ieee80211_crypt_tkip.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788
  1. /*
  2. * Host AP crypt: host-based TKIP encryption implementation for Host AP driver
  3. *
  4. * Copyright (c) 2003-2004, Jouni Malinen <j@w1.fi>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation. See README and COPYING for
  9. * more details.
  10. */
  11. #include <linux/err.h>
  12. #include <linux/module.h>
  13. #include <linux/init.h>
  14. #include <linux/slab.h>
  15. #include <linux/random.h>
  16. #include <linux/scatterlist.h>
  17. #include <linux/skbuff.h>
  18. #include <linux/netdevice.h>
  19. #include <linux/mm.h>
  20. #include <linux/if_ether.h>
  21. #include <linux/if_arp.h>
  22. #include <asm/string.h>
  23. #include <net/ieee80211.h>
  24. #include <linux/crypto.h>
  25. #include <linux/scatterlist.h>
  26. #include <linux/crc32.h>
  27. MODULE_AUTHOR("Jouni Malinen");
  28. MODULE_DESCRIPTION("Host AP crypt: TKIP");
  29. MODULE_LICENSE("GPL");
  30. struct ieee80211_tkip_data {
  31. #define TKIP_KEY_LEN 32
  32. u8 key[TKIP_KEY_LEN];
  33. int key_set;
  34. u32 tx_iv32;
  35. u16 tx_iv16;
  36. u16 tx_ttak[5];
  37. int tx_phase1_done;
  38. u32 rx_iv32;
  39. u16 rx_iv16;
  40. u16 rx_ttak[5];
  41. int rx_phase1_done;
  42. u32 rx_iv32_new;
  43. u16 rx_iv16_new;
  44. u32 dot11RSNAStatsTKIPReplays;
  45. u32 dot11RSNAStatsTKIPICVErrors;
  46. u32 dot11RSNAStatsTKIPLocalMICFailures;
  47. int key_idx;
  48. struct crypto_blkcipher *rx_tfm_arc4;
  49. struct crypto_hash *rx_tfm_michael;
  50. struct crypto_blkcipher *tx_tfm_arc4;
  51. struct crypto_hash *tx_tfm_michael;
  52. /* scratch buffers for virt_to_page() (crypto API) */
  53. u8 rx_hdr[16], tx_hdr[16];
  54. unsigned long flags;
  55. };
  56. static unsigned long ieee80211_tkip_set_flags(unsigned long flags, void *priv)
  57. {
  58. struct ieee80211_tkip_data *_priv = priv;
  59. unsigned long old_flags = _priv->flags;
  60. _priv->flags = flags;
  61. return old_flags;
  62. }
  63. static unsigned long ieee80211_tkip_get_flags(void *priv)
  64. {
  65. struct ieee80211_tkip_data *_priv = priv;
  66. return _priv->flags;
  67. }
  68. static void *ieee80211_tkip_init(int key_idx)
  69. {
  70. struct ieee80211_tkip_data *priv;
  71. priv = kzalloc(sizeof(*priv), GFP_ATOMIC);
  72. if (priv == NULL)
  73. goto fail;
  74. priv->key_idx = key_idx;
  75. priv->tx_tfm_arc4 = crypto_alloc_blkcipher("ecb(arc4)", 0,
  76. CRYPTO_ALG_ASYNC);
  77. if (IS_ERR(priv->tx_tfm_arc4)) {
  78. printk(KERN_DEBUG "ieee80211_crypt_tkip: could not allocate "
  79. "crypto API arc4\n");
  80. priv->tx_tfm_arc4 = NULL;
  81. goto fail;
  82. }
  83. priv->tx_tfm_michael = crypto_alloc_hash("michael_mic", 0,
  84. CRYPTO_ALG_ASYNC);
  85. if (IS_ERR(priv->tx_tfm_michael)) {
  86. printk(KERN_DEBUG "ieee80211_crypt_tkip: could not allocate "
  87. "crypto API michael_mic\n");
  88. priv->tx_tfm_michael = NULL;
  89. goto fail;
  90. }
  91. priv->rx_tfm_arc4 = crypto_alloc_blkcipher("ecb(arc4)", 0,
  92. CRYPTO_ALG_ASYNC);
  93. if (IS_ERR(priv->rx_tfm_arc4)) {
  94. printk(KERN_DEBUG "ieee80211_crypt_tkip: could not allocate "
  95. "crypto API arc4\n");
  96. priv->rx_tfm_arc4 = NULL;
  97. goto fail;
  98. }
  99. priv->rx_tfm_michael = crypto_alloc_hash("michael_mic", 0,
  100. CRYPTO_ALG_ASYNC);
  101. if (IS_ERR(priv->rx_tfm_michael)) {
  102. printk(KERN_DEBUG "ieee80211_crypt_tkip: could not allocate "
  103. "crypto API michael_mic\n");
  104. priv->rx_tfm_michael = NULL;
  105. goto fail;
  106. }
  107. return priv;
  108. fail:
  109. if (priv) {
  110. if (priv->tx_tfm_michael)
  111. crypto_free_hash(priv->tx_tfm_michael);
  112. if (priv->tx_tfm_arc4)
  113. crypto_free_blkcipher(priv->tx_tfm_arc4);
  114. if (priv->rx_tfm_michael)
  115. crypto_free_hash(priv->rx_tfm_michael);
  116. if (priv->rx_tfm_arc4)
  117. crypto_free_blkcipher(priv->rx_tfm_arc4);
  118. kfree(priv);
  119. }
  120. return NULL;
  121. }
  122. static void ieee80211_tkip_deinit(void *priv)
  123. {
  124. struct ieee80211_tkip_data *_priv = priv;
  125. if (_priv) {
  126. if (_priv->tx_tfm_michael)
  127. crypto_free_hash(_priv->tx_tfm_michael);
  128. if (_priv->tx_tfm_arc4)
  129. crypto_free_blkcipher(_priv->tx_tfm_arc4);
  130. if (_priv->rx_tfm_michael)
  131. crypto_free_hash(_priv->rx_tfm_michael);
  132. if (_priv->rx_tfm_arc4)
  133. crypto_free_blkcipher(_priv->rx_tfm_arc4);
  134. }
  135. kfree(priv);
  136. }
  137. static inline u16 RotR1(u16 val)
  138. {
  139. return (val >> 1) | (val << 15);
  140. }
  141. static inline u8 Lo8(u16 val)
  142. {
  143. return val & 0xff;
  144. }
  145. static inline u8 Hi8(u16 val)
  146. {
  147. return val >> 8;
  148. }
  149. static inline u16 Lo16(u32 val)
  150. {
  151. return val & 0xffff;
  152. }
  153. static inline u16 Hi16(u32 val)
  154. {
  155. return val >> 16;
  156. }
  157. static inline u16 Mk16(u8 hi, u8 lo)
  158. {
  159. return lo | (((u16) hi) << 8);
  160. }
  161. static inline u16 Mk16_le(u16 * v)
  162. {
  163. return le16_to_cpu(*v);
  164. }
  165. static const u16 Sbox[256] = {
  166. 0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
  167. 0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
  168. 0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
  169. 0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
  170. 0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
  171. 0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
  172. 0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
  173. 0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
  174. 0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
  175. 0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
  176. 0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
  177. 0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
  178. 0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
  179. 0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
  180. 0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
  181. 0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
  182. 0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
  183. 0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
  184. 0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
  185. 0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
  186. 0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
  187. 0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
  188. 0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
  189. 0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
  190. 0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
  191. 0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
  192. 0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
  193. 0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
  194. 0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
  195. 0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
  196. 0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
  197. 0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
  198. };
  199. static inline u16 _S_(u16 v)
  200. {
  201. u16 t = Sbox[Hi8(v)];
  202. return Sbox[Lo8(v)] ^ ((t << 8) | (t >> 8));
  203. }
  204. #define PHASE1_LOOP_COUNT 8
  205. static void tkip_mixing_phase1(u16 * TTAK, const u8 * TK, const u8 * TA,
  206. u32 IV32)
  207. {
  208. int i, j;
  209. /* Initialize the 80-bit TTAK from TSC (IV32) and TA[0..5] */
  210. TTAK[0] = Lo16(IV32);
  211. TTAK[1] = Hi16(IV32);
  212. TTAK[2] = Mk16(TA[1], TA[0]);
  213. TTAK[3] = Mk16(TA[3], TA[2]);
  214. TTAK[4] = Mk16(TA[5], TA[4]);
  215. for (i = 0; i < PHASE1_LOOP_COUNT; i++) {
  216. j = 2 * (i & 1);
  217. TTAK[0] += _S_(TTAK[4] ^ Mk16(TK[1 + j], TK[0 + j]));
  218. TTAK[1] += _S_(TTAK[0] ^ Mk16(TK[5 + j], TK[4 + j]));
  219. TTAK[2] += _S_(TTAK[1] ^ Mk16(TK[9 + j], TK[8 + j]));
  220. TTAK[3] += _S_(TTAK[2] ^ Mk16(TK[13 + j], TK[12 + j]));
  221. TTAK[4] += _S_(TTAK[3] ^ Mk16(TK[1 + j], TK[0 + j])) + i;
  222. }
  223. }
  224. static void tkip_mixing_phase2(u8 * WEPSeed, const u8 * TK, const u16 * TTAK,
  225. u16 IV16)
  226. {
  227. /* Make temporary area overlap WEP seed so that the final copy can be
  228. * avoided on little endian hosts. */
  229. u16 *PPK = (u16 *) & WEPSeed[4];
  230. /* Step 1 - make copy of TTAK and bring in TSC */
  231. PPK[0] = TTAK[0];
  232. PPK[1] = TTAK[1];
  233. PPK[2] = TTAK[2];
  234. PPK[3] = TTAK[3];
  235. PPK[4] = TTAK[4];
  236. PPK[5] = TTAK[4] + IV16;
  237. /* Step 2 - 96-bit bijective mixing using S-box */
  238. PPK[0] += _S_(PPK[5] ^ Mk16_le((u16 *) & TK[0]));
  239. PPK[1] += _S_(PPK[0] ^ Mk16_le((u16 *) & TK[2]));
  240. PPK[2] += _S_(PPK[1] ^ Mk16_le((u16 *) & TK[4]));
  241. PPK[3] += _S_(PPK[2] ^ Mk16_le((u16 *) & TK[6]));
  242. PPK[4] += _S_(PPK[3] ^ Mk16_le((u16 *) & TK[8]));
  243. PPK[5] += _S_(PPK[4] ^ Mk16_le((u16 *) & TK[10]));
  244. PPK[0] += RotR1(PPK[5] ^ Mk16_le((u16 *) & TK[12]));
  245. PPK[1] += RotR1(PPK[0] ^ Mk16_le((u16 *) & TK[14]));
  246. PPK[2] += RotR1(PPK[1]);
  247. PPK[3] += RotR1(PPK[2]);
  248. PPK[4] += RotR1(PPK[3]);
  249. PPK[5] += RotR1(PPK[4]);
  250. /* Step 3 - bring in last of TK bits, assign 24-bit WEP IV value
  251. * WEPSeed[0..2] is transmitted as WEP IV */
  252. WEPSeed[0] = Hi8(IV16);
  253. WEPSeed[1] = (Hi8(IV16) | 0x20) & 0x7F;
  254. WEPSeed[2] = Lo8(IV16);
  255. WEPSeed[3] = Lo8((PPK[5] ^ Mk16_le((u16 *) & TK[0])) >> 1);
  256. #ifdef __BIG_ENDIAN
  257. {
  258. int i;
  259. for (i = 0; i < 6; i++)
  260. PPK[i] = (PPK[i] << 8) | (PPK[i] >> 8);
  261. }
  262. #endif
  263. }
  264. static int ieee80211_tkip_hdr(struct sk_buff *skb, int hdr_len,
  265. u8 * rc4key, int keylen, void *priv)
  266. {
  267. struct ieee80211_tkip_data *tkey = priv;
  268. int len;
  269. u8 *pos;
  270. struct ieee80211_hdr_4addr *hdr;
  271. hdr = (struct ieee80211_hdr_4addr *)skb->data;
  272. if (skb_headroom(skb) < 8 || skb->len < hdr_len)
  273. return -1;
  274. if (rc4key == NULL || keylen < 16)
  275. return -1;
  276. if (!tkey->tx_phase1_done) {
  277. tkip_mixing_phase1(tkey->tx_ttak, tkey->key, hdr->addr2,
  278. tkey->tx_iv32);
  279. tkey->tx_phase1_done = 1;
  280. }
  281. tkip_mixing_phase2(rc4key, tkey->key, tkey->tx_ttak, tkey->tx_iv16);
  282. len = skb->len - hdr_len;
  283. pos = skb_push(skb, 8);
  284. memmove(pos, pos + 8, hdr_len);
  285. pos += hdr_len;
  286. *pos++ = *rc4key;
  287. *pos++ = *(rc4key + 1);
  288. *pos++ = *(rc4key + 2);
  289. *pos++ = (tkey->key_idx << 6) | (1 << 5) /* Ext IV included */ ;
  290. *pos++ = tkey->tx_iv32 & 0xff;
  291. *pos++ = (tkey->tx_iv32 >> 8) & 0xff;
  292. *pos++ = (tkey->tx_iv32 >> 16) & 0xff;
  293. *pos++ = (tkey->tx_iv32 >> 24) & 0xff;
  294. tkey->tx_iv16++;
  295. if (tkey->tx_iv16 == 0) {
  296. tkey->tx_phase1_done = 0;
  297. tkey->tx_iv32++;
  298. }
  299. return 8;
  300. }
  301. static int ieee80211_tkip_encrypt(struct sk_buff *skb, int hdr_len, void *priv)
  302. {
  303. struct ieee80211_tkip_data *tkey = priv;
  304. struct blkcipher_desc desc = { .tfm = tkey->tx_tfm_arc4 };
  305. int len;
  306. u8 rc4key[16], *pos, *icv;
  307. u32 crc;
  308. struct scatterlist sg;
  309. DECLARE_MAC_BUF(mac);
  310. if (tkey->flags & IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) {
  311. if (net_ratelimit()) {
  312. struct ieee80211_hdr_4addr *hdr =
  313. (struct ieee80211_hdr_4addr *)skb->data;
  314. printk(KERN_DEBUG ": TKIP countermeasures: dropped "
  315. "TX packet to %s\n",
  316. print_mac(mac, hdr->addr1));
  317. }
  318. return -1;
  319. }
  320. if (skb_tailroom(skb) < 4 || skb->len < hdr_len)
  321. return -1;
  322. len = skb->len - hdr_len;
  323. pos = skb->data + hdr_len;
  324. if ((ieee80211_tkip_hdr(skb, hdr_len, rc4key, 16, priv)) < 0)
  325. return -1;
  326. icv = skb_put(skb, 4);
  327. crc = ~crc32_le(~0, pos, len);
  328. icv[0] = crc;
  329. icv[1] = crc >> 8;
  330. icv[2] = crc >> 16;
  331. icv[3] = crc >> 24;
  332. crypto_blkcipher_setkey(tkey->tx_tfm_arc4, rc4key, 16);
  333. sg_init_one(&sg, pos, len + 4);
  334. return crypto_blkcipher_encrypt(&desc, &sg, &sg, len + 4);
  335. }
  336. /*
  337. * deal with seq counter wrapping correctly.
  338. * refer to timer_after() for jiffies wrapping handling
  339. */
  340. static inline int tkip_replay_check(u32 iv32_n, u16 iv16_n,
  341. u32 iv32_o, u16 iv16_o)
  342. {
  343. if ((s32)iv32_n - (s32)iv32_o < 0 ||
  344. (iv32_n == iv32_o && iv16_n <= iv16_o))
  345. return 1;
  346. return 0;
  347. }
  348. static int ieee80211_tkip_decrypt(struct sk_buff *skb, int hdr_len, void *priv)
  349. {
  350. struct ieee80211_tkip_data *tkey = priv;
  351. struct blkcipher_desc desc = { .tfm = tkey->rx_tfm_arc4 };
  352. u8 rc4key[16];
  353. u8 keyidx, *pos;
  354. u32 iv32;
  355. u16 iv16;
  356. struct ieee80211_hdr_4addr *hdr;
  357. u8 icv[4];
  358. u32 crc;
  359. struct scatterlist sg;
  360. int plen;
  361. DECLARE_MAC_BUF(mac);
  362. hdr = (struct ieee80211_hdr_4addr *)skb->data;
  363. if (tkey->flags & IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) {
  364. if (net_ratelimit()) {
  365. printk(KERN_DEBUG ": TKIP countermeasures: dropped "
  366. "received packet from %s\n",
  367. print_mac(mac, hdr->addr2));
  368. }
  369. return -1;
  370. }
  371. if (skb->len < hdr_len + 8 + 4)
  372. return -1;
  373. pos = skb->data + hdr_len;
  374. keyidx = pos[3];
  375. if (!(keyidx & (1 << 5))) {
  376. if (net_ratelimit()) {
  377. printk(KERN_DEBUG "TKIP: received packet without ExtIV"
  378. " flag from %s\n", print_mac(mac, hdr->addr2));
  379. }
  380. return -2;
  381. }
  382. keyidx >>= 6;
  383. if (tkey->key_idx != keyidx) {
  384. printk(KERN_DEBUG "TKIP: RX tkey->key_idx=%d frame "
  385. "keyidx=%d priv=%p\n", tkey->key_idx, keyidx, priv);
  386. return -6;
  387. }
  388. if (!tkey->key_set) {
  389. if (net_ratelimit()) {
  390. printk(KERN_DEBUG "TKIP: received packet from %s"
  391. " with keyid=%d that does not have a configured"
  392. " key\n", print_mac(mac, hdr->addr2), keyidx);
  393. }
  394. return -3;
  395. }
  396. iv16 = (pos[0] << 8) | pos[2];
  397. iv32 = pos[4] | (pos[5] << 8) | (pos[6] << 16) | (pos[7] << 24);
  398. pos += 8;
  399. if (tkip_replay_check(iv32, iv16, tkey->rx_iv32, tkey->rx_iv16)) {
  400. if (net_ratelimit()) {
  401. IEEE80211_DEBUG_DROP("TKIP: replay detected: STA=%s"
  402. " previous TSC %08x%04x received TSC "
  403. "%08x%04x\n", print_mac(mac, hdr->addr2),
  404. tkey->rx_iv32, tkey->rx_iv16, iv32, iv16);
  405. }
  406. tkey->dot11RSNAStatsTKIPReplays++;
  407. return -4;
  408. }
  409. if (iv32 != tkey->rx_iv32 || !tkey->rx_phase1_done) {
  410. tkip_mixing_phase1(tkey->rx_ttak, tkey->key, hdr->addr2, iv32);
  411. tkey->rx_phase1_done = 1;
  412. }
  413. tkip_mixing_phase2(rc4key, tkey->key, tkey->rx_ttak, iv16);
  414. plen = skb->len - hdr_len - 12;
  415. crypto_blkcipher_setkey(tkey->rx_tfm_arc4, rc4key, 16);
  416. sg_init_one(&sg, pos, plen + 4);
  417. if (crypto_blkcipher_decrypt(&desc, &sg, &sg, plen + 4)) {
  418. if (net_ratelimit()) {
  419. printk(KERN_DEBUG ": TKIP: failed to decrypt "
  420. "received packet from %s\n",
  421. print_mac(mac, hdr->addr2));
  422. }
  423. return -7;
  424. }
  425. crc = ~crc32_le(~0, pos, plen);
  426. icv[0] = crc;
  427. icv[1] = crc >> 8;
  428. icv[2] = crc >> 16;
  429. icv[3] = crc >> 24;
  430. if (memcmp(icv, pos + plen, 4) != 0) {
  431. if (iv32 != tkey->rx_iv32) {
  432. /* Previously cached Phase1 result was already lost, so
  433. * it needs to be recalculated for the next packet. */
  434. tkey->rx_phase1_done = 0;
  435. }
  436. if (net_ratelimit()) {
  437. IEEE80211_DEBUG_DROP("TKIP: ICV error detected: STA="
  438. "%s\n", print_mac(mac, hdr->addr2));
  439. }
  440. tkey->dot11RSNAStatsTKIPICVErrors++;
  441. return -5;
  442. }
  443. /* Update real counters only after Michael MIC verification has
  444. * completed */
  445. tkey->rx_iv32_new = iv32;
  446. tkey->rx_iv16_new = iv16;
  447. /* Remove IV and ICV */
  448. memmove(skb->data + 8, skb->data, hdr_len);
  449. skb_pull(skb, 8);
  450. skb_trim(skb, skb->len - 4);
  451. return keyidx;
  452. }
  453. static int michael_mic(struct crypto_hash *tfm_michael, u8 * key, u8 * hdr,
  454. u8 * data, size_t data_len, u8 * mic)
  455. {
  456. struct hash_desc desc;
  457. struct scatterlist sg[2];
  458. if (tfm_michael == NULL) {
  459. printk(KERN_WARNING "michael_mic: tfm_michael == NULL\n");
  460. return -1;
  461. }
  462. sg_init_table(sg, 2);
  463. sg_set_buf(&sg[0], hdr, 16);
  464. sg_set_buf(&sg[1], data, data_len);
  465. if (crypto_hash_setkey(tfm_michael, key, 8))
  466. return -1;
  467. desc.tfm = tfm_michael;
  468. desc.flags = 0;
  469. return crypto_hash_digest(&desc, sg, data_len + 16, mic);
  470. }
  471. static void michael_mic_hdr(struct sk_buff *skb, u8 * hdr)
  472. {
  473. struct ieee80211_hdr_4addr *hdr11;
  474. u16 stype;
  475. hdr11 = (struct ieee80211_hdr_4addr *)skb->data;
  476. stype = WLAN_FC_GET_STYPE(le16_to_cpu(hdr11->frame_ctl));
  477. switch (le16_to_cpu(hdr11->frame_ctl) &
  478. (IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS)) {
  479. case IEEE80211_FCTL_TODS:
  480. memcpy(hdr, hdr11->addr3, ETH_ALEN); /* DA */
  481. memcpy(hdr + ETH_ALEN, hdr11->addr2, ETH_ALEN); /* SA */
  482. break;
  483. case IEEE80211_FCTL_FROMDS:
  484. memcpy(hdr, hdr11->addr1, ETH_ALEN); /* DA */
  485. memcpy(hdr + ETH_ALEN, hdr11->addr3, ETH_ALEN); /* SA */
  486. break;
  487. case IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS:
  488. memcpy(hdr, hdr11->addr3, ETH_ALEN); /* DA */
  489. memcpy(hdr + ETH_ALEN, hdr11->addr4, ETH_ALEN); /* SA */
  490. break;
  491. case 0:
  492. memcpy(hdr, hdr11->addr1, ETH_ALEN); /* DA */
  493. memcpy(hdr + ETH_ALEN, hdr11->addr2, ETH_ALEN); /* SA */
  494. break;
  495. }
  496. if (stype & IEEE80211_STYPE_QOS_DATA) {
  497. const struct ieee80211_hdr_3addrqos *qoshdr =
  498. (struct ieee80211_hdr_3addrqos *)skb->data;
  499. hdr[12] = le16_to_cpu(qoshdr->qos_ctl) & IEEE80211_QCTL_TID;
  500. } else
  501. hdr[12] = 0; /* priority */
  502. hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
  503. }
  504. static int ieee80211_michael_mic_add(struct sk_buff *skb, int hdr_len,
  505. void *priv)
  506. {
  507. struct ieee80211_tkip_data *tkey = priv;
  508. u8 *pos;
  509. if (skb_tailroom(skb) < 8 || skb->len < hdr_len) {
  510. printk(KERN_DEBUG "Invalid packet for Michael MIC add "
  511. "(tailroom=%d hdr_len=%d skb->len=%d)\n",
  512. skb_tailroom(skb), hdr_len, skb->len);
  513. return -1;
  514. }
  515. michael_mic_hdr(skb, tkey->tx_hdr);
  516. pos = skb_put(skb, 8);
  517. if (michael_mic(tkey->tx_tfm_michael, &tkey->key[16], tkey->tx_hdr,
  518. skb->data + hdr_len, skb->len - 8 - hdr_len, pos))
  519. return -1;
  520. return 0;
  521. }
  522. static void ieee80211_michael_mic_failure(struct net_device *dev,
  523. struct ieee80211_hdr_4addr *hdr,
  524. int keyidx)
  525. {
  526. union iwreq_data wrqu;
  527. struct iw_michaelmicfailure ev;
  528. /* TODO: needed parameters: count, keyid, key type, TSC */
  529. memset(&ev, 0, sizeof(ev));
  530. ev.flags = keyidx & IW_MICFAILURE_KEY_ID;
  531. if (hdr->addr1[0] & 0x01)
  532. ev.flags |= IW_MICFAILURE_GROUP;
  533. else
  534. ev.flags |= IW_MICFAILURE_PAIRWISE;
  535. ev.src_addr.sa_family = ARPHRD_ETHER;
  536. memcpy(ev.src_addr.sa_data, hdr->addr2, ETH_ALEN);
  537. memset(&wrqu, 0, sizeof(wrqu));
  538. wrqu.data.length = sizeof(ev);
  539. wireless_send_event(dev, IWEVMICHAELMICFAILURE, &wrqu, (char *)&ev);
  540. }
  541. static int ieee80211_michael_mic_verify(struct sk_buff *skb, int keyidx,
  542. int hdr_len, void *priv)
  543. {
  544. struct ieee80211_tkip_data *tkey = priv;
  545. u8 mic[8];
  546. DECLARE_MAC_BUF(mac);
  547. if (!tkey->key_set)
  548. return -1;
  549. michael_mic_hdr(skb, tkey->rx_hdr);
  550. if (michael_mic(tkey->rx_tfm_michael, &tkey->key[24], tkey->rx_hdr,
  551. skb->data + hdr_len, skb->len - 8 - hdr_len, mic))
  552. return -1;
  553. if (memcmp(mic, skb->data + skb->len - 8, 8) != 0) {
  554. struct ieee80211_hdr_4addr *hdr;
  555. hdr = (struct ieee80211_hdr_4addr *)skb->data;
  556. printk(KERN_DEBUG "%s: Michael MIC verification failed for "
  557. "MSDU from %s keyidx=%d\n",
  558. skb->dev ? skb->dev->name : "N/A", print_mac(mac, hdr->addr2),
  559. keyidx);
  560. if (skb->dev)
  561. ieee80211_michael_mic_failure(skb->dev, hdr, keyidx);
  562. tkey->dot11RSNAStatsTKIPLocalMICFailures++;
  563. return -1;
  564. }
  565. /* Update TSC counters for RX now that the packet verification has
  566. * completed. */
  567. tkey->rx_iv32 = tkey->rx_iv32_new;
  568. tkey->rx_iv16 = tkey->rx_iv16_new;
  569. skb_trim(skb, skb->len - 8);
  570. return 0;
  571. }
  572. static int ieee80211_tkip_set_key(void *key, int len, u8 * seq, void *priv)
  573. {
  574. struct ieee80211_tkip_data *tkey = priv;
  575. int keyidx;
  576. struct crypto_hash *tfm = tkey->tx_tfm_michael;
  577. struct crypto_blkcipher *tfm2 = tkey->tx_tfm_arc4;
  578. struct crypto_hash *tfm3 = tkey->rx_tfm_michael;
  579. struct crypto_blkcipher *tfm4 = tkey->rx_tfm_arc4;
  580. keyidx = tkey->key_idx;
  581. memset(tkey, 0, sizeof(*tkey));
  582. tkey->key_idx = keyidx;
  583. tkey->tx_tfm_michael = tfm;
  584. tkey->tx_tfm_arc4 = tfm2;
  585. tkey->rx_tfm_michael = tfm3;
  586. tkey->rx_tfm_arc4 = tfm4;
  587. if (len == TKIP_KEY_LEN) {
  588. memcpy(tkey->key, key, TKIP_KEY_LEN);
  589. tkey->key_set = 1;
  590. tkey->tx_iv16 = 1; /* TSC is initialized to 1 */
  591. if (seq) {
  592. tkey->rx_iv32 = (seq[5] << 24) | (seq[4] << 16) |
  593. (seq[3] << 8) | seq[2];
  594. tkey->rx_iv16 = (seq[1] << 8) | seq[0];
  595. }
  596. } else if (len == 0)
  597. tkey->key_set = 0;
  598. else
  599. return -1;
  600. return 0;
  601. }
  602. static int ieee80211_tkip_get_key(void *key, int len, u8 * seq, void *priv)
  603. {
  604. struct ieee80211_tkip_data *tkey = priv;
  605. if (len < TKIP_KEY_LEN)
  606. return -1;
  607. if (!tkey->key_set)
  608. return 0;
  609. memcpy(key, tkey->key, TKIP_KEY_LEN);
  610. if (seq) {
  611. /* Return the sequence number of the last transmitted frame. */
  612. u16 iv16 = tkey->tx_iv16;
  613. u32 iv32 = tkey->tx_iv32;
  614. if (iv16 == 0)
  615. iv32--;
  616. iv16--;
  617. seq[0] = tkey->tx_iv16;
  618. seq[1] = tkey->tx_iv16 >> 8;
  619. seq[2] = tkey->tx_iv32;
  620. seq[3] = tkey->tx_iv32 >> 8;
  621. seq[4] = tkey->tx_iv32 >> 16;
  622. seq[5] = tkey->tx_iv32 >> 24;
  623. }
  624. return TKIP_KEY_LEN;
  625. }
  626. static char *ieee80211_tkip_print_stats(char *p, void *priv)
  627. {
  628. struct ieee80211_tkip_data *tkip = priv;
  629. p += sprintf(p, "key[%d] alg=TKIP key_set=%d "
  630. "tx_pn=%02x%02x%02x%02x%02x%02x "
  631. "rx_pn=%02x%02x%02x%02x%02x%02x "
  632. "replays=%d icv_errors=%d local_mic_failures=%d\n",
  633. tkip->key_idx, tkip->key_set,
  634. (tkip->tx_iv32 >> 24) & 0xff,
  635. (tkip->tx_iv32 >> 16) & 0xff,
  636. (tkip->tx_iv32 >> 8) & 0xff,
  637. tkip->tx_iv32 & 0xff,
  638. (tkip->tx_iv16 >> 8) & 0xff,
  639. tkip->tx_iv16 & 0xff,
  640. (tkip->rx_iv32 >> 24) & 0xff,
  641. (tkip->rx_iv32 >> 16) & 0xff,
  642. (tkip->rx_iv32 >> 8) & 0xff,
  643. tkip->rx_iv32 & 0xff,
  644. (tkip->rx_iv16 >> 8) & 0xff,
  645. tkip->rx_iv16 & 0xff,
  646. tkip->dot11RSNAStatsTKIPReplays,
  647. tkip->dot11RSNAStatsTKIPICVErrors,
  648. tkip->dot11RSNAStatsTKIPLocalMICFailures);
  649. return p;
  650. }
  651. static struct ieee80211_crypto_ops ieee80211_crypt_tkip = {
  652. .name = "TKIP",
  653. .init = ieee80211_tkip_init,
  654. .deinit = ieee80211_tkip_deinit,
  655. .build_iv = ieee80211_tkip_hdr,
  656. .encrypt_mpdu = ieee80211_tkip_encrypt,
  657. .decrypt_mpdu = ieee80211_tkip_decrypt,
  658. .encrypt_msdu = ieee80211_michael_mic_add,
  659. .decrypt_msdu = ieee80211_michael_mic_verify,
  660. .set_key = ieee80211_tkip_set_key,
  661. .get_key = ieee80211_tkip_get_key,
  662. .print_stats = ieee80211_tkip_print_stats,
  663. .extra_mpdu_prefix_len = 4 + 4, /* IV + ExtIV */
  664. .extra_mpdu_postfix_len = 4, /* ICV */
  665. .extra_msdu_postfix_len = 8, /* MIC */
  666. .get_flags = ieee80211_tkip_get_flags,
  667. .set_flags = ieee80211_tkip_set_flags,
  668. .owner = THIS_MODULE,
  669. };
  670. static int __init ieee80211_crypto_tkip_init(void)
  671. {
  672. return ieee80211_register_crypto_ops(&ieee80211_crypt_tkip);
  673. }
  674. static void __exit ieee80211_crypto_tkip_exit(void)
  675. {
  676. ieee80211_unregister_crypto_ops(&ieee80211_crypt_tkip);
  677. }
  678. module_init(ieee80211_crypto_tkip_init);
  679. module_exit(ieee80211_crypto_tkip_exit);