af_iucv.c 57 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413
  1. /*
  2. * IUCV protocol stack for Linux on zSeries
  3. *
  4. * Copyright IBM Corp. 2006, 2009
  5. *
  6. * Author(s): Jennifer Hunt <jenhunt@us.ibm.com>
  7. * Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
  8. * PM functions:
  9. * Ursula Braun <ursula.braun@de.ibm.com>
  10. */
  11. #define KMSG_COMPONENT "af_iucv"
  12. #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  13. #include <linux/module.h>
  14. #include <linux/types.h>
  15. #include <linux/list.h>
  16. #include <linux/errno.h>
  17. #include <linux/kernel.h>
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include <linux/skbuff.h>
  21. #include <linux/init.h>
  22. #include <linux/poll.h>
  23. #include <net/sock.h>
  24. #include <asm/ebcdic.h>
  25. #include <asm/cpcmd.h>
  26. #include <linux/kmod.h>
  27. #include <net/iucv/af_iucv.h>
  28. #define VERSION "1.2"
  29. static char iucv_userid[80];
  30. static const struct proto_ops iucv_sock_ops;
  31. static struct proto iucv_proto = {
  32. .name = "AF_IUCV",
  33. .owner = THIS_MODULE,
  34. .obj_size = sizeof(struct iucv_sock),
  35. };
  36. static struct iucv_interface *pr_iucv;
  37. /* special AF_IUCV IPRM messages */
  38. static const u8 iprm_shutdown[8] =
  39. {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01};
  40. #define TRGCLS_SIZE (sizeof(((struct iucv_message *)0)->class))
  41. /* macros to set/get socket control buffer at correct offset */
  42. #define CB_TAG(skb) ((skb)->cb) /* iucv message tag */
  43. #define CB_TAG_LEN (sizeof(((struct iucv_message *) 0)->tag))
  44. #define CB_TRGCLS(skb) ((skb)->cb + CB_TAG_LEN) /* iucv msg target class */
  45. #define CB_TRGCLS_LEN (TRGCLS_SIZE)
  46. #define __iucv_sock_wait(sk, condition, timeo, ret) \
  47. do { \
  48. DEFINE_WAIT(__wait); \
  49. long __timeo = timeo; \
  50. ret = 0; \
  51. prepare_to_wait(sk_sleep(sk), &__wait, TASK_INTERRUPTIBLE); \
  52. while (!(condition)) { \
  53. if (!__timeo) { \
  54. ret = -EAGAIN; \
  55. break; \
  56. } \
  57. if (signal_pending(current)) { \
  58. ret = sock_intr_errno(__timeo); \
  59. break; \
  60. } \
  61. release_sock(sk); \
  62. __timeo = schedule_timeout(__timeo); \
  63. lock_sock(sk); \
  64. ret = sock_error(sk); \
  65. if (ret) \
  66. break; \
  67. } \
  68. finish_wait(sk_sleep(sk), &__wait); \
  69. } while (0)
  70. #define iucv_sock_wait(sk, condition, timeo) \
  71. ({ \
  72. int __ret = 0; \
  73. if (!(condition)) \
  74. __iucv_sock_wait(sk, condition, timeo, __ret); \
  75. __ret; \
  76. })
  77. static void iucv_sock_kill(struct sock *sk);
  78. static void iucv_sock_close(struct sock *sk);
  79. static void iucv_sever_path(struct sock *, int);
  80. static int afiucv_hs_rcv(struct sk_buff *skb, struct net_device *dev,
  81. struct packet_type *pt, struct net_device *orig_dev);
  82. static int afiucv_hs_send(struct iucv_message *imsg, struct sock *sock,
  83. struct sk_buff *skb, u8 flags);
  84. static void afiucv_hs_callback_txnotify(struct sk_buff *, enum iucv_tx_notify);
  85. /* Call Back functions */
  86. static void iucv_callback_rx(struct iucv_path *, struct iucv_message *);
  87. static void iucv_callback_txdone(struct iucv_path *, struct iucv_message *);
  88. static void iucv_callback_connack(struct iucv_path *, u8 ipuser[16]);
  89. static int iucv_callback_connreq(struct iucv_path *, u8 ipvmid[8],
  90. u8 ipuser[16]);
  91. static void iucv_callback_connrej(struct iucv_path *, u8 ipuser[16]);
  92. static void iucv_callback_shutdown(struct iucv_path *, u8 ipuser[16]);
  93. static struct iucv_sock_list iucv_sk_list = {
  94. .lock = __RW_LOCK_UNLOCKED(iucv_sk_list.lock),
  95. .autobind_name = ATOMIC_INIT(0)
  96. };
  97. static struct iucv_handler af_iucv_handler = {
  98. .path_pending = iucv_callback_connreq,
  99. .path_complete = iucv_callback_connack,
  100. .path_severed = iucv_callback_connrej,
  101. .message_pending = iucv_callback_rx,
  102. .message_complete = iucv_callback_txdone,
  103. .path_quiesced = iucv_callback_shutdown,
  104. };
  105. static inline void high_nmcpy(unsigned char *dst, char *src)
  106. {
  107. memcpy(dst, src, 8);
  108. }
  109. static inline void low_nmcpy(unsigned char *dst, char *src)
  110. {
  111. memcpy(&dst[8], src, 8);
  112. }
  113. static void iucv_skb_queue_purge(struct sk_buff_head *list)
  114. {
  115. struct sk_buff *skb;
  116. while ((skb = skb_dequeue(list)) != NULL) {
  117. if (skb->dev)
  118. dev_put(skb->dev);
  119. kfree_skb(skb);
  120. }
  121. }
  122. static int afiucv_pm_prepare(struct device *dev)
  123. {
  124. #ifdef CONFIG_PM_DEBUG
  125. printk(KERN_WARNING "afiucv_pm_prepare\n");
  126. #endif
  127. return 0;
  128. }
  129. static void afiucv_pm_complete(struct device *dev)
  130. {
  131. #ifdef CONFIG_PM_DEBUG
  132. printk(KERN_WARNING "afiucv_pm_complete\n");
  133. #endif
  134. }
  135. /**
  136. * afiucv_pm_freeze() - Freeze PM callback
  137. * @dev: AFIUCV dummy device
  138. *
  139. * Sever all established IUCV communication pathes
  140. */
  141. static int afiucv_pm_freeze(struct device *dev)
  142. {
  143. struct iucv_sock *iucv;
  144. struct sock *sk;
  145. struct hlist_node *node;
  146. int err = 0;
  147. #ifdef CONFIG_PM_DEBUG
  148. printk(KERN_WARNING "afiucv_pm_freeze\n");
  149. #endif
  150. read_lock(&iucv_sk_list.lock);
  151. sk_for_each(sk, node, &iucv_sk_list.head) {
  152. iucv = iucv_sk(sk);
  153. iucv_skb_queue_purge(&iucv->send_skb_q);
  154. skb_queue_purge(&iucv->backlog_skb_q);
  155. switch (sk->sk_state) {
  156. case IUCV_DISCONN:
  157. case IUCV_CLOSING:
  158. case IUCV_CONNECTED:
  159. iucv_sever_path(sk, 0);
  160. break;
  161. case IUCV_OPEN:
  162. case IUCV_BOUND:
  163. case IUCV_LISTEN:
  164. case IUCV_CLOSED:
  165. default:
  166. break;
  167. }
  168. skb_queue_purge(&iucv->send_skb_q);
  169. skb_queue_purge(&iucv->backlog_skb_q);
  170. }
  171. read_unlock(&iucv_sk_list.lock);
  172. return err;
  173. }
  174. /**
  175. * afiucv_pm_restore_thaw() - Thaw and restore PM callback
  176. * @dev: AFIUCV dummy device
  177. *
  178. * socket clean up after freeze
  179. */
  180. static int afiucv_pm_restore_thaw(struct device *dev)
  181. {
  182. struct sock *sk;
  183. struct hlist_node *node;
  184. #ifdef CONFIG_PM_DEBUG
  185. printk(KERN_WARNING "afiucv_pm_restore_thaw\n");
  186. #endif
  187. read_lock(&iucv_sk_list.lock);
  188. sk_for_each(sk, node, &iucv_sk_list.head) {
  189. switch (sk->sk_state) {
  190. case IUCV_CONNECTED:
  191. sk->sk_err = EPIPE;
  192. sk->sk_state = IUCV_DISCONN;
  193. sk->sk_state_change(sk);
  194. break;
  195. case IUCV_DISCONN:
  196. case IUCV_CLOSING:
  197. case IUCV_LISTEN:
  198. case IUCV_BOUND:
  199. case IUCV_OPEN:
  200. default:
  201. break;
  202. }
  203. }
  204. read_unlock(&iucv_sk_list.lock);
  205. return 0;
  206. }
  207. static const struct dev_pm_ops afiucv_pm_ops = {
  208. .prepare = afiucv_pm_prepare,
  209. .complete = afiucv_pm_complete,
  210. .freeze = afiucv_pm_freeze,
  211. .thaw = afiucv_pm_restore_thaw,
  212. .restore = afiucv_pm_restore_thaw,
  213. };
  214. static struct device_driver af_iucv_driver = {
  215. .owner = THIS_MODULE,
  216. .name = "afiucv",
  217. .bus = NULL,
  218. .pm = &afiucv_pm_ops,
  219. };
  220. /* dummy device used as trigger for PM functions */
  221. static struct device *af_iucv_dev;
  222. /**
  223. * iucv_msg_length() - Returns the length of an iucv message.
  224. * @msg: Pointer to struct iucv_message, MUST NOT be NULL
  225. *
  226. * The function returns the length of the specified iucv message @msg of data
  227. * stored in a buffer and of data stored in the parameter list (PRMDATA).
  228. *
  229. * For IUCV_IPRMDATA, AF_IUCV uses the following convention to transport socket
  230. * data:
  231. * PRMDATA[0..6] socket data (max 7 bytes);
  232. * PRMDATA[7] socket data length value (len is 0xff - PRMDATA[7])
  233. *
  234. * The socket data length is computed by subtracting the socket data length
  235. * value from 0xFF.
  236. * If the socket data len is greater 7, then PRMDATA can be used for special
  237. * notifications (see iucv_sock_shutdown); and further,
  238. * if the socket data len is > 7, the function returns 8.
  239. *
  240. * Use this function to allocate socket buffers to store iucv message data.
  241. */
  242. static inline size_t iucv_msg_length(struct iucv_message *msg)
  243. {
  244. size_t datalen;
  245. if (msg->flags & IUCV_IPRMDATA) {
  246. datalen = 0xff - msg->rmmsg[7];
  247. return (datalen < 8) ? datalen : 8;
  248. }
  249. return msg->length;
  250. }
  251. /**
  252. * iucv_sock_in_state() - check for specific states
  253. * @sk: sock structure
  254. * @state: first iucv sk state
  255. * @state: second iucv sk state
  256. *
  257. * Returns true if the socket in either in the first or second state.
  258. */
  259. static int iucv_sock_in_state(struct sock *sk, int state, int state2)
  260. {
  261. return (sk->sk_state == state || sk->sk_state == state2);
  262. }
  263. /**
  264. * iucv_below_msglim() - function to check if messages can be sent
  265. * @sk: sock structure
  266. *
  267. * Returns true if the send queue length is lower than the message limit.
  268. * Always returns true if the socket is not connected (no iucv path for
  269. * checking the message limit).
  270. */
  271. static inline int iucv_below_msglim(struct sock *sk)
  272. {
  273. struct iucv_sock *iucv = iucv_sk(sk);
  274. if (sk->sk_state != IUCV_CONNECTED)
  275. return 1;
  276. if (iucv->transport == AF_IUCV_TRANS_IUCV)
  277. return (skb_queue_len(&iucv->send_skb_q) < iucv->path->msglim);
  278. else
  279. return ((atomic_read(&iucv->msg_sent) < iucv->msglimit_peer) &&
  280. (atomic_read(&iucv->pendings) <= 0));
  281. }
  282. /**
  283. * iucv_sock_wake_msglim() - Wake up thread waiting on msg limit
  284. */
  285. static void iucv_sock_wake_msglim(struct sock *sk)
  286. {
  287. struct socket_wq *wq;
  288. rcu_read_lock();
  289. wq = rcu_dereference(sk->sk_wq);
  290. if (wq_has_sleeper(wq))
  291. wake_up_interruptible_all(&wq->wait);
  292. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  293. rcu_read_unlock();
  294. }
  295. /**
  296. * afiucv_hs_send() - send a message through HiperSockets transport
  297. */
  298. static int afiucv_hs_send(struct iucv_message *imsg, struct sock *sock,
  299. struct sk_buff *skb, u8 flags)
  300. {
  301. struct net *net = sock_net(sock);
  302. struct iucv_sock *iucv = iucv_sk(sock);
  303. struct af_iucv_trans_hdr *phs_hdr;
  304. struct sk_buff *nskb;
  305. int err, confirm_recv = 0;
  306. memset(skb->head, 0, ETH_HLEN);
  307. phs_hdr = (struct af_iucv_trans_hdr *)skb_push(skb,
  308. sizeof(struct af_iucv_trans_hdr));
  309. skb_reset_mac_header(skb);
  310. skb_reset_network_header(skb);
  311. skb_push(skb, ETH_HLEN);
  312. skb_reset_mac_header(skb);
  313. memset(phs_hdr, 0, sizeof(struct af_iucv_trans_hdr));
  314. phs_hdr->magic = ETH_P_AF_IUCV;
  315. phs_hdr->version = 1;
  316. phs_hdr->flags = flags;
  317. if (flags == AF_IUCV_FLAG_SYN)
  318. phs_hdr->window = iucv->msglimit;
  319. else if ((flags == AF_IUCV_FLAG_WIN) || !flags) {
  320. confirm_recv = atomic_read(&iucv->msg_recv);
  321. phs_hdr->window = confirm_recv;
  322. if (confirm_recv)
  323. phs_hdr->flags = phs_hdr->flags | AF_IUCV_FLAG_WIN;
  324. }
  325. memcpy(phs_hdr->destUserID, iucv->dst_user_id, 8);
  326. memcpy(phs_hdr->destAppName, iucv->dst_name, 8);
  327. memcpy(phs_hdr->srcUserID, iucv->src_user_id, 8);
  328. memcpy(phs_hdr->srcAppName, iucv->src_name, 8);
  329. ASCEBC(phs_hdr->destUserID, sizeof(phs_hdr->destUserID));
  330. ASCEBC(phs_hdr->destAppName, sizeof(phs_hdr->destAppName));
  331. ASCEBC(phs_hdr->srcUserID, sizeof(phs_hdr->srcUserID));
  332. ASCEBC(phs_hdr->srcAppName, sizeof(phs_hdr->srcAppName));
  333. if (imsg)
  334. memcpy(&phs_hdr->iucv_hdr, imsg, sizeof(struct iucv_message));
  335. skb->dev = dev_get_by_index(net, sock->sk_bound_dev_if);
  336. if (!skb->dev)
  337. return -ENODEV;
  338. if (!(skb->dev->flags & IFF_UP))
  339. return -ENETDOWN;
  340. if (skb->len > skb->dev->mtu) {
  341. if (sock->sk_type == SOCK_SEQPACKET)
  342. return -EMSGSIZE;
  343. else
  344. skb_trim(skb, skb->dev->mtu);
  345. }
  346. skb->protocol = ETH_P_AF_IUCV;
  347. skb_shinfo(skb)->tx_flags |= SKBTX_DRV_NEEDS_SK_REF;
  348. nskb = skb_clone(skb, GFP_ATOMIC);
  349. if (!nskb)
  350. return -ENOMEM;
  351. skb_queue_tail(&iucv->send_skb_q, nskb);
  352. err = dev_queue_xmit(skb);
  353. if (err) {
  354. skb_unlink(nskb, &iucv->send_skb_q);
  355. dev_put(nskb->dev);
  356. kfree_skb(nskb);
  357. } else {
  358. atomic_sub(confirm_recv, &iucv->msg_recv);
  359. WARN_ON(atomic_read(&iucv->msg_recv) < 0);
  360. }
  361. return err;
  362. }
  363. static struct sock *__iucv_get_sock_by_name(char *nm)
  364. {
  365. struct sock *sk;
  366. struct hlist_node *node;
  367. sk_for_each(sk, node, &iucv_sk_list.head)
  368. if (!memcmp(&iucv_sk(sk)->src_name, nm, 8))
  369. return sk;
  370. return NULL;
  371. }
  372. static void iucv_sock_destruct(struct sock *sk)
  373. {
  374. skb_queue_purge(&sk->sk_receive_queue);
  375. skb_queue_purge(&sk->sk_write_queue);
  376. }
  377. /* Cleanup Listen */
  378. static void iucv_sock_cleanup_listen(struct sock *parent)
  379. {
  380. struct sock *sk;
  381. /* Close non-accepted connections */
  382. while ((sk = iucv_accept_dequeue(parent, NULL))) {
  383. iucv_sock_close(sk);
  384. iucv_sock_kill(sk);
  385. }
  386. parent->sk_state = IUCV_CLOSED;
  387. }
  388. /* Kill socket (only if zapped and orphaned) */
  389. static void iucv_sock_kill(struct sock *sk)
  390. {
  391. if (!sock_flag(sk, SOCK_ZAPPED) || sk->sk_socket)
  392. return;
  393. iucv_sock_unlink(&iucv_sk_list, sk);
  394. sock_set_flag(sk, SOCK_DEAD);
  395. sock_put(sk);
  396. }
  397. /* Terminate an IUCV path */
  398. static void iucv_sever_path(struct sock *sk, int with_user_data)
  399. {
  400. unsigned char user_data[16];
  401. struct iucv_sock *iucv = iucv_sk(sk);
  402. struct iucv_path *path = iucv->path;
  403. if (iucv->path) {
  404. iucv->path = NULL;
  405. if (with_user_data) {
  406. low_nmcpy(user_data, iucv->src_name);
  407. high_nmcpy(user_data, iucv->dst_name);
  408. ASCEBC(user_data, sizeof(user_data));
  409. pr_iucv->path_sever(path, user_data);
  410. } else
  411. pr_iucv->path_sever(path, NULL);
  412. iucv_path_free(path);
  413. }
  414. }
  415. /* Close an IUCV socket */
  416. static void iucv_sock_close(struct sock *sk)
  417. {
  418. struct iucv_sock *iucv = iucv_sk(sk);
  419. unsigned long timeo;
  420. int err, blen;
  421. struct sk_buff *skb;
  422. lock_sock(sk);
  423. switch (sk->sk_state) {
  424. case IUCV_LISTEN:
  425. iucv_sock_cleanup_listen(sk);
  426. break;
  427. case IUCV_CONNECTED:
  428. if (iucv->transport == AF_IUCV_TRANS_HIPER) {
  429. /* send fin */
  430. blen = sizeof(struct af_iucv_trans_hdr) + ETH_HLEN;
  431. skb = sock_alloc_send_skb(sk, blen, 1, &err);
  432. if (skb) {
  433. skb_reserve(skb, blen);
  434. err = afiucv_hs_send(NULL, sk, skb,
  435. AF_IUCV_FLAG_FIN);
  436. }
  437. sk->sk_state = IUCV_DISCONN;
  438. sk->sk_state_change(sk);
  439. }
  440. case IUCV_DISCONN: /* fall through */
  441. sk->sk_state = IUCV_CLOSING;
  442. sk->sk_state_change(sk);
  443. if (!skb_queue_empty(&iucv->send_skb_q)) {
  444. if (sock_flag(sk, SOCK_LINGER) && sk->sk_lingertime)
  445. timeo = sk->sk_lingertime;
  446. else
  447. timeo = IUCV_DISCONN_TIMEOUT;
  448. iucv_sock_wait(sk,
  449. iucv_sock_in_state(sk, IUCV_CLOSED, 0),
  450. timeo);
  451. }
  452. case IUCV_CLOSING: /* fall through */
  453. sk->sk_state = IUCV_CLOSED;
  454. sk->sk_state_change(sk);
  455. sk->sk_err = ECONNRESET;
  456. sk->sk_state_change(sk);
  457. iucv_skb_queue_purge(&iucv->send_skb_q);
  458. skb_queue_purge(&iucv->backlog_skb_q);
  459. default: /* fall through */
  460. iucv_sever_path(sk, 1);
  461. }
  462. /* mark socket for deletion by iucv_sock_kill() */
  463. sock_set_flag(sk, SOCK_ZAPPED);
  464. release_sock(sk);
  465. }
  466. static void iucv_sock_init(struct sock *sk, struct sock *parent)
  467. {
  468. if (parent)
  469. sk->sk_type = parent->sk_type;
  470. }
  471. static struct sock *iucv_sock_alloc(struct socket *sock, int proto, gfp_t prio)
  472. {
  473. struct sock *sk;
  474. struct iucv_sock *iucv;
  475. sk = sk_alloc(&init_net, PF_IUCV, prio, &iucv_proto);
  476. if (!sk)
  477. return NULL;
  478. iucv = iucv_sk(sk);
  479. sock_init_data(sock, sk);
  480. INIT_LIST_HEAD(&iucv->accept_q);
  481. spin_lock_init(&iucv->accept_q_lock);
  482. skb_queue_head_init(&iucv->send_skb_q);
  483. INIT_LIST_HEAD(&iucv->message_q.list);
  484. spin_lock_init(&iucv->message_q.lock);
  485. skb_queue_head_init(&iucv->backlog_skb_q);
  486. iucv->send_tag = 0;
  487. atomic_set(&iucv->pendings, 0);
  488. iucv->flags = 0;
  489. iucv->msglimit = 0;
  490. atomic_set(&iucv->msg_sent, 0);
  491. atomic_set(&iucv->msg_recv, 0);
  492. iucv->path = NULL;
  493. iucv->sk_txnotify = afiucv_hs_callback_txnotify;
  494. memset(&iucv->src_user_id , 0, 32);
  495. if (pr_iucv)
  496. iucv->transport = AF_IUCV_TRANS_IUCV;
  497. else
  498. iucv->transport = AF_IUCV_TRANS_HIPER;
  499. sk->sk_destruct = iucv_sock_destruct;
  500. sk->sk_sndtimeo = IUCV_CONN_TIMEOUT;
  501. sk->sk_allocation = GFP_DMA;
  502. sock_reset_flag(sk, SOCK_ZAPPED);
  503. sk->sk_protocol = proto;
  504. sk->sk_state = IUCV_OPEN;
  505. iucv_sock_link(&iucv_sk_list, sk);
  506. return sk;
  507. }
  508. /* Create an IUCV socket */
  509. static int iucv_sock_create(struct net *net, struct socket *sock, int protocol,
  510. int kern)
  511. {
  512. struct sock *sk;
  513. if (protocol && protocol != PF_IUCV)
  514. return -EPROTONOSUPPORT;
  515. sock->state = SS_UNCONNECTED;
  516. switch (sock->type) {
  517. case SOCK_STREAM:
  518. sock->ops = &iucv_sock_ops;
  519. break;
  520. case SOCK_SEQPACKET:
  521. /* currently, proto ops can handle both sk types */
  522. sock->ops = &iucv_sock_ops;
  523. break;
  524. default:
  525. return -ESOCKTNOSUPPORT;
  526. }
  527. sk = iucv_sock_alloc(sock, protocol, GFP_KERNEL);
  528. if (!sk)
  529. return -ENOMEM;
  530. iucv_sock_init(sk, NULL);
  531. return 0;
  532. }
  533. void iucv_sock_link(struct iucv_sock_list *l, struct sock *sk)
  534. {
  535. write_lock_bh(&l->lock);
  536. sk_add_node(sk, &l->head);
  537. write_unlock_bh(&l->lock);
  538. }
  539. void iucv_sock_unlink(struct iucv_sock_list *l, struct sock *sk)
  540. {
  541. write_lock_bh(&l->lock);
  542. sk_del_node_init(sk);
  543. write_unlock_bh(&l->lock);
  544. }
  545. void iucv_accept_enqueue(struct sock *parent, struct sock *sk)
  546. {
  547. unsigned long flags;
  548. struct iucv_sock *par = iucv_sk(parent);
  549. sock_hold(sk);
  550. spin_lock_irqsave(&par->accept_q_lock, flags);
  551. list_add_tail(&iucv_sk(sk)->accept_q, &par->accept_q);
  552. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  553. iucv_sk(sk)->parent = parent;
  554. sk_acceptq_added(parent);
  555. }
  556. void iucv_accept_unlink(struct sock *sk)
  557. {
  558. unsigned long flags;
  559. struct iucv_sock *par = iucv_sk(iucv_sk(sk)->parent);
  560. spin_lock_irqsave(&par->accept_q_lock, flags);
  561. list_del_init(&iucv_sk(sk)->accept_q);
  562. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  563. sk_acceptq_removed(iucv_sk(sk)->parent);
  564. iucv_sk(sk)->parent = NULL;
  565. sock_put(sk);
  566. }
  567. struct sock *iucv_accept_dequeue(struct sock *parent, struct socket *newsock)
  568. {
  569. struct iucv_sock *isk, *n;
  570. struct sock *sk;
  571. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  572. sk = (struct sock *) isk;
  573. lock_sock(sk);
  574. if (sk->sk_state == IUCV_CLOSED) {
  575. iucv_accept_unlink(sk);
  576. release_sock(sk);
  577. continue;
  578. }
  579. if (sk->sk_state == IUCV_CONNECTED ||
  580. sk->sk_state == IUCV_DISCONN ||
  581. !newsock) {
  582. iucv_accept_unlink(sk);
  583. if (newsock)
  584. sock_graft(sk, newsock);
  585. release_sock(sk);
  586. return sk;
  587. }
  588. release_sock(sk);
  589. }
  590. return NULL;
  591. }
  592. /* Bind an unbound socket */
  593. static int iucv_sock_bind(struct socket *sock, struct sockaddr *addr,
  594. int addr_len)
  595. {
  596. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  597. struct sock *sk = sock->sk;
  598. struct iucv_sock *iucv;
  599. int err = 0;
  600. struct net_device *dev;
  601. char uid[9];
  602. /* Verify the input sockaddr */
  603. if (!addr || addr->sa_family != AF_IUCV)
  604. return -EINVAL;
  605. lock_sock(sk);
  606. if (sk->sk_state != IUCV_OPEN) {
  607. err = -EBADFD;
  608. goto done;
  609. }
  610. write_lock_bh(&iucv_sk_list.lock);
  611. iucv = iucv_sk(sk);
  612. if (__iucv_get_sock_by_name(sa->siucv_name)) {
  613. err = -EADDRINUSE;
  614. goto done_unlock;
  615. }
  616. if (iucv->path)
  617. goto done_unlock;
  618. /* Bind the socket */
  619. if (pr_iucv)
  620. if (!memcmp(sa->siucv_user_id, iucv_userid, 8))
  621. goto vm_bind; /* VM IUCV transport */
  622. /* try hiper transport */
  623. memcpy(uid, sa->siucv_user_id, sizeof(uid));
  624. ASCEBC(uid, 8);
  625. rcu_read_lock();
  626. for_each_netdev_rcu(&init_net, dev) {
  627. if (!memcmp(dev->perm_addr, uid, 8)) {
  628. memcpy(iucv->src_name, sa->siucv_name, 8);
  629. memcpy(iucv->src_user_id, sa->siucv_user_id, 8);
  630. sk->sk_bound_dev_if = dev->ifindex;
  631. sk->sk_state = IUCV_BOUND;
  632. iucv->transport = AF_IUCV_TRANS_HIPER;
  633. if (!iucv->msglimit)
  634. iucv->msglimit = IUCV_HIPER_MSGLIM_DEFAULT;
  635. rcu_read_unlock();
  636. goto done_unlock;
  637. }
  638. }
  639. rcu_read_unlock();
  640. vm_bind:
  641. if (pr_iucv) {
  642. /* use local userid for backward compat */
  643. memcpy(iucv->src_name, sa->siucv_name, 8);
  644. memcpy(iucv->src_user_id, iucv_userid, 8);
  645. sk->sk_state = IUCV_BOUND;
  646. iucv->transport = AF_IUCV_TRANS_IUCV;
  647. if (!iucv->msglimit)
  648. iucv->msglimit = IUCV_QUEUELEN_DEFAULT;
  649. goto done_unlock;
  650. }
  651. /* found no dev to bind */
  652. err = -ENODEV;
  653. done_unlock:
  654. /* Release the socket list lock */
  655. write_unlock_bh(&iucv_sk_list.lock);
  656. done:
  657. release_sock(sk);
  658. return err;
  659. }
  660. /* Automatically bind an unbound socket */
  661. static int iucv_sock_autobind(struct sock *sk)
  662. {
  663. struct iucv_sock *iucv = iucv_sk(sk);
  664. char name[12];
  665. int err = 0;
  666. if (unlikely(!pr_iucv))
  667. return -EPROTO;
  668. memcpy(iucv->src_user_id, iucv_userid, 8);
  669. write_lock_bh(&iucv_sk_list.lock);
  670. sprintf(name, "%08x", atomic_inc_return(&iucv_sk_list.autobind_name));
  671. while (__iucv_get_sock_by_name(name)) {
  672. sprintf(name, "%08x",
  673. atomic_inc_return(&iucv_sk_list.autobind_name));
  674. }
  675. write_unlock_bh(&iucv_sk_list.lock);
  676. memcpy(&iucv->src_name, name, 8);
  677. if (!iucv->msglimit)
  678. iucv->msglimit = IUCV_QUEUELEN_DEFAULT;
  679. return err;
  680. }
  681. static int afiucv_hs_connect(struct socket *sock)
  682. {
  683. struct sock *sk = sock->sk;
  684. struct sk_buff *skb;
  685. int blen = sizeof(struct af_iucv_trans_hdr) + ETH_HLEN;
  686. int err = 0;
  687. /* send syn */
  688. skb = sock_alloc_send_skb(sk, blen, 1, &err);
  689. if (!skb) {
  690. err = -ENOMEM;
  691. goto done;
  692. }
  693. skb->dev = NULL;
  694. skb_reserve(skb, blen);
  695. err = afiucv_hs_send(NULL, sk, skb, AF_IUCV_FLAG_SYN);
  696. done:
  697. return err;
  698. }
  699. static int afiucv_path_connect(struct socket *sock, struct sockaddr *addr)
  700. {
  701. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  702. struct sock *sk = sock->sk;
  703. struct iucv_sock *iucv = iucv_sk(sk);
  704. unsigned char user_data[16];
  705. int err;
  706. high_nmcpy(user_data, sa->siucv_name);
  707. low_nmcpy(user_data, iucv->src_name);
  708. ASCEBC(user_data, sizeof(user_data));
  709. /* Create path. */
  710. iucv->path = iucv_path_alloc(iucv->msglimit,
  711. IUCV_IPRMDATA, GFP_KERNEL);
  712. if (!iucv->path) {
  713. err = -ENOMEM;
  714. goto done;
  715. }
  716. err = pr_iucv->path_connect(iucv->path, &af_iucv_handler,
  717. sa->siucv_user_id, NULL, user_data,
  718. sk);
  719. if (err) {
  720. iucv_path_free(iucv->path);
  721. iucv->path = NULL;
  722. switch (err) {
  723. case 0x0b: /* Target communicator is not logged on */
  724. err = -ENETUNREACH;
  725. break;
  726. case 0x0d: /* Max connections for this guest exceeded */
  727. case 0x0e: /* Max connections for target guest exceeded */
  728. err = -EAGAIN;
  729. break;
  730. case 0x0f: /* Missing IUCV authorization */
  731. err = -EACCES;
  732. break;
  733. default:
  734. err = -ECONNREFUSED;
  735. break;
  736. }
  737. }
  738. done:
  739. return err;
  740. }
  741. /* Connect an unconnected socket */
  742. static int iucv_sock_connect(struct socket *sock, struct sockaddr *addr,
  743. int alen, int flags)
  744. {
  745. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  746. struct sock *sk = sock->sk;
  747. struct iucv_sock *iucv = iucv_sk(sk);
  748. int err;
  749. if (addr->sa_family != AF_IUCV || alen < sizeof(struct sockaddr_iucv))
  750. return -EINVAL;
  751. if (sk->sk_state != IUCV_OPEN && sk->sk_state != IUCV_BOUND)
  752. return -EBADFD;
  753. if (sk->sk_state == IUCV_OPEN &&
  754. iucv->transport == AF_IUCV_TRANS_HIPER)
  755. return -EBADFD; /* explicit bind required */
  756. if (sk->sk_type != SOCK_STREAM && sk->sk_type != SOCK_SEQPACKET)
  757. return -EINVAL;
  758. if (sk->sk_state == IUCV_OPEN) {
  759. err = iucv_sock_autobind(sk);
  760. if (unlikely(err))
  761. return err;
  762. }
  763. lock_sock(sk);
  764. /* Set the destination information */
  765. memcpy(iucv->dst_user_id, sa->siucv_user_id, 8);
  766. memcpy(iucv->dst_name, sa->siucv_name, 8);
  767. if (iucv->transport == AF_IUCV_TRANS_HIPER)
  768. err = afiucv_hs_connect(sock);
  769. else
  770. err = afiucv_path_connect(sock, addr);
  771. if (err)
  772. goto done;
  773. if (sk->sk_state != IUCV_CONNECTED)
  774. err = iucv_sock_wait(sk, iucv_sock_in_state(sk, IUCV_CONNECTED,
  775. IUCV_DISCONN),
  776. sock_sndtimeo(sk, flags & O_NONBLOCK));
  777. if (sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_CLOSED)
  778. err = -ECONNREFUSED;
  779. if (err && iucv->transport == AF_IUCV_TRANS_IUCV)
  780. iucv_sever_path(sk, 0);
  781. done:
  782. release_sock(sk);
  783. return err;
  784. }
  785. /* Move a socket into listening state. */
  786. static int iucv_sock_listen(struct socket *sock, int backlog)
  787. {
  788. struct sock *sk = sock->sk;
  789. int err;
  790. lock_sock(sk);
  791. err = -EINVAL;
  792. if (sk->sk_state != IUCV_BOUND)
  793. goto done;
  794. if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET)
  795. goto done;
  796. sk->sk_max_ack_backlog = backlog;
  797. sk->sk_ack_backlog = 0;
  798. sk->sk_state = IUCV_LISTEN;
  799. err = 0;
  800. done:
  801. release_sock(sk);
  802. return err;
  803. }
  804. /* Accept a pending connection */
  805. static int iucv_sock_accept(struct socket *sock, struct socket *newsock,
  806. int flags)
  807. {
  808. DECLARE_WAITQUEUE(wait, current);
  809. struct sock *sk = sock->sk, *nsk;
  810. long timeo;
  811. int err = 0;
  812. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  813. if (sk->sk_state != IUCV_LISTEN) {
  814. err = -EBADFD;
  815. goto done;
  816. }
  817. timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
  818. /* Wait for an incoming connection */
  819. add_wait_queue_exclusive(sk_sleep(sk), &wait);
  820. while (!(nsk = iucv_accept_dequeue(sk, newsock))) {
  821. set_current_state(TASK_INTERRUPTIBLE);
  822. if (!timeo) {
  823. err = -EAGAIN;
  824. break;
  825. }
  826. release_sock(sk);
  827. timeo = schedule_timeout(timeo);
  828. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  829. if (sk->sk_state != IUCV_LISTEN) {
  830. err = -EBADFD;
  831. break;
  832. }
  833. if (signal_pending(current)) {
  834. err = sock_intr_errno(timeo);
  835. break;
  836. }
  837. }
  838. set_current_state(TASK_RUNNING);
  839. remove_wait_queue(sk_sleep(sk), &wait);
  840. if (err)
  841. goto done;
  842. newsock->state = SS_CONNECTED;
  843. done:
  844. release_sock(sk);
  845. return err;
  846. }
  847. static int iucv_sock_getname(struct socket *sock, struct sockaddr *addr,
  848. int *len, int peer)
  849. {
  850. struct sockaddr_iucv *siucv = (struct sockaddr_iucv *) addr;
  851. struct sock *sk = sock->sk;
  852. struct iucv_sock *iucv = iucv_sk(sk);
  853. addr->sa_family = AF_IUCV;
  854. *len = sizeof(struct sockaddr_iucv);
  855. if (peer) {
  856. memcpy(siucv->siucv_user_id, iucv->dst_user_id, 8);
  857. memcpy(siucv->siucv_name, iucv->dst_name, 8);
  858. } else {
  859. memcpy(siucv->siucv_user_id, iucv->src_user_id, 8);
  860. memcpy(siucv->siucv_name, iucv->src_name, 8);
  861. }
  862. memset(&siucv->siucv_port, 0, sizeof(siucv->siucv_port));
  863. memset(&siucv->siucv_addr, 0, sizeof(siucv->siucv_addr));
  864. memset(&siucv->siucv_nodeid, 0, sizeof(siucv->siucv_nodeid));
  865. return 0;
  866. }
  867. /**
  868. * iucv_send_iprm() - Send socket data in parameter list of an iucv message.
  869. * @path: IUCV path
  870. * @msg: Pointer to a struct iucv_message
  871. * @skb: The socket data to send, skb->len MUST BE <= 7
  872. *
  873. * Send the socket data in the parameter list in the iucv message
  874. * (IUCV_IPRMDATA). The socket data is stored at index 0 to 6 in the parameter
  875. * list and the socket data len at index 7 (last byte).
  876. * See also iucv_msg_length().
  877. *
  878. * Returns the error code from the iucv_message_send() call.
  879. */
  880. static int iucv_send_iprm(struct iucv_path *path, struct iucv_message *msg,
  881. struct sk_buff *skb)
  882. {
  883. u8 prmdata[8];
  884. memcpy(prmdata, (void *) skb->data, skb->len);
  885. prmdata[7] = 0xff - (u8) skb->len;
  886. return pr_iucv->message_send(path, msg, IUCV_IPRMDATA, 0,
  887. (void *) prmdata, 8);
  888. }
  889. static int iucv_sock_sendmsg(struct kiocb *iocb, struct socket *sock,
  890. struct msghdr *msg, size_t len)
  891. {
  892. struct sock *sk = sock->sk;
  893. struct iucv_sock *iucv = iucv_sk(sk);
  894. struct sk_buff *skb;
  895. struct iucv_message txmsg;
  896. struct cmsghdr *cmsg;
  897. int cmsg_done;
  898. long timeo;
  899. char user_id[9];
  900. char appl_id[9];
  901. int err;
  902. int noblock = msg->msg_flags & MSG_DONTWAIT;
  903. err = sock_error(sk);
  904. if (err)
  905. return err;
  906. if (msg->msg_flags & MSG_OOB)
  907. return -EOPNOTSUPP;
  908. /* SOCK_SEQPACKET: we do not support segmented records */
  909. if (sk->sk_type == SOCK_SEQPACKET && !(msg->msg_flags & MSG_EOR))
  910. return -EOPNOTSUPP;
  911. lock_sock(sk);
  912. if (sk->sk_shutdown & SEND_SHUTDOWN) {
  913. err = -EPIPE;
  914. goto out;
  915. }
  916. /* Return if the socket is not in connected state */
  917. if (sk->sk_state != IUCV_CONNECTED) {
  918. err = -ENOTCONN;
  919. goto out;
  920. }
  921. /* initialize defaults */
  922. cmsg_done = 0; /* check for duplicate headers */
  923. txmsg.class = 0;
  924. /* iterate over control messages */
  925. for (cmsg = CMSG_FIRSTHDR(msg); cmsg;
  926. cmsg = CMSG_NXTHDR(msg, cmsg)) {
  927. if (!CMSG_OK(msg, cmsg)) {
  928. err = -EINVAL;
  929. goto out;
  930. }
  931. if (cmsg->cmsg_level != SOL_IUCV)
  932. continue;
  933. if (cmsg->cmsg_type & cmsg_done) {
  934. err = -EINVAL;
  935. goto out;
  936. }
  937. cmsg_done |= cmsg->cmsg_type;
  938. switch (cmsg->cmsg_type) {
  939. case SCM_IUCV_TRGCLS:
  940. if (cmsg->cmsg_len != CMSG_LEN(TRGCLS_SIZE)) {
  941. err = -EINVAL;
  942. goto out;
  943. }
  944. /* set iucv message target class */
  945. memcpy(&txmsg.class,
  946. (void *) CMSG_DATA(cmsg), TRGCLS_SIZE);
  947. break;
  948. default:
  949. err = -EINVAL;
  950. goto out;
  951. break;
  952. }
  953. }
  954. /* allocate one skb for each iucv message:
  955. * this is fine for SOCK_SEQPACKET (unless we want to support
  956. * segmented records using the MSG_EOR flag), but
  957. * for SOCK_STREAM we might want to improve it in future */
  958. if (iucv->transport == AF_IUCV_TRANS_HIPER)
  959. skb = sock_alloc_send_skb(sk,
  960. len + sizeof(struct af_iucv_trans_hdr) + ETH_HLEN,
  961. noblock, &err);
  962. else
  963. skb = sock_alloc_send_skb(sk, len, noblock, &err);
  964. if (!skb)
  965. goto out;
  966. if (iucv->transport == AF_IUCV_TRANS_HIPER)
  967. skb_reserve(skb, sizeof(struct af_iucv_trans_hdr) + ETH_HLEN);
  968. if (memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len)) {
  969. err = -EFAULT;
  970. goto fail;
  971. }
  972. /* wait if outstanding messages for iucv path has reached */
  973. timeo = sock_sndtimeo(sk, noblock);
  974. err = iucv_sock_wait(sk, iucv_below_msglim(sk), timeo);
  975. if (err)
  976. goto fail;
  977. /* return -ECONNRESET if the socket is no longer connected */
  978. if (sk->sk_state != IUCV_CONNECTED) {
  979. err = -ECONNRESET;
  980. goto fail;
  981. }
  982. /* increment and save iucv message tag for msg_completion cbk */
  983. txmsg.tag = iucv->send_tag++;
  984. memcpy(CB_TAG(skb), &txmsg.tag, CB_TAG_LEN);
  985. if (iucv->transport == AF_IUCV_TRANS_HIPER) {
  986. atomic_inc(&iucv->msg_sent);
  987. err = afiucv_hs_send(&txmsg, sk, skb, 0);
  988. if (err) {
  989. atomic_dec(&iucv->msg_sent);
  990. goto fail;
  991. }
  992. goto release;
  993. }
  994. skb_queue_tail(&iucv->send_skb_q, skb);
  995. if (((iucv->path->flags & IUCV_IPRMDATA) & iucv->flags)
  996. && skb->len <= 7) {
  997. err = iucv_send_iprm(iucv->path, &txmsg, skb);
  998. /* on success: there is no message_complete callback
  999. * for an IPRMDATA msg; remove skb from send queue */
  1000. if (err == 0) {
  1001. skb_unlink(skb, &iucv->send_skb_q);
  1002. kfree_skb(skb);
  1003. }
  1004. /* this error should never happen since the
  1005. * IUCV_IPRMDATA path flag is set... sever path */
  1006. if (err == 0x15) {
  1007. pr_iucv->path_sever(iucv->path, NULL);
  1008. skb_unlink(skb, &iucv->send_skb_q);
  1009. err = -EPIPE;
  1010. goto fail;
  1011. }
  1012. } else
  1013. err = pr_iucv->message_send(iucv->path, &txmsg, 0, 0,
  1014. (void *) skb->data, skb->len);
  1015. if (err) {
  1016. if (err == 3) {
  1017. user_id[8] = 0;
  1018. memcpy(user_id, iucv->dst_user_id, 8);
  1019. appl_id[8] = 0;
  1020. memcpy(appl_id, iucv->dst_name, 8);
  1021. pr_err("Application %s on z/VM guest %s"
  1022. " exceeds message limit\n",
  1023. appl_id, user_id);
  1024. err = -EAGAIN;
  1025. } else
  1026. err = -EPIPE;
  1027. skb_unlink(skb, &iucv->send_skb_q);
  1028. goto fail;
  1029. }
  1030. release:
  1031. release_sock(sk);
  1032. return len;
  1033. fail:
  1034. if (skb->dev)
  1035. dev_put(skb->dev);
  1036. kfree_skb(skb);
  1037. out:
  1038. release_sock(sk);
  1039. return err;
  1040. }
  1041. /* iucv_fragment_skb() - Fragment a single IUCV message into multiple skb's
  1042. *
  1043. * Locking: must be called with message_q.lock held
  1044. */
  1045. static int iucv_fragment_skb(struct sock *sk, struct sk_buff *skb, int len)
  1046. {
  1047. int dataleft, size, copied = 0;
  1048. struct sk_buff *nskb;
  1049. dataleft = len;
  1050. while (dataleft) {
  1051. if (dataleft >= sk->sk_rcvbuf / 4)
  1052. size = sk->sk_rcvbuf / 4;
  1053. else
  1054. size = dataleft;
  1055. nskb = alloc_skb(size, GFP_ATOMIC | GFP_DMA);
  1056. if (!nskb)
  1057. return -ENOMEM;
  1058. /* copy target class to control buffer of new skb */
  1059. memcpy(CB_TRGCLS(nskb), CB_TRGCLS(skb), CB_TRGCLS_LEN);
  1060. /* copy data fragment */
  1061. memcpy(nskb->data, skb->data + copied, size);
  1062. copied += size;
  1063. dataleft -= size;
  1064. skb_reset_transport_header(nskb);
  1065. skb_reset_network_header(nskb);
  1066. nskb->len = size;
  1067. skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, nskb);
  1068. }
  1069. return 0;
  1070. }
  1071. /* iucv_process_message() - Receive a single outstanding IUCV message
  1072. *
  1073. * Locking: must be called with message_q.lock held
  1074. */
  1075. static void iucv_process_message(struct sock *sk, struct sk_buff *skb,
  1076. struct iucv_path *path,
  1077. struct iucv_message *msg)
  1078. {
  1079. int rc;
  1080. unsigned int len;
  1081. len = iucv_msg_length(msg);
  1082. /* store msg target class in the second 4 bytes of skb ctrl buffer */
  1083. /* Note: the first 4 bytes are reserved for msg tag */
  1084. memcpy(CB_TRGCLS(skb), &msg->class, CB_TRGCLS_LEN);
  1085. /* check for special IPRM messages (e.g. iucv_sock_shutdown) */
  1086. if ((msg->flags & IUCV_IPRMDATA) && len > 7) {
  1087. if (memcmp(msg->rmmsg, iprm_shutdown, 8) == 0) {
  1088. skb->data = NULL;
  1089. skb->len = 0;
  1090. }
  1091. } else {
  1092. rc = pr_iucv->message_receive(path, msg,
  1093. msg->flags & IUCV_IPRMDATA,
  1094. skb->data, len, NULL);
  1095. if (rc) {
  1096. kfree_skb(skb);
  1097. return;
  1098. }
  1099. /* we need to fragment iucv messages for SOCK_STREAM only;
  1100. * for SOCK_SEQPACKET, it is only relevant if we support
  1101. * record segmentation using MSG_EOR (see also recvmsg()) */
  1102. if (sk->sk_type == SOCK_STREAM &&
  1103. skb->truesize >= sk->sk_rcvbuf / 4) {
  1104. rc = iucv_fragment_skb(sk, skb, len);
  1105. kfree_skb(skb);
  1106. skb = NULL;
  1107. if (rc) {
  1108. pr_iucv->path_sever(path, NULL);
  1109. return;
  1110. }
  1111. skb = skb_dequeue(&iucv_sk(sk)->backlog_skb_q);
  1112. } else {
  1113. skb_reset_transport_header(skb);
  1114. skb_reset_network_header(skb);
  1115. skb->len = len;
  1116. }
  1117. }
  1118. if (sock_queue_rcv_skb(sk, skb))
  1119. skb_queue_head(&iucv_sk(sk)->backlog_skb_q, skb);
  1120. }
  1121. /* iucv_process_message_q() - Process outstanding IUCV messages
  1122. *
  1123. * Locking: must be called with message_q.lock held
  1124. */
  1125. static void iucv_process_message_q(struct sock *sk)
  1126. {
  1127. struct iucv_sock *iucv = iucv_sk(sk);
  1128. struct sk_buff *skb;
  1129. struct sock_msg_q *p, *n;
  1130. list_for_each_entry_safe(p, n, &iucv->message_q.list, list) {
  1131. skb = alloc_skb(iucv_msg_length(&p->msg), GFP_ATOMIC | GFP_DMA);
  1132. if (!skb)
  1133. break;
  1134. iucv_process_message(sk, skb, p->path, &p->msg);
  1135. list_del(&p->list);
  1136. kfree(p);
  1137. if (!skb_queue_empty(&iucv->backlog_skb_q))
  1138. break;
  1139. }
  1140. }
  1141. static int iucv_sock_recvmsg(struct kiocb *iocb, struct socket *sock,
  1142. struct msghdr *msg, size_t len, int flags)
  1143. {
  1144. int noblock = flags & MSG_DONTWAIT;
  1145. struct sock *sk = sock->sk;
  1146. struct iucv_sock *iucv = iucv_sk(sk);
  1147. unsigned int copied, rlen;
  1148. struct sk_buff *skb, *rskb, *cskb, *sskb;
  1149. int blen;
  1150. int err = 0;
  1151. if ((sk->sk_state == IUCV_DISCONN) &&
  1152. skb_queue_empty(&iucv->backlog_skb_q) &&
  1153. skb_queue_empty(&sk->sk_receive_queue) &&
  1154. list_empty(&iucv->message_q.list))
  1155. return 0;
  1156. if (flags & (MSG_OOB))
  1157. return -EOPNOTSUPP;
  1158. /* receive/dequeue next skb:
  1159. * the function understands MSG_PEEK and, thus, does not dequeue skb */
  1160. skb = skb_recv_datagram(sk, flags, noblock, &err);
  1161. if (!skb) {
  1162. if (sk->sk_shutdown & RCV_SHUTDOWN)
  1163. return 0;
  1164. return err;
  1165. }
  1166. rlen = skb->len; /* real length of skb */
  1167. copied = min_t(unsigned int, rlen, len);
  1168. cskb = skb;
  1169. if (skb_copy_datagram_iovec(cskb, 0, msg->msg_iov, copied)) {
  1170. if (!(flags & MSG_PEEK))
  1171. skb_queue_head(&sk->sk_receive_queue, skb);
  1172. return -EFAULT;
  1173. }
  1174. /* SOCK_SEQPACKET: set MSG_TRUNC if recv buf size is too small */
  1175. if (sk->sk_type == SOCK_SEQPACKET) {
  1176. if (copied < rlen)
  1177. msg->msg_flags |= MSG_TRUNC;
  1178. /* each iucv message contains a complete record */
  1179. msg->msg_flags |= MSG_EOR;
  1180. }
  1181. /* create control message to store iucv msg target class:
  1182. * get the trgcls from the control buffer of the skb due to
  1183. * fragmentation of original iucv message. */
  1184. err = put_cmsg(msg, SOL_IUCV, SCM_IUCV_TRGCLS,
  1185. CB_TRGCLS_LEN, CB_TRGCLS(skb));
  1186. if (err) {
  1187. if (!(flags & MSG_PEEK))
  1188. skb_queue_head(&sk->sk_receive_queue, skb);
  1189. return err;
  1190. }
  1191. /* Mark read part of skb as used */
  1192. if (!(flags & MSG_PEEK)) {
  1193. /* SOCK_STREAM: re-queue skb if it contains unreceived data */
  1194. if (sk->sk_type == SOCK_STREAM) {
  1195. skb_pull(skb, copied);
  1196. if (skb->len) {
  1197. skb_queue_head(&sk->sk_receive_queue, skb);
  1198. goto done;
  1199. }
  1200. }
  1201. kfree_skb(skb);
  1202. atomic_inc(&iucv->msg_recv);
  1203. /* Queue backlog skbs */
  1204. spin_lock_bh(&iucv->message_q.lock);
  1205. rskb = skb_dequeue(&iucv->backlog_skb_q);
  1206. while (rskb) {
  1207. if (sock_queue_rcv_skb(sk, rskb)) {
  1208. skb_queue_head(&iucv->backlog_skb_q,
  1209. rskb);
  1210. break;
  1211. } else {
  1212. rskb = skb_dequeue(&iucv->backlog_skb_q);
  1213. }
  1214. }
  1215. if (skb_queue_empty(&iucv->backlog_skb_q)) {
  1216. if (!list_empty(&iucv->message_q.list))
  1217. iucv_process_message_q(sk);
  1218. if (atomic_read(&iucv->msg_recv) >=
  1219. iucv->msglimit / 2) {
  1220. /* send WIN to peer */
  1221. blen = sizeof(struct af_iucv_trans_hdr) +
  1222. ETH_HLEN;
  1223. sskb = sock_alloc_send_skb(sk, blen, 1, &err);
  1224. if (sskb) {
  1225. skb_reserve(sskb, blen);
  1226. err = afiucv_hs_send(NULL, sk, sskb,
  1227. AF_IUCV_FLAG_WIN);
  1228. }
  1229. if (err) {
  1230. sk->sk_state = IUCV_DISCONN;
  1231. sk->sk_state_change(sk);
  1232. }
  1233. }
  1234. }
  1235. spin_unlock_bh(&iucv->message_q.lock);
  1236. }
  1237. done:
  1238. /* SOCK_SEQPACKET: return real length if MSG_TRUNC is set */
  1239. if (sk->sk_type == SOCK_SEQPACKET && (flags & MSG_TRUNC))
  1240. copied = rlen;
  1241. return copied;
  1242. }
  1243. static inline unsigned int iucv_accept_poll(struct sock *parent)
  1244. {
  1245. struct iucv_sock *isk, *n;
  1246. struct sock *sk;
  1247. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  1248. sk = (struct sock *) isk;
  1249. if (sk->sk_state == IUCV_CONNECTED)
  1250. return POLLIN | POLLRDNORM;
  1251. }
  1252. return 0;
  1253. }
  1254. unsigned int iucv_sock_poll(struct file *file, struct socket *sock,
  1255. poll_table *wait)
  1256. {
  1257. struct sock *sk = sock->sk;
  1258. unsigned int mask = 0;
  1259. sock_poll_wait(file, sk_sleep(sk), wait);
  1260. if (sk->sk_state == IUCV_LISTEN)
  1261. return iucv_accept_poll(sk);
  1262. if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
  1263. mask |= POLLERR;
  1264. if (sk->sk_shutdown & RCV_SHUTDOWN)
  1265. mask |= POLLRDHUP;
  1266. if (sk->sk_shutdown == SHUTDOWN_MASK)
  1267. mask |= POLLHUP;
  1268. if (!skb_queue_empty(&sk->sk_receive_queue) ||
  1269. (sk->sk_shutdown & RCV_SHUTDOWN))
  1270. mask |= POLLIN | POLLRDNORM;
  1271. if (sk->sk_state == IUCV_CLOSED)
  1272. mask |= POLLHUP;
  1273. if (sk->sk_state == IUCV_DISCONN)
  1274. mask |= POLLIN;
  1275. if (sock_writeable(sk) && iucv_below_msglim(sk))
  1276. mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
  1277. else
  1278. set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1279. return mask;
  1280. }
  1281. static int iucv_sock_shutdown(struct socket *sock, int how)
  1282. {
  1283. struct sock *sk = sock->sk;
  1284. struct iucv_sock *iucv = iucv_sk(sk);
  1285. struct iucv_message txmsg;
  1286. int err = 0;
  1287. how++;
  1288. if ((how & ~SHUTDOWN_MASK) || !how)
  1289. return -EINVAL;
  1290. lock_sock(sk);
  1291. switch (sk->sk_state) {
  1292. case IUCV_DISCONN:
  1293. case IUCV_CLOSING:
  1294. case IUCV_CLOSED:
  1295. err = -ENOTCONN;
  1296. goto fail;
  1297. default:
  1298. sk->sk_shutdown |= how;
  1299. break;
  1300. }
  1301. if (how == SEND_SHUTDOWN || how == SHUTDOWN_MASK) {
  1302. txmsg.class = 0;
  1303. txmsg.tag = 0;
  1304. err = pr_iucv->message_send(iucv->path, &txmsg, IUCV_IPRMDATA,
  1305. 0, (void *) iprm_shutdown, 8);
  1306. if (err) {
  1307. switch (err) {
  1308. case 1:
  1309. err = -ENOTCONN;
  1310. break;
  1311. case 2:
  1312. err = -ECONNRESET;
  1313. break;
  1314. default:
  1315. err = -ENOTCONN;
  1316. break;
  1317. }
  1318. }
  1319. }
  1320. if (how == RCV_SHUTDOWN || how == SHUTDOWN_MASK) {
  1321. err = pr_iucv->path_quiesce(iucv->path, NULL);
  1322. if (err)
  1323. err = -ENOTCONN;
  1324. skb_queue_purge(&sk->sk_receive_queue);
  1325. }
  1326. /* Wake up anyone sleeping in poll */
  1327. sk->sk_state_change(sk);
  1328. fail:
  1329. release_sock(sk);
  1330. return err;
  1331. }
  1332. static int iucv_sock_release(struct socket *sock)
  1333. {
  1334. struct sock *sk = sock->sk;
  1335. int err = 0;
  1336. if (!sk)
  1337. return 0;
  1338. iucv_sock_close(sk);
  1339. sock_orphan(sk);
  1340. iucv_sock_kill(sk);
  1341. return err;
  1342. }
  1343. /* getsockopt and setsockopt */
  1344. static int iucv_sock_setsockopt(struct socket *sock, int level, int optname,
  1345. char __user *optval, unsigned int optlen)
  1346. {
  1347. struct sock *sk = sock->sk;
  1348. struct iucv_sock *iucv = iucv_sk(sk);
  1349. int val;
  1350. int rc;
  1351. if (level != SOL_IUCV)
  1352. return -ENOPROTOOPT;
  1353. if (optlen < sizeof(int))
  1354. return -EINVAL;
  1355. if (get_user(val, (int __user *) optval))
  1356. return -EFAULT;
  1357. rc = 0;
  1358. lock_sock(sk);
  1359. switch (optname) {
  1360. case SO_IPRMDATA_MSG:
  1361. if (val)
  1362. iucv->flags |= IUCV_IPRMDATA;
  1363. else
  1364. iucv->flags &= ~IUCV_IPRMDATA;
  1365. break;
  1366. case SO_MSGLIMIT:
  1367. switch (sk->sk_state) {
  1368. case IUCV_OPEN:
  1369. case IUCV_BOUND:
  1370. if (val < 1 || val > (u16)(~0))
  1371. rc = -EINVAL;
  1372. else
  1373. iucv->msglimit = val;
  1374. break;
  1375. default:
  1376. rc = -EINVAL;
  1377. break;
  1378. }
  1379. break;
  1380. default:
  1381. rc = -ENOPROTOOPT;
  1382. break;
  1383. }
  1384. release_sock(sk);
  1385. return rc;
  1386. }
  1387. static int iucv_sock_getsockopt(struct socket *sock, int level, int optname,
  1388. char __user *optval, int __user *optlen)
  1389. {
  1390. struct sock *sk = sock->sk;
  1391. struct iucv_sock *iucv = iucv_sk(sk);
  1392. int val, len;
  1393. if (level != SOL_IUCV)
  1394. return -ENOPROTOOPT;
  1395. if (get_user(len, optlen))
  1396. return -EFAULT;
  1397. if (len < 0)
  1398. return -EINVAL;
  1399. len = min_t(unsigned int, len, sizeof(int));
  1400. switch (optname) {
  1401. case SO_IPRMDATA_MSG:
  1402. val = (iucv->flags & IUCV_IPRMDATA) ? 1 : 0;
  1403. break;
  1404. case SO_MSGLIMIT:
  1405. lock_sock(sk);
  1406. val = (iucv->path != NULL) ? iucv->path->msglim /* connected */
  1407. : iucv->msglimit; /* default */
  1408. release_sock(sk);
  1409. break;
  1410. default:
  1411. return -ENOPROTOOPT;
  1412. }
  1413. if (put_user(len, optlen))
  1414. return -EFAULT;
  1415. if (copy_to_user(optval, &val, len))
  1416. return -EFAULT;
  1417. return 0;
  1418. }
  1419. /* Callback wrappers - called from iucv base support */
  1420. static int iucv_callback_connreq(struct iucv_path *path,
  1421. u8 ipvmid[8], u8 ipuser[16])
  1422. {
  1423. unsigned char user_data[16];
  1424. unsigned char nuser_data[16];
  1425. unsigned char src_name[8];
  1426. struct hlist_node *node;
  1427. struct sock *sk, *nsk;
  1428. struct iucv_sock *iucv, *niucv;
  1429. int err;
  1430. memcpy(src_name, ipuser, 8);
  1431. EBCASC(src_name, 8);
  1432. /* Find out if this path belongs to af_iucv. */
  1433. read_lock(&iucv_sk_list.lock);
  1434. iucv = NULL;
  1435. sk = NULL;
  1436. sk_for_each(sk, node, &iucv_sk_list.head)
  1437. if (sk->sk_state == IUCV_LISTEN &&
  1438. !memcmp(&iucv_sk(sk)->src_name, src_name, 8)) {
  1439. /*
  1440. * Found a listening socket with
  1441. * src_name == ipuser[0-7].
  1442. */
  1443. iucv = iucv_sk(sk);
  1444. break;
  1445. }
  1446. read_unlock(&iucv_sk_list.lock);
  1447. if (!iucv)
  1448. /* No socket found, not one of our paths. */
  1449. return -EINVAL;
  1450. bh_lock_sock(sk);
  1451. /* Check if parent socket is listening */
  1452. low_nmcpy(user_data, iucv->src_name);
  1453. high_nmcpy(user_data, iucv->dst_name);
  1454. ASCEBC(user_data, sizeof(user_data));
  1455. if (sk->sk_state != IUCV_LISTEN) {
  1456. err = pr_iucv->path_sever(path, user_data);
  1457. iucv_path_free(path);
  1458. goto fail;
  1459. }
  1460. /* Check for backlog size */
  1461. if (sk_acceptq_is_full(sk)) {
  1462. err = pr_iucv->path_sever(path, user_data);
  1463. iucv_path_free(path);
  1464. goto fail;
  1465. }
  1466. /* Create the new socket */
  1467. nsk = iucv_sock_alloc(NULL, sk->sk_type, GFP_ATOMIC);
  1468. if (!nsk) {
  1469. err = pr_iucv->path_sever(path, user_data);
  1470. iucv_path_free(path);
  1471. goto fail;
  1472. }
  1473. niucv = iucv_sk(nsk);
  1474. iucv_sock_init(nsk, sk);
  1475. /* Set the new iucv_sock */
  1476. memcpy(niucv->dst_name, ipuser + 8, 8);
  1477. EBCASC(niucv->dst_name, 8);
  1478. memcpy(niucv->dst_user_id, ipvmid, 8);
  1479. memcpy(niucv->src_name, iucv->src_name, 8);
  1480. memcpy(niucv->src_user_id, iucv->src_user_id, 8);
  1481. niucv->path = path;
  1482. /* Call iucv_accept */
  1483. high_nmcpy(nuser_data, ipuser + 8);
  1484. memcpy(nuser_data + 8, niucv->src_name, 8);
  1485. ASCEBC(nuser_data + 8, 8);
  1486. /* set message limit for path based on msglimit of accepting socket */
  1487. niucv->msglimit = iucv->msglimit;
  1488. path->msglim = iucv->msglimit;
  1489. err = pr_iucv->path_accept(path, &af_iucv_handler, nuser_data, nsk);
  1490. if (err) {
  1491. iucv_sever_path(nsk, 1);
  1492. iucv_sock_kill(nsk);
  1493. goto fail;
  1494. }
  1495. iucv_accept_enqueue(sk, nsk);
  1496. /* Wake up accept */
  1497. nsk->sk_state = IUCV_CONNECTED;
  1498. sk->sk_data_ready(sk, 1);
  1499. err = 0;
  1500. fail:
  1501. bh_unlock_sock(sk);
  1502. return 0;
  1503. }
  1504. static void iucv_callback_connack(struct iucv_path *path, u8 ipuser[16])
  1505. {
  1506. struct sock *sk = path->private;
  1507. sk->sk_state = IUCV_CONNECTED;
  1508. sk->sk_state_change(sk);
  1509. }
  1510. static void iucv_callback_rx(struct iucv_path *path, struct iucv_message *msg)
  1511. {
  1512. struct sock *sk = path->private;
  1513. struct iucv_sock *iucv = iucv_sk(sk);
  1514. struct sk_buff *skb;
  1515. struct sock_msg_q *save_msg;
  1516. int len;
  1517. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  1518. pr_iucv->message_reject(path, msg);
  1519. return;
  1520. }
  1521. spin_lock(&iucv->message_q.lock);
  1522. if (!list_empty(&iucv->message_q.list) ||
  1523. !skb_queue_empty(&iucv->backlog_skb_q))
  1524. goto save_message;
  1525. len = atomic_read(&sk->sk_rmem_alloc);
  1526. len += SKB_TRUESIZE(iucv_msg_length(msg));
  1527. if (len > sk->sk_rcvbuf)
  1528. goto save_message;
  1529. skb = alloc_skb(iucv_msg_length(msg), GFP_ATOMIC | GFP_DMA);
  1530. if (!skb)
  1531. goto save_message;
  1532. iucv_process_message(sk, skb, path, msg);
  1533. goto out_unlock;
  1534. save_message:
  1535. save_msg = kzalloc(sizeof(struct sock_msg_q), GFP_ATOMIC | GFP_DMA);
  1536. if (!save_msg)
  1537. goto out_unlock;
  1538. save_msg->path = path;
  1539. save_msg->msg = *msg;
  1540. list_add_tail(&save_msg->list, &iucv->message_q.list);
  1541. out_unlock:
  1542. spin_unlock(&iucv->message_q.lock);
  1543. }
  1544. static void iucv_callback_txdone(struct iucv_path *path,
  1545. struct iucv_message *msg)
  1546. {
  1547. struct sock *sk = path->private;
  1548. struct sk_buff *this = NULL;
  1549. struct sk_buff_head *list = &iucv_sk(sk)->send_skb_q;
  1550. struct sk_buff *list_skb = list->next;
  1551. unsigned long flags;
  1552. bh_lock_sock(sk);
  1553. if (!skb_queue_empty(list)) {
  1554. spin_lock_irqsave(&list->lock, flags);
  1555. while (list_skb != (struct sk_buff *)list) {
  1556. if (!memcmp(&msg->tag, CB_TAG(list_skb), CB_TAG_LEN)) {
  1557. this = list_skb;
  1558. break;
  1559. }
  1560. list_skb = list_skb->next;
  1561. }
  1562. if (this)
  1563. __skb_unlink(this, list);
  1564. spin_unlock_irqrestore(&list->lock, flags);
  1565. if (this) {
  1566. kfree_skb(this);
  1567. /* wake up any process waiting for sending */
  1568. iucv_sock_wake_msglim(sk);
  1569. }
  1570. }
  1571. if (sk->sk_state == IUCV_CLOSING) {
  1572. if (skb_queue_empty(&iucv_sk(sk)->send_skb_q)) {
  1573. sk->sk_state = IUCV_CLOSED;
  1574. sk->sk_state_change(sk);
  1575. }
  1576. }
  1577. bh_unlock_sock(sk);
  1578. }
  1579. static void iucv_callback_connrej(struct iucv_path *path, u8 ipuser[16])
  1580. {
  1581. struct sock *sk = path->private;
  1582. if (sk->sk_state == IUCV_CLOSED)
  1583. return;
  1584. bh_lock_sock(sk);
  1585. iucv_sever_path(sk, 1);
  1586. sk->sk_state = IUCV_DISCONN;
  1587. sk->sk_state_change(sk);
  1588. bh_unlock_sock(sk);
  1589. }
  1590. /* called if the other communication side shuts down its RECV direction;
  1591. * in turn, the callback sets SEND_SHUTDOWN to disable sending of data.
  1592. */
  1593. static void iucv_callback_shutdown(struct iucv_path *path, u8 ipuser[16])
  1594. {
  1595. struct sock *sk = path->private;
  1596. bh_lock_sock(sk);
  1597. if (sk->sk_state != IUCV_CLOSED) {
  1598. sk->sk_shutdown |= SEND_SHUTDOWN;
  1599. sk->sk_state_change(sk);
  1600. }
  1601. bh_unlock_sock(sk);
  1602. }
  1603. /***************** HiperSockets transport callbacks ********************/
  1604. static void afiucv_swap_src_dest(struct sk_buff *skb)
  1605. {
  1606. struct af_iucv_trans_hdr *trans_hdr =
  1607. (struct af_iucv_trans_hdr *)skb->data;
  1608. char tmpID[8];
  1609. char tmpName[8];
  1610. ASCEBC(trans_hdr->destUserID, sizeof(trans_hdr->destUserID));
  1611. ASCEBC(trans_hdr->destAppName, sizeof(trans_hdr->destAppName));
  1612. ASCEBC(trans_hdr->srcUserID, sizeof(trans_hdr->srcUserID));
  1613. ASCEBC(trans_hdr->srcAppName, sizeof(trans_hdr->srcAppName));
  1614. memcpy(tmpID, trans_hdr->srcUserID, 8);
  1615. memcpy(tmpName, trans_hdr->srcAppName, 8);
  1616. memcpy(trans_hdr->srcUserID, trans_hdr->destUserID, 8);
  1617. memcpy(trans_hdr->srcAppName, trans_hdr->destAppName, 8);
  1618. memcpy(trans_hdr->destUserID, tmpID, 8);
  1619. memcpy(trans_hdr->destAppName, tmpName, 8);
  1620. skb_push(skb, ETH_HLEN);
  1621. memset(skb->data, 0, ETH_HLEN);
  1622. }
  1623. /**
  1624. * afiucv_hs_callback_syn - react on received SYN
  1625. **/
  1626. static int afiucv_hs_callback_syn(struct sock *sk, struct sk_buff *skb)
  1627. {
  1628. struct sock *nsk;
  1629. struct iucv_sock *iucv, *niucv;
  1630. struct af_iucv_trans_hdr *trans_hdr;
  1631. int err;
  1632. iucv = iucv_sk(sk);
  1633. trans_hdr = (struct af_iucv_trans_hdr *)skb->data;
  1634. if (!iucv) {
  1635. /* no sock - connection refused */
  1636. afiucv_swap_src_dest(skb);
  1637. trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN;
  1638. err = dev_queue_xmit(skb);
  1639. goto out;
  1640. }
  1641. nsk = iucv_sock_alloc(NULL, sk->sk_type, GFP_ATOMIC);
  1642. bh_lock_sock(sk);
  1643. if ((sk->sk_state != IUCV_LISTEN) ||
  1644. sk_acceptq_is_full(sk) ||
  1645. !nsk) {
  1646. /* error on server socket - connection refused */
  1647. if (nsk)
  1648. sk_free(nsk);
  1649. afiucv_swap_src_dest(skb);
  1650. trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN;
  1651. err = dev_queue_xmit(skb);
  1652. bh_unlock_sock(sk);
  1653. goto out;
  1654. }
  1655. niucv = iucv_sk(nsk);
  1656. iucv_sock_init(nsk, sk);
  1657. niucv->transport = AF_IUCV_TRANS_HIPER;
  1658. niucv->msglimit = iucv->msglimit;
  1659. if (!trans_hdr->window)
  1660. niucv->msglimit_peer = IUCV_HIPER_MSGLIM_DEFAULT;
  1661. else
  1662. niucv->msglimit_peer = trans_hdr->window;
  1663. memcpy(niucv->dst_name, trans_hdr->srcAppName, 8);
  1664. memcpy(niucv->dst_user_id, trans_hdr->srcUserID, 8);
  1665. memcpy(niucv->src_name, iucv->src_name, 8);
  1666. memcpy(niucv->src_user_id, iucv->src_user_id, 8);
  1667. nsk->sk_bound_dev_if = sk->sk_bound_dev_if;
  1668. afiucv_swap_src_dest(skb);
  1669. trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_ACK;
  1670. trans_hdr->window = niucv->msglimit;
  1671. /* if receiver acks the xmit connection is established */
  1672. err = dev_queue_xmit(skb);
  1673. if (!err) {
  1674. iucv_accept_enqueue(sk, nsk);
  1675. nsk->sk_state = IUCV_CONNECTED;
  1676. sk->sk_data_ready(sk, 1);
  1677. } else
  1678. iucv_sock_kill(nsk);
  1679. bh_unlock_sock(sk);
  1680. out:
  1681. return NET_RX_SUCCESS;
  1682. }
  1683. /**
  1684. * afiucv_hs_callback_synack() - react on received SYN-ACK
  1685. **/
  1686. static int afiucv_hs_callback_synack(struct sock *sk, struct sk_buff *skb)
  1687. {
  1688. struct iucv_sock *iucv = iucv_sk(sk);
  1689. struct af_iucv_trans_hdr *trans_hdr =
  1690. (struct af_iucv_trans_hdr *)skb->data;
  1691. if (!iucv)
  1692. goto out;
  1693. if (sk->sk_state != IUCV_BOUND)
  1694. goto out;
  1695. bh_lock_sock(sk);
  1696. iucv->msglimit_peer = trans_hdr->window;
  1697. sk->sk_state = IUCV_CONNECTED;
  1698. sk->sk_state_change(sk);
  1699. bh_unlock_sock(sk);
  1700. out:
  1701. kfree_skb(skb);
  1702. return NET_RX_SUCCESS;
  1703. }
  1704. /**
  1705. * afiucv_hs_callback_synfin() - react on received SYN_FIN
  1706. **/
  1707. static int afiucv_hs_callback_synfin(struct sock *sk, struct sk_buff *skb)
  1708. {
  1709. struct iucv_sock *iucv = iucv_sk(sk);
  1710. if (!iucv)
  1711. goto out;
  1712. if (sk->sk_state != IUCV_BOUND)
  1713. goto out;
  1714. bh_lock_sock(sk);
  1715. sk->sk_state = IUCV_DISCONN;
  1716. sk->sk_state_change(sk);
  1717. bh_unlock_sock(sk);
  1718. out:
  1719. kfree_skb(skb);
  1720. return NET_RX_SUCCESS;
  1721. }
  1722. /**
  1723. * afiucv_hs_callback_fin() - react on received FIN
  1724. **/
  1725. static int afiucv_hs_callback_fin(struct sock *sk, struct sk_buff *skb)
  1726. {
  1727. struct iucv_sock *iucv = iucv_sk(sk);
  1728. /* other end of connection closed */
  1729. if (iucv) {
  1730. bh_lock_sock(sk);
  1731. sk->sk_state = IUCV_DISCONN;
  1732. sk->sk_state_change(sk);
  1733. bh_unlock_sock(sk);
  1734. }
  1735. kfree_skb(skb);
  1736. return NET_RX_SUCCESS;
  1737. }
  1738. /**
  1739. * afiucv_hs_callback_win() - react on received WIN
  1740. **/
  1741. static int afiucv_hs_callback_win(struct sock *sk, struct sk_buff *skb)
  1742. {
  1743. struct iucv_sock *iucv = iucv_sk(sk);
  1744. struct af_iucv_trans_hdr *trans_hdr =
  1745. (struct af_iucv_trans_hdr *)skb->data;
  1746. if (!iucv)
  1747. return NET_RX_SUCCESS;
  1748. if (sk->sk_state != IUCV_CONNECTED)
  1749. return NET_RX_SUCCESS;
  1750. atomic_sub(trans_hdr->window, &iucv->msg_sent);
  1751. iucv_sock_wake_msglim(sk);
  1752. return NET_RX_SUCCESS;
  1753. }
  1754. /**
  1755. * afiucv_hs_callback_rx() - react on received data
  1756. **/
  1757. static int afiucv_hs_callback_rx(struct sock *sk, struct sk_buff *skb)
  1758. {
  1759. struct iucv_sock *iucv = iucv_sk(sk);
  1760. if (!iucv) {
  1761. kfree_skb(skb);
  1762. return NET_RX_SUCCESS;
  1763. }
  1764. if (sk->sk_state != IUCV_CONNECTED) {
  1765. kfree_skb(skb);
  1766. return NET_RX_SUCCESS;
  1767. }
  1768. /* write stuff from iucv_msg to skb cb */
  1769. if (skb->len <= sizeof(struct af_iucv_trans_hdr)) {
  1770. kfree_skb(skb);
  1771. return NET_RX_SUCCESS;
  1772. }
  1773. skb_pull(skb, sizeof(struct af_iucv_trans_hdr));
  1774. skb_reset_transport_header(skb);
  1775. skb_reset_network_header(skb);
  1776. spin_lock(&iucv->message_q.lock);
  1777. if (skb_queue_empty(&iucv->backlog_skb_q)) {
  1778. if (sock_queue_rcv_skb(sk, skb)) {
  1779. /* handle rcv queue full */
  1780. skb_queue_tail(&iucv->backlog_skb_q, skb);
  1781. }
  1782. } else
  1783. skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, skb);
  1784. spin_unlock(&iucv->message_q.lock);
  1785. return NET_RX_SUCCESS;
  1786. }
  1787. /**
  1788. * afiucv_hs_rcv() - base function for arriving data through HiperSockets
  1789. * transport
  1790. * called from netif RX softirq
  1791. **/
  1792. static int afiucv_hs_rcv(struct sk_buff *skb, struct net_device *dev,
  1793. struct packet_type *pt, struct net_device *orig_dev)
  1794. {
  1795. struct hlist_node *node;
  1796. struct sock *sk;
  1797. struct iucv_sock *iucv;
  1798. struct af_iucv_trans_hdr *trans_hdr;
  1799. char nullstring[8];
  1800. int err = 0;
  1801. skb_pull(skb, ETH_HLEN);
  1802. trans_hdr = (struct af_iucv_trans_hdr *)skb->data;
  1803. EBCASC(trans_hdr->destAppName, sizeof(trans_hdr->destAppName));
  1804. EBCASC(trans_hdr->destUserID, sizeof(trans_hdr->destUserID));
  1805. EBCASC(trans_hdr->srcAppName, sizeof(trans_hdr->srcAppName));
  1806. EBCASC(trans_hdr->srcUserID, sizeof(trans_hdr->srcUserID));
  1807. memset(nullstring, 0, sizeof(nullstring));
  1808. iucv = NULL;
  1809. sk = NULL;
  1810. read_lock(&iucv_sk_list.lock);
  1811. sk_for_each(sk, node, &iucv_sk_list.head) {
  1812. if (trans_hdr->flags == AF_IUCV_FLAG_SYN) {
  1813. if ((!memcmp(&iucv_sk(sk)->src_name,
  1814. trans_hdr->destAppName, 8)) &&
  1815. (!memcmp(&iucv_sk(sk)->src_user_id,
  1816. trans_hdr->destUserID, 8)) &&
  1817. (!memcmp(&iucv_sk(sk)->dst_name, nullstring, 8)) &&
  1818. (!memcmp(&iucv_sk(sk)->dst_user_id,
  1819. nullstring, 8))) {
  1820. iucv = iucv_sk(sk);
  1821. break;
  1822. }
  1823. } else {
  1824. if ((!memcmp(&iucv_sk(sk)->src_name,
  1825. trans_hdr->destAppName, 8)) &&
  1826. (!memcmp(&iucv_sk(sk)->src_user_id,
  1827. trans_hdr->destUserID, 8)) &&
  1828. (!memcmp(&iucv_sk(sk)->dst_name,
  1829. trans_hdr->srcAppName, 8)) &&
  1830. (!memcmp(&iucv_sk(sk)->dst_user_id,
  1831. trans_hdr->srcUserID, 8))) {
  1832. iucv = iucv_sk(sk);
  1833. break;
  1834. }
  1835. }
  1836. }
  1837. read_unlock(&iucv_sk_list.lock);
  1838. if (!iucv)
  1839. sk = NULL;
  1840. /* no sock
  1841. how should we send with no sock
  1842. 1) send without sock no send rc checking?
  1843. 2) introduce default sock to handle this cases
  1844. SYN -> send SYN|ACK in good case, send SYN|FIN in bad case
  1845. data -> send FIN
  1846. SYN|ACK, SYN|FIN, FIN -> no action? */
  1847. switch (trans_hdr->flags) {
  1848. case AF_IUCV_FLAG_SYN:
  1849. /* connect request */
  1850. err = afiucv_hs_callback_syn(sk, skb);
  1851. break;
  1852. case (AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_ACK):
  1853. /* connect request confirmed */
  1854. err = afiucv_hs_callback_synack(sk, skb);
  1855. break;
  1856. case (AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN):
  1857. /* connect request refused */
  1858. err = afiucv_hs_callback_synfin(sk, skb);
  1859. break;
  1860. case (AF_IUCV_FLAG_FIN):
  1861. /* close request */
  1862. err = afiucv_hs_callback_fin(sk, skb);
  1863. break;
  1864. case (AF_IUCV_FLAG_WIN):
  1865. err = afiucv_hs_callback_win(sk, skb);
  1866. if (skb->len > sizeof(struct af_iucv_trans_hdr))
  1867. err = afiucv_hs_callback_rx(sk, skb);
  1868. else
  1869. kfree(skb);
  1870. break;
  1871. case 0:
  1872. /* plain data frame */
  1873. memcpy(CB_TRGCLS(skb), &trans_hdr->iucv_hdr.class,
  1874. CB_TRGCLS_LEN);
  1875. err = afiucv_hs_callback_rx(sk, skb);
  1876. break;
  1877. default:
  1878. ;
  1879. }
  1880. return err;
  1881. }
  1882. /**
  1883. * afiucv_hs_callback_txnotify() - handle send notifcations from HiperSockets
  1884. * transport
  1885. **/
  1886. static void afiucv_hs_callback_txnotify(struct sk_buff *skb,
  1887. enum iucv_tx_notify n)
  1888. {
  1889. struct sock *isk = skb->sk;
  1890. struct sock *sk = NULL;
  1891. struct iucv_sock *iucv = NULL;
  1892. struct sk_buff_head *list;
  1893. struct sk_buff *list_skb;
  1894. struct sk_buff *this = NULL;
  1895. unsigned long flags;
  1896. struct hlist_node *node;
  1897. read_lock(&iucv_sk_list.lock);
  1898. sk_for_each(sk, node, &iucv_sk_list.head)
  1899. if (sk == isk) {
  1900. iucv = iucv_sk(sk);
  1901. break;
  1902. }
  1903. read_unlock(&iucv_sk_list.lock);
  1904. if (!iucv)
  1905. return;
  1906. bh_lock_sock(sk);
  1907. list = &iucv->send_skb_q;
  1908. list_skb = list->next;
  1909. if (skb_queue_empty(list))
  1910. goto out_unlock;
  1911. spin_lock_irqsave(&list->lock, flags);
  1912. while (list_skb != (struct sk_buff *)list) {
  1913. if (skb_shinfo(list_skb) == skb_shinfo(skb)) {
  1914. this = list_skb;
  1915. switch (n) {
  1916. case TX_NOTIFY_OK:
  1917. __skb_unlink(this, list);
  1918. iucv_sock_wake_msglim(sk);
  1919. dev_put(this->dev);
  1920. kfree_skb(this);
  1921. break;
  1922. case TX_NOTIFY_PENDING:
  1923. atomic_inc(&iucv->pendings);
  1924. break;
  1925. case TX_NOTIFY_DELAYED_OK:
  1926. __skb_unlink(this, list);
  1927. atomic_dec(&iucv->pendings);
  1928. if (atomic_read(&iucv->pendings) <= 0)
  1929. iucv_sock_wake_msglim(sk);
  1930. dev_put(this->dev);
  1931. kfree_skb(this);
  1932. break;
  1933. case TX_NOTIFY_UNREACHABLE:
  1934. case TX_NOTIFY_DELAYED_UNREACHABLE:
  1935. case TX_NOTIFY_TPQFULL: /* not yet used */
  1936. case TX_NOTIFY_GENERALERROR:
  1937. case TX_NOTIFY_DELAYED_GENERALERROR:
  1938. __skb_unlink(this, list);
  1939. dev_put(this->dev);
  1940. kfree_skb(this);
  1941. sk->sk_state = IUCV_DISCONN;
  1942. sk->sk_state_change(sk);
  1943. break;
  1944. }
  1945. break;
  1946. }
  1947. list_skb = list_skb->next;
  1948. }
  1949. spin_unlock_irqrestore(&list->lock, flags);
  1950. if (sk->sk_state == IUCV_CLOSING) {
  1951. if (skb_queue_empty(&iucv_sk(sk)->send_skb_q)) {
  1952. sk->sk_state = IUCV_CLOSED;
  1953. sk->sk_state_change(sk);
  1954. }
  1955. }
  1956. out_unlock:
  1957. bh_unlock_sock(sk);
  1958. }
  1959. static const struct proto_ops iucv_sock_ops = {
  1960. .family = PF_IUCV,
  1961. .owner = THIS_MODULE,
  1962. .release = iucv_sock_release,
  1963. .bind = iucv_sock_bind,
  1964. .connect = iucv_sock_connect,
  1965. .listen = iucv_sock_listen,
  1966. .accept = iucv_sock_accept,
  1967. .getname = iucv_sock_getname,
  1968. .sendmsg = iucv_sock_sendmsg,
  1969. .recvmsg = iucv_sock_recvmsg,
  1970. .poll = iucv_sock_poll,
  1971. .ioctl = sock_no_ioctl,
  1972. .mmap = sock_no_mmap,
  1973. .socketpair = sock_no_socketpair,
  1974. .shutdown = iucv_sock_shutdown,
  1975. .setsockopt = iucv_sock_setsockopt,
  1976. .getsockopt = iucv_sock_getsockopt,
  1977. };
  1978. static const struct net_proto_family iucv_sock_family_ops = {
  1979. .family = AF_IUCV,
  1980. .owner = THIS_MODULE,
  1981. .create = iucv_sock_create,
  1982. };
  1983. static struct packet_type iucv_packet_type = {
  1984. .type = cpu_to_be16(ETH_P_AF_IUCV),
  1985. .func = afiucv_hs_rcv,
  1986. };
  1987. static int afiucv_iucv_init(void)
  1988. {
  1989. int err;
  1990. err = pr_iucv->iucv_register(&af_iucv_handler, 0);
  1991. if (err)
  1992. goto out;
  1993. /* establish dummy device */
  1994. af_iucv_driver.bus = pr_iucv->bus;
  1995. err = driver_register(&af_iucv_driver);
  1996. if (err)
  1997. goto out_iucv;
  1998. af_iucv_dev = kzalloc(sizeof(struct device), GFP_KERNEL);
  1999. if (!af_iucv_dev) {
  2000. err = -ENOMEM;
  2001. goto out_driver;
  2002. }
  2003. dev_set_name(af_iucv_dev, "af_iucv");
  2004. af_iucv_dev->bus = pr_iucv->bus;
  2005. af_iucv_dev->parent = pr_iucv->root;
  2006. af_iucv_dev->release = (void (*)(struct device *))kfree;
  2007. af_iucv_dev->driver = &af_iucv_driver;
  2008. err = device_register(af_iucv_dev);
  2009. if (err)
  2010. goto out_driver;
  2011. return 0;
  2012. out_driver:
  2013. driver_unregister(&af_iucv_driver);
  2014. out_iucv:
  2015. pr_iucv->iucv_unregister(&af_iucv_handler, 0);
  2016. out:
  2017. return err;
  2018. }
  2019. static int __init afiucv_init(void)
  2020. {
  2021. int err;
  2022. if (MACHINE_IS_VM) {
  2023. cpcmd("QUERY USERID", iucv_userid, sizeof(iucv_userid), &err);
  2024. if (unlikely(err)) {
  2025. WARN_ON(err);
  2026. err = -EPROTONOSUPPORT;
  2027. goto out;
  2028. }
  2029. pr_iucv = try_then_request_module(symbol_get(iucv_if), "iucv");
  2030. if (!pr_iucv) {
  2031. printk(KERN_WARNING "iucv_if lookup failed\n");
  2032. memset(&iucv_userid, 0, sizeof(iucv_userid));
  2033. }
  2034. } else {
  2035. memset(&iucv_userid, 0, sizeof(iucv_userid));
  2036. pr_iucv = NULL;
  2037. }
  2038. err = proto_register(&iucv_proto, 0);
  2039. if (err)
  2040. goto out;
  2041. err = sock_register(&iucv_sock_family_ops);
  2042. if (err)
  2043. goto out_proto;
  2044. if (pr_iucv) {
  2045. err = afiucv_iucv_init();
  2046. if (err)
  2047. goto out_sock;
  2048. }
  2049. dev_add_pack(&iucv_packet_type);
  2050. return 0;
  2051. out_sock:
  2052. sock_unregister(PF_IUCV);
  2053. out_proto:
  2054. proto_unregister(&iucv_proto);
  2055. out:
  2056. if (pr_iucv)
  2057. symbol_put(iucv_if);
  2058. return err;
  2059. }
  2060. static void __exit afiucv_exit(void)
  2061. {
  2062. if (pr_iucv) {
  2063. device_unregister(af_iucv_dev);
  2064. driver_unregister(&af_iucv_driver);
  2065. pr_iucv->iucv_unregister(&af_iucv_handler, 0);
  2066. symbol_put(iucv_if);
  2067. }
  2068. dev_remove_pack(&iucv_packet_type);
  2069. sock_unregister(PF_IUCV);
  2070. proto_unregister(&iucv_proto);
  2071. }
  2072. module_init(afiucv_init);
  2073. module_exit(afiucv_exit);
  2074. MODULE_AUTHOR("Jennifer Hunt <jenhunt@us.ibm.com>");
  2075. MODULE_DESCRIPTION("IUCV Sockets ver " VERSION);
  2076. MODULE_VERSION(VERSION);
  2077. MODULE_LICENSE("GPL");
  2078. MODULE_ALIAS_NETPROTO(PF_IUCV);