book3s_hv_rm_mmu.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825
  1. /*
  2. * This program is free software; you can redistribute it and/or modify
  3. * it under the terms of the GNU General Public License, version 2, as
  4. * published by the Free Software Foundation.
  5. *
  6. * Copyright 2010-2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  7. */
  8. #include <linux/types.h>
  9. #include <linux/string.h>
  10. #include <linux/kvm.h>
  11. #include <linux/kvm_host.h>
  12. #include <linux/hugetlb.h>
  13. #include <linux/module.h>
  14. #include <asm/tlbflush.h>
  15. #include <asm/kvm_ppc.h>
  16. #include <asm/kvm_book3s.h>
  17. #include <asm/mmu-hash64.h>
  18. #include <asm/hvcall.h>
  19. #include <asm/synch.h>
  20. #include <asm/ppc-opcode.h>
  21. /* Translate address of a vmalloc'd thing to a linear map address */
  22. static void *real_vmalloc_addr(void *x)
  23. {
  24. unsigned long addr = (unsigned long) x;
  25. pte_t *p;
  26. p = find_linux_pte(swapper_pg_dir, addr);
  27. if (!p || !pte_present(*p))
  28. return NULL;
  29. /* assume we don't have huge pages in vmalloc space... */
  30. addr = (pte_pfn(*p) << PAGE_SHIFT) | (addr & ~PAGE_MASK);
  31. return __va(addr);
  32. }
  33. /*
  34. * Add this HPTE into the chain for the real page.
  35. * Must be called with the chain locked; it unlocks the chain.
  36. */
  37. void kvmppc_add_revmap_chain(struct kvm *kvm, struct revmap_entry *rev,
  38. unsigned long *rmap, long pte_index, int realmode)
  39. {
  40. struct revmap_entry *head, *tail;
  41. unsigned long i;
  42. if (*rmap & KVMPPC_RMAP_PRESENT) {
  43. i = *rmap & KVMPPC_RMAP_INDEX;
  44. head = &kvm->arch.revmap[i];
  45. if (realmode)
  46. head = real_vmalloc_addr(head);
  47. tail = &kvm->arch.revmap[head->back];
  48. if (realmode)
  49. tail = real_vmalloc_addr(tail);
  50. rev->forw = i;
  51. rev->back = head->back;
  52. tail->forw = pte_index;
  53. head->back = pte_index;
  54. } else {
  55. rev->forw = rev->back = pte_index;
  56. i = pte_index;
  57. }
  58. smp_wmb();
  59. *rmap = i | KVMPPC_RMAP_REFERENCED | KVMPPC_RMAP_PRESENT; /* unlock */
  60. }
  61. EXPORT_SYMBOL_GPL(kvmppc_add_revmap_chain);
  62. /* Remove this HPTE from the chain for a real page */
  63. static void remove_revmap_chain(struct kvm *kvm, long pte_index,
  64. struct revmap_entry *rev,
  65. unsigned long hpte_v, unsigned long hpte_r)
  66. {
  67. struct revmap_entry *next, *prev;
  68. unsigned long gfn, ptel, head;
  69. struct kvm_memory_slot *memslot;
  70. unsigned long *rmap;
  71. unsigned long rcbits;
  72. rcbits = hpte_r & (HPTE_R_R | HPTE_R_C);
  73. ptel = rev->guest_rpte |= rcbits;
  74. gfn = hpte_rpn(ptel, hpte_page_size(hpte_v, ptel));
  75. memslot = __gfn_to_memslot(kvm_memslots(kvm), gfn);
  76. if (!memslot)
  77. return;
  78. rmap = real_vmalloc_addr(&memslot->arch.rmap[gfn - memslot->base_gfn]);
  79. lock_rmap(rmap);
  80. head = *rmap & KVMPPC_RMAP_INDEX;
  81. next = real_vmalloc_addr(&kvm->arch.revmap[rev->forw]);
  82. prev = real_vmalloc_addr(&kvm->arch.revmap[rev->back]);
  83. next->back = rev->back;
  84. prev->forw = rev->forw;
  85. if (head == pte_index) {
  86. head = rev->forw;
  87. if (head == pte_index)
  88. *rmap &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
  89. else
  90. *rmap = (*rmap & ~KVMPPC_RMAP_INDEX) | head;
  91. }
  92. *rmap |= rcbits << KVMPPC_RMAP_RC_SHIFT;
  93. unlock_rmap(rmap);
  94. }
  95. static pte_t lookup_linux_pte(pgd_t *pgdir, unsigned long hva,
  96. int writing, unsigned long *pte_sizep)
  97. {
  98. pte_t *ptep;
  99. unsigned long ps = *pte_sizep;
  100. unsigned int shift;
  101. ptep = find_linux_pte_or_hugepte(pgdir, hva, &shift);
  102. if (!ptep)
  103. return __pte(0);
  104. if (shift)
  105. *pte_sizep = 1ul << shift;
  106. else
  107. *pte_sizep = PAGE_SIZE;
  108. if (ps > *pte_sizep)
  109. return __pte(0);
  110. if (!pte_present(*ptep))
  111. return __pte(0);
  112. return kvmppc_read_update_linux_pte(ptep, writing);
  113. }
  114. static inline void unlock_hpte(unsigned long *hpte, unsigned long hpte_v)
  115. {
  116. asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
  117. hpte[0] = hpte_v;
  118. }
  119. long kvmppc_do_h_enter(struct kvm *kvm, unsigned long flags,
  120. long pte_index, unsigned long pteh, unsigned long ptel,
  121. pgd_t *pgdir, bool realmode, unsigned long *pte_idx_ret)
  122. {
  123. unsigned long i, pa, gpa, gfn, psize;
  124. unsigned long slot_fn, hva;
  125. unsigned long *hpte;
  126. struct revmap_entry *rev;
  127. unsigned long g_ptel = ptel;
  128. struct kvm_memory_slot *memslot;
  129. unsigned long *physp, pte_size;
  130. unsigned long is_io;
  131. unsigned long *rmap;
  132. pte_t pte;
  133. unsigned int writing;
  134. unsigned long mmu_seq;
  135. unsigned long rcbits;
  136. psize = hpte_page_size(pteh, ptel);
  137. if (!psize)
  138. return H_PARAMETER;
  139. writing = hpte_is_writable(ptel);
  140. pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
  141. /* used later to detect if we might have been invalidated */
  142. mmu_seq = kvm->mmu_notifier_seq;
  143. smp_rmb();
  144. /* Find the memslot (if any) for this address */
  145. gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
  146. gfn = gpa >> PAGE_SHIFT;
  147. memslot = __gfn_to_memslot(kvm_memslots(kvm), gfn);
  148. pa = 0;
  149. is_io = ~0ul;
  150. rmap = NULL;
  151. if (!(memslot && !(memslot->flags & KVM_MEMSLOT_INVALID))) {
  152. /* PPC970 can't do emulated MMIO */
  153. if (!cpu_has_feature(CPU_FTR_ARCH_206))
  154. return H_PARAMETER;
  155. /* Emulated MMIO - mark this with key=31 */
  156. pteh |= HPTE_V_ABSENT;
  157. ptel |= HPTE_R_KEY_HI | HPTE_R_KEY_LO;
  158. goto do_insert;
  159. }
  160. /* Check if the requested page fits entirely in the memslot. */
  161. if (!slot_is_aligned(memslot, psize))
  162. return H_PARAMETER;
  163. slot_fn = gfn - memslot->base_gfn;
  164. rmap = &memslot->arch.rmap[slot_fn];
  165. if (!kvm->arch.using_mmu_notifiers) {
  166. physp = memslot->arch.slot_phys;
  167. if (!physp)
  168. return H_PARAMETER;
  169. physp += slot_fn;
  170. if (realmode)
  171. physp = real_vmalloc_addr(physp);
  172. pa = *physp;
  173. if (!pa)
  174. return H_TOO_HARD;
  175. is_io = pa & (HPTE_R_I | HPTE_R_W);
  176. pte_size = PAGE_SIZE << (pa & KVMPPC_PAGE_ORDER_MASK);
  177. pa &= PAGE_MASK;
  178. } else {
  179. /* Translate to host virtual address */
  180. hva = __gfn_to_hva_memslot(memslot, gfn);
  181. /* Look up the Linux PTE for the backing page */
  182. pte_size = psize;
  183. pte = lookup_linux_pte(pgdir, hva, writing, &pte_size);
  184. if (pte_present(pte)) {
  185. if (writing && !pte_write(pte))
  186. /* make the actual HPTE be read-only */
  187. ptel = hpte_make_readonly(ptel);
  188. is_io = hpte_cache_bits(pte_val(pte));
  189. pa = pte_pfn(pte) << PAGE_SHIFT;
  190. }
  191. }
  192. if (pte_size < psize)
  193. return H_PARAMETER;
  194. if (pa && pte_size > psize)
  195. pa |= gpa & (pte_size - 1);
  196. ptel &= ~(HPTE_R_PP0 - psize);
  197. ptel |= pa;
  198. if (pa)
  199. pteh |= HPTE_V_VALID;
  200. else
  201. pteh |= HPTE_V_ABSENT;
  202. /* Check WIMG */
  203. if (is_io != ~0ul && !hpte_cache_flags_ok(ptel, is_io)) {
  204. if (is_io)
  205. return H_PARAMETER;
  206. /*
  207. * Allow guest to map emulated device memory as
  208. * uncacheable, but actually make it cacheable.
  209. */
  210. ptel &= ~(HPTE_R_W|HPTE_R_I|HPTE_R_G);
  211. ptel |= HPTE_R_M;
  212. }
  213. /* Find and lock the HPTEG slot to use */
  214. do_insert:
  215. if (pte_index >= kvm->arch.hpt_npte)
  216. return H_PARAMETER;
  217. if (likely((flags & H_EXACT) == 0)) {
  218. pte_index &= ~7UL;
  219. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  220. for (i = 0; i < 8; ++i) {
  221. if ((*hpte & HPTE_V_VALID) == 0 &&
  222. try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
  223. HPTE_V_ABSENT))
  224. break;
  225. hpte += 2;
  226. }
  227. if (i == 8) {
  228. /*
  229. * Since try_lock_hpte doesn't retry (not even stdcx.
  230. * failures), it could be that there is a free slot
  231. * but we transiently failed to lock it. Try again,
  232. * actually locking each slot and checking it.
  233. */
  234. hpte -= 16;
  235. for (i = 0; i < 8; ++i) {
  236. while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
  237. cpu_relax();
  238. if (!(*hpte & (HPTE_V_VALID | HPTE_V_ABSENT)))
  239. break;
  240. *hpte &= ~HPTE_V_HVLOCK;
  241. hpte += 2;
  242. }
  243. if (i == 8)
  244. return H_PTEG_FULL;
  245. }
  246. pte_index += i;
  247. } else {
  248. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  249. if (!try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
  250. HPTE_V_ABSENT)) {
  251. /* Lock the slot and check again */
  252. while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
  253. cpu_relax();
  254. if (*hpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
  255. *hpte &= ~HPTE_V_HVLOCK;
  256. return H_PTEG_FULL;
  257. }
  258. }
  259. }
  260. /* Save away the guest's idea of the second HPTE dword */
  261. rev = &kvm->arch.revmap[pte_index];
  262. if (realmode)
  263. rev = real_vmalloc_addr(rev);
  264. if (rev)
  265. rev->guest_rpte = g_ptel;
  266. /* Link HPTE into reverse-map chain */
  267. if (pteh & HPTE_V_VALID) {
  268. if (realmode)
  269. rmap = real_vmalloc_addr(rmap);
  270. lock_rmap(rmap);
  271. /* Check for pending invalidations under the rmap chain lock */
  272. if (kvm->arch.using_mmu_notifiers &&
  273. mmu_notifier_retry(kvm, mmu_seq)) {
  274. /* inval in progress, write a non-present HPTE */
  275. pteh |= HPTE_V_ABSENT;
  276. pteh &= ~HPTE_V_VALID;
  277. unlock_rmap(rmap);
  278. } else {
  279. kvmppc_add_revmap_chain(kvm, rev, rmap, pte_index,
  280. realmode);
  281. /* Only set R/C in real HPTE if already set in *rmap */
  282. rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
  283. ptel &= rcbits | ~(HPTE_R_R | HPTE_R_C);
  284. }
  285. }
  286. hpte[1] = ptel;
  287. /* Write the first HPTE dword, unlocking the HPTE and making it valid */
  288. eieio();
  289. hpte[0] = pteh;
  290. asm volatile("ptesync" : : : "memory");
  291. *pte_idx_ret = pte_index;
  292. return H_SUCCESS;
  293. }
  294. EXPORT_SYMBOL_GPL(kvmppc_do_h_enter);
  295. long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
  296. long pte_index, unsigned long pteh, unsigned long ptel)
  297. {
  298. return kvmppc_do_h_enter(vcpu->kvm, flags, pte_index, pteh, ptel,
  299. vcpu->arch.pgdir, true, &vcpu->arch.gpr[4]);
  300. }
  301. #define LOCK_TOKEN (*(u32 *)(&get_paca()->lock_token))
  302. static inline int try_lock_tlbie(unsigned int *lock)
  303. {
  304. unsigned int tmp, old;
  305. unsigned int token = LOCK_TOKEN;
  306. asm volatile("1:lwarx %1,0,%2\n"
  307. " cmpwi cr0,%1,0\n"
  308. " bne 2f\n"
  309. " stwcx. %3,0,%2\n"
  310. " bne- 1b\n"
  311. " isync\n"
  312. "2:"
  313. : "=&r" (tmp), "=&r" (old)
  314. : "r" (lock), "r" (token)
  315. : "cc", "memory");
  316. return old == 0;
  317. }
  318. long kvmppc_h_remove(struct kvm_vcpu *vcpu, unsigned long flags,
  319. unsigned long pte_index, unsigned long avpn,
  320. unsigned long va)
  321. {
  322. struct kvm *kvm = vcpu->kvm;
  323. unsigned long *hpte;
  324. unsigned long v, r, rb;
  325. struct revmap_entry *rev;
  326. if (pte_index >= kvm->arch.hpt_npte)
  327. return H_PARAMETER;
  328. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  329. while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
  330. cpu_relax();
  331. if ((hpte[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
  332. ((flags & H_AVPN) && (hpte[0] & ~0x7fUL) != avpn) ||
  333. ((flags & H_ANDCOND) && (hpte[0] & avpn) != 0)) {
  334. hpte[0] &= ~HPTE_V_HVLOCK;
  335. return H_NOT_FOUND;
  336. }
  337. rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
  338. v = hpte[0] & ~HPTE_V_HVLOCK;
  339. if (v & HPTE_V_VALID) {
  340. hpte[0] &= ~HPTE_V_VALID;
  341. rb = compute_tlbie_rb(v, hpte[1], pte_index);
  342. if (!(flags & H_LOCAL) && atomic_read(&kvm->online_vcpus) > 1) {
  343. while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
  344. cpu_relax();
  345. asm volatile("ptesync" : : : "memory");
  346. asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
  347. : : "r" (rb), "r" (kvm->arch.lpid));
  348. asm volatile("ptesync" : : : "memory");
  349. kvm->arch.tlbie_lock = 0;
  350. } else {
  351. asm volatile("ptesync" : : : "memory");
  352. asm volatile("tlbiel %0" : : "r" (rb));
  353. asm volatile("ptesync" : : : "memory");
  354. }
  355. /* Read PTE low word after tlbie to get final R/C values */
  356. remove_revmap_chain(kvm, pte_index, rev, v, hpte[1]);
  357. }
  358. r = rev->guest_rpte;
  359. unlock_hpte(hpte, 0);
  360. vcpu->arch.gpr[4] = v;
  361. vcpu->arch.gpr[5] = r;
  362. return H_SUCCESS;
  363. }
  364. long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu)
  365. {
  366. struct kvm *kvm = vcpu->kvm;
  367. unsigned long *args = &vcpu->arch.gpr[4];
  368. unsigned long *hp, *hptes[4], tlbrb[4];
  369. long int i, j, k, n, found, indexes[4];
  370. unsigned long flags, req, pte_index, rcbits;
  371. long int local = 0;
  372. long int ret = H_SUCCESS;
  373. struct revmap_entry *rev, *revs[4];
  374. if (atomic_read(&kvm->online_vcpus) == 1)
  375. local = 1;
  376. for (i = 0; i < 4 && ret == H_SUCCESS; ) {
  377. n = 0;
  378. for (; i < 4; ++i) {
  379. j = i * 2;
  380. pte_index = args[j];
  381. flags = pte_index >> 56;
  382. pte_index &= ((1ul << 56) - 1);
  383. req = flags >> 6;
  384. flags &= 3;
  385. if (req == 3) { /* no more requests */
  386. i = 4;
  387. break;
  388. }
  389. if (req != 1 || flags == 3 ||
  390. pte_index >= kvm->arch.hpt_npte) {
  391. /* parameter error */
  392. args[j] = ((0xa0 | flags) << 56) + pte_index;
  393. ret = H_PARAMETER;
  394. break;
  395. }
  396. hp = (unsigned long *)
  397. (kvm->arch.hpt_virt + (pte_index << 4));
  398. /* to avoid deadlock, don't spin except for first */
  399. if (!try_lock_hpte(hp, HPTE_V_HVLOCK)) {
  400. if (n)
  401. break;
  402. while (!try_lock_hpte(hp, HPTE_V_HVLOCK))
  403. cpu_relax();
  404. }
  405. found = 0;
  406. if (hp[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) {
  407. switch (flags & 3) {
  408. case 0: /* absolute */
  409. found = 1;
  410. break;
  411. case 1: /* andcond */
  412. if (!(hp[0] & args[j + 1]))
  413. found = 1;
  414. break;
  415. case 2: /* AVPN */
  416. if ((hp[0] & ~0x7fUL) == args[j + 1])
  417. found = 1;
  418. break;
  419. }
  420. }
  421. if (!found) {
  422. hp[0] &= ~HPTE_V_HVLOCK;
  423. args[j] = ((0x90 | flags) << 56) + pte_index;
  424. continue;
  425. }
  426. args[j] = ((0x80 | flags) << 56) + pte_index;
  427. rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
  428. if (!(hp[0] & HPTE_V_VALID)) {
  429. /* insert R and C bits from PTE */
  430. rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
  431. args[j] |= rcbits << (56 - 5);
  432. hp[0] = 0;
  433. continue;
  434. }
  435. hp[0] &= ~HPTE_V_VALID; /* leave it locked */
  436. tlbrb[n] = compute_tlbie_rb(hp[0], hp[1], pte_index);
  437. indexes[n] = j;
  438. hptes[n] = hp;
  439. revs[n] = rev;
  440. ++n;
  441. }
  442. if (!n)
  443. break;
  444. /* Now that we've collected a batch, do the tlbies */
  445. if (!local) {
  446. while(!try_lock_tlbie(&kvm->arch.tlbie_lock))
  447. cpu_relax();
  448. asm volatile("ptesync" : : : "memory");
  449. for (k = 0; k < n; ++k)
  450. asm volatile(PPC_TLBIE(%1,%0) : :
  451. "r" (tlbrb[k]),
  452. "r" (kvm->arch.lpid));
  453. asm volatile("eieio; tlbsync; ptesync" : : : "memory");
  454. kvm->arch.tlbie_lock = 0;
  455. } else {
  456. asm volatile("ptesync" : : : "memory");
  457. for (k = 0; k < n; ++k)
  458. asm volatile("tlbiel %0" : : "r" (tlbrb[k]));
  459. asm volatile("ptesync" : : : "memory");
  460. }
  461. /* Read PTE low words after tlbie to get final R/C values */
  462. for (k = 0; k < n; ++k) {
  463. j = indexes[k];
  464. pte_index = args[j] & ((1ul << 56) - 1);
  465. hp = hptes[k];
  466. rev = revs[k];
  467. remove_revmap_chain(kvm, pte_index, rev, hp[0], hp[1]);
  468. rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
  469. args[j] |= rcbits << (56 - 5);
  470. hp[0] = 0;
  471. }
  472. }
  473. return ret;
  474. }
  475. long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags,
  476. unsigned long pte_index, unsigned long avpn,
  477. unsigned long va)
  478. {
  479. struct kvm *kvm = vcpu->kvm;
  480. unsigned long *hpte;
  481. struct revmap_entry *rev;
  482. unsigned long v, r, rb, mask, bits;
  483. if (pte_index >= kvm->arch.hpt_npte)
  484. return H_PARAMETER;
  485. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  486. while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
  487. cpu_relax();
  488. if ((hpte[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
  489. ((flags & H_AVPN) && (hpte[0] & ~0x7fUL) != avpn)) {
  490. hpte[0] &= ~HPTE_V_HVLOCK;
  491. return H_NOT_FOUND;
  492. }
  493. if (atomic_read(&kvm->online_vcpus) == 1)
  494. flags |= H_LOCAL;
  495. v = hpte[0];
  496. bits = (flags << 55) & HPTE_R_PP0;
  497. bits |= (flags << 48) & HPTE_R_KEY_HI;
  498. bits |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO);
  499. /* Update guest view of 2nd HPTE dword */
  500. mask = HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N |
  501. HPTE_R_KEY_HI | HPTE_R_KEY_LO;
  502. rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
  503. if (rev) {
  504. r = (rev->guest_rpte & ~mask) | bits;
  505. rev->guest_rpte = r;
  506. }
  507. r = (hpte[1] & ~mask) | bits;
  508. /* Update HPTE */
  509. if (v & HPTE_V_VALID) {
  510. rb = compute_tlbie_rb(v, r, pte_index);
  511. hpte[0] = v & ~HPTE_V_VALID;
  512. if (!(flags & H_LOCAL)) {
  513. while(!try_lock_tlbie(&kvm->arch.tlbie_lock))
  514. cpu_relax();
  515. asm volatile("ptesync" : : : "memory");
  516. asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
  517. : : "r" (rb), "r" (kvm->arch.lpid));
  518. asm volatile("ptesync" : : : "memory");
  519. kvm->arch.tlbie_lock = 0;
  520. } else {
  521. asm volatile("ptesync" : : : "memory");
  522. asm volatile("tlbiel %0" : : "r" (rb));
  523. asm volatile("ptesync" : : : "memory");
  524. }
  525. }
  526. hpte[1] = r;
  527. eieio();
  528. hpte[0] = v & ~HPTE_V_HVLOCK;
  529. asm volatile("ptesync" : : : "memory");
  530. return H_SUCCESS;
  531. }
  532. long kvmppc_h_read(struct kvm_vcpu *vcpu, unsigned long flags,
  533. unsigned long pte_index)
  534. {
  535. struct kvm *kvm = vcpu->kvm;
  536. unsigned long *hpte, v, r;
  537. int i, n = 1;
  538. struct revmap_entry *rev = NULL;
  539. if (pte_index >= kvm->arch.hpt_npte)
  540. return H_PARAMETER;
  541. if (flags & H_READ_4) {
  542. pte_index &= ~3;
  543. n = 4;
  544. }
  545. rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
  546. for (i = 0; i < n; ++i, ++pte_index) {
  547. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  548. v = hpte[0] & ~HPTE_V_HVLOCK;
  549. r = hpte[1];
  550. if (v & HPTE_V_ABSENT) {
  551. v &= ~HPTE_V_ABSENT;
  552. v |= HPTE_V_VALID;
  553. }
  554. if (v & HPTE_V_VALID)
  555. r = rev[i].guest_rpte | (r & (HPTE_R_R | HPTE_R_C));
  556. vcpu->arch.gpr[4 + i * 2] = v;
  557. vcpu->arch.gpr[5 + i * 2] = r;
  558. }
  559. return H_SUCCESS;
  560. }
  561. void kvmppc_invalidate_hpte(struct kvm *kvm, unsigned long *hptep,
  562. unsigned long pte_index)
  563. {
  564. unsigned long rb;
  565. hptep[0] &= ~HPTE_V_VALID;
  566. rb = compute_tlbie_rb(hptep[0], hptep[1], pte_index);
  567. while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
  568. cpu_relax();
  569. asm volatile("ptesync" : : : "memory");
  570. asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
  571. : : "r" (rb), "r" (kvm->arch.lpid));
  572. asm volatile("ptesync" : : : "memory");
  573. kvm->arch.tlbie_lock = 0;
  574. }
  575. EXPORT_SYMBOL_GPL(kvmppc_invalidate_hpte);
  576. void kvmppc_clear_ref_hpte(struct kvm *kvm, unsigned long *hptep,
  577. unsigned long pte_index)
  578. {
  579. unsigned long rb;
  580. unsigned char rbyte;
  581. rb = compute_tlbie_rb(hptep[0], hptep[1], pte_index);
  582. rbyte = (hptep[1] & ~HPTE_R_R) >> 8;
  583. /* modify only the second-last byte, which contains the ref bit */
  584. *((char *)hptep + 14) = rbyte;
  585. while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
  586. cpu_relax();
  587. asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
  588. : : "r" (rb), "r" (kvm->arch.lpid));
  589. asm volatile("ptesync" : : : "memory");
  590. kvm->arch.tlbie_lock = 0;
  591. }
  592. EXPORT_SYMBOL_GPL(kvmppc_clear_ref_hpte);
  593. static int slb_base_page_shift[4] = {
  594. 24, /* 16M */
  595. 16, /* 64k */
  596. 34, /* 16G */
  597. 20, /* 1M, unsupported */
  598. };
  599. long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr, unsigned long slb_v,
  600. unsigned long valid)
  601. {
  602. unsigned int i;
  603. unsigned int pshift;
  604. unsigned long somask;
  605. unsigned long vsid, hash;
  606. unsigned long avpn;
  607. unsigned long *hpte;
  608. unsigned long mask, val;
  609. unsigned long v, r;
  610. /* Get page shift, work out hash and AVPN etc. */
  611. mask = SLB_VSID_B | HPTE_V_AVPN | HPTE_V_SECONDARY;
  612. val = 0;
  613. pshift = 12;
  614. if (slb_v & SLB_VSID_L) {
  615. mask |= HPTE_V_LARGE;
  616. val |= HPTE_V_LARGE;
  617. pshift = slb_base_page_shift[(slb_v & SLB_VSID_LP) >> 4];
  618. }
  619. if (slb_v & SLB_VSID_B_1T) {
  620. somask = (1UL << 40) - 1;
  621. vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T;
  622. vsid ^= vsid << 25;
  623. } else {
  624. somask = (1UL << 28) - 1;
  625. vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT;
  626. }
  627. hash = (vsid ^ ((eaddr & somask) >> pshift)) & kvm->arch.hpt_mask;
  628. avpn = slb_v & ~(somask >> 16); /* also includes B */
  629. avpn |= (eaddr & somask) >> 16;
  630. if (pshift >= 24)
  631. avpn &= ~((1UL << (pshift - 16)) - 1);
  632. else
  633. avpn &= ~0x7fUL;
  634. val |= avpn;
  635. for (;;) {
  636. hpte = (unsigned long *)(kvm->arch.hpt_virt + (hash << 7));
  637. for (i = 0; i < 16; i += 2) {
  638. /* Read the PTE racily */
  639. v = hpte[i] & ~HPTE_V_HVLOCK;
  640. /* Check valid/absent, hash, segment size and AVPN */
  641. if (!(v & valid) || (v & mask) != val)
  642. continue;
  643. /* Lock the PTE and read it under the lock */
  644. while (!try_lock_hpte(&hpte[i], HPTE_V_HVLOCK))
  645. cpu_relax();
  646. v = hpte[i] & ~HPTE_V_HVLOCK;
  647. r = hpte[i+1];
  648. /*
  649. * Check the HPTE again, including large page size
  650. * Since we don't currently allow any MPSS (mixed
  651. * page-size segment) page sizes, it is sufficient
  652. * to check against the actual page size.
  653. */
  654. if ((v & valid) && (v & mask) == val &&
  655. hpte_page_size(v, r) == (1ul << pshift))
  656. /* Return with the HPTE still locked */
  657. return (hash << 3) + (i >> 1);
  658. /* Unlock and move on */
  659. hpte[i] = v;
  660. }
  661. if (val & HPTE_V_SECONDARY)
  662. break;
  663. val |= HPTE_V_SECONDARY;
  664. hash = hash ^ kvm->arch.hpt_mask;
  665. }
  666. return -1;
  667. }
  668. EXPORT_SYMBOL(kvmppc_hv_find_lock_hpte);
  669. /*
  670. * Called in real mode to check whether an HPTE not found fault
  671. * is due to accessing a paged-out page or an emulated MMIO page,
  672. * or if a protection fault is due to accessing a page that the
  673. * guest wanted read/write access to but which we made read-only.
  674. * Returns a possibly modified status (DSISR) value if not
  675. * (i.e. pass the interrupt to the guest),
  676. * -1 to pass the fault up to host kernel mode code, -2 to do that
  677. * and also load the instruction word (for MMIO emulation),
  678. * or 0 if we should make the guest retry the access.
  679. */
  680. long kvmppc_hpte_hv_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  681. unsigned long slb_v, unsigned int status, bool data)
  682. {
  683. struct kvm *kvm = vcpu->kvm;
  684. long int index;
  685. unsigned long v, r, gr;
  686. unsigned long *hpte;
  687. unsigned long valid;
  688. struct revmap_entry *rev;
  689. unsigned long pp, key;
  690. /* For protection fault, expect to find a valid HPTE */
  691. valid = HPTE_V_VALID;
  692. if (status & DSISR_NOHPTE)
  693. valid |= HPTE_V_ABSENT;
  694. index = kvmppc_hv_find_lock_hpte(kvm, addr, slb_v, valid);
  695. if (index < 0) {
  696. if (status & DSISR_NOHPTE)
  697. return status; /* there really was no HPTE */
  698. return 0; /* for prot fault, HPTE disappeared */
  699. }
  700. hpte = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
  701. v = hpte[0] & ~HPTE_V_HVLOCK;
  702. r = hpte[1];
  703. rev = real_vmalloc_addr(&kvm->arch.revmap[index]);
  704. gr = rev->guest_rpte;
  705. unlock_hpte(hpte, v);
  706. /* For not found, if the HPTE is valid by now, retry the instruction */
  707. if ((status & DSISR_NOHPTE) && (v & HPTE_V_VALID))
  708. return 0;
  709. /* Check access permissions to the page */
  710. pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
  711. key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
  712. status &= ~DSISR_NOHPTE; /* DSISR_NOHPTE == SRR1_ISI_NOPT */
  713. if (!data) {
  714. if (gr & (HPTE_R_N | HPTE_R_G))
  715. return status | SRR1_ISI_N_OR_G;
  716. if (!hpte_read_permission(pp, slb_v & key))
  717. return status | SRR1_ISI_PROT;
  718. } else if (status & DSISR_ISSTORE) {
  719. /* check write permission */
  720. if (!hpte_write_permission(pp, slb_v & key))
  721. return status | DSISR_PROTFAULT;
  722. } else {
  723. if (!hpte_read_permission(pp, slb_v & key))
  724. return status | DSISR_PROTFAULT;
  725. }
  726. /* Check storage key, if applicable */
  727. if (data && (vcpu->arch.shregs.msr & MSR_DR)) {
  728. unsigned int perm = hpte_get_skey_perm(gr, vcpu->arch.amr);
  729. if (status & DSISR_ISSTORE)
  730. perm >>= 1;
  731. if (perm & 1)
  732. return status | DSISR_KEYFAULT;
  733. }
  734. /* Save HPTE info for virtual-mode handler */
  735. vcpu->arch.pgfault_addr = addr;
  736. vcpu->arch.pgfault_index = index;
  737. vcpu->arch.pgfault_hpte[0] = v;
  738. vcpu->arch.pgfault_hpte[1] = r;
  739. /* Check the storage key to see if it is possibly emulated MMIO */
  740. if (data && (vcpu->arch.shregs.msr & MSR_IR) &&
  741. (r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
  742. (HPTE_R_KEY_HI | HPTE_R_KEY_LO))
  743. return -2; /* MMIO emulation - load instr word */
  744. return -1; /* send fault up to host kernel mode */
  745. }