memblock.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563
  1. /*
  2. * Procedures for maintaining information about logical memory blocks.
  3. *
  4. * Peter Bergner, IBM Corp. June 2001.
  5. * Copyright (C) 2001 Peter Bergner.
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/init.h>
  14. #include <linux/bitops.h>
  15. #include <linux/poison.h>
  16. #include <linux/memblock.h>
  17. struct memblock memblock;
  18. static int memblock_debug;
  19. static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS + 1];
  20. static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS + 1];
  21. #define MEMBLOCK_ERROR (~(phys_addr_t)0)
  22. static int __init early_memblock(char *p)
  23. {
  24. if (p && strstr(p, "debug"))
  25. memblock_debug = 1;
  26. return 0;
  27. }
  28. early_param("memblock", early_memblock);
  29. static void memblock_dump(struct memblock_type *region, char *name)
  30. {
  31. unsigned long long base, size;
  32. int i;
  33. pr_info(" %s.cnt = 0x%lx\n", name, region->cnt);
  34. for (i = 0; i < region->cnt; i++) {
  35. base = region->regions[i].base;
  36. size = region->regions[i].size;
  37. pr_info(" %s[0x%x]\t0x%016llx - 0x%016llx, 0x%llx bytes\n",
  38. name, i, base, base + size - 1, size);
  39. }
  40. }
  41. void memblock_dump_all(void)
  42. {
  43. if (!memblock_debug)
  44. return;
  45. pr_info("MEMBLOCK configuration:\n");
  46. pr_info(" memory size = 0x%llx\n", (unsigned long long)memblock.memory_size);
  47. memblock_dump(&memblock.memory, "memory");
  48. memblock_dump(&memblock.reserved, "reserved");
  49. }
  50. static unsigned long memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
  51. phys_addr_t base2, phys_addr_t size2)
  52. {
  53. return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
  54. }
  55. static long memblock_addrs_adjacent(phys_addr_t base1, phys_addr_t size1,
  56. phys_addr_t base2, phys_addr_t size2)
  57. {
  58. if (base2 == base1 + size1)
  59. return 1;
  60. else if (base1 == base2 + size2)
  61. return -1;
  62. return 0;
  63. }
  64. static long memblock_regions_adjacent(struct memblock_type *type,
  65. unsigned long r1, unsigned long r2)
  66. {
  67. phys_addr_t base1 = type->regions[r1].base;
  68. phys_addr_t size1 = type->regions[r1].size;
  69. phys_addr_t base2 = type->regions[r2].base;
  70. phys_addr_t size2 = type->regions[r2].size;
  71. return memblock_addrs_adjacent(base1, size1, base2, size2);
  72. }
  73. static void memblock_remove_region(struct memblock_type *type, unsigned long r)
  74. {
  75. unsigned long i;
  76. for (i = r; i < type->cnt - 1; i++) {
  77. type->regions[i].base = type->regions[i + 1].base;
  78. type->regions[i].size = type->regions[i + 1].size;
  79. }
  80. type->cnt--;
  81. }
  82. /* Assumption: base addr of region 1 < base addr of region 2 */
  83. static void memblock_coalesce_regions(struct memblock_type *type,
  84. unsigned long r1, unsigned long r2)
  85. {
  86. type->regions[r1].size += type->regions[r2].size;
  87. memblock_remove_region(type, r2);
  88. }
  89. void __init memblock_analyze(void)
  90. {
  91. int i;
  92. /* Check marker in the unused last array entry */
  93. WARN_ON(memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS].base
  94. != (phys_addr_t)RED_INACTIVE);
  95. WARN_ON(memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS].base
  96. != (phys_addr_t)RED_INACTIVE);
  97. memblock.memory_size = 0;
  98. for (i = 0; i < memblock.memory.cnt; i++)
  99. memblock.memory_size += memblock.memory.regions[i].size;
  100. }
  101. static long memblock_add_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
  102. {
  103. unsigned long coalesced = 0;
  104. long adjacent, i;
  105. if ((type->cnt == 1) && (type->regions[0].size == 0)) {
  106. type->regions[0].base = base;
  107. type->regions[0].size = size;
  108. return 0;
  109. }
  110. /* First try and coalesce this MEMBLOCK with another. */
  111. for (i = 0; i < type->cnt; i++) {
  112. phys_addr_t rgnbase = type->regions[i].base;
  113. phys_addr_t rgnsize = type->regions[i].size;
  114. if ((rgnbase == base) && (rgnsize == size))
  115. /* Already have this region, so we're done */
  116. return 0;
  117. adjacent = memblock_addrs_adjacent(base, size, rgnbase, rgnsize);
  118. if (adjacent > 0) {
  119. type->regions[i].base -= size;
  120. type->regions[i].size += size;
  121. coalesced++;
  122. break;
  123. } else if (adjacent < 0) {
  124. type->regions[i].size += size;
  125. coalesced++;
  126. break;
  127. }
  128. }
  129. if ((i < type->cnt - 1) && memblock_regions_adjacent(type, i, i+1)) {
  130. memblock_coalesce_regions(type, i, i+1);
  131. coalesced++;
  132. }
  133. if (coalesced)
  134. return coalesced;
  135. if (type->cnt >= type->max)
  136. return -1;
  137. /* Couldn't coalesce the MEMBLOCK, so add it to the sorted table. */
  138. for (i = type->cnt - 1; i >= 0; i--) {
  139. if (base < type->regions[i].base) {
  140. type->regions[i+1].base = type->regions[i].base;
  141. type->regions[i+1].size = type->regions[i].size;
  142. } else {
  143. type->regions[i+1].base = base;
  144. type->regions[i+1].size = size;
  145. break;
  146. }
  147. }
  148. if (base < type->regions[0].base) {
  149. type->regions[0].base = base;
  150. type->regions[0].size = size;
  151. }
  152. type->cnt++;
  153. return 0;
  154. }
  155. long memblock_add(phys_addr_t base, phys_addr_t size)
  156. {
  157. return memblock_add_region(&memblock.memory, base, size);
  158. }
  159. static long __memblock_remove(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
  160. {
  161. phys_addr_t rgnbegin, rgnend;
  162. phys_addr_t end = base + size;
  163. int i;
  164. rgnbegin = rgnend = 0; /* supress gcc warnings */
  165. /* Find the region where (base, size) belongs to */
  166. for (i=0; i < type->cnt; i++) {
  167. rgnbegin = type->regions[i].base;
  168. rgnend = rgnbegin + type->regions[i].size;
  169. if ((rgnbegin <= base) && (end <= rgnend))
  170. break;
  171. }
  172. /* Didn't find the region */
  173. if (i == type->cnt)
  174. return -1;
  175. /* Check to see if we are removing entire region */
  176. if ((rgnbegin == base) && (rgnend == end)) {
  177. memblock_remove_region(type, i);
  178. return 0;
  179. }
  180. /* Check to see if region is matching at the front */
  181. if (rgnbegin == base) {
  182. type->regions[i].base = end;
  183. type->regions[i].size -= size;
  184. return 0;
  185. }
  186. /* Check to see if the region is matching at the end */
  187. if (rgnend == end) {
  188. type->regions[i].size -= size;
  189. return 0;
  190. }
  191. /*
  192. * We need to split the entry - adjust the current one to the
  193. * beginging of the hole and add the region after hole.
  194. */
  195. type->regions[i].size = base - type->regions[i].base;
  196. return memblock_add_region(type, end, rgnend - end);
  197. }
  198. long memblock_remove(phys_addr_t base, phys_addr_t size)
  199. {
  200. return __memblock_remove(&memblock.memory, base, size);
  201. }
  202. long __init memblock_free(phys_addr_t base, phys_addr_t size)
  203. {
  204. return __memblock_remove(&memblock.reserved, base, size);
  205. }
  206. long __init memblock_reserve(phys_addr_t base, phys_addr_t size)
  207. {
  208. struct memblock_type *_rgn = &memblock.reserved;
  209. BUG_ON(0 == size);
  210. return memblock_add_region(_rgn, base, size);
  211. }
  212. long memblock_overlaps_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
  213. {
  214. unsigned long i;
  215. for (i = 0; i < type->cnt; i++) {
  216. phys_addr_t rgnbase = type->regions[i].base;
  217. phys_addr_t rgnsize = type->regions[i].size;
  218. if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
  219. break;
  220. }
  221. return (i < type->cnt) ? i : -1;
  222. }
  223. static phys_addr_t memblock_align_down(phys_addr_t addr, phys_addr_t size)
  224. {
  225. return addr & ~(size - 1);
  226. }
  227. static phys_addr_t memblock_align_up(phys_addr_t addr, phys_addr_t size)
  228. {
  229. return (addr + (size - 1)) & ~(size - 1);
  230. }
  231. static phys_addr_t __init memblock_find_region(phys_addr_t start, phys_addr_t end,
  232. phys_addr_t size, phys_addr_t align)
  233. {
  234. phys_addr_t base, res_base;
  235. long j;
  236. base = memblock_align_down((end - size), align);
  237. while (start <= base) {
  238. j = memblock_overlaps_region(&memblock.reserved, base, size);
  239. if (j < 0)
  240. return base;
  241. res_base = memblock.reserved.regions[j].base;
  242. if (res_base < size)
  243. break;
  244. base = memblock_align_down(res_base - size, align);
  245. }
  246. return MEMBLOCK_ERROR;
  247. }
  248. phys_addr_t __weak __init memblock_nid_range(phys_addr_t start, phys_addr_t end, int *nid)
  249. {
  250. *nid = 0;
  251. return end;
  252. }
  253. static phys_addr_t __init memblock_alloc_nid_region(struct memblock_region *mp,
  254. phys_addr_t size,
  255. phys_addr_t align, int nid)
  256. {
  257. phys_addr_t start, end;
  258. start = mp->base;
  259. end = start + mp->size;
  260. start = memblock_align_up(start, align);
  261. while (start < end) {
  262. phys_addr_t this_end;
  263. int this_nid;
  264. this_end = memblock_nid_range(start, end, &this_nid);
  265. if (this_nid == nid) {
  266. phys_addr_t ret = memblock_find_region(start, this_end, size, align);
  267. if (ret != MEMBLOCK_ERROR &&
  268. memblock_add_region(&memblock.reserved, ret, size) >= 0)
  269. return ret;
  270. }
  271. start = this_end;
  272. }
  273. return MEMBLOCK_ERROR;
  274. }
  275. phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
  276. {
  277. struct memblock_type *mem = &memblock.memory;
  278. int i;
  279. BUG_ON(0 == size);
  280. /* We align the size to limit fragmentation. Without this, a lot of
  281. * small allocs quickly eat up the whole reserve array on sparc
  282. */
  283. size = memblock_align_up(size, align);
  284. /* We do a bottom-up search for a region with the right
  285. * nid since that's easier considering how memblock_nid_range()
  286. * works
  287. */
  288. for (i = 0; i < mem->cnt; i++) {
  289. phys_addr_t ret = memblock_alloc_nid_region(&mem->regions[i],
  290. size, align, nid);
  291. if (ret != MEMBLOCK_ERROR)
  292. return ret;
  293. }
  294. return memblock_alloc(size, align);
  295. }
  296. phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
  297. {
  298. return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
  299. }
  300. static phys_addr_t __init memblock_find_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
  301. {
  302. long i;
  303. phys_addr_t base = 0;
  304. phys_addr_t res_base;
  305. BUG_ON(0 == size);
  306. /* Pump up max_addr */
  307. if (max_addr == MEMBLOCK_ALLOC_ACCESSIBLE)
  308. max_addr = memblock.current_limit;
  309. /* We do a top-down search, this tends to limit memory
  310. * fragmentation by keeping early boot allocs near the
  311. * top of memory
  312. */
  313. for (i = memblock.memory.cnt - 1; i >= 0; i--) {
  314. phys_addr_t memblockbase = memblock.memory.regions[i].base;
  315. phys_addr_t memblocksize = memblock.memory.regions[i].size;
  316. if (memblocksize < size)
  317. continue;
  318. base = min(memblockbase + memblocksize, max_addr);
  319. res_base = memblock_find_region(memblockbase, base, size, align);
  320. if (res_base != MEMBLOCK_ERROR)
  321. return res_base;
  322. }
  323. return MEMBLOCK_ERROR;
  324. }
  325. phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
  326. {
  327. phys_addr_t found;
  328. /* We align the size to limit fragmentation. Without this, a lot of
  329. * small allocs quickly eat up the whole reserve array on sparc
  330. */
  331. size = memblock_align_up(size, align);
  332. found = memblock_find_base(size, align, max_addr);
  333. if (found != MEMBLOCK_ERROR &&
  334. memblock_add_region(&memblock.reserved, found, size) >= 0)
  335. return found;
  336. return 0;
  337. }
  338. phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
  339. {
  340. phys_addr_t alloc;
  341. alloc = __memblock_alloc_base(size, align, max_addr);
  342. if (alloc == 0)
  343. panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
  344. (unsigned long long) size, (unsigned long long) max_addr);
  345. return alloc;
  346. }
  347. /* You must call memblock_analyze() before this. */
  348. phys_addr_t __init memblock_phys_mem_size(void)
  349. {
  350. return memblock.memory_size;
  351. }
  352. phys_addr_t memblock_end_of_DRAM(void)
  353. {
  354. int idx = memblock.memory.cnt - 1;
  355. return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
  356. }
  357. /* You must call memblock_analyze() after this. */
  358. void __init memblock_enforce_memory_limit(phys_addr_t memory_limit)
  359. {
  360. unsigned long i;
  361. phys_addr_t limit;
  362. struct memblock_region *p;
  363. if (!memory_limit)
  364. return;
  365. /* Truncate the memblock regions to satisfy the memory limit. */
  366. limit = memory_limit;
  367. for (i = 0; i < memblock.memory.cnt; i++) {
  368. if (limit > memblock.memory.regions[i].size) {
  369. limit -= memblock.memory.regions[i].size;
  370. continue;
  371. }
  372. memblock.memory.regions[i].size = limit;
  373. memblock.memory.cnt = i + 1;
  374. break;
  375. }
  376. memory_limit = memblock_end_of_DRAM();
  377. /* And truncate any reserves above the limit also. */
  378. for (i = 0; i < memblock.reserved.cnt; i++) {
  379. p = &memblock.reserved.regions[i];
  380. if (p->base > memory_limit)
  381. p->size = 0;
  382. else if ((p->base + p->size) > memory_limit)
  383. p->size = memory_limit - p->base;
  384. if (p->size == 0) {
  385. memblock_remove_region(&memblock.reserved, i);
  386. i--;
  387. }
  388. }
  389. }
  390. static int memblock_search(struct memblock_type *type, phys_addr_t addr)
  391. {
  392. unsigned int left = 0, right = type->cnt;
  393. do {
  394. unsigned int mid = (right + left) / 2;
  395. if (addr < type->regions[mid].base)
  396. right = mid;
  397. else if (addr >= (type->regions[mid].base +
  398. type->regions[mid].size))
  399. left = mid + 1;
  400. else
  401. return mid;
  402. } while (left < right);
  403. return -1;
  404. }
  405. int __init memblock_is_reserved(phys_addr_t addr)
  406. {
  407. return memblock_search(&memblock.reserved, addr) != -1;
  408. }
  409. int memblock_is_memory(phys_addr_t addr)
  410. {
  411. return memblock_search(&memblock.memory, addr) != -1;
  412. }
  413. int memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
  414. {
  415. int idx = memblock_search(&memblock.reserved, base);
  416. if (idx == -1)
  417. return 0;
  418. return memblock.reserved.regions[idx].base <= base &&
  419. (memblock.reserved.regions[idx].base +
  420. memblock.reserved.regions[idx].size) >= (base + size);
  421. }
  422. int memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
  423. {
  424. return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
  425. }
  426. void __init memblock_set_current_limit(phys_addr_t limit)
  427. {
  428. memblock.current_limit = limit;
  429. }
  430. void __init memblock_init(void)
  431. {
  432. /* Hookup the initial arrays */
  433. memblock.memory.regions = memblock_memory_init_regions;
  434. memblock.memory.max = INIT_MEMBLOCK_REGIONS;
  435. memblock.reserved.regions = memblock_reserved_init_regions;
  436. memblock.reserved.max = INIT_MEMBLOCK_REGIONS;
  437. /* Write a marker in the unused last array entry */
  438. memblock.memory.regions[INIT_MEMBLOCK_REGIONS].base = (phys_addr_t)RED_INACTIVE;
  439. memblock.reserved.regions[INIT_MEMBLOCK_REGIONS].base = (phys_addr_t)RED_INACTIVE;
  440. /* Create a dummy zero size MEMBLOCK which will get coalesced away later.
  441. * This simplifies the memblock_add() code below...
  442. */
  443. memblock.memory.regions[0].base = 0;
  444. memblock.memory.regions[0].size = 0;
  445. memblock.memory.cnt = 1;
  446. /* Ditto. */
  447. memblock.reserved.regions[0].base = 0;
  448. memblock.reserved.regions[0].size = 0;
  449. memblock.reserved.cnt = 1;
  450. memblock.current_limit = MEMBLOCK_ALLOC_ANYWHERE;
  451. }