fork.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/completion.h>
  18. #include <linux/personality.h>
  19. #include <linux/mempolicy.h>
  20. #include <linux/sem.h>
  21. #include <linux/file.h>
  22. #include <linux/fdtable.h>
  23. #include <linux/iocontext.h>
  24. #include <linux/key.h>
  25. #include <linux/binfmts.h>
  26. #include <linux/mman.h>
  27. #include <linux/mmu_notifier.h>
  28. #include <linux/fs.h>
  29. #include <linux/nsproxy.h>
  30. #include <linux/capability.h>
  31. #include <linux/cpu.h>
  32. #include <linux/cgroup.h>
  33. #include <linux/security.h>
  34. #include <linux/hugetlb.h>
  35. #include <linux/seccomp.h>
  36. #include <linux/swap.h>
  37. #include <linux/syscalls.h>
  38. #include <linux/jiffies.h>
  39. #include <linux/futex.h>
  40. #include <linux/compat.h>
  41. #include <linux/kthread.h>
  42. #include <linux/task_io_accounting_ops.h>
  43. #include <linux/rcupdate.h>
  44. #include <linux/ptrace.h>
  45. #include <linux/mount.h>
  46. #include <linux/audit.h>
  47. #include <linux/memcontrol.h>
  48. #include <linux/ftrace.h>
  49. #include <linux/proc_fs.h>
  50. #include <linux/profile.h>
  51. #include <linux/rmap.h>
  52. #include <linux/ksm.h>
  53. #include <linux/acct.h>
  54. #include <linux/tsacct_kern.h>
  55. #include <linux/cn_proc.h>
  56. #include <linux/freezer.h>
  57. #include <linux/delayacct.h>
  58. #include <linux/taskstats_kern.h>
  59. #include <linux/random.h>
  60. #include <linux/tty.h>
  61. #include <linux/blkdev.h>
  62. #include <linux/fs_struct.h>
  63. #include <linux/magic.h>
  64. #include <linux/perf_event.h>
  65. #include <linux/posix-timers.h>
  66. #include <linux/user-return-notifier.h>
  67. #include <linux/oom.h>
  68. #include <linux/khugepaged.h>
  69. #include <linux/signalfd.h>
  70. #include <linux/uprobes.h>
  71. #include <asm/pgtable.h>
  72. #include <asm/pgalloc.h>
  73. #include <asm/uaccess.h>
  74. #include <asm/mmu_context.h>
  75. #include <asm/cacheflush.h>
  76. #include <asm/tlbflush.h>
  77. #include <trace/events/sched.h>
  78. #define CREATE_TRACE_POINTS
  79. #include <trace/events/task.h>
  80. /*
  81. * Protected counters by write_lock_irq(&tasklist_lock)
  82. */
  83. unsigned long total_forks; /* Handle normal Linux uptimes. */
  84. int nr_threads; /* The idle threads do not count.. */
  85. int max_threads; /* tunable limit on nr_threads */
  86. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  87. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  88. #ifdef CONFIG_PROVE_RCU
  89. int lockdep_tasklist_lock_is_held(void)
  90. {
  91. return lockdep_is_held(&tasklist_lock);
  92. }
  93. EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
  94. #endif /* #ifdef CONFIG_PROVE_RCU */
  95. int nr_processes(void)
  96. {
  97. int cpu;
  98. int total = 0;
  99. for_each_possible_cpu(cpu)
  100. total += per_cpu(process_counts, cpu);
  101. return total;
  102. }
  103. void __weak arch_release_task_struct(struct task_struct *tsk)
  104. {
  105. }
  106. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  107. static struct kmem_cache *task_struct_cachep;
  108. static inline struct task_struct *alloc_task_struct_node(int node)
  109. {
  110. return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
  111. }
  112. static inline void free_task_struct(struct task_struct *tsk)
  113. {
  114. kmem_cache_free(task_struct_cachep, tsk);
  115. }
  116. #endif
  117. void __weak arch_release_thread_info(struct thread_info *ti)
  118. {
  119. }
  120. #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
  121. /*
  122. * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
  123. * kmemcache based allocator.
  124. */
  125. # if THREAD_SIZE >= PAGE_SIZE
  126. static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
  127. int node)
  128. {
  129. struct page *page = alloc_pages_node(node, THREADINFO_GFP,
  130. THREAD_SIZE_ORDER);
  131. return page ? page_address(page) : NULL;
  132. }
  133. static inline void free_thread_info(struct thread_info *ti)
  134. {
  135. free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
  136. }
  137. # else
  138. static struct kmem_cache *thread_info_cache;
  139. static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
  140. int node)
  141. {
  142. return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
  143. }
  144. static void free_thread_info(struct thread_info *ti)
  145. {
  146. kmem_cache_free(thread_info_cache, ti);
  147. }
  148. void thread_info_cache_init(void)
  149. {
  150. thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
  151. THREAD_SIZE, 0, NULL);
  152. BUG_ON(thread_info_cache == NULL);
  153. }
  154. # endif
  155. #endif
  156. /* SLAB cache for signal_struct structures (tsk->signal) */
  157. static struct kmem_cache *signal_cachep;
  158. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  159. struct kmem_cache *sighand_cachep;
  160. /* SLAB cache for files_struct structures (tsk->files) */
  161. struct kmem_cache *files_cachep;
  162. /* SLAB cache for fs_struct structures (tsk->fs) */
  163. struct kmem_cache *fs_cachep;
  164. /* SLAB cache for vm_area_struct structures */
  165. struct kmem_cache *vm_area_cachep;
  166. /* SLAB cache for mm_struct structures (tsk->mm) */
  167. static struct kmem_cache *mm_cachep;
  168. static void account_kernel_stack(struct thread_info *ti, int account)
  169. {
  170. struct zone *zone = page_zone(virt_to_page(ti));
  171. mod_zone_page_state(zone, NR_KERNEL_STACK, account);
  172. }
  173. void free_task(struct task_struct *tsk)
  174. {
  175. account_kernel_stack(tsk->stack, -1);
  176. arch_release_thread_info(tsk->stack);
  177. free_thread_info(tsk->stack);
  178. rt_mutex_debug_task_free(tsk);
  179. ftrace_graph_exit_task(tsk);
  180. put_seccomp_filter(tsk);
  181. arch_release_task_struct(tsk);
  182. free_task_struct(tsk);
  183. }
  184. EXPORT_SYMBOL(free_task);
  185. static inline void free_signal_struct(struct signal_struct *sig)
  186. {
  187. taskstats_tgid_free(sig);
  188. sched_autogroup_exit(sig);
  189. kmem_cache_free(signal_cachep, sig);
  190. }
  191. static inline void put_signal_struct(struct signal_struct *sig)
  192. {
  193. if (atomic_dec_and_test(&sig->sigcnt))
  194. free_signal_struct(sig);
  195. }
  196. void __put_task_struct(struct task_struct *tsk)
  197. {
  198. WARN_ON(!tsk->exit_state);
  199. WARN_ON(atomic_read(&tsk->usage));
  200. WARN_ON(tsk == current);
  201. security_task_free(tsk);
  202. exit_creds(tsk);
  203. delayacct_tsk_free(tsk);
  204. put_signal_struct(tsk->signal);
  205. if (!profile_handoff_task(tsk))
  206. free_task(tsk);
  207. }
  208. EXPORT_SYMBOL_GPL(__put_task_struct);
  209. void __init __weak arch_task_cache_init(void) { }
  210. void __init fork_init(unsigned long mempages)
  211. {
  212. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  213. #ifndef ARCH_MIN_TASKALIGN
  214. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  215. #endif
  216. /* create a slab on which task_structs can be allocated */
  217. task_struct_cachep =
  218. kmem_cache_create("task_struct", sizeof(struct task_struct),
  219. ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
  220. #endif
  221. /* do the arch specific task caches init */
  222. arch_task_cache_init();
  223. /*
  224. * The default maximum number of threads is set to a safe
  225. * value: the thread structures can take up at most half
  226. * of memory.
  227. */
  228. max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
  229. /*
  230. * we need to allow at least 20 threads to boot a system
  231. */
  232. if (max_threads < 20)
  233. max_threads = 20;
  234. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  235. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  236. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  237. init_task.signal->rlim[RLIMIT_NPROC];
  238. }
  239. int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
  240. struct task_struct *src)
  241. {
  242. *dst = *src;
  243. return 0;
  244. }
  245. static struct task_struct *dup_task_struct(struct task_struct *orig)
  246. {
  247. struct task_struct *tsk;
  248. struct thread_info *ti;
  249. unsigned long *stackend;
  250. int node = tsk_fork_get_node(orig);
  251. int err;
  252. tsk = alloc_task_struct_node(node);
  253. if (!tsk)
  254. return NULL;
  255. ti = alloc_thread_info_node(tsk, node);
  256. if (!ti)
  257. goto free_tsk;
  258. err = arch_dup_task_struct(tsk, orig);
  259. if (err)
  260. goto free_ti;
  261. tsk->stack = ti;
  262. setup_thread_stack(tsk, orig);
  263. clear_user_return_notifier(tsk);
  264. clear_tsk_need_resched(tsk);
  265. stackend = end_of_stack(tsk);
  266. *stackend = STACK_END_MAGIC; /* for overflow detection */
  267. #ifdef CONFIG_CC_STACKPROTECTOR
  268. tsk->stack_canary = get_random_int();
  269. #endif
  270. /*
  271. * One for us, one for whoever does the "release_task()" (usually
  272. * parent)
  273. */
  274. atomic_set(&tsk->usage, 2);
  275. #ifdef CONFIG_BLK_DEV_IO_TRACE
  276. tsk->btrace_seq = 0;
  277. #endif
  278. tsk->splice_pipe = NULL;
  279. account_kernel_stack(ti, 1);
  280. return tsk;
  281. free_ti:
  282. free_thread_info(ti);
  283. free_tsk:
  284. free_task_struct(tsk);
  285. return NULL;
  286. }
  287. #ifdef CONFIG_MMU
  288. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  289. {
  290. struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
  291. struct rb_node **rb_link, *rb_parent;
  292. int retval;
  293. unsigned long charge;
  294. struct mempolicy *pol;
  295. down_write(&oldmm->mmap_sem);
  296. flush_cache_dup_mm(oldmm);
  297. uprobe_dup_mmap(oldmm, mm);
  298. /*
  299. * Not linked in yet - no deadlock potential:
  300. */
  301. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  302. mm->locked_vm = 0;
  303. mm->mmap = NULL;
  304. mm->mmap_cache = NULL;
  305. mm->free_area_cache = oldmm->mmap_base;
  306. mm->cached_hole_size = ~0UL;
  307. mm->map_count = 0;
  308. cpumask_clear(mm_cpumask(mm));
  309. mm->mm_rb = RB_ROOT;
  310. rb_link = &mm->mm_rb.rb_node;
  311. rb_parent = NULL;
  312. pprev = &mm->mmap;
  313. retval = ksm_fork(mm, oldmm);
  314. if (retval)
  315. goto out;
  316. retval = khugepaged_fork(mm, oldmm);
  317. if (retval)
  318. goto out;
  319. prev = NULL;
  320. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  321. struct file *file;
  322. if (mpnt->vm_flags & VM_DONTCOPY) {
  323. vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
  324. -vma_pages(mpnt));
  325. continue;
  326. }
  327. charge = 0;
  328. if (mpnt->vm_flags & VM_ACCOUNT) {
  329. unsigned long len = vma_pages(mpnt);
  330. if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
  331. goto fail_nomem;
  332. charge = len;
  333. }
  334. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  335. if (!tmp)
  336. goto fail_nomem;
  337. *tmp = *mpnt;
  338. INIT_LIST_HEAD(&tmp->anon_vma_chain);
  339. pol = mpol_dup(vma_policy(mpnt));
  340. retval = PTR_ERR(pol);
  341. if (IS_ERR(pol))
  342. goto fail_nomem_policy;
  343. vma_set_policy(tmp, pol);
  344. tmp->vm_mm = mm;
  345. if (anon_vma_fork(tmp, mpnt))
  346. goto fail_nomem_anon_vma_fork;
  347. tmp->vm_flags &= ~VM_LOCKED;
  348. tmp->vm_next = tmp->vm_prev = NULL;
  349. file = tmp->vm_file;
  350. if (file) {
  351. struct inode *inode = file->f_path.dentry->d_inode;
  352. struct address_space *mapping = file->f_mapping;
  353. get_file(file);
  354. if (tmp->vm_flags & VM_DENYWRITE)
  355. atomic_dec(&inode->i_writecount);
  356. mutex_lock(&mapping->i_mmap_mutex);
  357. if (tmp->vm_flags & VM_SHARED)
  358. mapping->i_mmap_writable++;
  359. flush_dcache_mmap_lock(mapping);
  360. /* insert tmp into the share list, just after mpnt */
  361. vma_prio_tree_add(tmp, mpnt);
  362. flush_dcache_mmap_unlock(mapping);
  363. mutex_unlock(&mapping->i_mmap_mutex);
  364. }
  365. /*
  366. * Clear hugetlb-related page reserves for children. This only
  367. * affects MAP_PRIVATE mappings. Faults generated by the child
  368. * are not guaranteed to succeed, even if read-only
  369. */
  370. if (is_vm_hugetlb_page(tmp))
  371. reset_vma_resv_huge_pages(tmp);
  372. /*
  373. * Link in the new vma and copy the page table entries.
  374. */
  375. *pprev = tmp;
  376. pprev = &tmp->vm_next;
  377. tmp->vm_prev = prev;
  378. prev = tmp;
  379. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  380. rb_link = &tmp->vm_rb.rb_right;
  381. rb_parent = &tmp->vm_rb;
  382. mm->map_count++;
  383. retval = copy_page_range(mm, oldmm, mpnt);
  384. if (tmp->vm_ops && tmp->vm_ops->open)
  385. tmp->vm_ops->open(tmp);
  386. if (retval)
  387. goto out;
  388. }
  389. /* a new mm has just been created */
  390. arch_dup_mmap(oldmm, mm);
  391. retval = 0;
  392. out:
  393. up_write(&mm->mmap_sem);
  394. flush_tlb_mm(oldmm);
  395. up_write(&oldmm->mmap_sem);
  396. return retval;
  397. fail_nomem_anon_vma_fork:
  398. mpol_put(pol);
  399. fail_nomem_policy:
  400. kmem_cache_free(vm_area_cachep, tmp);
  401. fail_nomem:
  402. retval = -ENOMEM;
  403. vm_unacct_memory(charge);
  404. goto out;
  405. }
  406. static inline int mm_alloc_pgd(struct mm_struct *mm)
  407. {
  408. mm->pgd = pgd_alloc(mm);
  409. if (unlikely(!mm->pgd))
  410. return -ENOMEM;
  411. return 0;
  412. }
  413. static inline void mm_free_pgd(struct mm_struct *mm)
  414. {
  415. pgd_free(mm, mm->pgd);
  416. }
  417. #else
  418. #define dup_mmap(mm, oldmm) (0)
  419. #define mm_alloc_pgd(mm) (0)
  420. #define mm_free_pgd(mm)
  421. #endif /* CONFIG_MMU */
  422. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  423. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  424. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  425. static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
  426. static int __init coredump_filter_setup(char *s)
  427. {
  428. default_dump_filter =
  429. (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
  430. MMF_DUMP_FILTER_MASK;
  431. return 1;
  432. }
  433. __setup("coredump_filter=", coredump_filter_setup);
  434. #include <linux/init_task.h>
  435. static void mm_init_aio(struct mm_struct *mm)
  436. {
  437. #ifdef CONFIG_AIO
  438. spin_lock_init(&mm->ioctx_lock);
  439. INIT_HLIST_HEAD(&mm->ioctx_list);
  440. #endif
  441. }
  442. static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
  443. {
  444. atomic_set(&mm->mm_users, 1);
  445. atomic_set(&mm->mm_count, 1);
  446. init_rwsem(&mm->mmap_sem);
  447. INIT_LIST_HEAD(&mm->mmlist);
  448. mm->flags = (current->mm) ?
  449. (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
  450. mm->core_state = NULL;
  451. mm->nr_ptes = 0;
  452. memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
  453. spin_lock_init(&mm->page_table_lock);
  454. mm->free_area_cache = TASK_UNMAPPED_BASE;
  455. mm->cached_hole_size = ~0UL;
  456. mm_init_aio(mm);
  457. mm_init_owner(mm, p);
  458. if (likely(!mm_alloc_pgd(mm))) {
  459. mm->def_flags = 0;
  460. mmu_notifier_mm_init(mm);
  461. return mm;
  462. }
  463. free_mm(mm);
  464. return NULL;
  465. }
  466. static void check_mm(struct mm_struct *mm)
  467. {
  468. int i;
  469. for (i = 0; i < NR_MM_COUNTERS; i++) {
  470. long x = atomic_long_read(&mm->rss_stat.count[i]);
  471. if (unlikely(x))
  472. printk(KERN_ALERT "BUG: Bad rss-counter state "
  473. "mm:%p idx:%d val:%ld\n", mm, i, x);
  474. }
  475. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  476. VM_BUG_ON(mm->pmd_huge_pte);
  477. #endif
  478. }
  479. /*
  480. * Allocate and initialize an mm_struct.
  481. */
  482. struct mm_struct *mm_alloc(void)
  483. {
  484. struct mm_struct *mm;
  485. mm = allocate_mm();
  486. if (!mm)
  487. return NULL;
  488. memset(mm, 0, sizeof(*mm));
  489. mm_init_cpumask(mm);
  490. return mm_init(mm, current);
  491. }
  492. /*
  493. * Called when the last reference to the mm
  494. * is dropped: either by a lazy thread or by
  495. * mmput. Free the page directory and the mm.
  496. */
  497. void __mmdrop(struct mm_struct *mm)
  498. {
  499. BUG_ON(mm == &init_mm);
  500. mm_free_pgd(mm);
  501. destroy_context(mm);
  502. mmu_notifier_mm_destroy(mm);
  503. check_mm(mm);
  504. free_mm(mm);
  505. }
  506. EXPORT_SYMBOL_GPL(__mmdrop);
  507. /*
  508. * Decrement the use count and release all resources for an mm.
  509. */
  510. void mmput(struct mm_struct *mm)
  511. {
  512. might_sleep();
  513. if (atomic_dec_and_test(&mm->mm_users)) {
  514. uprobe_clear_state(mm);
  515. exit_aio(mm);
  516. ksm_exit(mm);
  517. khugepaged_exit(mm); /* must run before exit_mmap */
  518. exit_mmap(mm);
  519. set_mm_exe_file(mm, NULL);
  520. if (!list_empty(&mm->mmlist)) {
  521. spin_lock(&mmlist_lock);
  522. list_del(&mm->mmlist);
  523. spin_unlock(&mmlist_lock);
  524. }
  525. if (mm->binfmt)
  526. module_put(mm->binfmt->module);
  527. mmdrop(mm);
  528. }
  529. }
  530. EXPORT_SYMBOL_GPL(mmput);
  531. /*
  532. * We added or removed a vma mapping the executable. The vmas are only mapped
  533. * during exec and are not mapped with the mmap system call.
  534. * Callers must hold down_write() on the mm's mmap_sem for these
  535. */
  536. void added_exe_file_vma(struct mm_struct *mm)
  537. {
  538. mm->num_exe_file_vmas++;
  539. }
  540. void removed_exe_file_vma(struct mm_struct *mm)
  541. {
  542. mm->num_exe_file_vmas--;
  543. if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
  544. fput(mm->exe_file);
  545. mm->exe_file = NULL;
  546. }
  547. }
  548. void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
  549. {
  550. if (new_exe_file)
  551. get_file(new_exe_file);
  552. if (mm->exe_file)
  553. fput(mm->exe_file);
  554. mm->exe_file = new_exe_file;
  555. mm->num_exe_file_vmas = 0;
  556. }
  557. struct file *get_mm_exe_file(struct mm_struct *mm)
  558. {
  559. struct file *exe_file;
  560. /* We need mmap_sem to protect against races with removal of
  561. * VM_EXECUTABLE vmas */
  562. down_read(&mm->mmap_sem);
  563. exe_file = mm->exe_file;
  564. if (exe_file)
  565. get_file(exe_file);
  566. up_read(&mm->mmap_sem);
  567. return exe_file;
  568. }
  569. static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
  570. {
  571. /* It's safe to write the exe_file pointer without exe_file_lock because
  572. * this is called during fork when the task is not yet in /proc */
  573. newmm->exe_file = get_mm_exe_file(oldmm);
  574. }
  575. /**
  576. * get_task_mm - acquire a reference to the task's mm
  577. *
  578. * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
  579. * this kernel workthread has transiently adopted a user mm with use_mm,
  580. * to do its AIO) is not set and if so returns a reference to it, after
  581. * bumping up the use count. User must release the mm via mmput()
  582. * after use. Typically used by /proc and ptrace.
  583. */
  584. struct mm_struct *get_task_mm(struct task_struct *task)
  585. {
  586. struct mm_struct *mm;
  587. task_lock(task);
  588. mm = task->mm;
  589. if (mm) {
  590. if (task->flags & PF_KTHREAD)
  591. mm = NULL;
  592. else
  593. atomic_inc(&mm->mm_users);
  594. }
  595. task_unlock(task);
  596. return mm;
  597. }
  598. EXPORT_SYMBOL_GPL(get_task_mm);
  599. struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
  600. {
  601. struct mm_struct *mm;
  602. int err;
  603. err = mutex_lock_killable(&task->signal->cred_guard_mutex);
  604. if (err)
  605. return ERR_PTR(err);
  606. mm = get_task_mm(task);
  607. if (mm && mm != current->mm &&
  608. !ptrace_may_access(task, mode)) {
  609. mmput(mm);
  610. mm = ERR_PTR(-EACCES);
  611. }
  612. mutex_unlock(&task->signal->cred_guard_mutex);
  613. return mm;
  614. }
  615. static void complete_vfork_done(struct task_struct *tsk)
  616. {
  617. struct completion *vfork;
  618. task_lock(tsk);
  619. vfork = tsk->vfork_done;
  620. if (likely(vfork)) {
  621. tsk->vfork_done = NULL;
  622. complete(vfork);
  623. }
  624. task_unlock(tsk);
  625. }
  626. static int wait_for_vfork_done(struct task_struct *child,
  627. struct completion *vfork)
  628. {
  629. int killed;
  630. freezer_do_not_count();
  631. killed = wait_for_completion_killable(vfork);
  632. freezer_count();
  633. if (killed) {
  634. task_lock(child);
  635. child->vfork_done = NULL;
  636. task_unlock(child);
  637. }
  638. put_task_struct(child);
  639. return killed;
  640. }
  641. /* Please note the differences between mmput and mm_release.
  642. * mmput is called whenever we stop holding onto a mm_struct,
  643. * error success whatever.
  644. *
  645. * mm_release is called after a mm_struct has been removed
  646. * from the current process.
  647. *
  648. * This difference is important for error handling, when we
  649. * only half set up a mm_struct for a new process and need to restore
  650. * the old one. Because we mmput the new mm_struct before
  651. * restoring the old one. . .
  652. * Eric Biederman 10 January 1998
  653. */
  654. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  655. {
  656. /* Get rid of any futexes when releasing the mm */
  657. #ifdef CONFIG_FUTEX
  658. if (unlikely(tsk->robust_list)) {
  659. exit_robust_list(tsk);
  660. tsk->robust_list = NULL;
  661. }
  662. #ifdef CONFIG_COMPAT
  663. if (unlikely(tsk->compat_robust_list)) {
  664. compat_exit_robust_list(tsk);
  665. tsk->compat_robust_list = NULL;
  666. }
  667. #endif
  668. if (unlikely(!list_empty(&tsk->pi_state_list)))
  669. exit_pi_state_list(tsk);
  670. #endif
  671. uprobe_free_utask(tsk);
  672. /* Get rid of any cached register state */
  673. deactivate_mm(tsk, mm);
  674. /*
  675. * If we're exiting normally, clear a user-space tid field if
  676. * requested. We leave this alone when dying by signal, to leave
  677. * the value intact in a core dump, and to save the unnecessary
  678. * trouble, say, a killed vfork parent shouldn't touch this mm.
  679. * Userland only wants this done for a sys_exit.
  680. */
  681. if (tsk->clear_child_tid) {
  682. if (!(tsk->flags & PF_SIGNALED) &&
  683. atomic_read(&mm->mm_users) > 1) {
  684. /*
  685. * We don't check the error code - if userspace has
  686. * not set up a proper pointer then tough luck.
  687. */
  688. put_user(0, tsk->clear_child_tid);
  689. sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
  690. 1, NULL, NULL, 0);
  691. }
  692. tsk->clear_child_tid = NULL;
  693. }
  694. /*
  695. * All done, finally we can wake up parent and return this mm to him.
  696. * Also kthread_stop() uses this completion for synchronization.
  697. */
  698. if (tsk->vfork_done)
  699. complete_vfork_done(tsk);
  700. }
  701. /*
  702. * Allocate a new mm structure and copy contents from the
  703. * mm structure of the passed in task structure.
  704. */
  705. struct mm_struct *dup_mm(struct task_struct *tsk)
  706. {
  707. struct mm_struct *mm, *oldmm = current->mm;
  708. int err;
  709. if (!oldmm)
  710. return NULL;
  711. mm = allocate_mm();
  712. if (!mm)
  713. goto fail_nomem;
  714. memcpy(mm, oldmm, sizeof(*mm));
  715. mm_init_cpumask(mm);
  716. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  717. mm->pmd_huge_pte = NULL;
  718. #endif
  719. if (!mm_init(mm, tsk))
  720. goto fail_nomem;
  721. if (init_new_context(tsk, mm))
  722. goto fail_nocontext;
  723. dup_mm_exe_file(oldmm, mm);
  724. err = dup_mmap(mm, oldmm);
  725. if (err)
  726. goto free_pt;
  727. mm->hiwater_rss = get_mm_rss(mm);
  728. mm->hiwater_vm = mm->total_vm;
  729. if (mm->binfmt && !try_module_get(mm->binfmt->module))
  730. goto free_pt;
  731. return mm;
  732. free_pt:
  733. /* don't put binfmt in mmput, we haven't got module yet */
  734. mm->binfmt = NULL;
  735. mmput(mm);
  736. fail_nomem:
  737. return NULL;
  738. fail_nocontext:
  739. /*
  740. * If init_new_context() failed, we cannot use mmput() to free the mm
  741. * because it calls destroy_context()
  742. */
  743. mm_free_pgd(mm);
  744. free_mm(mm);
  745. return NULL;
  746. }
  747. static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
  748. {
  749. struct mm_struct *mm, *oldmm;
  750. int retval;
  751. tsk->min_flt = tsk->maj_flt = 0;
  752. tsk->nvcsw = tsk->nivcsw = 0;
  753. #ifdef CONFIG_DETECT_HUNG_TASK
  754. tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
  755. #endif
  756. tsk->mm = NULL;
  757. tsk->active_mm = NULL;
  758. /*
  759. * Are we cloning a kernel thread?
  760. *
  761. * We need to steal a active VM for that..
  762. */
  763. oldmm = current->mm;
  764. if (!oldmm)
  765. return 0;
  766. if (clone_flags & CLONE_VM) {
  767. atomic_inc(&oldmm->mm_users);
  768. mm = oldmm;
  769. goto good_mm;
  770. }
  771. retval = -ENOMEM;
  772. mm = dup_mm(tsk);
  773. if (!mm)
  774. goto fail_nomem;
  775. good_mm:
  776. tsk->mm = mm;
  777. tsk->active_mm = mm;
  778. return 0;
  779. fail_nomem:
  780. return retval;
  781. }
  782. static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
  783. {
  784. struct fs_struct *fs = current->fs;
  785. if (clone_flags & CLONE_FS) {
  786. /* tsk->fs is already what we want */
  787. spin_lock(&fs->lock);
  788. if (fs->in_exec) {
  789. spin_unlock(&fs->lock);
  790. return -EAGAIN;
  791. }
  792. fs->users++;
  793. spin_unlock(&fs->lock);
  794. return 0;
  795. }
  796. tsk->fs = copy_fs_struct(fs);
  797. if (!tsk->fs)
  798. return -ENOMEM;
  799. return 0;
  800. }
  801. static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
  802. {
  803. struct files_struct *oldf, *newf;
  804. int error = 0;
  805. /*
  806. * A background process may not have any files ...
  807. */
  808. oldf = current->files;
  809. if (!oldf)
  810. goto out;
  811. if (clone_flags & CLONE_FILES) {
  812. atomic_inc(&oldf->count);
  813. goto out;
  814. }
  815. newf = dup_fd(oldf, &error);
  816. if (!newf)
  817. goto out;
  818. tsk->files = newf;
  819. error = 0;
  820. out:
  821. return error;
  822. }
  823. static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
  824. {
  825. #ifdef CONFIG_BLOCK
  826. struct io_context *ioc = current->io_context;
  827. struct io_context *new_ioc;
  828. if (!ioc)
  829. return 0;
  830. /*
  831. * Share io context with parent, if CLONE_IO is set
  832. */
  833. if (clone_flags & CLONE_IO) {
  834. ioc_task_link(ioc);
  835. tsk->io_context = ioc;
  836. } else if (ioprio_valid(ioc->ioprio)) {
  837. new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
  838. if (unlikely(!new_ioc))
  839. return -ENOMEM;
  840. new_ioc->ioprio = ioc->ioprio;
  841. put_io_context(new_ioc);
  842. }
  843. #endif
  844. return 0;
  845. }
  846. static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
  847. {
  848. struct sighand_struct *sig;
  849. if (clone_flags & CLONE_SIGHAND) {
  850. atomic_inc(&current->sighand->count);
  851. return 0;
  852. }
  853. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  854. rcu_assign_pointer(tsk->sighand, sig);
  855. if (!sig)
  856. return -ENOMEM;
  857. atomic_set(&sig->count, 1);
  858. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  859. return 0;
  860. }
  861. void __cleanup_sighand(struct sighand_struct *sighand)
  862. {
  863. if (atomic_dec_and_test(&sighand->count)) {
  864. signalfd_cleanup(sighand);
  865. kmem_cache_free(sighand_cachep, sighand);
  866. }
  867. }
  868. /*
  869. * Initialize POSIX timer handling for a thread group.
  870. */
  871. static void posix_cpu_timers_init_group(struct signal_struct *sig)
  872. {
  873. unsigned long cpu_limit;
  874. /* Thread group counters. */
  875. thread_group_cputime_init(sig);
  876. cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
  877. if (cpu_limit != RLIM_INFINITY) {
  878. sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
  879. sig->cputimer.running = 1;
  880. }
  881. /* The timer lists. */
  882. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  883. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  884. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  885. }
  886. static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
  887. {
  888. struct signal_struct *sig;
  889. if (clone_flags & CLONE_THREAD)
  890. return 0;
  891. sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
  892. tsk->signal = sig;
  893. if (!sig)
  894. return -ENOMEM;
  895. sig->nr_threads = 1;
  896. atomic_set(&sig->live, 1);
  897. atomic_set(&sig->sigcnt, 1);
  898. init_waitqueue_head(&sig->wait_chldexit);
  899. if (clone_flags & CLONE_NEWPID)
  900. sig->flags |= SIGNAL_UNKILLABLE;
  901. sig->curr_target = tsk;
  902. init_sigpending(&sig->shared_pending);
  903. INIT_LIST_HEAD(&sig->posix_timers);
  904. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  905. sig->real_timer.function = it_real_fn;
  906. task_lock(current->group_leader);
  907. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  908. task_unlock(current->group_leader);
  909. posix_cpu_timers_init_group(sig);
  910. tty_audit_fork(sig);
  911. sched_autogroup_fork(sig);
  912. #ifdef CONFIG_CGROUPS
  913. init_rwsem(&sig->group_rwsem);
  914. #endif
  915. sig->oom_adj = current->signal->oom_adj;
  916. sig->oom_score_adj = current->signal->oom_score_adj;
  917. sig->oom_score_adj_min = current->signal->oom_score_adj_min;
  918. sig->has_child_subreaper = current->signal->has_child_subreaper ||
  919. current->signal->is_child_subreaper;
  920. mutex_init(&sig->cred_guard_mutex);
  921. return 0;
  922. }
  923. static void copy_flags(unsigned long clone_flags, struct task_struct *p)
  924. {
  925. unsigned long new_flags = p->flags;
  926. new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
  927. new_flags |= PF_FORKNOEXEC;
  928. p->flags = new_flags;
  929. }
  930. SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
  931. {
  932. current->clear_child_tid = tidptr;
  933. return task_pid_vnr(current);
  934. }
  935. static void rt_mutex_init_task(struct task_struct *p)
  936. {
  937. raw_spin_lock_init(&p->pi_lock);
  938. #ifdef CONFIG_RT_MUTEXES
  939. plist_head_init(&p->pi_waiters);
  940. p->pi_blocked_on = NULL;
  941. #endif
  942. }
  943. #ifdef CONFIG_MM_OWNER
  944. void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
  945. {
  946. mm->owner = p;
  947. }
  948. #endif /* CONFIG_MM_OWNER */
  949. /*
  950. * Initialize POSIX timer handling for a single task.
  951. */
  952. static void posix_cpu_timers_init(struct task_struct *tsk)
  953. {
  954. tsk->cputime_expires.prof_exp = 0;
  955. tsk->cputime_expires.virt_exp = 0;
  956. tsk->cputime_expires.sched_exp = 0;
  957. INIT_LIST_HEAD(&tsk->cpu_timers[0]);
  958. INIT_LIST_HEAD(&tsk->cpu_timers[1]);
  959. INIT_LIST_HEAD(&tsk->cpu_timers[2]);
  960. }
  961. /*
  962. * This creates a new process as a copy of the old one,
  963. * but does not actually start it yet.
  964. *
  965. * It copies the registers, and all the appropriate
  966. * parts of the process environment (as per the clone
  967. * flags). The actual kick-off is left to the caller.
  968. */
  969. static struct task_struct *copy_process(unsigned long clone_flags,
  970. unsigned long stack_start,
  971. struct pt_regs *regs,
  972. unsigned long stack_size,
  973. int __user *child_tidptr,
  974. struct pid *pid,
  975. int trace)
  976. {
  977. int retval;
  978. struct task_struct *p;
  979. int cgroup_callbacks_done = 0;
  980. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  981. return ERR_PTR(-EINVAL);
  982. /*
  983. * Thread groups must share signals as well, and detached threads
  984. * can only be started up within the thread group.
  985. */
  986. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  987. return ERR_PTR(-EINVAL);
  988. /*
  989. * Shared signal handlers imply shared VM. By way of the above,
  990. * thread groups also imply shared VM. Blocking this case allows
  991. * for various simplifications in other code.
  992. */
  993. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  994. return ERR_PTR(-EINVAL);
  995. /*
  996. * Siblings of global init remain as zombies on exit since they are
  997. * not reaped by their parent (swapper). To solve this and to avoid
  998. * multi-rooted process trees, prevent global and container-inits
  999. * from creating siblings.
  1000. */
  1001. if ((clone_flags & CLONE_PARENT) &&
  1002. current->signal->flags & SIGNAL_UNKILLABLE)
  1003. return ERR_PTR(-EINVAL);
  1004. retval = security_task_create(clone_flags);
  1005. if (retval)
  1006. goto fork_out;
  1007. retval = -ENOMEM;
  1008. p = dup_task_struct(current);
  1009. if (!p)
  1010. goto fork_out;
  1011. ftrace_graph_init_task(p);
  1012. get_seccomp_filter(p);
  1013. rt_mutex_init_task(p);
  1014. #ifdef CONFIG_PROVE_LOCKING
  1015. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  1016. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  1017. #endif
  1018. retval = -EAGAIN;
  1019. if (atomic_read(&p->real_cred->user->processes) >=
  1020. task_rlimit(p, RLIMIT_NPROC)) {
  1021. if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
  1022. p->real_cred->user != INIT_USER)
  1023. goto bad_fork_free;
  1024. }
  1025. current->flags &= ~PF_NPROC_EXCEEDED;
  1026. retval = copy_creds(p, clone_flags);
  1027. if (retval < 0)
  1028. goto bad_fork_free;
  1029. /*
  1030. * If multiple threads are within copy_process(), then this check
  1031. * triggers too late. This doesn't hurt, the check is only there
  1032. * to stop root fork bombs.
  1033. */
  1034. retval = -EAGAIN;
  1035. if (nr_threads >= max_threads)
  1036. goto bad_fork_cleanup_count;
  1037. if (!try_module_get(task_thread_info(p)->exec_domain->module))
  1038. goto bad_fork_cleanup_count;
  1039. p->did_exec = 0;
  1040. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  1041. copy_flags(clone_flags, p);
  1042. INIT_LIST_HEAD(&p->children);
  1043. INIT_LIST_HEAD(&p->sibling);
  1044. rcu_copy_process(p);
  1045. p->vfork_done = NULL;
  1046. spin_lock_init(&p->alloc_lock);
  1047. init_sigpending(&p->pending);
  1048. p->utime = p->stime = p->gtime = 0;
  1049. p->utimescaled = p->stimescaled = 0;
  1050. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  1051. p->prev_utime = p->prev_stime = 0;
  1052. #endif
  1053. #if defined(SPLIT_RSS_COUNTING)
  1054. memset(&p->rss_stat, 0, sizeof(p->rss_stat));
  1055. #endif
  1056. p->default_timer_slack_ns = current->timer_slack_ns;
  1057. task_io_accounting_init(&p->ioac);
  1058. acct_clear_integrals(p);
  1059. posix_cpu_timers_init(p);
  1060. do_posix_clock_monotonic_gettime(&p->start_time);
  1061. p->real_start_time = p->start_time;
  1062. monotonic_to_bootbased(&p->real_start_time);
  1063. p->io_context = NULL;
  1064. p->audit_context = NULL;
  1065. if (clone_flags & CLONE_THREAD)
  1066. threadgroup_change_begin(current);
  1067. cgroup_fork(p);
  1068. #ifdef CONFIG_NUMA
  1069. p->mempolicy = mpol_dup(p->mempolicy);
  1070. if (IS_ERR(p->mempolicy)) {
  1071. retval = PTR_ERR(p->mempolicy);
  1072. p->mempolicy = NULL;
  1073. goto bad_fork_cleanup_cgroup;
  1074. }
  1075. mpol_fix_fork_child_flag(p);
  1076. #endif
  1077. #ifdef CONFIG_CPUSETS
  1078. p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
  1079. p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
  1080. seqcount_init(&p->mems_allowed_seq);
  1081. #endif
  1082. #ifdef CONFIG_TRACE_IRQFLAGS
  1083. p->irq_events = 0;
  1084. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1085. p->hardirqs_enabled = 1;
  1086. #else
  1087. p->hardirqs_enabled = 0;
  1088. #endif
  1089. p->hardirq_enable_ip = 0;
  1090. p->hardirq_enable_event = 0;
  1091. p->hardirq_disable_ip = _THIS_IP_;
  1092. p->hardirq_disable_event = 0;
  1093. p->softirqs_enabled = 1;
  1094. p->softirq_enable_ip = _THIS_IP_;
  1095. p->softirq_enable_event = 0;
  1096. p->softirq_disable_ip = 0;
  1097. p->softirq_disable_event = 0;
  1098. p->hardirq_context = 0;
  1099. p->softirq_context = 0;
  1100. #endif
  1101. #ifdef CONFIG_LOCKDEP
  1102. p->lockdep_depth = 0; /* no locks held yet */
  1103. p->curr_chain_key = 0;
  1104. p->lockdep_recursion = 0;
  1105. #endif
  1106. #ifdef CONFIG_DEBUG_MUTEXES
  1107. p->blocked_on = NULL; /* not blocked yet */
  1108. #endif
  1109. #ifdef CONFIG_MEMCG
  1110. p->memcg_batch.do_batch = 0;
  1111. p->memcg_batch.memcg = NULL;
  1112. #endif
  1113. /* Perform scheduler related setup. Assign this task to a CPU. */
  1114. sched_fork(p);
  1115. retval = perf_event_init_task(p);
  1116. if (retval)
  1117. goto bad_fork_cleanup_policy;
  1118. retval = audit_alloc(p);
  1119. if (retval)
  1120. goto bad_fork_cleanup_policy;
  1121. /* copy all the process information */
  1122. retval = copy_semundo(clone_flags, p);
  1123. if (retval)
  1124. goto bad_fork_cleanup_audit;
  1125. retval = copy_files(clone_flags, p);
  1126. if (retval)
  1127. goto bad_fork_cleanup_semundo;
  1128. retval = copy_fs(clone_flags, p);
  1129. if (retval)
  1130. goto bad_fork_cleanup_files;
  1131. retval = copy_sighand(clone_flags, p);
  1132. if (retval)
  1133. goto bad_fork_cleanup_fs;
  1134. retval = copy_signal(clone_flags, p);
  1135. if (retval)
  1136. goto bad_fork_cleanup_sighand;
  1137. retval = copy_mm(clone_flags, p);
  1138. if (retval)
  1139. goto bad_fork_cleanup_signal;
  1140. retval = copy_namespaces(clone_flags, p);
  1141. if (retval)
  1142. goto bad_fork_cleanup_mm;
  1143. retval = copy_io(clone_flags, p);
  1144. if (retval)
  1145. goto bad_fork_cleanup_namespaces;
  1146. retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
  1147. if (retval)
  1148. goto bad_fork_cleanup_io;
  1149. if (pid != &init_struct_pid) {
  1150. retval = -ENOMEM;
  1151. pid = alloc_pid(p->nsproxy->pid_ns);
  1152. if (!pid)
  1153. goto bad_fork_cleanup_io;
  1154. }
  1155. p->pid = pid_nr(pid);
  1156. p->tgid = p->pid;
  1157. if (clone_flags & CLONE_THREAD)
  1158. p->tgid = current->tgid;
  1159. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  1160. /*
  1161. * Clear TID on mm_release()?
  1162. */
  1163. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
  1164. #ifdef CONFIG_BLOCK
  1165. p->plug = NULL;
  1166. #endif
  1167. #ifdef CONFIG_FUTEX
  1168. p->robust_list = NULL;
  1169. #ifdef CONFIG_COMPAT
  1170. p->compat_robust_list = NULL;
  1171. #endif
  1172. INIT_LIST_HEAD(&p->pi_state_list);
  1173. p->pi_state_cache = NULL;
  1174. #endif
  1175. uprobe_copy_process(p);
  1176. /*
  1177. * sigaltstack should be cleared when sharing the same VM
  1178. */
  1179. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  1180. p->sas_ss_sp = p->sas_ss_size = 0;
  1181. /*
  1182. * Syscall tracing and stepping should be turned off in the
  1183. * child regardless of CLONE_PTRACE.
  1184. */
  1185. user_disable_single_step(p);
  1186. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  1187. #ifdef TIF_SYSCALL_EMU
  1188. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  1189. #endif
  1190. clear_all_latency_tracing(p);
  1191. /* ok, now we should be set up.. */
  1192. if (clone_flags & CLONE_THREAD)
  1193. p->exit_signal = -1;
  1194. else if (clone_flags & CLONE_PARENT)
  1195. p->exit_signal = current->group_leader->exit_signal;
  1196. else
  1197. p->exit_signal = (clone_flags & CSIGNAL);
  1198. p->pdeath_signal = 0;
  1199. p->exit_state = 0;
  1200. p->nr_dirtied = 0;
  1201. p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
  1202. p->dirty_paused_when = 0;
  1203. /*
  1204. * Ok, make it visible to the rest of the system.
  1205. * We dont wake it up yet.
  1206. */
  1207. p->group_leader = p;
  1208. INIT_LIST_HEAD(&p->thread_group);
  1209. p->task_works = NULL;
  1210. /* Now that the task is set up, run cgroup callbacks if
  1211. * necessary. We need to run them before the task is visible
  1212. * on the tasklist. */
  1213. cgroup_fork_callbacks(p);
  1214. cgroup_callbacks_done = 1;
  1215. /* Need tasklist lock for parent etc handling! */
  1216. write_lock_irq(&tasklist_lock);
  1217. /* CLONE_PARENT re-uses the old parent */
  1218. if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
  1219. p->real_parent = current->real_parent;
  1220. p->parent_exec_id = current->parent_exec_id;
  1221. } else {
  1222. p->real_parent = current;
  1223. p->parent_exec_id = current->self_exec_id;
  1224. }
  1225. spin_lock(&current->sighand->siglock);
  1226. /*
  1227. * Process group and session signals need to be delivered to just the
  1228. * parent before the fork or both the parent and the child after the
  1229. * fork. Restart if a signal comes in before we add the new process to
  1230. * it's process group.
  1231. * A fatal signal pending means that current will exit, so the new
  1232. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1233. */
  1234. recalc_sigpending();
  1235. if (signal_pending(current)) {
  1236. spin_unlock(&current->sighand->siglock);
  1237. write_unlock_irq(&tasklist_lock);
  1238. retval = -ERESTARTNOINTR;
  1239. goto bad_fork_free_pid;
  1240. }
  1241. if (clone_flags & CLONE_THREAD) {
  1242. current->signal->nr_threads++;
  1243. atomic_inc(&current->signal->live);
  1244. atomic_inc(&current->signal->sigcnt);
  1245. p->group_leader = current->group_leader;
  1246. list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
  1247. }
  1248. if (likely(p->pid)) {
  1249. ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
  1250. if (thread_group_leader(p)) {
  1251. if (is_child_reaper(pid))
  1252. p->nsproxy->pid_ns->child_reaper = p;
  1253. p->signal->leader_pid = pid;
  1254. p->signal->tty = tty_kref_get(current->signal->tty);
  1255. attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
  1256. attach_pid(p, PIDTYPE_SID, task_session(current));
  1257. list_add_tail(&p->sibling, &p->real_parent->children);
  1258. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1259. __this_cpu_inc(process_counts);
  1260. }
  1261. attach_pid(p, PIDTYPE_PID, pid);
  1262. nr_threads++;
  1263. }
  1264. total_forks++;
  1265. spin_unlock(&current->sighand->siglock);
  1266. write_unlock_irq(&tasklist_lock);
  1267. proc_fork_connector(p);
  1268. cgroup_post_fork(p);
  1269. if (clone_flags & CLONE_THREAD)
  1270. threadgroup_change_end(current);
  1271. perf_event_fork(p);
  1272. trace_task_newtask(p, clone_flags);
  1273. return p;
  1274. bad_fork_free_pid:
  1275. if (pid != &init_struct_pid)
  1276. free_pid(pid);
  1277. bad_fork_cleanup_io:
  1278. if (p->io_context)
  1279. exit_io_context(p);
  1280. bad_fork_cleanup_namespaces:
  1281. if (unlikely(clone_flags & CLONE_NEWPID))
  1282. pid_ns_release_proc(p->nsproxy->pid_ns);
  1283. exit_task_namespaces(p);
  1284. bad_fork_cleanup_mm:
  1285. if (p->mm)
  1286. mmput(p->mm);
  1287. bad_fork_cleanup_signal:
  1288. if (!(clone_flags & CLONE_THREAD))
  1289. free_signal_struct(p->signal);
  1290. bad_fork_cleanup_sighand:
  1291. __cleanup_sighand(p->sighand);
  1292. bad_fork_cleanup_fs:
  1293. exit_fs(p); /* blocking */
  1294. bad_fork_cleanup_files:
  1295. exit_files(p); /* blocking */
  1296. bad_fork_cleanup_semundo:
  1297. exit_sem(p);
  1298. bad_fork_cleanup_audit:
  1299. audit_free(p);
  1300. bad_fork_cleanup_policy:
  1301. perf_event_free_task(p);
  1302. #ifdef CONFIG_NUMA
  1303. mpol_put(p->mempolicy);
  1304. bad_fork_cleanup_cgroup:
  1305. #endif
  1306. if (clone_flags & CLONE_THREAD)
  1307. threadgroup_change_end(current);
  1308. cgroup_exit(p, cgroup_callbacks_done);
  1309. delayacct_tsk_free(p);
  1310. module_put(task_thread_info(p)->exec_domain->module);
  1311. bad_fork_cleanup_count:
  1312. atomic_dec(&p->cred->user->processes);
  1313. exit_creds(p);
  1314. bad_fork_free:
  1315. free_task(p);
  1316. fork_out:
  1317. return ERR_PTR(retval);
  1318. }
  1319. noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
  1320. {
  1321. memset(regs, 0, sizeof(struct pt_regs));
  1322. return regs;
  1323. }
  1324. static inline void init_idle_pids(struct pid_link *links)
  1325. {
  1326. enum pid_type type;
  1327. for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
  1328. INIT_HLIST_NODE(&links[type].node); /* not really needed */
  1329. links[type].pid = &init_struct_pid;
  1330. }
  1331. }
  1332. struct task_struct * __cpuinit fork_idle(int cpu)
  1333. {
  1334. struct task_struct *task;
  1335. struct pt_regs regs;
  1336. task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
  1337. &init_struct_pid, 0);
  1338. if (!IS_ERR(task)) {
  1339. init_idle_pids(task->pids);
  1340. init_idle(task, cpu);
  1341. }
  1342. return task;
  1343. }
  1344. /*
  1345. * Ok, this is the main fork-routine.
  1346. *
  1347. * It copies the process, and if successful kick-starts
  1348. * it and waits for it to finish using the VM if required.
  1349. */
  1350. long do_fork(unsigned long clone_flags,
  1351. unsigned long stack_start,
  1352. struct pt_regs *regs,
  1353. unsigned long stack_size,
  1354. int __user *parent_tidptr,
  1355. int __user *child_tidptr)
  1356. {
  1357. struct task_struct *p;
  1358. int trace = 0;
  1359. long nr;
  1360. /*
  1361. * Do some preliminary argument and permissions checking before we
  1362. * actually start allocating stuff
  1363. */
  1364. if (clone_flags & CLONE_NEWUSER) {
  1365. if (clone_flags & CLONE_THREAD)
  1366. return -EINVAL;
  1367. /* hopefully this check will go away when userns support is
  1368. * complete
  1369. */
  1370. if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
  1371. !capable(CAP_SETGID))
  1372. return -EPERM;
  1373. }
  1374. /*
  1375. * Determine whether and which event to report to ptracer. When
  1376. * called from kernel_thread or CLONE_UNTRACED is explicitly
  1377. * requested, no event is reported; otherwise, report if the event
  1378. * for the type of forking is enabled.
  1379. */
  1380. if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
  1381. if (clone_flags & CLONE_VFORK)
  1382. trace = PTRACE_EVENT_VFORK;
  1383. else if ((clone_flags & CSIGNAL) != SIGCHLD)
  1384. trace = PTRACE_EVENT_CLONE;
  1385. else
  1386. trace = PTRACE_EVENT_FORK;
  1387. if (likely(!ptrace_event_enabled(current, trace)))
  1388. trace = 0;
  1389. }
  1390. p = copy_process(clone_flags, stack_start, regs, stack_size,
  1391. child_tidptr, NULL, trace);
  1392. /*
  1393. * Do this prior waking up the new thread - the thread pointer
  1394. * might get invalid after that point, if the thread exits quickly.
  1395. */
  1396. if (!IS_ERR(p)) {
  1397. struct completion vfork;
  1398. trace_sched_process_fork(current, p);
  1399. nr = task_pid_vnr(p);
  1400. if (clone_flags & CLONE_PARENT_SETTID)
  1401. put_user(nr, parent_tidptr);
  1402. if (clone_flags & CLONE_VFORK) {
  1403. p->vfork_done = &vfork;
  1404. init_completion(&vfork);
  1405. get_task_struct(p);
  1406. }
  1407. wake_up_new_task(p);
  1408. /* forking complete and child started to run, tell ptracer */
  1409. if (unlikely(trace))
  1410. ptrace_event(trace, nr);
  1411. if (clone_flags & CLONE_VFORK) {
  1412. if (!wait_for_vfork_done(p, &vfork))
  1413. ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
  1414. }
  1415. } else {
  1416. nr = PTR_ERR(p);
  1417. }
  1418. return nr;
  1419. }
  1420. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1421. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1422. #endif
  1423. static void sighand_ctor(void *data)
  1424. {
  1425. struct sighand_struct *sighand = data;
  1426. spin_lock_init(&sighand->siglock);
  1427. init_waitqueue_head(&sighand->signalfd_wqh);
  1428. }
  1429. void __init proc_caches_init(void)
  1430. {
  1431. sighand_cachep = kmem_cache_create("sighand_cache",
  1432. sizeof(struct sighand_struct), 0,
  1433. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
  1434. SLAB_NOTRACK, sighand_ctor);
  1435. signal_cachep = kmem_cache_create("signal_cache",
  1436. sizeof(struct signal_struct), 0,
  1437. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1438. files_cachep = kmem_cache_create("files_cache",
  1439. sizeof(struct files_struct), 0,
  1440. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1441. fs_cachep = kmem_cache_create("fs_cache",
  1442. sizeof(struct fs_struct), 0,
  1443. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1444. /*
  1445. * FIXME! The "sizeof(struct mm_struct)" currently includes the
  1446. * whole struct cpumask for the OFFSTACK case. We could change
  1447. * this to *only* allocate as much of it as required by the
  1448. * maximum number of CPU's we can ever have. The cpumask_allocation
  1449. * is at the end of the structure, exactly for that reason.
  1450. */
  1451. mm_cachep = kmem_cache_create("mm_struct",
  1452. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1453. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1454. vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
  1455. mmap_init();
  1456. nsproxy_cache_init();
  1457. }
  1458. /*
  1459. * Check constraints on flags passed to the unshare system call.
  1460. */
  1461. static int check_unshare_flags(unsigned long unshare_flags)
  1462. {
  1463. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1464. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1465. CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
  1466. return -EINVAL;
  1467. /*
  1468. * Not implemented, but pretend it works if there is nothing to
  1469. * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
  1470. * needs to unshare vm.
  1471. */
  1472. if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
  1473. /* FIXME: get_task_mm() increments ->mm_users */
  1474. if (atomic_read(&current->mm->mm_users) > 1)
  1475. return -EINVAL;
  1476. }
  1477. return 0;
  1478. }
  1479. /*
  1480. * Unshare the filesystem structure if it is being shared
  1481. */
  1482. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1483. {
  1484. struct fs_struct *fs = current->fs;
  1485. if (!(unshare_flags & CLONE_FS) || !fs)
  1486. return 0;
  1487. /* don't need lock here; in the worst case we'll do useless copy */
  1488. if (fs->users == 1)
  1489. return 0;
  1490. *new_fsp = copy_fs_struct(fs);
  1491. if (!*new_fsp)
  1492. return -ENOMEM;
  1493. return 0;
  1494. }
  1495. /*
  1496. * Unshare file descriptor table if it is being shared
  1497. */
  1498. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1499. {
  1500. struct files_struct *fd = current->files;
  1501. int error = 0;
  1502. if ((unshare_flags & CLONE_FILES) &&
  1503. (fd && atomic_read(&fd->count) > 1)) {
  1504. *new_fdp = dup_fd(fd, &error);
  1505. if (!*new_fdp)
  1506. return error;
  1507. }
  1508. return 0;
  1509. }
  1510. /*
  1511. * unshare allows a process to 'unshare' part of the process
  1512. * context which was originally shared using clone. copy_*
  1513. * functions used by do_fork() cannot be used here directly
  1514. * because they modify an inactive task_struct that is being
  1515. * constructed. Here we are modifying the current, active,
  1516. * task_struct.
  1517. */
  1518. SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
  1519. {
  1520. struct fs_struct *fs, *new_fs = NULL;
  1521. struct files_struct *fd, *new_fd = NULL;
  1522. struct nsproxy *new_nsproxy = NULL;
  1523. int do_sysvsem = 0;
  1524. int err;
  1525. err = check_unshare_flags(unshare_flags);
  1526. if (err)
  1527. goto bad_unshare_out;
  1528. /*
  1529. * If unsharing namespace, must also unshare filesystem information.
  1530. */
  1531. if (unshare_flags & CLONE_NEWNS)
  1532. unshare_flags |= CLONE_FS;
  1533. /*
  1534. * CLONE_NEWIPC must also detach from the undolist: after switching
  1535. * to a new ipc namespace, the semaphore arrays from the old
  1536. * namespace are unreachable.
  1537. */
  1538. if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
  1539. do_sysvsem = 1;
  1540. err = unshare_fs(unshare_flags, &new_fs);
  1541. if (err)
  1542. goto bad_unshare_out;
  1543. err = unshare_fd(unshare_flags, &new_fd);
  1544. if (err)
  1545. goto bad_unshare_cleanup_fs;
  1546. err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
  1547. if (err)
  1548. goto bad_unshare_cleanup_fd;
  1549. if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
  1550. if (do_sysvsem) {
  1551. /*
  1552. * CLONE_SYSVSEM is equivalent to sys_exit().
  1553. */
  1554. exit_sem(current);
  1555. }
  1556. if (new_nsproxy) {
  1557. switch_task_namespaces(current, new_nsproxy);
  1558. new_nsproxy = NULL;
  1559. }
  1560. task_lock(current);
  1561. if (new_fs) {
  1562. fs = current->fs;
  1563. spin_lock(&fs->lock);
  1564. current->fs = new_fs;
  1565. if (--fs->users)
  1566. new_fs = NULL;
  1567. else
  1568. new_fs = fs;
  1569. spin_unlock(&fs->lock);
  1570. }
  1571. if (new_fd) {
  1572. fd = current->files;
  1573. current->files = new_fd;
  1574. new_fd = fd;
  1575. }
  1576. task_unlock(current);
  1577. }
  1578. if (new_nsproxy)
  1579. put_nsproxy(new_nsproxy);
  1580. bad_unshare_cleanup_fd:
  1581. if (new_fd)
  1582. put_files_struct(new_fd);
  1583. bad_unshare_cleanup_fs:
  1584. if (new_fs)
  1585. free_fs_struct(new_fs);
  1586. bad_unshare_out:
  1587. return err;
  1588. }
  1589. /*
  1590. * Helper to unshare the files of the current task.
  1591. * We don't want to expose copy_files internals to
  1592. * the exec layer of the kernel.
  1593. */
  1594. int unshare_files(struct files_struct **displaced)
  1595. {
  1596. struct task_struct *task = current;
  1597. struct files_struct *copy = NULL;
  1598. int error;
  1599. error = unshare_fd(CLONE_FILES, &copy);
  1600. if (error || !copy) {
  1601. *displaced = NULL;
  1602. return error;
  1603. }
  1604. *displaced = task->files;
  1605. task_lock(task);
  1606. task->files = copy;
  1607. task_unlock(task);
  1608. return 0;
  1609. }