inode.c 100 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442
  1. /*
  2. * linux/fs/ext3/inode.c
  3. *
  4. * Copyright (C) 1992, 1993, 1994, 1995
  5. * Remy Card (card@masi.ibp.fr)
  6. * Laboratoire MASI - Institut Blaise Pascal
  7. * Universite Pierre et Marie Curie (Paris VI)
  8. *
  9. * from
  10. *
  11. * linux/fs/minix/inode.c
  12. *
  13. * Copyright (C) 1991, 1992 Linus Torvalds
  14. *
  15. * Goal-directed block allocation by Stephen Tweedie
  16. * (sct@redhat.com), 1993, 1998
  17. * Big-endian to little-endian byte-swapping/bitmaps by
  18. * David S. Miller (davem@caip.rutgers.edu), 1995
  19. * 64-bit file support on 64-bit platforms by Jakub Jelinek
  20. * (jj@sunsite.ms.mff.cuni.cz)
  21. *
  22. * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
  23. */
  24. #include <linux/module.h>
  25. #include <linux/fs.h>
  26. #include <linux/time.h>
  27. #include <linux/ext3_jbd.h>
  28. #include <linux/jbd.h>
  29. #include <linux/highuid.h>
  30. #include <linux/pagemap.h>
  31. #include <linux/quotaops.h>
  32. #include <linux/string.h>
  33. #include <linux/buffer_head.h>
  34. #include <linux/writeback.h>
  35. #include <linux/mpage.h>
  36. #include <linux/uio.h>
  37. #include <linux/bio.h>
  38. #include <linux/fiemap.h>
  39. #include <linux/namei.h>
  40. #include "xattr.h"
  41. #include "acl.h"
  42. static int ext3_writepage_trans_blocks(struct inode *inode);
  43. /*
  44. * Test whether an inode is a fast symlink.
  45. */
  46. static int ext3_inode_is_fast_symlink(struct inode *inode)
  47. {
  48. int ea_blocks = EXT3_I(inode)->i_file_acl ?
  49. (inode->i_sb->s_blocksize >> 9) : 0;
  50. return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  51. }
  52. /*
  53. * The ext3 forget function must perform a revoke if we are freeing data
  54. * which has been journaled. Metadata (eg. indirect blocks) must be
  55. * revoked in all cases.
  56. *
  57. * "bh" may be NULL: a metadata block may have been freed from memory
  58. * but there may still be a record of it in the journal, and that record
  59. * still needs to be revoked.
  60. */
  61. int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
  62. struct buffer_head *bh, ext3_fsblk_t blocknr)
  63. {
  64. int err;
  65. might_sleep();
  66. BUFFER_TRACE(bh, "enter");
  67. jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
  68. "data mode %lx\n",
  69. bh, is_metadata, inode->i_mode,
  70. test_opt(inode->i_sb, DATA_FLAGS));
  71. /* Never use the revoke function if we are doing full data
  72. * journaling: there is no need to, and a V1 superblock won't
  73. * support it. Otherwise, only skip the revoke on un-journaled
  74. * data blocks. */
  75. if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
  76. (!is_metadata && !ext3_should_journal_data(inode))) {
  77. if (bh) {
  78. BUFFER_TRACE(bh, "call journal_forget");
  79. return ext3_journal_forget(handle, bh);
  80. }
  81. return 0;
  82. }
  83. /*
  84. * data!=journal && (is_metadata || should_journal_data(inode))
  85. */
  86. BUFFER_TRACE(bh, "call ext3_journal_revoke");
  87. err = ext3_journal_revoke(handle, blocknr, bh);
  88. if (err)
  89. ext3_abort(inode->i_sb, __func__,
  90. "error %d when attempting revoke", err);
  91. BUFFER_TRACE(bh, "exit");
  92. return err;
  93. }
  94. /*
  95. * Work out how many blocks we need to proceed with the next chunk of a
  96. * truncate transaction.
  97. */
  98. static unsigned long blocks_for_truncate(struct inode *inode)
  99. {
  100. unsigned long needed;
  101. needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
  102. /* Give ourselves just enough room to cope with inodes in which
  103. * i_blocks is corrupt: we've seen disk corruptions in the past
  104. * which resulted in random data in an inode which looked enough
  105. * like a regular file for ext3 to try to delete it. Things
  106. * will go a bit crazy if that happens, but at least we should
  107. * try not to panic the whole kernel. */
  108. if (needed < 2)
  109. needed = 2;
  110. /* But we need to bound the transaction so we don't overflow the
  111. * journal. */
  112. if (needed > EXT3_MAX_TRANS_DATA)
  113. needed = EXT3_MAX_TRANS_DATA;
  114. return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
  115. }
  116. /*
  117. * Truncate transactions can be complex and absolutely huge. So we need to
  118. * be able to restart the transaction at a conventient checkpoint to make
  119. * sure we don't overflow the journal.
  120. *
  121. * start_transaction gets us a new handle for a truncate transaction,
  122. * and extend_transaction tries to extend the existing one a bit. If
  123. * extend fails, we need to propagate the failure up and restart the
  124. * transaction in the top-level truncate loop. --sct
  125. */
  126. static handle_t *start_transaction(struct inode *inode)
  127. {
  128. handle_t *result;
  129. result = ext3_journal_start(inode, blocks_for_truncate(inode));
  130. if (!IS_ERR(result))
  131. return result;
  132. ext3_std_error(inode->i_sb, PTR_ERR(result));
  133. return result;
  134. }
  135. /*
  136. * Try to extend this transaction for the purposes of truncation.
  137. *
  138. * Returns 0 if we managed to create more room. If we can't create more
  139. * room, and the transaction must be restarted we return 1.
  140. */
  141. static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
  142. {
  143. if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
  144. return 0;
  145. if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
  146. return 0;
  147. return 1;
  148. }
  149. /*
  150. * Restart the transaction associated with *handle. This does a commit,
  151. * so before we call here everything must be consistently dirtied against
  152. * this transaction.
  153. */
  154. static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
  155. {
  156. int ret;
  157. jbd_debug(2, "restarting handle %p\n", handle);
  158. /*
  159. * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
  160. * At this moment, get_block can be called only for blocks inside
  161. * i_size since page cache has been already dropped and writes are
  162. * blocked by i_mutex. So we can safely drop the truncate_mutex.
  163. */
  164. mutex_unlock(&EXT3_I(inode)->truncate_mutex);
  165. ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
  166. mutex_lock(&EXT3_I(inode)->truncate_mutex);
  167. return ret;
  168. }
  169. /*
  170. * Called at the last iput() if i_nlink is zero.
  171. */
  172. void ext3_delete_inode (struct inode * inode)
  173. {
  174. handle_t *handle;
  175. truncate_inode_pages(&inode->i_data, 0);
  176. if (is_bad_inode(inode))
  177. goto no_delete;
  178. handle = start_transaction(inode);
  179. if (IS_ERR(handle)) {
  180. /*
  181. * If we're going to skip the normal cleanup, we still need to
  182. * make sure that the in-core orphan linked list is properly
  183. * cleaned up.
  184. */
  185. ext3_orphan_del(NULL, inode);
  186. goto no_delete;
  187. }
  188. if (IS_SYNC(inode))
  189. handle->h_sync = 1;
  190. inode->i_size = 0;
  191. if (inode->i_blocks)
  192. ext3_truncate(inode);
  193. /*
  194. * Kill off the orphan record which ext3_truncate created.
  195. * AKPM: I think this can be inside the above `if'.
  196. * Note that ext3_orphan_del() has to be able to cope with the
  197. * deletion of a non-existent orphan - this is because we don't
  198. * know if ext3_truncate() actually created an orphan record.
  199. * (Well, we could do this if we need to, but heck - it works)
  200. */
  201. ext3_orphan_del(handle, inode);
  202. EXT3_I(inode)->i_dtime = get_seconds();
  203. /*
  204. * One subtle ordering requirement: if anything has gone wrong
  205. * (transaction abort, IO errors, whatever), then we can still
  206. * do these next steps (the fs will already have been marked as
  207. * having errors), but we can't free the inode if the mark_dirty
  208. * fails.
  209. */
  210. if (ext3_mark_inode_dirty(handle, inode))
  211. /* If that failed, just do the required in-core inode clear. */
  212. clear_inode(inode);
  213. else
  214. ext3_free_inode(handle, inode);
  215. ext3_journal_stop(handle);
  216. return;
  217. no_delete:
  218. clear_inode(inode); /* We must guarantee clearing of inode... */
  219. }
  220. typedef struct {
  221. __le32 *p;
  222. __le32 key;
  223. struct buffer_head *bh;
  224. } Indirect;
  225. static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  226. {
  227. p->key = *(p->p = v);
  228. p->bh = bh;
  229. }
  230. static int verify_chain(Indirect *from, Indirect *to)
  231. {
  232. while (from <= to && from->key == *from->p)
  233. from++;
  234. return (from > to);
  235. }
  236. /**
  237. * ext3_block_to_path - parse the block number into array of offsets
  238. * @inode: inode in question (we are only interested in its superblock)
  239. * @i_block: block number to be parsed
  240. * @offsets: array to store the offsets in
  241. * @boundary: set this non-zero if the referred-to block is likely to be
  242. * followed (on disk) by an indirect block.
  243. *
  244. * To store the locations of file's data ext3 uses a data structure common
  245. * for UNIX filesystems - tree of pointers anchored in the inode, with
  246. * data blocks at leaves and indirect blocks in intermediate nodes.
  247. * This function translates the block number into path in that tree -
  248. * return value is the path length and @offsets[n] is the offset of
  249. * pointer to (n+1)th node in the nth one. If @block is out of range
  250. * (negative or too large) warning is printed and zero returned.
  251. *
  252. * Note: function doesn't find node addresses, so no IO is needed. All
  253. * we need to know is the capacity of indirect blocks (taken from the
  254. * inode->i_sb).
  255. */
  256. /*
  257. * Portability note: the last comparison (check that we fit into triple
  258. * indirect block) is spelled differently, because otherwise on an
  259. * architecture with 32-bit longs and 8Kb pages we might get into trouble
  260. * if our filesystem had 8Kb blocks. We might use long long, but that would
  261. * kill us on x86. Oh, well, at least the sign propagation does not matter -
  262. * i_block would have to be negative in the very beginning, so we would not
  263. * get there at all.
  264. */
  265. static int ext3_block_to_path(struct inode *inode,
  266. long i_block, int offsets[4], int *boundary)
  267. {
  268. int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  269. int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
  270. const long direct_blocks = EXT3_NDIR_BLOCKS,
  271. indirect_blocks = ptrs,
  272. double_blocks = (1 << (ptrs_bits * 2));
  273. int n = 0;
  274. int final = 0;
  275. if (i_block < 0) {
  276. ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
  277. } else if (i_block < direct_blocks) {
  278. offsets[n++] = i_block;
  279. final = direct_blocks;
  280. } else if ( (i_block -= direct_blocks) < indirect_blocks) {
  281. offsets[n++] = EXT3_IND_BLOCK;
  282. offsets[n++] = i_block;
  283. final = ptrs;
  284. } else if ((i_block -= indirect_blocks) < double_blocks) {
  285. offsets[n++] = EXT3_DIND_BLOCK;
  286. offsets[n++] = i_block >> ptrs_bits;
  287. offsets[n++] = i_block & (ptrs - 1);
  288. final = ptrs;
  289. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  290. offsets[n++] = EXT3_TIND_BLOCK;
  291. offsets[n++] = i_block >> (ptrs_bits * 2);
  292. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  293. offsets[n++] = i_block & (ptrs - 1);
  294. final = ptrs;
  295. } else {
  296. ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
  297. }
  298. if (boundary)
  299. *boundary = final - 1 - (i_block & (ptrs - 1));
  300. return n;
  301. }
  302. /**
  303. * ext3_get_branch - read the chain of indirect blocks leading to data
  304. * @inode: inode in question
  305. * @depth: depth of the chain (1 - direct pointer, etc.)
  306. * @offsets: offsets of pointers in inode/indirect blocks
  307. * @chain: place to store the result
  308. * @err: here we store the error value
  309. *
  310. * Function fills the array of triples <key, p, bh> and returns %NULL
  311. * if everything went OK or the pointer to the last filled triple
  312. * (incomplete one) otherwise. Upon the return chain[i].key contains
  313. * the number of (i+1)-th block in the chain (as it is stored in memory,
  314. * i.e. little-endian 32-bit), chain[i].p contains the address of that
  315. * number (it points into struct inode for i==0 and into the bh->b_data
  316. * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
  317. * block for i>0 and NULL for i==0. In other words, it holds the block
  318. * numbers of the chain, addresses they were taken from (and where we can
  319. * verify that chain did not change) and buffer_heads hosting these
  320. * numbers.
  321. *
  322. * Function stops when it stumbles upon zero pointer (absent block)
  323. * (pointer to last triple returned, *@err == 0)
  324. * or when it gets an IO error reading an indirect block
  325. * (ditto, *@err == -EIO)
  326. * or when it notices that chain had been changed while it was reading
  327. * (ditto, *@err == -EAGAIN)
  328. * or when it reads all @depth-1 indirect blocks successfully and finds
  329. * the whole chain, all way to the data (returns %NULL, *err == 0).
  330. */
  331. static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
  332. Indirect chain[4], int *err)
  333. {
  334. struct super_block *sb = inode->i_sb;
  335. Indirect *p = chain;
  336. struct buffer_head *bh;
  337. *err = 0;
  338. /* i_data is not going away, no lock needed */
  339. add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
  340. if (!p->key)
  341. goto no_block;
  342. while (--depth) {
  343. bh = sb_bread(sb, le32_to_cpu(p->key));
  344. if (!bh)
  345. goto failure;
  346. /* Reader: pointers */
  347. if (!verify_chain(chain, p))
  348. goto changed;
  349. add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
  350. /* Reader: end */
  351. if (!p->key)
  352. goto no_block;
  353. }
  354. return NULL;
  355. changed:
  356. brelse(bh);
  357. *err = -EAGAIN;
  358. goto no_block;
  359. failure:
  360. *err = -EIO;
  361. no_block:
  362. return p;
  363. }
  364. /**
  365. * ext3_find_near - find a place for allocation with sufficient locality
  366. * @inode: owner
  367. * @ind: descriptor of indirect block.
  368. *
  369. * This function returns the preferred place for block allocation.
  370. * It is used when heuristic for sequential allocation fails.
  371. * Rules are:
  372. * + if there is a block to the left of our position - allocate near it.
  373. * + if pointer will live in indirect block - allocate near that block.
  374. * + if pointer will live in inode - allocate in the same
  375. * cylinder group.
  376. *
  377. * In the latter case we colour the starting block by the callers PID to
  378. * prevent it from clashing with concurrent allocations for a different inode
  379. * in the same block group. The PID is used here so that functionally related
  380. * files will be close-by on-disk.
  381. *
  382. * Caller must make sure that @ind is valid and will stay that way.
  383. */
  384. static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
  385. {
  386. struct ext3_inode_info *ei = EXT3_I(inode);
  387. __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
  388. __le32 *p;
  389. ext3_fsblk_t bg_start;
  390. ext3_grpblk_t colour;
  391. /* Try to find previous block */
  392. for (p = ind->p - 1; p >= start; p--) {
  393. if (*p)
  394. return le32_to_cpu(*p);
  395. }
  396. /* No such thing, so let's try location of indirect block */
  397. if (ind->bh)
  398. return ind->bh->b_blocknr;
  399. /*
  400. * It is going to be referred to from the inode itself? OK, just put it
  401. * into the same cylinder group then.
  402. */
  403. bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
  404. colour = (current->pid % 16) *
  405. (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
  406. return bg_start + colour;
  407. }
  408. /**
  409. * ext3_find_goal - find a preferred place for allocation.
  410. * @inode: owner
  411. * @block: block we want
  412. * @partial: pointer to the last triple within a chain
  413. *
  414. * Normally this function find the preferred place for block allocation,
  415. * returns it.
  416. */
  417. static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
  418. Indirect *partial)
  419. {
  420. struct ext3_block_alloc_info *block_i;
  421. block_i = EXT3_I(inode)->i_block_alloc_info;
  422. /*
  423. * try the heuristic for sequential allocation,
  424. * failing that at least try to get decent locality.
  425. */
  426. if (block_i && (block == block_i->last_alloc_logical_block + 1)
  427. && (block_i->last_alloc_physical_block != 0)) {
  428. return block_i->last_alloc_physical_block + 1;
  429. }
  430. return ext3_find_near(inode, partial);
  431. }
  432. /**
  433. * ext3_blks_to_allocate: Look up the block map and count the number
  434. * of direct blocks need to be allocated for the given branch.
  435. *
  436. * @branch: chain of indirect blocks
  437. * @k: number of blocks need for indirect blocks
  438. * @blks: number of data blocks to be mapped.
  439. * @blocks_to_boundary: the offset in the indirect block
  440. *
  441. * return the total number of blocks to be allocate, including the
  442. * direct and indirect blocks.
  443. */
  444. static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
  445. int blocks_to_boundary)
  446. {
  447. unsigned long count = 0;
  448. /*
  449. * Simple case, [t,d]Indirect block(s) has not allocated yet
  450. * then it's clear blocks on that path have not allocated
  451. */
  452. if (k > 0) {
  453. /* right now we don't handle cross boundary allocation */
  454. if (blks < blocks_to_boundary + 1)
  455. count += blks;
  456. else
  457. count += blocks_to_boundary + 1;
  458. return count;
  459. }
  460. count++;
  461. while (count < blks && count <= blocks_to_boundary &&
  462. le32_to_cpu(*(branch[0].p + count)) == 0) {
  463. count++;
  464. }
  465. return count;
  466. }
  467. /**
  468. * ext3_alloc_blocks: multiple allocate blocks needed for a branch
  469. * @indirect_blks: the number of blocks need to allocate for indirect
  470. * blocks
  471. *
  472. * @new_blocks: on return it will store the new block numbers for
  473. * the indirect blocks(if needed) and the first direct block,
  474. * @blks: on return it will store the total number of allocated
  475. * direct blocks
  476. */
  477. static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
  478. ext3_fsblk_t goal, int indirect_blks, int blks,
  479. ext3_fsblk_t new_blocks[4], int *err)
  480. {
  481. int target, i;
  482. unsigned long count = 0;
  483. int index = 0;
  484. ext3_fsblk_t current_block = 0;
  485. int ret = 0;
  486. /*
  487. * Here we try to allocate the requested multiple blocks at once,
  488. * on a best-effort basis.
  489. * To build a branch, we should allocate blocks for
  490. * the indirect blocks(if not allocated yet), and at least
  491. * the first direct block of this branch. That's the
  492. * minimum number of blocks need to allocate(required)
  493. */
  494. target = blks + indirect_blks;
  495. while (1) {
  496. count = target;
  497. /* allocating blocks for indirect blocks and direct blocks */
  498. current_block = ext3_new_blocks(handle,inode,goal,&count,err);
  499. if (*err)
  500. goto failed_out;
  501. target -= count;
  502. /* allocate blocks for indirect blocks */
  503. while (index < indirect_blks && count) {
  504. new_blocks[index++] = current_block++;
  505. count--;
  506. }
  507. if (count > 0)
  508. break;
  509. }
  510. /* save the new block number for the first direct block */
  511. new_blocks[index] = current_block;
  512. /* total number of blocks allocated for direct blocks */
  513. ret = count;
  514. *err = 0;
  515. return ret;
  516. failed_out:
  517. for (i = 0; i <index; i++)
  518. ext3_free_blocks(handle, inode, new_blocks[i], 1);
  519. return ret;
  520. }
  521. /**
  522. * ext3_alloc_branch - allocate and set up a chain of blocks.
  523. * @inode: owner
  524. * @indirect_blks: number of allocated indirect blocks
  525. * @blks: number of allocated direct blocks
  526. * @offsets: offsets (in the blocks) to store the pointers to next.
  527. * @branch: place to store the chain in.
  528. *
  529. * This function allocates blocks, zeroes out all but the last one,
  530. * links them into chain and (if we are synchronous) writes them to disk.
  531. * In other words, it prepares a branch that can be spliced onto the
  532. * inode. It stores the information about that chain in the branch[], in
  533. * the same format as ext3_get_branch() would do. We are calling it after
  534. * we had read the existing part of chain and partial points to the last
  535. * triple of that (one with zero ->key). Upon the exit we have the same
  536. * picture as after the successful ext3_get_block(), except that in one
  537. * place chain is disconnected - *branch->p is still zero (we did not
  538. * set the last link), but branch->key contains the number that should
  539. * be placed into *branch->p to fill that gap.
  540. *
  541. * If allocation fails we free all blocks we've allocated (and forget
  542. * their buffer_heads) and return the error value the from failed
  543. * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
  544. * as described above and return 0.
  545. */
  546. static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
  547. int indirect_blks, int *blks, ext3_fsblk_t goal,
  548. int *offsets, Indirect *branch)
  549. {
  550. int blocksize = inode->i_sb->s_blocksize;
  551. int i, n = 0;
  552. int err = 0;
  553. struct buffer_head *bh;
  554. int num;
  555. ext3_fsblk_t new_blocks[4];
  556. ext3_fsblk_t current_block;
  557. num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
  558. *blks, new_blocks, &err);
  559. if (err)
  560. return err;
  561. branch[0].key = cpu_to_le32(new_blocks[0]);
  562. /*
  563. * metadata blocks and data blocks are allocated.
  564. */
  565. for (n = 1; n <= indirect_blks; n++) {
  566. /*
  567. * Get buffer_head for parent block, zero it out
  568. * and set the pointer to new one, then send
  569. * parent to disk.
  570. */
  571. bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
  572. branch[n].bh = bh;
  573. lock_buffer(bh);
  574. BUFFER_TRACE(bh, "call get_create_access");
  575. err = ext3_journal_get_create_access(handle, bh);
  576. if (err) {
  577. unlock_buffer(bh);
  578. brelse(bh);
  579. goto failed;
  580. }
  581. memset(bh->b_data, 0, blocksize);
  582. branch[n].p = (__le32 *) bh->b_data + offsets[n];
  583. branch[n].key = cpu_to_le32(new_blocks[n]);
  584. *branch[n].p = branch[n].key;
  585. if ( n == indirect_blks) {
  586. current_block = new_blocks[n];
  587. /*
  588. * End of chain, update the last new metablock of
  589. * the chain to point to the new allocated
  590. * data blocks numbers
  591. */
  592. for (i=1; i < num; i++)
  593. *(branch[n].p + i) = cpu_to_le32(++current_block);
  594. }
  595. BUFFER_TRACE(bh, "marking uptodate");
  596. set_buffer_uptodate(bh);
  597. unlock_buffer(bh);
  598. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  599. err = ext3_journal_dirty_metadata(handle, bh);
  600. if (err)
  601. goto failed;
  602. }
  603. *blks = num;
  604. return err;
  605. failed:
  606. /* Allocation failed, free what we already allocated */
  607. for (i = 1; i <= n ; i++) {
  608. BUFFER_TRACE(branch[i].bh, "call journal_forget");
  609. ext3_journal_forget(handle, branch[i].bh);
  610. }
  611. for (i = 0; i <indirect_blks; i++)
  612. ext3_free_blocks(handle, inode, new_blocks[i], 1);
  613. ext3_free_blocks(handle, inode, new_blocks[i], num);
  614. return err;
  615. }
  616. /**
  617. * ext3_splice_branch - splice the allocated branch onto inode.
  618. * @inode: owner
  619. * @block: (logical) number of block we are adding
  620. * @chain: chain of indirect blocks (with a missing link - see
  621. * ext3_alloc_branch)
  622. * @where: location of missing link
  623. * @num: number of indirect blocks we are adding
  624. * @blks: number of direct blocks we are adding
  625. *
  626. * This function fills the missing link and does all housekeeping needed in
  627. * inode (->i_blocks, etc.). In case of success we end up with the full
  628. * chain to new block and return 0.
  629. */
  630. static int ext3_splice_branch(handle_t *handle, struct inode *inode,
  631. long block, Indirect *where, int num, int blks)
  632. {
  633. int i;
  634. int err = 0;
  635. struct ext3_block_alloc_info *block_i;
  636. ext3_fsblk_t current_block;
  637. struct ext3_inode_info *ei = EXT3_I(inode);
  638. block_i = ei->i_block_alloc_info;
  639. /*
  640. * If we're splicing into a [td]indirect block (as opposed to the
  641. * inode) then we need to get write access to the [td]indirect block
  642. * before the splice.
  643. */
  644. if (where->bh) {
  645. BUFFER_TRACE(where->bh, "get_write_access");
  646. err = ext3_journal_get_write_access(handle, where->bh);
  647. if (err)
  648. goto err_out;
  649. }
  650. /* That's it */
  651. *where->p = where->key;
  652. /*
  653. * Update the host buffer_head or inode to point to more just allocated
  654. * direct blocks blocks
  655. */
  656. if (num == 0 && blks > 1) {
  657. current_block = le32_to_cpu(where->key) + 1;
  658. for (i = 1; i < blks; i++)
  659. *(where->p + i ) = cpu_to_le32(current_block++);
  660. }
  661. /*
  662. * update the most recently allocated logical & physical block
  663. * in i_block_alloc_info, to assist find the proper goal block for next
  664. * allocation
  665. */
  666. if (block_i) {
  667. block_i->last_alloc_logical_block = block + blks - 1;
  668. block_i->last_alloc_physical_block =
  669. le32_to_cpu(where[num].key) + blks - 1;
  670. }
  671. /* We are done with atomic stuff, now do the rest of housekeeping */
  672. inode->i_ctime = CURRENT_TIME_SEC;
  673. ext3_mark_inode_dirty(handle, inode);
  674. /* ext3_mark_inode_dirty already updated i_sync_tid */
  675. atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
  676. /* had we spliced it onto indirect block? */
  677. if (where->bh) {
  678. /*
  679. * If we spliced it onto an indirect block, we haven't
  680. * altered the inode. Note however that if it is being spliced
  681. * onto an indirect block at the very end of the file (the
  682. * file is growing) then we *will* alter the inode to reflect
  683. * the new i_size. But that is not done here - it is done in
  684. * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
  685. */
  686. jbd_debug(5, "splicing indirect only\n");
  687. BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
  688. err = ext3_journal_dirty_metadata(handle, where->bh);
  689. if (err)
  690. goto err_out;
  691. } else {
  692. /*
  693. * OK, we spliced it into the inode itself on a direct block.
  694. * Inode was dirtied above.
  695. */
  696. jbd_debug(5, "splicing direct\n");
  697. }
  698. return err;
  699. err_out:
  700. for (i = 1; i <= num; i++) {
  701. BUFFER_TRACE(where[i].bh, "call journal_forget");
  702. ext3_journal_forget(handle, where[i].bh);
  703. ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
  704. }
  705. ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
  706. return err;
  707. }
  708. /*
  709. * Allocation strategy is simple: if we have to allocate something, we will
  710. * have to go the whole way to leaf. So let's do it before attaching anything
  711. * to tree, set linkage between the newborn blocks, write them if sync is
  712. * required, recheck the path, free and repeat if check fails, otherwise
  713. * set the last missing link (that will protect us from any truncate-generated
  714. * removals - all blocks on the path are immune now) and possibly force the
  715. * write on the parent block.
  716. * That has a nice additional property: no special recovery from the failed
  717. * allocations is needed - we simply release blocks and do not touch anything
  718. * reachable from inode.
  719. *
  720. * `handle' can be NULL if create == 0.
  721. *
  722. * The BKL may not be held on entry here. Be sure to take it early.
  723. * return > 0, # of blocks mapped or allocated.
  724. * return = 0, if plain lookup failed.
  725. * return < 0, error case.
  726. */
  727. int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
  728. sector_t iblock, unsigned long maxblocks,
  729. struct buffer_head *bh_result,
  730. int create)
  731. {
  732. int err = -EIO;
  733. int offsets[4];
  734. Indirect chain[4];
  735. Indirect *partial;
  736. ext3_fsblk_t goal;
  737. int indirect_blks;
  738. int blocks_to_boundary = 0;
  739. int depth;
  740. struct ext3_inode_info *ei = EXT3_I(inode);
  741. int count = 0;
  742. ext3_fsblk_t first_block = 0;
  743. J_ASSERT(handle != NULL || create == 0);
  744. depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
  745. if (depth == 0)
  746. goto out;
  747. partial = ext3_get_branch(inode, depth, offsets, chain, &err);
  748. /* Simplest case - block found, no allocation needed */
  749. if (!partial) {
  750. first_block = le32_to_cpu(chain[depth - 1].key);
  751. clear_buffer_new(bh_result);
  752. count++;
  753. /*map more blocks*/
  754. while (count < maxblocks && count <= blocks_to_boundary) {
  755. ext3_fsblk_t blk;
  756. if (!verify_chain(chain, chain + depth - 1)) {
  757. /*
  758. * Indirect block might be removed by
  759. * truncate while we were reading it.
  760. * Handling of that case: forget what we've
  761. * got now. Flag the err as EAGAIN, so it
  762. * will reread.
  763. */
  764. err = -EAGAIN;
  765. count = 0;
  766. break;
  767. }
  768. blk = le32_to_cpu(*(chain[depth-1].p + count));
  769. if (blk == first_block + count)
  770. count++;
  771. else
  772. break;
  773. }
  774. if (err != -EAGAIN)
  775. goto got_it;
  776. }
  777. /* Next simple case - plain lookup or failed read of indirect block */
  778. if (!create || err == -EIO)
  779. goto cleanup;
  780. mutex_lock(&ei->truncate_mutex);
  781. /*
  782. * If the indirect block is missing while we are reading
  783. * the chain(ext3_get_branch() returns -EAGAIN err), or
  784. * if the chain has been changed after we grab the semaphore,
  785. * (either because another process truncated this branch, or
  786. * another get_block allocated this branch) re-grab the chain to see if
  787. * the request block has been allocated or not.
  788. *
  789. * Since we already block the truncate/other get_block
  790. * at this point, we will have the current copy of the chain when we
  791. * splice the branch into the tree.
  792. */
  793. if (err == -EAGAIN || !verify_chain(chain, partial)) {
  794. while (partial > chain) {
  795. brelse(partial->bh);
  796. partial--;
  797. }
  798. partial = ext3_get_branch(inode, depth, offsets, chain, &err);
  799. if (!partial) {
  800. count++;
  801. mutex_unlock(&ei->truncate_mutex);
  802. if (err)
  803. goto cleanup;
  804. clear_buffer_new(bh_result);
  805. goto got_it;
  806. }
  807. }
  808. /*
  809. * Okay, we need to do block allocation. Lazily initialize the block
  810. * allocation info here if necessary
  811. */
  812. if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
  813. ext3_init_block_alloc_info(inode);
  814. goal = ext3_find_goal(inode, iblock, partial);
  815. /* the number of blocks need to allocate for [d,t]indirect blocks */
  816. indirect_blks = (chain + depth) - partial - 1;
  817. /*
  818. * Next look up the indirect map to count the totoal number of
  819. * direct blocks to allocate for this branch.
  820. */
  821. count = ext3_blks_to_allocate(partial, indirect_blks,
  822. maxblocks, blocks_to_boundary);
  823. /*
  824. * Block out ext3_truncate while we alter the tree
  825. */
  826. err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
  827. offsets + (partial - chain), partial);
  828. /*
  829. * The ext3_splice_branch call will free and forget any buffers
  830. * on the new chain if there is a failure, but that risks using
  831. * up transaction credits, especially for bitmaps where the
  832. * credits cannot be returned. Can we handle this somehow? We
  833. * may need to return -EAGAIN upwards in the worst case. --sct
  834. */
  835. if (!err)
  836. err = ext3_splice_branch(handle, inode, iblock,
  837. partial, indirect_blks, count);
  838. mutex_unlock(&ei->truncate_mutex);
  839. if (err)
  840. goto cleanup;
  841. set_buffer_new(bh_result);
  842. got_it:
  843. map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
  844. if (count > blocks_to_boundary)
  845. set_buffer_boundary(bh_result);
  846. err = count;
  847. /* Clean up and exit */
  848. partial = chain + depth - 1; /* the whole chain */
  849. cleanup:
  850. while (partial > chain) {
  851. BUFFER_TRACE(partial->bh, "call brelse");
  852. brelse(partial->bh);
  853. partial--;
  854. }
  855. BUFFER_TRACE(bh_result, "returned");
  856. out:
  857. return err;
  858. }
  859. /* Maximum number of blocks we map for direct IO at once. */
  860. #define DIO_MAX_BLOCKS 4096
  861. /*
  862. * Number of credits we need for writing DIO_MAX_BLOCKS:
  863. * We need sb + group descriptor + bitmap + inode -> 4
  864. * For B blocks with A block pointers per block we need:
  865. * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
  866. * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
  867. */
  868. #define DIO_CREDITS 25
  869. static int ext3_get_block(struct inode *inode, sector_t iblock,
  870. struct buffer_head *bh_result, int create)
  871. {
  872. handle_t *handle = ext3_journal_current_handle();
  873. int ret = 0, started = 0;
  874. unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
  875. if (create && !handle) { /* Direct IO write... */
  876. if (max_blocks > DIO_MAX_BLOCKS)
  877. max_blocks = DIO_MAX_BLOCKS;
  878. handle = ext3_journal_start(inode, DIO_CREDITS +
  879. EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));
  880. if (IS_ERR(handle)) {
  881. ret = PTR_ERR(handle);
  882. goto out;
  883. }
  884. started = 1;
  885. }
  886. ret = ext3_get_blocks_handle(handle, inode, iblock,
  887. max_blocks, bh_result, create);
  888. if (ret > 0) {
  889. bh_result->b_size = (ret << inode->i_blkbits);
  890. ret = 0;
  891. }
  892. if (started)
  893. ext3_journal_stop(handle);
  894. out:
  895. return ret;
  896. }
  897. int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
  898. u64 start, u64 len)
  899. {
  900. return generic_block_fiemap(inode, fieinfo, start, len,
  901. ext3_get_block);
  902. }
  903. /*
  904. * `handle' can be NULL if create is zero
  905. */
  906. struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
  907. long block, int create, int *errp)
  908. {
  909. struct buffer_head dummy;
  910. int fatal = 0, err;
  911. J_ASSERT(handle != NULL || create == 0);
  912. dummy.b_state = 0;
  913. dummy.b_blocknr = -1000;
  914. buffer_trace_init(&dummy.b_history);
  915. err = ext3_get_blocks_handle(handle, inode, block, 1,
  916. &dummy, create);
  917. /*
  918. * ext3_get_blocks_handle() returns number of blocks
  919. * mapped. 0 in case of a HOLE.
  920. */
  921. if (err > 0) {
  922. if (err > 1)
  923. WARN_ON(1);
  924. err = 0;
  925. }
  926. *errp = err;
  927. if (!err && buffer_mapped(&dummy)) {
  928. struct buffer_head *bh;
  929. bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
  930. if (!bh) {
  931. *errp = -EIO;
  932. goto err;
  933. }
  934. if (buffer_new(&dummy)) {
  935. J_ASSERT(create != 0);
  936. J_ASSERT(handle != NULL);
  937. /*
  938. * Now that we do not always journal data, we should
  939. * keep in mind whether this should always journal the
  940. * new buffer as metadata. For now, regular file
  941. * writes use ext3_get_block instead, so it's not a
  942. * problem.
  943. */
  944. lock_buffer(bh);
  945. BUFFER_TRACE(bh, "call get_create_access");
  946. fatal = ext3_journal_get_create_access(handle, bh);
  947. if (!fatal && !buffer_uptodate(bh)) {
  948. memset(bh->b_data,0,inode->i_sb->s_blocksize);
  949. set_buffer_uptodate(bh);
  950. }
  951. unlock_buffer(bh);
  952. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  953. err = ext3_journal_dirty_metadata(handle, bh);
  954. if (!fatal)
  955. fatal = err;
  956. } else {
  957. BUFFER_TRACE(bh, "not a new buffer");
  958. }
  959. if (fatal) {
  960. *errp = fatal;
  961. brelse(bh);
  962. bh = NULL;
  963. }
  964. return bh;
  965. }
  966. err:
  967. return NULL;
  968. }
  969. struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
  970. int block, int create, int *err)
  971. {
  972. struct buffer_head * bh;
  973. bh = ext3_getblk(handle, inode, block, create, err);
  974. if (!bh)
  975. return bh;
  976. if (buffer_uptodate(bh))
  977. return bh;
  978. ll_rw_block(READ_META, 1, &bh);
  979. wait_on_buffer(bh);
  980. if (buffer_uptodate(bh))
  981. return bh;
  982. put_bh(bh);
  983. *err = -EIO;
  984. return NULL;
  985. }
  986. static int walk_page_buffers( handle_t *handle,
  987. struct buffer_head *head,
  988. unsigned from,
  989. unsigned to,
  990. int *partial,
  991. int (*fn)( handle_t *handle,
  992. struct buffer_head *bh))
  993. {
  994. struct buffer_head *bh;
  995. unsigned block_start, block_end;
  996. unsigned blocksize = head->b_size;
  997. int err, ret = 0;
  998. struct buffer_head *next;
  999. for ( bh = head, block_start = 0;
  1000. ret == 0 && (bh != head || !block_start);
  1001. block_start = block_end, bh = next)
  1002. {
  1003. next = bh->b_this_page;
  1004. block_end = block_start + blocksize;
  1005. if (block_end <= from || block_start >= to) {
  1006. if (partial && !buffer_uptodate(bh))
  1007. *partial = 1;
  1008. continue;
  1009. }
  1010. err = (*fn)(handle, bh);
  1011. if (!ret)
  1012. ret = err;
  1013. }
  1014. return ret;
  1015. }
  1016. /*
  1017. * To preserve ordering, it is essential that the hole instantiation and
  1018. * the data write be encapsulated in a single transaction. We cannot
  1019. * close off a transaction and start a new one between the ext3_get_block()
  1020. * and the commit_write(). So doing the journal_start at the start of
  1021. * prepare_write() is the right place.
  1022. *
  1023. * Also, this function can nest inside ext3_writepage() ->
  1024. * block_write_full_page(). In that case, we *know* that ext3_writepage()
  1025. * has generated enough buffer credits to do the whole page. So we won't
  1026. * block on the journal in that case, which is good, because the caller may
  1027. * be PF_MEMALLOC.
  1028. *
  1029. * By accident, ext3 can be reentered when a transaction is open via
  1030. * quota file writes. If we were to commit the transaction while thus
  1031. * reentered, there can be a deadlock - we would be holding a quota
  1032. * lock, and the commit would never complete if another thread had a
  1033. * transaction open and was blocking on the quota lock - a ranking
  1034. * violation.
  1035. *
  1036. * So what we do is to rely on the fact that journal_stop/journal_start
  1037. * will _not_ run commit under these circumstances because handle->h_ref
  1038. * is elevated. We'll still have enough credits for the tiny quotafile
  1039. * write.
  1040. */
  1041. static int do_journal_get_write_access(handle_t *handle,
  1042. struct buffer_head *bh)
  1043. {
  1044. if (!buffer_mapped(bh) || buffer_freed(bh))
  1045. return 0;
  1046. return ext3_journal_get_write_access(handle, bh);
  1047. }
  1048. /*
  1049. * Truncate blocks that were not used by write. We have to truncate the
  1050. * pagecache as well so that corresponding buffers get properly unmapped.
  1051. */
  1052. static void ext3_truncate_failed_write(struct inode *inode)
  1053. {
  1054. truncate_inode_pages(inode->i_mapping, inode->i_size);
  1055. ext3_truncate(inode);
  1056. }
  1057. static int ext3_write_begin(struct file *file, struct address_space *mapping,
  1058. loff_t pos, unsigned len, unsigned flags,
  1059. struct page **pagep, void **fsdata)
  1060. {
  1061. struct inode *inode = mapping->host;
  1062. int ret;
  1063. handle_t *handle;
  1064. int retries = 0;
  1065. struct page *page;
  1066. pgoff_t index;
  1067. unsigned from, to;
  1068. /* Reserve one block more for addition to orphan list in case
  1069. * we allocate blocks but write fails for some reason */
  1070. int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
  1071. index = pos >> PAGE_CACHE_SHIFT;
  1072. from = pos & (PAGE_CACHE_SIZE - 1);
  1073. to = from + len;
  1074. retry:
  1075. page = grab_cache_page_write_begin(mapping, index, flags);
  1076. if (!page)
  1077. return -ENOMEM;
  1078. *pagep = page;
  1079. handle = ext3_journal_start(inode, needed_blocks);
  1080. if (IS_ERR(handle)) {
  1081. unlock_page(page);
  1082. page_cache_release(page);
  1083. ret = PTR_ERR(handle);
  1084. goto out;
  1085. }
  1086. ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
  1087. ext3_get_block);
  1088. if (ret)
  1089. goto write_begin_failed;
  1090. if (ext3_should_journal_data(inode)) {
  1091. ret = walk_page_buffers(handle, page_buffers(page),
  1092. from, to, NULL, do_journal_get_write_access);
  1093. }
  1094. write_begin_failed:
  1095. if (ret) {
  1096. /*
  1097. * block_write_begin may have instantiated a few blocks
  1098. * outside i_size. Trim these off again. Don't need
  1099. * i_size_read because we hold i_mutex.
  1100. *
  1101. * Add inode to orphan list in case we crash before truncate
  1102. * finishes. Do this only if ext3_can_truncate() agrees so
  1103. * that orphan processing code is happy.
  1104. */
  1105. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1106. ext3_orphan_add(handle, inode);
  1107. ext3_journal_stop(handle);
  1108. unlock_page(page);
  1109. page_cache_release(page);
  1110. if (pos + len > inode->i_size)
  1111. ext3_truncate_failed_write(inode);
  1112. }
  1113. if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
  1114. goto retry;
  1115. out:
  1116. return ret;
  1117. }
  1118. int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
  1119. {
  1120. int err = journal_dirty_data(handle, bh);
  1121. if (err)
  1122. ext3_journal_abort_handle(__func__, __func__,
  1123. bh, handle, err);
  1124. return err;
  1125. }
  1126. /* For ordered writepage and write_end functions */
  1127. static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
  1128. {
  1129. /*
  1130. * Write could have mapped the buffer but it didn't copy the data in
  1131. * yet. So avoid filing such buffer into a transaction.
  1132. */
  1133. if (buffer_mapped(bh) && buffer_uptodate(bh))
  1134. return ext3_journal_dirty_data(handle, bh);
  1135. return 0;
  1136. }
  1137. /* For write_end() in data=journal mode */
  1138. static int write_end_fn(handle_t *handle, struct buffer_head *bh)
  1139. {
  1140. if (!buffer_mapped(bh) || buffer_freed(bh))
  1141. return 0;
  1142. set_buffer_uptodate(bh);
  1143. return ext3_journal_dirty_metadata(handle, bh);
  1144. }
  1145. /*
  1146. * This is nasty and subtle: ext3_write_begin() could have allocated blocks
  1147. * for the whole page but later we failed to copy the data in. Update inode
  1148. * size according to what we managed to copy. The rest is going to be
  1149. * truncated in write_end function.
  1150. */
  1151. static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
  1152. {
  1153. /* What matters to us is i_disksize. We don't write i_size anywhere */
  1154. if (pos + copied > inode->i_size)
  1155. i_size_write(inode, pos + copied);
  1156. if (pos + copied > EXT3_I(inode)->i_disksize) {
  1157. EXT3_I(inode)->i_disksize = pos + copied;
  1158. mark_inode_dirty(inode);
  1159. }
  1160. }
  1161. /*
  1162. * We need to pick up the new inode size which generic_commit_write gave us
  1163. * `file' can be NULL - eg, when called from page_symlink().
  1164. *
  1165. * ext3 never places buffers on inode->i_mapping->private_list. metadata
  1166. * buffers are managed internally.
  1167. */
  1168. static int ext3_ordered_write_end(struct file *file,
  1169. struct address_space *mapping,
  1170. loff_t pos, unsigned len, unsigned copied,
  1171. struct page *page, void *fsdata)
  1172. {
  1173. handle_t *handle = ext3_journal_current_handle();
  1174. struct inode *inode = file->f_mapping->host;
  1175. unsigned from, to;
  1176. int ret = 0, ret2;
  1177. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1178. from = pos & (PAGE_CACHE_SIZE - 1);
  1179. to = from + copied;
  1180. ret = walk_page_buffers(handle, page_buffers(page),
  1181. from, to, NULL, journal_dirty_data_fn);
  1182. if (ret == 0)
  1183. update_file_sizes(inode, pos, copied);
  1184. /*
  1185. * There may be allocated blocks outside of i_size because
  1186. * we failed to copy some data. Prepare for truncate.
  1187. */
  1188. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1189. ext3_orphan_add(handle, inode);
  1190. ret2 = ext3_journal_stop(handle);
  1191. if (!ret)
  1192. ret = ret2;
  1193. unlock_page(page);
  1194. page_cache_release(page);
  1195. if (pos + len > inode->i_size)
  1196. ext3_truncate_failed_write(inode);
  1197. return ret ? ret : copied;
  1198. }
  1199. static int ext3_writeback_write_end(struct file *file,
  1200. struct address_space *mapping,
  1201. loff_t pos, unsigned len, unsigned copied,
  1202. struct page *page, void *fsdata)
  1203. {
  1204. handle_t *handle = ext3_journal_current_handle();
  1205. struct inode *inode = file->f_mapping->host;
  1206. int ret;
  1207. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1208. update_file_sizes(inode, pos, copied);
  1209. /*
  1210. * There may be allocated blocks outside of i_size because
  1211. * we failed to copy some data. Prepare for truncate.
  1212. */
  1213. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1214. ext3_orphan_add(handle, inode);
  1215. ret = ext3_journal_stop(handle);
  1216. unlock_page(page);
  1217. page_cache_release(page);
  1218. if (pos + len > inode->i_size)
  1219. ext3_truncate_failed_write(inode);
  1220. return ret ? ret : copied;
  1221. }
  1222. static int ext3_journalled_write_end(struct file *file,
  1223. struct address_space *mapping,
  1224. loff_t pos, unsigned len, unsigned copied,
  1225. struct page *page, void *fsdata)
  1226. {
  1227. handle_t *handle = ext3_journal_current_handle();
  1228. struct inode *inode = mapping->host;
  1229. int ret = 0, ret2;
  1230. int partial = 0;
  1231. unsigned from, to;
  1232. from = pos & (PAGE_CACHE_SIZE - 1);
  1233. to = from + len;
  1234. if (copied < len) {
  1235. if (!PageUptodate(page))
  1236. copied = 0;
  1237. page_zero_new_buffers(page, from + copied, to);
  1238. to = from + copied;
  1239. }
  1240. ret = walk_page_buffers(handle, page_buffers(page), from,
  1241. to, &partial, write_end_fn);
  1242. if (!partial)
  1243. SetPageUptodate(page);
  1244. if (pos + copied > inode->i_size)
  1245. i_size_write(inode, pos + copied);
  1246. /*
  1247. * There may be allocated blocks outside of i_size because
  1248. * we failed to copy some data. Prepare for truncate.
  1249. */
  1250. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1251. ext3_orphan_add(handle, inode);
  1252. ext3_set_inode_state(inode, EXT3_STATE_JDATA);
  1253. if (inode->i_size > EXT3_I(inode)->i_disksize) {
  1254. EXT3_I(inode)->i_disksize = inode->i_size;
  1255. ret2 = ext3_mark_inode_dirty(handle, inode);
  1256. if (!ret)
  1257. ret = ret2;
  1258. }
  1259. ret2 = ext3_journal_stop(handle);
  1260. if (!ret)
  1261. ret = ret2;
  1262. unlock_page(page);
  1263. page_cache_release(page);
  1264. if (pos + len > inode->i_size)
  1265. ext3_truncate_failed_write(inode);
  1266. return ret ? ret : copied;
  1267. }
  1268. /*
  1269. * bmap() is special. It gets used by applications such as lilo and by
  1270. * the swapper to find the on-disk block of a specific piece of data.
  1271. *
  1272. * Naturally, this is dangerous if the block concerned is still in the
  1273. * journal. If somebody makes a swapfile on an ext3 data-journaling
  1274. * filesystem and enables swap, then they may get a nasty shock when the
  1275. * data getting swapped to that swapfile suddenly gets overwritten by
  1276. * the original zero's written out previously to the journal and
  1277. * awaiting writeback in the kernel's buffer cache.
  1278. *
  1279. * So, if we see any bmap calls here on a modified, data-journaled file,
  1280. * take extra steps to flush any blocks which might be in the cache.
  1281. */
  1282. static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
  1283. {
  1284. struct inode *inode = mapping->host;
  1285. journal_t *journal;
  1286. int err;
  1287. if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) {
  1288. /*
  1289. * This is a REALLY heavyweight approach, but the use of
  1290. * bmap on dirty files is expected to be extremely rare:
  1291. * only if we run lilo or swapon on a freshly made file
  1292. * do we expect this to happen.
  1293. *
  1294. * (bmap requires CAP_SYS_RAWIO so this does not
  1295. * represent an unprivileged user DOS attack --- we'd be
  1296. * in trouble if mortal users could trigger this path at
  1297. * will.)
  1298. *
  1299. * NB. EXT3_STATE_JDATA is not set on files other than
  1300. * regular files. If somebody wants to bmap a directory
  1301. * or symlink and gets confused because the buffer
  1302. * hasn't yet been flushed to disk, they deserve
  1303. * everything they get.
  1304. */
  1305. ext3_clear_inode_state(inode, EXT3_STATE_JDATA);
  1306. journal = EXT3_JOURNAL(inode);
  1307. journal_lock_updates(journal);
  1308. err = journal_flush(journal);
  1309. journal_unlock_updates(journal);
  1310. if (err)
  1311. return 0;
  1312. }
  1313. return generic_block_bmap(mapping,block,ext3_get_block);
  1314. }
  1315. static int bget_one(handle_t *handle, struct buffer_head *bh)
  1316. {
  1317. get_bh(bh);
  1318. return 0;
  1319. }
  1320. static int bput_one(handle_t *handle, struct buffer_head *bh)
  1321. {
  1322. put_bh(bh);
  1323. return 0;
  1324. }
  1325. static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
  1326. {
  1327. return !buffer_mapped(bh);
  1328. }
  1329. /*
  1330. * Note that we always start a transaction even if we're not journalling
  1331. * data. This is to preserve ordering: any hole instantiation within
  1332. * __block_write_full_page -> ext3_get_block() should be journalled
  1333. * along with the data so we don't crash and then get metadata which
  1334. * refers to old data.
  1335. *
  1336. * In all journalling modes block_write_full_page() will start the I/O.
  1337. *
  1338. * Problem:
  1339. *
  1340. * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
  1341. * ext3_writepage()
  1342. *
  1343. * Similar for:
  1344. *
  1345. * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
  1346. *
  1347. * Same applies to ext3_get_block(). We will deadlock on various things like
  1348. * lock_journal and i_truncate_mutex.
  1349. *
  1350. * Setting PF_MEMALLOC here doesn't work - too many internal memory
  1351. * allocations fail.
  1352. *
  1353. * 16May01: If we're reentered then journal_current_handle() will be
  1354. * non-zero. We simply *return*.
  1355. *
  1356. * 1 July 2001: @@@ FIXME:
  1357. * In journalled data mode, a data buffer may be metadata against the
  1358. * current transaction. But the same file is part of a shared mapping
  1359. * and someone does a writepage() on it.
  1360. *
  1361. * We will move the buffer onto the async_data list, but *after* it has
  1362. * been dirtied. So there's a small window where we have dirty data on
  1363. * BJ_Metadata.
  1364. *
  1365. * Note that this only applies to the last partial page in the file. The
  1366. * bit which block_write_full_page() uses prepare/commit for. (That's
  1367. * broken code anyway: it's wrong for msync()).
  1368. *
  1369. * It's a rare case: affects the final partial page, for journalled data
  1370. * where the file is subject to bith write() and writepage() in the same
  1371. * transction. To fix it we'll need a custom block_write_full_page().
  1372. * We'll probably need that anyway for journalling writepage() output.
  1373. *
  1374. * We don't honour synchronous mounts for writepage(). That would be
  1375. * disastrous. Any write() or metadata operation will sync the fs for
  1376. * us.
  1377. *
  1378. * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
  1379. * we don't need to open a transaction here.
  1380. */
  1381. static int ext3_ordered_writepage(struct page *page,
  1382. struct writeback_control *wbc)
  1383. {
  1384. struct inode *inode = page->mapping->host;
  1385. struct buffer_head *page_bufs;
  1386. handle_t *handle = NULL;
  1387. int ret = 0;
  1388. int err;
  1389. J_ASSERT(PageLocked(page));
  1390. /*
  1391. * We give up here if we're reentered, because it might be for a
  1392. * different filesystem.
  1393. */
  1394. if (ext3_journal_current_handle())
  1395. goto out_fail;
  1396. if (!page_has_buffers(page)) {
  1397. create_empty_buffers(page, inode->i_sb->s_blocksize,
  1398. (1 << BH_Dirty)|(1 << BH_Uptodate));
  1399. page_bufs = page_buffers(page);
  1400. } else {
  1401. page_bufs = page_buffers(page);
  1402. if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
  1403. NULL, buffer_unmapped)) {
  1404. /* Provide NULL get_block() to catch bugs if buffers
  1405. * weren't really mapped */
  1406. return block_write_full_page(page, NULL, wbc);
  1407. }
  1408. }
  1409. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1410. if (IS_ERR(handle)) {
  1411. ret = PTR_ERR(handle);
  1412. goto out_fail;
  1413. }
  1414. walk_page_buffers(handle, page_bufs, 0,
  1415. PAGE_CACHE_SIZE, NULL, bget_one);
  1416. ret = block_write_full_page(page, ext3_get_block, wbc);
  1417. /*
  1418. * The page can become unlocked at any point now, and
  1419. * truncate can then come in and change things. So we
  1420. * can't touch *page from now on. But *page_bufs is
  1421. * safe due to elevated refcount.
  1422. */
  1423. /*
  1424. * And attach them to the current transaction. But only if
  1425. * block_write_full_page() succeeded. Otherwise they are unmapped,
  1426. * and generally junk.
  1427. */
  1428. if (ret == 0) {
  1429. err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
  1430. NULL, journal_dirty_data_fn);
  1431. if (!ret)
  1432. ret = err;
  1433. }
  1434. walk_page_buffers(handle, page_bufs, 0,
  1435. PAGE_CACHE_SIZE, NULL, bput_one);
  1436. err = ext3_journal_stop(handle);
  1437. if (!ret)
  1438. ret = err;
  1439. return ret;
  1440. out_fail:
  1441. redirty_page_for_writepage(wbc, page);
  1442. unlock_page(page);
  1443. return ret;
  1444. }
  1445. static int ext3_writeback_writepage(struct page *page,
  1446. struct writeback_control *wbc)
  1447. {
  1448. struct inode *inode = page->mapping->host;
  1449. handle_t *handle = NULL;
  1450. int ret = 0;
  1451. int err;
  1452. if (ext3_journal_current_handle())
  1453. goto out_fail;
  1454. if (page_has_buffers(page)) {
  1455. if (!walk_page_buffers(NULL, page_buffers(page), 0,
  1456. PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
  1457. /* Provide NULL get_block() to catch bugs if buffers
  1458. * weren't really mapped */
  1459. return block_write_full_page(page, NULL, wbc);
  1460. }
  1461. }
  1462. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1463. if (IS_ERR(handle)) {
  1464. ret = PTR_ERR(handle);
  1465. goto out_fail;
  1466. }
  1467. if (test_opt(inode->i_sb, NOBH) && ext3_should_writeback_data(inode))
  1468. ret = nobh_writepage(page, ext3_get_block, wbc);
  1469. else
  1470. ret = block_write_full_page(page, ext3_get_block, wbc);
  1471. err = ext3_journal_stop(handle);
  1472. if (!ret)
  1473. ret = err;
  1474. return ret;
  1475. out_fail:
  1476. redirty_page_for_writepage(wbc, page);
  1477. unlock_page(page);
  1478. return ret;
  1479. }
  1480. static int ext3_journalled_writepage(struct page *page,
  1481. struct writeback_control *wbc)
  1482. {
  1483. struct inode *inode = page->mapping->host;
  1484. handle_t *handle = NULL;
  1485. int ret = 0;
  1486. int err;
  1487. if (ext3_journal_current_handle())
  1488. goto no_write;
  1489. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1490. if (IS_ERR(handle)) {
  1491. ret = PTR_ERR(handle);
  1492. goto no_write;
  1493. }
  1494. if (!page_has_buffers(page) || PageChecked(page)) {
  1495. /*
  1496. * It's mmapped pagecache. Add buffers and journal it. There
  1497. * doesn't seem much point in redirtying the page here.
  1498. */
  1499. ClearPageChecked(page);
  1500. ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
  1501. ext3_get_block);
  1502. if (ret != 0) {
  1503. ext3_journal_stop(handle);
  1504. goto out_unlock;
  1505. }
  1506. ret = walk_page_buffers(handle, page_buffers(page), 0,
  1507. PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
  1508. err = walk_page_buffers(handle, page_buffers(page), 0,
  1509. PAGE_CACHE_SIZE, NULL, write_end_fn);
  1510. if (ret == 0)
  1511. ret = err;
  1512. ext3_set_inode_state(inode, EXT3_STATE_JDATA);
  1513. unlock_page(page);
  1514. } else {
  1515. /*
  1516. * It may be a page full of checkpoint-mode buffers. We don't
  1517. * really know unless we go poke around in the buffer_heads.
  1518. * But block_write_full_page will do the right thing.
  1519. */
  1520. ret = block_write_full_page(page, ext3_get_block, wbc);
  1521. }
  1522. err = ext3_journal_stop(handle);
  1523. if (!ret)
  1524. ret = err;
  1525. out:
  1526. return ret;
  1527. no_write:
  1528. redirty_page_for_writepage(wbc, page);
  1529. out_unlock:
  1530. unlock_page(page);
  1531. goto out;
  1532. }
  1533. static int ext3_readpage(struct file *file, struct page *page)
  1534. {
  1535. return mpage_readpage(page, ext3_get_block);
  1536. }
  1537. static int
  1538. ext3_readpages(struct file *file, struct address_space *mapping,
  1539. struct list_head *pages, unsigned nr_pages)
  1540. {
  1541. return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
  1542. }
  1543. static void ext3_invalidatepage(struct page *page, unsigned long offset)
  1544. {
  1545. journal_t *journal = EXT3_JOURNAL(page->mapping->host);
  1546. /*
  1547. * If it's a full truncate we just forget about the pending dirtying
  1548. */
  1549. if (offset == 0)
  1550. ClearPageChecked(page);
  1551. journal_invalidatepage(journal, page, offset);
  1552. }
  1553. static int ext3_releasepage(struct page *page, gfp_t wait)
  1554. {
  1555. journal_t *journal = EXT3_JOURNAL(page->mapping->host);
  1556. WARN_ON(PageChecked(page));
  1557. if (!page_has_buffers(page))
  1558. return 0;
  1559. return journal_try_to_free_buffers(journal, page, wait);
  1560. }
  1561. /*
  1562. * If the O_DIRECT write will extend the file then add this inode to the
  1563. * orphan list. So recovery will truncate it back to the original size
  1564. * if the machine crashes during the write.
  1565. *
  1566. * If the O_DIRECT write is intantiating holes inside i_size and the machine
  1567. * crashes then stale disk data _may_ be exposed inside the file. But current
  1568. * VFS code falls back into buffered path in that case so we are safe.
  1569. */
  1570. static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
  1571. const struct iovec *iov, loff_t offset,
  1572. unsigned long nr_segs)
  1573. {
  1574. struct file *file = iocb->ki_filp;
  1575. struct inode *inode = file->f_mapping->host;
  1576. struct ext3_inode_info *ei = EXT3_I(inode);
  1577. handle_t *handle;
  1578. ssize_t ret;
  1579. int orphan = 0;
  1580. size_t count = iov_length(iov, nr_segs);
  1581. int retries = 0;
  1582. if (rw == WRITE) {
  1583. loff_t final_size = offset + count;
  1584. if (final_size > inode->i_size) {
  1585. /* Credits for sb + inode write */
  1586. handle = ext3_journal_start(inode, 2);
  1587. if (IS_ERR(handle)) {
  1588. ret = PTR_ERR(handle);
  1589. goto out;
  1590. }
  1591. ret = ext3_orphan_add(handle, inode);
  1592. if (ret) {
  1593. ext3_journal_stop(handle);
  1594. goto out;
  1595. }
  1596. orphan = 1;
  1597. ei->i_disksize = inode->i_size;
  1598. ext3_journal_stop(handle);
  1599. }
  1600. }
  1601. retry:
  1602. ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
  1603. offset, nr_segs,
  1604. ext3_get_block, NULL);
  1605. if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
  1606. goto retry;
  1607. if (orphan) {
  1608. int err;
  1609. /* Credits for sb + inode write */
  1610. handle = ext3_journal_start(inode, 2);
  1611. if (IS_ERR(handle)) {
  1612. /* This is really bad luck. We've written the data
  1613. * but cannot extend i_size. Truncate allocated blocks
  1614. * and pretend the write failed... */
  1615. ext3_truncate(inode);
  1616. ret = PTR_ERR(handle);
  1617. goto out;
  1618. }
  1619. if (inode->i_nlink)
  1620. ext3_orphan_del(handle, inode);
  1621. if (ret > 0) {
  1622. loff_t end = offset + ret;
  1623. if (end > inode->i_size) {
  1624. ei->i_disksize = end;
  1625. i_size_write(inode, end);
  1626. /*
  1627. * We're going to return a positive `ret'
  1628. * here due to non-zero-length I/O, so there's
  1629. * no way of reporting error returns from
  1630. * ext3_mark_inode_dirty() to userspace. So
  1631. * ignore it.
  1632. */
  1633. ext3_mark_inode_dirty(handle, inode);
  1634. }
  1635. }
  1636. err = ext3_journal_stop(handle);
  1637. if (ret == 0)
  1638. ret = err;
  1639. }
  1640. out:
  1641. return ret;
  1642. }
  1643. /*
  1644. * Pages can be marked dirty completely asynchronously from ext3's journalling
  1645. * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
  1646. * much here because ->set_page_dirty is called under VFS locks. The page is
  1647. * not necessarily locked.
  1648. *
  1649. * We cannot just dirty the page and leave attached buffers clean, because the
  1650. * buffers' dirty state is "definitive". We cannot just set the buffers dirty
  1651. * or jbddirty because all the journalling code will explode.
  1652. *
  1653. * So what we do is to mark the page "pending dirty" and next time writepage
  1654. * is called, propagate that into the buffers appropriately.
  1655. */
  1656. static int ext3_journalled_set_page_dirty(struct page *page)
  1657. {
  1658. SetPageChecked(page);
  1659. return __set_page_dirty_nobuffers(page);
  1660. }
  1661. static const struct address_space_operations ext3_ordered_aops = {
  1662. .readpage = ext3_readpage,
  1663. .readpages = ext3_readpages,
  1664. .writepage = ext3_ordered_writepage,
  1665. .sync_page = block_sync_page,
  1666. .write_begin = ext3_write_begin,
  1667. .write_end = ext3_ordered_write_end,
  1668. .bmap = ext3_bmap,
  1669. .invalidatepage = ext3_invalidatepage,
  1670. .releasepage = ext3_releasepage,
  1671. .direct_IO = ext3_direct_IO,
  1672. .migratepage = buffer_migrate_page,
  1673. .is_partially_uptodate = block_is_partially_uptodate,
  1674. .error_remove_page = generic_error_remove_page,
  1675. };
  1676. static const struct address_space_operations ext3_writeback_aops = {
  1677. .readpage = ext3_readpage,
  1678. .readpages = ext3_readpages,
  1679. .writepage = ext3_writeback_writepage,
  1680. .sync_page = block_sync_page,
  1681. .write_begin = ext3_write_begin,
  1682. .write_end = ext3_writeback_write_end,
  1683. .bmap = ext3_bmap,
  1684. .invalidatepage = ext3_invalidatepage,
  1685. .releasepage = ext3_releasepage,
  1686. .direct_IO = ext3_direct_IO,
  1687. .migratepage = buffer_migrate_page,
  1688. .is_partially_uptodate = block_is_partially_uptodate,
  1689. .error_remove_page = generic_error_remove_page,
  1690. };
  1691. static const struct address_space_operations ext3_journalled_aops = {
  1692. .readpage = ext3_readpage,
  1693. .readpages = ext3_readpages,
  1694. .writepage = ext3_journalled_writepage,
  1695. .sync_page = block_sync_page,
  1696. .write_begin = ext3_write_begin,
  1697. .write_end = ext3_journalled_write_end,
  1698. .set_page_dirty = ext3_journalled_set_page_dirty,
  1699. .bmap = ext3_bmap,
  1700. .invalidatepage = ext3_invalidatepage,
  1701. .releasepage = ext3_releasepage,
  1702. .is_partially_uptodate = block_is_partially_uptodate,
  1703. .error_remove_page = generic_error_remove_page,
  1704. };
  1705. void ext3_set_aops(struct inode *inode)
  1706. {
  1707. if (ext3_should_order_data(inode))
  1708. inode->i_mapping->a_ops = &ext3_ordered_aops;
  1709. else if (ext3_should_writeback_data(inode))
  1710. inode->i_mapping->a_ops = &ext3_writeback_aops;
  1711. else
  1712. inode->i_mapping->a_ops = &ext3_journalled_aops;
  1713. }
  1714. /*
  1715. * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
  1716. * up to the end of the block which corresponds to `from'.
  1717. * This required during truncate. We need to physically zero the tail end
  1718. * of that block so it doesn't yield old data if the file is later grown.
  1719. */
  1720. static int ext3_block_truncate_page(handle_t *handle, struct page *page,
  1721. struct address_space *mapping, loff_t from)
  1722. {
  1723. ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
  1724. unsigned offset = from & (PAGE_CACHE_SIZE-1);
  1725. unsigned blocksize, iblock, length, pos;
  1726. struct inode *inode = mapping->host;
  1727. struct buffer_head *bh;
  1728. int err = 0;
  1729. blocksize = inode->i_sb->s_blocksize;
  1730. length = blocksize - (offset & (blocksize - 1));
  1731. iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
  1732. /*
  1733. * For "nobh" option, we can only work if we don't need to
  1734. * read-in the page - otherwise we create buffers to do the IO.
  1735. */
  1736. if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
  1737. ext3_should_writeback_data(inode) && PageUptodate(page)) {
  1738. zero_user(page, offset, length);
  1739. set_page_dirty(page);
  1740. goto unlock;
  1741. }
  1742. if (!page_has_buffers(page))
  1743. create_empty_buffers(page, blocksize, 0);
  1744. /* Find the buffer that contains "offset" */
  1745. bh = page_buffers(page);
  1746. pos = blocksize;
  1747. while (offset >= pos) {
  1748. bh = bh->b_this_page;
  1749. iblock++;
  1750. pos += blocksize;
  1751. }
  1752. err = 0;
  1753. if (buffer_freed(bh)) {
  1754. BUFFER_TRACE(bh, "freed: skip");
  1755. goto unlock;
  1756. }
  1757. if (!buffer_mapped(bh)) {
  1758. BUFFER_TRACE(bh, "unmapped");
  1759. ext3_get_block(inode, iblock, bh, 0);
  1760. /* unmapped? It's a hole - nothing to do */
  1761. if (!buffer_mapped(bh)) {
  1762. BUFFER_TRACE(bh, "still unmapped");
  1763. goto unlock;
  1764. }
  1765. }
  1766. /* Ok, it's mapped. Make sure it's up-to-date */
  1767. if (PageUptodate(page))
  1768. set_buffer_uptodate(bh);
  1769. if (!buffer_uptodate(bh)) {
  1770. err = -EIO;
  1771. ll_rw_block(READ, 1, &bh);
  1772. wait_on_buffer(bh);
  1773. /* Uhhuh. Read error. Complain and punt. */
  1774. if (!buffer_uptodate(bh))
  1775. goto unlock;
  1776. }
  1777. if (ext3_should_journal_data(inode)) {
  1778. BUFFER_TRACE(bh, "get write access");
  1779. err = ext3_journal_get_write_access(handle, bh);
  1780. if (err)
  1781. goto unlock;
  1782. }
  1783. zero_user(page, offset, length);
  1784. BUFFER_TRACE(bh, "zeroed end of block");
  1785. err = 0;
  1786. if (ext3_should_journal_data(inode)) {
  1787. err = ext3_journal_dirty_metadata(handle, bh);
  1788. } else {
  1789. if (ext3_should_order_data(inode))
  1790. err = ext3_journal_dirty_data(handle, bh);
  1791. mark_buffer_dirty(bh);
  1792. }
  1793. unlock:
  1794. unlock_page(page);
  1795. page_cache_release(page);
  1796. return err;
  1797. }
  1798. /*
  1799. * Probably it should be a library function... search for first non-zero word
  1800. * or memcmp with zero_page, whatever is better for particular architecture.
  1801. * Linus?
  1802. */
  1803. static inline int all_zeroes(__le32 *p, __le32 *q)
  1804. {
  1805. while (p < q)
  1806. if (*p++)
  1807. return 0;
  1808. return 1;
  1809. }
  1810. /**
  1811. * ext3_find_shared - find the indirect blocks for partial truncation.
  1812. * @inode: inode in question
  1813. * @depth: depth of the affected branch
  1814. * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
  1815. * @chain: place to store the pointers to partial indirect blocks
  1816. * @top: place to the (detached) top of branch
  1817. *
  1818. * This is a helper function used by ext3_truncate().
  1819. *
  1820. * When we do truncate() we may have to clean the ends of several
  1821. * indirect blocks but leave the blocks themselves alive. Block is
  1822. * partially truncated if some data below the new i_size is refered
  1823. * from it (and it is on the path to the first completely truncated
  1824. * data block, indeed). We have to free the top of that path along
  1825. * with everything to the right of the path. Since no allocation
  1826. * past the truncation point is possible until ext3_truncate()
  1827. * finishes, we may safely do the latter, but top of branch may
  1828. * require special attention - pageout below the truncation point
  1829. * might try to populate it.
  1830. *
  1831. * We atomically detach the top of branch from the tree, store the
  1832. * block number of its root in *@top, pointers to buffer_heads of
  1833. * partially truncated blocks - in @chain[].bh and pointers to
  1834. * their last elements that should not be removed - in
  1835. * @chain[].p. Return value is the pointer to last filled element
  1836. * of @chain.
  1837. *
  1838. * The work left to caller to do the actual freeing of subtrees:
  1839. * a) free the subtree starting from *@top
  1840. * b) free the subtrees whose roots are stored in
  1841. * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
  1842. * c) free the subtrees growing from the inode past the @chain[0].
  1843. * (no partially truncated stuff there). */
  1844. static Indirect *ext3_find_shared(struct inode *inode, int depth,
  1845. int offsets[4], Indirect chain[4], __le32 *top)
  1846. {
  1847. Indirect *partial, *p;
  1848. int k, err;
  1849. *top = 0;
  1850. /* Make k index the deepest non-null offset + 1 */
  1851. for (k = depth; k > 1 && !offsets[k-1]; k--)
  1852. ;
  1853. partial = ext3_get_branch(inode, k, offsets, chain, &err);
  1854. /* Writer: pointers */
  1855. if (!partial)
  1856. partial = chain + k-1;
  1857. /*
  1858. * If the branch acquired continuation since we've looked at it -
  1859. * fine, it should all survive and (new) top doesn't belong to us.
  1860. */
  1861. if (!partial->key && *partial->p)
  1862. /* Writer: end */
  1863. goto no_top;
  1864. for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
  1865. ;
  1866. /*
  1867. * OK, we've found the last block that must survive. The rest of our
  1868. * branch should be detached before unlocking. However, if that rest
  1869. * of branch is all ours and does not grow immediately from the inode
  1870. * it's easier to cheat and just decrement partial->p.
  1871. */
  1872. if (p == chain + k - 1 && p > chain) {
  1873. p->p--;
  1874. } else {
  1875. *top = *p->p;
  1876. /* Nope, don't do this in ext3. Must leave the tree intact */
  1877. #if 0
  1878. *p->p = 0;
  1879. #endif
  1880. }
  1881. /* Writer: end */
  1882. while(partial > p) {
  1883. brelse(partial->bh);
  1884. partial--;
  1885. }
  1886. no_top:
  1887. return partial;
  1888. }
  1889. /*
  1890. * Zero a number of block pointers in either an inode or an indirect block.
  1891. * If we restart the transaction we must again get write access to the
  1892. * indirect block for further modification.
  1893. *
  1894. * We release `count' blocks on disk, but (last - first) may be greater
  1895. * than `count' because there can be holes in there.
  1896. */
  1897. static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
  1898. struct buffer_head *bh, ext3_fsblk_t block_to_free,
  1899. unsigned long count, __le32 *first, __le32 *last)
  1900. {
  1901. __le32 *p;
  1902. if (try_to_extend_transaction(handle, inode)) {
  1903. if (bh) {
  1904. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  1905. ext3_journal_dirty_metadata(handle, bh);
  1906. }
  1907. ext3_mark_inode_dirty(handle, inode);
  1908. truncate_restart_transaction(handle, inode);
  1909. if (bh) {
  1910. BUFFER_TRACE(bh, "retaking write access");
  1911. ext3_journal_get_write_access(handle, bh);
  1912. }
  1913. }
  1914. /*
  1915. * Any buffers which are on the journal will be in memory. We find
  1916. * them on the hash table so journal_revoke() will run journal_forget()
  1917. * on them. We've already detached each block from the file, so
  1918. * bforget() in journal_forget() should be safe.
  1919. *
  1920. * AKPM: turn on bforget in journal_forget()!!!
  1921. */
  1922. for (p = first; p < last; p++) {
  1923. u32 nr = le32_to_cpu(*p);
  1924. if (nr) {
  1925. struct buffer_head *bh;
  1926. *p = 0;
  1927. bh = sb_find_get_block(inode->i_sb, nr);
  1928. ext3_forget(handle, 0, inode, bh, nr);
  1929. }
  1930. }
  1931. ext3_free_blocks(handle, inode, block_to_free, count);
  1932. }
  1933. /**
  1934. * ext3_free_data - free a list of data blocks
  1935. * @handle: handle for this transaction
  1936. * @inode: inode we are dealing with
  1937. * @this_bh: indirect buffer_head which contains *@first and *@last
  1938. * @first: array of block numbers
  1939. * @last: points immediately past the end of array
  1940. *
  1941. * We are freeing all blocks refered from that array (numbers are stored as
  1942. * little-endian 32-bit) and updating @inode->i_blocks appropriately.
  1943. *
  1944. * We accumulate contiguous runs of blocks to free. Conveniently, if these
  1945. * blocks are contiguous then releasing them at one time will only affect one
  1946. * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
  1947. * actually use a lot of journal space.
  1948. *
  1949. * @this_bh will be %NULL if @first and @last point into the inode's direct
  1950. * block pointers.
  1951. */
  1952. static void ext3_free_data(handle_t *handle, struct inode *inode,
  1953. struct buffer_head *this_bh,
  1954. __le32 *first, __le32 *last)
  1955. {
  1956. ext3_fsblk_t block_to_free = 0; /* Starting block # of a run */
  1957. unsigned long count = 0; /* Number of blocks in the run */
  1958. __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
  1959. corresponding to
  1960. block_to_free */
  1961. ext3_fsblk_t nr; /* Current block # */
  1962. __le32 *p; /* Pointer into inode/ind
  1963. for current block */
  1964. int err;
  1965. if (this_bh) { /* For indirect block */
  1966. BUFFER_TRACE(this_bh, "get_write_access");
  1967. err = ext3_journal_get_write_access(handle, this_bh);
  1968. /* Important: if we can't update the indirect pointers
  1969. * to the blocks, we can't free them. */
  1970. if (err)
  1971. return;
  1972. }
  1973. for (p = first; p < last; p++) {
  1974. nr = le32_to_cpu(*p);
  1975. if (nr) {
  1976. /* accumulate blocks to free if they're contiguous */
  1977. if (count == 0) {
  1978. block_to_free = nr;
  1979. block_to_free_p = p;
  1980. count = 1;
  1981. } else if (nr == block_to_free + count) {
  1982. count++;
  1983. } else {
  1984. ext3_clear_blocks(handle, inode, this_bh,
  1985. block_to_free,
  1986. count, block_to_free_p, p);
  1987. block_to_free = nr;
  1988. block_to_free_p = p;
  1989. count = 1;
  1990. }
  1991. }
  1992. }
  1993. if (count > 0)
  1994. ext3_clear_blocks(handle, inode, this_bh, block_to_free,
  1995. count, block_to_free_p, p);
  1996. if (this_bh) {
  1997. BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
  1998. /*
  1999. * The buffer head should have an attached journal head at this
  2000. * point. However, if the data is corrupted and an indirect
  2001. * block pointed to itself, it would have been detached when
  2002. * the block was cleared. Check for this instead of OOPSing.
  2003. */
  2004. if (bh2jh(this_bh))
  2005. ext3_journal_dirty_metadata(handle, this_bh);
  2006. else
  2007. ext3_error(inode->i_sb, "ext3_free_data",
  2008. "circular indirect block detected, "
  2009. "inode=%lu, block=%llu",
  2010. inode->i_ino,
  2011. (unsigned long long)this_bh->b_blocknr);
  2012. }
  2013. }
  2014. /**
  2015. * ext3_free_branches - free an array of branches
  2016. * @handle: JBD handle for this transaction
  2017. * @inode: inode we are dealing with
  2018. * @parent_bh: the buffer_head which contains *@first and *@last
  2019. * @first: array of block numbers
  2020. * @last: pointer immediately past the end of array
  2021. * @depth: depth of the branches to free
  2022. *
  2023. * We are freeing all blocks refered from these branches (numbers are
  2024. * stored as little-endian 32-bit) and updating @inode->i_blocks
  2025. * appropriately.
  2026. */
  2027. static void ext3_free_branches(handle_t *handle, struct inode *inode,
  2028. struct buffer_head *parent_bh,
  2029. __le32 *first, __le32 *last, int depth)
  2030. {
  2031. ext3_fsblk_t nr;
  2032. __le32 *p;
  2033. if (is_handle_aborted(handle))
  2034. return;
  2035. if (depth--) {
  2036. struct buffer_head *bh;
  2037. int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  2038. p = last;
  2039. while (--p >= first) {
  2040. nr = le32_to_cpu(*p);
  2041. if (!nr)
  2042. continue; /* A hole */
  2043. /* Go read the buffer for the next level down */
  2044. bh = sb_bread(inode->i_sb, nr);
  2045. /*
  2046. * A read failure? Report error and clear slot
  2047. * (should be rare).
  2048. */
  2049. if (!bh) {
  2050. ext3_error(inode->i_sb, "ext3_free_branches",
  2051. "Read failure, inode=%lu, block="E3FSBLK,
  2052. inode->i_ino, nr);
  2053. continue;
  2054. }
  2055. /* This zaps the entire block. Bottom up. */
  2056. BUFFER_TRACE(bh, "free child branches");
  2057. ext3_free_branches(handle, inode, bh,
  2058. (__le32*)bh->b_data,
  2059. (__le32*)bh->b_data + addr_per_block,
  2060. depth);
  2061. /*
  2062. * We've probably journalled the indirect block several
  2063. * times during the truncate. But it's no longer
  2064. * needed and we now drop it from the transaction via
  2065. * journal_revoke().
  2066. *
  2067. * That's easy if it's exclusively part of this
  2068. * transaction. But if it's part of the committing
  2069. * transaction then journal_forget() will simply
  2070. * brelse() it. That means that if the underlying
  2071. * block is reallocated in ext3_get_block(),
  2072. * unmap_underlying_metadata() will find this block
  2073. * and will try to get rid of it. damn, damn.
  2074. *
  2075. * If this block has already been committed to the
  2076. * journal, a revoke record will be written. And
  2077. * revoke records must be emitted *before* clearing
  2078. * this block's bit in the bitmaps.
  2079. */
  2080. ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
  2081. /*
  2082. * Everything below this this pointer has been
  2083. * released. Now let this top-of-subtree go.
  2084. *
  2085. * We want the freeing of this indirect block to be
  2086. * atomic in the journal with the updating of the
  2087. * bitmap block which owns it. So make some room in
  2088. * the journal.
  2089. *
  2090. * We zero the parent pointer *after* freeing its
  2091. * pointee in the bitmaps, so if extend_transaction()
  2092. * for some reason fails to put the bitmap changes and
  2093. * the release into the same transaction, recovery
  2094. * will merely complain about releasing a free block,
  2095. * rather than leaking blocks.
  2096. */
  2097. if (is_handle_aborted(handle))
  2098. return;
  2099. if (try_to_extend_transaction(handle, inode)) {
  2100. ext3_mark_inode_dirty(handle, inode);
  2101. truncate_restart_transaction(handle, inode);
  2102. }
  2103. ext3_free_blocks(handle, inode, nr, 1);
  2104. if (parent_bh) {
  2105. /*
  2106. * The block which we have just freed is
  2107. * pointed to by an indirect block: journal it
  2108. */
  2109. BUFFER_TRACE(parent_bh, "get_write_access");
  2110. if (!ext3_journal_get_write_access(handle,
  2111. parent_bh)){
  2112. *p = 0;
  2113. BUFFER_TRACE(parent_bh,
  2114. "call ext3_journal_dirty_metadata");
  2115. ext3_journal_dirty_metadata(handle,
  2116. parent_bh);
  2117. }
  2118. }
  2119. }
  2120. } else {
  2121. /* We have reached the bottom of the tree. */
  2122. BUFFER_TRACE(parent_bh, "free data blocks");
  2123. ext3_free_data(handle, inode, parent_bh, first, last);
  2124. }
  2125. }
  2126. int ext3_can_truncate(struct inode *inode)
  2127. {
  2128. if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
  2129. return 0;
  2130. if (S_ISREG(inode->i_mode))
  2131. return 1;
  2132. if (S_ISDIR(inode->i_mode))
  2133. return 1;
  2134. if (S_ISLNK(inode->i_mode))
  2135. return !ext3_inode_is_fast_symlink(inode);
  2136. return 0;
  2137. }
  2138. /*
  2139. * ext3_truncate()
  2140. *
  2141. * We block out ext3_get_block() block instantiations across the entire
  2142. * transaction, and VFS/VM ensures that ext3_truncate() cannot run
  2143. * simultaneously on behalf of the same inode.
  2144. *
  2145. * As we work through the truncate and commmit bits of it to the journal there
  2146. * is one core, guiding principle: the file's tree must always be consistent on
  2147. * disk. We must be able to restart the truncate after a crash.
  2148. *
  2149. * The file's tree may be transiently inconsistent in memory (although it
  2150. * probably isn't), but whenever we close off and commit a journal transaction,
  2151. * the contents of (the filesystem + the journal) must be consistent and
  2152. * restartable. It's pretty simple, really: bottom up, right to left (although
  2153. * left-to-right works OK too).
  2154. *
  2155. * Note that at recovery time, journal replay occurs *before* the restart of
  2156. * truncate against the orphan inode list.
  2157. *
  2158. * The committed inode has the new, desired i_size (which is the same as
  2159. * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
  2160. * that this inode's truncate did not complete and it will again call
  2161. * ext3_truncate() to have another go. So there will be instantiated blocks
  2162. * to the right of the truncation point in a crashed ext3 filesystem. But
  2163. * that's fine - as long as they are linked from the inode, the post-crash
  2164. * ext3_truncate() run will find them and release them.
  2165. */
  2166. void ext3_truncate(struct inode *inode)
  2167. {
  2168. handle_t *handle;
  2169. struct ext3_inode_info *ei = EXT3_I(inode);
  2170. __le32 *i_data = ei->i_data;
  2171. int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  2172. struct address_space *mapping = inode->i_mapping;
  2173. int offsets[4];
  2174. Indirect chain[4];
  2175. Indirect *partial;
  2176. __le32 nr = 0;
  2177. int n;
  2178. long last_block;
  2179. unsigned blocksize = inode->i_sb->s_blocksize;
  2180. struct page *page;
  2181. if (!ext3_can_truncate(inode))
  2182. goto out_notrans;
  2183. if (inode->i_size == 0 && ext3_should_writeback_data(inode))
  2184. ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE);
  2185. /*
  2186. * We have to lock the EOF page here, because lock_page() nests
  2187. * outside journal_start().
  2188. */
  2189. if ((inode->i_size & (blocksize - 1)) == 0) {
  2190. /* Block boundary? Nothing to do */
  2191. page = NULL;
  2192. } else {
  2193. page = grab_cache_page(mapping,
  2194. inode->i_size >> PAGE_CACHE_SHIFT);
  2195. if (!page)
  2196. goto out_notrans;
  2197. }
  2198. handle = start_transaction(inode);
  2199. if (IS_ERR(handle)) {
  2200. if (page) {
  2201. clear_highpage(page);
  2202. flush_dcache_page(page);
  2203. unlock_page(page);
  2204. page_cache_release(page);
  2205. }
  2206. goto out_notrans;
  2207. }
  2208. last_block = (inode->i_size + blocksize-1)
  2209. >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
  2210. if (page)
  2211. ext3_block_truncate_page(handle, page, mapping, inode->i_size);
  2212. n = ext3_block_to_path(inode, last_block, offsets, NULL);
  2213. if (n == 0)
  2214. goto out_stop; /* error */
  2215. /*
  2216. * OK. This truncate is going to happen. We add the inode to the
  2217. * orphan list, so that if this truncate spans multiple transactions,
  2218. * and we crash, we will resume the truncate when the filesystem
  2219. * recovers. It also marks the inode dirty, to catch the new size.
  2220. *
  2221. * Implication: the file must always be in a sane, consistent
  2222. * truncatable state while each transaction commits.
  2223. */
  2224. if (ext3_orphan_add(handle, inode))
  2225. goto out_stop;
  2226. /*
  2227. * The orphan list entry will now protect us from any crash which
  2228. * occurs before the truncate completes, so it is now safe to propagate
  2229. * the new, shorter inode size (held for now in i_size) into the
  2230. * on-disk inode. We do this via i_disksize, which is the value which
  2231. * ext3 *really* writes onto the disk inode.
  2232. */
  2233. ei->i_disksize = inode->i_size;
  2234. /*
  2235. * From here we block out all ext3_get_block() callers who want to
  2236. * modify the block allocation tree.
  2237. */
  2238. mutex_lock(&ei->truncate_mutex);
  2239. if (n == 1) { /* direct blocks */
  2240. ext3_free_data(handle, inode, NULL, i_data+offsets[0],
  2241. i_data + EXT3_NDIR_BLOCKS);
  2242. goto do_indirects;
  2243. }
  2244. partial = ext3_find_shared(inode, n, offsets, chain, &nr);
  2245. /* Kill the top of shared branch (not detached) */
  2246. if (nr) {
  2247. if (partial == chain) {
  2248. /* Shared branch grows from the inode */
  2249. ext3_free_branches(handle, inode, NULL,
  2250. &nr, &nr+1, (chain+n-1) - partial);
  2251. *partial->p = 0;
  2252. /*
  2253. * We mark the inode dirty prior to restart,
  2254. * and prior to stop. No need for it here.
  2255. */
  2256. } else {
  2257. /* Shared branch grows from an indirect block */
  2258. BUFFER_TRACE(partial->bh, "get_write_access");
  2259. ext3_free_branches(handle, inode, partial->bh,
  2260. partial->p,
  2261. partial->p+1, (chain+n-1) - partial);
  2262. }
  2263. }
  2264. /* Clear the ends of indirect blocks on the shared branch */
  2265. while (partial > chain) {
  2266. ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
  2267. (__le32*)partial->bh->b_data+addr_per_block,
  2268. (chain+n-1) - partial);
  2269. BUFFER_TRACE(partial->bh, "call brelse");
  2270. brelse (partial->bh);
  2271. partial--;
  2272. }
  2273. do_indirects:
  2274. /* Kill the remaining (whole) subtrees */
  2275. switch (offsets[0]) {
  2276. default:
  2277. nr = i_data[EXT3_IND_BLOCK];
  2278. if (nr) {
  2279. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
  2280. i_data[EXT3_IND_BLOCK] = 0;
  2281. }
  2282. case EXT3_IND_BLOCK:
  2283. nr = i_data[EXT3_DIND_BLOCK];
  2284. if (nr) {
  2285. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
  2286. i_data[EXT3_DIND_BLOCK] = 0;
  2287. }
  2288. case EXT3_DIND_BLOCK:
  2289. nr = i_data[EXT3_TIND_BLOCK];
  2290. if (nr) {
  2291. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
  2292. i_data[EXT3_TIND_BLOCK] = 0;
  2293. }
  2294. case EXT3_TIND_BLOCK:
  2295. ;
  2296. }
  2297. ext3_discard_reservation(inode);
  2298. mutex_unlock(&ei->truncate_mutex);
  2299. inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
  2300. ext3_mark_inode_dirty(handle, inode);
  2301. /*
  2302. * In a multi-transaction truncate, we only make the final transaction
  2303. * synchronous
  2304. */
  2305. if (IS_SYNC(inode))
  2306. handle->h_sync = 1;
  2307. out_stop:
  2308. /*
  2309. * If this was a simple ftruncate(), and the file will remain alive
  2310. * then we need to clear up the orphan record which we created above.
  2311. * However, if this was a real unlink then we were called by
  2312. * ext3_delete_inode(), and we allow that function to clean up the
  2313. * orphan info for us.
  2314. */
  2315. if (inode->i_nlink)
  2316. ext3_orphan_del(handle, inode);
  2317. ext3_journal_stop(handle);
  2318. return;
  2319. out_notrans:
  2320. /*
  2321. * Delete the inode from orphan list so that it doesn't stay there
  2322. * forever and trigger assertion on umount.
  2323. */
  2324. if (inode->i_nlink)
  2325. ext3_orphan_del(NULL, inode);
  2326. }
  2327. static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
  2328. unsigned long ino, struct ext3_iloc *iloc)
  2329. {
  2330. unsigned long block_group;
  2331. unsigned long offset;
  2332. ext3_fsblk_t block;
  2333. struct ext3_group_desc *gdp;
  2334. if (!ext3_valid_inum(sb, ino)) {
  2335. /*
  2336. * This error is already checked for in namei.c unless we are
  2337. * looking at an NFS filehandle, in which case no error
  2338. * report is needed
  2339. */
  2340. return 0;
  2341. }
  2342. block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
  2343. gdp = ext3_get_group_desc(sb, block_group, NULL);
  2344. if (!gdp)
  2345. return 0;
  2346. /*
  2347. * Figure out the offset within the block group inode table
  2348. */
  2349. offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
  2350. EXT3_INODE_SIZE(sb);
  2351. block = le32_to_cpu(gdp->bg_inode_table) +
  2352. (offset >> EXT3_BLOCK_SIZE_BITS(sb));
  2353. iloc->block_group = block_group;
  2354. iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
  2355. return block;
  2356. }
  2357. /*
  2358. * ext3_get_inode_loc returns with an extra refcount against the inode's
  2359. * underlying buffer_head on success. If 'in_mem' is true, we have all
  2360. * data in memory that is needed to recreate the on-disk version of this
  2361. * inode.
  2362. */
  2363. static int __ext3_get_inode_loc(struct inode *inode,
  2364. struct ext3_iloc *iloc, int in_mem)
  2365. {
  2366. ext3_fsblk_t block;
  2367. struct buffer_head *bh;
  2368. block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
  2369. if (!block)
  2370. return -EIO;
  2371. bh = sb_getblk(inode->i_sb, block);
  2372. if (!bh) {
  2373. ext3_error (inode->i_sb, "ext3_get_inode_loc",
  2374. "unable to read inode block - "
  2375. "inode=%lu, block="E3FSBLK,
  2376. inode->i_ino, block);
  2377. return -EIO;
  2378. }
  2379. if (!buffer_uptodate(bh)) {
  2380. lock_buffer(bh);
  2381. /*
  2382. * If the buffer has the write error flag, we have failed
  2383. * to write out another inode in the same block. In this
  2384. * case, we don't have to read the block because we may
  2385. * read the old inode data successfully.
  2386. */
  2387. if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
  2388. set_buffer_uptodate(bh);
  2389. if (buffer_uptodate(bh)) {
  2390. /* someone brought it uptodate while we waited */
  2391. unlock_buffer(bh);
  2392. goto has_buffer;
  2393. }
  2394. /*
  2395. * If we have all information of the inode in memory and this
  2396. * is the only valid inode in the block, we need not read the
  2397. * block.
  2398. */
  2399. if (in_mem) {
  2400. struct buffer_head *bitmap_bh;
  2401. struct ext3_group_desc *desc;
  2402. int inodes_per_buffer;
  2403. int inode_offset, i;
  2404. int block_group;
  2405. int start;
  2406. block_group = (inode->i_ino - 1) /
  2407. EXT3_INODES_PER_GROUP(inode->i_sb);
  2408. inodes_per_buffer = bh->b_size /
  2409. EXT3_INODE_SIZE(inode->i_sb);
  2410. inode_offset = ((inode->i_ino - 1) %
  2411. EXT3_INODES_PER_GROUP(inode->i_sb));
  2412. start = inode_offset & ~(inodes_per_buffer - 1);
  2413. /* Is the inode bitmap in cache? */
  2414. desc = ext3_get_group_desc(inode->i_sb,
  2415. block_group, NULL);
  2416. if (!desc)
  2417. goto make_io;
  2418. bitmap_bh = sb_getblk(inode->i_sb,
  2419. le32_to_cpu(desc->bg_inode_bitmap));
  2420. if (!bitmap_bh)
  2421. goto make_io;
  2422. /*
  2423. * If the inode bitmap isn't in cache then the
  2424. * optimisation may end up performing two reads instead
  2425. * of one, so skip it.
  2426. */
  2427. if (!buffer_uptodate(bitmap_bh)) {
  2428. brelse(bitmap_bh);
  2429. goto make_io;
  2430. }
  2431. for (i = start; i < start + inodes_per_buffer; i++) {
  2432. if (i == inode_offset)
  2433. continue;
  2434. if (ext3_test_bit(i, bitmap_bh->b_data))
  2435. break;
  2436. }
  2437. brelse(bitmap_bh);
  2438. if (i == start + inodes_per_buffer) {
  2439. /* all other inodes are free, so skip I/O */
  2440. memset(bh->b_data, 0, bh->b_size);
  2441. set_buffer_uptodate(bh);
  2442. unlock_buffer(bh);
  2443. goto has_buffer;
  2444. }
  2445. }
  2446. make_io:
  2447. /*
  2448. * There are other valid inodes in the buffer, this inode
  2449. * has in-inode xattrs, or we don't have this inode in memory.
  2450. * Read the block from disk.
  2451. */
  2452. get_bh(bh);
  2453. bh->b_end_io = end_buffer_read_sync;
  2454. submit_bh(READ_META, bh);
  2455. wait_on_buffer(bh);
  2456. if (!buffer_uptodate(bh)) {
  2457. ext3_error(inode->i_sb, "ext3_get_inode_loc",
  2458. "unable to read inode block - "
  2459. "inode=%lu, block="E3FSBLK,
  2460. inode->i_ino, block);
  2461. brelse(bh);
  2462. return -EIO;
  2463. }
  2464. }
  2465. has_buffer:
  2466. iloc->bh = bh;
  2467. return 0;
  2468. }
  2469. int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
  2470. {
  2471. /* We have all inode data except xattrs in memory here. */
  2472. return __ext3_get_inode_loc(inode, iloc,
  2473. !ext3_test_inode_state(inode, EXT3_STATE_XATTR));
  2474. }
  2475. void ext3_set_inode_flags(struct inode *inode)
  2476. {
  2477. unsigned int flags = EXT3_I(inode)->i_flags;
  2478. inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  2479. if (flags & EXT3_SYNC_FL)
  2480. inode->i_flags |= S_SYNC;
  2481. if (flags & EXT3_APPEND_FL)
  2482. inode->i_flags |= S_APPEND;
  2483. if (flags & EXT3_IMMUTABLE_FL)
  2484. inode->i_flags |= S_IMMUTABLE;
  2485. if (flags & EXT3_NOATIME_FL)
  2486. inode->i_flags |= S_NOATIME;
  2487. if (flags & EXT3_DIRSYNC_FL)
  2488. inode->i_flags |= S_DIRSYNC;
  2489. }
  2490. /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
  2491. void ext3_get_inode_flags(struct ext3_inode_info *ei)
  2492. {
  2493. unsigned int flags = ei->vfs_inode.i_flags;
  2494. ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
  2495. EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
  2496. if (flags & S_SYNC)
  2497. ei->i_flags |= EXT3_SYNC_FL;
  2498. if (flags & S_APPEND)
  2499. ei->i_flags |= EXT3_APPEND_FL;
  2500. if (flags & S_IMMUTABLE)
  2501. ei->i_flags |= EXT3_IMMUTABLE_FL;
  2502. if (flags & S_NOATIME)
  2503. ei->i_flags |= EXT3_NOATIME_FL;
  2504. if (flags & S_DIRSYNC)
  2505. ei->i_flags |= EXT3_DIRSYNC_FL;
  2506. }
  2507. struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
  2508. {
  2509. struct ext3_iloc iloc;
  2510. struct ext3_inode *raw_inode;
  2511. struct ext3_inode_info *ei;
  2512. struct buffer_head *bh;
  2513. struct inode *inode;
  2514. journal_t *journal = EXT3_SB(sb)->s_journal;
  2515. transaction_t *transaction;
  2516. long ret;
  2517. int block;
  2518. inode = iget_locked(sb, ino);
  2519. if (!inode)
  2520. return ERR_PTR(-ENOMEM);
  2521. if (!(inode->i_state & I_NEW))
  2522. return inode;
  2523. ei = EXT3_I(inode);
  2524. ei->i_block_alloc_info = NULL;
  2525. ret = __ext3_get_inode_loc(inode, &iloc, 0);
  2526. if (ret < 0)
  2527. goto bad_inode;
  2528. bh = iloc.bh;
  2529. raw_inode = ext3_raw_inode(&iloc);
  2530. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  2531. inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
  2532. inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
  2533. if(!(test_opt (inode->i_sb, NO_UID32))) {
  2534. inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
  2535. inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
  2536. }
  2537. inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
  2538. inode->i_size = le32_to_cpu(raw_inode->i_size);
  2539. inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
  2540. inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
  2541. inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
  2542. inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
  2543. ei->i_state = 0;
  2544. ei->i_dir_start_lookup = 0;
  2545. ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
  2546. /* We now have enough fields to check if the inode was active or not.
  2547. * This is needed because nfsd might try to access dead inodes
  2548. * the test is that same one that e2fsck uses
  2549. * NeilBrown 1999oct15
  2550. */
  2551. if (inode->i_nlink == 0) {
  2552. if (inode->i_mode == 0 ||
  2553. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
  2554. /* this inode is deleted */
  2555. brelse (bh);
  2556. ret = -ESTALE;
  2557. goto bad_inode;
  2558. }
  2559. /* The only unlinked inodes we let through here have
  2560. * valid i_mode and are being read by the orphan
  2561. * recovery code: that's fine, we're about to complete
  2562. * the process of deleting those. */
  2563. }
  2564. inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
  2565. ei->i_flags = le32_to_cpu(raw_inode->i_flags);
  2566. #ifdef EXT3_FRAGMENTS
  2567. ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
  2568. ei->i_frag_no = raw_inode->i_frag;
  2569. ei->i_frag_size = raw_inode->i_fsize;
  2570. #endif
  2571. ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
  2572. if (!S_ISREG(inode->i_mode)) {
  2573. ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
  2574. } else {
  2575. inode->i_size |=
  2576. ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
  2577. }
  2578. ei->i_disksize = inode->i_size;
  2579. inode->i_generation = le32_to_cpu(raw_inode->i_generation);
  2580. ei->i_block_group = iloc.block_group;
  2581. /*
  2582. * NOTE! The in-memory inode i_data array is in little-endian order
  2583. * even on big-endian machines: we do NOT byteswap the block numbers!
  2584. */
  2585. for (block = 0; block < EXT3_N_BLOCKS; block++)
  2586. ei->i_data[block] = raw_inode->i_block[block];
  2587. INIT_LIST_HEAD(&ei->i_orphan);
  2588. /*
  2589. * Set transaction id's of transactions that have to be committed
  2590. * to finish f[data]sync. We set them to currently running transaction
  2591. * as we cannot be sure that the inode or some of its metadata isn't
  2592. * part of the transaction - the inode could have been reclaimed and
  2593. * now it is reread from disk.
  2594. */
  2595. if (journal) {
  2596. tid_t tid;
  2597. spin_lock(&journal->j_state_lock);
  2598. if (journal->j_running_transaction)
  2599. transaction = journal->j_running_transaction;
  2600. else
  2601. transaction = journal->j_committing_transaction;
  2602. if (transaction)
  2603. tid = transaction->t_tid;
  2604. else
  2605. tid = journal->j_commit_sequence;
  2606. spin_unlock(&journal->j_state_lock);
  2607. atomic_set(&ei->i_sync_tid, tid);
  2608. atomic_set(&ei->i_datasync_tid, tid);
  2609. }
  2610. if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
  2611. EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
  2612. /*
  2613. * When mke2fs creates big inodes it does not zero out
  2614. * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
  2615. * so ignore those first few inodes.
  2616. */
  2617. ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
  2618. if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
  2619. EXT3_INODE_SIZE(inode->i_sb)) {
  2620. brelse (bh);
  2621. ret = -EIO;
  2622. goto bad_inode;
  2623. }
  2624. if (ei->i_extra_isize == 0) {
  2625. /* The extra space is currently unused. Use it. */
  2626. ei->i_extra_isize = sizeof(struct ext3_inode) -
  2627. EXT3_GOOD_OLD_INODE_SIZE;
  2628. } else {
  2629. __le32 *magic = (void *)raw_inode +
  2630. EXT3_GOOD_OLD_INODE_SIZE +
  2631. ei->i_extra_isize;
  2632. if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
  2633. ext3_set_inode_state(inode, EXT3_STATE_XATTR);
  2634. }
  2635. } else
  2636. ei->i_extra_isize = 0;
  2637. if (S_ISREG(inode->i_mode)) {
  2638. inode->i_op = &ext3_file_inode_operations;
  2639. inode->i_fop = &ext3_file_operations;
  2640. ext3_set_aops(inode);
  2641. } else if (S_ISDIR(inode->i_mode)) {
  2642. inode->i_op = &ext3_dir_inode_operations;
  2643. inode->i_fop = &ext3_dir_operations;
  2644. } else if (S_ISLNK(inode->i_mode)) {
  2645. if (ext3_inode_is_fast_symlink(inode)) {
  2646. inode->i_op = &ext3_fast_symlink_inode_operations;
  2647. nd_terminate_link(ei->i_data, inode->i_size,
  2648. sizeof(ei->i_data) - 1);
  2649. } else {
  2650. inode->i_op = &ext3_symlink_inode_operations;
  2651. ext3_set_aops(inode);
  2652. }
  2653. } else {
  2654. inode->i_op = &ext3_special_inode_operations;
  2655. if (raw_inode->i_block[0])
  2656. init_special_inode(inode, inode->i_mode,
  2657. old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
  2658. else
  2659. init_special_inode(inode, inode->i_mode,
  2660. new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
  2661. }
  2662. brelse (iloc.bh);
  2663. ext3_set_inode_flags(inode);
  2664. unlock_new_inode(inode);
  2665. return inode;
  2666. bad_inode:
  2667. iget_failed(inode);
  2668. return ERR_PTR(ret);
  2669. }
  2670. /*
  2671. * Post the struct inode info into an on-disk inode location in the
  2672. * buffer-cache. This gobbles the caller's reference to the
  2673. * buffer_head in the inode location struct.
  2674. *
  2675. * The caller must have write access to iloc->bh.
  2676. */
  2677. static int ext3_do_update_inode(handle_t *handle,
  2678. struct inode *inode,
  2679. struct ext3_iloc *iloc)
  2680. {
  2681. struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
  2682. struct ext3_inode_info *ei = EXT3_I(inode);
  2683. struct buffer_head *bh = iloc->bh;
  2684. int err = 0, rc, block;
  2685. again:
  2686. /* we can't allow multiple procs in here at once, its a bit racey */
  2687. lock_buffer(bh);
  2688. /* For fields not not tracking in the in-memory inode,
  2689. * initialise them to zero for new inodes. */
  2690. if (ext3_test_inode_state(inode, EXT3_STATE_NEW))
  2691. memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
  2692. ext3_get_inode_flags(ei);
  2693. raw_inode->i_mode = cpu_to_le16(inode->i_mode);
  2694. if(!(test_opt(inode->i_sb, NO_UID32))) {
  2695. raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
  2696. raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
  2697. /*
  2698. * Fix up interoperability with old kernels. Otherwise, old inodes get
  2699. * re-used with the upper 16 bits of the uid/gid intact
  2700. */
  2701. if(!ei->i_dtime) {
  2702. raw_inode->i_uid_high =
  2703. cpu_to_le16(high_16_bits(inode->i_uid));
  2704. raw_inode->i_gid_high =
  2705. cpu_to_le16(high_16_bits(inode->i_gid));
  2706. } else {
  2707. raw_inode->i_uid_high = 0;
  2708. raw_inode->i_gid_high = 0;
  2709. }
  2710. } else {
  2711. raw_inode->i_uid_low =
  2712. cpu_to_le16(fs_high2lowuid(inode->i_uid));
  2713. raw_inode->i_gid_low =
  2714. cpu_to_le16(fs_high2lowgid(inode->i_gid));
  2715. raw_inode->i_uid_high = 0;
  2716. raw_inode->i_gid_high = 0;
  2717. }
  2718. raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
  2719. raw_inode->i_size = cpu_to_le32(ei->i_disksize);
  2720. raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
  2721. raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
  2722. raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
  2723. raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
  2724. raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
  2725. raw_inode->i_flags = cpu_to_le32(ei->i_flags);
  2726. #ifdef EXT3_FRAGMENTS
  2727. raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
  2728. raw_inode->i_frag = ei->i_frag_no;
  2729. raw_inode->i_fsize = ei->i_frag_size;
  2730. #endif
  2731. raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
  2732. if (!S_ISREG(inode->i_mode)) {
  2733. raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
  2734. } else {
  2735. raw_inode->i_size_high =
  2736. cpu_to_le32(ei->i_disksize >> 32);
  2737. if (ei->i_disksize > 0x7fffffffULL) {
  2738. struct super_block *sb = inode->i_sb;
  2739. if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
  2740. EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
  2741. EXT3_SB(sb)->s_es->s_rev_level ==
  2742. cpu_to_le32(EXT3_GOOD_OLD_REV)) {
  2743. /* If this is the first large file
  2744. * created, add a flag to the superblock.
  2745. */
  2746. unlock_buffer(bh);
  2747. err = ext3_journal_get_write_access(handle,
  2748. EXT3_SB(sb)->s_sbh);
  2749. if (err)
  2750. goto out_brelse;
  2751. ext3_update_dynamic_rev(sb);
  2752. EXT3_SET_RO_COMPAT_FEATURE(sb,
  2753. EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
  2754. handle->h_sync = 1;
  2755. err = ext3_journal_dirty_metadata(handle,
  2756. EXT3_SB(sb)->s_sbh);
  2757. /* get our lock and start over */
  2758. goto again;
  2759. }
  2760. }
  2761. }
  2762. raw_inode->i_generation = cpu_to_le32(inode->i_generation);
  2763. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  2764. if (old_valid_dev(inode->i_rdev)) {
  2765. raw_inode->i_block[0] =
  2766. cpu_to_le32(old_encode_dev(inode->i_rdev));
  2767. raw_inode->i_block[1] = 0;
  2768. } else {
  2769. raw_inode->i_block[0] = 0;
  2770. raw_inode->i_block[1] =
  2771. cpu_to_le32(new_encode_dev(inode->i_rdev));
  2772. raw_inode->i_block[2] = 0;
  2773. }
  2774. } else for (block = 0; block < EXT3_N_BLOCKS; block++)
  2775. raw_inode->i_block[block] = ei->i_data[block];
  2776. if (ei->i_extra_isize)
  2777. raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
  2778. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  2779. unlock_buffer(bh);
  2780. rc = ext3_journal_dirty_metadata(handle, bh);
  2781. if (!err)
  2782. err = rc;
  2783. ext3_clear_inode_state(inode, EXT3_STATE_NEW);
  2784. atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
  2785. out_brelse:
  2786. brelse (bh);
  2787. ext3_std_error(inode->i_sb, err);
  2788. return err;
  2789. }
  2790. /*
  2791. * ext3_write_inode()
  2792. *
  2793. * We are called from a few places:
  2794. *
  2795. * - Within generic_file_write() for O_SYNC files.
  2796. * Here, there will be no transaction running. We wait for any running
  2797. * trasnaction to commit.
  2798. *
  2799. * - Within sys_sync(), kupdate and such.
  2800. * We wait on commit, if tol to.
  2801. *
  2802. * - Within prune_icache() (PF_MEMALLOC == true)
  2803. * Here we simply return. We can't afford to block kswapd on the
  2804. * journal commit.
  2805. *
  2806. * In all cases it is actually safe for us to return without doing anything,
  2807. * because the inode has been copied into a raw inode buffer in
  2808. * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
  2809. * knfsd.
  2810. *
  2811. * Note that we are absolutely dependent upon all inode dirtiers doing the
  2812. * right thing: they *must* call mark_inode_dirty() after dirtying info in
  2813. * which we are interested.
  2814. *
  2815. * It would be a bug for them to not do this. The code:
  2816. *
  2817. * mark_inode_dirty(inode)
  2818. * stuff();
  2819. * inode->i_size = expr;
  2820. *
  2821. * is in error because a kswapd-driven write_inode() could occur while
  2822. * `stuff()' is running, and the new i_size will be lost. Plus the inode
  2823. * will no longer be on the superblock's dirty inode list.
  2824. */
  2825. int ext3_write_inode(struct inode *inode, int wait)
  2826. {
  2827. if (current->flags & PF_MEMALLOC)
  2828. return 0;
  2829. if (ext3_journal_current_handle()) {
  2830. jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
  2831. dump_stack();
  2832. return -EIO;
  2833. }
  2834. if (!wait)
  2835. return 0;
  2836. return ext3_force_commit(inode->i_sb);
  2837. }
  2838. /*
  2839. * ext3_setattr()
  2840. *
  2841. * Called from notify_change.
  2842. *
  2843. * We want to trap VFS attempts to truncate the file as soon as
  2844. * possible. In particular, we want to make sure that when the VFS
  2845. * shrinks i_size, we put the inode on the orphan list and modify
  2846. * i_disksize immediately, so that during the subsequent flushing of
  2847. * dirty pages and freeing of disk blocks, we can guarantee that any
  2848. * commit will leave the blocks being flushed in an unused state on
  2849. * disk. (On recovery, the inode will get truncated and the blocks will
  2850. * be freed, so we have a strong guarantee that no future commit will
  2851. * leave these blocks visible to the user.)
  2852. *
  2853. * Called with inode->sem down.
  2854. */
  2855. int ext3_setattr(struct dentry *dentry, struct iattr *attr)
  2856. {
  2857. struct inode *inode = dentry->d_inode;
  2858. int error, rc = 0;
  2859. const unsigned int ia_valid = attr->ia_valid;
  2860. error = inode_change_ok(inode, attr);
  2861. if (error)
  2862. return error;
  2863. if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
  2864. (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
  2865. handle_t *handle;
  2866. /* (user+group)*(old+new) structure, inode write (sb,
  2867. * inode block, ? - but truncate inode update has it) */
  2868. handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
  2869. EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3);
  2870. if (IS_ERR(handle)) {
  2871. error = PTR_ERR(handle);
  2872. goto err_out;
  2873. }
  2874. error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
  2875. if (error) {
  2876. ext3_journal_stop(handle);
  2877. return error;
  2878. }
  2879. /* Update corresponding info in inode so that everything is in
  2880. * one transaction */
  2881. if (attr->ia_valid & ATTR_UID)
  2882. inode->i_uid = attr->ia_uid;
  2883. if (attr->ia_valid & ATTR_GID)
  2884. inode->i_gid = attr->ia_gid;
  2885. error = ext3_mark_inode_dirty(handle, inode);
  2886. ext3_journal_stop(handle);
  2887. }
  2888. if (S_ISREG(inode->i_mode) &&
  2889. attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
  2890. handle_t *handle;
  2891. handle = ext3_journal_start(inode, 3);
  2892. if (IS_ERR(handle)) {
  2893. error = PTR_ERR(handle);
  2894. goto err_out;
  2895. }
  2896. error = ext3_orphan_add(handle, inode);
  2897. EXT3_I(inode)->i_disksize = attr->ia_size;
  2898. rc = ext3_mark_inode_dirty(handle, inode);
  2899. if (!error)
  2900. error = rc;
  2901. ext3_journal_stop(handle);
  2902. }
  2903. rc = inode_setattr(inode, attr);
  2904. if (!rc && (ia_valid & ATTR_MODE))
  2905. rc = ext3_acl_chmod(inode);
  2906. err_out:
  2907. ext3_std_error(inode->i_sb, error);
  2908. if (!error)
  2909. error = rc;
  2910. return error;
  2911. }
  2912. /*
  2913. * How many blocks doth make a writepage()?
  2914. *
  2915. * With N blocks per page, it may be:
  2916. * N data blocks
  2917. * 2 indirect block
  2918. * 2 dindirect
  2919. * 1 tindirect
  2920. * N+5 bitmap blocks (from the above)
  2921. * N+5 group descriptor summary blocks
  2922. * 1 inode block
  2923. * 1 superblock.
  2924. * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
  2925. *
  2926. * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
  2927. *
  2928. * With ordered or writeback data it's the same, less the N data blocks.
  2929. *
  2930. * If the inode's direct blocks can hold an integral number of pages then a
  2931. * page cannot straddle two indirect blocks, and we can only touch one indirect
  2932. * and dindirect block, and the "5" above becomes "3".
  2933. *
  2934. * This still overestimates under most circumstances. If we were to pass the
  2935. * start and end offsets in here as well we could do block_to_path() on each
  2936. * block and work out the exact number of indirects which are touched. Pah.
  2937. */
  2938. static int ext3_writepage_trans_blocks(struct inode *inode)
  2939. {
  2940. int bpp = ext3_journal_blocks_per_page(inode);
  2941. int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
  2942. int ret;
  2943. if (ext3_should_journal_data(inode))
  2944. ret = 3 * (bpp + indirects) + 2;
  2945. else
  2946. ret = 2 * (bpp + indirects) + 2;
  2947. #ifdef CONFIG_QUOTA
  2948. /* We know that structure was already allocated during vfs_dq_init so
  2949. * we will be updating only the data blocks + inodes */
  2950. ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
  2951. #endif
  2952. return ret;
  2953. }
  2954. /*
  2955. * The caller must have previously called ext3_reserve_inode_write().
  2956. * Give this, we know that the caller already has write access to iloc->bh.
  2957. */
  2958. int ext3_mark_iloc_dirty(handle_t *handle,
  2959. struct inode *inode, struct ext3_iloc *iloc)
  2960. {
  2961. int err = 0;
  2962. /* the do_update_inode consumes one bh->b_count */
  2963. get_bh(iloc->bh);
  2964. /* ext3_do_update_inode() does journal_dirty_metadata */
  2965. err = ext3_do_update_inode(handle, inode, iloc);
  2966. put_bh(iloc->bh);
  2967. return err;
  2968. }
  2969. /*
  2970. * On success, We end up with an outstanding reference count against
  2971. * iloc->bh. This _must_ be cleaned up later.
  2972. */
  2973. int
  2974. ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
  2975. struct ext3_iloc *iloc)
  2976. {
  2977. int err = 0;
  2978. if (handle) {
  2979. err = ext3_get_inode_loc(inode, iloc);
  2980. if (!err) {
  2981. BUFFER_TRACE(iloc->bh, "get_write_access");
  2982. err = ext3_journal_get_write_access(handle, iloc->bh);
  2983. if (err) {
  2984. brelse(iloc->bh);
  2985. iloc->bh = NULL;
  2986. }
  2987. }
  2988. }
  2989. ext3_std_error(inode->i_sb, err);
  2990. return err;
  2991. }
  2992. /*
  2993. * What we do here is to mark the in-core inode as clean with respect to inode
  2994. * dirtiness (it may still be data-dirty).
  2995. * This means that the in-core inode may be reaped by prune_icache
  2996. * without having to perform any I/O. This is a very good thing,
  2997. * because *any* task may call prune_icache - even ones which
  2998. * have a transaction open against a different journal.
  2999. *
  3000. * Is this cheating? Not really. Sure, we haven't written the
  3001. * inode out, but prune_icache isn't a user-visible syncing function.
  3002. * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
  3003. * we start and wait on commits.
  3004. *
  3005. * Is this efficient/effective? Well, we're being nice to the system
  3006. * by cleaning up our inodes proactively so they can be reaped
  3007. * without I/O. But we are potentially leaving up to five seconds'
  3008. * worth of inodes floating about which prune_icache wants us to
  3009. * write out. One way to fix that would be to get prune_icache()
  3010. * to do a write_super() to free up some memory. It has the desired
  3011. * effect.
  3012. */
  3013. int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
  3014. {
  3015. struct ext3_iloc iloc;
  3016. int err;
  3017. might_sleep();
  3018. err = ext3_reserve_inode_write(handle, inode, &iloc);
  3019. if (!err)
  3020. err = ext3_mark_iloc_dirty(handle, inode, &iloc);
  3021. return err;
  3022. }
  3023. /*
  3024. * ext3_dirty_inode() is called from __mark_inode_dirty()
  3025. *
  3026. * We're really interested in the case where a file is being extended.
  3027. * i_size has been changed by generic_commit_write() and we thus need
  3028. * to include the updated inode in the current transaction.
  3029. *
  3030. * Also, vfs_dq_alloc_space() will always dirty the inode when blocks
  3031. * are allocated to the file.
  3032. *
  3033. * If the inode is marked synchronous, we don't honour that here - doing
  3034. * so would cause a commit on atime updates, which we don't bother doing.
  3035. * We handle synchronous inodes at the highest possible level.
  3036. */
  3037. void ext3_dirty_inode(struct inode *inode)
  3038. {
  3039. handle_t *current_handle = ext3_journal_current_handle();
  3040. handle_t *handle;
  3041. handle = ext3_journal_start(inode, 2);
  3042. if (IS_ERR(handle))
  3043. goto out;
  3044. if (current_handle &&
  3045. current_handle->h_transaction != handle->h_transaction) {
  3046. /* This task has a transaction open against a different fs */
  3047. printk(KERN_EMERG "%s: transactions do not match!\n",
  3048. __func__);
  3049. } else {
  3050. jbd_debug(5, "marking dirty. outer handle=%p\n",
  3051. current_handle);
  3052. ext3_mark_inode_dirty(handle, inode);
  3053. }
  3054. ext3_journal_stop(handle);
  3055. out:
  3056. return;
  3057. }
  3058. #if 0
  3059. /*
  3060. * Bind an inode's backing buffer_head into this transaction, to prevent
  3061. * it from being flushed to disk early. Unlike
  3062. * ext3_reserve_inode_write, this leaves behind no bh reference and
  3063. * returns no iloc structure, so the caller needs to repeat the iloc
  3064. * lookup to mark the inode dirty later.
  3065. */
  3066. static int ext3_pin_inode(handle_t *handle, struct inode *inode)
  3067. {
  3068. struct ext3_iloc iloc;
  3069. int err = 0;
  3070. if (handle) {
  3071. err = ext3_get_inode_loc(inode, &iloc);
  3072. if (!err) {
  3073. BUFFER_TRACE(iloc.bh, "get_write_access");
  3074. err = journal_get_write_access(handle, iloc.bh);
  3075. if (!err)
  3076. err = ext3_journal_dirty_metadata(handle,
  3077. iloc.bh);
  3078. brelse(iloc.bh);
  3079. }
  3080. }
  3081. ext3_std_error(inode->i_sb, err);
  3082. return err;
  3083. }
  3084. #endif
  3085. int ext3_change_inode_journal_flag(struct inode *inode, int val)
  3086. {
  3087. journal_t *journal;
  3088. handle_t *handle;
  3089. int err;
  3090. /*
  3091. * We have to be very careful here: changing a data block's
  3092. * journaling status dynamically is dangerous. If we write a
  3093. * data block to the journal, change the status and then delete
  3094. * that block, we risk forgetting to revoke the old log record
  3095. * from the journal and so a subsequent replay can corrupt data.
  3096. * So, first we make sure that the journal is empty and that
  3097. * nobody is changing anything.
  3098. */
  3099. journal = EXT3_JOURNAL(inode);
  3100. if (is_journal_aborted(journal))
  3101. return -EROFS;
  3102. journal_lock_updates(journal);
  3103. journal_flush(journal);
  3104. /*
  3105. * OK, there are no updates running now, and all cached data is
  3106. * synced to disk. We are now in a completely consistent state
  3107. * which doesn't have anything in the journal, and we know that
  3108. * no filesystem updates are running, so it is safe to modify
  3109. * the inode's in-core data-journaling state flag now.
  3110. */
  3111. if (val)
  3112. EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
  3113. else
  3114. EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
  3115. ext3_set_aops(inode);
  3116. journal_unlock_updates(journal);
  3117. /* Finally we can mark the inode as dirty. */
  3118. handle = ext3_journal_start(inode, 1);
  3119. if (IS_ERR(handle))
  3120. return PTR_ERR(handle);
  3121. err = ext3_mark_inode_dirty(handle, inode);
  3122. handle->h_sync = 1;
  3123. ext3_journal_stop(handle);
  3124. ext3_std_error(inode->i_sb, err);
  3125. return err;
  3126. }