slab.c 118 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564
  1. /*
  2. * linux/mm/slab.c
  3. * Written by Mark Hemment, 1996/97.
  4. * (markhe@nextd.demon.co.uk)
  5. *
  6. * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
  7. *
  8. * Major cleanup, different bufctl logic, per-cpu arrays
  9. * (c) 2000 Manfred Spraul
  10. *
  11. * Cleanup, make the head arrays unconditional, preparation for NUMA
  12. * (c) 2002 Manfred Spraul
  13. *
  14. * An implementation of the Slab Allocator as described in outline in;
  15. * UNIX Internals: The New Frontiers by Uresh Vahalia
  16. * Pub: Prentice Hall ISBN 0-13-101908-2
  17. * or with a little more detail in;
  18. * The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19. * Jeff Bonwick (Sun Microsystems).
  20. * Presented at: USENIX Summer 1994 Technical Conference
  21. *
  22. * The memory is organized in caches, one cache for each object type.
  23. * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24. * Each cache consists out of many slabs (they are small (usually one
  25. * page long) and always contiguous), and each slab contains multiple
  26. * initialized objects.
  27. *
  28. * This means, that your constructor is used only for newly allocated
  29. * slabs and you must pass objects with the same initializations to
  30. * kmem_cache_free.
  31. *
  32. * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33. * normal). If you need a special memory type, then must create a new
  34. * cache for that memory type.
  35. *
  36. * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37. * full slabs with 0 free objects
  38. * partial slabs
  39. * empty slabs with no allocated objects
  40. *
  41. * If partial slabs exist, then new allocations come from these slabs,
  42. * otherwise from empty slabs or new slabs are allocated.
  43. *
  44. * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45. * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46. *
  47. * Each cache has a short per-cpu head array, most allocs
  48. * and frees go into that array, and if that array overflows, then 1/2
  49. * of the entries in the array are given back into the global cache.
  50. * The head array is strictly LIFO and should improve the cache hit rates.
  51. * On SMP, it additionally reduces the spinlock operations.
  52. *
  53. * The c_cpuarray may not be read with enabled local interrupts -
  54. * it's changed with a smp_call_function().
  55. *
  56. * SMP synchronization:
  57. * constructors and destructors are called without any locking.
  58. * Several members in struct kmem_cache and struct slab never change, they
  59. * are accessed without any locking.
  60. * The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61. * and local interrupts are disabled so slab code is preempt-safe.
  62. * The non-constant members are protected with a per-cache irq spinlock.
  63. *
  64. * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65. * in 2000 - many ideas in the current implementation are derived from
  66. * his patch.
  67. *
  68. * Further notes from the original documentation:
  69. *
  70. * 11 April '97. Started multi-threading - markhe
  71. * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  72. * The sem is only needed when accessing/extending the cache-chain, which
  73. * can never happen inside an interrupt (kmem_cache_create(),
  74. * kmem_cache_shrink() and kmem_cache_reap()).
  75. *
  76. * At present, each engine can be growing a cache. This should be blocked.
  77. *
  78. * 15 March 2005. NUMA slab allocator.
  79. * Shai Fultheim <shai@scalex86.org>.
  80. * Shobhit Dayal <shobhit@calsoftinc.com>
  81. * Alok N Kataria <alokk@calsoftinc.com>
  82. * Christoph Lameter <christoph@lameter.com>
  83. *
  84. * Modified the slab allocator to be node aware on NUMA systems.
  85. * Each node has its own list of partial, free and full slabs.
  86. * All object allocations for a node occur from node specific slab lists.
  87. */
  88. #include <linux/slab.h>
  89. #include <linux/mm.h>
  90. #include <linux/poison.h>
  91. #include <linux/swap.h>
  92. #include <linux/cache.h>
  93. #include <linux/interrupt.h>
  94. #include <linux/init.h>
  95. #include <linux/compiler.h>
  96. #include <linux/cpuset.h>
  97. #include <linux/proc_fs.h>
  98. #include <linux/seq_file.h>
  99. #include <linux/notifier.h>
  100. #include <linux/kallsyms.h>
  101. #include <linux/cpu.h>
  102. #include <linux/sysctl.h>
  103. #include <linux/module.h>
  104. #include <linux/rcupdate.h>
  105. #include <linux/string.h>
  106. #include <linux/uaccess.h>
  107. #include <linux/nodemask.h>
  108. #include <linux/kmemleak.h>
  109. #include <linux/mempolicy.h>
  110. #include <linux/mutex.h>
  111. #include <linux/fault-inject.h>
  112. #include <linux/rtmutex.h>
  113. #include <linux/reciprocal_div.h>
  114. #include <linux/debugobjects.h>
  115. #include <linux/kmemcheck.h>
  116. #include <linux/memory.h>
  117. #include <linux/prefetch.h>
  118. #include <asm/cacheflush.h>
  119. #include <asm/tlbflush.h>
  120. #include <asm/page.h>
  121. /*
  122. * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
  123. * 0 for faster, smaller code (especially in the critical paths).
  124. *
  125. * STATS - 1 to collect stats for /proc/slabinfo.
  126. * 0 for faster, smaller code (especially in the critical paths).
  127. *
  128. * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
  129. */
  130. #ifdef CONFIG_DEBUG_SLAB
  131. #define DEBUG 1
  132. #define STATS 1
  133. #define FORCED_DEBUG 1
  134. #else
  135. #define DEBUG 0
  136. #define STATS 0
  137. #define FORCED_DEBUG 0
  138. #endif
  139. /* Shouldn't this be in a header file somewhere? */
  140. #define BYTES_PER_WORD sizeof(void *)
  141. #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
  142. #ifndef ARCH_KMALLOC_FLAGS
  143. #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
  144. #endif
  145. /* Legal flag mask for kmem_cache_create(). */
  146. #if DEBUG
  147. # define CREATE_MASK (SLAB_RED_ZONE | \
  148. SLAB_POISON | SLAB_HWCACHE_ALIGN | \
  149. SLAB_CACHE_DMA | \
  150. SLAB_STORE_USER | \
  151. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  152. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
  153. SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
  154. #else
  155. # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
  156. SLAB_CACHE_DMA | \
  157. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  158. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
  159. SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
  160. #endif
  161. /*
  162. * kmem_bufctl_t:
  163. *
  164. * Bufctl's are used for linking objs within a slab
  165. * linked offsets.
  166. *
  167. * This implementation relies on "struct page" for locating the cache &
  168. * slab an object belongs to.
  169. * This allows the bufctl structure to be small (one int), but limits
  170. * the number of objects a slab (not a cache) can contain when off-slab
  171. * bufctls are used. The limit is the size of the largest general cache
  172. * that does not use off-slab slabs.
  173. * For 32bit archs with 4 kB pages, is this 56.
  174. * This is not serious, as it is only for large objects, when it is unwise
  175. * to have too many per slab.
  176. * Note: This limit can be raised by introducing a general cache whose size
  177. * is less than 512 (PAGE_SIZE<<3), but greater than 256.
  178. */
  179. typedef unsigned int kmem_bufctl_t;
  180. #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
  181. #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
  182. #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
  183. #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
  184. /*
  185. * struct slab_rcu
  186. *
  187. * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
  188. * arrange for kmem_freepages to be called via RCU. This is useful if
  189. * we need to approach a kernel structure obliquely, from its address
  190. * obtained without the usual locking. We can lock the structure to
  191. * stabilize it and check it's still at the given address, only if we
  192. * can be sure that the memory has not been meanwhile reused for some
  193. * other kind of object (which our subsystem's lock might corrupt).
  194. *
  195. * rcu_read_lock before reading the address, then rcu_read_unlock after
  196. * taking the spinlock within the structure expected at that address.
  197. */
  198. struct slab_rcu {
  199. struct rcu_head head;
  200. struct kmem_cache *cachep;
  201. void *addr;
  202. };
  203. /*
  204. * struct slab
  205. *
  206. * Manages the objs in a slab. Placed either at the beginning of mem allocated
  207. * for a slab, or allocated from an general cache.
  208. * Slabs are chained into three list: fully used, partial, fully free slabs.
  209. */
  210. struct slab {
  211. union {
  212. struct {
  213. struct list_head list;
  214. unsigned long colouroff;
  215. void *s_mem; /* including colour offset */
  216. unsigned int inuse; /* num of objs active in slab */
  217. kmem_bufctl_t free;
  218. unsigned short nodeid;
  219. };
  220. struct slab_rcu __slab_cover_slab_rcu;
  221. };
  222. };
  223. /*
  224. * struct array_cache
  225. *
  226. * Purpose:
  227. * - LIFO ordering, to hand out cache-warm objects from _alloc
  228. * - reduce the number of linked list operations
  229. * - reduce spinlock operations
  230. *
  231. * The limit is stored in the per-cpu structure to reduce the data cache
  232. * footprint.
  233. *
  234. */
  235. struct array_cache {
  236. unsigned int avail;
  237. unsigned int limit;
  238. unsigned int batchcount;
  239. unsigned int touched;
  240. spinlock_t lock;
  241. void *entry[]; /*
  242. * Must have this definition in here for the proper
  243. * alignment of array_cache. Also simplifies accessing
  244. * the entries.
  245. */
  246. };
  247. /*
  248. * bootstrap: The caches do not work without cpuarrays anymore, but the
  249. * cpuarrays are allocated from the generic caches...
  250. */
  251. #define BOOT_CPUCACHE_ENTRIES 1
  252. struct arraycache_init {
  253. struct array_cache cache;
  254. void *entries[BOOT_CPUCACHE_ENTRIES];
  255. };
  256. /*
  257. * The slab lists for all objects.
  258. */
  259. struct kmem_list3 {
  260. struct list_head slabs_partial; /* partial list first, better asm code */
  261. struct list_head slabs_full;
  262. struct list_head slabs_free;
  263. unsigned long free_objects;
  264. unsigned int free_limit;
  265. unsigned int colour_next; /* Per-node cache coloring */
  266. spinlock_t list_lock;
  267. struct array_cache *shared; /* shared per node */
  268. struct array_cache **alien; /* on other nodes */
  269. unsigned long next_reap; /* updated without locking */
  270. int free_touched; /* updated without locking */
  271. };
  272. /*
  273. * Need this for bootstrapping a per node allocator.
  274. */
  275. #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
  276. static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
  277. #define CACHE_CACHE 0
  278. #define SIZE_AC MAX_NUMNODES
  279. #define SIZE_L3 (2 * MAX_NUMNODES)
  280. static int drain_freelist(struct kmem_cache *cache,
  281. struct kmem_list3 *l3, int tofree);
  282. static void free_block(struct kmem_cache *cachep, void **objpp, int len,
  283. int node);
  284. static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
  285. static void cache_reap(struct work_struct *unused);
  286. /*
  287. * This function must be completely optimized away if a constant is passed to
  288. * it. Mostly the same as what is in linux/slab.h except it returns an index.
  289. */
  290. static __always_inline int index_of(const size_t size)
  291. {
  292. extern void __bad_size(void);
  293. if (__builtin_constant_p(size)) {
  294. int i = 0;
  295. #define CACHE(x) \
  296. if (size <=x) \
  297. return i; \
  298. else \
  299. i++;
  300. #include <linux/kmalloc_sizes.h>
  301. #undef CACHE
  302. __bad_size();
  303. } else
  304. __bad_size();
  305. return 0;
  306. }
  307. static int slab_early_init = 1;
  308. #define INDEX_AC index_of(sizeof(struct arraycache_init))
  309. #define INDEX_L3 index_of(sizeof(struct kmem_list3))
  310. static void kmem_list3_init(struct kmem_list3 *parent)
  311. {
  312. INIT_LIST_HEAD(&parent->slabs_full);
  313. INIT_LIST_HEAD(&parent->slabs_partial);
  314. INIT_LIST_HEAD(&parent->slabs_free);
  315. parent->shared = NULL;
  316. parent->alien = NULL;
  317. parent->colour_next = 0;
  318. spin_lock_init(&parent->list_lock);
  319. parent->free_objects = 0;
  320. parent->free_touched = 0;
  321. }
  322. #define MAKE_LIST(cachep, listp, slab, nodeid) \
  323. do { \
  324. INIT_LIST_HEAD(listp); \
  325. list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
  326. } while (0)
  327. #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
  328. do { \
  329. MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
  330. MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
  331. MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
  332. } while (0)
  333. #define CFLGS_OFF_SLAB (0x80000000UL)
  334. #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
  335. #define BATCHREFILL_LIMIT 16
  336. /*
  337. * Optimization question: fewer reaps means less probability for unnessary
  338. * cpucache drain/refill cycles.
  339. *
  340. * OTOH the cpuarrays can contain lots of objects,
  341. * which could lock up otherwise freeable slabs.
  342. */
  343. #define REAPTIMEOUT_CPUC (2*HZ)
  344. #define REAPTIMEOUT_LIST3 (4*HZ)
  345. #if STATS
  346. #define STATS_INC_ACTIVE(x) ((x)->num_active++)
  347. #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
  348. #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
  349. #define STATS_INC_GROWN(x) ((x)->grown++)
  350. #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
  351. #define STATS_SET_HIGH(x) \
  352. do { \
  353. if ((x)->num_active > (x)->high_mark) \
  354. (x)->high_mark = (x)->num_active; \
  355. } while (0)
  356. #define STATS_INC_ERR(x) ((x)->errors++)
  357. #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
  358. #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
  359. #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
  360. #define STATS_SET_FREEABLE(x, i) \
  361. do { \
  362. if ((x)->max_freeable < i) \
  363. (x)->max_freeable = i; \
  364. } while (0)
  365. #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
  366. #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
  367. #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
  368. #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
  369. #else
  370. #define STATS_INC_ACTIVE(x) do { } while (0)
  371. #define STATS_DEC_ACTIVE(x) do { } while (0)
  372. #define STATS_INC_ALLOCED(x) do { } while (0)
  373. #define STATS_INC_GROWN(x) do { } while (0)
  374. #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
  375. #define STATS_SET_HIGH(x) do { } while (0)
  376. #define STATS_INC_ERR(x) do { } while (0)
  377. #define STATS_INC_NODEALLOCS(x) do { } while (0)
  378. #define STATS_INC_NODEFREES(x) do { } while (0)
  379. #define STATS_INC_ACOVERFLOW(x) do { } while (0)
  380. #define STATS_SET_FREEABLE(x, i) do { } while (0)
  381. #define STATS_INC_ALLOCHIT(x) do { } while (0)
  382. #define STATS_INC_ALLOCMISS(x) do { } while (0)
  383. #define STATS_INC_FREEHIT(x) do { } while (0)
  384. #define STATS_INC_FREEMISS(x) do { } while (0)
  385. #endif
  386. #if DEBUG
  387. /*
  388. * memory layout of objects:
  389. * 0 : objp
  390. * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
  391. * the end of an object is aligned with the end of the real
  392. * allocation. Catches writes behind the end of the allocation.
  393. * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
  394. * redzone word.
  395. * cachep->obj_offset: The real object.
  396. * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
  397. * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
  398. * [BYTES_PER_WORD long]
  399. */
  400. static int obj_offset(struct kmem_cache *cachep)
  401. {
  402. return cachep->obj_offset;
  403. }
  404. static int obj_size(struct kmem_cache *cachep)
  405. {
  406. return cachep->obj_size;
  407. }
  408. static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
  409. {
  410. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  411. return (unsigned long long*) (objp + obj_offset(cachep) -
  412. sizeof(unsigned long long));
  413. }
  414. static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
  415. {
  416. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  417. if (cachep->flags & SLAB_STORE_USER)
  418. return (unsigned long long *)(objp + cachep->buffer_size -
  419. sizeof(unsigned long long) -
  420. REDZONE_ALIGN);
  421. return (unsigned long long *) (objp + cachep->buffer_size -
  422. sizeof(unsigned long long));
  423. }
  424. static void **dbg_userword(struct kmem_cache *cachep, void *objp)
  425. {
  426. BUG_ON(!(cachep->flags & SLAB_STORE_USER));
  427. return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
  428. }
  429. #else
  430. #define obj_offset(x) 0
  431. #define obj_size(cachep) (cachep->buffer_size)
  432. #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
  433. #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
  434. #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
  435. #endif
  436. #ifdef CONFIG_TRACING
  437. size_t slab_buffer_size(struct kmem_cache *cachep)
  438. {
  439. return cachep->buffer_size;
  440. }
  441. EXPORT_SYMBOL(slab_buffer_size);
  442. #endif
  443. /*
  444. * Do not go above this order unless 0 objects fit into the slab.
  445. */
  446. #define BREAK_GFP_ORDER_HI 1
  447. #define BREAK_GFP_ORDER_LO 0
  448. static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
  449. /*
  450. * Functions for storing/retrieving the cachep and or slab from the page
  451. * allocator. These are used to find the slab an obj belongs to. With kfree(),
  452. * these are used to find the cache which an obj belongs to.
  453. */
  454. static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
  455. {
  456. page->lru.next = (struct list_head *)cache;
  457. }
  458. static inline struct kmem_cache *page_get_cache(struct page *page)
  459. {
  460. page = compound_head(page);
  461. BUG_ON(!PageSlab(page));
  462. return (struct kmem_cache *)page->lru.next;
  463. }
  464. static inline void page_set_slab(struct page *page, struct slab *slab)
  465. {
  466. page->lru.prev = (struct list_head *)slab;
  467. }
  468. static inline struct slab *page_get_slab(struct page *page)
  469. {
  470. BUG_ON(!PageSlab(page));
  471. return (struct slab *)page->lru.prev;
  472. }
  473. static inline struct kmem_cache *virt_to_cache(const void *obj)
  474. {
  475. struct page *page = virt_to_head_page(obj);
  476. return page_get_cache(page);
  477. }
  478. static inline struct slab *virt_to_slab(const void *obj)
  479. {
  480. struct page *page = virt_to_head_page(obj);
  481. return page_get_slab(page);
  482. }
  483. static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
  484. unsigned int idx)
  485. {
  486. return slab->s_mem + cache->buffer_size * idx;
  487. }
  488. /*
  489. * We want to avoid an expensive divide : (offset / cache->buffer_size)
  490. * Using the fact that buffer_size is a constant for a particular cache,
  491. * we can replace (offset / cache->buffer_size) by
  492. * reciprocal_divide(offset, cache->reciprocal_buffer_size)
  493. */
  494. static inline unsigned int obj_to_index(const struct kmem_cache *cache,
  495. const struct slab *slab, void *obj)
  496. {
  497. u32 offset = (obj - slab->s_mem);
  498. return reciprocal_divide(offset, cache->reciprocal_buffer_size);
  499. }
  500. /*
  501. * These are the default caches for kmalloc. Custom caches can have other sizes.
  502. */
  503. struct cache_sizes malloc_sizes[] = {
  504. #define CACHE(x) { .cs_size = (x) },
  505. #include <linux/kmalloc_sizes.h>
  506. CACHE(ULONG_MAX)
  507. #undef CACHE
  508. };
  509. EXPORT_SYMBOL(malloc_sizes);
  510. /* Must match cache_sizes above. Out of line to keep cache footprint low. */
  511. struct cache_names {
  512. char *name;
  513. char *name_dma;
  514. };
  515. static struct cache_names __initdata cache_names[] = {
  516. #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
  517. #include <linux/kmalloc_sizes.h>
  518. {NULL,}
  519. #undef CACHE
  520. };
  521. static struct arraycache_init initarray_cache __initdata =
  522. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  523. static struct arraycache_init initarray_generic =
  524. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  525. /* internal cache of cache description objs */
  526. static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES];
  527. static struct kmem_cache cache_cache = {
  528. .nodelists = cache_cache_nodelists,
  529. .batchcount = 1,
  530. .limit = BOOT_CPUCACHE_ENTRIES,
  531. .shared = 1,
  532. .buffer_size = sizeof(struct kmem_cache),
  533. .name = "kmem_cache",
  534. };
  535. #define BAD_ALIEN_MAGIC 0x01020304ul
  536. /*
  537. * chicken and egg problem: delay the per-cpu array allocation
  538. * until the general caches are up.
  539. */
  540. static enum {
  541. NONE,
  542. PARTIAL_AC,
  543. PARTIAL_L3,
  544. EARLY,
  545. FULL
  546. } g_cpucache_up;
  547. /*
  548. * used by boot code to determine if it can use slab based allocator
  549. */
  550. int slab_is_available(void)
  551. {
  552. return g_cpucache_up >= EARLY;
  553. }
  554. #ifdef CONFIG_LOCKDEP
  555. /*
  556. * Slab sometimes uses the kmalloc slabs to store the slab headers
  557. * for other slabs "off slab".
  558. * The locking for this is tricky in that it nests within the locks
  559. * of all other slabs in a few places; to deal with this special
  560. * locking we put on-slab caches into a separate lock-class.
  561. *
  562. * We set lock class for alien array caches which are up during init.
  563. * The lock annotation will be lost if all cpus of a node goes down and
  564. * then comes back up during hotplug
  565. */
  566. static struct lock_class_key on_slab_l3_key;
  567. static struct lock_class_key on_slab_alc_key;
  568. static void init_node_lock_keys(int q)
  569. {
  570. struct cache_sizes *s = malloc_sizes;
  571. if (g_cpucache_up != FULL)
  572. return;
  573. for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
  574. struct array_cache **alc;
  575. struct kmem_list3 *l3;
  576. int r;
  577. l3 = s->cs_cachep->nodelists[q];
  578. if (!l3 || OFF_SLAB(s->cs_cachep))
  579. continue;
  580. lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
  581. alc = l3->alien;
  582. /*
  583. * FIXME: This check for BAD_ALIEN_MAGIC
  584. * should go away when common slab code is taught to
  585. * work even without alien caches.
  586. * Currently, non NUMA code returns BAD_ALIEN_MAGIC
  587. * for alloc_alien_cache,
  588. */
  589. if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
  590. continue;
  591. for_each_node(r) {
  592. if (alc[r])
  593. lockdep_set_class(&alc[r]->lock,
  594. &on_slab_alc_key);
  595. }
  596. }
  597. }
  598. static inline void init_lock_keys(void)
  599. {
  600. int node;
  601. for_each_node(node)
  602. init_node_lock_keys(node);
  603. }
  604. #else
  605. static void init_node_lock_keys(int q)
  606. {
  607. }
  608. static inline void init_lock_keys(void)
  609. {
  610. }
  611. #endif
  612. /*
  613. * Guard access to the cache-chain.
  614. */
  615. static DEFINE_MUTEX(cache_chain_mutex);
  616. static struct list_head cache_chain;
  617. static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
  618. static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
  619. {
  620. return cachep->array[smp_processor_id()];
  621. }
  622. static inline struct kmem_cache *__find_general_cachep(size_t size,
  623. gfp_t gfpflags)
  624. {
  625. struct cache_sizes *csizep = malloc_sizes;
  626. #if DEBUG
  627. /* This happens if someone tries to call
  628. * kmem_cache_create(), or __kmalloc(), before
  629. * the generic caches are initialized.
  630. */
  631. BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
  632. #endif
  633. if (!size)
  634. return ZERO_SIZE_PTR;
  635. while (size > csizep->cs_size)
  636. csizep++;
  637. /*
  638. * Really subtle: The last entry with cs->cs_size==ULONG_MAX
  639. * has cs_{dma,}cachep==NULL. Thus no special case
  640. * for large kmalloc calls required.
  641. */
  642. #ifdef CONFIG_ZONE_DMA
  643. if (unlikely(gfpflags & GFP_DMA))
  644. return csizep->cs_dmacachep;
  645. #endif
  646. return csizep->cs_cachep;
  647. }
  648. static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
  649. {
  650. return __find_general_cachep(size, gfpflags);
  651. }
  652. static size_t slab_mgmt_size(size_t nr_objs, size_t align)
  653. {
  654. return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
  655. }
  656. /*
  657. * Calculate the number of objects and left-over bytes for a given buffer size.
  658. */
  659. static void cache_estimate(unsigned long gfporder, size_t buffer_size,
  660. size_t align, int flags, size_t *left_over,
  661. unsigned int *num)
  662. {
  663. int nr_objs;
  664. size_t mgmt_size;
  665. size_t slab_size = PAGE_SIZE << gfporder;
  666. /*
  667. * The slab management structure can be either off the slab or
  668. * on it. For the latter case, the memory allocated for a
  669. * slab is used for:
  670. *
  671. * - The struct slab
  672. * - One kmem_bufctl_t for each object
  673. * - Padding to respect alignment of @align
  674. * - @buffer_size bytes for each object
  675. *
  676. * If the slab management structure is off the slab, then the
  677. * alignment will already be calculated into the size. Because
  678. * the slabs are all pages aligned, the objects will be at the
  679. * correct alignment when allocated.
  680. */
  681. if (flags & CFLGS_OFF_SLAB) {
  682. mgmt_size = 0;
  683. nr_objs = slab_size / buffer_size;
  684. if (nr_objs > SLAB_LIMIT)
  685. nr_objs = SLAB_LIMIT;
  686. } else {
  687. /*
  688. * Ignore padding for the initial guess. The padding
  689. * is at most @align-1 bytes, and @buffer_size is at
  690. * least @align. In the worst case, this result will
  691. * be one greater than the number of objects that fit
  692. * into the memory allocation when taking the padding
  693. * into account.
  694. */
  695. nr_objs = (slab_size - sizeof(struct slab)) /
  696. (buffer_size + sizeof(kmem_bufctl_t));
  697. /*
  698. * This calculated number will be either the right
  699. * amount, or one greater than what we want.
  700. */
  701. if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
  702. > slab_size)
  703. nr_objs--;
  704. if (nr_objs > SLAB_LIMIT)
  705. nr_objs = SLAB_LIMIT;
  706. mgmt_size = slab_mgmt_size(nr_objs, align);
  707. }
  708. *num = nr_objs;
  709. *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
  710. }
  711. #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
  712. static void __slab_error(const char *function, struct kmem_cache *cachep,
  713. char *msg)
  714. {
  715. printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
  716. function, cachep->name, msg);
  717. dump_stack();
  718. }
  719. /*
  720. * By default on NUMA we use alien caches to stage the freeing of
  721. * objects allocated from other nodes. This causes massive memory
  722. * inefficiencies when using fake NUMA setup to split memory into a
  723. * large number of small nodes, so it can be disabled on the command
  724. * line
  725. */
  726. static int use_alien_caches __read_mostly = 1;
  727. static int __init noaliencache_setup(char *s)
  728. {
  729. use_alien_caches = 0;
  730. return 1;
  731. }
  732. __setup("noaliencache", noaliencache_setup);
  733. #ifdef CONFIG_NUMA
  734. /*
  735. * Special reaping functions for NUMA systems called from cache_reap().
  736. * These take care of doing round robin flushing of alien caches (containing
  737. * objects freed on different nodes from which they were allocated) and the
  738. * flushing of remote pcps by calling drain_node_pages.
  739. */
  740. static DEFINE_PER_CPU(unsigned long, slab_reap_node);
  741. static void init_reap_node(int cpu)
  742. {
  743. int node;
  744. node = next_node(cpu_to_mem(cpu), node_online_map);
  745. if (node == MAX_NUMNODES)
  746. node = first_node(node_online_map);
  747. per_cpu(slab_reap_node, cpu) = node;
  748. }
  749. static void next_reap_node(void)
  750. {
  751. int node = __this_cpu_read(slab_reap_node);
  752. node = next_node(node, node_online_map);
  753. if (unlikely(node >= MAX_NUMNODES))
  754. node = first_node(node_online_map);
  755. __this_cpu_write(slab_reap_node, node);
  756. }
  757. #else
  758. #define init_reap_node(cpu) do { } while (0)
  759. #define next_reap_node(void) do { } while (0)
  760. #endif
  761. /*
  762. * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
  763. * via the workqueue/eventd.
  764. * Add the CPU number into the expiration time to minimize the possibility of
  765. * the CPUs getting into lockstep and contending for the global cache chain
  766. * lock.
  767. */
  768. static void __cpuinit start_cpu_timer(int cpu)
  769. {
  770. struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
  771. /*
  772. * When this gets called from do_initcalls via cpucache_init(),
  773. * init_workqueues() has already run, so keventd will be setup
  774. * at that time.
  775. */
  776. if (keventd_up() && reap_work->work.func == NULL) {
  777. init_reap_node(cpu);
  778. INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
  779. schedule_delayed_work_on(cpu, reap_work,
  780. __round_jiffies_relative(HZ, cpu));
  781. }
  782. }
  783. static struct array_cache *alloc_arraycache(int node, int entries,
  784. int batchcount, gfp_t gfp)
  785. {
  786. int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
  787. struct array_cache *nc = NULL;
  788. nc = kmalloc_node(memsize, gfp, node);
  789. /*
  790. * The array_cache structures contain pointers to free object.
  791. * However, when such objects are allocated or transferred to another
  792. * cache the pointers are not cleared and they could be counted as
  793. * valid references during a kmemleak scan. Therefore, kmemleak must
  794. * not scan such objects.
  795. */
  796. kmemleak_no_scan(nc);
  797. if (nc) {
  798. nc->avail = 0;
  799. nc->limit = entries;
  800. nc->batchcount = batchcount;
  801. nc->touched = 0;
  802. spin_lock_init(&nc->lock);
  803. }
  804. return nc;
  805. }
  806. /*
  807. * Transfer objects in one arraycache to another.
  808. * Locking must be handled by the caller.
  809. *
  810. * Return the number of entries transferred.
  811. */
  812. static int transfer_objects(struct array_cache *to,
  813. struct array_cache *from, unsigned int max)
  814. {
  815. /* Figure out how many entries to transfer */
  816. int nr = min3(from->avail, max, to->limit - to->avail);
  817. if (!nr)
  818. return 0;
  819. memcpy(to->entry + to->avail, from->entry + from->avail -nr,
  820. sizeof(void *) *nr);
  821. from->avail -= nr;
  822. to->avail += nr;
  823. return nr;
  824. }
  825. #ifndef CONFIG_NUMA
  826. #define drain_alien_cache(cachep, alien) do { } while (0)
  827. #define reap_alien(cachep, l3) do { } while (0)
  828. static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
  829. {
  830. return (struct array_cache **)BAD_ALIEN_MAGIC;
  831. }
  832. static inline void free_alien_cache(struct array_cache **ac_ptr)
  833. {
  834. }
  835. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  836. {
  837. return 0;
  838. }
  839. static inline void *alternate_node_alloc(struct kmem_cache *cachep,
  840. gfp_t flags)
  841. {
  842. return NULL;
  843. }
  844. static inline void *____cache_alloc_node(struct kmem_cache *cachep,
  845. gfp_t flags, int nodeid)
  846. {
  847. return NULL;
  848. }
  849. #else /* CONFIG_NUMA */
  850. static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
  851. static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
  852. static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
  853. {
  854. struct array_cache **ac_ptr;
  855. int memsize = sizeof(void *) * nr_node_ids;
  856. int i;
  857. if (limit > 1)
  858. limit = 12;
  859. ac_ptr = kzalloc_node(memsize, gfp, node);
  860. if (ac_ptr) {
  861. for_each_node(i) {
  862. if (i == node || !node_online(i))
  863. continue;
  864. ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
  865. if (!ac_ptr[i]) {
  866. for (i--; i >= 0; i--)
  867. kfree(ac_ptr[i]);
  868. kfree(ac_ptr);
  869. return NULL;
  870. }
  871. }
  872. }
  873. return ac_ptr;
  874. }
  875. static void free_alien_cache(struct array_cache **ac_ptr)
  876. {
  877. int i;
  878. if (!ac_ptr)
  879. return;
  880. for_each_node(i)
  881. kfree(ac_ptr[i]);
  882. kfree(ac_ptr);
  883. }
  884. static void __drain_alien_cache(struct kmem_cache *cachep,
  885. struct array_cache *ac, int node)
  886. {
  887. struct kmem_list3 *rl3 = cachep->nodelists[node];
  888. if (ac->avail) {
  889. spin_lock(&rl3->list_lock);
  890. /*
  891. * Stuff objects into the remote nodes shared array first.
  892. * That way we could avoid the overhead of putting the objects
  893. * into the free lists and getting them back later.
  894. */
  895. if (rl3->shared)
  896. transfer_objects(rl3->shared, ac, ac->limit);
  897. free_block(cachep, ac->entry, ac->avail, node);
  898. ac->avail = 0;
  899. spin_unlock(&rl3->list_lock);
  900. }
  901. }
  902. /*
  903. * Called from cache_reap() to regularly drain alien caches round robin.
  904. */
  905. static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
  906. {
  907. int node = __this_cpu_read(slab_reap_node);
  908. if (l3->alien) {
  909. struct array_cache *ac = l3->alien[node];
  910. if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
  911. __drain_alien_cache(cachep, ac, node);
  912. spin_unlock_irq(&ac->lock);
  913. }
  914. }
  915. }
  916. static void drain_alien_cache(struct kmem_cache *cachep,
  917. struct array_cache **alien)
  918. {
  919. int i = 0;
  920. struct array_cache *ac;
  921. unsigned long flags;
  922. for_each_online_node(i) {
  923. ac = alien[i];
  924. if (ac) {
  925. spin_lock_irqsave(&ac->lock, flags);
  926. __drain_alien_cache(cachep, ac, i);
  927. spin_unlock_irqrestore(&ac->lock, flags);
  928. }
  929. }
  930. }
  931. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  932. {
  933. struct slab *slabp = virt_to_slab(objp);
  934. int nodeid = slabp->nodeid;
  935. struct kmem_list3 *l3;
  936. struct array_cache *alien = NULL;
  937. int node;
  938. node = numa_mem_id();
  939. /*
  940. * Make sure we are not freeing a object from another node to the array
  941. * cache on this cpu.
  942. */
  943. if (likely(slabp->nodeid == node))
  944. return 0;
  945. l3 = cachep->nodelists[node];
  946. STATS_INC_NODEFREES(cachep);
  947. if (l3->alien && l3->alien[nodeid]) {
  948. alien = l3->alien[nodeid];
  949. spin_lock(&alien->lock);
  950. if (unlikely(alien->avail == alien->limit)) {
  951. STATS_INC_ACOVERFLOW(cachep);
  952. __drain_alien_cache(cachep, alien, nodeid);
  953. }
  954. alien->entry[alien->avail++] = objp;
  955. spin_unlock(&alien->lock);
  956. } else {
  957. spin_lock(&(cachep->nodelists[nodeid])->list_lock);
  958. free_block(cachep, &objp, 1, nodeid);
  959. spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
  960. }
  961. return 1;
  962. }
  963. #endif
  964. /*
  965. * Allocates and initializes nodelists for a node on each slab cache, used for
  966. * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
  967. * will be allocated off-node since memory is not yet online for the new node.
  968. * When hotplugging memory or a cpu, existing nodelists are not replaced if
  969. * already in use.
  970. *
  971. * Must hold cache_chain_mutex.
  972. */
  973. static int init_cache_nodelists_node(int node)
  974. {
  975. struct kmem_cache *cachep;
  976. struct kmem_list3 *l3;
  977. const int memsize = sizeof(struct kmem_list3);
  978. list_for_each_entry(cachep, &cache_chain, next) {
  979. /*
  980. * Set up the size64 kmemlist for cpu before we can
  981. * begin anything. Make sure some other cpu on this
  982. * node has not already allocated this
  983. */
  984. if (!cachep->nodelists[node]) {
  985. l3 = kmalloc_node(memsize, GFP_KERNEL, node);
  986. if (!l3)
  987. return -ENOMEM;
  988. kmem_list3_init(l3);
  989. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  990. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  991. /*
  992. * The l3s don't come and go as CPUs come and
  993. * go. cache_chain_mutex is sufficient
  994. * protection here.
  995. */
  996. cachep->nodelists[node] = l3;
  997. }
  998. spin_lock_irq(&cachep->nodelists[node]->list_lock);
  999. cachep->nodelists[node]->free_limit =
  1000. (1 + nr_cpus_node(node)) *
  1001. cachep->batchcount + cachep->num;
  1002. spin_unlock_irq(&cachep->nodelists[node]->list_lock);
  1003. }
  1004. return 0;
  1005. }
  1006. static void __cpuinit cpuup_canceled(long cpu)
  1007. {
  1008. struct kmem_cache *cachep;
  1009. struct kmem_list3 *l3 = NULL;
  1010. int node = cpu_to_mem(cpu);
  1011. const struct cpumask *mask = cpumask_of_node(node);
  1012. list_for_each_entry(cachep, &cache_chain, next) {
  1013. struct array_cache *nc;
  1014. struct array_cache *shared;
  1015. struct array_cache **alien;
  1016. /* cpu is dead; no one can alloc from it. */
  1017. nc = cachep->array[cpu];
  1018. cachep->array[cpu] = NULL;
  1019. l3 = cachep->nodelists[node];
  1020. if (!l3)
  1021. goto free_array_cache;
  1022. spin_lock_irq(&l3->list_lock);
  1023. /* Free limit for this kmem_list3 */
  1024. l3->free_limit -= cachep->batchcount;
  1025. if (nc)
  1026. free_block(cachep, nc->entry, nc->avail, node);
  1027. if (!cpumask_empty(mask)) {
  1028. spin_unlock_irq(&l3->list_lock);
  1029. goto free_array_cache;
  1030. }
  1031. shared = l3->shared;
  1032. if (shared) {
  1033. free_block(cachep, shared->entry,
  1034. shared->avail, node);
  1035. l3->shared = NULL;
  1036. }
  1037. alien = l3->alien;
  1038. l3->alien = NULL;
  1039. spin_unlock_irq(&l3->list_lock);
  1040. kfree(shared);
  1041. if (alien) {
  1042. drain_alien_cache(cachep, alien);
  1043. free_alien_cache(alien);
  1044. }
  1045. free_array_cache:
  1046. kfree(nc);
  1047. }
  1048. /*
  1049. * In the previous loop, all the objects were freed to
  1050. * the respective cache's slabs, now we can go ahead and
  1051. * shrink each nodelist to its limit.
  1052. */
  1053. list_for_each_entry(cachep, &cache_chain, next) {
  1054. l3 = cachep->nodelists[node];
  1055. if (!l3)
  1056. continue;
  1057. drain_freelist(cachep, l3, l3->free_objects);
  1058. }
  1059. }
  1060. static int __cpuinit cpuup_prepare(long cpu)
  1061. {
  1062. struct kmem_cache *cachep;
  1063. struct kmem_list3 *l3 = NULL;
  1064. int node = cpu_to_mem(cpu);
  1065. int err;
  1066. /*
  1067. * We need to do this right in the beginning since
  1068. * alloc_arraycache's are going to use this list.
  1069. * kmalloc_node allows us to add the slab to the right
  1070. * kmem_list3 and not this cpu's kmem_list3
  1071. */
  1072. err = init_cache_nodelists_node(node);
  1073. if (err < 0)
  1074. goto bad;
  1075. /*
  1076. * Now we can go ahead with allocating the shared arrays and
  1077. * array caches
  1078. */
  1079. list_for_each_entry(cachep, &cache_chain, next) {
  1080. struct array_cache *nc;
  1081. struct array_cache *shared = NULL;
  1082. struct array_cache **alien = NULL;
  1083. nc = alloc_arraycache(node, cachep->limit,
  1084. cachep->batchcount, GFP_KERNEL);
  1085. if (!nc)
  1086. goto bad;
  1087. if (cachep->shared) {
  1088. shared = alloc_arraycache(node,
  1089. cachep->shared * cachep->batchcount,
  1090. 0xbaadf00d, GFP_KERNEL);
  1091. if (!shared) {
  1092. kfree(nc);
  1093. goto bad;
  1094. }
  1095. }
  1096. if (use_alien_caches) {
  1097. alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
  1098. if (!alien) {
  1099. kfree(shared);
  1100. kfree(nc);
  1101. goto bad;
  1102. }
  1103. }
  1104. cachep->array[cpu] = nc;
  1105. l3 = cachep->nodelists[node];
  1106. BUG_ON(!l3);
  1107. spin_lock_irq(&l3->list_lock);
  1108. if (!l3->shared) {
  1109. /*
  1110. * We are serialised from CPU_DEAD or
  1111. * CPU_UP_CANCELLED by the cpucontrol lock
  1112. */
  1113. l3->shared = shared;
  1114. shared = NULL;
  1115. }
  1116. #ifdef CONFIG_NUMA
  1117. if (!l3->alien) {
  1118. l3->alien = alien;
  1119. alien = NULL;
  1120. }
  1121. #endif
  1122. spin_unlock_irq(&l3->list_lock);
  1123. kfree(shared);
  1124. free_alien_cache(alien);
  1125. }
  1126. init_node_lock_keys(node);
  1127. return 0;
  1128. bad:
  1129. cpuup_canceled(cpu);
  1130. return -ENOMEM;
  1131. }
  1132. static int __cpuinit cpuup_callback(struct notifier_block *nfb,
  1133. unsigned long action, void *hcpu)
  1134. {
  1135. long cpu = (long)hcpu;
  1136. int err = 0;
  1137. switch (action) {
  1138. case CPU_UP_PREPARE:
  1139. case CPU_UP_PREPARE_FROZEN:
  1140. mutex_lock(&cache_chain_mutex);
  1141. err = cpuup_prepare(cpu);
  1142. mutex_unlock(&cache_chain_mutex);
  1143. break;
  1144. case CPU_ONLINE:
  1145. case CPU_ONLINE_FROZEN:
  1146. start_cpu_timer(cpu);
  1147. break;
  1148. #ifdef CONFIG_HOTPLUG_CPU
  1149. case CPU_DOWN_PREPARE:
  1150. case CPU_DOWN_PREPARE_FROZEN:
  1151. /*
  1152. * Shutdown cache reaper. Note that the cache_chain_mutex is
  1153. * held so that if cache_reap() is invoked it cannot do
  1154. * anything expensive but will only modify reap_work
  1155. * and reschedule the timer.
  1156. */
  1157. cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
  1158. /* Now the cache_reaper is guaranteed to be not running. */
  1159. per_cpu(slab_reap_work, cpu).work.func = NULL;
  1160. break;
  1161. case CPU_DOWN_FAILED:
  1162. case CPU_DOWN_FAILED_FROZEN:
  1163. start_cpu_timer(cpu);
  1164. break;
  1165. case CPU_DEAD:
  1166. case CPU_DEAD_FROZEN:
  1167. /*
  1168. * Even if all the cpus of a node are down, we don't free the
  1169. * kmem_list3 of any cache. This to avoid a race between
  1170. * cpu_down, and a kmalloc allocation from another cpu for
  1171. * memory from the node of the cpu going down. The list3
  1172. * structure is usually allocated from kmem_cache_create() and
  1173. * gets destroyed at kmem_cache_destroy().
  1174. */
  1175. /* fall through */
  1176. #endif
  1177. case CPU_UP_CANCELED:
  1178. case CPU_UP_CANCELED_FROZEN:
  1179. mutex_lock(&cache_chain_mutex);
  1180. cpuup_canceled(cpu);
  1181. mutex_unlock(&cache_chain_mutex);
  1182. break;
  1183. }
  1184. return notifier_from_errno(err);
  1185. }
  1186. static struct notifier_block __cpuinitdata cpucache_notifier = {
  1187. &cpuup_callback, NULL, 0
  1188. };
  1189. #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
  1190. /*
  1191. * Drains freelist for a node on each slab cache, used for memory hot-remove.
  1192. * Returns -EBUSY if all objects cannot be drained so that the node is not
  1193. * removed.
  1194. *
  1195. * Must hold cache_chain_mutex.
  1196. */
  1197. static int __meminit drain_cache_nodelists_node(int node)
  1198. {
  1199. struct kmem_cache *cachep;
  1200. int ret = 0;
  1201. list_for_each_entry(cachep, &cache_chain, next) {
  1202. struct kmem_list3 *l3;
  1203. l3 = cachep->nodelists[node];
  1204. if (!l3)
  1205. continue;
  1206. drain_freelist(cachep, l3, l3->free_objects);
  1207. if (!list_empty(&l3->slabs_full) ||
  1208. !list_empty(&l3->slabs_partial)) {
  1209. ret = -EBUSY;
  1210. break;
  1211. }
  1212. }
  1213. return ret;
  1214. }
  1215. static int __meminit slab_memory_callback(struct notifier_block *self,
  1216. unsigned long action, void *arg)
  1217. {
  1218. struct memory_notify *mnb = arg;
  1219. int ret = 0;
  1220. int nid;
  1221. nid = mnb->status_change_nid;
  1222. if (nid < 0)
  1223. goto out;
  1224. switch (action) {
  1225. case MEM_GOING_ONLINE:
  1226. mutex_lock(&cache_chain_mutex);
  1227. ret = init_cache_nodelists_node(nid);
  1228. mutex_unlock(&cache_chain_mutex);
  1229. break;
  1230. case MEM_GOING_OFFLINE:
  1231. mutex_lock(&cache_chain_mutex);
  1232. ret = drain_cache_nodelists_node(nid);
  1233. mutex_unlock(&cache_chain_mutex);
  1234. break;
  1235. case MEM_ONLINE:
  1236. case MEM_OFFLINE:
  1237. case MEM_CANCEL_ONLINE:
  1238. case MEM_CANCEL_OFFLINE:
  1239. break;
  1240. }
  1241. out:
  1242. return notifier_from_errno(ret);
  1243. }
  1244. #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
  1245. /*
  1246. * swap the static kmem_list3 with kmalloced memory
  1247. */
  1248. static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
  1249. int nodeid)
  1250. {
  1251. struct kmem_list3 *ptr;
  1252. ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
  1253. BUG_ON(!ptr);
  1254. memcpy(ptr, list, sizeof(struct kmem_list3));
  1255. /*
  1256. * Do not assume that spinlocks can be initialized via memcpy:
  1257. */
  1258. spin_lock_init(&ptr->list_lock);
  1259. MAKE_ALL_LISTS(cachep, ptr, nodeid);
  1260. cachep->nodelists[nodeid] = ptr;
  1261. }
  1262. /*
  1263. * For setting up all the kmem_list3s for cache whose buffer_size is same as
  1264. * size of kmem_list3.
  1265. */
  1266. static void __init set_up_list3s(struct kmem_cache *cachep, int index)
  1267. {
  1268. int node;
  1269. for_each_online_node(node) {
  1270. cachep->nodelists[node] = &initkmem_list3[index + node];
  1271. cachep->nodelists[node]->next_reap = jiffies +
  1272. REAPTIMEOUT_LIST3 +
  1273. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1274. }
  1275. }
  1276. /*
  1277. * Initialisation. Called after the page allocator have been initialised and
  1278. * before smp_init().
  1279. */
  1280. void __init kmem_cache_init(void)
  1281. {
  1282. size_t left_over;
  1283. struct cache_sizes *sizes;
  1284. struct cache_names *names;
  1285. int i;
  1286. int order;
  1287. int node;
  1288. if (num_possible_nodes() == 1)
  1289. use_alien_caches = 0;
  1290. for (i = 0; i < NUM_INIT_LISTS; i++) {
  1291. kmem_list3_init(&initkmem_list3[i]);
  1292. if (i < MAX_NUMNODES)
  1293. cache_cache.nodelists[i] = NULL;
  1294. }
  1295. set_up_list3s(&cache_cache, CACHE_CACHE);
  1296. /*
  1297. * Fragmentation resistance on low memory - only use bigger
  1298. * page orders on machines with more than 32MB of memory.
  1299. */
  1300. if (totalram_pages > (32 << 20) >> PAGE_SHIFT)
  1301. slab_break_gfp_order = BREAK_GFP_ORDER_HI;
  1302. /* Bootstrap is tricky, because several objects are allocated
  1303. * from caches that do not exist yet:
  1304. * 1) initialize the cache_cache cache: it contains the struct
  1305. * kmem_cache structures of all caches, except cache_cache itself:
  1306. * cache_cache is statically allocated.
  1307. * Initially an __init data area is used for the head array and the
  1308. * kmem_list3 structures, it's replaced with a kmalloc allocated
  1309. * array at the end of the bootstrap.
  1310. * 2) Create the first kmalloc cache.
  1311. * The struct kmem_cache for the new cache is allocated normally.
  1312. * An __init data area is used for the head array.
  1313. * 3) Create the remaining kmalloc caches, with minimally sized
  1314. * head arrays.
  1315. * 4) Replace the __init data head arrays for cache_cache and the first
  1316. * kmalloc cache with kmalloc allocated arrays.
  1317. * 5) Replace the __init data for kmem_list3 for cache_cache and
  1318. * the other cache's with kmalloc allocated memory.
  1319. * 6) Resize the head arrays of the kmalloc caches to their final sizes.
  1320. */
  1321. node = numa_mem_id();
  1322. /* 1) create the cache_cache */
  1323. INIT_LIST_HEAD(&cache_chain);
  1324. list_add(&cache_cache.next, &cache_chain);
  1325. cache_cache.colour_off = cache_line_size();
  1326. cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
  1327. cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
  1328. /*
  1329. * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
  1330. */
  1331. cache_cache.buffer_size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
  1332. nr_node_ids * sizeof(struct kmem_list3 *);
  1333. #if DEBUG
  1334. cache_cache.obj_size = cache_cache.buffer_size;
  1335. #endif
  1336. cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
  1337. cache_line_size());
  1338. cache_cache.reciprocal_buffer_size =
  1339. reciprocal_value(cache_cache.buffer_size);
  1340. for (order = 0; order < MAX_ORDER; order++) {
  1341. cache_estimate(order, cache_cache.buffer_size,
  1342. cache_line_size(), 0, &left_over, &cache_cache.num);
  1343. if (cache_cache.num)
  1344. break;
  1345. }
  1346. BUG_ON(!cache_cache.num);
  1347. cache_cache.gfporder = order;
  1348. cache_cache.colour = left_over / cache_cache.colour_off;
  1349. cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
  1350. sizeof(struct slab), cache_line_size());
  1351. /* 2+3) create the kmalloc caches */
  1352. sizes = malloc_sizes;
  1353. names = cache_names;
  1354. /*
  1355. * Initialize the caches that provide memory for the array cache and the
  1356. * kmem_list3 structures first. Without this, further allocations will
  1357. * bug.
  1358. */
  1359. sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
  1360. sizes[INDEX_AC].cs_size,
  1361. ARCH_KMALLOC_MINALIGN,
  1362. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1363. NULL);
  1364. if (INDEX_AC != INDEX_L3) {
  1365. sizes[INDEX_L3].cs_cachep =
  1366. kmem_cache_create(names[INDEX_L3].name,
  1367. sizes[INDEX_L3].cs_size,
  1368. ARCH_KMALLOC_MINALIGN,
  1369. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1370. NULL);
  1371. }
  1372. slab_early_init = 0;
  1373. while (sizes->cs_size != ULONG_MAX) {
  1374. /*
  1375. * For performance, all the general caches are L1 aligned.
  1376. * This should be particularly beneficial on SMP boxes, as it
  1377. * eliminates "false sharing".
  1378. * Note for systems short on memory removing the alignment will
  1379. * allow tighter packing of the smaller caches.
  1380. */
  1381. if (!sizes->cs_cachep) {
  1382. sizes->cs_cachep = kmem_cache_create(names->name,
  1383. sizes->cs_size,
  1384. ARCH_KMALLOC_MINALIGN,
  1385. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1386. NULL);
  1387. }
  1388. #ifdef CONFIG_ZONE_DMA
  1389. sizes->cs_dmacachep = kmem_cache_create(
  1390. names->name_dma,
  1391. sizes->cs_size,
  1392. ARCH_KMALLOC_MINALIGN,
  1393. ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
  1394. SLAB_PANIC,
  1395. NULL);
  1396. #endif
  1397. sizes++;
  1398. names++;
  1399. }
  1400. /* 4) Replace the bootstrap head arrays */
  1401. {
  1402. struct array_cache *ptr;
  1403. ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
  1404. BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
  1405. memcpy(ptr, cpu_cache_get(&cache_cache),
  1406. sizeof(struct arraycache_init));
  1407. /*
  1408. * Do not assume that spinlocks can be initialized via memcpy:
  1409. */
  1410. spin_lock_init(&ptr->lock);
  1411. cache_cache.array[smp_processor_id()] = ptr;
  1412. ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
  1413. BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
  1414. != &initarray_generic.cache);
  1415. memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
  1416. sizeof(struct arraycache_init));
  1417. /*
  1418. * Do not assume that spinlocks can be initialized via memcpy:
  1419. */
  1420. spin_lock_init(&ptr->lock);
  1421. malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
  1422. ptr;
  1423. }
  1424. /* 5) Replace the bootstrap kmem_list3's */
  1425. {
  1426. int nid;
  1427. for_each_online_node(nid) {
  1428. init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
  1429. init_list(malloc_sizes[INDEX_AC].cs_cachep,
  1430. &initkmem_list3[SIZE_AC + nid], nid);
  1431. if (INDEX_AC != INDEX_L3) {
  1432. init_list(malloc_sizes[INDEX_L3].cs_cachep,
  1433. &initkmem_list3[SIZE_L3 + nid], nid);
  1434. }
  1435. }
  1436. }
  1437. g_cpucache_up = EARLY;
  1438. }
  1439. void __init kmem_cache_init_late(void)
  1440. {
  1441. struct kmem_cache *cachep;
  1442. /* 6) resize the head arrays to their final sizes */
  1443. mutex_lock(&cache_chain_mutex);
  1444. list_for_each_entry(cachep, &cache_chain, next)
  1445. if (enable_cpucache(cachep, GFP_NOWAIT))
  1446. BUG();
  1447. mutex_unlock(&cache_chain_mutex);
  1448. /* Done! */
  1449. g_cpucache_up = FULL;
  1450. /* Annotate slab for lockdep -- annotate the malloc caches */
  1451. init_lock_keys();
  1452. /*
  1453. * Register a cpu startup notifier callback that initializes
  1454. * cpu_cache_get for all new cpus
  1455. */
  1456. register_cpu_notifier(&cpucache_notifier);
  1457. #ifdef CONFIG_NUMA
  1458. /*
  1459. * Register a memory hotplug callback that initializes and frees
  1460. * nodelists.
  1461. */
  1462. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  1463. #endif
  1464. /*
  1465. * The reap timers are started later, with a module init call: That part
  1466. * of the kernel is not yet operational.
  1467. */
  1468. }
  1469. static int __init cpucache_init(void)
  1470. {
  1471. int cpu;
  1472. /*
  1473. * Register the timers that return unneeded pages to the page allocator
  1474. */
  1475. for_each_online_cpu(cpu)
  1476. start_cpu_timer(cpu);
  1477. return 0;
  1478. }
  1479. __initcall(cpucache_init);
  1480. /*
  1481. * Interface to system's page allocator. No need to hold the cache-lock.
  1482. *
  1483. * If we requested dmaable memory, we will get it. Even if we
  1484. * did not request dmaable memory, we might get it, but that
  1485. * would be relatively rare and ignorable.
  1486. */
  1487. static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  1488. {
  1489. struct page *page;
  1490. int nr_pages;
  1491. int i;
  1492. #ifndef CONFIG_MMU
  1493. /*
  1494. * Nommu uses slab's for process anonymous memory allocations, and thus
  1495. * requires __GFP_COMP to properly refcount higher order allocations
  1496. */
  1497. flags |= __GFP_COMP;
  1498. #endif
  1499. flags |= cachep->gfpflags;
  1500. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1501. flags |= __GFP_RECLAIMABLE;
  1502. page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
  1503. if (!page)
  1504. return NULL;
  1505. nr_pages = (1 << cachep->gfporder);
  1506. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1507. add_zone_page_state(page_zone(page),
  1508. NR_SLAB_RECLAIMABLE, nr_pages);
  1509. else
  1510. add_zone_page_state(page_zone(page),
  1511. NR_SLAB_UNRECLAIMABLE, nr_pages);
  1512. for (i = 0; i < nr_pages; i++)
  1513. __SetPageSlab(page + i);
  1514. if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
  1515. kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
  1516. if (cachep->ctor)
  1517. kmemcheck_mark_uninitialized_pages(page, nr_pages);
  1518. else
  1519. kmemcheck_mark_unallocated_pages(page, nr_pages);
  1520. }
  1521. return page_address(page);
  1522. }
  1523. /*
  1524. * Interface to system's page release.
  1525. */
  1526. static void kmem_freepages(struct kmem_cache *cachep, void *addr)
  1527. {
  1528. unsigned long i = (1 << cachep->gfporder);
  1529. struct page *page = virt_to_page(addr);
  1530. const unsigned long nr_freed = i;
  1531. kmemcheck_free_shadow(page, cachep->gfporder);
  1532. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1533. sub_zone_page_state(page_zone(page),
  1534. NR_SLAB_RECLAIMABLE, nr_freed);
  1535. else
  1536. sub_zone_page_state(page_zone(page),
  1537. NR_SLAB_UNRECLAIMABLE, nr_freed);
  1538. while (i--) {
  1539. BUG_ON(!PageSlab(page));
  1540. __ClearPageSlab(page);
  1541. page++;
  1542. }
  1543. if (current->reclaim_state)
  1544. current->reclaim_state->reclaimed_slab += nr_freed;
  1545. free_pages((unsigned long)addr, cachep->gfporder);
  1546. }
  1547. static void kmem_rcu_free(struct rcu_head *head)
  1548. {
  1549. struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
  1550. struct kmem_cache *cachep = slab_rcu->cachep;
  1551. kmem_freepages(cachep, slab_rcu->addr);
  1552. if (OFF_SLAB(cachep))
  1553. kmem_cache_free(cachep->slabp_cache, slab_rcu);
  1554. }
  1555. #if DEBUG
  1556. #ifdef CONFIG_DEBUG_PAGEALLOC
  1557. static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
  1558. unsigned long caller)
  1559. {
  1560. int size = obj_size(cachep);
  1561. addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
  1562. if (size < 5 * sizeof(unsigned long))
  1563. return;
  1564. *addr++ = 0x12345678;
  1565. *addr++ = caller;
  1566. *addr++ = smp_processor_id();
  1567. size -= 3 * sizeof(unsigned long);
  1568. {
  1569. unsigned long *sptr = &caller;
  1570. unsigned long svalue;
  1571. while (!kstack_end(sptr)) {
  1572. svalue = *sptr++;
  1573. if (kernel_text_address(svalue)) {
  1574. *addr++ = svalue;
  1575. size -= sizeof(unsigned long);
  1576. if (size <= sizeof(unsigned long))
  1577. break;
  1578. }
  1579. }
  1580. }
  1581. *addr++ = 0x87654321;
  1582. }
  1583. #endif
  1584. static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
  1585. {
  1586. int size = obj_size(cachep);
  1587. addr = &((char *)addr)[obj_offset(cachep)];
  1588. memset(addr, val, size);
  1589. *(unsigned char *)(addr + size - 1) = POISON_END;
  1590. }
  1591. static void dump_line(char *data, int offset, int limit)
  1592. {
  1593. int i;
  1594. unsigned char error = 0;
  1595. int bad_count = 0;
  1596. printk(KERN_ERR "%03x:", offset);
  1597. for (i = 0; i < limit; i++) {
  1598. if (data[offset + i] != POISON_FREE) {
  1599. error = data[offset + i];
  1600. bad_count++;
  1601. }
  1602. printk(" %02x", (unsigned char)data[offset + i]);
  1603. }
  1604. printk("\n");
  1605. if (bad_count == 1) {
  1606. error ^= POISON_FREE;
  1607. if (!(error & (error - 1))) {
  1608. printk(KERN_ERR "Single bit error detected. Probably "
  1609. "bad RAM.\n");
  1610. #ifdef CONFIG_X86
  1611. printk(KERN_ERR "Run memtest86+ or a similar memory "
  1612. "test tool.\n");
  1613. #else
  1614. printk(KERN_ERR "Run a memory test tool.\n");
  1615. #endif
  1616. }
  1617. }
  1618. }
  1619. #endif
  1620. #if DEBUG
  1621. static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
  1622. {
  1623. int i, size;
  1624. char *realobj;
  1625. if (cachep->flags & SLAB_RED_ZONE) {
  1626. printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
  1627. *dbg_redzone1(cachep, objp),
  1628. *dbg_redzone2(cachep, objp));
  1629. }
  1630. if (cachep->flags & SLAB_STORE_USER) {
  1631. printk(KERN_ERR "Last user: [<%p>]",
  1632. *dbg_userword(cachep, objp));
  1633. print_symbol("(%s)",
  1634. (unsigned long)*dbg_userword(cachep, objp));
  1635. printk("\n");
  1636. }
  1637. realobj = (char *)objp + obj_offset(cachep);
  1638. size = obj_size(cachep);
  1639. for (i = 0; i < size && lines; i += 16, lines--) {
  1640. int limit;
  1641. limit = 16;
  1642. if (i + limit > size)
  1643. limit = size - i;
  1644. dump_line(realobj, i, limit);
  1645. }
  1646. }
  1647. static void check_poison_obj(struct kmem_cache *cachep, void *objp)
  1648. {
  1649. char *realobj;
  1650. int size, i;
  1651. int lines = 0;
  1652. realobj = (char *)objp + obj_offset(cachep);
  1653. size = obj_size(cachep);
  1654. for (i = 0; i < size; i++) {
  1655. char exp = POISON_FREE;
  1656. if (i == size - 1)
  1657. exp = POISON_END;
  1658. if (realobj[i] != exp) {
  1659. int limit;
  1660. /* Mismatch ! */
  1661. /* Print header */
  1662. if (lines == 0) {
  1663. printk(KERN_ERR
  1664. "Slab corruption: %s start=%p, len=%d\n",
  1665. cachep->name, realobj, size);
  1666. print_objinfo(cachep, objp, 0);
  1667. }
  1668. /* Hexdump the affected line */
  1669. i = (i / 16) * 16;
  1670. limit = 16;
  1671. if (i + limit > size)
  1672. limit = size - i;
  1673. dump_line(realobj, i, limit);
  1674. i += 16;
  1675. lines++;
  1676. /* Limit to 5 lines */
  1677. if (lines > 5)
  1678. break;
  1679. }
  1680. }
  1681. if (lines != 0) {
  1682. /* Print some data about the neighboring objects, if they
  1683. * exist:
  1684. */
  1685. struct slab *slabp = virt_to_slab(objp);
  1686. unsigned int objnr;
  1687. objnr = obj_to_index(cachep, slabp, objp);
  1688. if (objnr) {
  1689. objp = index_to_obj(cachep, slabp, objnr - 1);
  1690. realobj = (char *)objp + obj_offset(cachep);
  1691. printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
  1692. realobj, size);
  1693. print_objinfo(cachep, objp, 2);
  1694. }
  1695. if (objnr + 1 < cachep->num) {
  1696. objp = index_to_obj(cachep, slabp, objnr + 1);
  1697. realobj = (char *)objp + obj_offset(cachep);
  1698. printk(KERN_ERR "Next obj: start=%p, len=%d\n",
  1699. realobj, size);
  1700. print_objinfo(cachep, objp, 2);
  1701. }
  1702. }
  1703. }
  1704. #endif
  1705. #if DEBUG
  1706. static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
  1707. {
  1708. int i;
  1709. for (i = 0; i < cachep->num; i++) {
  1710. void *objp = index_to_obj(cachep, slabp, i);
  1711. if (cachep->flags & SLAB_POISON) {
  1712. #ifdef CONFIG_DEBUG_PAGEALLOC
  1713. if (cachep->buffer_size % PAGE_SIZE == 0 &&
  1714. OFF_SLAB(cachep))
  1715. kernel_map_pages(virt_to_page(objp),
  1716. cachep->buffer_size / PAGE_SIZE, 1);
  1717. else
  1718. check_poison_obj(cachep, objp);
  1719. #else
  1720. check_poison_obj(cachep, objp);
  1721. #endif
  1722. }
  1723. if (cachep->flags & SLAB_RED_ZONE) {
  1724. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  1725. slab_error(cachep, "start of a freed object "
  1726. "was overwritten");
  1727. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  1728. slab_error(cachep, "end of a freed object "
  1729. "was overwritten");
  1730. }
  1731. }
  1732. }
  1733. #else
  1734. static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
  1735. {
  1736. }
  1737. #endif
  1738. /**
  1739. * slab_destroy - destroy and release all objects in a slab
  1740. * @cachep: cache pointer being destroyed
  1741. * @slabp: slab pointer being destroyed
  1742. *
  1743. * Destroy all the objs in a slab, and release the mem back to the system.
  1744. * Before calling the slab must have been unlinked from the cache. The
  1745. * cache-lock is not held/needed.
  1746. */
  1747. static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
  1748. {
  1749. void *addr = slabp->s_mem - slabp->colouroff;
  1750. slab_destroy_debugcheck(cachep, slabp);
  1751. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
  1752. struct slab_rcu *slab_rcu;
  1753. slab_rcu = (struct slab_rcu *)slabp;
  1754. slab_rcu->cachep = cachep;
  1755. slab_rcu->addr = addr;
  1756. call_rcu(&slab_rcu->head, kmem_rcu_free);
  1757. } else {
  1758. kmem_freepages(cachep, addr);
  1759. if (OFF_SLAB(cachep))
  1760. kmem_cache_free(cachep->slabp_cache, slabp);
  1761. }
  1762. }
  1763. static void __kmem_cache_destroy(struct kmem_cache *cachep)
  1764. {
  1765. int i;
  1766. struct kmem_list3 *l3;
  1767. for_each_online_cpu(i)
  1768. kfree(cachep->array[i]);
  1769. /* NUMA: free the list3 structures */
  1770. for_each_online_node(i) {
  1771. l3 = cachep->nodelists[i];
  1772. if (l3) {
  1773. kfree(l3->shared);
  1774. free_alien_cache(l3->alien);
  1775. kfree(l3);
  1776. }
  1777. }
  1778. kmem_cache_free(&cache_cache, cachep);
  1779. }
  1780. /**
  1781. * calculate_slab_order - calculate size (page order) of slabs
  1782. * @cachep: pointer to the cache that is being created
  1783. * @size: size of objects to be created in this cache.
  1784. * @align: required alignment for the objects.
  1785. * @flags: slab allocation flags
  1786. *
  1787. * Also calculates the number of objects per slab.
  1788. *
  1789. * This could be made much more intelligent. For now, try to avoid using
  1790. * high order pages for slabs. When the gfp() functions are more friendly
  1791. * towards high-order requests, this should be changed.
  1792. */
  1793. static size_t calculate_slab_order(struct kmem_cache *cachep,
  1794. size_t size, size_t align, unsigned long flags)
  1795. {
  1796. unsigned long offslab_limit;
  1797. size_t left_over = 0;
  1798. int gfporder;
  1799. for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
  1800. unsigned int num;
  1801. size_t remainder;
  1802. cache_estimate(gfporder, size, align, flags, &remainder, &num);
  1803. if (!num)
  1804. continue;
  1805. if (flags & CFLGS_OFF_SLAB) {
  1806. /*
  1807. * Max number of objs-per-slab for caches which
  1808. * use off-slab slabs. Needed to avoid a possible
  1809. * looping condition in cache_grow().
  1810. */
  1811. offslab_limit = size - sizeof(struct slab);
  1812. offslab_limit /= sizeof(kmem_bufctl_t);
  1813. if (num > offslab_limit)
  1814. break;
  1815. }
  1816. /* Found something acceptable - save it away */
  1817. cachep->num = num;
  1818. cachep->gfporder = gfporder;
  1819. left_over = remainder;
  1820. /*
  1821. * A VFS-reclaimable slab tends to have most allocations
  1822. * as GFP_NOFS and we really don't want to have to be allocating
  1823. * higher-order pages when we are unable to shrink dcache.
  1824. */
  1825. if (flags & SLAB_RECLAIM_ACCOUNT)
  1826. break;
  1827. /*
  1828. * Large number of objects is good, but very large slabs are
  1829. * currently bad for the gfp()s.
  1830. */
  1831. if (gfporder >= slab_break_gfp_order)
  1832. break;
  1833. /*
  1834. * Acceptable internal fragmentation?
  1835. */
  1836. if (left_over * 8 <= (PAGE_SIZE << gfporder))
  1837. break;
  1838. }
  1839. return left_over;
  1840. }
  1841. static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
  1842. {
  1843. if (g_cpucache_up == FULL)
  1844. return enable_cpucache(cachep, gfp);
  1845. if (g_cpucache_up == NONE) {
  1846. /*
  1847. * Note: the first kmem_cache_create must create the cache
  1848. * that's used by kmalloc(24), otherwise the creation of
  1849. * further caches will BUG().
  1850. */
  1851. cachep->array[smp_processor_id()] = &initarray_generic.cache;
  1852. /*
  1853. * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
  1854. * the first cache, then we need to set up all its list3s,
  1855. * otherwise the creation of further caches will BUG().
  1856. */
  1857. set_up_list3s(cachep, SIZE_AC);
  1858. if (INDEX_AC == INDEX_L3)
  1859. g_cpucache_up = PARTIAL_L3;
  1860. else
  1861. g_cpucache_up = PARTIAL_AC;
  1862. } else {
  1863. cachep->array[smp_processor_id()] =
  1864. kmalloc(sizeof(struct arraycache_init), gfp);
  1865. if (g_cpucache_up == PARTIAL_AC) {
  1866. set_up_list3s(cachep, SIZE_L3);
  1867. g_cpucache_up = PARTIAL_L3;
  1868. } else {
  1869. int node;
  1870. for_each_online_node(node) {
  1871. cachep->nodelists[node] =
  1872. kmalloc_node(sizeof(struct kmem_list3),
  1873. gfp, node);
  1874. BUG_ON(!cachep->nodelists[node]);
  1875. kmem_list3_init(cachep->nodelists[node]);
  1876. }
  1877. }
  1878. }
  1879. cachep->nodelists[numa_mem_id()]->next_reap =
  1880. jiffies + REAPTIMEOUT_LIST3 +
  1881. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1882. cpu_cache_get(cachep)->avail = 0;
  1883. cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
  1884. cpu_cache_get(cachep)->batchcount = 1;
  1885. cpu_cache_get(cachep)->touched = 0;
  1886. cachep->batchcount = 1;
  1887. cachep->limit = BOOT_CPUCACHE_ENTRIES;
  1888. return 0;
  1889. }
  1890. /**
  1891. * kmem_cache_create - Create a cache.
  1892. * @name: A string which is used in /proc/slabinfo to identify this cache.
  1893. * @size: The size of objects to be created in this cache.
  1894. * @align: The required alignment for the objects.
  1895. * @flags: SLAB flags
  1896. * @ctor: A constructor for the objects.
  1897. *
  1898. * Returns a ptr to the cache on success, NULL on failure.
  1899. * Cannot be called within a int, but can be interrupted.
  1900. * The @ctor is run when new pages are allocated by the cache.
  1901. *
  1902. * @name must be valid until the cache is destroyed. This implies that
  1903. * the module calling this has to destroy the cache before getting unloaded.
  1904. *
  1905. * The flags are
  1906. *
  1907. * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
  1908. * to catch references to uninitialised memory.
  1909. *
  1910. * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  1911. * for buffer overruns.
  1912. *
  1913. * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  1914. * cacheline. This can be beneficial if you're counting cycles as closely
  1915. * as davem.
  1916. */
  1917. struct kmem_cache *
  1918. kmem_cache_create (const char *name, size_t size, size_t align,
  1919. unsigned long flags, void (*ctor)(void *))
  1920. {
  1921. size_t left_over, slab_size, ralign;
  1922. struct kmem_cache *cachep = NULL, *pc;
  1923. gfp_t gfp;
  1924. /*
  1925. * Sanity checks... these are all serious usage bugs.
  1926. */
  1927. if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
  1928. size > KMALLOC_MAX_SIZE) {
  1929. printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
  1930. name);
  1931. BUG();
  1932. }
  1933. /*
  1934. * We use cache_chain_mutex to ensure a consistent view of
  1935. * cpu_online_mask as well. Please see cpuup_callback
  1936. */
  1937. if (slab_is_available()) {
  1938. get_online_cpus();
  1939. mutex_lock(&cache_chain_mutex);
  1940. }
  1941. list_for_each_entry(pc, &cache_chain, next) {
  1942. char tmp;
  1943. int res;
  1944. /*
  1945. * This happens when the module gets unloaded and doesn't
  1946. * destroy its slab cache and no-one else reuses the vmalloc
  1947. * area of the module. Print a warning.
  1948. */
  1949. res = probe_kernel_address(pc->name, tmp);
  1950. if (res) {
  1951. printk(KERN_ERR
  1952. "SLAB: cache with size %d has lost its name\n",
  1953. pc->buffer_size);
  1954. continue;
  1955. }
  1956. if (!strcmp(pc->name, name)) {
  1957. printk(KERN_ERR
  1958. "kmem_cache_create: duplicate cache %s\n", name);
  1959. dump_stack();
  1960. goto oops;
  1961. }
  1962. }
  1963. #if DEBUG
  1964. WARN_ON(strchr(name, ' ')); /* It confuses parsers */
  1965. #if FORCED_DEBUG
  1966. /*
  1967. * Enable redzoning and last user accounting, except for caches with
  1968. * large objects, if the increased size would increase the object size
  1969. * above the next power of two: caches with object sizes just above a
  1970. * power of two have a significant amount of internal fragmentation.
  1971. */
  1972. if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
  1973. 2 * sizeof(unsigned long long)))
  1974. flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
  1975. if (!(flags & SLAB_DESTROY_BY_RCU))
  1976. flags |= SLAB_POISON;
  1977. #endif
  1978. if (flags & SLAB_DESTROY_BY_RCU)
  1979. BUG_ON(flags & SLAB_POISON);
  1980. #endif
  1981. /*
  1982. * Always checks flags, a caller might be expecting debug support which
  1983. * isn't available.
  1984. */
  1985. BUG_ON(flags & ~CREATE_MASK);
  1986. /*
  1987. * Check that size is in terms of words. This is needed to avoid
  1988. * unaligned accesses for some archs when redzoning is used, and makes
  1989. * sure any on-slab bufctl's are also correctly aligned.
  1990. */
  1991. if (size & (BYTES_PER_WORD - 1)) {
  1992. size += (BYTES_PER_WORD - 1);
  1993. size &= ~(BYTES_PER_WORD - 1);
  1994. }
  1995. /* calculate the final buffer alignment: */
  1996. /* 1) arch recommendation: can be overridden for debug */
  1997. if (flags & SLAB_HWCACHE_ALIGN) {
  1998. /*
  1999. * Default alignment: as specified by the arch code. Except if
  2000. * an object is really small, then squeeze multiple objects into
  2001. * one cacheline.
  2002. */
  2003. ralign = cache_line_size();
  2004. while (size <= ralign / 2)
  2005. ralign /= 2;
  2006. } else {
  2007. ralign = BYTES_PER_WORD;
  2008. }
  2009. /*
  2010. * Redzoning and user store require word alignment or possibly larger.
  2011. * Note this will be overridden by architecture or caller mandated
  2012. * alignment if either is greater than BYTES_PER_WORD.
  2013. */
  2014. if (flags & SLAB_STORE_USER)
  2015. ralign = BYTES_PER_WORD;
  2016. if (flags & SLAB_RED_ZONE) {
  2017. ralign = REDZONE_ALIGN;
  2018. /* If redzoning, ensure that the second redzone is suitably
  2019. * aligned, by adjusting the object size accordingly. */
  2020. size += REDZONE_ALIGN - 1;
  2021. size &= ~(REDZONE_ALIGN - 1);
  2022. }
  2023. /* 2) arch mandated alignment */
  2024. if (ralign < ARCH_SLAB_MINALIGN) {
  2025. ralign = ARCH_SLAB_MINALIGN;
  2026. }
  2027. /* 3) caller mandated alignment */
  2028. if (ralign < align) {
  2029. ralign = align;
  2030. }
  2031. /* disable debug if necessary */
  2032. if (ralign > __alignof__(unsigned long long))
  2033. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  2034. /*
  2035. * 4) Store it.
  2036. */
  2037. align = ralign;
  2038. if (slab_is_available())
  2039. gfp = GFP_KERNEL;
  2040. else
  2041. gfp = GFP_NOWAIT;
  2042. /* Get cache's description obj. */
  2043. cachep = kmem_cache_zalloc(&cache_cache, gfp);
  2044. if (!cachep)
  2045. goto oops;
  2046. cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
  2047. #if DEBUG
  2048. cachep->obj_size = size;
  2049. /*
  2050. * Both debugging options require word-alignment which is calculated
  2051. * into align above.
  2052. */
  2053. if (flags & SLAB_RED_ZONE) {
  2054. /* add space for red zone words */
  2055. cachep->obj_offset += sizeof(unsigned long long);
  2056. size += 2 * sizeof(unsigned long long);
  2057. }
  2058. if (flags & SLAB_STORE_USER) {
  2059. /* user store requires one word storage behind the end of
  2060. * the real object. But if the second red zone needs to be
  2061. * aligned to 64 bits, we must allow that much space.
  2062. */
  2063. if (flags & SLAB_RED_ZONE)
  2064. size += REDZONE_ALIGN;
  2065. else
  2066. size += BYTES_PER_WORD;
  2067. }
  2068. #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
  2069. if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
  2070. && cachep->obj_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
  2071. cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
  2072. size = PAGE_SIZE;
  2073. }
  2074. #endif
  2075. #endif
  2076. /*
  2077. * Determine if the slab management is 'on' or 'off' slab.
  2078. * (bootstrapping cannot cope with offslab caches so don't do
  2079. * it too early on. Always use on-slab management when
  2080. * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
  2081. */
  2082. if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
  2083. !(flags & SLAB_NOLEAKTRACE))
  2084. /*
  2085. * Size is large, assume best to place the slab management obj
  2086. * off-slab (should allow better packing of objs).
  2087. */
  2088. flags |= CFLGS_OFF_SLAB;
  2089. size = ALIGN(size, align);
  2090. left_over = calculate_slab_order(cachep, size, align, flags);
  2091. if (!cachep->num) {
  2092. printk(KERN_ERR
  2093. "kmem_cache_create: couldn't create cache %s.\n", name);
  2094. kmem_cache_free(&cache_cache, cachep);
  2095. cachep = NULL;
  2096. goto oops;
  2097. }
  2098. slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
  2099. + sizeof(struct slab), align);
  2100. /*
  2101. * If the slab has been placed off-slab, and we have enough space then
  2102. * move it on-slab. This is at the expense of any extra colouring.
  2103. */
  2104. if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
  2105. flags &= ~CFLGS_OFF_SLAB;
  2106. left_over -= slab_size;
  2107. }
  2108. if (flags & CFLGS_OFF_SLAB) {
  2109. /* really off slab. No need for manual alignment */
  2110. slab_size =
  2111. cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
  2112. #ifdef CONFIG_PAGE_POISONING
  2113. /* If we're going to use the generic kernel_map_pages()
  2114. * poisoning, then it's going to smash the contents of
  2115. * the redzone and userword anyhow, so switch them off.
  2116. */
  2117. if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
  2118. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  2119. #endif
  2120. }
  2121. cachep->colour_off = cache_line_size();
  2122. /* Offset must be a multiple of the alignment. */
  2123. if (cachep->colour_off < align)
  2124. cachep->colour_off = align;
  2125. cachep->colour = left_over / cachep->colour_off;
  2126. cachep->slab_size = slab_size;
  2127. cachep->flags = flags;
  2128. cachep->gfpflags = 0;
  2129. if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
  2130. cachep->gfpflags |= GFP_DMA;
  2131. cachep->buffer_size = size;
  2132. cachep->reciprocal_buffer_size = reciprocal_value(size);
  2133. if (flags & CFLGS_OFF_SLAB) {
  2134. cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
  2135. /*
  2136. * This is a possibility for one of the malloc_sizes caches.
  2137. * But since we go off slab only for object size greater than
  2138. * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
  2139. * this should not happen at all.
  2140. * But leave a BUG_ON for some lucky dude.
  2141. */
  2142. BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
  2143. }
  2144. cachep->ctor = ctor;
  2145. cachep->name = name;
  2146. if (setup_cpu_cache(cachep, gfp)) {
  2147. __kmem_cache_destroy(cachep);
  2148. cachep = NULL;
  2149. goto oops;
  2150. }
  2151. /* cache setup completed, link it into the list */
  2152. list_add(&cachep->next, &cache_chain);
  2153. oops:
  2154. if (!cachep && (flags & SLAB_PANIC))
  2155. panic("kmem_cache_create(): failed to create slab `%s'\n",
  2156. name);
  2157. if (slab_is_available()) {
  2158. mutex_unlock(&cache_chain_mutex);
  2159. put_online_cpus();
  2160. }
  2161. return cachep;
  2162. }
  2163. EXPORT_SYMBOL(kmem_cache_create);
  2164. #if DEBUG
  2165. static void check_irq_off(void)
  2166. {
  2167. BUG_ON(!irqs_disabled());
  2168. }
  2169. static void check_irq_on(void)
  2170. {
  2171. BUG_ON(irqs_disabled());
  2172. }
  2173. static void check_spinlock_acquired(struct kmem_cache *cachep)
  2174. {
  2175. #ifdef CONFIG_SMP
  2176. check_irq_off();
  2177. assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
  2178. #endif
  2179. }
  2180. static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
  2181. {
  2182. #ifdef CONFIG_SMP
  2183. check_irq_off();
  2184. assert_spin_locked(&cachep->nodelists[node]->list_lock);
  2185. #endif
  2186. }
  2187. #else
  2188. #define check_irq_off() do { } while(0)
  2189. #define check_irq_on() do { } while(0)
  2190. #define check_spinlock_acquired(x) do { } while(0)
  2191. #define check_spinlock_acquired_node(x, y) do { } while(0)
  2192. #endif
  2193. static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  2194. struct array_cache *ac,
  2195. int force, int node);
  2196. static void do_drain(void *arg)
  2197. {
  2198. struct kmem_cache *cachep = arg;
  2199. struct array_cache *ac;
  2200. int node = numa_mem_id();
  2201. check_irq_off();
  2202. ac = cpu_cache_get(cachep);
  2203. spin_lock(&cachep->nodelists[node]->list_lock);
  2204. free_block(cachep, ac->entry, ac->avail, node);
  2205. spin_unlock(&cachep->nodelists[node]->list_lock);
  2206. ac->avail = 0;
  2207. }
  2208. static void drain_cpu_caches(struct kmem_cache *cachep)
  2209. {
  2210. struct kmem_list3 *l3;
  2211. int node;
  2212. on_each_cpu(do_drain, cachep, 1);
  2213. check_irq_on();
  2214. for_each_online_node(node) {
  2215. l3 = cachep->nodelists[node];
  2216. if (l3 && l3->alien)
  2217. drain_alien_cache(cachep, l3->alien);
  2218. }
  2219. for_each_online_node(node) {
  2220. l3 = cachep->nodelists[node];
  2221. if (l3)
  2222. drain_array(cachep, l3, l3->shared, 1, node);
  2223. }
  2224. }
  2225. /*
  2226. * Remove slabs from the list of free slabs.
  2227. * Specify the number of slabs to drain in tofree.
  2228. *
  2229. * Returns the actual number of slabs released.
  2230. */
  2231. static int drain_freelist(struct kmem_cache *cache,
  2232. struct kmem_list3 *l3, int tofree)
  2233. {
  2234. struct list_head *p;
  2235. int nr_freed;
  2236. struct slab *slabp;
  2237. nr_freed = 0;
  2238. while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
  2239. spin_lock_irq(&l3->list_lock);
  2240. p = l3->slabs_free.prev;
  2241. if (p == &l3->slabs_free) {
  2242. spin_unlock_irq(&l3->list_lock);
  2243. goto out;
  2244. }
  2245. slabp = list_entry(p, struct slab, list);
  2246. #if DEBUG
  2247. BUG_ON(slabp->inuse);
  2248. #endif
  2249. list_del(&slabp->list);
  2250. /*
  2251. * Safe to drop the lock. The slab is no longer linked
  2252. * to the cache.
  2253. */
  2254. l3->free_objects -= cache->num;
  2255. spin_unlock_irq(&l3->list_lock);
  2256. slab_destroy(cache, slabp);
  2257. nr_freed++;
  2258. }
  2259. out:
  2260. return nr_freed;
  2261. }
  2262. /* Called with cache_chain_mutex held to protect against cpu hotplug */
  2263. static int __cache_shrink(struct kmem_cache *cachep)
  2264. {
  2265. int ret = 0, i = 0;
  2266. struct kmem_list3 *l3;
  2267. drain_cpu_caches(cachep);
  2268. check_irq_on();
  2269. for_each_online_node(i) {
  2270. l3 = cachep->nodelists[i];
  2271. if (!l3)
  2272. continue;
  2273. drain_freelist(cachep, l3, l3->free_objects);
  2274. ret += !list_empty(&l3->slabs_full) ||
  2275. !list_empty(&l3->slabs_partial);
  2276. }
  2277. return (ret ? 1 : 0);
  2278. }
  2279. /**
  2280. * kmem_cache_shrink - Shrink a cache.
  2281. * @cachep: The cache to shrink.
  2282. *
  2283. * Releases as many slabs as possible for a cache.
  2284. * To help debugging, a zero exit status indicates all slabs were released.
  2285. */
  2286. int kmem_cache_shrink(struct kmem_cache *cachep)
  2287. {
  2288. int ret;
  2289. BUG_ON(!cachep || in_interrupt());
  2290. get_online_cpus();
  2291. mutex_lock(&cache_chain_mutex);
  2292. ret = __cache_shrink(cachep);
  2293. mutex_unlock(&cache_chain_mutex);
  2294. put_online_cpus();
  2295. return ret;
  2296. }
  2297. EXPORT_SYMBOL(kmem_cache_shrink);
  2298. /**
  2299. * kmem_cache_destroy - delete a cache
  2300. * @cachep: the cache to destroy
  2301. *
  2302. * Remove a &struct kmem_cache object from the slab cache.
  2303. *
  2304. * It is expected this function will be called by a module when it is
  2305. * unloaded. This will remove the cache completely, and avoid a duplicate
  2306. * cache being allocated each time a module is loaded and unloaded, if the
  2307. * module doesn't have persistent in-kernel storage across loads and unloads.
  2308. *
  2309. * The cache must be empty before calling this function.
  2310. *
  2311. * The caller must guarantee that no one will allocate memory from the cache
  2312. * during the kmem_cache_destroy().
  2313. */
  2314. void kmem_cache_destroy(struct kmem_cache *cachep)
  2315. {
  2316. BUG_ON(!cachep || in_interrupt());
  2317. /* Find the cache in the chain of caches. */
  2318. get_online_cpus();
  2319. mutex_lock(&cache_chain_mutex);
  2320. /*
  2321. * the chain is never empty, cache_cache is never destroyed
  2322. */
  2323. list_del(&cachep->next);
  2324. if (__cache_shrink(cachep)) {
  2325. slab_error(cachep, "Can't free all objects");
  2326. list_add(&cachep->next, &cache_chain);
  2327. mutex_unlock(&cache_chain_mutex);
  2328. put_online_cpus();
  2329. return;
  2330. }
  2331. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
  2332. rcu_barrier();
  2333. __kmem_cache_destroy(cachep);
  2334. mutex_unlock(&cache_chain_mutex);
  2335. put_online_cpus();
  2336. }
  2337. EXPORT_SYMBOL(kmem_cache_destroy);
  2338. /*
  2339. * Get the memory for a slab management obj.
  2340. * For a slab cache when the slab descriptor is off-slab, slab descriptors
  2341. * always come from malloc_sizes caches. The slab descriptor cannot
  2342. * come from the same cache which is getting created because,
  2343. * when we are searching for an appropriate cache for these
  2344. * descriptors in kmem_cache_create, we search through the malloc_sizes array.
  2345. * If we are creating a malloc_sizes cache here it would not be visible to
  2346. * kmem_find_general_cachep till the initialization is complete.
  2347. * Hence we cannot have slabp_cache same as the original cache.
  2348. */
  2349. static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
  2350. int colour_off, gfp_t local_flags,
  2351. int nodeid)
  2352. {
  2353. struct slab *slabp;
  2354. if (OFF_SLAB(cachep)) {
  2355. /* Slab management obj is off-slab. */
  2356. slabp = kmem_cache_alloc_node(cachep->slabp_cache,
  2357. local_flags, nodeid);
  2358. /*
  2359. * If the first object in the slab is leaked (it's allocated
  2360. * but no one has a reference to it), we want to make sure
  2361. * kmemleak does not treat the ->s_mem pointer as a reference
  2362. * to the object. Otherwise we will not report the leak.
  2363. */
  2364. kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
  2365. local_flags);
  2366. if (!slabp)
  2367. return NULL;
  2368. } else {
  2369. slabp = objp + colour_off;
  2370. colour_off += cachep->slab_size;
  2371. }
  2372. slabp->inuse = 0;
  2373. slabp->colouroff = colour_off;
  2374. slabp->s_mem = objp + colour_off;
  2375. slabp->nodeid = nodeid;
  2376. slabp->free = 0;
  2377. return slabp;
  2378. }
  2379. static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
  2380. {
  2381. return (kmem_bufctl_t *) (slabp + 1);
  2382. }
  2383. static void cache_init_objs(struct kmem_cache *cachep,
  2384. struct slab *slabp)
  2385. {
  2386. int i;
  2387. for (i = 0; i < cachep->num; i++) {
  2388. void *objp = index_to_obj(cachep, slabp, i);
  2389. #if DEBUG
  2390. /* need to poison the objs? */
  2391. if (cachep->flags & SLAB_POISON)
  2392. poison_obj(cachep, objp, POISON_FREE);
  2393. if (cachep->flags & SLAB_STORE_USER)
  2394. *dbg_userword(cachep, objp) = NULL;
  2395. if (cachep->flags & SLAB_RED_ZONE) {
  2396. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2397. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2398. }
  2399. /*
  2400. * Constructors are not allowed to allocate memory from the same
  2401. * cache which they are a constructor for. Otherwise, deadlock.
  2402. * They must also be threaded.
  2403. */
  2404. if (cachep->ctor && !(cachep->flags & SLAB_POISON))
  2405. cachep->ctor(objp + obj_offset(cachep));
  2406. if (cachep->flags & SLAB_RED_ZONE) {
  2407. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  2408. slab_error(cachep, "constructor overwrote the"
  2409. " end of an object");
  2410. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  2411. slab_error(cachep, "constructor overwrote the"
  2412. " start of an object");
  2413. }
  2414. if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
  2415. OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
  2416. kernel_map_pages(virt_to_page(objp),
  2417. cachep->buffer_size / PAGE_SIZE, 0);
  2418. #else
  2419. if (cachep->ctor)
  2420. cachep->ctor(objp);
  2421. #endif
  2422. slab_bufctl(slabp)[i] = i + 1;
  2423. }
  2424. slab_bufctl(slabp)[i - 1] = BUFCTL_END;
  2425. }
  2426. static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
  2427. {
  2428. if (CONFIG_ZONE_DMA_FLAG) {
  2429. if (flags & GFP_DMA)
  2430. BUG_ON(!(cachep->gfpflags & GFP_DMA));
  2431. else
  2432. BUG_ON(cachep->gfpflags & GFP_DMA);
  2433. }
  2434. }
  2435. static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
  2436. int nodeid)
  2437. {
  2438. void *objp = index_to_obj(cachep, slabp, slabp->free);
  2439. kmem_bufctl_t next;
  2440. slabp->inuse++;
  2441. next = slab_bufctl(slabp)[slabp->free];
  2442. #if DEBUG
  2443. slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
  2444. WARN_ON(slabp->nodeid != nodeid);
  2445. #endif
  2446. slabp->free = next;
  2447. return objp;
  2448. }
  2449. static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
  2450. void *objp, int nodeid)
  2451. {
  2452. unsigned int objnr = obj_to_index(cachep, slabp, objp);
  2453. #if DEBUG
  2454. /* Verify that the slab belongs to the intended node */
  2455. WARN_ON(slabp->nodeid != nodeid);
  2456. if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
  2457. printk(KERN_ERR "slab: double free detected in cache "
  2458. "'%s', objp %p\n", cachep->name, objp);
  2459. BUG();
  2460. }
  2461. #endif
  2462. slab_bufctl(slabp)[objnr] = slabp->free;
  2463. slabp->free = objnr;
  2464. slabp->inuse--;
  2465. }
  2466. /*
  2467. * Map pages beginning at addr to the given cache and slab. This is required
  2468. * for the slab allocator to be able to lookup the cache and slab of a
  2469. * virtual address for kfree, ksize, and slab debugging.
  2470. */
  2471. static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
  2472. void *addr)
  2473. {
  2474. int nr_pages;
  2475. struct page *page;
  2476. page = virt_to_page(addr);
  2477. nr_pages = 1;
  2478. if (likely(!PageCompound(page)))
  2479. nr_pages <<= cache->gfporder;
  2480. do {
  2481. page_set_cache(page, cache);
  2482. page_set_slab(page, slab);
  2483. page++;
  2484. } while (--nr_pages);
  2485. }
  2486. /*
  2487. * Grow (by 1) the number of slabs within a cache. This is called by
  2488. * kmem_cache_alloc() when there are no active objs left in a cache.
  2489. */
  2490. static int cache_grow(struct kmem_cache *cachep,
  2491. gfp_t flags, int nodeid, void *objp)
  2492. {
  2493. struct slab *slabp;
  2494. size_t offset;
  2495. gfp_t local_flags;
  2496. struct kmem_list3 *l3;
  2497. /*
  2498. * Be lazy and only check for valid flags here, keeping it out of the
  2499. * critical path in kmem_cache_alloc().
  2500. */
  2501. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  2502. local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
  2503. /* Take the l3 list lock to change the colour_next on this node */
  2504. check_irq_off();
  2505. l3 = cachep->nodelists[nodeid];
  2506. spin_lock(&l3->list_lock);
  2507. /* Get colour for the slab, and cal the next value. */
  2508. offset = l3->colour_next;
  2509. l3->colour_next++;
  2510. if (l3->colour_next >= cachep->colour)
  2511. l3->colour_next = 0;
  2512. spin_unlock(&l3->list_lock);
  2513. offset *= cachep->colour_off;
  2514. if (local_flags & __GFP_WAIT)
  2515. local_irq_enable();
  2516. /*
  2517. * The test for missing atomic flag is performed here, rather than
  2518. * the more obvious place, simply to reduce the critical path length
  2519. * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
  2520. * will eventually be caught here (where it matters).
  2521. */
  2522. kmem_flagcheck(cachep, flags);
  2523. /*
  2524. * Get mem for the objs. Attempt to allocate a physical page from
  2525. * 'nodeid'.
  2526. */
  2527. if (!objp)
  2528. objp = kmem_getpages(cachep, local_flags, nodeid);
  2529. if (!objp)
  2530. goto failed;
  2531. /* Get slab management. */
  2532. slabp = alloc_slabmgmt(cachep, objp, offset,
  2533. local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
  2534. if (!slabp)
  2535. goto opps1;
  2536. slab_map_pages(cachep, slabp, objp);
  2537. cache_init_objs(cachep, slabp);
  2538. if (local_flags & __GFP_WAIT)
  2539. local_irq_disable();
  2540. check_irq_off();
  2541. spin_lock(&l3->list_lock);
  2542. /* Make slab active. */
  2543. list_add_tail(&slabp->list, &(l3->slabs_free));
  2544. STATS_INC_GROWN(cachep);
  2545. l3->free_objects += cachep->num;
  2546. spin_unlock(&l3->list_lock);
  2547. return 1;
  2548. opps1:
  2549. kmem_freepages(cachep, objp);
  2550. failed:
  2551. if (local_flags & __GFP_WAIT)
  2552. local_irq_disable();
  2553. return 0;
  2554. }
  2555. #if DEBUG
  2556. /*
  2557. * Perform extra freeing checks:
  2558. * - detect bad pointers.
  2559. * - POISON/RED_ZONE checking
  2560. */
  2561. static void kfree_debugcheck(const void *objp)
  2562. {
  2563. if (!virt_addr_valid(objp)) {
  2564. printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
  2565. (unsigned long)objp);
  2566. BUG();
  2567. }
  2568. }
  2569. static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
  2570. {
  2571. unsigned long long redzone1, redzone2;
  2572. redzone1 = *dbg_redzone1(cache, obj);
  2573. redzone2 = *dbg_redzone2(cache, obj);
  2574. /*
  2575. * Redzone is ok.
  2576. */
  2577. if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
  2578. return;
  2579. if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
  2580. slab_error(cache, "double free detected");
  2581. else
  2582. slab_error(cache, "memory outside object was overwritten");
  2583. printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
  2584. obj, redzone1, redzone2);
  2585. }
  2586. static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
  2587. void *caller)
  2588. {
  2589. struct page *page;
  2590. unsigned int objnr;
  2591. struct slab *slabp;
  2592. BUG_ON(virt_to_cache(objp) != cachep);
  2593. objp -= obj_offset(cachep);
  2594. kfree_debugcheck(objp);
  2595. page = virt_to_head_page(objp);
  2596. slabp = page_get_slab(page);
  2597. if (cachep->flags & SLAB_RED_ZONE) {
  2598. verify_redzone_free(cachep, objp);
  2599. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2600. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2601. }
  2602. if (cachep->flags & SLAB_STORE_USER)
  2603. *dbg_userword(cachep, objp) = caller;
  2604. objnr = obj_to_index(cachep, slabp, objp);
  2605. BUG_ON(objnr >= cachep->num);
  2606. BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
  2607. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2608. slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
  2609. #endif
  2610. if (cachep->flags & SLAB_POISON) {
  2611. #ifdef CONFIG_DEBUG_PAGEALLOC
  2612. if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
  2613. store_stackinfo(cachep, objp, (unsigned long)caller);
  2614. kernel_map_pages(virt_to_page(objp),
  2615. cachep->buffer_size / PAGE_SIZE, 0);
  2616. } else {
  2617. poison_obj(cachep, objp, POISON_FREE);
  2618. }
  2619. #else
  2620. poison_obj(cachep, objp, POISON_FREE);
  2621. #endif
  2622. }
  2623. return objp;
  2624. }
  2625. static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
  2626. {
  2627. kmem_bufctl_t i;
  2628. int entries = 0;
  2629. /* Check slab's freelist to see if this obj is there. */
  2630. for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
  2631. entries++;
  2632. if (entries > cachep->num || i >= cachep->num)
  2633. goto bad;
  2634. }
  2635. if (entries != cachep->num - slabp->inuse) {
  2636. bad:
  2637. printk(KERN_ERR "slab: Internal list corruption detected in "
  2638. "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
  2639. cachep->name, cachep->num, slabp, slabp->inuse);
  2640. for (i = 0;
  2641. i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
  2642. i++) {
  2643. if (i % 16 == 0)
  2644. printk("\n%03x:", i);
  2645. printk(" %02x", ((unsigned char *)slabp)[i]);
  2646. }
  2647. printk("\n");
  2648. BUG();
  2649. }
  2650. }
  2651. #else
  2652. #define kfree_debugcheck(x) do { } while(0)
  2653. #define cache_free_debugcheck(x,objp,z) (objp)
  2654. #define check_slabp(x,y) do { } while(0)
  2655. #endif
  2656. static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
  2657. {
  2658. int batchcount;
  2659. struct kmem_list3 *l3;
  2660. struct array_cache *ac;
  2661. int node;
  2662. retry:
  2663. check_irq_off();
  2664. node = numa_mem_id();
  2665. ac = cpu_cache_get(cachep);
  2666. batchcount = ac->batchcount;
  2667. if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
  2668. /*
  2669. * If there was little recent activity on this cache, then
  2670. * perform only a partial refill. Otherwise we could generate
  2671. * refill bouncing.
  2672. */
  2673. batchcount = BATCHREFILL_LIMIT;
  2674. }
  2675. l3 = cachep->nodelists[node];
  2676. BUG_ON(ac->avail > 0 || !l3);
  2677. spin_lock(&l3->list_lock);
  2678. /* See if we can refill from the shared array */
  2679. if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
  2680. l3->shared->touched = 1;
  2681. goto alloc_done;
  2682. }
  2683. while (batchcount > 0) {
  2684. struct list_head *entry;
  2685. struct slab *slabp;
  2686. /* Get slab alloc is to come from. */
  2687. entry = l3->slabs_partial.next;
  2688. if (entry == &l3->slabs_partial) {
  2689. l3->free_touched = 1;
  2690. entry = l3->slabs_free.next;
  2691. if (entry == &l3->slabs_free)
  2692. goto must_grow;
  2693. }
  2694. slabp = list_entry(entry, struct slab, list);
  2695. check_slabp(cachep, slabp);
  2696. check_spinlock_acquired(cachep);
  2697. /*
  2698. * The slab was either on partial or free list so
  2699. * there must be at least one object available for
  2700. * allocation.
  2701. */
  2702. BUG_ON(slabp->inuse >= cachep->num);
  2703. while (slabp->inuse < cachep->num && batchcount--) {
  2704. STATS_INC_ALLOCED(cachep);
  2705. STATS_INC_ACTIVE(cachep);
  2706. STATS_SET_HIGH(cachep);
  2707. ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
  2708. node);
  2709. }
  2710. check_slabp(cachep, slabp);
  2711. /* move slabp to correct slabp list: */
  2712. list_del(&slabp->list);
  2713. if (slabp->free == BUFCTL_END)
  2714. list_add(&slabp->list, &l3->slabs_full);
  2715. else
  2716. list_add(&slabp->list, &l3->slabs_partial);
  2717. }
  2718. must_grow:
  2719. l3->free_objects -= ac->avail;
  2720. alloc_done:
  2721. spin_unlock(&l3->list_lock);
  2722. if (unlikely(!ac->avail)) {
  2723. int x;
  2724. x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
  2725. /* cache_grow can reenable interrupts, then ac could change. */
  2726. ac = cpu_cache_get(cachep);
  2727. if (!x && ac->avail == 0) /* no objects in sight? abort */
  2728. return NULL;
  2729. if (!ac->avail) /* objects refilled by interrupt? */
  2730. goto retry;
  2731. }
  2732. ac->touched = 1;
  2733. return ac->entry[--ac->avail];
  2734. }
  2735. static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
  2736. gfp_t flags)
  2737. {
  2738. might_sleep_if(flags & __GFP_WAIT);
  2739. #if DEBUG
  2740. kmem_flagcheck(cachep, flags);
  2741. #endif
  2742. }
  2743. #if DEBUG
  2744. static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
  2745. gfp_t flags, void *objp, void *caller)
  2746. {
  2747. if (!objp)
  2748. return objp;
  2749. if (cachep->flags & SLAB_POISON) {
  2750. #ifdef CONFIG_DEBUG_PAGEALLOC
  2751. if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
  2752. kernel_map_pages(virt_to_page(objp),
  2753. cachep->buffer_size / PAGE_SIZE, 1);
  2754. else
  2755. check_poison_obj(cachep, objp);
  2756. #else
  2757. check_poison_obj(cachep, objp);
  2758. #endif
  2759. poison_obj(cachep, objp, POISON_INUSE);
  2760. }
  2761. if (cachep->flags & SLAB_STORE_USER)
  2762. *dbg_userword(cachep, objp) = caller;
  2763. if (cachep->flags & SLAB_RED_ZONE) {
  2764. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
  2765. *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
  2766. slab_error(cachep, "double free, or memory outside"
  2767. " object was overwritten");
  2768. printk(KERN_ERR
  2769. "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
  2770. objp, *dbg_redzone1(cachep, objp),
  2771. *dbg_redzone2(cachep, objp));
  2772. }
  2773. *dbg_redzone1(cachep, objp) = RED_ACTIVE;
  2774. *dbg_redzone2(cachep, objp) = RED_ACTIVE;
  2775. }
  2776. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2777. {
  2778. struct slab *slabp;
  2779. unsigned objnr;
  2780. slabp = page_get_slab(virt_to_head_page(objp));
  2781. objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
  2782. slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
  2783. }
  2784. #endif
  2785. objp += obj_offset(cachep);
  2786. if (cachep->ctor && cachep->flags & SLAB_POISON)
  2787. cachep->ctor(objp);
  2788. if (ARCH_SLAB_MINALIGN &&
  2789. ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
  2790. printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
  2791. objp, (int)ARCH_SLAB_MINALIGN);
  2792. }
  2793. return objp;
  2794. }
  2795. #else
  2796. #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
  2797. #endif
  2798. static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
  2799. {
  2800. if (cachep == &cache_cache)
  2801. return false;
  2802. return should_failslab(obj_size(cachep), flags, cachep->flags);
  2803. }
  2804. static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2805. {
  2806. void *objp;
  2807. struct array_cache *ac;
  2808. check_irq_off();
  2809. ac = cpu_cache_get(cachep);
  2810. if (likely(ac->avail)) {
  2811. STATS_INC_ALLOCHIT(cachep);
  2812. ac->touched = 1;
  2813. objp = ac->entry[--ac->avail];
  2814. } else {
  2815. STATS_INC_ALLOCMISS(cachep);
  2816. objp = cache_alloc_refill(cachep, flags);
  2817. /*
  2818. * the 'ac' may be updated by cache_alloc_refill(),
  2819. * and kmemleak_erase() requires its correct value.
  2820. */
  2821. ac = cpu_cache_get(cachep);
  2822. }
  2823. /*
  2824. * To avoid a false negative, if an object that is in one of the
  2825. * per-CPU caches is leaked, we need to make sure kmemleak doesn't
  2826. * treat the array pointers as a reference to the object.
  2827. */
  2828. if (objp)
  2829. kmemleak_erase(&ac->entry[ac->avail]);
  2830. return objp;
  2831. }
  2832. #ifdef CONFIG_NUMA
  2833. /*
  2834. * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
  2835. *
  2836. * If we are in_interrupt, then process context, including cpusets and
  2837. * mempolicy, may not apply and should not be used for allocation policy.
  2838. */
  2839. static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
  2840. {
  2841. int nid_alloc, nid_here;
  2842. if (in_interrupt() || (flags & __GFP_THISNODE))
  2843. return NULL;
  2844. nid_alloc = nid_here = numa_mem_id();
  2845. get_mems_allowed();
  2846. if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
  2847. nid_alloc = cpuset_slab_spread_node();
  2848. else if (current->mempolicy)
  2849. nid_alloc = slab_node(current->mempolicy);
  2850. put_mems_allowed();
  2851. if (nid_alloc != nid_here)
  2852. return ____cache_alloc_node(cachep, flags, nid_alloc);
  2853. return NULL;
  2854. }
  2855. /*
  2856. * Fallback function if there was no memory available and no objects on a
  2857. * certain node and fall back is permitted. First we scan all the
  2858. * available nodelists for available objects. If that fails then we
  2859. * perform an allocation without specifying a node. This allows the page
  2860. * allocator to do its reclaim / fallback magic. We then insert the
  2861. * slab into the proper nodelist and then allocate from it.
  2862. */
  2863. static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
  2864. {
  2865. struct zonelist *zonelist;
  2866. gfp_t local_flags;
  2867. struct zoneref *z;
  2868. struct zone *zone;
  2869. enum zone_type high_zoneidx = gfp_zone(flags);
  2870. void *obj = NULL;
  2871. int nid;
  2872. if (flags & __GFP_THISNODE)
  2873. return NULL;
  2874. get_mems_allowed();
  2875. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  2876. local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
  2877. retry:
  2878. /*
  2879. * Look through allowed nodes for objects available
  2880. * from existing per node queues.
  2881. */
  2882. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  2883. nid = zone_to_nid(zone);
  2884. if (cpuset_zone_allowed_hardwall(zone, flags) &&
  2885. cache->nodelists[nid] &&
  2886. cache->nodelists[nid]->free_objects) {
  2887. obj = ____cache_alloc_node(cache,
  2888. flags | GFP_THISNODE, nid);
  2889. if (obj)
  2890. break;
  2891. }
  2892. }
  2893. if (!obj) {
  2894. /*
  2895. * This allocation will be performed within the constraints
  2896. * of the current cpuset / memory policy requirements.
  2897. * We may trigger various forms of reclaim on the allowed
  2898. * set and go into memory reserves if necessary.
  2899. */
  2900. if (local_flags & __GFP_WAIT)
  2901. local_irq_enable();
  2902. kmem_flagcheck(cache, flags);
  2903. obj = kmem_getpages(cache, local_flags, numa_mem_id());
  2904. if (local_flags & __GFP_WAIT)
  2905. local_irq_disable();
  2906. if (obj) {
  2907. /*
  2908. * Insert into the appropriate per node queues
  2909. */
  2910. nid = page_to_nid(virt_to_page(obj));
  2911. if (cache_grow(cache, flags, nid, obj)) {
  2912. obj = ____cache_alloc_node(cache,
  2913. flags | GFP_THISNODE, nid);
  2914. if (!obj)
  2915. /*
  2916. * Another processor may allocate the
  2917. * objects in the slab since we are
  2918. * not holding any locks.
  2919. */
  2920. goto retry;
  2921. } else {
  2922. /* cache_grow already freed obj */
  2923. obj = NULL;
  2924. }
  2925. }
  2926. }
  2927. put_mems_allowed();
  2928. return obj;
  2929. }
  2930. /*
  2931. * A interface to enable slab creation on nodeid
  2932. */
  2933. static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
  2934. int nodeid)
  2935. {
  2936. struct list_head *entry;
  2937. struct slab *slabp;
  2938. struct kmem_list3 *l3;
  2939. void *obj;
  2940. int x;
  2941. l3 = cachep->nodelists[nodeid];
  2942. BUG_ON(!l3);
  2943. retry:
  2944. check_irq_off();
  2945. spin_lock(&l3->list_lock);
  2946. entry = l3->slabs_partial.next;
  2947. if (entry == &l3->slabs_partial) {
  2948. l3->free_touched = 1;
  2949. entry = l3->slabs_free.next;
  2950. if (entry == &l3->slabs_free)
  2951. goto must_grow;
  2952. }
  2953. slabp = list_entry(entry, struct slab, list);
  2954. check_spinlock_acquired_node(cachep, nodeid);
  2955. check_slabp(cachep, slabp);
  2956. STATS_INC_NODEALLOCS(cachep);
  2957. STATS_INC_ACTIVE(cachep);
  2958. STATS_SET_HIGH(cachep);
  2959. BUG_ON(slabp->inuse == cachep->num);
  2960. obj = slab_get_obj(cachep, slabp, nodeid);
  2961. check_slabp(cachep, slabp);
  2962. l3->free_objects--;
  2963. /* move slabp to correct slabp list: */
  2964. list_del(&slabp->list);
  2965. if (slabp->free == BUFCTL_END)
  2966. list_add(&slabp->list, &l3->slabs_full);
  2967. else
  2968. list_add(&slabp->list, &l3->slabs_partial);
  2969. spin_unlock(&l3->list_lock);
  2970. goto done;
  2971. must_grow:
  2972. spin_unlock(&l3->list_lock);
  2973. x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
  2974. if (x)
  2975. goto retry;
  2976. return fallback_alloc(cachep, flags);
  2977. done:
  2978. return obj;
  2979. }
  2980. /**
  2981. * kmem_cache_alloc_node - Allocate an object on the specified node
  2982. * @cachep: The cache to allocate from.
  2983. * @flags: See kmalloc().
  2984. * @nodeid: node number of the target node.
  2985. * @caller: return address of caller, used for debug information
  2986. *
  2987. * Identical to kmem_cache_alloc but it will allocate memory on the given
  2988. * node, which can improve the performance for cpu bound structures.
  2989. *
  2990. * Fallback to other node is possible if __GFP_THISNODE is not set.
  2991. */
  2992. static __always_inline void *
  2993. __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
  2994. void *caller)
  2995. {
  2996. unsigned long save_flags;
  2997. void *ptr;
  2998. int slab_node = numa_mem_id();
  2999. flags &= gfp_allowed_mask;
  3000. lockdep_trace_alloc(flags);
  3001. if (slab_should_failslab(cachep, flags))
  3002. return NULL;
  3003. cache_alloc_debugcheck_before(cachep, flags);
  3004. local_irq_save(save_flags);
  3005. if (nodeid == -1)
  3006. nodeid = slab_node;
  3007. if (unlikely(!cachep->nodelists[nodeid])) {
  3008. /* Node not bootstrapped yet */
  3009. ptr = fallback_alloc(cachep, flags);
  3010. goto out;
  3011. }
  3012. if (nodeid == slab_node) {
  3013. /*
  3014. * Use the locally cached objects if possible.
  3015. * However ____cache_alloc does not allow fallback
  3016. * to other nodes. It may fail while we still have
  3017. * objects on other nodes available.
  3018. */
  3019. ptr = ____cache_alloc(cachep, flags);
  3020. if (ptr)
  3021. goto out;
  3022. }
  3023. /* ___cache_alloc_node can fall back to other nodes */
  3024. ptr = ____cache_alloc_node(cachep, flags, nodeid);
  3025. out:
  3026. local_irq_restore(save_flags);
  3027. ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
  3028. kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
  3029. flags);
  3030. if (likely(ptr))
  3031. kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
  3032. if (unlikely((flags & __GFP_ZERO) && ptr))
  3033. memset(ptr, 0, obj_size(cachep));
  3034. return ptr;
  3035. }
  3036. static __always_inline void *
  3037. __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
  3038. {
  3039. void *objp;
  3040. if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
  3041. objp = alternate_node_alloc(cache, flags);
  3042. if (objp)
  3043. goto out;
  3044. }
  3045. objp = ____cache_alloc(cache, flags);
  3046. /*
  3047. * We may just have run out of memory on the local node.
  3048. * ____cache_alloc_node() knows how to locate memory on other nodes
  3049. */
  3050. if (!objp)
  3051. objp = ____cache_alloc_node(cache, flags, numa_mem_id());
  3052. out:
  3053. return objp;
  3054. }
  3055. #else
  3056. static __always_inline void *
  3057. __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  3058. {
  3059. return ____cache_alloc(cachep, flags);
  3060. }
  3061. #endif /* CONFIG_NUMA */
  3062. static __always_inline void *
  3063. __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
  3064. {
  3065. unsigned long save_flags;
  3066. void *objp;
  3067. flags &= gfp_allowed_mask;
  3068. lockdep_trace_alloc(flags);
  3069. if (slab_should_failslab(cachep, flags))
  3070. return NULL;
  3071. cache_alloc_debugcheck_before(cachep, flags);
  3072. local_irq_save(save_flags);
  3073. objp = __do_cache_alloc(cachep, flags);
  3074. local_irq_restore(save_flags);
  3075. objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
  3076. kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
  3077. flags);
  3078. prefetchw(objp);
  3079. if (likely(objp))
  3080. kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
  3081. if (unlikely((flags & __GFP_ZERO) && objp))
  3082. memset(objp, 0, obj_size(cachep));
  3083. return objp;
  3084. }
  3085. /*
  3086. * Caller needs to acquire correct kmem_list's list_lock
  3087. */
  3088. static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
  3089. int node)
  3090. {
  3091. int i;
  3092. struct kmem_list3 *l3;
  3093. for (i = 0; i < nr_objects; i++) {
  3094. void *objp = objpp[i];
  3095. struct slab *slabp;
  3096. slabp = virt_to_slab(objp);
  3097. l3 = cachep->nodelists[node];
  3098. list_del(&slabp->list);
  3099. check_spinlock_acquired_node(cachep, node);
  3100. check_slabp(cachep, slabp);
  3101. slab_put_obj(cachep, slabp, objp, node);
  3102. STATS_DEC_ACTIVE(cachep);
  3103. l3->free_objects++;
  3104. check_slabp(cachep, slabp);
  3105. /* fixup slab chains */
  3106. if (slabp->inuse == 0) {
  3107. if (l3->free_objects > l3->free_limit) {
  3108. l3->free_objects -= cachep->num;
  3109. /* No need to drop any previously held
  3110. * lock here, even if we have a off-slab slab
  3111. * descriptor it is guaranteed to come from
  3112. * a different cache, refer to comments before
  3113. * alloc_slabmgmt.
  3114. */
  3115. slab_destroy(cachep, slabp);
  3116. } else {
  3117. list_add(&slabp->list, &l3->slabs_free);
  3118. }
  3119. } else {
  3120. /* Unconditionally move a slab to the end of the
  3121. * partial list on free - maximum time for the
  3122. * other objects to be freed, too.
  3123. */
  3124. list_add_tail(&slabp->list, &l3->slabs_partial);
  3125. }
  3126. }
  3127. }
  3128. static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
  3129. {
  3130. int batchcount;
  3131. struct kmem_list3 *l3;
  3132. int node = numa_mem_id();
  3133. batchcount = ac->batchcount;
  3134. #if DEBUG
  3135. BUG_ON(!batchcount || batchcount > ac->avail);
  3136. #endif
  3137. check_irq_off();
  3138. l3 = cachep->nodelists[node];
  3139. spin_lock(&l3->list_lock);
  3140. if (l3->shared) {
  3141. struct array_cache *shared_array = l3->shared;
  3142. int max = shared_array->limit - shared_array->avail;
  3143. if (max) {
  3144. if (batchcount > max)
  3145. batchcount = max;
  3146. memcpy(&(shared_array->entry[shared_array->avail]),
  3147. ac->entry, sizeof(void *) * batchcount);
  3148. shared_array->avail += batchcount;
  3149. goto free_done;
  3150. }
  3151. }
  3152. free_block(cachep, ac->entry, batchcount, node);
  3153. free_done:
  3154. #if STATS
  3155. {
  3156. int i = 0;
  3157. struct list_head *p;
  3158. p = l3->slabs_free.next;
  3159. while (p != &(l3->slabs_free)) {
  3160. struct slab *slabp;
  3161. slabp = list_entry(p, struct slab, list);
  3162. BUG_ON(slabp->inuse);
  3163. i++;
  3164. p = p->next;
  3165. }
  3166. STATS_SET_FREEABLE(cachep, i);
  3167. }
  3168. #endif
  3169. spin_unlock(&l3->list_lock);
  3170. ac->avail -= batchcount;
  3171. memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
  3172. }
  3173. /*
  3174. * Release an obj back to its cache. If the obj has a constructed state, it must
  3175. * be in this state _before_ it is released. Called with disabled ints.
  3176. */
  3177. static inline void __cache_free(struct kmem_cache *cachep, void *objp)
  3178. {
  3179. struct array_cache *ac = cpu_cache_get(cachep);
  3180. check_irq_off();
  3181. kmemleak_free_recursive(objp, cachep->flags);
  3182. objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
  3183. kmemcheck_slab_free(cachep, objp, obj_size(cachep));
  3184. /*
  3185. * Skip calling cache_free_alien() when the platform is not numa.
  3186. * This will avoid cache misses that happen while accessing slabp (which
  3187. * is per page memory reference) to get nodeid. Instead use a global
  3188. * variable to skip the call, which is mostly likely to be present in
  3189. * the cache.
  3190. */
  3191. if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
  3192. return;
  3193. if (likely(ac->avail < ac->limit)) {
  3194. STATS_INC_FREEHIT(cachep);
  3195. ac->entry[ac->avail++] = objp;
  3196. return;
  3197. } else {
  3198. STATS_INC_FREEMISS(cachep);
  3199. cache_flusharray(cachep, ac);
  3200. ac->entry[ac->avail++] = objp;
  3201. }
  3202. }
  3203. /**
  3204. * kmem_cache_alloc - Allocate an object
  3205. * @cachep: The cache to allocate from.
  3206. * @flags: See kmalloc().
  3207. *
  3208. * Allocate an object from this cache. The flags are only relevant
  3209. * if the cache has no available objects.
  3210. */
  3211. void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  3212. {
  3213. void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
  3214. trace_kmem_cache_alloc(_RET_IP_, ret,
  3215. obj_size(cachep), cachep->buffer_size, flags);
  3216. return ret;
  3217. }
  3218. EXPORT_SYMBOL(kmem_cache_alloc);
  3219. #ifdef CONFIG_TRACING
  3220. void *
  3221. kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
  3222. {
  3223. void *ret;
  3224. ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
  3225. trace_kmalloc(_RET_IP_, ret,
  3226. size, slab_buffer_size(cachep), flags);
  3227. return ret;
  3228. }
  3229. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  3230. #endif
  3231. #ifdef CONFIG_NUMA
  3232. void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  3233. {
  3234. void *ret = __cache_alloc_node(cachep, flags, nodeid,
  3235. __builtin_return_address(0));
  3236. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  3237. obj_size(cachep), cachep->buffer_size,
  3238. flags, nodeid);
  3239. return ret;
  3240. }
  3241. EXPORT_SYMBOL(kmem_cache_alloc_node);
  3242. #ifdef CONFIG_TRACING
  3243. void *kmem_cache_alloc_node_trace(size_t size,
  3244. struct kmem_cache *cachep,
  3245. gfp_t flags,
  3246. int nodeid)
  3247. {
  3248. void *ret;
  3249. ret = __cache_alloc_node(cachep, flags, nodeid,
  3250. __builtin_return_address(0));
  3251. trace_kmalloc_node(_RET_IP_, ret,
  3252. size, slab_buffer_size(cachep),
  3253. flags, nodeid);
  3254. return ret;
  3255. }
  3256. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  3257. #endif
  3258. static __always_inline void *
  3259. __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
  3260. {
  3261. struct kmem_cache *cachep;
  3262. cachep = kmem_find_general_cachep(size, flags);
  3263. if (unlikely(ZERO_OR_NULL_PTR(cachep)))
  3264. return cachep;
  3265. return kmem_cache_alloc_node_trace(size, cachep, flags, node);
  3266. }
  3267. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
  3268. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3269. {
  3270. return __do_kmalloc_node(size, flags, node,
  3271. __builtin_return_address(0));
  3272. }
  3273. EXPORT_SYMBOL(__kmalloc_node);
  3274. void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
  3275. int node, unsigned long caller)
  3276. {
  3277. return __do_kmalloc_node(size, flags, node, (void *)caller);
  3278. }
  3279. EXPORT_SYMBOL(__kmalloc_node_track_caller);
  3280. #else
  3281. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3282. {
  3283. return __do_kmalloc_node(size, flags, node, NULL);
  3284. }
  3285. EXPORT_SYMBOL(__kmalloc_node);
  3286. #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
  3287. #endif /* CONFIG_NUMA */
  3288. /**
  3289. * __do_kmalloc - allocate memory
  3290. * @size: how many bytes of memory are required.
  3291. * @flags: the type of memory to allocate (see kmalloc).
  3292. * @caller: function caller for debug tracking of the caller
  3293. */
  3294. static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
  3295. void *caller)
  3296. {
  3297. struct kmem_cache *cachep;
  3298. void *ret;
  3299. /* If you want to save a few bytes .text space: replace
  3300. * __ with kmem_.
  3301. * Then kmalloc uses the uninlined functions instead of the inline
  3302. * functions.
  3303. */
  3304. cachep = __find_general_cachep(size, flags);
  3305. if (unlikely(ZERO_OR_NULL_PTR(cachep)))
  3306. return cachep;
  3307. ret = __cache_alloc(cachep, flags, caller);
  3308. trace_kmalloc((unsigned long) caller, ret,
  3309. size, cachep->buffer_size, flags);
  3310. return ret;
  3311. }
  3312. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
  3313. void *__kmalloc(size_t size, gfp_t flags)
  3314. {
  3315. return __do_kmalloc(size, flags, __builtin_return_address(0));
  3316. }
  3317. EXPORT_SYMBOL(__kmalloc);
  3318. void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
  3319. {
  3320. return __do_kmalloc(size, flags, (void *)caller);
  3321. }
  3322. EXPORT_SYMBOL(__kmalloc_track_caller);
  3323. #else
  3324. void *__kmalloc(size_t size, gfp_t flags)
  3325. {
  3326. return __do_kmalloc(size, flags, NULL);
  3327. }
  3328. EXPORT_SYMBOL(__kmalloc);
  3329. #endif
  3330. /**
  3331. * kmem_cache_free - Deallocate an object
  3332. * @cachep: The cache the allocation was from.
  3333. * @objp: The previously allocated object.
  3334. *
  3335. * Free an object which was previously allocated from this
  3336. * cache.
  3337. */
  3338. void kmem_cache_free(struct kmem_cache *cachep, void *objp)
  3339. {
  3340. unsigned long flags;
  3341. local_irq_save(flags);
  3342. debug_check_no_locks_freed(objp, obj_size(cachep));
  3343. if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
  3344. debug_check_no_obj_freed(objp, obj_size(cachep));
  3345. __cache_free(cachep, objp);
  3346. local_irq_restore(flags);
  3347. trace_kmem_cache_free(_RET_IP_, objp);
  3348. }
  3349. EXPORT_SYMBOL(kmem_cache_free);
  3350. /**
  3351. * kfree - free previously allocated memory
  3352. * @objp: pointer returned by kmalloc.
  3353. *
  3354. * If @objp is NULL, no operation is performed.
  3355. *
  3356. * Don't free memory not originally allocated by kmalloc()
  3357. * or you will run into trouble.
  3358. */
  3359. void kfree(const void *objp)
  3360. {
  3361. struct kmem_cache *c;
  3362. unsigned long flags;
  3363. trace_kfree(_RET_IP_, objp);
  3364. if (unlikely(ZERO_OR_NULL_PTR(objp)))
  3365. return;
  3366. local_irq_save(flags);
  3367. kfree_debugcheck(objp);
  3368. c = virt_to_cache(objp);
  3369. debug_check_no_locks_freed(objp, obj_size(c));
  3370. debug_check_no_obj_freed(objp, obj_size(c));
  3371. __cache_free(c, (void *)objp);
  3372. local_irq_restore(flags);
  3373. }
  3374. EXPORT_SYMBOL(kfree);
  3375. unsigned int kmem_cache_size(struct kmem_cache *cachep)
  3376. {
  3377. return obj_size(cachep);
  3378. }
  3379. EXPORT_SYMBOL(kmem_cache_size);
  3380. /*
  3381. * This initializes kmem_list3 or resizes various caches for all nodes.
  3382. */
  3383. static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
  3384. {
  3385. int node;
  3386. struct kmem_list3 *l3;
  3387. struct array_cache *new_shared;
  3388. struct array_cache **new_alien = NULL;
  3389. for_each_online_node(node) {
  3390. if (use_alien_caches) {
  3391. new_alien = alloc_alien_cache(node, cachep->limit, gfp);
  3392. if (!new_alien)
  3393. goto fail;
  3394. }
  3395. new_shared = NULL;
  3396. if (cachep->shared) {
  3397. new_shared = alloc_arraycache(node,
  3398. cachep->shared*cachep->batchcount,
  3399. 0xbaadf00d, gfp);
  3400. if (!new_shared) {
  3401. free_alien_cache(new_alien);
  3402. goto fail;
  3403. }
  3404. }
  3405. l3 = cachep->nodelists[node];
  3406. if (l3) {
  3407. struct array_cache *shared = l3->shared;
  3408. spin_lock_irq(&l3->list_lock);
  3409. if (shared)
  3410. free_block(cachep, shared->entry,
  3411. shared->avail, node);
  3412. l3->shared = new_shared;
  3413. if (!l3->alien) {
  3414. l3->alien = new_alien;
  3415. new_alien = NULL;
  3416. }
  3417. l3->free_limit = (1 + nr_cpus_node(node)) *
  3418. cachep->batchcount + cachep->num;
  3419. spin_unlock_irq(&l3->list_lock);
  3420. kfree(shared);
  3421. free_alien_cache(new_alien);
  3422. continue;
  3423. }
  3424. l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
  3425. if (!l3) {
  3426. free_alien_cache(new_alien);
  3427. kfree(new_shared);
  3428. goto fail;
  3429. }
  3430. kmem_list3_init(l3);
  3431. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  3432. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  3433. l3->shared = new_shared;
  3434. l3->alien = new_alien;
  3435. l3->free_limit = (1 + nr_cpus_node(node)) *
  3436. cachep->batchcount + cachep->num;
  3437. cachep->nodelists[node] = l3;
  3438. }
  3439. return 0;
  3440. fail:
  3441. if (!cachep->next.next) {
  3442. /* Cache is not active yet. Roll back what we did */
  3443. node--;
  3444. while (node >= 0) {
  3445. if (cachep->nodelists[node]) {
  3446. l3 = cachep->nodelists[node];
  3447. kfree(l3->shared);
  3448. free_alien_cache(l3->alien);
  3449. kfree(l3);
  3450. cachep->nodelists[node] = NULL;
  3451. }
  3452. node--;
  3453. }
  3454. }
  3455. return -ENOMEM;
  3456. }
  3457. struct ccupdate_struct {
  3458. struct kmem_cache *cachep;
  3459. struct array_cache *new[NR_CPUS];
  3460. };
  3461. static void do_ccupdate_local(void *info)
  3462. {
  3463. struct ccupdate_struct *new = info;
  3464. struct array_cache *old;
  3465. check_irq_off();
  3466. old = cpu_cache_get(new->cachep);
  3467. new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
  3468. new->new[smp_processor_id()] = old;
  3469. }
  3470. /* Always called with the cache_chain_mutex held */
  3471. static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
  3472. int batchcount, int shared, gfp_t gfp)
  3473. {
  3474. struct ccupdate_struct *new;
  3475. int i;
  3476. new = kzalloc(sizeof(*new), gfp);
  3477. if (!new)
  3478. return -ENOMEM;
  3479. for_each_online_cpu(i) {
  3480. new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
  3481. batchcount, gfp);
  3482. if (!new->new[i]) {
  3483. for (i--; i >= 0; i--)
  3484. kfree(new->new[i]);
  3485. kfree(new);
  3486. return -ENOMEM;
  3487. }
  3488. }
  3489. new->cachep = cachep;
  3490. on_each_cpu(do_ccupdate_local, (void *)new, 1);
  3491. check_irq_on();
  3492. cachep->batchcount = batchcount;
  3493. cachep->limit = limit;
  3494. cachep->shared = shared;
  3495. for_each_online_cpu(i) {
  3496. struct array_cache *ccold = new->new[i];
  3497. if (!ccold)
  3498. continue;
  3499. spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
  3500. free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
  3501. spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
  3502. kfree(ccold);
  3503. }
  3504. kfree(new);
  3505. return alloc_kmemlist(cachep, gfp);
  3506. }
  3507. /* Called with cache_chain_mutex held always */
  3508. static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
  3509. {
  3510. int err;
  3511. int limit, shared;
  3512. /*
  3513. * The head array serves three purposes:
  3514. * - create a LIFO ordering, i.e. return objects that are cache-warm
  3515. * - reduce the number of spinlock operations.
  3516. * - reduce the number of linked list operations on the slab and
  3517. * bufctl chains: array operations are cheaper.
  3518. * The numbers are guessed, we should auto-tune as described by
  3519. * Bonwick.
  3520. */
  3521. if (cachep->buffer_size > 131072)
  3522. limit = 1;
  3523. else if (cachep->buffer_size > PAGE_SIZE)
  3524. limit = 8;
  3525. else if (cachep->buffer_size > 1024)
  3526. limit = 24;
  3527. else if (cachep->buffer_size > 256)
  3528. limit = 54;
  3529. else
  3530. limit = 120;
  3531. /*
  3532. * CPU bound tasks (e.g. network routing) can exhibit cpu bound
  3533. * allocation behaviour: Most allocs on one cpu, most free operations
  3534. * on another cpu. For these cases, an efficient object passing between
  3535. * cpus is necessary. This is provided by a shared array. The array
  3536. * replaces Bonwick's magazine layer.
  3537. * On uniprocessor, it's functionally equivalent (but less efficient)
  3538. * to a larger limit. Thus disabled by default.
  3539. */
  3540. shared = 0;
  3541. if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
  3542. shared = 8;
  3543. #if DEBUG
  3544. /*
  3545. * With debugging enabled, large batchcount lead to excessively long
  3546. * periods with disabled local interrupts. Limit the batchcount
  3547. */
  3548. if (limit > 32)
  3549. limit = 32;
  3550. #endif
  3551. err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
  3552. if (err)
  3553. printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
  3554. cachep->name, -err);
  3555. return err;
  3556. }
  3557. /*
  3558. * Drain an array if it contains any elements taking the l3 lock only if
  3559. * necessary. Note that the l3 listlock also protects the array_cache
  3560. * if drain_array() is used on the shared array.
  3561. */
  3562. static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  3563. struct array_cache *ac, int force, int node)
  3564. {
  3565. int tofree;
  3566. if (!ac || !ac->avail)
  3567. return;
  3568. if (ac->touched && !force) {
  3569. ac->touched = 0;
  3570. } else {
  3571. spin_lock_irq(&l3->list_lock);
  3572. if (ac->avail) {
  3573. tofree = force ? ac->avail : (ac->limit + 4) / 5;
  3574. if (tofree > ac->avail)
  3575. tofree = (ac->avail + 1) / 2;
  3576. free_block(cachep, ac->entry, tofree, node);
  3577. ac->avail -= tofree;
  3578. memmove(ac->entry, &(ac->entry[tofree]),
  3579. sizeof(void *) * ac->avail);
  3580. }
  3581. spin_unlock_irq(&l3->list_lock);
  3582. }
  3583. }
  3584. /**
  3585. * cache_reap - Reclaim memory from caches.
  3586. * @w: work descriptor
  3587. *
  3588. * Called from workqueue/eventd every few seconds.
  3589. * Purpose:
  3590. * - clear the per-cpu caches for this CPU.
  3591. * - return freeable pages to the main free memory pool.
  3592. *
  3593. * If we cannot acquire the cache chain mutex then just give up - we'll try
  3594. * again on the next iteration.
  3595. */
  3596. static void cache_reap(struct work_struct *w)
  3597. {
  3598. struct kmem_cache *searchp;
  3599. struct kmem_list3 *l3;
  3600. int node = numa_mem_id();
  3601. struct delayed_work *work = to_delayed_work(w);
  3602. if (!mutex_trylock(&cache_chain_mutex))
  3603. /* Give up. Setup the next iteration. */
  3604. goto out;
  3605. list_for_each_entry(searchp, &cache_chain, next) {
  3606. check_irq_on();
  3607. /*
  3608. * We only take the l3 lock if absolutely necessary and we
  3609. * have established with reasonable certainty that
  3610. * we can do some work if the lock was obtained.
  3611. */
  3612. l3 = searchp->nodelists[node];
  3613. reap_alien(searchp, l3);
  3614. drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
  3615. /*
  3616. * These are racy checks but it does not matter
  3617. * if we skip one check or scan twice.
  3618. */
  3619. if (time_after(l3->next_reap, jiffies))
  3620. goto next;
  3621. l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
  3622. drain_array(searchp, l3, l3->shared, 0, node);
  3623. if (l3->free_touched)
  3624. l3->free_touched = 0;
  3625. else {
  3626. int freed;
  3627. freed = drain_freelist(searchp, l3, (l3->free_limit +
  3628. 5 * searchp->num - 1) / (5 * searchp->num));
  3629. STATS_ADD_REAPED(searchp, freed);
  3630. }
  3631. next:
  3632. cond_resched();
  3633. }
  3634. check_irq_on();
  3635. mutex_unlock(&cache_chain_mutex);
  3636. next_reap_node();
  3637. out:
  3638. /* Set up the next iteration */
  3639. schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
  3640. }
  3641. #ifdef CONFIG_SLABINFO
  3642. static void print_slabinfo_header(struct seq_file *m)
  3643. {
  3644. /*
  3645. * Output format version, so at least we can change it
  3646. * without _too_ many complaints.
  3647. */
  3648. #if STATS
  3649. seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
  3650. #else
  3651. seq_puts(m, "slabinfo - version: 2.1\n");
  3652. #endif
  3653. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3654. "<objperslab> <pagesperslab>");
  3655. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3656. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3657. #if STATS
  3658. seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
  3659. "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
  3660. seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
  3661. #endif
  3662. seq_putc(m, '\n');
  3663. }
  3664. static void *s_start(struct seq_file *m, loff_t *pos)
  3665. {
  3666. loff_t n = *pos;
  3667. mutex_lock(&cache_chain_mutex);
  3668. if (!n)
  3669. print_slabinfo_header(m);
  3670. return seq_list_start(&cache_chain, *pos);
  3671. }
  3672. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3673. {
  3674. return seq_list_next(p, &cache_chain, pos);
  3675. }
  3676. static void s_stop(struct seq_file *m, void *p)
  3677. {
  3678. mutex_unlock(&cache_chain_mutex);
  3679. }
  3680. static int s_show(struct seq_file *m, void *p)
  3681. {
  3682. struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
  3683. struct slab *slabp;
  3684. unsigned long active_objs;
  3685. unsigned long num_objs;
  3686. unsigned long active_slabs = 0;
  3687. unsigned long num_slabs, free_objects = 0, shared_avail = 0;
  3688. const char *name;
  3689. char *error = NULL;
  3690. int node;
  3691. struct kmem_list3 *l3;
  3692. active_objs = 0;
  3693. num_slabs = 0;
  3694. for_each_online_node(node) {
  3695. l3 = cachep->nodelists[node];
  3696. if (!l3)
  3697. continue;
  3698. check_irq_on();
  3699. spin_lock_irq(&l3->list_lock);
  3700. list_for_each_entry(slabp, &l3->slabs_full, list) {
  3701. if (slabp->inuse != cachep->num && !error)
  3702. error = "slabs_full accounting error";
  3703. active_objs += cachep->num;
  3704. active_slabs++;
  3705. }
  3706. list_for_each_entry(slabp, &l3->slabs_partial, list) {
  3707. if (slabp->inuse == cachep->num && !error)
  3708. error = "slabs_partial inuse accounting error";
  3709. if (!slabp->inuse && !error)
  3710. error = "slabs_partial/inuse accounting error";
  3711. active_objs += slabp->inuse;
  3712. active_slabs++;
  3713. }
  3714. list_for_each_entry(slabp, &l3->slabs_free, list) {
  3715. if (slabp->inuse && !error)
  3716. error = "slabs_free/inuse accounting error";
  3717. num_slabs++;
  3718. }
  3719. free_objects += l3->free_objects;
  3720. if (l3->shared)
  3721. shared_avail += l3->shared->avail;
  3722. spin_unlock_irq(&l3->list_lock);
  3723. }
  3724. num_slabs += active_slabs;
  3725. num_objs = num_slabs * cachep->num;
  3726. if (num_objs - active_objs != free_objects && !error)
  3727. error = "free_objects accounting error";
  3728. name = cachep->name;
  3729. if (error)
  3730. printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
  3731. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
  3732. name, active_objs, num_objs, cachep->buffer_size,
  3733. cachep->num, (1 << cachep->gfporder));
  3734. seq_printf(m, " : tunables %4u %4u %4u",
  3735. cachep->limit, cachep->batchcount, cachep->shared);
  3736. seq_printf(m, " : slabdata %6lu %6lu %6lu",
  3737. active_slabs, num_slabs, shared_avail);
  3738. #if STATS
  3739. { /* list3 stats */
  3740. unsigned long high = cachep->high_mark;
  3741. unsigned long allocs = cachep->num_allocations;
  3742. unsigned long grown = cachep->grown;
  3743. unsigned long reaped = cachep->reaped;
  3744. unsigned long errors = cachep->errors;
  3745. unsigned long max_freeable = cachep->max_freeable;
  3746. unsigned long node_allocs = cachep->node_allocs;
  3747. unsigned long node_frees = cachep->node_frees;
  3748. unsigned long overflows = cachep->node_overflow;
  3749. seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
  3750. "%4lu %4lu %4lu %4lu %4lu",
  3751. allocs, high, grown,
  3752. reaped, errors, max_freeable, node_allocs,
  3753. node_frees, overflows);
  3754. }
  3755. /* cpu stats */
  3756. {
  3757. unsigned long allochit = atomic_read(&cachep->allochit);
  3758. unsigned long allocmiss = atomic_read(&cachep->allocmiss);
  3759. unsigned long freehit = atomic_read(&cachep->freehit);
  3760. unsigned long freemiss = atomic_read(&cachep->freemiss);
  3761. seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
  3762. allochit, allocmiss, freehit, freemiss);
  3763. }
  3764. #endif
  3765. seq_putc(m, '\n');
  3766. return 0;
  3767. }
  3768. /*
  3769. * slabinfo_op - iterator that generates /proc/slabinfo
  3770. *
  3771. * Output layout:
  3772. * cache-name
  3773. * num-active-objs
  3774. * total-objs
  3775. * object size
  3776. * num-active-slabs
  3777. * total-slabs
  3778. * num-pages-per-slab
  3779. * + further values on SMP and with statistics enabled
  3780. */
  3781. static const struct seq_operations slabinfo_op = {
  3782. .start = s_start,
  3783. .next = s_next,
  3784. .stop = s_stop,
  3785. .show = s_show,
  3786. };
  3787. #define MAX_SLABINFO_WRITE 128
  3788. /**
  3789. * slabinfo_write - Tuning for the slab allocator
  3790. * @file: unused
  3791. * @buffer: user buffer
  3792. * @count: data length
  3793. * @ppos: unused
  3794. */
  3795. static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
  3796. size_t count, loff_t *ppos)
  3797. {
  3798. char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
  3799. int limit, batchcount, shared, res;
  3800. struct kmem_cache *cachep;
  3801. if (count > MAX_SLABINFO_WRITE)
  3802. return -EINVAL;
  3803. if (copy_from_user(&kbuf, buffer, count))
  3804. return -EFAULT;
  3805. kbuf[MAX_SLABINFO_WRITE] = '\0';
  3806. tmp = strchr(kbuf, ' ');
  3807. if (!tmp)
  3808. return -EINVAL;
  3809. *tmp = '\0';
  3810. tmp++;
  3811. if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
  3812. return -EINVAL;
  3813. /* Find the cache in the chain of caches. */
  3814. mutex_lock(&cache_chain_mutex);
  3815. res = -EINVAL;
  3816. list_for_each_entry(cachep, &cache_chain, next) {
  3817. if (!strcmp(cachep->name, kbuf)) {
  3818. if (limit < 1 || batchcount < 1 ||
  3819. batchcount > limit || shared < 0) {
  3820. res = 0;
  3821. } else {
  3822. res = do_tune_cpucache(cachep, limit,
  3823. batchcount, shared,
  3824. GFP_KERNEL);
  3825. }
  3826. break;
  3827. }
  3828. }
  3829. mutex_unlock(&cache_chain_mutex);
  3830. if (res >= 0)
  3831. res = count;
  3832. return res;
  3833. }
  3834. static int slabinfo_open(struct inode *inode, struct file *file)
  3835. {
  3836. return seq_open(file, &slabinfo_op);
  3837. }
  3838. static const struct file_operations proc_slabinfo_operations = {
  3839. .open = slabinfo_open,
  3840. .read = seq_read,
  3841. .write = slabinfo_write,
  3842. .llseek = seq_lseek,
  3843. .release = seq_release,
  3844. };
  3845. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3846. static void *leaks_start(struct seq_file *m, loff_t *pos)
  3847. {
  3848. mutex_lock(&cache_chain_mutex);
  3849. return seq_list_start(&cache_chain, *pos);
  3850. }
  3851. static inline int add_caller(unsigned long *n, unsigned long v)
  3852. {
  3853. unsigned long *p;
  3854. int l;
  3855. if (!v)
  3856. return 1;
  3857. l = n[1];
  3858. p = n + 2;
  3859. while (l) {
  3860. int i = l/2;
  3861. unsigned long *q = p + 2 * i;
  3862. if (*q == v) {
  3863. q[1]++;
  3864. return 1;
  3865. }
  3866. if (*q > v) {
  3867. l = i;
  3868. } else {
  3869. p = q + 2;
  3870. l -= i + 1;
  3871. }
  3872. }
  3873. if (++n[1] == n[0])
  3874. return 0;
  3875. memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
  3876. p[0] = v;
  3877. p[1] = 1;
  3878. return 1;
  3879. }
  3880. static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
  3881. {
  3882. void *p;
  3883. int i;
  3884. if (n[0] == n[1])
  3885. return;
  3886. for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
  3887. if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
  3888. continue;
  3889. if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
  3890. return;
  3891. }
  3892. }
  3893. static void show_symbol(struct seq_file *m, unsigned long address)
  3894. {
  3895. #ifdef CONFIG_KALLSYMS
  3896. unsigned long offset, size;
  3897. char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
  3898. if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
  3899. seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
  3900. if (modname[0])
  3901. seq_printf(m, " [%s]", modname);
  3902. return;
  3903. }
  3904. #endif
  3905. seq_printf(m, "%p", (void *)address);
  3906. }
  3907. static int leaks_show(struct seq_file *m, void *p)
  3908. {
  3909. struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
  3910. struct slab *slabp;
  3911. struct kmem_list3 *l3;
  3912. const char *name;
  3913. unsigned long *n = m->private;
  3914. int node;
  3915. int i;
  3916. if (!(cachep->flags & SLAB_STORE_USER))
  3917. return 0;
  3918. if (!(cachep->flags & SLAB_RED_ZONE))
  3919. return 0;
  3920. /* OK, we can do it */
  3921. n[1] = 0;
  3922. for_each_online_node(node) {
  3923. l3 = cachep->nodelists[node];
  3924. if (!l3)
  3925. continue;
  3926. check_irq_on();
  3927. spin_lock_irq(&l3->list_lock);
  3928. list_for_each_entry(slabp, &l3->slabs_full, list)
  3929. handle_slab(n, cachep, slabp);
  3930. list_for_each_entry(slabp, &l3->slabs_partial, list)
  3931. handle_slab(n, cachep, slabp);
  3932. spin_unlock_irq(&l3->list_lock);
  3933. }
  3934. name = cachep->name;
  3935. if (n[0] == n[1]) {
  3936. /* Increase the buffer size */
  3937. mutex_unlock(&cache_chain_mutex);
  3938. m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
  3939. if (!m->private) {
  3940. /* Too bad, we are really out */
  3941. m->private = n;
  3942. mutex_lock(&cache_chain_mutex);
  3943. return -ENOMEM;
  3944. }
  3945. *(unsigned long *)m->private = n[0] * 2;
  3946. kfree(n);
  3947. mutex_lock(&cache_chain_mutex);
  3948. /* Now make sure this entry will be retried */
  3949. m->count = m->size;
  3950. return 0;
  3951. }
  3952. for (i = 0; i < n[1]; i++) {
  3953. seq_printf(m, "%s: %lu ", name, n[2*i+3]);
  3954. show_symbol(m, n[2*i+2]);
  3955. seq_putc(m, '\n');
  3956. }
  3957. return 0;
  3958. }
  3959. static const struct seq_operations slabstats_op = {
  3960. .start = leaks_start,
  3961. .next = s_next,
  3962. .stop = s_stop,
  3963. .show = leaks_show,
  3964. };
  3965. static int slabstats_open(struct inode *inode, struct file *file)
  3966. {
  3967. unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
  3968. int ret = -ENOMEM;
  3969. if (n) {
  3970. ret = seq_open(file, &slabstats_op);
  3971. if (!ret) {
  3972. struct seq_file *m = file->private_data;
  3973. *n = PAGE_SIZE / (2 * sizeof(unsigned long));
  3974. m->private = n;
  3975. n = NULL;
  3976. }
  3977. kfree(n);
  3978. }
  3979. return ret;
  3980. }
  3981. static const struct file_operations proc_slabstats_operations = {
  3982. .open = slabstats_open,
  3983. .read = seq_read,
  3984. .llseek = seq_lseek,
  3985. .release = seq_release_private,
  3986. };
  3987. #endif
  3988. static int __init slab_proc_init(void)
  3989. {
  3990. proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
  3991. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3992. proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
  3993. #endif
  3994. return 0;
  3995. }
  3996. module_init(slab_proc_init);
  3997. #endif
  3998. /**
  3999. * ksize - get the actual amount of memory allocated for a given object
  4000. * @objp: Pointer to the object
  4001. *
  4002. * kmalloc may internally round up allocations and return more memory
  4003. * than requested. ksize() can be used to determine the actual amount of
  4004. * memory allocated. The caller may use this additional memory, even though
  4005. * a smaller amount of memory was initially specified with the kmalloc call.
  4006. * The caller must guarantee that objp points to a valid object previously
  4007. * allocated with either kmalloc() or kmem_cache_alloc(). The object
  4008. * must not be freed during the duration of the call.
  4009. */
  4010. size_t ksize(const void *objp)
  4011. {
  4012. BUG_ON(!objp);
  4013. if (unlikely(objp == ZERO_SIZE_PTR))
  4014. return 0;
  4015. return obj_size(virt_to_cache(objp));
  4016. }
  4017. EXPORT_SYMBOL(ksize);