __iomem *addr;
  1039. rc = pci_enable_device(pdev);
  1040. if (rc) {
  1041. dev_err(&pdev->dev, "Failed pci_enable_device %d\n", rc);
  1042. goto probe_exit_endev;
  1043. }
  1044. rc = pci_request_regions(pdev, KBUILD_MODNAME);
  1045. if (rc) {
  1046. dev_err(&pdev->dev, "Failed pci_request_regions %d\n", rc);
  1047. goto probe_exit_pcireq;
  1048. }
  1049. addr = pci_iomap(pdev, 1, 0);
  1050. if (!addr) {
  1051. rc = -EIO;
  1052. dev_err(&pdev->dev, "Failed pci_iomap\n");
  1053. goto probe_exit_ipmap;
  1054. }
  1055. ndev = alloc_candev(sizeof(struct pch_can_priv), PCH_TX_OBJ_END);
  1056. if (!ndev) {
  1057. rc = -ENOMEM;
  1058. dev_err(&pdev->dev, "Failed alloc_candev\n");
  1059. goto probe_exit_alloc_candev;
  1060. }
  1061. priv = netdev_priv(ndev);
  1062. priv->ndev = ndev;
  1063. priv->regs = addr;
  1064. priv->dev = pdev;
  1065. priv->can.bittiming_const = &pch_can_bittiming_const;
  1066. priv->can.do_set_mode = pch_can_do_set_mode;
  1067. priv->can.do_get_berr_counter = pch_can_get_berr_counter;
  1068. priv->can.ctrlmode_supported = CAN_CTRLMODE_LISTENONLY |
  1069. CAN_CTRLMODE_LOOPBACK;
  1070. priv->tx_obj = PCH_TX_OBJ_START; /* Point head of Tx Obj */
  1071. ndev->irq = pdev->irq;
  1072. ndev->flags |= IFF_ECHO;
  1073. pci_set_drvdata(pdev, ndev);
  1074. SET_NETDEV_DEV(ndev, &pdev->dev);
  1075. ndev->netdev_ops = &pch_can_netdev_ops;
  1076. priv->can.clock.freq = PCH_CAN_CLK; /* Hz */
  1077. netif_napi_add(ndev, &priv->napi, pch_can_rx_poll, PCH_RX_OBJ_END);
  1078. rc = register_candev(ndev);
  1079. if (rc) {
  1080. dev_err(&pdev->dev, "Failed register_candev %d\n", rc);
  1081. goto probe_exit_reg_candev;
  1082. }
  1083. return 0;
  1084. probe_exit_reg_candev:
  1085. free_candev(ndev);
  1086. probe_exit_alloc_candev:
  1087. pci_iounmap(pdev, addr);
  1088. probe_exit_ipmap:
  1089. pci_release_regions(pdev);
  1090. probe_exit_pcireq:
  1091. pci_disable_device(pdev);
  1092. probe_exit_endev:
  1093. return rc;
  1094. }
  1095. static struct pci_driver pch_can_pci_driver = {
  1096. .name = "pch_can",
  1097. .id_table = pch_pci_tbl,
  1098. .probe = pch_can_probe,
  1099. .remove = __devexit_p(pch_can_remove),
  1100. .suspend = pch_can_suspend,
  1101. .resume = pch_can_resume,
  1102. };
  1103. static int __init pch_can_pci_init(void)
  1104. {
  1105. return pci_register_driver(&pch_can_pci_driver);
  1106. }
  1107. module_init(pch_can_pci_init);
  1108. static void __exit pch_can_pci_exit(void)
  1109. {
  1110. pci_unregister_driver(&pch_can_pci_driver);
  1111. }
  1112. module_exit(pch_can_pci_exit);
  1113. MODULE_DESCRIPTION("Controller Area Network Driver");
  1114. MODULE_LICENSE("GPL v2");
  1115. MODULE_VERSION("0.94");