kvm_main.c 71 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86_emulate.h"
  19. #include "segment_descriptor.h"
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/gfp.h>
  25. #include <linux/mm.h>
  26. #include <linux/miscdevice.h>
  27. #include <linux/vmalloc.h>
  28. #include <linux/reboot.h>
  29. #include <linux/debugfs.h>
  30. #include <linux/highmem.h>
  31. #include <linux/file.h>
  32. #include <linux/sysdev.h>
  33. #include <linux/cpu.h>
  34. #include <linux/sched.h>
  35. #include <linux/cpumask.h>
  36. #include <linux/smp.h>
  37. #include <linux/anon_inodes.h>
  38. #include <asm/processor.h>
  39. #include <asm/msr.h>
  40. #include <asm/io.h>
  41. #include <asm/uaccess.h>
  42. #include <asm/desc.h>
  43. MODULE_AUTHOR("Qumranet");
  44. MODULE_LICENSE("GPL");
  45. static DEFINE_SPINLOCK(kvm_lock);
  46. static LIST_HEAD(vm_list);
  47. static cpumask_t cpus_hardware_enabled;
  48. struct kvm_arch_ops *kvm_arch_ops;
  49. struct kmem_cache *kvm_vcpu_cache;
  50. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  51. static __read_mostly struct preempt_ops kvm_preempt_ops;
  52. #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
  53. static struct kvm_stats_debugfs_item {
  54. const char *name;
  55. int offset;
  56. struct dentry *dentry;
  57. } debugfs_entries[] = {
  58. { "pf_fixed", STAT_OFFSET(pf_fixed) },
  59. { "pf_guest", STAT_OFFSET(pf_guest) },
  60. { "tlb_flush", STAT_OFFSET(tlb_flush) },
  61. { "invlpg", STAT_OFFSET(invlpg) },
  62. { "exits", STAT_OFFSET(exits) },
  63. { "io_exits", STAT_OFFSET(io_exits) },
  64. { "mmio_exits", STAT_OFFSET(mmio_exits) },
  65. { "signal_exits", STAT_OFFSET(signal_exits) },
  66. { "irq_window", STAT_OFFSET(irq_window_exits) },
  67. { "halt_exits", STAT_OFFSET(halt_exits) },
  68. { "request_irq", STAT_OFFSET(request_irq_exits) },
  69. { "irq_exits", STAT_OFFSET(irq_exits) },
  70. { "light_exits", STAT_OFFSET(light_exits) },
  71. { "efer_reload", STAT_OFFSET(efer_reload) },
  72. { NULL }
  73. };
  74. static struct dentry *debugfs_dir;
  75. #define MAX_IO_MSRS 256
  76. #define CR0_RESERVED_BITS \
  77. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  78. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  79. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  80. #define CR4_RESERVED_BITS \
  81. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  82. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  83. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  84. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  85. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  86. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  87. #ifdef CONFIG_X86_64
  88. // LDT or TSS descriptor in the GDT. 16 bytes.
  89. struct segment_descriptor_64 {
  90. struct segment_descriptor s;
  91. u32 base_higher;
  92. u32 pad_zero;
  93. };
  94. #endif
  95. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  96. unsigned long arg);
  97. unsigned long segment_base(u16 selector)
  98. {
  99. struct descriptor_table gdt;
  100. struct segment_descriptor *d;
  101. unsigned long table_base;
  102. typedef unsigned long ul;
  103. unsigned long v;
  104. if (selector == 0)
  105. return 0;
  106. asm ("sgdt %0" : "=m"(gdt));
  107. table_base = gdt.base;
  108. if (selector & 4) { /* from ldt */
  109. u16 ldt_selector;
  110. asm ("sldt %0" : "=g"(ldt_selector));
  111. table_base = segment_base(ldt_selector);
  112. }
  113. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  114. v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
  115. #ifdef CONFIG_X86_64
  116. if (d->system == 0
  117. && (d->type == 2 || d->type == 9 || d->type == 11))
  118. v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
  119. #endif
  120. return v;
  121. }
  122. EXPORT_SYMBOL_GPL(segment_base);
  123. static inline int valid_vcpu(int n)
  124. {
  125. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  126. }
  127. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  128. {
  129. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  130. return;
  131. vcpu->guest_fpu_loaded = 1;
  132. fx_save(&vcpu->host_fx_image);
  133. fx_restore(&vcpu->guest_fx_image);
  134. }
  135. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  136. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  137. {
  138. if (!vcpu->guest_fpu_loaded)
  139. return;
  140. vcpu->guest_fpu_loaded = 0;
  141. fx_save(&vcpu->guest_fx_image);
  142. fx_restore(&vcpu->host_fx_image);
  143. }
  144. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  145. /*
  146. * Switches to specified vcpu, until a matching vcpu_put()
  147. */
  148. static void vcpu_load(struct kvm_vcpu *vcpu)
  149. {
  150. int cpu;
  151. mutex_lock(&vcpu->mutex);
  152. cpu = get_cpu();
  153. preempt_notifier_register(&vcpu->preempt_notifier);
  154. kvm_arch_ops->vcpu_load(vcpu, cpu);
  155. put_cpu();
  156. }
  157. static void vcpu_put(struct kvm_vcpu *vcpu)
  158. {
  159. preempt_disable();
  160. kvm_arch_ops->vcpu_put(vcpu);
  161. preempt_notifier_unregister(&vcpu->preempt_notifier);
  162. preempt_enable();
  163. mutex_unlock(&vcpu->mutex);
  164. }
  165. static void ack_flush(void *_completed)
  166. {
  167. atomic_t *completed = _completed;
  168. atomic_inc(completed);
  169. }
  170. void kvm_flush_remote_tlbs(struct kvm *kvm)
  171. {
  172. int i, cpu, needed;
  173. cpumask_t cpus;
  174. struct kvm_vcpu *vcpu;
  175. atomic_t completed;
  176. atomic_set(&completed, 0);
  177. cpus_clear(cpus);
  178. needed = 0;
  179. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  180. vcpu = kvm->vcpus[i];
  181. if (!vcpu)
  182. continue;
  183. if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
  184. continue;
  185. cpu = vcpu->cpu;
  186. if (cpu != -1 && cpu != raw_smp_processor_id())
  187. if (!cpu_isset(cpu, cpus)) {
  188. cpu_set(cpu, cpus);
  189. ++needed;
  190. }
  191. }
  192. /*
  193. * We really want smp_call_function_mask() here. But that's not
  194. * available, so ipi all cpus in parallel and wait for them
  195. * to complete.
  196. */
  197. for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus))
  198. smp_call_function_single(cpu, ack_flush, &completed, 1, 0);
  199. while (atomic_read(&completed) != needed) {
  200. cpu_relax();
  201. barrier();
  202. }
  203. }
  204. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  205. {
  206. struct page *page;
  207. int r;
  208. mutex_init(&vcpu->mutex);
  209. vcpu->cpu = -1;
  210. vcpu->mmu.root_hpa = INVALID_PAGE;
  211. vcpu->kvm = kvm;
  212. vcpu->vcpu_id = id;
  213. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  214. if (!page) {
  215. r = -ENOMEM;
  216. goto fail;
  217. }
  218. vcpu->run = page_address(page);
  219. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  220. if (!page) {
  221. r = -ENOMEM;
  222. goto fail_free_run;
  223. }
  224. vcpu->pio_data = page_address(page);
  225. r = kvm_mmu_create(vcpu);
  226. if (r < 0)
  227. goto fail_free_pio_data;
  228. return 0;
  229. fail_free_pio_data:
  230. free_page((unsigned long)vcpu->pio_data);
  231. fail_free_run:
  232. free_page((unsigned long)vcpu->run);
  233. fail:
  234. return -ENOMEM;
  235. }
  236. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  237. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  238. {
  239. kvm_mmu_destroy(vcpu);
  240. free_page((unsigned long)vcpu->pio_data);
  241. free_page((unsigned long)vcpu->run);
  242. }
  243. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  244. static struct kvm *kvm_create_vm(void)
  245. {
  246. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  247. if (!kvm)
  248. return ERR_PTR(-ENOMEM);
  249. kvm_io_bus_init(&kvm->pio_bus);
  250. mutex_init(&kvm->lock);
  251. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  252. kvm_io_bus_init(&kvm->mmio_bus);
  253. spin_lock(&kvm_lock);
  254. list_add(&kvm->vm_list, &vm_list);
  255. spin_unlock(&kvm_lock);
  256. return kvm;
  257. }
  258. static int kvm_dev_open(struct inode *inode, struct file *filp)
  259. {
  260. return 0;
  261. }
  262. /*
  263. * Free any memory in @free but not in @dont.
  264. */
  265. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  266. struct kvm_memory_slot *dont)
  267. {
  268. int i;
  269. if (!dont || free->phys_mem != dont->phys_mem)
  270. if (free->phys_mem) {
  271. for (i = 0; i < free->npages; ++i)
  272. if (free->phys_mem[i])
  273. __free_page(free->phys_mem[i]);
  274. vfree(free->phys_mem);
  275. }
  276. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  277. vfree(free->dirty_bitmap);
  278. free->phys_mem = NULL;
  279. free->npages = 0;
  280. free->dirty_bitmap = NULL;
  281. }
  282. static void kvm_free_physmem(struct kvm *kvm)
  283. {
  284. int i;
  285. for (i = 0; i < kvm->nmemslots; ++i)
  286. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  287. }
  288. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  289. {
  290. int i;
  291. for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
  292. if (vcpu->pio.guest_pages[i]) {
  293. __free_page(vcpu->pio.guest_pages[i]);
  294. vcpu->pio.guest_pages[i] = NULL;
  295. }
  296. }
  297. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  298. {
  299. vcpu_load(vcpu);
  300. kvm_mmu_unload(vcpu);
  301. vcpu_put(vcpu);
  302. }
  303. static void kvm_free_vcpus(struct kvm *kvm)
  304. {
  305. unsigned int i;
  306. /*
  307. * Unpin any mmu pages first.
  308. */
  309. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  310. if (kvm->vcpus[i])
  311. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  312. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  313. if (kvm->vcpus[i]) {
  314. kvm_arch_ops->vcpu_free(kvm->vcpus[i]);
  315. kvm->vcpus[i] = NULL;
  316. }
  317. }
  318. }
  319. static int kvm_dev_release(struct inode *inode, struct file *filp)
  320. {
  321. return 0;
  322. }
  323. static void kvm_destroy_vm(struct kvm *kvm)
  324. {
  325. spin_lock(&kvm_lock);
  326. list_del(&kvm->vm_list);
  327. spin_unlock(&kvm_lock);
  328. kvm_io_bus_destroy(&kvm->pio_bus);
  329. kvm_io_bus_destroy(&kvm->mmio_bus);
  330. kvm_free_vcpus(kvm);
  331. kvm_free_physmem(kvm);
  332. kfree(kvm);
  333. }
  334. static int kvm_vm_release(struct inode *inode, struct file *filp)
  335. {
  336. struct kvm *kvm = filp->private_data;
  337. kvm_destroy_vm(kvm);
  338. return 0;
  339. }
  340. static void inject_gp(struct kvm_vcpu *vcpu)
  341. {
  342. kvm_arch_ops->inject_gp(vcpu, 0);
  343. }
  344. /*
  345. * Load the pae pdptrs. Return true is they are all valid.
  346. */
  347. static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  348. {
  349. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  350. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  351. int i;
  352. u64 *pdpt;
  353. int ret;
  354. struct page *page;
  355. u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
  356. mutex_lock(&vcpu->kvm->lock);
  357. page = gfn_to_page(vcpu->kvm, pdpt_gfn);
  358. if (!page) {
  359. ret = 0;
  360. goto out;
  361. }
  362. pdpt = kmap_atomic(page, KM_USER0);
  363. memcpy(pdpte, pdpt+offset, sizeof(pdpte));
  364. kunmap_atomic(pdpt, KM_USER0);
  365. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  366. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  367. ret = 0;
  368. goto out;
  369. }
  370. }
  371. ret = 1;
  372. memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
  373. out:
  374. mutex_unlock(&vcpu->kvm->lock);
  375. return ret;
  376. }
  377. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  378. {
  379. if (cr0 & CR0_RESERVED_BITS) {
  380. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  381. cr0, vcpu->cr0);
  382. inject_gp(vcpu);
  383. return;
  384. }
  385. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  386. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  387. inject_gp(vcpu);
  388. return;
  389. }
  390. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  391. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  392. "and a clear PE flag\n");
  393. inject_gp(vcpu);
  394. return;
  395. }
  396. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  397. #ifdef CONFIG_X86_64
  398. if ((vcpu->shadow_efer & EFER_LME)) {
  399. int cs_db, cs_l;
  400. if (!is_pae(vcpu)) {
  401. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  402. "in long mode while PAE is disabled\n");
  403. inject_gp(vcpu);
  404. return;
  405. }
  406. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  407. if (cs_l) {
  408. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  409. "in long mode while CS.L == 1\n");
  410. inject_gp(vcpu);
  411. return;
  412. }
  413. } else
  414. #endif
  415. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  416. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  417. "reserved bits\n");
  418. inject_gp(vcpu);
  419. return;
  420. }
  421. }
  422. kvm_arch_ops->set_cr0(vcpu, cr0);
  423. vcpu->cr0 = cr0;
  424. mutex_lock(&vcpu->kvm->lock);
  425. kvm_mmu_reset_context(vcpu);
  426. mutex_unlock(&vcpu->kvm->lock);
  427. return;
  428. }
  429. EXPORT_SYMBOL_GPL(set_cr0);
  430. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  431. {
  432. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  433. }
  434. EXPORT_SYMBOL_GPL(lmsw);
  435. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  436. {
  437. if (cr4 & CR4_RESERVED_BITS) {
  438. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  439. inject_gp(vcpu);
  440. return;
  441. }
  442. if (is_long_mode(vcpu)) {
  443. if (!(cr4 & X86_CR4_PAE)) {
  444. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  445. "in long mode\n");
  446. inject_gp(vcpu);
  447. return;
  448. }
  449. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  450. && !load_pdptrs(vcpu, vcpu->cr3)) {
  451. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  452. inject_gp(vcpu);
  453. return;
  454. }
  455. if (cr4 & X86_CR4_VMXE) {
  456. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  457. inject_gp(vcpu);
  458. return;
  459. }
  460. kvm_arch_ops->set_cr4(vcpu, cr4);
  461. mutex_lock(&vcpu->kvm->lock);
  462. kvm_mmu_reset_context(vcpu);
  463. mutex_unlock(&vcpu->kvm->lock);
  464. }
  465. EXPORT_SYMBOL_GPL(set_cr4);
  466. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  467. {
  468. if (is_long_mode(vcpu)) {
  469. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  470. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  471. inject_gp(vcpu);
  472. return;
  473. }
  474. } else {
  475. if (is_pae(vcpu)) {
  476. if (cr3 & CR3_PAE_RESERVED_BITS) {
  477. printk(KERN_DEBUG
  478. "set_cr3: #GP, reserved bits\n");
  479. inject_gp(vcpu);
  480. return;
  481. }
  482. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  483. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  484. "reserved bits\n");
  485. inject_gp(vcpu);
  486. return;
  487. }
  488. } else {
  489. if (cr3 & CR3_NONPAE_RESERVED_BITS) {
  490. printk(KERN_DEBUG
  491. "set_cr3: #GP, reserved bits\n");
  492. inject_gp(vcpu);
  493. return;
  494. }
  495. }
  496. }
  497. mutex_lock(&vcpu->kvm->lock);
  498. /*
  499. * Does the new cr3 value map to physical memory? (Note, we
  500. * catch an invalid cr3 even in real-mode, because it would
  501. * cause trouble later on when we turn on paging anyway.)
  502. *
  503. * A real CPU would silently accept an invalid cr3 and would
  504. * attempt to use it - with largely undefined (and often hard
  505. * to debug) behavior on the guest side.
  506. */
  507. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  508. inject_gp(vcpu);
  509. else {
  510. vcpu->cr3 = cr3;
  511. vcpu->mmu.new_cr3(vcpu);
  512. }
  513. mutex_unlock(&vcpu->kvm->lock);
  514. }
  515. EXPORT_SYMBOL_GPL(set_cr3);
  516. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  517. {
  518. if (cr8 & CR8_RESERVED_BITS) {
  519. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  520. inject_gp(vcpu);
  521. return;
  522. }
  523. vcpu->cr8 = cr8;
  524. }
  525. EXPORT_SYMBOL_GPL(set_cr8);
  526. void fx_init(struct kvm_vcpu *vcpu)
  527. {
  528. unsigned after_mxcsr_mask;
  529. /* Initialize guest FPU by resetting ours and saving into guest's */
  530. preempt_disable();
  531. fx_save(&vcpu->host_fx_image);
  532. fpu_init();
  533. fx_save(&vcpu->guest_fx_image);
  534. fx_restore(&vcpu->host_fx_image);
  535. preempt_enable();
  536. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  537. vcpu->guest_fx_image.mxcsr = 0x1f80;
  538. memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
  539. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  540. }
  541. EXPORT_SYMBOL_GPL(fx_init);
  542. /*
  543. * Allocate some memory and give it an address in the guest physical address
  544. * space.
  545. *
  546. * Discontiguous memory is allowed, mostly for framebuffers.
  547. */
  548. static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  549. struct kvm_memory_region *mem)
  550. {
  551. int r;
  552. gfn_t base_gfn;
  553. unsigned long npages;
  554. unsigned long i;
  555. struct kvm_memory_slot *memslot;
  556. struct kvm_memory_slot old, new;
  557. int memory_config_version;
  558. r = -EINVAL;
  559. /* General sanity checks */
  560. if (mem->memory_size & (PAGE_SIZE - 1))
  561. goto out;
  562. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  563. goto out;
  564. if (mem->slot >= KVM_MEMORY_SLOTS)
  565. goto out;
  566. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  567. goto out;
  568. memslot = &kvm->memslots[mem->slot];
  569. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  570. npages = mem->memory_size >> PAGE_SHIFT;
  571. if (!npages)
  572. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  573. raced:
  574. mutex_lock(&kvm->lock);
  575. memory_config_version = kvm->memory_config_version;
  576. new = old = *memslot;
  577. new.base_gfn = base_gfn;
  578. new.npages = npages;
  579. new.flags = mem->flags;
  580. /* Disallow changing a memory slot's size. */
  581. r = -EINVAL;
  582. if (npages && old.npages && npages != old.npages)
  583. goto out_unlock;
  584. /* Check for overlaps */
  585. r = -EEXIST;
  586. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  587. struct kvm_memory_slot *s = &kvm->memslots[i];
  588. if (s == memslot)
  589. continue;
  590. if (!((base_gfn + npages <= s->base_gfn) ||
  591. (base_gfn >= s->base_gfn + s->npages)))
  592. goto out_unlock;
  593. }
  594. /*
  595. * Do memory allocations outside lock. memory_config_version will
  596. * detect any races.
  597. */
  598. mutex_unlock(&kvm->lock);
  599. /* Deallocate if slot is being removed */
  600. if (!npages)
  601. new.phys_mem = NULL;
  602. /* Free page dirty bitmap if unneeded */
  603. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  604. new.dirty_bitmap = NULL;
  605. r = -ENOMEM;
  606. /* Allocate if a slot is being created */
  607. if (npages && !new.phys_mem) {
  608. new.phys_mem = vmalloc(npages * sizeof(struct page *));
  609. if (!new.phys_mem)
  610. goto out_free;
  611. memset(new.phys_mem, 0, npages * sizeof(struct page *));
  612. for (i = 0; i < npages; ++i) {
  613. new.phys_mem[i] = alloc_page(GFP_HIGHUSER
  614. | __GFP_ZERO);
  615. if (!new.phys_mem[i])
  616. goto out_free;
  617. set_page_private(new.phys_mem[i],0);
  618. }
  619. }
  620. /* Allocate page dirty bitmap if needed */
  621. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  622. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  623. new.dirty_bitmap = vmalloc(dirty_bytes);
  624. if (!new.dirty_bitmap)
  625. goto out_free;
  626. memset(new.dirty_bitmap, 0, dirty_bytes);
  627. }
  628. mutex_lock(&kvm->lock);
  629. if (memory_config_version != kvm->memory_config_version) {
  630. mutex_unlock(&kvm->lock);
  631. kvm_free_physmem_slot(&new, &old);
  632. goto raced;
  633. }
  634. r = -EAGAIN;
  635. if (kvm->busy)
  636. goto out_unlock;
  637. if (mem->slot >= kvm->nmemslots)
  638. kvm->nmemslots = mem->slot + 1;
  639. *memslot = new;
  640. ++kvm->memory_config_version;
  641. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  642. kvm_flush_remote_tlbs(kvm);
  643. mutex_unlock(&kvm->lock);
  644. kvm_free_physmem_slot(&old, &new);
  645. return 0;
  646. out_unlock:
  647. mutex_unlock(&kvm->lock);
  648. out_free:
  649. kvm_free_physmem_slot(&new, &old);
  650. out:
  651. return r;
  652. }
  653. /*
  654. * Get (and clear) the dirty memory log for a memory slot.
  655. */
  656. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  657. struct kvm_dirty_log *log)
  658. {
  659. struct kvm_memory_slot *memslot;
  660. int r, i;
  661. int n;
  662. unsigned long any = 0;
  663. mutex_lock(&kvm->lock);
  664. /*
  665. * Prevent changes to guest memory configuration even while the lock
  666. * is not taken.
  667. */
  668. ++kvm->busy;
  669. mutex_unlock(&kvm->lock);
  670. r = -EINVAL;
  671. if (log->slot >= KVM_MEMORY_SLOTS)
  672. goto out;
  673. memslot = &kvm->memslots[log->slot];
  674. r = -ENOENT;
  675. if (!memslot->dirty_bitmap)
  676. goto out;
  677. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  678. for (i = 0; !any && i < n/sizeof(long); ++i)
  679. any = memslot->dirty_bitmap[i];
  680. r = -EFAULT;
  681. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  682. goto out;
  683. /* If nothing is dirty, don't bother messing with page tables. */
  684. if (any) {
  685. mutex_lock(&kvm->lock);
  686. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  687. kvm_flush_remote_tlbs(kvm);
  688. memset(memslot->dirty_bitmap, 0, n);
  689. mutex_unlock(&kvm->lock);
  690. }
  691. r = 0;
  692. out:
  693. mutex_lock(&kvm->lock);
  694. --kvm->busy;
  695. mutex_unlock(&kvm->lock);
  696. return r;
  697. }
  698. /*
  699. * Set a new alias region. Aliases map a portion of physical memory into
  700. * another portion. This is useful for memory windows, for example the PC
  701. * VGA region.
  702. */
  703. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  704. struct kvm_memory_alias *alias)
  705. {
  706. int r, n;
  707. struct kvm_mem_alias *p;
  708. r = -EINVAL;
  709. /* General sanity checks */
  710. if (alias->memory_size & (PAGE_SIZE - 1))
  711. goto out;
  712. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  713. goto out;
  714. if (alias->slot >= KVM_ALIAS_SLOTS)
  715. goto out;
  716. if (alias->guest_phys_addr + alias->memory_size
  717. < alias->guest_phys_addr)
  718. goto out;
  719. if (alias->target_phys_addr + alias->memory_size
  720. < alias->target_phys_addr)
  721. goto out;
  722. mutex_lock(&kvm->lock);
  723. p = &kvm->aliases[alias->slot];
  724. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  725. p->npages = alias->memory_size >> PAGE_SHIFT;
  726. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  727. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  728. if (kvm->aliases[n - 1].npages)
  729. break;
  730. kvm->naliases = n;
  731. kvm_mmu_zap_all(kvm);
  732. mutex_unlock(&kvm->lock);
  733. return 0;
  734. out:
  735. return r;
  736. }
  737. static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  738. {
  739. int i;
  740. struct kvm_mem_alias *alias;
  741. for (i = 0; i < kvm->naliases; ++i) {
  742. alias = &kvm->aliases[i];
  743. if (gfn >= alias->base_gfn
  744. && gfn < alias->base_gfn + alias->npages)
  745. return alias->target_gfn + gfn - alias->base_gfn;
  746. }
  747. return gfn;
  748. }
  749. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  750. {
  751. int i;
  752. for (i = 0; i < kvm->nmemslots; ++i) {
  753. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  754. if (gfn >= memslot->base_gfn
  755. && gfn < memslot->base_gfn + memslot->npages)
  756. return memslot;
  757. }
  758. return NULL;
  759. }
  760. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  761. {
  762. gfn = unalias_gfn(kvm, gfn);
  763. return __gfn_to_memslot(kvm, gfn);
  764. }
  765. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  766. {
  767. struct kvm_memory_slot *slot;
  768. gfn = unalias_gfn(kvm, gfn);
  769. slot = __gfn_to_memslot(kvm, gfn);
  770. if (!slot)
  771. return NULL;
  772. return slot->phys_mem[gfn - slot->base_gfn];
  773. }
  774. EXPORT_SYMBOL_GPL(gfn_to_page);
  775. /* WARNING: Does not work on aliased pages. */
  776. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  777. {
  778. struct kvm_memory_slot *memslot;
  779. memslot = __gfn_to_memslot(kvm, gfn);
  780. if (memslot && memslot->dirty_bitmap) {
  781. unsigned long rel_gfn = gfn - memslot->base_gfn;
  782. /* avoid RMW */
  783. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  784. set_bit(rel_gfn, memslot->dirty_bitmap);
  785. }
  786. }
  787. int emulator_read_std(unsigned long addr,
  788. void *val,
  789. unsigned int bytes,
  790. struct kvm_vcpu *vcpu)
  791. {
  792. void *data = val;
  793. while (bytes) {
  794. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  795. unsigned offset = addr & (PAGE_SIZE-1);
  796. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  797. unsigned long pfn;
  798. struct page *page;
  799. void *page_virt;
  800. if (gpa == UNMAPPED_GVA)
  801. return X86EMUL_PROPAGATE_FAULT;
  802. pfn = gpa >> PAGE_SHIFT;
  803. page = gfn_to_page(vcpu->kvm, pfn);
  804. if (!page)
  805. return X86EMUL_UNHANDLEABLE;
  806. page_virt = kmap_atomic(page, KM_USER0);
  807. memcpy(data, page_virt + offset, tocopy);
  808. kunmap_atomic(page_virt, KM_USER0);
  809. bytes -= tocopy;
  810. data += tocopy;
  811. addr += tocopy;
  812. }
  813. return X86EMUL_CONTINUE;
  814. }
  815. EXPORT_SYMBOL_GPL(emulator_read_std);
  816. static int emulator_write_std(unsigned long addr,
  817. const void *val,
  818. unsigned int bytes,
  819. struct kvm_vcpu *vcpu)
  820. {
  821. printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
  822. addr, bytes);
  823. return X86EMUL_UNHANDLEABLE;
  824. }
  825. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  826. gpa_t addr)
  827. {
  828. /*
  829. * Note that its important to have this wrapper function because
  830. * in the very near future we will be checking for MMIOs against
  831. * the LAPIC as well as the general MMIO bus
  832. */
  833. return kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  834. }
  835. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  836. gpa_t addr)
  837. {
  838. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  839. }
  840. static int emulator_read_emulated(unsigned long addr,
  841. void *val,
  842. unsigned int bytes,
  843. struct kvm_vcpu *vcpu)
  844. {
  845. struct kvm_io_device *mmio_dev;
  846. gpa_t gpa;
  847. if (vcpu->mmio_read_completed) {
  848. memcpy(val, vcpu->mmio_data, bytes);
  849. vcpu->mmio_read_completed = 0;
  850. return X86EMUL_CONTINUE;
  851. } else if (emulator_read_std(addr, val, bytes, vcpu)
  852. == X86EMUL_CONTINUE)
  853. return X86EMUL_CONTINUE;
  854. gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  855. if (gpa == UNMAPPED_GVA)
  856. return X86EMUL_PROPAGATE_FAULT;
  857. /*
  858. * Is this MMIO handled locally?
  859. */
  860. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  861. if (mmio_dev) {
  862. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  863. return X86EMUL_CONTINUE;
  864. }
  865. vcpu->mmio_needed = 1;
  866. vcpu->mmio_phys_addr = gpa;
  867. vcpu->mmio_size = bytes;
  868. vcpu->mmio_is_write = 0;
  869. return X86EMUL_UNHANDLEABLE;
  870. }
  871. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  872. const void *val, int bytes)
  873. {
  874. struct page *page;
  875. void *virt;
  876. if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
  877. return 0;
  878. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  879. if (!page)
  880. return 0;
  881. mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
  882. virt = kmap_atomic(page, KM_USER0);
  883. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  884. memcpy(virt + offset_in_page(gpa), val, bytes);
  885. kunmap_atomic(virt, KM_USER0);
  886. return 1;
  887. }
  888. static int emulator_write_emulated_onepage(unsigned long addr,
  889. const void *val,
  890. unsigned int bytes,
  891. struct kvm_vcpu *vcpu)
  892. {
  893. struct kvm_io_device *mmio_dev;
  894. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  895. if (gpa == UNMAPPED_GVA) {
  896. kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
  897. return X86EMUL_PROPAGATE_FAULT;
  898. }
  899. if (emulator_write_phys(vcpu, gpa, val, bytes))
  900. return X86EMUL_CONTINUE;
  901. /*
  902. * Is this MMIO handled locally?
  903. */
  904. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  905. if (mmio_dev) {
  906. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  907. return X86EMUL_CONTINUE;
  908. }
  909. vcpu->mmio_needed = 1;
  910. vcpu->mmio_phys_addr = gpa;
  911. vcpu->mmio_size = bytes;
  912. vcpu->mmio_is_write = 1;
  913. memcpy(vcpu->mmio_data, val, bytes);
  914. return X86EMUL_CONTINUE;
  915. }
  916. int emulator_write_emulated(unsigned long addr,
  917. const void *val,
  918. unsigned int bytes,
  919. struct kvm_vcpu *vcpu)
  920. {
  921. /* Crossing a page boundary? */
  922. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  923. int rc, now;
  924. now = -addr & ~PAGE_MASK;
  925. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  926. if (rc != X86EMUL_CONTINUE)
  927. return rc;
  928. addr += now;
  929. val += now;
  930. bytes -= now;
  931. }
  932. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  933. }
  934. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  935. static int emulator_cmpxchg_emulated(unsigned long addr,
  936. const void *old,
  937. const void *new,
  938. unsigned int bytes,
  939. struct kvm_vcpu *vcpu)
  940. {
  941. static int reported;
  942. if (!reported) {
  943. reported = 1;
  944. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  945. }
  946. return emulator_write_emulated(addr, new, bytes, vcpu);
  947. }
  948. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  949. {
  950. return kvm_arch_ops->get_segment_base(vcpu, seg);
  951. }
  952. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  953. {
  954. return X86EMUL_CONTINUE;
  955. }
  956. int emulate_clts(struct kvm_vcpu *vcpu)
  957. {
  958. unsigned long cr0;
  959. cr0 = vcpu->cr0 & ~X86_CR0_TS;
  960. kvm_arch_ops->set_cr0(vcpu, cr0);
  961. return X86EMUL_CONTINUE;
  962. }
  963. int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
  964. {
  965. struct kvm_vcpu *vcpu = ctxt->vcpu;
  966. switch (dr) {
  967. case 0 ... 3:
  968. *dest = kvm_arch_ops->get_dr(vcpu, dr);
  969. return X86EMUL_CONTINUE;
  970. default:
  971. printk(KERN_DEBUG "%s: unexpected dr %u\n",
  972. __FUNCTION__, dr);
  973. return X86EMUL_UNHANDLEABLE;
  974. }
  975. }
  976. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  977. {
  978. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  979. int exception;
  980. kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  981. if (exception) {
  982. /* FIXME: better handling */
  983. return X86EMUL_UNHANDLEABLE;
  984. }
  985. return X86EMUL_CONTINUE;
  986. }
  987. static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
  988. {
  989. static int reported;
  990. u8 opcodes[4];
  991. unsigned long rip = ctxt->vcpu->rip;
  992. unsigned long rip_linear;
  993. rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
  994. if (reported)
  995. return;
  996. emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt->vcpu);
  997. printk(KERN_ERR "emulation failed but !mmio_needed?"
  998. " rip %lx %02x %02x %02x %02x\n",
  999. rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1000. reported = 1;
  1001. }
  1002. struct x86_emulate_ops emulate_ops = {
  1003. .read_std = emulator_read_std,
  1004. .write_std = emulator_write_std,
  1005. .read_emulated = emulator_read_emulated,
  1006. .write_emulated = emulator_write_emulated,
  1007. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1008. };
  1009. int emulate_instruction(struct kvm_vcpu *vcpu,
  1010. struct kvm_run *run,
  1011. unsigned long cr2,
  1012. u16 error_code)
  1013. {
  1014. struct x86_emulate_ctxt emulate_ctxt;
  1015. int r;
  1016. int cs_db, cs_l;
  1017. vcpu->mmio_fault_cr2 = cr2;
  1018. kvm_arch_ops->cache_regs(vcpu);
  1019. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1020. emulate_ctxt.vcpu = vcpu;
  1021. emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
  1022. emulate_ctxt.cr2 = cr2;
  1023. emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
  1024. ? X86EMUL_MODE_REAL : cs_l
  1025. ? X86EMUL_MODE_PROT64 : cs_db
  1026. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1027. if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1028. emulate_ctxt.cs_base = 0;
  1029. emulate_ctxt.ds_base = 0;
  1030. emulate_ctxt.es_base = 0;
  1031. emulate_ctxt.ss_base = 0;
  1032. } else {
  1033. emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
  1034. emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
  1035. emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
  1036. emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
  1037. }
  1038. emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
  1039. emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
  1040. vcpu->mmio_is_write = 0;
  1041. r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
  1042. if ((r || vcpu->mmio_is_write) && run) {
  1043. run->exit_reason = KVM_EXIT_MMIO;
  1044. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1045. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1046. run->mmio.len = vcpu->mmio_size;
  1047. run->mmio.is_write = vcpu->mmio_is_write;
  1048. }
  1049. if (r) {
  1050. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1051. return EMULATE_DONE;
  1052. if (!vcpu->mmio_needed) {
  1053. report_emulation_failure(&emulate_ctxt);
  1054. return EMULATE_FAIL;
  1055. }
  1056. return EMULATE_DO_MMIO;
  1057. }
  1058. kvm_arch_ops->decache_regs(vcpu);
  1059. kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
  1060. if (vcpu->mmio_is_write) {
  1061. vcpu->mmio_needed = 0;
  1062. return EMULATE_DO_MMIO;
  1063. }
  1064. return EMULATE_DONE;
  1065. }
  1066. EXPORT_SYMBOL_GPL(emulate_instruction);
  1067. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  1068. {
  1069. if (vcpu->irq_summary)
  1070. return 1;
  1071. vcpu->run->exit_reason = KVM_EXIT_HLT;
  1072. ++vcpu->stat.halt_exits;
  1073. return 0;
  1074. }
  1075. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  1076. int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
  1077. {
  1078. unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
  1079. kvm_arch_ops->cache_regs(vcpu);
  1080. ret = -KVM_EINVAL;
  1081. #ifdef CONFIG_X86_64
  1082. if (is_long_mode(vcpu)) {
  1083. nr = vcpu->regs[VCPU_REGS_RAX];
  1084. a0 = vcpu->regs[VCPU_REGS_RDI];
  1085. a1 = vcpu->regs[VCPU_REGS_RSI];
  1086. a2 = vcpu->regs[VCPU_REGS_RDX];
  1087. a3 = vcpu->regs[VCPU_REGS_RCX];
  1088. a4 = vcpu->regs[VCPU_REGS_R8];
  1089. a5 = vcpu->regs[VCPU_REGS_R9];
  1090. } else
  1091. #endif
  1092. {
  1093. nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
  1094. a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
  1095. a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
  1096. a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
  1097. a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
  1098. a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
  1099. a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
  1100. }
  1101. switch (nr) {
  1102. default:
  1103. run->hypercall.nr = nr;
  1104. run->hypercall.args[0] = a0;
  1105. run->hypercall.args[1] = a1;
  1106. run->hypercall.args[2] = a2;
  1107. run->hypercall.args[3] = a3;
  1108. run->hypercall.args[4] = a4;
  1109. run->hypercall.args[5] = a5;
  1110. run->hypercall.ret = ret;
  1111. run->hypercall.longmode = is_long_mode(vcpu);
  1112. kvm_arch_ops->decache_regs(vcpu);
  1113. return 0;
  1114. }
  1115. vcpu->regs[VCPU_REGS_RAX] = ret;
  1116. kvm_arch_ops->decache_regs(vcpu);
  1117. return 1;
  1118. }
  1119. EXPORT_SYMBOL_GPL(kvm_hypercall);
  1120. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1121. {
  1122. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1123. }
  1124. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1125. {
  1126. struct descriptor_table dt = { limit, base };
  1127. kvm_arch_ops->set_gdt(vcpu, &dt);
  1128. }
  1129. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1130. {
  1131. struct descriptor_table dt = { limit, base };
  1132. kvm_arch_ops->set_idt(vcpu, &dt);
  1133. }
  1134. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1135. unsigned long *rflags)
  1136. {
  1137. lmsw(vcpu, msw);
  1138. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1139. }
  1140. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1141. {
  1142. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1143. switch (cr) {
  1144. case 0:
  1145. return vcpu->cr0;
  1146. case 2:
  1147. return vcpu->cr2;
  1148. case 3:
  1149. return vcpu->cr3;
  1150. case 4:
  1151. return vcpu->cr4;
  1152. default:
  1153. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1154. return 0;
  1155. }
  1156. }
  1157. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1158. unsigned long *rflags)
  1159. {
  1160. switch (cr) {
  1161. case 0:
  1162. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1163. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1164. break;
  1165. case 2:
  1166. vcpu->cr2 = val;
  1167. break;
  1168. case 3:
  1169. set_cr3(vcpu, val);
  1170. break;
  1171. case 4:
  1172. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1173. break;
  1174. default:
  1175. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1176. }
  1177. }
  1178. /*
  1179. * Register the para guest with the host:
  1180. */
  1181. static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
  1182. {
  1183. struct kvm_vcpu_para_state *para_state;
  1184. hpa_t para_state_hpa, hypercall_hpa;
  1185. struct page *para_state_page;
  1186. unsigned char *hypercall;
  1187. gpa_t hypercall_gpa;
  1188. printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
  1189. printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
  1190. /*
  1191. * Needs to be page aligned:
  1192. */
  1193. if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
  1194. goto err_gp;
  1195. para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
  1196. printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
  1197. if (is_error_hpa(para_state_hpa))
  1198. goto err_gp;
  1199. mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
  1200. para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
  1201. para_state = kmap(para_state_page);
  1202. printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
  1203. printk(KERN_DEBUG ".... size: %d\n", para_state->size);
  1204. para_state->host_version = KVM_PARA_API_VERSION;
  1205. /*
  1206. * We cannot support guests that try to register themselves
  1207. * with a newer API version than the host supports:
  1208. */
  1209. if (para_state->guest_version > KVM_PARA_API_VERSION) {
  1210. para_state->ret = -KVM_EINVAL;
  1211. goto err_kunmap_skip;
  1212. }
  1213. hypercall_gpa = para_state->hypercall_gpa;
  1214. hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
  1215. printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
  1216. if (is_error_hpa(hypercall_hpa)) {
  1217. para_state->ret = -KVM_EINVAL;
  1218. goto err_kunmap_skip;
  1219. }
  1220. printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
  1221. vcpu->para_state_page = para_state_page;
  1222. vcpu->para_state_gpa = para_state_gpa;
  1223. vcpu->hypercall_gpa = hypercall_gpa;
  1224. mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
  1225. hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
  1226. KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
  1227. kvm_arch_ops->patch_hypercall(vcpu, hypercall);
  1228. kunmap_atomic(hypercall, KM_USER1);
  1229. para_state->ret = 0;
  1230. err_kunmap_skip:
  1231. kunmap(para_state_page);
  1232. return 0;
  1233. err_gp:
  1234. return 1;
  1235. }
  1236. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1237. {
  1238. u64 data;
  1239. switch (msr) {
  1240. case 0xc0010010: /* SYSCFG */
  1241. case 0xc0010015: /* HWCR */
  1242. case MSR_IA32_PLATFORM_ID:
  1243. case MSR_IA32_P5_MC_ADDR:
  1244. case MSR_IA32_P5_MC_TYPE:
  1245. case MSR_IA32_MC0_CTL:
  1246. case MSR_IA32_MCG_STATUS:
  1247. case MSR_IA32_MCG_CAP:
  1248. case MSR_IA32_MC0_MISC:
  1249. case MSR_IA32_MC0_MISC+4:
  1250. case MSR_IA32_MC0_MISC+8:
  1251. case MSR_IA32_MC0_MISC+12:
  1252. case MSR_IA32_MC0_MISC+16:
  1253. case MSR_IA32_UCODE_REV:
  1254. case MSR_IA32_PERF_STATUS:
  1255. case MSR_IA32_EBL_CR_POWERON:
  1256. /* MTRR registers */
  1257. case 0xfe:
  1258. case 0x200 ... 0x2ff:
  1259. data = 0;
  1260. break;
  1261. case 0xcd: /* fsb frequency */
  1262. data = 3;
  1263. break;
  1264. case MSR_IA32_APICBASE:
  1265. data = vcpu->apic_base;
  1266. break;
  1267. case MSR_IA32_MISC_ENABLE:
  1268. data = vcpu->ia32_misc_enable_msr;
  1269. break;
  1270. #ifdef CONFIG_X86_64
  1271. case MSR_EFER:
  1272. data = vcpu->shadow_efer;
  1273. break;
  1274. #endif
  1275. default:
  1276. printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
  1277. return 1;
  1278. }
  1279. *pdata = data;
  1280. return 0;
  1281. }
  1282. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1283. /*
  1284. * Reads an msr value (of 'msr_index') into 'pdata'.
  1285. * Returns 0 on success, non-0 otherwise.
  1286. * Assumes vcpu_load() was already called.
  1287. */
  1288. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1289. {
  1290. return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
  1291. }
  1292. #ifdef CONFIG_X86_64
  1293. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1294. {
  1295. if (efer & EFER_RESERVED_BITS) {
  1296. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1297. efer);
  1298. inject_gp(vcpu);
  1299. return;
  1300. }
  1301. if (is_paging(vcpu)
  1302. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1303. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1304. inject_gp(vcpu);
  1305. return;
  1306. }
  1307. kvm_arch_ops->set_efer(vcpu, efer);
  1308. efer &= ~EFER_LMA;
  1309. efer |= vcpu->shadow_efer & EFER_LMA;
  1310. vcpu->shadow_efer = efer;
  1311. }
  1312. #endif
  1313. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1314. {
  1315. switch (msr) {
  1316. #ifdef CONFIG_X86_64
  1317. case MSR_EFER:
  1318. set_efer(vcpu, data);
  1319. break;
  1320. #endif
  1321. case MSR_IA32_MC0_STATUS:
  1322. printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1323. __FUNCTION__, data);
  1324. break;
  1325. case MSR_IA32_MCG_STATUS:
  1326. printk(KERN_WARNING "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  1327. __FUNCTION__, data);
  1328. break;
  1329. case MSR_IA32_UCODE_REV:
  1330. case MSR_IA32_UCODE_WRITE:
  1331. case 0x200 ... 0x2ff: /* MTRRs */
  1332. break;
  1333. case MSR_IA32_APICBASE:
  1334. vcpu->apic_base = data;
  1335. break;
  1336. case MSR_IA32_MISC_ENABLE:
  1337. vcpu->ia32_misc_enable_msr = data;
  1338. break;
  1339. /*
  1340. * This is the 'probe whether the host is KVM' logic:
  1341. */
  1342. case MSR_KVM_API_MAGIC:
  1343. return vcpu_register_para(vcpu, data);
  1344. default:
  1345. printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
  1346. return 1;
  1347. }
  1348. return 0;
  1349. }
  1350. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1351. /*
  1352. * Writes msr value into into the appropriate "register".
  1353. * Returns 0 on success, non-0 otherwise.
  1354. * Assumes vcpu_load() was already called.
  1355. */
  1356. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1357. {
  1358. return kvm_arch_ops->set_msr(vcpu, msr_index, data);
  1359. }
  1360. void kvm_resched(struct kvm_vcpu *vcpu)
  1361. {
  1362. if (!need_resched())
  1363. return;
  1364. cond_resched();
  1365. }
  1366. EXPORT_SYMBOL_GPL(kvm_resched);
  1367. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  1368. {
  1369. int i;
  1370. u32 function;
  1371. struct kvm_cpuid_entry *e, *best;
  1372. kvm_arch_ops->cache_regs(vcpu);
  1373. function = vcpu->regs[VCPU_REGS_RAX];
  1374. vcpu->regs[VCPU_REGS_RAX] = 0;
  1375. vcpu->regs[VCPU_REGS_RBX] = 0;
  1376. vcpu->regs[VCPU_REGS_RCX] = 0;
  1377. vcpu->regs[VCPU_REGS_RDX] = 0;
  1378. best = NULL;
  1379. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  1380. e = &vcpu->cpuid_entries[i];
  1381. if (e->function == function) {
  1382. best = e;
  1383. break;
  1384. }
  1385. /*
  1386. * Both basic or both extended?
  1387. */
  1388. if (((e->function ^ function) & 0x80000000) == 0)
  1389. if (!best || e->function > best->function)
  1390. best = e;
  1391. }
  1392. if (best) {
  1393. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  1394. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  1395. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  1396. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  1397. }
  1398. kvm_arch_ops->decache_regs(vcpu);
  1399. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1400. }
  1401. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  1402. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1403. {
  1404. void *p = vcpu->pio_data;
  1405. void *q;
  1406. unsigned bytes;
  1407. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  1408. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1409. PAGE_KERNEL);
  1410. if (!q) {
  1411. free_pio_guest_pages(vcpu);
  1412. return -ENOMEM;
  1413. }
  1414. q += vcpu->pio.guest_page_offset;
  1415. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  1416. if (vcpu->pio.in)
  1417. memcpy(q, p, bytes);
  1418. else
  1419. memcpy(p, q, bytes);
  1420. q -= vcpu->pio.guest_page_offset;
  1421. vunmap(q);
  1422. free_pio_guest_pages(vcpu);
  1423. return 0;
  1424. }
  1425. static int complete_pio(struct kvm_vcpu *vcpu)
  1426. {
  1427. struct kvm_pio_request *io = &vcpu->pio;
  1428. long delta;
  1429. int r;
  1430. kvm_arch_ops->cache_regs(vcpu);
  1431. if (!io->string) {
  1432. if (io->in)
  1433. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  1434. io->size);
  1435. } else {
  1436. if (io->in) {
  1437. r = pio_copy_data(vcpu);
  1438. if (r) {
  1439. kvm_arch_ops->cache_regs(vcpu);
  1440. return r;
  1441. }
  1442. }
  1443. delta = 1;
  1444. if (io->rep) {
  1445. delta *= io->cur_count;
  1446. /*
  1447. * The size of the register should really depend on
  1448. * current address size.
  1449. */
  1450. vcpu->regs[VCPU_REGS_RCX] -= delta;
  1451. }
  1452. if (io->down)
  1453. delta = -delta;
  1454. delta *= io->size;
  1455. if (io->in)
  1456. vcpu->regs[VCPU_REGS_RDI] += delta;
  1457. else
  1458. vcpu->regs[VCPU_REGS_RSI] += delta;
  1459. }
  1460. kvm_arch_ops->decache_regs(vcpu);
  1461. io->count -= io->cur_count;
  1462. io->cur_count = 0;
  1463. if (!io->count)
  1464. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1465. return 0;
  1466. }
  1467. static void kernel_pio(struct kvm_io_device *pio_dev,
  1468. struct kvm_vcpu *vcpu,
  1469. void *pd)
  1470. {
  1471. /* TODO: String I/O for in kernel device */
  1472. if (vcpu->pio.in)
  1473. kvm_iodevice_read(pio_dev, vcpu->pio.port,
  1474. vcpu->pio.size,
  1475. pd);
  1476. else
  1477. kvm_iodevice_write(pio_dev, vcpu->pio.port,
  1478. vcpu->pio.size,
  1479. pd);
  1480. }
  1481. static void pio_string_write(struct kvm_io_device *pio_dev,
  1482. struct kvm_vcpu *vcpu)
  1483. {
  1484. struct kvm_pio_request *io = &vcpu->pio;
  1485. void *pd = vcpu->pio_data;
  1486. int i;
  1487. for (i = 0; i < io->cur_count; i++) {
  1488. kvm_iodevice_write(pio_dev, io->port,
  1489. io->size,
  1490. pd);
  1491. pd += io->size;
  1492. }
  1493. }
  1494. int kvm_setup_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1495. int size, unsigned long count, int string, int down,
  1496. gva_t address, int rep, unsigned port)
  1497. {
  1498. unsigned now, in_page;
  1499. int i, ret = 0;
  1500. int nr_pages = 1;
  1501. struct page *page;
  1502. struct kvm_io_device *pio_dev;
  1503. vcpu->run->exit_reason = KVM_EXIT_IO;
  1504. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1505. vcpu->run->io.size = size;
  1506. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1507. vcpu->run->io.count = count;
  1508. vcpu->run->io.port = port;
  1509. vcpu->pio.count = count;
  1510. vcpu->pio.cur_count = count;
  1511. vcpu->pio.size = size;
  1512. vcpu->pio.in = in;
  1513. vcpu->pio.port = port;
  1514. vcpu->pio.string = string;
  1515. vcpu->pio.down = down;
  1516. vcpu->pio.guest_page_offset = offset_in_page(address);
  1517. vcpu->pio.rep = rep;
  1518. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1519. if (!string) {
  1520. kvm_arch_ops->cache_regs(vcpu);
  1521. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  1522. kvm_arch_ops->decache_regs(vcpu);
  1523. if (pio_dev) {
  1524. kernel_pio(pio_dev, vcpu, vcpu->pio_data);
  1525. complete_pio(vcpu);
  1526. return 1;
  1527. }
  1528. return 0;
  1529. }
  1530. if (!count) {
  1531. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1532. return 1;
  1533. }
  1534. now = min(count, PAGE_SIZE / size);
  1535. if (!down)
  1536. in_page = PAGE_SIZE - offset_in_page(address);
  1537. else
  1538. in_page = offset_in_page(address) + size;
  1539. now = min(count, (unsigned long)in_page / size);
  1540. if (!now) {
  1541. /*
  1542. * String I/O straddles page boundary. Pin two guest pages
  1543. * so that we satisfy atomicity constraints. Do just one
  1544. * transaction to avoid complexity.
  1545. */
  1546. nr_pages = 2;
  1547. now = 1;
  1548. }
  1549. if (down) {
  1550. /*
  1551. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1552. */
  1553. printk(KERN_ERR "kvm: guest string pio down\n");
  1554. inject_gp(vcpu);
  1555. return 1;
  1556. }
  1557. vcpu->run->io.count = now;
  1558. vcpu->pio.cur_count = now;
  1559. for (i = 0; i < nr_pages; ++i) {
  1560. mutex_lock(&vcpu->kvm->lock);
  1561. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1562. if (page)
  1563. get_page(page);
  1564. vcpu->pio.guest_pages[i] = page;
  1565. mutex_unlock(&vcpu->kvm->lock);
  1566. if (!page) {
  1567. inject_gp(vcpu);
  1568. free_pio_guest_pages(vcpu);
  1569. return 1;
  1570. }
  1571. }
  1572. if (!vcpu->pio.in) {
  1573. /* string PIO write */
  1574. ret = pio_copy_data(vcpu);
  1575. if (ret >= 0 && pio_dev) {
  1576. pio_string_write(pio_dev, vcpu);
  1577. complete_pio(vcpu);
  1578. if (vcpu->pio.count == 0)
  1579. ret = 1;
  1580. }
  1581. } else if (pio_dev)
  1582. printk(KERN_ERR "no string pio read support yet, "
  1583. "port %x size %d count %ld\n",
  1584. port, size, count);
  1585. return ret;
  1586. }
  1587. EXPORT_SYMBOL_GPL(kvm_setup_pio);
  1588. static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1589. {
  1590. int r;
  1591. sigset_t sigsaved;
  1592. vcpu_load(vcpu);
  1593. if (vcpu->sigset_active)
  1594. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  1595. /* re-sync apic's tpr */
  1596. vcpu->cr8 = kvm_run->cr8;
  1597. if (vcpu->pio.cur_count) {
  1598. r = complete_pio(vcpu);
  1599. if (r)
  1600. goto out;
  1601. }
  1602. if (vcpu->mmio_needed) {
  1603. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1604. vcpu->mmio_read_completed = 1;
  1605. vcpu->mmio_needed = 0;
  1606. r = emulate_instruction(vcpu, kvm_run,
  1607. vcpu->mmio_fault_cr2, 0);
  1608. if (r == EMULATE_DO_MMIO) {
  1609. /*
  1610. * Read-modify-write. Back to userspace.
  1611. */
  1612. r = 0;
  1613. goto out;
  1614. }
  1615. }
  1616. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1617. kvm_arch_ops->cache_regs(vcpu);
  1618. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1619. kvm_arch_ops->decache_regs(vcpu);
  1620. }
  1621. r = kvm_arch_ops->run(vcpu, kvm_run);
  1622. out:
  1623. if (vcpu->sigset_active)
  1624. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1625. vcpu_put(vcpu);
  1626. return r;
  1627. }
  1628. static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
  1629. struct kvm_regs *regs)
  1630. {
  1631. vcpu_load(vcpu);
  1632. kvm_arch_ops->cache_regs(vcpu);
  1633. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1634. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1635. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1636. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1637. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1638. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1639. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1640. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1641. #ifdef CONFIG_X86_64
  1642. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1643. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1644. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1645. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1646. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1647. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1648. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1649. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1650. #endif
  1651. regs->rip = vcpu->rip;
  1652. regs->rflags = kvm_arch_ops->get_rflags(vcpu);
  1653. /*
  1654. * Don't leak debug flags in case they were set for guest debugging
  1655. */
  1656. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1657. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1658. vcpu_put(vcpu);
  1659. return 0;
  1660. }
  1661. static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
  1662. struct kvm_regs *regs)
  1663. {
  1664. vcpu_load(vcpu);
  1665. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1666. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1667. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1668. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1669. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1670. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1671. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1672. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1673. #ifdef CONFIG_X86_64
  1674. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1675. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1676. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1677. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1678. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1679. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1680. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1681. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1682. #endif
  1683. vcpu->rip = regs->rip;
  1684. kvm_arch_ops->set_rflags(vcpu, regs->rflags);
  1685. kvm_arch_ops->decache_regs(vcpu);
  1686. vcpu_put(vcpu);
  1687. return 0;
  1688. }
  1689. static void get_segment(struct kvm_vcpu *vcpu,
  1690. struct kvm_segment *var, int seg)
  1691. {
  1692. return kvm_arch_ops->get_segment(vcpu, var, seg);
  1693. }
  1694. static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  1695. struct kvm_sregs *sregs)
  1696. {
  1697. struct descriptor_table dt;
  1698. vcpu_load(vcpu);
  1699. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1700. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1701. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1702. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1703. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1704. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1705. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1706. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1707. kvm_arch_ops->get_idt(vcpu, &dt);
  1708. sregs->idt.limit = dt.limit;
  1709. sregs->idt.base = dt.base;
  1710. kvm_arch_ops->get_gdt(vcpu, &dt);
  1711. sregs->gdt.limit = dt.limit;
  1712. sregs->gdt.base = dt.base;
  1713. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1714. sregs->cr0 = vcpu->cr0;
  1715. sregs->cr2 = vcpu->cr2;
  1716. sregs->cr3 = vcpu->cr3;
  1717. sregs->cr4 = vcpu->cr4;
  1718. sregs->cr8 = vcpu->cr8;
  1719. sregs->efer = vcpu->shadow_efer;
  1720. sregs->apic_base = vcpu->apic_base;
  1721. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1722. sizeof sregs->interrupt_bitmap);
  1723. vcpu_put(vcpu);
  1724. return 0;
  1725. }
  1726. static void set_segment(struct kvm_vcpu *vcpu,
  1727. struct kvm_segment *var, int seg)
  1728. {
  1729. return kvm_arch_ops->set_segment(vcpu, var, seg);
  1730. }
  1731. static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  1732. struct kvm_sregs *sregs)
  1733. {
  1734. int mmu_reset_needed = 0;
  1735. int i;
  1736. struct descriptor_table dt;
  1737. vcpu_load(vcpu);
  1738. dt.limit = sregs->idt.limit;
  1739. dt.base = sregs->idt.base;
  1740. kvm_arch_ops->set_idt(vcpu, &dt);
  1741. dt.limit = sregs->gdt.limit;
  1742. dt.base = sregs->gdt.base;
  1743. kvm_arch_ops->set_gdt(vcpu, &dt);
  1744. vcpu->cr2 = sregs->cr2;
  1745. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1746. vcpu->cr3 = sregs->cr3;
  1747. vcpu->cr8 = sregs->cr8;
  1748. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1749. #ifdef CONFIG_X86_64
  1750. kvm_arch_ops->set_efer(vcpu, sregs->efer);
  1751. #endif
  1752. vcpu->apic_base = sregs->apic_base;
  1753. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1754. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1755. kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
  1756. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1757. kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
  1758. if (!is_long_mode(vcpu) && is_pae(vcpu))
  1759. load_pdptrs(vcpu, vcpu->cr3);
  1760. if (mmu_reset_needed)
  1761. kvm_mmu_reset_context(vcpu);
  1762. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1763. sizeof vcpu->irq_pending);
  1764. vcpu->irq_summary = 0;
  1765. for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
  1766. if (vcpu->irq_pending[i])
  1767. __set_bit(i, &vcpu->irq_summary);
  1768. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1769. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1770. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1771. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1772. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1773. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1774. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1775. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1776. vcpu_put(vcpu);
  1777. return 0;
  1778. }
  1779. /*
  1780. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  1781. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  1782. *
  1783. * This list is modified at module load time to reflect the
  1784. * capabilities of the host cpu.
  1785. */
  1786. static u32 msrs_to_save[] = {
  1787. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  1788. MSR_K6_STAR,
  1789. #ifdef CONFIG_X86_64
  1790. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  1791. #endif
  1792. MSR_IA32_TIME_STAMP_COUNTER,
  1793. };
  1794. static unsigned num_msrs_to_save;
  1795. static u32 emulated_msrs[] = {
  1796. MSR_IA32_MISC_ENABLE,
  1797. };
  1798. static __init void kvm_init_msr_list(void)
  1799. {
  1800. u32 dummy[2];
  1801. unsigned i, j;
  1802. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1803. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1804. continue;
  1805. if (j < i)
  1806. msrs_to_save[j] = msrs_to_save[i];
  1807. j++;
  1808. }
  1809. num_msrs_to_save = j;
  1810. }
  1811. /*
  1812. * Adapt set_msr() to msr_io()'s calling convention
  1813. */
  1814. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  1815. {
  1816. return kvm_set_msr(vcpu, index, *data);
  1817. }
  1818. /*
  1819. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1820. *
  1821. * @return number of msrs set successfully.
  1822. */
  1823. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1824. struct kvm_msr_entry *entries,
  1825. int (*do_msr)(struct kvm_vcpu *vcpu,
  1826. unsigned index, u64 *data))
  1827. {
  1828. int i;
  1829. vcpu_load(vcpu);
  1830. for (i = 0; i < msrs->nmsrs; ++i)
  1831. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1832. break;
  1833. vcpu_put(vcpu);
  1834. return i;
  1835. }
  1836. /*
  1837. * Read or write a bunch of msrs. Parameters are user addresses.
  1838. *
  1839. * @return number of msrs set successfully.
  1840. */
  1841. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1842. int (*do_msr)(struct kvm_vcpu *vcpu,
  1843. unsigned index, u64 *data),
  1844. int writeback)
  1845. {
  1846. struct kvm_msrs msrs;
  1847. struct kvm_msr_entry *entries;
  1848. int r, n;
  1849. unsigned size;
  1850. r = -EFAULT;
  1851. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1852. goto out;
  1853. r = -E2BIG;
  1854. if (msrs.nmsrs >= MAX_IO_MSRS)
  1855. goto out;
  1856. r = -ENOMEM;
  1857. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1858. entries = vmalloc(size);
  1859. if (!entries)
  1860. goto out;
  1861. r = -EFAULT;
  1862. if (copy_from_user(entries, user_msrs->entries, size))
  1863. goto out_free;
  1864. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1865. if (r < 0)
  1866. goto out_free;
  1867. r = -EFAULT;
  1868. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1869. goto out_free;
  1870. r = n;
  1871. out_free:
  1872. vfree(entries);
  1873. out:
  1874. return r;
  1875. }
  1876. /*
  1877. * Translate a guest virtual address to a guest physical address.
  1878. */
  1879. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  1880. struct kvm_translation *tr)
  1881. {
  1882. unsigned long vaddr = tr->linear_address;
  1883. gpa_t gpa;
  1884. vcpu_load(vcpu);
  1885. mutex_lock(&vcpu->kvm->lock);
  1886. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  1887. tr->physical_address = gpa;
  1888. tr->valid = gpa != UNMAPPED_GVA;
  1889. tr->writeable = 1;
  1890. tr->usermode = 0;
  1891. mutex_unlock(&vcpu->kvm->lock);
  1892. vcpu_put(vcpu);
  1893. return 0;
  1894. }
  1895. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1896. struct kvm_interrupt *irq)
  1897. {
  1898. if (irq->irq < 0 || irq->irq >= 256)
  1899. return -EINVAL;
  1900. vcpu_load(vcpu);
  1901. set_bit(irq->irq, vcpu->irq_pending);
  1902. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  1903. vcpu_put(vcpu);
  1904. return 0;
  1905. }
  1906. static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  1907. struct kvm_debug_guest *dbg)
  1908. {
  1909. int r;
  1910. vcpu_load(vcpu);
  1911. r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
  1912. vcpu_put(vcpu);
  1913. return r;
  1914. }
  1915. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  1916. unsigned long address,
  1917. int *type)
  1918. {
  1919. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1920. unsigned long pgoff;
  1921. struct page *page;
  1922. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1923. if (pgoff == 0)
  1924. page = virt_to_page(vcpu->run);
  1925. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  1926. page = virt_to_page(vcpu->pio_data);
  1927. else
  1928. return NOPAGE_SIGBUS;
  1929. get_page(page);
  1930. if (type != NULL)
  1931. *type = VM_FAULT_MINOR;
  1932. return page;
  1933. }
  1934. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  1935. .nopage = kvm_vcpu_nopage,
  1936. };
  1937. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1938. {
  1939. vma->vm_ops = &kvm_vcpu_vm_ops;
  1940. return 0;
  1941. }
  1942. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1943. {
  1944. struct kvm_vcpu *vcpu = filp->private_data;
  1945. fput(vcpu->kvm->filp);
  1946. return 0;
  1947. }
  1948. static struct file_operations kvm_vcpu_fops = {
  1949. .release = kvm_vcpu_release,
  1950. .unlocked_ioctl = kvm_vcpu_ioctl,
  1951. .compat_ioctl = kvm_vcpu_ioctl,
  1952. .mmap = kvm_vcpu_mmap,
  1953. };
  1954. /*
  1955. * Allocates an inode for the vcpu.
  1956. */
  1957. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1958. {
  1959. int fd, r;
  1960. struct inode *inode;
  1961. struct file *file;
  1962. r = anon_inode_getfd(&fd, &inode, &file,
  1963. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  1964. if (r)
  1965. return r;
  1966. atomic_inc(&vcpu->kvm->filp->f_count);
  1967. return fd;
  1968. }
  1969. /*
  1970. * Creates some virtual cpus. Good luck creating more than one.
  1971. */
  1972. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  1973. {
  1974. int r;
  1975. struct kvm_vcpu *vcpu;
  1976. if (!valid_vcpu(n))
  1977. return -EINVAL;
  1978. vcpu = kvm_arch_ops->vcpu_create(kvm, n);
  1979. if (IS_ERR(vcpu))
  1980. return PTR_ERR(vcpu);
  1981. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1982. /* We do fxsave: this must be aligned. */
  1983. BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
  1984. vcpu_load(vcpu);
  1985. r = kvm_mmu_setup(vcpu);
  1986. vcpu_put(vcpu);
  1987. if (r < 0)
  1988. goto free_vcpu;
  1989. mutex_lock(&kvm->lock);
  1990. if (kvm->vcpus[n]) {
  1991. r = -EEXIST;
  1992. mutex_unlock(&kvm->lock);
  1993. goto mmu_unload;
  1994. }
  1995. kvm->vcpus[n] = vcpu;
  1996. mutex_unlock(&kvm->lock);
  1997. /* Now it's all set up, let userspace reach it */
  1998. r = create_vcpu_fd(vcpu);
  1999. if (r < 0)
  2000. goto unlink;
  2001. return r;
  2002. unlink:
  2003. mutex_lock(&kvm->lock);
  2004. kvm->vcpus[n] = NULL;
  2005. mutex_unlock(&kvm->lock);
  2006. mmu_unload:
  2007. vcpu_load(vcpu);
  2008. kvm_mmu_unload(vcpu);
  2009. vcpu_put(vcpu);
  2010. free_vcpu:
  2011. kvm_arch_ops->vcpu_free(vcpu);
  2012. return r;
  2013. }
  2014. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  2015. {
  2016. u64 efer;
  2017. int i;
  2018. struct kvm_cpuid_entry *e, *entry;
  2019. rdmsrl(MSR_EFER, efer);
  2020. entry = NULL;
  2021. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  2022. e = &vcpu->cpuid_entries[i];
  2023. if (e->function == 0x80000001) {
  2024. entry = e;
  2025. break;
  2026. }
  2027. }
  2028. if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
  2029. entry->edx &= ~(1 << 20);
  2030. printk(KERN_INFO "kvm: guest NX capability removed\n");
  2031. }
  2032. }
  2033. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  2034. struct kvm_cpuid *cpuid,
  2035. struct kvm_cpuid_entry __user *entries)
  2036. {
  2037. int r;
  2038. r = -E2BIG;
  2039. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  2040. goto out;
  2041. r = -EFAULT;
  2042. if (copy_from_user(&vcpu->cpuid_entries, entries,
  2043. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  2044. goto out;
  2045. vcpu->cpuid_nent = cpuid->nent;
  2046. cpuid_fix_nx_cap(vcpu);
  2047. return 0;
  2048. out:
  2049. return r;
  2050. }
  2051. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  2052. {
  2053. if (sigset) {
  2054. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  2055. vcpu->sigset_active = 1;
  2056. vcpu->sigset = *sigset;
  2057. } else
  2058. vcpu->sigset_active = 0;
  2059. return 0;
  2060. }
  2061. /*
  2062. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2063. * we have asm/x86/processor.h
  2064. */
  2065. struct fxsave {
  2066. u16 cwd;
  2067. u16 swd;
  2068. u16 twd;
  2069. u16 fop;
  2070. u64 rip;
  2071. u64 rdp;
  2072. u32 mxcsr;
  2073. u32 mxcsr_mask;
  2074. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2075. #ifdef CONFIG_X86_64
  2076. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2077. #else
  2078. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2079. #endif
  2080. };
  2081. static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2082. {
  2083. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2084. vcpu_load(vcpu);
  2085. memcpy(fpu->fpr, fxsave->st_space, 128);
  2086. fpu->fcw = fxsave->cwd;
  2087. fpu->fsw = fxsave->swd;
  2088. fpu->ftwx = fxsave->twd;
  2089. fpu->last_opcode = fxsave->fop;
  2090. fpu->last_ip = fxsave->rip;
  2091. fpu->last_dp = fxsave->rdp;
  2092. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2093. vcpu_put(vcpu);
  2094. return 0;
  2095. }
  2096. static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2097. {
  2098. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2099. vcpu_load(vcpu);
  2100. memcpy(fxsave->st_space, fpu->fpr, 128);
  2101. fxsave->cwd = fpu->fcw;
  2102. fxsave->swd = fpu->fsw;
  2103. fxsave->twd = fpu->ftwx;
  2104. fxsave->fop = fpu->last_opcode;
  2105. fxsave->rip = fpu->last_ip;
  2106. fxsave->rdp = fpu->last_dp;
  2107. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2108. vcpu_put(vcpu);
  2109. return 0;
  2110. }
  2111. static long kvm_vcpu_ioctl(struct file *filp,
  2112. unsigned int ioctl, unsigned long arg)
  2113. {
  2114. struct kvm_vcpu *vcpu = filp->private_data;
  2115. void __user *argp = (void __user *)arg;
  2116. int r = -EINVAL;
  2117. switch (ioctl) {
  2118. case KVM_RUN:
  2119. r = -EINVAL;
  2120. if (arg)
  2121. goto out;
  2122. r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
  2123. break;
  2124. case KVM_GET_REGS: {
  2125. struct kvm_regs kvm_regs;
  2126. memset(&kvm_regs, 0, sizeof kvm_regs);
  2127. r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  2128. if (r)
  2129. goto out;
  2130. r = -EFAULT;
  2131. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  2132. goto out;
  2133. r = 0;
  2134. break;
  2135. }
  2136. case KVM_SET_REGS: {
  2137. struct kvm_regs kvm_regs;
  2138. r = -EFAULT;
  2139. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  2140. goto out;
  2141. r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  2142. if (r)
  2143. goto out;
  2144. r = 0;
  2145. break;
  2146. }
  2147. case KVM_GET_SREGS: {
  2148. struct kvm_sregs kvm_sregs;
  2149. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  2150. r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  2151. if (r)
  2152. goto out;
  2153. r = -EFAULT;
  2154. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  2155. goto out;
  2156. r = 0;
  2157. break;
  2158. }
  2159. case KVM_SET_SREGS: {
  2160. struct kvm_sregs kvm_sregs;
  2161. r = -EFAULT;
  2162. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  2163. goto out;
  2164. r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  2165. if (r)
  2166. goto out;
  2167. r = 0;
  2168. break;
  2169. }
  2170. case KVM_TRANSLATE: {
  2171. struct kvm_translation tr;
  2172. r = -EFAULT;
  2173. if (copy_from_user(&tr, argp, sizeof tr))
  2174. goto out;
  2175. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  2176. if (r)
  2177. goto out;
  2178. r = -EFAULT;
  2179. if (copy_to_user(argp, &tr, sizeof tr))
  2180. goto out;
  2181. r = 0;
  2182. break;
  2183. }
  2184. case KVM_INTERRUPT: {
  2185. struct kvm_interrupt irq;
  2186. r = -EFAULT;
  2187. if (copy_from_user(&irq, argp, sizeof irq))
  2188. goto out;
  2189. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2190. if (r)
  2191. goto out;
  2192. r = 0;
  2193. break;
  2194. }
  2195. case KVM_DEBUG_GUEST: {
  2196. struct kvm_debug_guest dbg;
  2197. r = -EFAULT;
  2198. if (copy_from_user(&dbg, argp, sizeof dbg))
  2199. goto out;
  2200. r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
  2201. if (r)
  2202. goto out;
  2203. r = 0;
  2204. break;
  2205. }
  2206. case KVM_GET_MSRS:
  2207. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2208. break;
  2209. case KVM_SET_MSRS:
  2210. r = msr_io(vcpu, argp, do_set_msr, 0);
  2211. break;
  2212. case KVM_SET_CPUID: {
  2213. struct kvm_cpuid __user *cpuid_arg = argp;
  2214. struct kvm_cpuid cpuid;
  2215. r = -EFAULT;
  2216. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2217. goto out;
  2218. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2219. if (r)
  2220. goto out;
  2221. break;
  2222. }
  2223. case KVM_SET_SIGNAL_MASK: {
  2224. struct kvm_signal_mask __user *sigmask_arg = argp;
  2225. struct kvm_signal_mask kvm_sigmask;
  2226. sigset_t sigset, *p;
  2227. p = NULL;
  2228. if (argp) {
  2229. r = -EFAULT;
  2230. if (copy_from_user(&kvm_sigmask, argp,
  2231. sizeof kvm_sigmask))
  2232. goto out;
  2233. r = -EINVAL;
  2234. if (kvm_sigmask.len != sizeof sigset)
  2235. goto out;
  2236. r = -EFAULT;
  2237. if (copy_from_user(&sigset, sigmask_arg->sigset,
  2238. sizeof sigset))
  2239. goto out;
  2240. p = &sigset;
  2241. }
  2242. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  2243. break;
  2244. }
  2245. case KVM_GET_FPU: {
  2246. struct kvm_fpu fpu;
  2247. memset(&fpu, 0, sizeof fpu);
  2248. r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
  2249. if (r)
  2250. goto out;
  2251. r = -EFAULT;
  2252. if (copy_to_user(argp, &fpu, sizeof fpu))
  2253. goto out;
  2254. r = 0;
  2255. break;
  2256. }
  2257. case KVM_SET_FPU: {
  2258. struct kvm_fpu fpu;
  2259. r = -EFAULT;
  2260. if (copy_from_user(&fpu, argp, sizeof fpu))
  2261. goto out;
  2262. r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
  2263. if (r)
  2264. goto out;
  2265. r = 0;
  2266. break;
  2267. }
  2268. default:
  2269. ;
  2270. }
  2271. out:
  2272. return r;
  2273. }
  2274. static long kvm_vm_ioctl(struct file *filp,
  2275. unsigned int ioctl, unsigned long arg)
  2276. {
  2277. struct kvm *kvm = filp->private_data;
  2278. void __user *argp = (void __user *)arg;
  2279. int r = -EINVAL;
  2280. switch (ioctl) {
  2281. case KVM_CREATE_VCPU:
  2282. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  2283. if (r < 0)
  2284. goto out;
  2285. break;
  2286. case KVM_SET_MEMORY_REGION: {
  2287. struct kvm_memory_region kvm_mem;
  2288. r = -EFAULT;
  2289. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2290. goto out;
  2291. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
  2292. if (r)
  2293. goto out;
  2294. break;
  2295. }
  2296. case KVM_GET_DIRTY_LOG: {
  2297. struct kvm_dirty_log log;
  2298. r = -EFAULT;
  2299. if (copy_from_user(&log, argp, sizeof log))
  2300. goto out;
  2301. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  2302. if (r)
  2303. goto out;
  2304. break;
  2305. }
  2306. case KVM_SET_MEMORY_ALIAS: {
  2307. struct kvm_memory_alias alias;
  2308. r = -EFAULT;
  2309. if (copy_from_user(&alias, argp, sizeof alias))
  2310. goto out;
  2311. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  2312. if (r)
  2313. goto out;
  2314. break;
  2315. }
  2316. default:
  2317. ;
  2318. }
  2319. out:
  2320. return r;
  2321. }
  2322. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  2323. unsigned long address,
  2324. int *type)
  2325. {
  2326. struct kvm *kvm = vma->vm_file->private_data;
  2327. unsigned long pgoff;
  2328. struct page *page;
  2329. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2330. page = gfn_to_page(kvm, pgoff);
  2331. if (!page)
  2332. return NOPAGE_SIGBUS;
  2333. get_page(page);
  2334. if (type != NULL)
  2335. *type = VM_FAULT_MINOR;
  2336. return page;
  2337. }
  2338. static struct vm_operations_struct kvm_vm_vm_ops = {
  2339. .nopage = kvm_vm_nopage,
  2340. };
  2341. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  2342. {
  2343. vma->vm_ops = &kvm_vm_vm_ops;
  2344. return 0;
  2345. }
  2346. static struct file_operations kvm_vm_fops = {
  2347. .release = kvm_vm_release,
  2348. .unlocked_ioctl = kvm_vm_ioctl,
  2349. .compat_ioctl = kvm_vm_ioctl,
  2350. .mmap = kvm_vm_mmap,
  2351. };
  2352. static int kvm_dev_ioctl_create_vm(void)
  2353. {
  2354. int fd, r;
  2355. struct inode *inode;
  2356. struct file *file;
  2357. struct kvm *kvm;
  2358. kvm = kvm_create_vm();
  2359. if (IS_ERR(kvm))
  2360. return PTR_ERR(kvm);
  2361. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  2362. if (r) {
  2363. kvm_destroy_vm(kvm);
  2364. return r;
  2365. }
  2366. kvm->filp = file;
  2367. return fd;
  2368. }
  2369. static long kvm_dev_ioctl(struct file *filp,
  2370. unsigned int ioctl, unsigned long arg)
  2371. {
  2372. void __user *argp = (void __user *)arg;
  2373. long r = -EINVAL;
  2374. switch (ioctl) {
  2375. case KVM_GET_API_VERSION:
  2376. r = -EINVAL;
  2377. if (arg)
  2378. goto out;
  2379. r = KVM_API_VERSION;
  2380. break;
  2381. case KVM_CREATE_VM:
  2382. r = -EINVAL;
  2383. if (arg)
  2384. goto out;
  2385. r = kvm_dev_ioctl_create_vm();
  2386. break;
  2387. case KVM_GET_MSR_INDEX_LIST: {
  2388. struct kvm_msr_list __user *user_msr_list = argp;
  2389. struct kvm_msr_list msr_list;
  2390. unsigned n;
  2391. r = -EFAULT;
  2392. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  2393. goto out;
  2394. n = msr_list.nmsrs;
  2395. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  2396. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  2397. goto out;
  2398. r = -E2BIG;
  2399. if (n < num_msrs_to_save)
  2400. goto out;
  2401. r = -EFAULT;
  2402. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  2403. num_msrs_to_save * sizeof(u32)))
  2404. goto out;
  2405. if (copy_to_user(user_msr_list->indices
  2406. + num_msrs_to_save * sizeof(u32),
  2407. &emulated_msrs,
  2408. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  2409. goto out;
  2410. r = 0;
  2411. break;
  2412. }
  2413. case KVM_CHECK_EXTENSION:
  2414. /*
  2415. * No extensions defined at present.
  2416. */
  2417. r = 0;
  2418. break;
  2419. case KVM_GET_VCPU_MMAP_SIZE:
  2420. r = -EINVAL;
  2421. if (arg)
  2422. goto out;
  2423. r = 2 * PAGE_SIZE;
  2424. break;
  2425. default:
  2426. ;
  2427. }
  2428. out:
  2429. return r;
  2430. }
  2431. static struct file_operations kvm_chardev_ops = {
  2432. .open = kvm_dev_open,
  2433. .release = kvm_dev_release,
  2434. .unlocked_ioctl = kvm_dev_ioctl,
  2435. .compat_ioctl = kvm_dev_ioctl,
  2436. };
  2437. static struct miscdevice kvm_dev = {
  2438. KVM_MINOR,
  2439. "kvm",
  2440. &kvm_chardev_ops,
  2441. };
  2442. /*
  2443. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  2444. * cached on it.
  2445. */
  2446. static void decache_vcpus_on_cpu(int cpu)
  2447. {
  2448. struct kvm *vm;
  2449. struct kvm_vcpu *vcpu;
  2450. int i;
  2451. spin_lock(&kvm_lock);
  2452. list_for_each_entry(vm, &vm_list, vm_list)
  2453. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2454. vcpu = vm->vcpus[i];
  2455. if (!vcpu)
  2456. continue;
  2457. /*
  2458. * If the vcpu is locked, then it is running on some
  2459. * other cpu and therefore it is not cached on the
  2460. * cpu in question.
  2461. *
  2462. * If it's not locked, check the last cpu it executed
  2463. * on.
  2464. */
  2465. if (mutex_trylock(&vcpu->mutex)) {
  2466. if (vcpu->cpu == cpu) {
  2467. kvm_arch_ops->vcpu_decache(vcpu);
  2468. vcpu->cpu = -1;
  2469. }
  2470. mutex_unlock(&vcpu->mutex);
  2471. }
  2472. }
  2473. spin_unlock(&kvm_lock);
  2474. }
  2475. static void hardware_enable(void *junk)
  2476. {
  2477. int cpu = raw_smp_processor_id();
  2478. if (cpu_isset(cpu, cpus_hardware_enabled))
  2479. return;
  2480. cpu_set(cpu, cpus_hardware_enabled);
  2481. kvm_arch_ops->hardware_enable(NULL);
  2482. }
  2483. static void hardware_disable(void *junk)
  2484. {
  2485. int cpu = raw_smp_processor_id();
  2486. if (!cpu_isset(cpu, cpus_hardware_enabled))
  2487. return;
  2488. cpu_clear(cpu, cpus_hardware_enabled);
  2489. decache_vcpus_on_cpu(cpu);
  2490. kvm_arch_ops->hardware_disable(NULL);
  2491. }
  2492. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2493. void *v)
  2494. {
  2495. int cpu = (long)v;
  2496. switch (val) {
  2497. case CPU_DYING:
  2498. case CPU_DYING_FROZEN:
  2499. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2500. cpu);
  2501. hardware_disable(NULL);
  2502. break;
  2503. case CPU_UP_CANCELED:
  2504. case CPU_UP_CANCELED_FROZEN:
  2505. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2506. cpu);
  2507. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  2508. break;
  2509. case CPU_ONLINE:
  2510. case CPU_ONLINE_FROZEN:
  2511. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2512. cpu);
  2513. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  2514. break;
  2515. }
  2516. return NOTIFY_OK;
  2517. }
  2518. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2519. void *v)
  2520. {
  2521. if (val == SYS_RESTART) {
  2522. /*
  2523. * Some (well, at least mine) BIOSes hang on reboot if
  2524. * in vmx root mode.
  2525. */
  2526. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2527. on_each_cpu(hardware_disable, NULL, 0, 1);
  2528. }
  2529. return NOTIFY_OK;
  2530. }
  2531. static struct notifier_block kvm_reboot_notifier = {
  2532. .notifier_call = kvm_reboot,
  2533. .priority = 0,
  2534. };
  2535. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2536. {
  2537. memset(bus, 0, sizeof(*bus));
  2538. }
  2539. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2540. {
  2541. int i;
  2542. for (i = 0; i < bus->dev_count; i++) {
  2543. struct kvm_io_device *pos = bus->devs[i];
  2544. kvm_iodevice_destructor(pos);
  2545. }
  2546. }
  2547. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  2548. {
  2549. int i;
  2550. for (i = 0; i < bus->dev_count; i++) {
  2551. struct kvm_io_device *pos = bus->devs[i];
  2552. if (pos->in_range(pos, addr))
  2553. return pos;
  2554. }
  2555. return NULL;
  2556. }
  2557. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  2558. {
  2559. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  2560. bus->devs[bus->dev_count++] = dev;
  2561. }
  2562. static struct notifier_block kvm_cpu_notifier = {
  2563. .notifier_call = kvm_cpu_hotplug,
  2564. .priority = 20, /* must be > scheduler priority */
  2565. };
  2566. static u64 stat_get(void *_offset)
  2567. {
  2568. unsigned offset = (long)_offset;
  2569. u64 total = 0;
  2570. struct kvm *kvm;
  2571. struct kvm_vcpu *vcpu;
  2572. int i;
  2573. spin_lock(&kvm_lock);
  2574. list_for_each_entry(kvm, &vm_list, vm_list)
  2575. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2576. vcpu = kvm->vcpus[i];
  2577. if (vcpu)
  2578. total += *(u32 *)((void *)vcpu + offset);
  2579. }
  2580. spin_unlock(&kvm_lock);
  2581. return total;
  2582. }
  2583. static void stat_set(void *offset, u64 val)
  2584. {
  2585. }
  2586. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, stat_set, "%llu\n");
  2587. static __init void kvm_init_debug(void)
  2588. {
  2589. struct kvm_stats_debugfs_item *p;
  2590. debugfs_dir = debugfs_create_dir("kvm", NULL);
  2591. for (p = debugfs_entries; p->name; ++p)
  2592. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  2593. (void *)(long)p->offset,
  2594. &stat_fops);
  2595. }
  2596. static void kvm_exit_debug(void)
  2597. {
  2598. struct kvm_stats_debugfs_item *p;
  2599. for (p = debugfs_entries; p->name; ++p)
  2600. debugfs_remove(p->dentry);
  2601. debugfs_remove(debugfs_dir);
  2602. }
  2603. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2604. {
  2605. hardware_disable(NULL);
  2606. return 0;
  2607. }
  2608. static int kvm_resume(struct sys_device *dev)
  2609. {
  2610. hardware_enable(NULL);
  2611. return 0;
  2612. }
  2613. static struct sysdev_class kvm_sysdev_class = {
  2614. set_kset_name("kvm"),
  2615. .suspend = kvm_suspend,
  2616. .resume = kvm_resume,
  2617. };
  2618. static struct sys_device kvm_sysdev = {
  2619. .id = 0,
  2620. .cls = &kvm_sysdev_class,
  2621. };
  2622. hpa_t bad_page_address;
  2623. static inline
  2624. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2625. {
  2626. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2627. }
  2628. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2629. {
  2630. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2631. kvm_arch_ops->vcpu_load(vcpu, cpu);
  2632. }
  2633. static void kvm_sched_out(struct preempt_notifier *pn,
  2634. struct task_struct *next)
  2635. {
  2636. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2637. kvm_arch_ops->vcpu_put(vcpu);
  2638. }
  2639. int kvm_init_arch(struct kvm_arch_ops *ops, unsigned int vcpu_size,
  2640. struct module *module)
  2641. {
  2642. int r;
  2643. int cpu;
  2644. if (kvm_arch_ops) {
  2645. printk(KERN_ERR "kvm: already loaded the other module\n");
  2646. return -EEXIST;
  2647. }
  2648. if (!ops->cpu_has_kvm_support()) {
  2649. printk(KERN_ERR "kvm: no hardware support\n");
  2650. return -EOPNOTSUPP;
  2651. }
  2652. if (ops->disabled_by_bios()) {
  2653. printk(KERN_ERR "kvm: disabled by bios\n");
  2654. return -EOPNOTSUPP;
  2655. }
  2656. kvm_arch_ops = ops;
  2657. r = kvm_arch_ops->hardware_setup();
  2658. if (r < 0)
  2659. goto out;
  2660. for_each_online_cpu(cpu) {
  2661. smp_call_function_single(cpu,
  2662. kvm_arch_ops->check_processor_compatibility,
  2663. &r, 0, 1);
  2664. if (r < 0)
  2665. goto out_free_0;
  2666. }
  2667. on_each_cpu(hardware_enable, NULL, 0, 1);
  2668. r = register_cpu_notifier(&kvm_cpu_notifier);
  2669. if (r)
  2670. goto out_free_1;
  2671. register_reboot_notifier(&kvm_reboot_notifier);
  2672. r = sysdev_class_register(&kvm_sysdev_class);
  2673. if (r)
  2674. goto out_free_2;
  2675. r = sysdev_register(&kvm_sysdev);
  2676. if (r)
  2677. goto out_free_3;
  2678. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2679. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  2680. __alignof__(struct kvm_vcpu), 0, 0);
  2681. if (!kvm_vcpu_cache) {
  2682. r = -ENOMEM;
  2683. goto out_free_4;
  2684. }
  2685. kvm_chardev_ops.owner = module;
  2686. r = misc_register(&kvm_dev);
  2687. if (r) {
  2688. printk (KERN_ERR "kvm: misc device register failed\n");
  2689. goto out_free;
  2690. }
  2691. kvm_preempt_ops.sched_in = kvm_sched_in;
  2692. kvm_preempt_ops.sched_out = kvm_sched_out;
  2693. return r;
  2694. out_free:
  2695. kmem_cache_destroy(kvm_vcpu_cache);
  2696. out_free_4:
  2697. sysdev_unregister(&kvm_sysdev);
  2698. out_free_3:
  2699. sysdev_class_unregister(&kvm_sysdev_class);
  2700. out_free_2:
  2701. unregister_reboot_notifier(&kvm_reboot_notifier);
  2702. unregister_cpu_notifier(&kvm_cpu_notifier);
  2703. out_free_1:
  2704. on_each_cpu(hardware_disable, NULL, 0, 1);
  2705. out_free_0:
  2706. kvm_arch_ops->hardware_unsetup();
  2707. out:
  2708. kvm_arch_ops = NULL;
  2709. return r;
  2710. }
  2711. void kvm_exit_arch(void)
  2712. {
  2713. misc_deregister(&kvm_dev);
  2714. kmem_cache_destroy(kvm_vcpu_cache);
  2715. sysdev_unregister(&kvm_sysdev);
  2716. sysdev_class_unregister(&kvm_sysdev_class);
  2717. unregister_reboot_notifier(&kvm_reboot_notifier);
  2718. unregister_cpu_notifier(&kvm_cpu_notifier);
  2719. on_each_cpu(hardware_disable, NULL, 0, 1);
  2720. kvm_arch_ops->hardware_unsetup();
  2721. kvm_arch_ops = NULL;
  2722. }
  2723. static __init int kvm_init(void)
  2724. {
  2725. static struct page *bad_page;
  2726. int r;
  2727. r = kvm_mmu_module_init();
  2728. if (r)
  2729. goto out4;
  2730. kvm_init_debug();
  2731. kvm_init_msr_list();
  2732. if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
  2733. r = -ENOMEM;
  2734. goto out;
  2735. }
  2736. bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
  2737. memset(__va(bad_page_address), 0, PAGE_SIZE);
  2738. return 0;
  2739. out:
  2740. kvm_exit_debug();
  2741. kvm_mmu_module_exit();
  2742. out4:
  2743. return r;
  2744. }
  2745. static __exit void kvm_exit(void)
  2746. {
  2747. kvm_exit_debug();
  2748. __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
  2749. kvm_mmu_module_exit();
  2750. }
  2751. module_init(kvm_init)
  2752. module_exit(kvm_exit)
  2753. EXPORT_SYMBOL_GPL(kvm_init_arch);
  2754. EXPORT_SYMBOL_GPL(kvm_exit_arch);