slab.c 118 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569
  1. /*
  2. * linux/mm/slab.c
  3. * Written by Mark Hemment, 1996/97.
  4. * (markhe@nextd.demon.co.uk)
  5. *
  6. * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
  7. *
  8. * Major cleanup, different bufctl logic, per-cpu arrays
  9. * (c) 2000 Manfred Spraul
  10. *
  11. * Cleanup, make the head arrays unconditional, preparation for NUMA
  12. * (c) 2002 Manfred Spraul
  13. *
  14. * An implementation of the Slab Allocator as described in outline in;
  15. * UNIX Internals: The New Frontiers by Uresh Vahalia
  16. * Pub: Prentice Hall ISBN 0-13-101908-2
  17. * or with a little more detail in;
  18. * The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19. * Jeff Bonwick (Sun Microsystems).
  20. * Presented at: USENIX Summer 1994 Technical Conference
  21. *
  22. * The memory is organized in caches, one cache for each object type.
  23. * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24. * Each cache consists out of many slabs (they are small (usually one
  25. * page long) and always contiguous), and each slab contains multiple
  26. * initialized objects.
  27. *
  28. * This means, that your constructor is used only for newly allocated
  29. * slabs and you must pass objects with the same initializations to
  30. * kmem_cache_free.
  31. *
  32. * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33. * normal). If you need a special memory type, then must create a new
  34. * cache for that memory type.
  35. *
  36. * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37. * full slabs with 0 free objects
  38. * partial slabs
  39. * empty slabs with no allocated objects
  40. *
  41. * If partial slabs exist, then new allocations come from these slabs,
  42. * otherwise from empty slabs or new slabs are allocated.
  43. *
  44. * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45. * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46. *
  47. * Each cache has a short per-cpu head array, most allocs
  48. * and frees go into that array, and if that array overflows, then 1/2
  49. * of the entries in the array are given back into the global cache.
  50. * The head array is strictly LIFO and should improve the cache hit rates.
  51. * On SMP, it additionally reduces the spinlock operations.
  52. *
  53. * The c_cpuarray may not be read with enabled local interrupts -
  54. * it's changed with a smp_call_function().
  55. *
  56. * SMP synchronization:
  57. * constructors and destructors are called without any locking.
  58. * Several members in struct kmem_cache and struct slab never change, they
  59. * are accessed without any locking.
  60. * The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61. * and local interrupts are disabled so slab code is preempt-safe.
  62. * The non-constant members are protected with a per-cache irq spinlock.
  63. *
  64. * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65. * in 2000 - many ideas in the current implementation are derived from
  66. * his patch.
  67. *
  68. * Further notes from the original documentation:
  69. *
  70. * 11 April '97. Started multi-threading - markhe
  71. * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  72. * The sem is only needed when accessing/extending the cache-chain, which
  73. * can never happen inside an interrupt (kmem_cache_create(),
  74. * kmem_cache_shrink() and kmem_cache_reap()).
  75. *
  76. * At present, each engine can be growing a cache. This should be blocked.
  77. *
  78. * 15 March 2005. NUMA slab allocator.
  79. * Shai Fultheim <shai@scalex86.org>.
  80. * Shobhit Dayal <shobhit@calsoftinc.com>
  81. * Alok N Kataria <alokk@calsoftinc.com>
  82. * Christoph Lameter <christoph@lameter.com>
  83. *
  84. * Modified the slab allocator to be node aware on NUMA systems.
  85. * Each node has its own list of partial, free and full slabs.
  86. * All object allocations for a node occur from node specific slab lists.
  87. */
  88. #include <linux/slab.h>
  89. #include <linux/mm.h>
  90. #include <linux/poison.h>
  91. #include <linux/swap.h>
  92. #include <linux/cache.h>
  93. #include <linux/interrupt.h>
  94. #include <linux/init.h>
  95. #include <linux/compiler.h>
  96. #include <linux/cpuset.h>
  97. #include <linux/proc_fs.h>
  98. #include <linux/seq_file.h>
  99. #include <linux/notifier.h>
  100. #include <linux/kallsyms.h>
  101. #include <linux/cpu.h>
  102. #include <linux/sysctl.h>
  103. #include <linux/module.h>
  104. #include <linux/kmemtrace.h>
  105. #include <linux/rcupdate.h>
  106. #include <linux/string.h>
  107. #include <linux/uaccess.h>
  108. #include <linux/nodemask.h>
  109. #include <linux/kmemleak.h>
  110. #include <linux/mempolicy.h>
  111. #include <linux/mutex.h>
  112. #include <linux/fault-inject.h>
  113. #include <linux/rtmutex.h>
  114. #include <linux/reciprocal_div.h>
  115. #include <linux/debugobjects.h>
  116. #include <asm/cacheflush.h>
  117. #include <asm/tlbflush.h>
  118. #include <asm/page.h>
  119. /*
  120. * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
  121. * 0 for faster, smaller code (especially in the critical paths).
  122. *
  123. * STATS - 1 to collect stats for /proc/slabinfo.
  124. * 0 for faster, smaller code (especially in the critical paths).
  125. *
  126. * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
  127. */
  128. #ifdef CONFIG_DEBUG_SLAB
  129. #define DEBUG 1
  130. #define STATS 1
  131. #define FORCED_DEBUG 1
  132. #else
  133. #define DEBUG 0
  134. #define STATS 0
  135. #define FORCED_DEBUG 0
  136. #endif
  137. /* Shouldn't this be in a header file somewhere? */
  138. #define BYTES_PER_WORD sizeof(void *)
  139. #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
  140. #ifndef ARCH_KMALLOC_MINALIGN
  141. /*
  142. * Enforce a minimum alignment for the kmalloc caches.
  143. * Usually, the kmalloc caches are cache_line_size() aligned, except when
  144. * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
  145. * Some archs want to perform DMA into kmalloc caches and need a guaranteed
  146. * alignment larger than the alignment of a 64-bit integer.
  147. * ARCH_KMALLOC_MINALIGN allows that.
  148. * Note that increasing this value may disable some debug features.
  149. */
  150. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  151. #endif
  152. #ifndef ARCH_SLAB_MINALIGN
  153. /*
  154. * Enforce a minimum alignment for all caches.
  155. * Intended for archs that get misalignment faults even for BYTES_PER_WORD
  156. * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
  157. * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
  158. * some debug features.
  159. */
  160. #define ARCH_SLAB_MINALIGN 0
  161. #endif
  162. #ifndef ARCH_KMALLOC_FLAGS
  163. #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
  164. #endif
  165. /* Legal flag mask for kmem_cache_create(). */
  166. #if DEBUG
  167. # define CREATE_MASK (SLAB_RED_ZONE | \
  168. SLAB_POISON | SLAB_HWCACHE_ALIGN | \
  169. SLAB_CACHE_DMA | \
  170. SLAB_STORE_USER | \
  171. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  172. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
  173. SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE)
  174. #else
  175. # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
  176. SLAB_CACHE_DMA | \
  177. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  178. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
  179. SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE)
  180. #endif
  181. /*
  182. * kmem_bufctl_t:
  183. *
  184. * Bufctl's are used for linking objs within a slab
  185. * linked offsets.
  186. *
  187. * This implementation relies on "struct page" for locating the cache &
  188. * slab an object belongs to.
  189. * This allows the bufctl structure to be small (one int), but limits
  190. * the number of objects a slab (not a cache) can contain when off-slab
  191. * bufctls are used. The limit is the size of the largest general cache
  192. * that does not use off-slab slabs.
  193. * For 32bit archs with 4 kB pages, is this 56.
  194. * This is not serious, as it is only for large objects, when it is unwise
  195. * to have too many per slab.
  196. * Note: This limit can be raised by introducing a general cache whose size
  197. * is less than 512 (PAGE_SIZE<<3), but greater than 256.
  198. */
  199. typedef unsigned int kmem_bufctl_t;
  200. #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
  201. #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
  202. #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
  203. #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
  204. /*
  205. * struct slab
  206. *
  207. * Manages the objs in a slab. Placed either at the beginning of mem allocated
  208. * for a slab, or allocated from an general cache.
  209. * Slabs are chained into three list: fully used, partial, fully free slabs.
  210. */
  211. struct slab {
  212. struct list_head list;
  213. unsigned long colouroff;
  214. void *s_mem; /* including colour offset */
  215. unsigned int inuse; /* num of objs active in slab */
  216. kmem_bufctl_t free;
  217. unsigned short nodeid;
  218. };
  219. /*
  220. * struct slab_rcu
  221. *
  222. * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
  223. * arrange for kmem_freepages to be called via RCU. This is useful if
  224. * we need to approach a kernel structure obliquely, from its address
  225. * obtained without the usual locking. We can lock the structure to
  226. * stabilize it and check it's still at the given address, only if we
  227. * can be sure that the memory has not been meanwhile reused for some
  228. * other kind of object (which our subsystem's lock might corrupt).
  229. *
  230. * rcu_read_lock before reading the address, then rcu_read_unlock after
  231. * taking the spinlock within the structure expected at that address.
  232. *
  233. * We assume struct slab_rcu can overlay struct slab when destroying.
  234. */
  235. struct slab_rcu {
  236. struct rcu_head head;
  237. struct kmem_cache *cachep;
  238. void *addr;
  239. };
  240. /*
  241. * struct array_cache
  242. *
  243. * Purpose:
  244. * - LIFO ordering, to hand out cache-warm objects from _alloc
  245. * - reduce the number of linked list operations
  246. * - reduce spinlock operations
  247. *
  248. * The limit is stored in the per-cpu structure to reduce the data cache
  249. * footprint.
  250. *
  251. */
  252. struct array_cache {
  253. unsigned int avail;
  254. unsigned int limit;
  255. unsigned int batchcount;
  256. unsigned int touched;
  257. spinlock_t lock;
  258. void *entry[]; /*
  259. * Must have this definition in here for the proper
  260. * alignment of array_cache. Also simplifies accessing
  261. * the entries.
  262. */
  263. };
  264. /*
  265. * bootstrap: The caches do not work without cpuarrays anymore, but the
  266. * cpuarrays are allocated from the generic caches...
  267. */
  268. #define BOOT_CPUCACHE_ENTRIES 1
  269. struct arraycache_init {
  270. struct array_cache cache;
  271. void *entries[BOOT_CPUCACHE_ENTRIES];
  272. };
  273. /*
  274. * The slab lists for all objects.
  275. */
  276. struct kmem_list3 {
  277. struct list_head slabs_partial; /* partial list first, better asm code */
  278. struct list_head slabs_full;
  279. struct list_head slabs_free;
  280. unsigned long free_objects;
  281. unsigned int free_limit;
  282. unsigned int colour_next; /* Per-node cache coloring */
  283. spinlock_t list_lock;
  284. struct array_cache *shared; /* shared per node */
  285. struct array_cache **alien; /* on other nodes */
  286. unsigned long next_reap; /* updated without locking */
  287. int free_touched; /* updated without locking */
  288. };
  289. /*
  290. * The slab allocator is initialized with interrupts disabled. Therefore, make
  291. * sure early boot allocations don't accidentally enable interrupts.
  292. */
  293. static gfp_t slab_gfp_mask __read_mostly = SLAB_GFP_BOOT_MASK;
  294. /*
  295. * Need this for bootstrapping a per node allocator.
  296. */
  297. #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
  298. struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
  299. #define CACHE_CACHE 0
  300. #define SIZE_AC MAX_NUMNODES
  301. #define SIZE_L3 (2 * MAX_NUMNODES)
  302. static int drain_freelist(struct kmem_cache *cache,
  303. struct kmem_list3 *l3, int tofree);
  304. static void free_block(struct kmem_cache *cachep, void **objpp, int len,
  305. int node);
  306. static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
  307. static void cache_reap(struct work_struct *unused);
  308. /*
  309. * This function must be completely optimized away if a constant is passed to
  310. * it. Mostly the same as what is in linux/slab.h except it returns an index.
  311. */
  312. static __always_inline int index_of(const size_t size)
  313. {
  314. extern void __bad_size(void);
  315. if (__builtin_constant_p(size)) {
  316. int i = 0;
  317. #define CACHE(x) \
  318. if (size <=x) \
  319. return i; \
  320. else \
  321. i++;
  322. #include <linux/kmalloc_sizes.h>
  323. #undef CACHE
  324. __bad_size();
  325. } else
  326. __bad_size();
  327. return 0;
  328. }
  329. static int slab_early_init = 1;
  330. #define INDEX_AC index_of(sizeof(struct arraycache_init))
  331. #define INDEX_L3 index_of(sizeof(struct kmem_list3))
  332. static void kmem_list3_init(struct kmem_list3 *parent)
  333. {
  334. INIT_LIST_HEAD(&parent->slabs_full);
  335. INIT_LIST_HEAD(&parent->slabs_partial);
  336. INIT_LIST_HEAD(&parent->slabs_free);
  337. parent->shared = NULL;
  338. parent->alien = NULL;
  339. parent->colour_next = 0;
  340. spin_lock_init(&parent->list_lock);
  341. parent->free_objects = 0;
  342. parent->free_touched = 0;
  343. }
  344. #define MAKE_LIST(cachep, listp, slab, nodeid) \
  345. do { \
  346. INIT_LIST_HEAD(listp); \
  347. list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
  348. } while (0)
  349. #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
  350. do { \
  351. MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
  352. MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
  353. MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
  354. } while (0)
  355. /*
  356. * struct kmem_cache
  357. *
  358. * manages a cache.
  359. */
  360. struct kmem_cache {
  361. /* 1) per-cpu data, touched during every alloc/free */
  362. struct array_cache *array[NR_CPUS];
  363. /* 2) Cache tunables. Protected by cache_chain_mutex */
  364. unsigned int batchcount;
  365. unsigned int limit;
  366. unsigned int shared;
  367. unsigned int buffer_size;
  368. u32 reciprocal_buffer_size;
  369. /* 3) touched by every alloc & free from the backend */
  370. unsigned int flags; /* constant flags */
  371. unsigned int num; /* # of objs per slab */
  372. /* 4) cache_grow/shrink */
  373. /* order of pgs per slab (2^n) */
  374. unsigned int gfporder;
  375. /* force GFP flags, e.g. GFP_DMA */
  376. gfp_t gfpflags;
  377. size_t colour; /* cache colouring range */
  378. unsigned int colour_off; /* colour offset */
  379. struct kmem_cache *slabp_cache;
  380. unsigned int slab_size;
  381. unsigned int dflags; /* dynamic flags */
  382. /* constructor func */
  383. void (*ctor)(void *obj);
  384. /* 5) cache creation/removal */
  385. const char *name;
  386. struct list_head next;
  387. /* 6) statistics */
  388. #if STATS
  389. unsigned long num_active;
  390. unsigned long num_allocations;
  391. unsigned long high_mark;
  392. unsigned long grown;
  393. unsigned long reaped;
  394. unsigned long errors;
  395. unsigned long max_freeable;
  396. unsigned long node_allocs;
  397. unsigned long node_frees;
  398. unsigned long node_overflow;
  399. atomic_t allochit;
  400. atomic_t allocmiss;
  401. atomic_t freehit;
  402. atomic_t freemiss;
  403. #endif
  404. #if DEBUG
  405. /*
  406. * If debugging is enabled, then the allocator can add additional
  407. * fields and/or padding to every object. buffer_size contains the total
  408. * object size including these internal fields, the following two
  409. * variables contain the offset to the user object and its size.
  410. */
  411. int obj_offset;
  412. int obj_size;
  413. #endif
  414. /*
  415. * We put nodelists[] at the end of kmem_cache, because we want to size
  416. * this array to nr_node_ids slots instead of MAX_NUMNODES
  417. * (see kmem_cache_init())
  418. * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
  419. * is statically defined, so we reserve the max number of nodes.
  420. */
  421. struct kmem_list3 *nodelists[MAX_NUMNODES];
  422. /*
  423. * Do not add fields after nodelists[]
  424. */
  425. };
  426. #define CFLGS_OFF_SLAB (0x80000000UL)
  427. #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
  428. #define BATCHREFILL_LIMIT 16
  429. /*
  430. * Optimization question: fewer reaps means less probability for unnessary
  431. * cpucache drain/refill cycles.
  432. *
  433. * OTOH the cpuarrays can contain lots of objects,
  434. * which could lock up otherwise freeable slabs.
  435. */
  436. #define REAPTIMEOUT_CPUC (2*HZ)
  437. #define REAPTIMEOUT_LIST3 (4*HZ)
  438. #if STATS
  439. #define STATS_INC_ACTIVE(x) ((x)->num_active++)
  440. #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
  441. #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
  442. #define STATS_INC_GROWN(x) ((x)->grown++)
  443. #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
  444. #define STATS_SET_HIGH(x) \
  445. do { \
  446. if ((x)->num_active > (x)->high_mark) \
  447. (x)->high_mark = (x)->num_active; \
  448. } while (0)
  449. #define STATS_INC_ERR(x) ((x)->errors++)
  450. #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
  451. #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
  452. #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
  453. #define STATS_SET_FREEABLE(x, i) \
  454. do { \
  455. if ((x)->max_freeable < i) \
  456. (x)->max_freeable = i; \
  457. } while (0)
  458. #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
  459. #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
  460. #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
  461. #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
  462. #else
  463. #define STATS_INC_ACTIVE(x) do { } while (0)
  464. #define STATS_DEC_ACTIVE(x) do { } while (0)
  465. #define STATS_INC_ALLOCED(x) do { } while (0)
  466. #define STATS_INC_GROWN(x) do { } while (0)
  467. #define STATS_ADD_REAPED(x,y) do { } while (0)
  468. #define STATS_SET_HIGH(x) do { } while (0)
  469. #define STATS_INC_ERR(x) do { } while (0)
  470. #define STATS_INC_NODEALLOCS(x) do { } while (0)
  471. #define STATS_INC_NODEFREES(x) do { } while (0)
  472. #define STATS_INC_ACOVERFLOW(x) do { } while (0)
  473. #define STATS_SET_FREEABLE(x, i) do { } while (0)
  474. #define STATS_INC_ALLOCHIT(x) do { } while (0)
  475. #define STATS_INC_ALLOCMISS(x) do { } while (0)
  476. #define STATS_INC_FREEHIT(x) do { } while (0)
  477. #define STATS_INC_FREEMISS(x) do { } while (0)
  478. #endif
  479. #if DEBUG
  480. /*
  481. * memory layout of objects:
  482. * 0 : objp
  483. * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
  484. * the end of an object is aligned with the end of the real
  485. * allocation. Catches writes behind the end of the allocation.
  486. * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
  487. * redzone word.
  488. * cachep->obj_offset: The real object.
  489. * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
  490. * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
  491. * [BYTES_PER_WORD long]
  492. */
  493. static int obj_offset(struct kmem_cache *cachep)
  494. {
  495. return cachep->obj_offset;
  496. }
  497. static int obj_size(struct kmem_cache *cachep)
  498. {
  499. return cachep->obj_size;
  500. }
  501. static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
  502. {
  503. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  504. return (unsigned long long*) (objp + obj_offset(cachep) -
  505. sizeof(unsigned long long));
  506. }
  507. static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
  508. {
  509. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  510. if (cachep->flags & SLAB_STORE_USER)
  511. return (unsigned long long *)(objp + cachep->buffer_size -
  512. sizeof(unsigned long long) -
  513. REDZONE_ALIGN);
  514. return (unsigned long long *) (objp + cachep->buffer_size -
  515. sizeof(unsigned long long));
  516. }
  517. static void **dbg_userword(struct kmem_cache *cachep, void *objp)
  518. {
  519. BUG_ON(!(cachep->flags & SLAB_STORE_USER));
  520. return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
  521. }
  522. #else
  523. #define obj_offset(x) 0
  524. #define obj_size(cachep) (cachep->buffer_size)
  525. #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
  526. #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
  527. #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
  528. #endif
  529. #ifdef CONFIG_KMEMTRACE
  530. size_t slab_buffer_size(struct kmem_cache *cachep)
  531. {
  532. return cachep->buffer_size;
  533. }
  534. EXPORT_SYMBOL(slab_buffer_size);
  535. #endif
  536. /*
  537. * Do not go above this order unless 0 objects fit into the slab.
  538. */
  539. #define BREAK_GFP_ORDER_HI 1
  540. #define BREAK_GFP_ORDER_LO 0
  541. static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
  542. /*
  543. * Functions for storing/retrieving the cachep and or slab from the page
  544. * allocator. These are used to find the slab an obj belongs to. With kfree(),
  545. * these are used to find the cache which an obj belongs to.
  546. */
  547. static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
  548. {
  549. page->lru.next = (struct list_head *)cache;
  550. }
  551. static inline struct kmem_cache *page_get_cache(struct page *page)
  552. {
  553. page = compound_head(page);
  554. BUG_ON(!PageSlab(page));
  555. return (struct kmem_cache *)page->lru.next;
  556. }
  557. static inline void page_set_slab(struct page *page, struct slab *slab)
  558. {
  559. page->lru.prev = (struct list_head *)slab;
  560. }
  561. static inline struct slab *page_get_slab(struct page *page)
  562. {
  563. BUG_ON(!PageSlab(page));
  564. return (struct slab *)page->lru.prev;
  565. }
  566. static inline struct kmem_cache *virt_to_cache(const void *obj)
  567. {
  568. struct page *page = virt_to_head_page(obj);
  569. return page_get_cache(page);
  570. }
  571. static inline struct slab *virt_to_slab(const void *obj)
  572. {
  573. struct page *page = virt_to_head_page(obj);
  574. return page_get_slab(page);
  575. }
  576. static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
  577. unsigned int idx)
  578. {
  579. return slab->s_mem + cache->buffer_size * idx;
  580. }
  581. /*
  582. * We want to avoid an expensive divide : (offset / cache->buffer_size)
  583. * Using the fact that buffer_size is a constant for a particular cache,
  584. * we can replace (offset / cache->buffer_size) by
  585. * reciprocal_divide(offset, cache->reciprocal_buffer_size)
  586. */
  587. static inline unsigned int obj_to_index(const struct kmem_cache *cache,
  588. const struct slab *slab, void *obj)
  589. {
  590. u32 offset = (obj - slab->s_mem);
  591. return reciprocal_divide(offset, cache->reciprocal_buffer_size);
  592. }
  593. /*
  594. * These are the default caches for kmalloc. Custom caches can have other sizes.
  595. */
  596. struct cache_sizes malloc_sizes[] = {
  597. #define CACHE(x) { .cs_size = (x) },
  598. #include <linux/kmalloc_sizes.h>
  599. CACHE(ULONG_MAX)
  600. #undef CACHE
  601. };
  602. EXPORT_SYMBOL(malloc_sizes);
  603. /* Must match cache_sizes above. Out of line to keep cache footprint low. */
  604. struct cache_names {
  605. char *name;
  606. char *name_dma;
  607. };
  608. static struct cache_names __initdata cache_names[] = {
  609. #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
  610. #include <linux/kmalloc_sizes.h>
  611. {NULL,}
  612. #undef CACHE
  613. };
  614. static struct arraycache_init initarray_cache __initdata =
  615. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  616. static struct arraycache_init initarray_generic =
  617. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  618. /* internal cache of cache description objs */
  619. static struct kmem_cache cache_cache = {
  620. .batchcount = 1,
  621. .limit = BOOT_CPUCACHE_ENTRIES,
  622. .shared = 1,
  623. .buffer_size = sizeof(struct kmem_cache),
  624. .name = "kmem_cache",
  625. };
  626. #define BAD_ALIEN_MAGIC 0x01020304ul
  627. #ifdef CONFIG_LOCKDEP
  628. /*
  629. * Slab sometimes uses the kmalloc slabs to store the slab headers
  630. * for other slabs "off slab".
  631. * The locking for this is tricky in that it nests within the locks
  632. * of all other slabs in a few places; to deal with this special
  633. * locking we put on-slab caches into a separate lock-class.
  634. *
  635. * We set lock class for alien array caches which are up during init.
  636. * The lock annotation will be lost if all cpus of a node goes down and
  637. * then comes back up during hotplug
  638. */
  639. static struct lock_class_key on_slab_l3_key;
  640. static struct lock_class_key on_slab_alc_key;
  641. static inline void init_lock_keys(void)
  642. {
  643. int q;
  644. struct cache_sizes *s = malloc_sizes;
  645. while (s->cs_size != ULONG_MAX) {
  646. for_each_node(q) {
  647. struct array_cache **alc;
  648. int r;
  649. struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
  650. if (!l3 || OFF_SLAB(s->cs_cachep))
  651. continue;
  652. lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
  653. alc = l3->alien;
  654. /*
  655. * FIXME: This check for BAD_ALIEN_MAGIC
  656. * should go away when common slab code is taught to
  657. * work even without alien caches.
  658. * Currently, non NUMA code returns BAD_ALIEN_MAGIC
  659. * for alloc_alien_cache,
  660. */
  661. if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
  662. continue;
  663. for_each_node(r) {
  664. if (alc[r])
  665. lockdep_set_class(&alc[r]->lock,
  666. &on_slab_alc_key);
  667. }
  668. }
  669. s++;
  670. }
  671. }
  672. #else
  673. static inline void init_lock_keys(void)
  674. {
  675. }
  676. #endif
  677. /*
  678. * Guard access to the cache-chain.
  679. */
  680. static DEFINE_MUTEX(cache_chain_mutex);
  681. static struct list_head cache_chain;
  682. /*
  683. * chicken and egg problem: delay the per-cpu array allocation
  684. * until the general caches are up.
  685. */
  686. static enum {
  687. NONE,
  688. PARTIAL_AC,
  689. PARTIAL_L3,
  690. FULL
  691. } g_cpucache_up;
  692. /*
  693. * used by boot code to determine if it can use slab based allocator
  694. */
  695. int slab_is_available(void)
  696. {
  697. return g_cpucache_up == FULL;
  698. }
  699. static DEFINE_PER_CPU(struct delayed_work, reap_work);
  700. static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
  701. {
  702. return cachep->array[smp_processor_id()];
  703. }
  704. static inline struct kmem_cache *__find_general_cachep(size_t size,
  705. gfp_t gfpflags)
  706. {
  707. struct cache_sizes *csizep = malloc_sizes;
  708. #if DEBUG
  709. /* This happens if someone tries to call
  710. * kmem_cache_create(), or __kmalloc(), before
  711. * the generic caches are initialized.
  712. */
  713. BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
  714. #endif
  715. if (!size)
  716. return ZERO_SIZE_PTR;
  717. while (size > csizep->cs_size)
  718. csizep++;
  719. /*
  720. * Really subtle: The last entry with cs->cs_size==ULONG_MAX
  721. * has cs_{dma,}cachep==NULL. Thus no special case
  722. * for large kmalloc calls required.
  723. */
  724. #ifdef CONFIG_ZONE_DMA
  725. if (unlikely(gfpflags & GFP_DMA))
  726. return csizep->cs_dmacachep;
  727. #endif
  728. return csizep->cs_cachep;
  729. }
  730. static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
  731. {
  732. return __find_general_cachep(size, gfpflags);
  733. }
  734. static size_t slab_mgmt_size(size_t nr_objs, size_t align)
  735. {
  736. return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
  737. }
  738. /*
  739. * Calculate the number of objects and left-over bytes for a given buffer size.
  740. */
  741. static void cache_estimate(unsigned long gfporder, size_t buffer_size,
  742. size_t align, int flags, size_t *left_over,
  743. unsigned int *num)
  744. {
  745. int nr_objs;
  746. size_t mgmt_size;
  747. size_t slab_size = PAGE_SIZE << gfporder;
  748. /*
  749. * The slab management structure can be either off the slab or
  750. * on it. For the latter case, the memory allocated for a
  751. * slab is used for:
  752. *
  753. * - The struct slab
  754. * - One kmem_bufctl_t for each object
  755. * - Padding to respect alignment of @align
  756. * - @buffer_size bytes for each object
  757. *
  758. * If the slab management structure is off the slab, then the
  759. * alignment will already be calculated into the size. Because
  760. * the slabs are all pages aligned, the objects will be at the
  761. * correct alignment when allocated.
  762. */
  763. if (flags & CFLGS_OFF_SLAB) {
  764. mgmt_size = 0;
  765. nr_objs = slab_size / buffer_size;
  766. if (nr_objs > SLAB_LIMIT)
  767. nr_objs = SLAB_LIMIT;
  768. } else {
  769. /*
  770. * Ignore padding for the initial guess. The padding
  771. * is at most @align-1 bytes, and @buffer_size is at
  772. * least @align. In the worst case, this result will
  773. * be one greater than the number of objects that fit
  774. * into the memory allocation when taking the padding
  775. * into account.
  776. */
  777. nr_objs = (slab_size - sizeof(struct slab)) /
  778. (buffer_size + sizeof(kmem_bufctl_t));
  779. /*
  780. * This calculated number will be either the right
  781. * amount, or one greater than what we want.
  782. */
  783. if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
  784. > slab_size)
  785. nr_objs--;
  786. if (nr_objs > SLAB_LIMIT)
  787. nr_objs = SLAB_LIMIT;
  788. mgmt_size = slab_mgmt_size(nr_objs, align);
  789. }
  790. *num = nr_objs;
  791. *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
  792. }
  793. #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
  794. static void __slab_error(const char *function, struct kmem_cache *cachep,
  795. char *msg)
  796. {
  797. printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
  798. function, cachep->name, msg);
  799. dump_stack();
  800. }
  801. /*
  802. * By default on NUMA we use alien caches to stage the freeing of
  803. * objects allocated from other nodes. This causes massive memory
  804. * inefficiencies when using fake NUMA setup to split memory into a
  805. * large number of small nodes, so it can be disabled on the command
  806. * line
  807. */
  808. static int use_alien_caches __read_mostly = 1;
  809. static int numa_platform __read_mostly = 1;
  810. static int __init noaliencache_setup(char *s)
  811. {
  812. use_alien_caches = 0;
  813. return 1;
  814. }
  815. __setup("noaliencache", noaliencache_setup);
  816. #ifdef CONFIG_NUMA
  817. /*
  818. * Special reaping functions for NUMA systems called from cache_reap().
  819. * These take care of doing round robin flushing of alien caches (containing
  820. * objects freed on different nodes from which they were allocated) and the
  821. * flushing of remote pcps by calling drain_node_pages.
  822. */
  823. static DEFINE_PER_CPU(unsigned long, reap_node);
  824. static void init_reap_node(int cpu)
  825. {
  826. int node;
  827. node = next_node(cpu_to_node(cpu), node_online_map);
  828. if (node == MAX_NUMNODES)
  829. node = first_node(node_online_map);
  830. per_cpu(reap_node, cpu) = node;
  831. }
  832. static void next_reap_node(void)
  833. {
  834. int node = __get_cpu_var(reap_node);
  835. node = next_node(node, node_online_map);
  836. if (unlikely(node >= MAX_NUMNODES))
  837. node = first_node(node_online_map);
  838. __get_cpu_var(reap_node) = node;
  839. }
  840. #else
  841. #define init_reap_node(cpu) do { } while (0)
  842. #define next_reap_node(void) do { } while (0)
  843. #endif
  844. /*
  845. * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
  846. * via the workqueue/eventd.
  847. * Add the CPU number into the expiration time to minimize the possibility of
  848. * the CPUs getting into lockstep and contending for the global cache chain
  849. * lock.
  850. */
  851. static void __cpuinit start_cpu_timer(int cpu)
  852. {
  853. struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
  854. /*
  855. * When this gets called from do_initcalls via cpucache_init(),
  856. * init_workqueues() has already run, so keventd will be setup
  857. * at that time.
  858. */
  859. if (keventd_up() && reap_work->work.func == NULL) {
  860. init_reap_node(cpu);
  861. INIT_DELAYED_WORK(reap_work, cache_reap);
  862. schedule_delayed_work_on(cpu, reap_work,
  863. __round_jiffies_relative(HZ, cpu));
  864. }
  865. }
  866. static struct array_cache *alloc_arraycache(int node, int entries,
  867. int batchcount, gfp_t gfp)
  868. {
  869. int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
  870. struct array_cache *nc = NULL;
  871. nc = kmalloc_node(memsize, gfp, node);
  872. /*
  873. * The array_cache structures contain pointers to free object.
  874. * However, when such objects are allocated or transfered to another
  875. * cache the pointers are not cleared and they could be counted as
  876. * valid references during a kmemleak scan. Therefore, kmemleak must
  877. * not scan such objects.
  878. */
  879. kmemleak_no_scan(nc);
  880. if (nc) {
  881. nc->avail = 0;
  882. nc->limit = entries;
  883. nc->batchcount = batchcount;
  884. nc->touched = 0;
  885. spin_lock_init(&nc->lock);
  886. }
  887. return nc;
  888. }
  889. /*
  890. * Transfer objects in one arraycache to another.
  891. * Locking must be handled by the caller.
  892. *
  893. * Return the number of entries transferred.
  894. */
  895. static int transfer_objects(struct array_cache *to,
  896. struct array_cache *from, unsigned int max)
  897. {
  898. /* Figure out how many entries to transfer */
  899. int nr = min(min(from->avail, max), to->limit - to->avail);
  900. if (!nr)
  901. return 0;
  902. memcpy(to->entry + to->avail, from->entry + from->avail -nr,
  903. sizeof(void *) *nr);
  904. from->avail -= nr;
  905. to->avail += nr;
  906. to->touched = 1;
  907. return nr;
  908. }
  909. #ifndef CONFIG_NUMA
  910. #define drain_alien_cache(cachep, alien) do { } while (0)
  911. #define reap_alien(cachep, l3) do { } while (0)
  912. static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
  913. {
  914. return (struct array_cache **)BAD_ALIEN_MAGIC;
  915. }
  916. static inline void free_alien_cache(struct array_cache **ac_ptr)
  917. {
  918. }
  919. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  920. {
  921. return 0;
  922. }
  923. static inline void *alternate_node_alloc(struct kmem_cache *cachep,
  924. gfp_t flags)
  925. {
  926. return NULL;
  927. }
  928. static inline void *____cache_alloc_node(struct kmem_cache *cachep,
  929. gfp_t flags, int nodeid)
  930. {
  931. return NULL;
  932. }
  933. #else /* CONFIG_NUMA */
  934. static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
  935. static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
  936. static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
  937. {
  938. struct array_cache **ac_ptr;
  939. int memsize = sizeof(void *) * nr_node_ids;
  940. int i;
  941. if (limit > 1)
  942. limit = 12;
  943. ac_ptr = kmalloc_node(memsize, gfp, node);
  944. if (ac_ptr) {
  945. for_each_node(i) {
  946. if (i == node || !node_online(i)) {
  947. ac_ptr[i] = NULL;
  948. continue;
  949. }
  950. ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
  951. if (!ac_ptr[i]) {
  952. for (i--; i >= 0; i--)
  953. kfree(ac_ptr[i]);
  954. kfree(ac_ptr);
  955. return NULL;
  956. }
  957. }
  958. }
  959. return ac_ptr;
  960. }
  961. static void free_alien_cache(struct array_cache **ac_ptr)
  962. {
  963. int i;
  964. if (!ac_ptr)
  965. return;
  966. for_each_node(i)
  967. kfree(ac_ptr[i]);
  968. kfree(ac_ptr);
  969. }
  970. static void __drain_alien_cache(struct kmem_cache *cachep,
  971. struct array_cache *ac, int node)
  972. {
  973. struct kmem_list3 *rl3 = cachep->nodelists[node];
  974. if (ac->avail) {
  975. spin_lock(&rl3->list_lock);
  976. /*
  977. * Stuff objects into the remote nodes shared array first.
  978. * That way we could avoid the overhead of putting the objects
  979. * into the free lists and getting them back later.
  980. */
  981. if (rl3->shared)
  982. transfer_objects(rl3->shared, ac, ac->limit);
  983. free_block(cachep, ac->entry, ac->avail, node);
  984. ac->avail = 0;
  985. spin_unlock(&rl3->list_lock);
  986. }
  987. }
  988. /*
  989. * Called from cache_reap() to regularly drain alien caches round robin.
  990. */
  991. static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
  992. {
  993. int node = __get_cpu_var(reap_node);
  994. if (l3->alien) {
  995. struct array_cache *ac = l3->alien[node];
  996. if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
  997. __drain_alien_cache(cachep, ac, node);
  998. spin_unlock_irq(&ac->lock);
  999. }
  1000. }
  1001. }
  1002. static void drain_alien_cache(struct kmem_cache *cachep,
  1003. struct array_cache **alien)
  1004. {
  1005. int i = 0;
  1006. struct array_cache *ac;
  1007. unsigned long flags;
  1008. for_each_online_node(i) {
  1009. ac = alien[i];
  1010. if (ac) {
  1011. spin_lock_irqsave(&ac->lock, flags);
  1012. __drain_alien_cache(cachep, ac, i);
  1013. spin_unlock_irqrestore(&ac->lock, flags);
  1014. }
  1015. }
  1016. }
  1017. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  1018. {
  1019. struct slab *slabp = virt_to_slab(objp);
  1020. int nodeid = slabp->nodeid;
  1021. struct kmem_list3 *l3;
  1022. struct array_cache *alien = NULL;
  1023. int node;
  1024. node = numa_node_id();
  1025. /*
  1026. * Make sure we are not freeing a object from another node to the array
  1027. * cache on this cpu.
  1028. */
  1029. if (likely(slabp->nodeid == node))
  1030. return 0;
  1031. l3 = cachep->nodelists[node];
  1032. STATS_INC_NODEFREES(cachep);
  1033. if (l3->alien && l3->alien[nodeid]) {
  1034. alien = l3->alien[nodeid];
  1035. spin_lock(&alien->lock);
  1036. if (unlikely(alien->avail == alien->limit)) {
  1037. STATS_INC_ACOVERFLOW(cachep);
  1038. __drain_alien_cache(cachep, alien, nodeid);
  1039. }
  1040. alien->entry[alien->avail++] = objp;
  1041. spin_unlock(&alien->lock);
  1042. } else {
  1043. spin_lock(&(cachep->nodelists[nodeid])->list_lock);
  1044. free_block(cachep, &objp, 1, nodeid);
  1045. spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
  1046. }
  1047. return 1;
  1048. }
  1049. #endif
  1050. static void __cpuinit cpuup_canceled(long cpu)
  1051. {
  1052. struct kmem_cache *cachep;
  1053. struct kmem_list3 *l3 = NULL;
  1054. int node = cpu_to_node(cpu);
  1055. const struct cpumask *mask = cpumask_of_node(node);
  1056. list_for_each_entry(cachep, &cache_chain, next) {
  1057. struct array_cache *nc;
  1058. struct array_cache *shared;
  1059. struct array_cache **alien;
  1060. /* cpu is dead; no one can alloc from it. */
  1061. nc = cachep->array[cpu];
  1062. cachep->array[cpu] = NULL;
  1063. l3 = cachep->nodelists[node];
  1064. if (!l3)
  1065. goto free_array_cache;
  1066. spin_lock_irq(&l3->list_lock);
  1067. /* Free limit for this kmem_list3 */
  1068. l3->free_limit -= cachep->batchcount;
  1069. if (nc)
  1070. free_block(cachep, nc->entry, nc->avail, node);
  1071. if (!cpus_empty(*mask)) {
  1072. spin_unlock_irq(&l3->list_lock);
  1073. goto free_array_cache;
  1074. }
  1075. shared = l3->shared;
  1076. if (shared) {
  1077. free_block(cachep, shared->entry,
  1078. shared->avail, node);
  1079. l3->shared = NULL;
  1080. }
  1081. alien = l3->alien;
  1082. l3->alien = NULL;
  1083. spin_unlock_irq(&l3->list_lock);
  1084. kfree(shared);
  1085. if (alien) {
  1086. drain_alien_cache(cachep, alien);
  1087. free_alien_cache(alien);
  1088. }
  1089. free_array_cache:
  1090. kfree(nc);
  1091. }
  1092. /*
  1093. * In the previous loop, all the objects were freed to
  1094. * the respective cache's slabs, now we can go ahead and
  1095. * shrink each nodelist to its limit.
  1096. */
  1097. list_for_each_entry(cachep, &cache_chain, next) {
  1098. l3 = cachep->nodelists[node];
  1099. if (!l3)
  1100. continue;
  1101. drain_freelist(cachep, l3, l3->free_objects);
  1102. }
  1103. }
  1104. static int __cpuinit cpuup_prepare(long cpu)
  1105. {
  1106. struct kmem_cache *cachep;
  1107. struct kmem_list3 *l3 = NULL;
  1108. int node = cpu_to_node(cpu);
  1109. const int memsize = sizeof(struct kmem_list3);
  1110. /*
  1111. * We need to do this right in the beginning since
  1112. * alloc_arraycache's are going to use this list.
  1113. * kmalloc_node allows us to add the slab to the right
  1114. * kmem_list3 and not this cpu's kmem_list3
  1115. */
  1116. list_for_each_entry(cachep, &cache_chain, next) {
  1117. /*
  1118. * Set up the size64 kmemlist for cpu before we can
  1119. * begin anything. Make sure some other cpu on this
  1120. * node has not already allocated this
  1121. */
  1122. if (!cachep->nodelists[node]) {
  1123. l3 = kmalloc_node(memsize, GFP_KERNEL, node);
  1124. if (!l3)
  1125. goto bad;
  1126. kmem_list3_init(l3);
  1127. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  1128. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1129. /*
  1130. * The l3s don't come and go as CPUs come and
  1131. * go. cache_chain_mutex is sufficient
  1132. * protection here.
  1133. */
  1134. cachep->nodelists[node] = l3;
  1135. }
  1136. spin_lock_irq(&cachep->nodelists[node]->list_lock);
  1137. cachep->nodelists[node]->free_limit =
  1138. (1 + nr_cpus_node(node)) *
  1139. cachep->batchcount + cachep->num;
  1140. spin_unlock_irq(&cachep->nodelists[node]->list_lock);
  1141. }
  1142. /*
  1143. * Now we can go ahead with allocating the shared arrays and
  1144. * array caches
  1145. */
  1146. list_for_each_entry(cachep, &cache_chain, next) {
  1147. struct array_cache *nc;
  1148. struct array_cache *shared = NULL;
  1149. struct array_cache **alien = NULL;
  1150. nc = alloc_arraycache(node, cachep->limit,
  1151. cachep->batchcount, GFP_KERNEL);
  1152. if (!nc)
  1153. goto bad;
  1154. if (cachep->shared) {
  1155. shared = alloc_arraycache(node,
  1156. cachep->shared * cachep->batchcount,
  1157. 0xbaadf00d, GFP_KERNEL);
  1158. if (!shared) {
  1159. kfree(nc);
  1160. goto bad;
  1161. }
  1162. }
  1163. if (use_alien_caches) {
  1164. alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
  1165. if (!alien) {
  1166. kfree(shared);
  1167. kfree(nc);
  1168. goto bad;
  1169. }
  1170. }
  1171. cachep->array[cpu] = nc;
  1172. l3 = cachep->nodelists[node];
  1173. BUG_ON(!l3);
  1174. spin_lock_irq(&l3->list_lock);
  1175. if (!l3->shared) {
  1176. /*
  1177. * We are serialised from CPU_DEAD or
  1178. * CPU_UP_CANCELLED by the cpucontrol lock
  1179. */
  1180. l3->shared = shared;
  1181. shared = NULL;
  1182. }
  1183. #ifdef CONFIG_NUMA
  1184. if (!l3->alien) {
  1185. l3->alien = alien;
  1186. alien = NULL;
  1187. }
  1188. #endif
  1189. spin_unlock_irq(&l3->list_lock);
  1190. kfree(shared);
  1191. free_alien_cache(alien);
  1192. }
  1193. return 0;
  1194. bad:
  1195. cpuup_canceled(cpu);
  1196. return -ENOMEM;
  1197. }
  1198. static int __cpuinit cpuup_callback(struct notifier_block *nfb,
  1199. unsigned long action, void *hcpu)
  1200. {
  1201. long cpu = (long)hcpu;
  1202. int err = 0;
  1203. switch (action) {
  1204. case CPU_UP_PREPARE:
  1205. case CPU_UP_PREPARE_FROZEN:
  1206. mutex_lock(&cache_chain_mutex);
  1207. err = cpuup_prepare(cpu);
  1208. mutex_unlock(&cache_chain_mutex);
  1209. break;
  1210. case CPU_ONLINE:
  1211. case CPU_ONLINE_FROZEN:
  1212. start_cpu_timer(cpu);
  1213. break;
  1214. #ifdef CONFIG_HOTPLUG_CPU
  1215. case CPU_DOWN_PREPARE:
  1216. case CPU_DOWN_PREPARE_FROZEN:
  1217. /*
  1218. * Shutdown cache reaper. Note that the cache_chain_mutex is
  1219. * held so that if cache_reap() is invoked it cannot do
  1220. * anything expensive but will only modify reap_work
  1221. * and reschedule the timer.
  1222. */
  1223. cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
  1224. /* Now the cache_reaper is guaranteed to be not running. */
  1225. per_cpu(reap_work, cpu).work.func = NULL;
  1226. break;
  1227. case CPU_DOWN_FAILED:
  1228. case CPU_DOWN_FAILED_FROZEN:
  1229. start_cpu_timer(cpu);
  1230. break;
  1231. case CPU_DEAD:
  1232. case CPU_DEAD_FROZEN:
  1233. /*
  1234. * Even if all the cpus of a node are down, we don't free the
  1235. * kmem_list3 of any cache. This to avoid a race between
  1236. * cpu_down, and a kmalloc allocation from another cpu for
  1237. * memory from the node of the cpu going down. The list3
  1238. * structure is usually allocated from kmem_cache_create() and
  1239. * gets destroyed at kmem_cache_destroy().
  1240. */
  1241. /* fall through */
  1242. #endif
  1243. case CPU_UP_CANCELED:
  1244. case CPU_UP_CANCELED_FROZEN:
  1245. mutex_lock(&cache_chain_mutex);
  1246. cpuup_canceled(cpu);
  1247. mutex_unlock(&cache_chain_mutex);
  1248. break;
  1249. }
  1250. return err ? NOTIFY_BAD : NOTIFY_OK;
  1251. }
  1252. static struct notifier_block __cpuinitdata cpucache_notifier = {
  1253. &cpuup_callback, NULL, 0
  1254. };
  1255. /*
  1256. * swap the static kmem_list3 with kmalloced memory
  1257. */
  1258. static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
  1259. int nodeid)
  1260. {
  1261. struct kmem_list3 *ptr;
  1262. ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
  1263. BUG_ON(!ptr);
  1264. memcpy(ptr, list, sizeof(struct kmem_list3));
  1265. /*
  1266. * Do not assume that spinlocks can be initialized via memcpy:
  1267. */
  1268. spin_lock_init(&ptr->list_lock);
  1269. MAKE_ALL_LISTS(cachep, ptr, nodeid);
  1270. cachep->nodelists[nodeid] = ptr;
  1271. }
  1272. /*
  1273. * For setting up all the kmem_list3s for cache whose buffer_size is same as
  1274. * size of kmem_list3.
  1275. */
  1276. static void __init set_up_list3s(struct kmem_cache *cachep, int index)
  1277. {
  1278. int node;
  1279. for_each_online_node(node) {
  1280. cachep->nodelists[node] = &initkmem_list3[index + node];
  1281. cachep->nodelists[node]->next_reap = jiffies +
  1282. REAPTIMEOUT_LIST3 +
  1283. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1284. }
  1285. }
  1286. /*
  1287. * Initialisation. Called after the page allocator have been initialised and
  1288. * before smp_init().
  1289. */
  1290. void __init kmem_cache_init(void)
  1291. {
  1292. size_t left_over;
  1293. struct cache_sizes *sizes;
  1294. struct cache_names *names;
  1295. int i;
  1296. int order;
  1297. int node;
  1298. if (num_possible_nodes() == 1) {
  1299. use_alien_caches = 0;
  1300. numa_platform = 0;
  1301. }
  1302. for (i = 0; i < NUM_INIT_LISTS; i++) {
  1303. kmem_list3_init(&initkmem_list3[i]);
  1304. if (i < MAX_NUMNODES)
  1305. cache_cache.nodelists[i] = NULL;
  1306. }
  1307. set_up_list3s(&cache_cache, CACHE_CACHE);
  1308. /*
  1309. * Fragmentation resistance on low memory - only use bigger
  1310. * page orders on machines with more than 32MB of memory.
  1311. */
  1312. if (num_physpages > (32 << 20) >> PAGE_SHIFT)
  1313. slab_break_gfp_order = BREAK_GFP_ORDER_HI;
  1314. /* Bootstrap is tricky, because several objects are allocated
  1315. * from caches that do not exist yet:
  1316. * 1) initialize the cache_cache cache: it contains the struct
  1317. * kmem_cache structures of all caches, except cache_cache itself:
  1318. * cache_cache is statically allocated.
  1319. * Initially an __init data area is used for the head array and the
  1320. * kmem_list3 structures, it's replaced with a kmalloc allocated
  1321. * array at the end of the bootstrap.
  1322. * 2) Create the first kmalloc cache.
  1323. * The struct kmem_cache for the new cache is allocated normally.
  1324. * An __init data area is used for the head array.
  1325. * 3) Create the remaining kmalloc caches, with minimally sized
  1326. * head arrays.
  1327. * 4) Replace the __init data head arrays for cache_cache and the first
  1328. * kmalloc cache with kmalloc allocated arrays.
  1329. * 5) Replace the __init data for kmem_list3 for cache_cache and
  1330. * the other cache's with kmalloc allocated memory.
  1331. * 6) Resize the head arrays of the kmalloc caches to their final sizes.
  1332. */
  1333. node = numa_node_id();
  1334. /* 1) create the cache_cache */
  1335. INIT_LIST_HEAD(&cache_chain);
  1336. list_add(&cache_cache.next, &cache_chain);
  1337. cache_cache.colour_off = cache_line_size();
  1338. cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
  1339. cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
  1340. /*
  1341. * struct kmem_cache size depends on nr_node_ids, which
  1342. * can be less than MAX_NUMNODES.
  1343. */
  1344. cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
  1345. nr_node_ids * sizeof(struct kmem_list3 *);
  1346. #if DEBUG
  1347. cache_cache.obj_size = cache_cache.buffer_size;
  1348. #endif
  1349. cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
  1350. cache_line_size());
  1351. cache_cache.reciprocal_buffer_size =
  1352. reciprocal_value(cache_cache.buffer_size);
  1353. for (order = 0; order < MAX_ORDER; order++) {
  1354. cache_estimate(order, cache_cache.buffer_size,
  1355. cache_line_size(), 0, &left_over, &cache_cache.num);
  1356. if (cache_cache.num)
  1357. break;
  1358. }
  1359. BUG_ON(!cache_cache.num);
  1360. cache_cache.gfporder = order;
  1361. cache_cache.colour = left_over / cache_cache.colour_off;
  1362. cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
  1363. sizeof(struct slab), cache_line_size());
  1364. /* 2+3) create the kmalloc caches */
  1365. sizes = malloc_sizes;
  1366. names = cache_names;
  1367. /*
  1368. * Initialize the caches that provide memory for the array cache and the
  1369. * kmem_list3 structures first. Without this, further allocations will
  1370. * bug.
  1371. */
  1372. sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
  1373. sizes[INDEX_AC].cs_size,
  1374. ARCH_KMALLOC_MINALIGN,
  1375. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1376. NULL);
  1377. if (INDEX_AC != INDEX_L3) {
  1378. sizes[INDEX_L3].cs_cachep =
  1379. kmem_cache_create(names[INDEX_L3].name,
  1380. sizes[INDEX_L3].cs_size,
  1381. ARCH_KMALLOC_MINALIGN,
  1382. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1383. NULL);
  1384. }
  1385. slab_early_init = 0;
  1386. while (sizes->cs_size != ULONG_MAX) {
  1387. /*
  1388. * For performance, all the general caches are L1 aligned.
  1389. * This should be particularly beneficial on SMP boxes, as it
  1390. * eliminates "false sharing".
  1391. * Note for systems short on memory removing the alignment will
  1392. * allow tighter packing of the smaller caches.
  1393. */
  1394. if (!sizes->cs_cachep) {
  1395. sizes->cs_cachep = kmem_cache_create(names->name,
  1396. sizes->cs_size,
  1397. ARCH_KMALLOC_MINALIGN,
  1398. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1399. NULL);
  1400. }
  1401. #ifdef CONFIG_ZONE_DMA
  1402. sizes->cs_dmacachep = kmem_cache_create(
  1403. names->name_dma,
  1404. sizes->cs_size,
  1405. ARCH_KMALLOC_MINALIGN,
  1406. ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
  1407. SLAB_PANIC,
  1408. NULL);
  1409. #endif
  1410. sizes++;
  1411. names++;
  1412. }
  1413. /* 4) Replace the bootstrap head arrays */
  1414. {
  1415. struct array_cache *ptr;
  1416. ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
  1417. BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
  1418. memcpy(ptr, cpu_cache_get(&cache_cache),
  1419. sizeof(struct arraycache_init));
  1420. /*
  1421. * Do not assume that spinlocks can be initialized via memcpy:
  1422. */
  1423. spin_lock_init(&ptr->lock);
  1424. cache_cache.array[smp_processor_id()] = ptr;
  1425. ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
  1426. BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
  1427. != &initarray_generic.cache);
  1428. memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
  1429. sizeof(struct arraycache_init));
  1430. /*
  1431. * Do not assume that spinlocks can be initialized via memcpy:
  1432. */
  1433. spin_lock_init(&ptr->lock);
  1434. malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
  1435. ptr;
  1436. }
  1437. /* 5) Replace the bootstrap kmem_list3's */
  1438. {
  1439. int nid;
  1440. for_each_online_node(nid) {
  1441. init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
  1442. init_list(malloc_sizes[INDEX_AC].cs_cachep,
  1443. &initkmem_list3[SIZE_AC + nid], nid);
  1444. if (INDEX_AC != INDEX_L3) {
  1445. init_list(malloc_sizes[INDEX_L3].cs_cachep,
  1446. &initkmem_list3[SIZE_L3 + nid], nid);
  1447. }
  1448. }
  1449. }
  1450. /* 6) resize the head arrays to their final sizes */
  1451. {
  1452. struct kmem_cache *cachep;
  1453. mutex_lock(&cache_chain_mutex);
  1454. list_for_each_entry(cachep, &cache_chain, next)
  1455. if (enable_cpucache(cachep, GFP_NOWAIT))
  1456. BUG();
  1457. mutex_unlock(&cache_chain_mutex);
  1458. }
  1459. /* Annotate slab for lockdep -- annotate the malloc caches */
  1460. init_lock_keys();
  1461. /* Done! */
  1462. g_cpucache_up = FULL;
  1463. /*
  1464. * Register a cpu startup notifier callback that initializes
  1465. * cpu_cache_get for all new cpus
  1466. */
  1467. register_cpu_notifier(&cpucache_notifier);
  1468. /*
  1469. * The reap timers are started later, with a module init call: That part
  1470. * of the kernel is not yet operational.
  1471. */
  1472. }
  1473. void __init kmem_cache_init_late(void)
  1474. {
  1475. /*
  1476. * Interrupts are enabled now so all GFP allocations are safe.
  1477. */
  1478. slab_gfp_mask = __GFP_BITS_MASK;
  1479. }
  1480. static int __init cpucache_init(void)
  1481. {
  1482. int cpu;
  1483. /*
  1484. * Register the timers that return unneeded pages to the page allocator
  1485. */
  1486. for_each_online_cpu(cpu)
  1487. start_cpu_timer(cpu);
  1488. return 0;
  1489. }
  1490. __initcall(cpucache_init);
  1491. /*
  1492. * Interface to system's page allocator. No need to hold the cache-lock.
  1493. *
  1494. * If we requested dmaable memory, we will get it. Even if we
  1495. * did not request dmaable memory, we might get it, but that
  1496. * would be relatively rare and ignorable.
  1497. */
  1498. static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  1499. {
  1500. struct page *page;
  1501. int nr_pages;
  1502. int i;
  1503. #ifndef CONFIG_MMU
  1504. /*
  1505. * Nommu uses slab's for process anonymous memory allocations, and thus
  1506. * requires __GFP_COMP to properly refcount higher order allocations
  1507. */
  1508. flags |= __GFP_COMP;
  1509. #endif
  1510. flags |= cachep->gfpflags;
  1511. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1512. flags |= __GFP_RECLAIMABLE;
  1513. page = alloc_pages_node(nodeid, flags, cachep->gfporder);
  1514. if (!page)
  1515. return NULL;
  1516. nr_pages = (1 << cachep->gfporder);
  1517. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1518. add_zone_page_state(page_zone(page),
  1519. NR_SLAB_RECLAIMABLE, nr_pages);
  1520. else
  1521. add_zone_page_state(page_zone(page),
  1522. NR_SLAB_UNRECLAIMABLE, nr_pages);
  1523. for (i = 0; i < nr_pages; i++)
  1524. __SetPageSlab(page + i);
  1525. return page_address(page);
  1526. }
  1527. /*
  1528. * Interface to system's page release.
  1529. */
  1530. static void kmem_freepages(struct kmem_cache *cachep, void *addr)
  1531. {
  1532. unsigned long i = (1 << cachep->gfporder);
  1533. struct page *page = virt_to_page(addr);
  1534. const unsigned long nr_freed = i;
  1535. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1536. sub_zone_page_state(page_zone(page),
  1537. NR_SLAB_RECLAIMABLE, nr_freed);
  1538. else
  1539. sub_zone_page_state(page_zone(page),
  1540. NR_SLAB_UNRECLAIMABLE, nr_freed);
  1541. while (i--) {
  1542. BUG_ON(!PageSlab(page));
  1543. __ClearPageSlab(page);
  1544. page++;
  1545. }
  1546. if (current->reclaim_state)
  1547. current->reclaim_state->reclaimed_slab += nr_freed;
  1548. free_pages((unsigned long)addr, cachep->gfporder);
  1549. }
  1550. static void kmem_rcu_free(struct rcu_head *head)
  1551. {
  1552. struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
  1553. struct kmem_cache *cachep = slab_rcu->cachep;
  1554. kmem_freepages(cachep, slab_rcu->addr);
  1555. if (OFF_SLAB(cachep))
  1556. kmem_cache_free(cachep->slabp_cache, slab_rcu);
  1557. }
  1558. #if DEBUG
  1559. #ifdef CONFIG_DEBUG_PAGEALLOC
  1560. static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
  1561. unsigned long caller)
  1562. {
  1563. int size = obj_size(cachep);
  1564. addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
  1565. if (size < 5 * sizeof(unsigned long))
  1566. return;
  1567. *addr++ = 0x12345678;
  1568. *addr++ = caller;
  1569. *addr++ = smp_processor_id();
  1570. size -= 3 * sizeof(unsigned long);
  1571. {
  1572. unsigned long *sptr = &caller;
  1573. unsigned long svalue;
  1574. while (!kstack_end(sptr)) {
  1575. svalue = *sptr++;
  1576. if (kernel_text_address(svalue)) {
  1577. *addr++ = svalue;
  1578. size -= sizeof(unsigned long);
  1579. if (size <= sizeof(unsigned long))
  1580. break;
  1581. }
  1582. }
  1583. }
  1584. *addr++ = 0x87654321;
  1585. }
  1586. #endif
  1587. static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
  1588. {
  1589. int size = obj_size(cachep);
  1590. addr = &((char *)addr)[obj_offset(cachep)];
  1591. memset(addr, val, size);
  1592. *(unsigned char *)(addr + size - 1) = POISON_END;
  1593. }
  1594. static void dump_line(char *data, int offset, int limit)
  1595. {
  1596. int i;
  1597. unsigned char error = 0;
  1598. int bad_count = 0;
  1599. printk(KERN_ERR "%03x:", offset);
  1600. for (i = 0; i < limit; i++) {
  1601. if (data[offset + i] != POISON_FREE) {
  1602. error = data[offset + i];
  1603. bad_count++;
  1604. }
  1605. printk(" %02x", (unsigned char)data[offset + i]);
  1606. }
  1607. printk("\n");
  1608. if (bad_count == 1) {
  1609. error ^= POISON_FREE;
  1610. if (!(error & (error - 1))) {
  1611. printk(KERN_ERR "Single bit error detected. Probably "
  1612. "bad RAM.\n");
  1613. #ifdef CONFIG_X86
  1614. printk(KERN_ERR "Run memtest86+ or a similar memory "
  1615. "test tool.\n");
  1616. #else
  1617. printk(KERN_ERR "Run a memory test tool.\n");
  1618. #endif
  1619. }
  1620. }
  1621. }
  1622. #endif
  1623. #if DEBUG
  1624. static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
  1625. {
  1626. int i, size;
  1627. char *realobj;
  1628. if (cachep->flags & SLAB_RED_ZONE) {
  1629. printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
  1630. *dbg_redzone1(cachep, objp),
  1631. *dbg_redzone2(cachep, objp));
  1632. }
  1633. if (cachep->flags & SLAB_STORE_USER) {
  1634. printk(KERN_ERR "Last user: [<%p>]",
  1635. *dbg_userword(cachep, objp));
  1636. print_symbol("(%s)",
  1637. (unsigned long)*dbg_userword(cachep, objp));
  1638. printk("\n");
  1639. }
  1640. realobj = (char *)objp + obj_offset(cachep);
  1641. size = obj_size(cachep);
  1642. for (i = 0; i < size && lines; i += 16, lines--) {
  1643. int limit;
  1644. limit = 16;
  1645. if (i + limit > size)
  1646. limit = size - i;
  1647. dump_line(realobj, i, limit);
  1648. }
  1649. }
  1650. static void check_poison_obj(struct kmem_cache *cachep, void *objp)
  1651. {
  1652. char *realobj;
  1653. int size, i;
  1654. int lines = 0;
  1655. realobj = (char *)objp + obj_offset(cachep);
  1656. size = obj_size(cachep);
  1657. for (i = 0; i < size; i++) {
  1658. char exp = POISON_FREE;
  1659. if (i == size - 1)
  1660. exp = POISON_END;
  1661. if (realobj[i] != exp) {
  1662. int limit;
  1663. /* Mismatch ! */
  1664. /* Print header */
  1665. if (lines == 0) {
  1666. printk(KERN_ERR
  1667. "Slab corruption: %s start=%p, len=%d\n",
  1668. cachep->name, realobj, size);
  1669. print_objinfo(cachep, objp, 0);
  1670. }
  1671. /* Hexdump the affected line */
  1672. i = (i / 16) * 16;
  1673. limit = 16;
  1674. if (i + limit > size)
  1675. limit = size - i;
  1676. dump_line(realobj, i, limit);
  1677. i += 16;
  1678. lines++;
  1679. /* Limit to 5 lines */
  1680. if (lines > 5)
  1681. break;
  1682. }
  1683. }
  1684. if (lines != 0) {
  1685. /* Print some data about the neighboring objects, if they
  1686. * exist:
  1687. */
  1688. struct slab *slabp = virt_to_slab(objp);
  1689. unsigned int objnr;
  1690. objnr = obj_to_index(cachep, slabp, objp);
  1691. if (objnr) {
  1692. objp = index_to_obj(cachep, slabp, objnr - 1);
  1693. realobj = (char *)objp + obj_offset(cachep);
  1694. printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
  1695. realobj, size);
  1696. print_objinfo(cachep, objp, 2);
  1697. }
  1698. if (objnr + 1 < cachep->num) {
  1699. objp = index_to_obj(cachep, slabp, objnr + 1);
  1700. realobj = (char *)objp + obj_offset(cachep);
  1701. printk(KERN_ERR "Next obj: start=%p, len=%d\n",
  1702. realobj, size);
  1703. print_objinfo(cachep, objp, 2);
  1704. }
  1705. }
  1706. }
  1707. #endif
  1708. #if DEBUG
  1709. static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
  1710. {
  1711. int i;
  1712. for (i = 0; i < cachep->num; i++) {
  1713. void *objp = index_to_obj(cachep, slabp, i);
  1714. if (cachep->flags & SLAB_POISON) {
  1715. #ifdef CONFIG_DEBUG_PAGEALLOC
  1716. if (cachep->buffer_size % PAGE_SIZE == 0 &&
  1717. OFF_SLAB(cachep))
  1718. kernel_map_pages(virt_to_page(objp),
  1719. cachep->buffer_size / PAGE_SIZE, 1);
  1720. else
  1721. check_poison_obj(cachep, objp);
  1722. #else
  1723. check_poison_obj(cachep, objp);
  1724. #endif
  1725. }
  1726. if (cachep->flags & SLAB_RED_ZONE) {
  1727. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  1728. slab_error(cachep, "start of a freed object "
  1729. "was overwritten");
  1730. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  1731. slab_error(cachep, "end of a freed object "
  1732. "was overwritten");
  1733. }
  1734. }
  1735. }
  1736. #else
  1737. static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
  1738. {
  1739. }
  1740. #endif
  1741. /**
  1742. * slab_destroy - destroy and release all objects in a slab
  1743. * @cachep: cache pointer being destroyed
  1744. * @slabp: slab pointer being destroyed
  1745. *
  1746. * Destroy all the objs in a slab, and release the mem back to the system.
  1747. * Before calling the slab must have been unlinked from the cache. The
  1748. * cache-lock is not held/needed.
  1749. */
  1750. static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
  1751. {
  1752. void *addr = slabp->s_mem - slabp->colouroff;
  1753. slab_destroy_debugcheck(cachep, slabp);
  1754. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
  1755. struct slab_rcu *slab_rcu;
  1756. slab_rcu = (struct slab_rcu *)slabp;
  1757. slab_rcu->cachep = cachep;
  1758. slab_rcu->addr = addr;
  1759. call_rcu(&slab_rcu->head, kmem_rcu_free);
  1760. } else {
  1761. kmem_freepages(cachep, addr);
  1762. if (OFF_SLAB(cachep))
  1763. kmem_cache_free(cachep->slabp_cache, slabp);
  1764. }
  1765. }
  1766. static void __kmem_cache_destroy(struct kmem_cache *cachep)
  1767. {
  1768. int i;
  1769. struct kmem_list3 *l3;
  1770. for_each_online_cpu(i)
  1771. kfree(cachep->array[i]);
  1772. /* NUMA: free the list3 structures */
  1773. for_each_online_node(i) {
  1774. l3 = cachep->nodelists[i];
  1775. if (l3) {
  1776. kfree(l3->shared);
  1777. free_alien_cache(l3->alien);
  1778. kfree(l3);
  1779. }
  1780. }
  1781. kmem_cache_free(&cache_cache, cachep);
  1782. }
  1783. /**
  1784. * calculate_slab_order - calculate size (page order) of slabs
  1785. * @cachep: pointer to the cache that is being created
  1786. * @size: size of objects to be created in this cache.
  1787. * @align: required alignment for the objects.
  1788. * @flags: slab allocation flags
  1789. *
  1790. * Also calculates the number of objects per slab.
  1791. *
  1792. * This could be made much more intelligent. For now, try to avoid using
  1793. * high order pages for slabs. When the gfp() functions are more friendly
  1794. * towards high-order requests, this should be changed.
  1795. */
  1796. static size_t calculate_slab_order(struct kmem_cache *cachep,
  1797. size_t size, size_t align, unsigned long flags)
  1798. {
  1799. unsigned long offslab_limit;
  1800. size_t left_over = 0;
  1801. int gfporder;
  1802. for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
  1803. unsigned int num;
  1804. size_t remainder;
  1805. cache_estimate(gfporder, size, align, flags, &remainder, &num);
  1806. if (!num)
  1807. continue;
  1808. if (flags & CFLGS_OFF_SLAB) {
  1809. /*
  1810. * Max number of objs-per-slab for caches which
  1811. * use off-slab slabs. Needed to avoid a possible
  1812. * looping condition in cache_grow().
  1813. */
  1814. offslab_limit = size - sizeof(struct slab);
  1815. offslab_limit /= sizeof(kmem_bufctl_t);
  1816. if (num > offslab_limit)
  1817. break;
  1818. }
  1819. /* Found something acceptable - save it away */
  1820. cachep->num = num;
  1821. cachep->gfporder = gfporder;
  1822. left_over = remainder;
  1823. /*
  1824. * A VFS-reclaimable slab tends to have most allocations
  1825. * as GFP_NOFS and we really don't want to have to be allocating
  1826. * higher-order pages when we are unable to shrink dcache.
  1827. */
  1828. if (flags & SLAB_RECLAIM_ACCOUNT)
  1829. break;
  1830. /*
  1831. * Large number of objects is good, but very large slabs are
  1832. * currently bad for the gfp()s.
  1833. */
  1834. if (gfporder >= slab_break_gfp_order)
  1835. break;
  1836. /*
  1837. * Acceptable internal fragmentation?
  1838. */
  1839. if (left_over * 8 <= (PAGE_SIZE << gfporder))
  1840. break;
  1841. }
  1842. return left_over;
  1843. }
  1844. static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
  1845. {
  1846. if (g_cpucache_up == FULL)
  1847. return enable_cpucache(cachep, gfp);
  1848. if (g_cpucache_up == NONE) {
  1849. /*
  1850. * Note: the first kmem_cache_create must create the cache
  1851. * that's used by kmalloc(24), otherwise the creation of
  1852. * further caches will BUG().
  1853. */
  1854. cachep->array[smp_processor_id()] = &initarray_generic.cache;
  1855. /*
  1856. * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
  1857. * the first cache, then we need to set up all its list3s,
  1858. * otherwise the creation of further caches will BUG().
  1859. */
  1860. set_up_list3s(cachep, SIZE_AC);
  1861. if (INDEX_AC == INDEX_L3)
  1862. g_cpucache_up = PARTIAL_L3;
  1863. else
  1864. g_cpucache_up = PARTIAL_AC;
  1865. } else {
  1866. cachep->array[smp_processor_id()] =
  1867. kmalloc(sizeof(struct arraycache_init), gfp);
  1868. if (g_cpucache_up == PARTIAL_AC) {
  1869. set_up_list3s(cachep, SIZE_L3);
  1870. g_cpucache_up = PARTIAL_L3;
  1871. } else {
  1872. int node;
  1873. for_each_online_node(node) {
  1874. cachep->nodelists[node] =
  1875. kmalloc_node(sizeof(struct kmem_list3),
  1876. gfp, node);
  1877. BUG_ON(!cachep->nodelists[node]);
  1878. kmem_list3_init(cachep->nodelists[node]);
  1879. }
  1880. }
  1881. }
  1882. cachep->nodelists[numa_node_id()]->next_reap =
  1883. jiffies + REAPTIMEOUT_LIST3 +
  1884. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1885. cpu_cache_get(cachep)->avail = 0;
  1886. cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
  1887. cpu_cache_get(cachep)->batchcount = 1;
  1888. cpu_cache_get(cachep)->touched = 0;
  1889. cachep->batchcount = 1;
  1890. cachep->limit = BOOT_CPUCACHE_ENTRIES;
  1891. return 0;
  1892. }
  1893. /**
  1894. * kmem_cache_create - Create a cache.
  1895. * @name: A string which is used in /proc/slabinfo to identify this cache.
  1896. * @size: The size of objects to be created in this cache.
  1897. * @align: The required alignment for the objects.
  1898. * @flags: SLAB flags
  1899. * @ctor: A constructor for the objects.
  1900. *
  1901. * Returns a ptr to the cache on success, NULL on failure.
  1902. * Cannot be called within a int, but can be interrupted.
  1903. * The @ctor is run when new pages are allocated by the cache.
  1904. *
  1905. * @name must be valid until the cache is destroyed. This implies that
  1906. * the module calling this has to destroy the cache before getting unloaded.
  1907. * Note that kmem_cache_name() is not guaranteed to return the same pointer,
  1908. * therefore applications must manage it themselves.
  1909. *
  1910. * The flags are
  1911. *
  1912. * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
  1913. * to catch references to uninitialised memory.
  1914. *
  1915. * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  1916. * for buffer overruns.
  1917. *
  1918. * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  1919. * cacheline. This can be beneficial if you're counting cycles as closely
  1920. * as davem.
  1921. */
  1922. struct kmem_cache *
  1923. kmem_cache_create (const char *name, size_t size, size_t align,
  1924. unsigned long flags, void (*ctor)(void *))
  1925. {
  1926. size_t left_over, slab_size, ralign;
  1927. struct kmem_cache *cachep = NULL, *pc;
  1928. gfp_t gfp;
  1929. /*
  1930. * Sanity checks... these are all serious usage bugs.
  1931. */
  1932. if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
  1933. size > KMALLOC_MAX_SIZE) {
  1934. printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
  1935. name);
  1936. BUG();
  1937. }
  1938. /*
  1939. * We use cache_chain_mutex to ensure a consistent view of
  1940. * cpu_online_mask as well. Please see cpuup_callback
  1941. */
  1942. if (slab_is_available()) {
  1943. get_online_cpus();
  1944. mutex_lock(&cache_chain_mutex);
  1945. }
  1946. list_for_each_entry(pc, &cache_chain, next) {
  1947. char tmp;
  1948. int res;
  1949. /*
  1950. * This happens when the module gets unloaded and doesn't
  1951. * destroy its slab cache and no-one else reuses the vmalloc
  1952. * area of the module. Print a warning.
  1953. */
  1954. res = probe_kernel_address(pc->name, tmp);
  1955. if (res) {
  1956. printk(KERN_ERR
  1957. "SLAB: cache with size %d has lost its name\n",
  1958. pc->buffer_size);
  1959. continue;
  1960. }
  1961. if (!strcmp(pc->name, name)) {
  1962. printk(KERN_ERR
  1963. "kmem_cache_create: duplicate cache %s\n", name);
  1964. dump_stack();
  1965. goto oops;
  1966. }
  1967. }
  1968. #if DEBUG
  1969. WARN_ON(strchr(name, ' ')); /* It confuses parsers */
  1970. #if FORCED_DEBUG
  1971. /*
  1972. * Enable redzoning and last user accounting, except for caches with
  1973. * large objects, if the increased size would increase the object size
  1974. * above the next power of two: caches with object sizes just above a
  1975. * power of two have a significant amount of internal fragmentation.
  1976. */
  1977. if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
  1978. 2 * sizeof(unsigned long long)))
  1979. flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
  1980. if (!(flags & SLAB_DESTROY_BY_RCU))
  1981. flags |= SLAB_POISON;
  1982. #endif
  1983. if (flags & SLAB_DESTROY_BY_RCU)
  1984. BUG_ON(flags & SLAB_POISON);
  1985. #endif
  1986. /*
  1987. * Always checks flags, a caller might be expecting debug support which
  1988. * isn't available.
  1989. */
  1990. BUG_ON(flags & ~CREATE_MASK);
  1991. /*
  1992. * Check that size is in terms of words. This is needed to avoid
  1993. * unaligned accesses for some archs when redzoning is used, and makes
  1994. * sure any on-slab bufctl's are also correctly aligned.
  1995. */
  1996. if (size & (BYTES_PER_WORD - 1)) {
  1997. size += (BYTES_PER_WORD - 1);
  1998. size &= ~(BYTES_PER_WORD - 1);
  1999. }
  2000. /* calculate the final buffer alignment: */
  2001. /* 1) arch recommendation: can be overridden for debug */
  2002. if (flags & SLAB_HWCACHE_ALIGN) {
  2003. /*
  2004. * Default alignment: as specified by the arch code. Except if
  2005. * an object is really small, then squeeze multiple objects into
  2006. * one cacheline.
  2007. */
  2008. ralign = cache_line_size();
  2009. while (size <= ralign / 2)
  2010. ralign /= 2;
  2011. } else {
  2012. ralign = BYTES_PER_WORD;
  2013. }
  2014. /*
  2015. * Redzoning and user store require word alignment or possibly larger.
  2016. * Note this will be overridden by architecture or caller mandated
  2017. * alignment if either is greater than BYTES_PER_WORD.
  2018. */
  2019. if (flags & SLAB_STORE_USER)
  2020. ralign = BYTES_PER_WORD;
  2021. if (flags & SLAB_RED_ZONE) {
  2022. ralign = REDZONE_ALIGN;
  2023. /* If redzoning, ensure that the second redzone is suitably
  2024. * aligned, by adjusting the object size accordingly. */
  2025. size += REDZONE_ALIGN - 1;
  2026. size &= ~(REDZONE_ALIGN - 1);
  2027. }
  2028. /* 2) arch mandated alignment */
  2029. if (ralign < ARCH_SLAB_MINALIGN) {
  2030. ralign = ARCH_SLAB_MINALIGN;
  2031. }
  2032. /* 3) caller mandated alignment */
  2033. if (ralign < align) {
  2034. ralign = align;
  2035. }
  2036. /* disable debug if necessary */
  2037. if (ralign > __alignof__(unsigned long long))
  2038. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  2039. /*
  2040. * 4) Store it.
  2041. */
  2042. align = ralign;
  2043. if (slab_is_available())
  2044. gfp = GFP_KERNEL;
  2045. else
  2046. gfp = GFP_NOWAIT;
  2047. /* Get cache's description obj. */
  2048. cachep = kmem_cache_zalloc(&cache_cache, gfp);
  2049. if (!cachep)
  2050. goto oops;
  2051. #if DEBUG
  2052. cachep->obj_size = size;
  2053. /*
  2054. * Both debugging options require word-alignment which is calculated
  2055. * into align above.
  2056. */
  2057. if (flags & SLAB_RED_ZONE) {
  2058. /* add space for red zone words */
  2059. cachep->obj_offset += sizeof(unsigned long long);
  2060. size += 2 * sizeof(unsigned long long);
  2061. }
  2062. if (flags & SLAB_STORE_USER) {
  2063. /* user store requires one word storage behind the end of
  2064. * the real object. But if the second red zone needs to be
  2065. * aligned to 64 bits, we must allow that much space.
  2066. */
  2067. if (flags & SLAB_RED_ZONE)
  2068. size += REDZONE_ALIGN;
  2069. else
  2070. size += BYTES_PER_WORD;
  2071. }
  2072. #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
  2073. if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
  2074. && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
  2075. cachep->obj_offset += PAGE_SIZE - size;
  2076. size = PAGE_SIZE;
  2077. }
  2078. #endif
  2079. #endif
  2080. /*
  2081. * Determine if the slab management is 'on' or 'off' slab.
  2082. * (bootstrapping cannot cope with offslab caches so don't do
  2083. * it too early on.)
  2084. */
  2085. if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
  2086. /*
  2087. * Size is large, assume best to place the slab management obj
  2088. * off-slab (should allow better packing of objs).
  2089. */
  2090. flags |= CFLGS_OFF_SLAB;
  2091. size = ALIGN(size, align);
  2092. left_over = calculate_slab_order(cachep, size, align, flags);
  2093. if (!cachep->num) {
  2094. printk(KERN_ERR
  2095. "kmem_cache_create: couldn't create cache %s.\n", name);
  2096. kmem_cache_free(&cache_cache, cachep);
  2097. cachep = NULL;
  2098. goto oops;
  2099. }
  2100. slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
  2101. + sizeof(struct slab), align);
  2102. /*
  2103. * If the slab has been placed off-slab, and we have enough space then
  2104. * move it on-slab. This is at the expense of any extra colouring.
  2105. */
  2106. if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
  2107. flags &= ~CFLGS_OFF_SLAB;
  2108. left_over -= slab_size;
  2109. }
  2110. if (flags & CFLGS_OFF_SLAB) {
  2111. /* really off slab. No need for manual alignment */
  2112. slab_size =
  2113. cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
  2114. }
  2115. cachep->colour_off = cache_line_size();
  2116. /* Offset must be a multiple of the alignment. */
  2117. if (cachep->colour_off < align)
  2118. cachep->colour_off = align;
  2119. cachep->colour = left_over / cachep->colour_off;
  2120. cachep->slab_size = slab_size;
  2121. cachep->flags = flags;
  2122. cachep->gfpflags = 0;
  2123. if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
  2124. cachep->gfpflags |= GFP_DMA;
  2125. cachep->buffer_size = size;
  2126. cachep->reciprocal_buffer_size = reciprocal_value(size);
  2127. if (flags & CFLGS_OFF_SLAB) {
  2128. cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
  2129. /*
  2130. * This is a possibility for one of the malloc_sizes caches.
  2131. * But since we go off slab only for object size greater than
  2132. * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
  2133. * this should not happen at all.
  2134. * But leave a BUG_ON for some lucky dude.
  2135. */
  2136. BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
  2137. }
  2138. cachep->ctor = ctor;
  2139. cachep->name = name;
  2140. if (setup_cpu_cache(cachep, gfp)) {
  2141. __kmem_cache_destroy(cachep);
  2142. cachep = NULL;
  2143. goto oops;
  2144. }
  2145. /* cache setup completed, link it into the list */
  2146. list_add(&cachep->next, &cache_chain);
  2147. oops:
  2148. if (!cachep && (flags & SLAB_PANIC))
  2149. panic("kmem_cache_create(): failed to create slab `%s'\n",
  2150. name);
  2151. if (slab_is_available()) {
  2152. mutex_unlock(&cache_chain_mutex);
  2153. put_online_cpus();
  2154. }
  2155. return cachep;
  2156. }
  2157. EXPORT_SYMBOL(kmem_cache_create);
  2158. #if DEBUG
  2159. static void check_irq_off(void)
  2160. {
  2161. BUG_ON(!irqs_disabled());
  2162. }
  2163. static void check_irq_on(void)
  2164. {
  2165. BUG_ON(irqs_disabled());
  2166. }
  2167. static void check_spinlock_acquired(struct kmem_cache *cachep)
  2168. {
  2169. #ifdef CONFIG_SMP
  2170. check_irq_off();
  2171. assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
  2172. #endif
  2173. }
  2174. static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
  2175. {
  2176. #ifdef CONFIG_SMP
  2177. check_irq_off();
  2178. assert_spin_locked(&cachep->nodelists[node]->list_lock);
  2179. #endif
  2180. }
  2181. #else
  2182. #define check_irq_off() do { } while(0)
  2183. #define check_irq_on() do { } while(0)
  2184. #define check_spinlock_acquired(x) do { } while(0)
  2185. #define check_spinlock_acquired_node(x, y) do { } while(0)
  2186. #endif
  2187. static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  2188. struct array_cache *ac,
  2189. int force, int node);
  2190. static void do_drain(void *arg)
  2191. {
  2192. struct kmem_cache *cachep = arg;
  2193. struct array_cache *ac;
  2194. int node = numa_node_id();
  2195. check_irq_off();
  2196. ac = cpu_cache_get(cachep);
  2197. spin_lock(&cachep->nodelists[node]->list_lock);
  2198. free_block(cachep, ac->entry, ac->avail, node);
  2199. spin_unlock(&cachep->nodelists[node]->list_lock);
  2200. ac->avail = 0;
  2201. }
  2202. static void drain_cpu_caches(struct kmem_cache *cachep)
  2203. {
  2204. struct kmem_list3 *l3;
  2205. int node;
  2206. on_each_cpu(do_drain, cachep, 1);
  2207. check_irq_on();
  2208. for_each_online_node(node) {
  2209. l3 = cachep->nodelists[node];
  2210. if (l3 && l3->alien)
  2211. drain_alien_cache(cachep, l3->alien);
  2212. }
  2213. for_each_online_node(node) {
  2214. l3 = cachep->nodelists[node];
  2215. if (l3)
  2216. drain_array(cachep, l3, l3->shared, 1, node);
  2217. }
  2218. }
  2219. /*
  2220. * Remove slabs from the list of free slabs.
  2221. * Specify the number of slabs to drain in tofree.
  2222. *
  2223. * Returns the actual number of slabs released.
  2224. */
  2225. static int drain_freelist(struct kmem_cache *cache,
  2226. struct kmem_list3 *l3, int tofree)
  2227. {
  2228. struct list_head *p;
  2229. int nr_freed;
  2230. struct slab *slabp;
  2231. nr_freed = 0;
  2232. while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
  2233. spin_lock_irq(&l3->list_lock);
  2234. p = l3->slabs_free.prev;
  2235. if (p == &l3->slabs_free) {
  2236. spin_unlock_irq(&l3->list_lock);
  2237. goto out;
  2238. }
  2239. slabp = list_entry(p, struct slab, list);
  2240. #if DEBUG
  2241. BUG_ON(slabp->inuse);
  2242. #endif
  2243. list_del(&slabp->list);
  2244. /*
  2245. * Safe to drop the lock. The slab is no longer linked
  2246. * to the cache.
  2247. */
  2248. l3->free_objects -= cache->num;
  2249. spin_unlock_irq(&l3->list_lock);
  2250. slab_destroy(cache, slabp);
  2251. nr_freed++;
  2252. }
  2253. out:
  2254. return nr_freed;
  2255. }
  2256. /* Called with cache_chain_mutex held to protect against cpu hotplug */
  2257. static int __cache_shrink(struct kmem_cache *cachep)
  2258. {
  2259. int ret = 0, i = 0;
  2260. struct kmem_list3 *l3;
  2261. drain_cpu_caches(cachep);
  2262. check_irq_on();
  2263. for_each_online_node(i) {
  2264. l3 = cachep->nodelists[i];
  2265. if (!l3)
  2266. continue;
  2267. drain_freelist(cachep, l3, l3->free_objects);
  2268. ret += !list_empty(&l3->slabs_full) ||
  2269. !list_empty(&l3->slabs_partial);
  2270. }
  2271. return (ret ? 1 : 0);
  2272. }
  2273. /**
  2274. * kmem_cache_shrink - Shrink a cache.
  2275. * @cachep: The cache to shrink.
  2276. *
  2277. * Releases as many slabs as possible for a cache.
  2278. * To help debugging, a zero exit status indicates all slabs were released.
  2279. */
  2280. int kmem_cache_shrink(struct kmem_cache *cachep)
  2281. {
  2282. int ret;
  2283. BUG_ON(!cachep || in_interrupt());
  2284. get_online_cpus();
  2285. mutex_lock(&cache_chain_mutex);
  2286. ret = __cache_shrink(cachep);
  2287. mutex_unlock(&cache_chain_mutex);
  2288. put_online_cpus();
  2289. return ret;
  2290. }
  2291. EXPORT_SYMBOL(kmem_cache_shrink);
  2292. /**
  2293. * kmem_cache_destroy - delete a cache
  2294. * @cachep: the cache to destroy
  2295. *
  2296. * Remove a &struct kmem_cache object from the slab cache.
  2297. *
  2298. * It is expected this function will be called by a module when it is
  2299. * unloaded. This will remove the cache completely, and avoid a duplicate
  2300. * cache being allocated each time a module is loaded and unloaded, if the
  2301. * module doesn't have persistent in-kernel storage across loads and unloads.
  2302. *
  2303. * The cache must be empty before calling this function.
  2304. *
  2305. * The caller must guarantee that noone will allocate memory from the cache
  2306. * during the kmem_cache_destroy().
  2307. */
  2308. void kmem_cache_destroy(struct kmem_cache *cachep)
  2309. {
  2310. BUG_ON(!cachep || in_interrupt());
  2311. /* Find the cache in the chain of caches. */
  2312. get_online_cpus();
  2313. mutex_lock(&cache_chain_mutex);
  2314. /*
  2315. * the chain is never empty, cache_cache is never destroyed
  2316. */
  2317. list_del(&cachep->next);
  2318. if (__cache_shrink(cachep)) {
  2319. slab_error(cachep, "Can't free all objects");
  2320. list_add(&cachep->next, &cache_chain);
  2321. mutex_unlock(&cache_chain_mutex);
  2322. put_online_cpus();
  2323. return;
  2324. }
  2325. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
  2326. synchronize_rcu();
  2327. __kmem_cache_destroy(cachep);
  2328. mutex_unlock(&cache_chain_mutex);
  2329. put_online_cpus();
  2330. }
  2331. EXPORT_SYMBOL(kmem_cache_destroy);
  2332. /*
  2333. * Get the memory for a slab management obj.
  2334. * For a slab cache when the slab descriptor is off-slab, slab descriptors
  2335. * always come from malloc_sizes caches. The slab descriptor cannot
  2336. * come from the same cache which is getting created because,
  2337. * when we are searching for an appropriate cache for these
  2338. * descriptors in kmem_cache_create, we search through the malloc_sizes array.
  2339. * If we are creating a malloc_sizes cache here it would not be visible to
  2340. * kmem_find_general_cachep till the initialization is complete.
  2341. * Hence we cannot have slabp_cache same as the original cache.
  2342. */
  2343. static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
  2344. int colour_off, gfp_t local_flags,
  2345. int nodeid)
  2346. {
  2347. struct slab *slabp;
  2348. if (OFF_SLAB(cachep)) {
  2349. /* Slab management obj is off-slab. */
  2350. slabp = kmem_cache_alloc_node(cachep->slabp_cache,
  2351. local_flags, nodeid);
  2352. /*
  2353. * If the first object in the slab is leaked (it's allocated
  2354. * but no one has a reference to it), we want to make sure
  2355. * kmemleak does not treat the ->s_mem pointer as a reference
  2356. * to the object. Otherwise we will not report the leak.
  2357. */
  2358. kmemleak_scan_area(slabp, offsetof(struct slab, list),
  2359. sizeof(struct list_head), local_flags);
  2360. if (!slabp)
  2361. return NULL;
  2362. } else {
  2363. slabp = objp + colour_off;
  2364. colour_off += cachep->slab_size;
  2365. }
  2366. slabp->inuse = 0;
  2367. slabp->colouroff = colour_off;
  2368. slabp->s_mem = objp + colour_off;
  2369. slabp->nodeid = nodeid;
  2370. slabp->free = 0;
  2371. return slabp;
  2372. }
  2373. static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
  2374. {
  2375. return (kmem_bufctl_t *) (slabp + 1);
  2376. }
  2377. static void cache_init_objs(struct kmem_cache *cachep,
  2378. struct slab *slabp)
  2379. {
  2380. int i;
  2381. for (i = 0; i < cachep->num; i++) {
  2382. void *objp = index_to_obj(cachep, slabp, i);
  2383. #if DEBUG
  2384. /* need to poison the objs? */
  2385. if (cachep->flags & SLAB_POISON)
  2386. poison_obj(cachep, objp, POISON_FREE);
  2387. if (cachep->flags & SLAB_STORE_USER)
  2388. *dbg_userword(cachep, objp) = NULL;
  2389. if (cachep->flags & SLAB_RED_ZONE) {
  2390. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2391. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2392. }
  2393. /*
  2394. * Constructors are not allowed to allocate memory from the same
  2395. * cache which they are a constructor for. Otherwise, deadlock.
  2396. * They must also be threaded.
  2397. */
  2398. if (cachep->ctor && !(cachep->flags & SLAB_POISON))
  2399. cachep->ctor(objp + obj_offset(cachep));
  2400. if (cachep->flags & SLAB_RED_ZONE) {
  2401. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  2402. slab_error(cachep, "constructor overwrote the"
  2403. " end of an object");
  2404. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  2405. slab_error(cachep, "constructor overwrote the"
  2406. " start of an object");
  2407. }
  2408. if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
  2409. OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
  2410. kernel_map_pages(virt_to_page(objp),
  2411. cachep->buffer_size / PAGE_SIZE, 0);
  2412. #else
  2413. if (cachep->ctor)
  2414. cachep->ctor(objp);
  2415. #endif
  2416. slab_bufctl(slabp)[i] = i + 1;
  2417. }
  2418. slab_bufctl(slabp)[i - 1] = BUFCTL_END;
  2419. }
  2420. static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
  2421. {
  2422. if (CONFIG_ZONE_DMA_FLAG) {
  2423. if (flags & GFP_DMA)
  2424. BUG_ON(!(cachep->gfpflags & GFP_DMA));
  2425. else
  2426. BUG_ON(cachep->gfpflags & GFP_DMA);
  2427. }
  2428. }
  2429. static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
  2430. int nodeid)
  2431. {
  2432. void *objp = index_to_obj(cachep, slabp, slabp->free);
  2433. kmem_bufctl_t next;
  2434. slabp->inuse++;
  2435. next = slab_bufctl(slabp)[slabp->free];
  2436. #if DEBUG
  2437. slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
  2438. WARN_ON(slabp->nodeid != nodeid);
  2439. #endif
  2440. slabp->free = next;
  2441. return objp;
  2442. }
  2443. static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
  2444. void *objp, int nodeid)
  2445. {
  2446. unsigned int objnr = obj_to_index(cachep, slabp, objp);
  2447. #if DEBUG
  2448. /* Verify that the slab belongs to the intended node */
  2449. WARN_ON(slabp->nodeid != nodeid);
  2450. if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
  2451. printk(KERN_ERR "slab: double free detected in cache "
  2452. "'%s', objp %p\n", cachep->name, objp);
  2453. BUG();
  2454. }
  2455. #endif
  2456. slab_bufctl(slabp)[objnr] = slabp->free;
  2457. slabp->free = objnr;
  2458. slabp->inuse--;
  2459. }
  2460. /*
  2461. * Map pages beginning at addr to the given cache and slab. This is required
  2462. * for the slab allocator to be able to lookup the cache and slab of a
  2463. * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
  2464. */
  2465. static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
  2466. void *addr)
  2467. {
  2468. int nr_pages;
  2469. struct page *page;
  2470. page = virt_to_page(addr);
  2471. nr_pages = 1;
  2472. if (likely(!PageCompound(page)))
  2473. nr_pages <<= cache->gfporder;
  2474. do {
  2475. page_set_cache(page, cache);
  2476. page_set_slab(page, slab);
  2477. page++;
  2478. } while (--nr_pages);
  2479. }
  2480. /*
  2481. * Grow (by 1) the number of slabs within a cache. This is called by
  2482. * kmem_cache_alloc() when there are no active objs left in a cache.
  2483. */
  2484. static int cache_grow(struct kmem_cache *cachep,
  2485. gfp_t flags, int nodeid, void *objp)
  2486. {
  2487. struct slab *slabp;
  2488. size_t offset;
  2489. gfp_t local_flags;
  2490. struct kmem_list3 *l3;
  2491. /*
  2492. * Be lazy and only check for valid flags here, keeping it out of the
  2493. * critical path in kmem_cache_alloc().
  2494. */
  2495. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  2496. local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
  2497. /* Take the l3 list lock to change the colour_next on this node */
  2498. check_irq_off();
  2499. l3 = cachep->nodelists[nodeid];
  2500. spin_lock(&l3->list_lock);
  2501. /* Get colour for the slab, and cal the next value. */
  2502. offset = l3->colour_next;
  2503. l3->colour_next++;
  2504. if (l3->colour_next >= cachep->colour)
  2505. l3->colour_next = 0;
  2506. spin_unlock(&l3->list_lock);
  2507. offset *= cachep->colour_off;
  2508. if (local_flags & __GFP_WAIT)
  2509. local_irq_enable();
  2510. /*
  2511. * The test for missing atomic flag is performed here, rather than
  2512. * the more obvious place, simply to reduce the critical path length
  2513. * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
  2514. * will eventually be caught here (where it matters).
  2515. */
  2516. kmem_flagcheck(cachep, flags);
  2517. /*
  2518. * Get mem for the objs. Attempt to allocate a physical page from
  2519. * 'nodeid'.
  2520. */
  2521. if (!objp)
  2522. objp = kmem_getpages(cachep, local_flags, nodeid);
  2523. if (!objp)
  2524. goto failed;
  2525. /* Get slab management. */
  2526. slabp = alloc_slabmgmt(cachep, objp, offset,
  2527. local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
  2528. if (!slabp)
  2529. goto opps1;
  2530. slab_map_pages(cachep, slabp, objp);
  2531. cache_init_objs(cachep, slabp);
  2532. if (local_flags & __GFP_WAIT)
  2533. local_irq_disable();
  2534. check_irq_off();
  2535. spin_lock(&l3->list_lock);
  2536. /* Make slab active. */
  2537. list_add_tail(&slabp->list, &(l3->slabs_free));
  2538. STATS_INC_GROWN(cachep);
  2539. l3->free_objects += cachep->num;
  2540. spin_unlock(&l3->list_lock);
  2541. return 1;
  2542. opps1:
  2543. kmem_freepages(cachep, objp);
  2544. failed:
  2545. if (local_flags & __GFP_WAIT)
  2546. local_irq_disable();
  2547. return 0;
  2548. }
  2549. #if DEBUG
  2550. /*
  2551. * Perform extra freeing checks:
  2552. * - detect bad pointers.
  2553. * - POISON/RED_ZONE checking
  2554. */
  2555. static void kfree_debugcheck(const void *objp)
  2556. {
  2557. if (!virt_addr_valid(objp)) {
  2558. printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
  2559. (unsigned long)objp);
  2560. BUG();
  2561. }
  2562. }
  2563. static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
  2564. {
  2565. unsigned long long redzone1, redzone2;
  2566. redzone1 = *dbg_redzone1(cache, obj);
  2567. redzone2 = *dbg_redzone2(cache, obj);
  2568. /*
  2569. * Redzone is ok.
  2570. */
  2571. if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
  2572. return;
  2573. if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
  2574. slab_error(cache, "double free detected");
  2575. else
  2576. slab_error(cache, "memory outside object was overwritten");
  2577. printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
  2578. obj, redzone1, redzone2);
  2579. }
  2580. static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
  2581. void *caller)
  2582. {
  2583. struct page *page;
  2584. unsigned int objnr;
  2585. struct slab *slabp;
  2586. BUG_ON(virt_to_cache(objp) != cachep);
  2587. objp -= obj_offset(cachep);
  2588. kfree_debugcheck(objp);
  2589. page = virt_to_head_page(objp);
  2590. slabp = page_get_slab(page);
  2591. if (cachep->flags & SLAB_RED_ZONE) {
  2592. verify_redzone_free(cachep, objp);
  2593. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2594. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2595. }
  2596. if (cachep->flags & SLAB_STORE_USER)
  2597. *dbg_userword(cachep, objp) = caller;
  2598. objnr = obj_to_index(cachep, slabp, objp);
  2599. BUG_ON(objnr >= cachep->num);
  2600. BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
  2601. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2602. slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
  2603. #endif
  2604. if (cachep->flags & SLAB_POISON) {
  2605. #ifdef CONFIG_DEBUG_PAGEALLOC
  2606. if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
  2607. store_stackinfo(cachep, objp, (unsigned long)caller);
  2608. kernel_map_pages(virt_to_page(objp),
  2609. cachep->buffer_size / PAGE_SIZE, 0);
  2610. } else {
  2611. poison_obj(cachep, objp, POISON_FREE);
  2612. }
  2613. #else
  2614. poison_obj(cachep, objp, POISON_FREE);
  2615. #endif
  2616. }
  2617. return objp;
  2618. }
  2619. static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
  2620. {
  2621. kmem_bufctl_t i;
  2622. int entries = 0;
  2623. /* Check slab's freelist to see if this obj is there. */
  2624. for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
  2625. entries++;
  2626. if (entries > cachep->num || i >= cachep->num)
  2627. goto bad;
  2628. }
  2629. if (entries != cachep->num - slabp->inuse) {
  2630. bad:
  2631. printk(KERN_ERR "slab: Internal list corruption detected in "
  2632. "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
  2633. cachep->name, cachep->num, slabp, slabp->inuse);
  2634. for (i = 0;
  2635. i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
  2636. i++) {
  2637. if (i % 16 == 0)
  2638. printk("\n%03x:", i);
  2639. printk(" %02x", ((unsigned char *)slabp)[i]);
  2640. }
  2641. printk("\n");
  2642. BUG();
  2643. }
  2644. }
  2645. #else
  2646. #define kfree_debugcheck(x) do { } while(0)
  2647. #define cache_free_debugcheck(x,objp,z) (objp)
  2648. #define check_slabp(x,y) do { } while(0)
  2649. #endif
  2650. static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
  2651. {
  2652. int batchcount;
  2653. struct kmem_list3 *l3;
  2654. struct array_cache *ac;
  2655. int node;
  2656. retry:
  2657. check_irq_off();
  2658. node = numa_node_id();
  2659. ac = cpu_cache_get(cachep);
  2660. batchcount = ac->batchcount;
  2661. if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
  2662. /*
  2663. * If there was little recent activity on this cache, then
  2664. * perform only a partial refill. Otherwise we could generate
  2665. * refill bouncing.
  2666. */
  2667. batchcount = BATCHREFILL_LIMIT;
  2668. }
  2669. l3 = cachep->nodelists[node];
  2670. BUG_ON(ac->avail > 0 || !l3);
  2671. spin_lock(&l3->list_lock);
  2672. /* See if we can refill from the shared array */
  2673. if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
  2674. goto alloc_done;
  2675. while (batchcount > 0) {
  2676. struct list_head *entry;
  2677. struct slab *slabp;
  2678. /* Get slab alloc is to come from. */
  2679. entry = l3->slabs_partial.next;
  2680. if (entry == &l3->slabs_partial) {
  2681. l3->free_touched = 1;
  2682. entry = l3->slabs_free.next;
  2683. if (entry == &l3->slabs_free)
  2684. goto must_grow;
  2685. }
  2686. slabp = list_entry(entry, struct slab, list);
  2687. check_slabp(cachep, slabp);
  2688. check_spinlock_acquired(cachep);
  2689. /*
  2690. * The slab was either on partial or free list so
  2691. * there must be at least one object available for
  2692. * allocation.
  2693. */
  2694. BUG_ON(slabp->inuse >= cachep->num);
  2695. while (slabp->inuse < cachep->num && batchcount--) {
  2696. STATS_INC_ALLOCED(cachep);
  2697. STATS_INC_ACTIVE(cachep);
  2698. STATS_SET_HIGH(cachep);
  2699. ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
  2700. node);
  2701. }
  2702. check_slabp(cachep, slabp);
  2703. /* move slabp to correct slabp list: */
  2704. list_del(&slabp->list);
  2705. if (slabp->free == BUFCTL_END)
  2706. list_add(&slabp->list, &l3->slabs_full);
  2707. else
  2708. list_add(&slabp->list, &l3->slabs_partial);
  2709. }
  2710. must_grow:
  2711. l3->free_objects -= ac->avail;
  2712. alloc_done:
  2713. spin_unlock(&l3->list_lock);
  2714. if (unlikely(!ac->avail)) {
  2715. int x;
  2716. x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
  2717. /* cache_grow can reenable interrupts, then ac could change. */
  2718. ac = cpu_cache_get(cachep);
  2719. if (!x && ac->avail == 0) /* no objects in sight? abort */
  2720. return NULL;
  2721. if (!ac->avail) /* objects refilled by interrupt? */
  2722. goto retry;
  2723. }
  2724. ac->touched = 1;
  2725. return ac->entry[--ac->avail];
  2726. }
  2727. static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
  2728. gfp_t flags)
  2729. {
  2730. might_sleep_if(flags & __GFP_WAIT);
  2731. #if DEBUG
  2732. kmem_flagcheck(cachep, flags);
  2733. #endif
  2734. }
  2735. #if DEBUG
  2736. static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
  2737. gfp_t flags, void *objp, void *caller)
  2738. {
  2739. if (!objp)
  2740. return objp;
  2741. if (cachep->flags & SLAB_POISON) {
  2742. #ifdef CONFIG_DEBUG_PAGEALLOC
  2743. if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
  2744. kernel_map_pages(virt_to_page(objp),
  2745. cachep->buffer_size / PAGE_SIZE, 1);
  2746. else
  2747. check_poison_obj(cachep, objp);
  2748. #else
  2749. check_poison_obj(cachep, objp);
  2750. #endif
  2751. poison_obj(cachep, objp, POISON_INUSE);
  2752. }
  2753. if (cachep->flags & SLAB_STORE_USER)
  2754. *dbg_userword(cachep, objp) = caller;
  2755. if (cachep->flags & SLAB_RED_ZONE) {
  2756. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
  2757. *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
  2758. slab_error(cachep, "double free, or memory outside"
  2759. " object was overwritten");
  2760. printk(KERN_ERR
  2761. "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
  2762. objp, *dbg_redzone1(cachep, objp),
  2763. *dbg_redzone2(cachep, objp));
  2764. }
  2765. *dbg_redzone1(cachep, objp) = RED_ACTIVE;
  2766. *dbg_redzone2(cachep, objp) = RED_ACTIVE;
  2767. }
  2768. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2769. {
  2770. struct slab *slabp;
  2771. unsigned objnr;
  2772. slabp = page_get_slab(virt_to_head_page(objp));
  2773. objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
  2774. slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
  2775. }
  2776. #endif
  2777. objp += obj_offset(cachep);
  2778. if (cachep->ctor && cachep->flags & SLAB_POISON)
  2779. cachep->ctor(objp);
  2780. #if ARCH_SLAB_MINALIGN
  2781. if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
  2782. printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
  2783. objp, ARCH_SLAB_MINALIGN);
  2784. }
  2785. #endif
  2786. return objp;
  2787. }
  2788. #else
  2789. #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
  2790. #endif
  2791. static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
  2792. {
  2793. if (cachep == &cache_cache)
  2794. return false;
  2795. return should_failslab(obj_size(cachep), flags);
  2796. }
  2797. static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2798. {
  2799. void *objp;
  2800. struct array_cache *ac;
  2801. check_irq_off();
  2802. ac = cpu_cache_get(cachep);
  2803. if (likely(ac->avail)) {
  2804. STATS_INC_ALLOCHIT(cachep);
  2805. ac->touched = 1;
  2806. objp = ac->entry[--ac->avail];
  2807. } else {
  2808. STATS_INC_ALLOCMISS(cachep);
  2809. objp = cache_alloc_refill(cachep, flags);
  2810. }
  2811. /*
  2812. * To avoid a false negative, if an object that is in one of the
  2813. * per-CPU caches is leaked, we need to make sure kmemleak doesn't
  2814. * treat the array pointers as a reference to the object.
  2815. */
  2816. kmemleak_erase(&ac->entry[ac->avail]);
  2817. return objp;
  2818. }
  2819. #ifdef CONFIG_NUMA
  2820. /*
  2821. * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
  2822. *
  2823. * If we are in_interrupt, then process context, including cpusets and
  2824. * mempolicy, may not apply and should not be used for allocation policy.
  2825. */
  2826. static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
  2827. {
  2828. int nid_alloc, nid_here;
  2829. if (in_interrupt() || (flags & __GFP_THISNODE))
  2830. return NULL;
  2831. nid_alloc = nid_here = numa_node_id();
  2832. if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
  2833. nid_alloc = cpuset_mem_spread_node();
  2834. else if (current->mempolicy)
  2835. nid_alloc = slab_node(current->mempolicy);
  2836. if (nid_alloc != nid_here)
  2837. return ____cache_alloc_node(cachep, flags, nid_alloc);
  2838. return NULL;
  2839. }
  2840. /*
  2841. * Fallback function if there was no memory available and no objects on a
  2842. * certain node and fall back is permitted. First we scan all the
  2843. * available nodelists for available objects. If that fails then we
  2844. * perform an allocation without specifying a node. This allows the page
  2845. * allocator to do its reclaim / fallback magic. We then insert the
  2846. * slab into the proper nodelist and then allocate from it.
  2847. */
  2848. static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
  2849. {
  2850. struct zonelist *zonelist;
  2851. gfp_t local_flags;
  2852. struct zoneref *z;
  2853. struct zone *zone;
  2854. enum zone_type high_zoneidx = gfp_zone(flags);
  2855. void *obj = NULL;
  2856. int nid;
  2857. if (flags & __GFP_THISNODE)
  2858. return NULL;
  2859. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  2860. local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
  2861. retry:
  2862. /*
  2863. * Look through allowed nodes for objects available
  2864. * from existing per node queues.
  2865. */
  2866. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  2867. nid = zone_to_nid(zone);
  2868. if (cpuset_zone_allowed_hardwall(zone, flags) &&
  2869. cache->nodelists[nid] &&
  2870. cache->nodelists[nid]->free_objects) {
  2871. obj = ____cache_alloc_node(cache,
  2872. flags | GFP_THISNODE, nid);
  2873. if (obj)
  2874. break;
  2875. }
  2876. }
  2877. if (!obj) {
  2878. /*
  2879. * This allocation will be performed within the constraints
  2880. * of the current cpuset / memory policy requirements.
  2881. * We may trigger various forms of reclaim on the allowed
  2882. * set and go into memory reserves if necessary.
  2883. */
  2884. if (local_flags & __GFP_WAIT)
  2885. local_irq_enable();
  2886. kmem_flagcheck(cache, flags);
  2887. obj = kmem_getpages(cache, local_flags, -1);
  2888. if (local_flags & __GFP_WAIT)
  2889. local_irq_disable();
  2890. if (obj) {
  2891. /*
  2892. * Insert into the appropriate per node queues
  2893. */
  2894. nid = page_to_nid(virt_to_page(obj));
  2895. if (cache_grow(cache, flags, nid, obj)) {
  2896. obj = ____cache_alloc_node(cache,
  2897. flags | GFP_THISNODE, nid);
  2898. if (!obj)
  2899. /*
  2900. * Another processor may allocate the
  2901. * objects in the slab since we are
  2902. * not holding any locks.
  2903. */
  2904. goto retry;
  2905. } else {
  2906. /* cache_grow already freed obj */
  2907. obj = NULL;
  2908. }
  2909. }
  2910. }
  2911. return obj;
  2912. }
  2913. /*
  2914. * A interface to enable slab creation on nodeid
  2915. */
  2916. static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
  2917. int nodeid)
  2918. {
  2919. struct list_head *entry;
  2920. struct slab *slabp;
  2921. struct kmem_list3 *l3;
  2922. void *obj;
  2923. int x;
  2924. l3 = cachep->nodelists[nodeid];
  2925. BUG_ON(!l3);
  2926. retry:
  2927. check_irq_off();
  2928. spin_lock(&l3->list_lock);
  2929. entry = l3->slabs_partial.next;
  2930. if (entry == &l3->slabs_partial) {
  2931. l3->free_touched = 1;
  2932. entry = l3->slabs_free.next;
  2933. if (entry == &l3->slabs_free)
  2934. goto must_grow;
  2935. }
  2936. slabp = list_entry(entry, struct slab, list);
  2937. check_spinlock_acquired_node(cachep, nodeid);
  2938. check_slabp(cachep, slabp);
  2939. STATS_INC_NODEALLOCS(cachep);
  2940. STATS_INC_ACTIVE(cachep);
  2941. STATS_SET_HIGH(cachep);
  2942. BUG_ON(slabp->inuse == cachep->num);
  2943. obj = slab_get_obj(cachep, slabp, nodeid);
  2944. check_slabp(cachep, slabp);
  2945. l3->free_objects--;
  2946. /* move slabp to correct slabp list: */
  2947. list_del(&slabp->list);
  2948. if (slabp->free == BUFCTL_END)
  2949. list_add(&slabp->list, &l3->slabs_full);
  2950. else
  2951. list_add(&slabp->list, &l3->slabs_partial);
  2952. spin_unlock(&l3->list_lock);
  2953. goto done;
  2954. must_grow:
  2955. spin_unlock(&l3->list_lock);
  2956. x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
  2957. if (x)
  2958. goto retry;
  2959. return fallback_alloc(cachep, flags);
  2960. done:
  2961. return obj;
  2962. }
  2963. /**
  2964. * kmem_cache_alloc_node - Allocate an object on the specified node
  2965. * @cachep: The cache to allocate from.
  2966. * @flags: See kmalloc().
  2967. * @nodeid: node number of the target node.
  2968. * @caller: return address of caller, used for debug information
  2969. *
  2970. * Identical to kmem_cache_alloc but it will allocate memory on the given
  2971. * node, which can improve the performance for cpu bound structures.
  2972. *
  2973. * Fallback to other node is possible if __GFP_THISNODE is not set.
  2974. */
  2975. static __always_inline void *
  2976. __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
  2977. void *caller)
  2978. {
  2979. unsigned long save_flags;
  2980. void *ptr;
  2981. flags &= slab_gfp_mask;
  2982. lockdep_trace_alloc(flags);
  2983. if (slab_should_failslab(cachep, flags))
  2984. return NULL;
  2985. cache_alloc_debugcheck_before(cachep, flags);
  2986. local_irq_save(save_flags);
  2987. if (unlikely(nodeid == -1))
  2988. nodeid = numa_node_id();
  2989. if (unlikely(!cachep->nodelists[nodeid])) {
  2990. /* Node not bootstrapped yet */
  2991. ptr = fallback_alloc(cachep, flags);
  2992. goto out;
  2993. }
  2994. if (nodeid == numa_node_id()) {
  2995. /*
  2996. * Use the locally cached objects if possible.
  2997. * However ____cache_alloc does not allow fallback
  2998. * to other nodes. It may fail while we still have
  2999. * objects on other nodes available.
  3000. */
  3001. ptr = ____cache_alloc(cachep, flags);
  3002. if (ptr)
  3003. goto out;
  3004. }
  3005. /* ___cache_alloc_node can fall back to other nodes */
  3006. ptr = ____cache_alloc_node(cachep, flags, nodeid);
  3007. out:
  3008. local_irq_restore(save_flags);
  3009. ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
  3010. kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
  3011. flags);
  3012. if (unlikely((flags & __GFP_ZERO) && ptr))
  3013. memset(ptr, 0, obj_size(cachep));
  3014. return ptr;
  3015. }
  3016. static __always_inline void *
  3017. __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
  3018. {
  3019. void *objp;
  3020. if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
  3021. objp = alternate_node_alloc(cache, flags);
  3022. if (objp)
  3023. goto out;
  3024. }
  3025. objp = ____cache_alloc(cache, flags);
  3026. /*
  3027. * We may just have run out of memory on the local node.
  3028. * ____cache_alloc_node() knows how to locate memory on other nodes
  3029. */
  3030. if (!objp)
  3031. objp = ____cache_alloc_node(cache, flags, numa_node_id());
  3032. out:
  3033. return objp;
  3034. }
  3035. #else
  3036. static __always_inline void *
  3037. __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  3038. {
  3039. return ____cache_alloc(cachep, flags);
  3040. }
  3041. #endif /* CONFIG_NUMA */
  3042. static __always_inline void *
  3043. __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
  3044. {
  3045. unsigned long save_flags;
  3046. void *objp;
  3047. flags &= slab_gfp_mask;
  3048. lockdep_trace_alloc(flags);
  3049. if (slab_should_failslab(cachep, flags))
  3050. return NULL;
  3051. cache_alloc_debugcheck_before(cachep, flags);
  3052. local_irq_save(save_flags);
  3053. objp = __do_cache_alloc(cachep, flags);
  3054. local_irq_restore(save_flags);
  3055. objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
  3056. kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
  3057. flags);
  3058. prefetchw(objp);
  3059. if (unlikely((flags & __GFP_ZERO) && objp))
  3060. memset(objp, 0, obj_size(cachep));
  3061. return objp;
  3062. }
  3063. /*
  3064. * Caller needs to acquire correct kmem_list's list_lock
  3065. */
  3066. static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
  3067. int node)
  3068. {
  3069. int i;
  3070. struct kmem_list3 *l3;
  3071. for (i = 0; i < nr_objects; i++) {
  3072. void *objp = objpp[i];
  3073. struct slab *slabp;
  3074. slabp = virt_to_slab(objp);
  3075. l3 = cachep->nodelists[node];
  3076. list_del(&slabp->list);
  3077. check_spinlock_acquired_node(cachep, node);
  3078. check_slabp(cachep, slabp);
  3079. slab_put_obj(cachep, slabp, objp, node);
  3080. STATS_DEC_ACTIVE(cachep);
  3081. l3->free_objects++;
  3082. check_slabp(cachep, slabp);
  3083. /* fixup slab chains */
  3084. if (slabp->inuse == 0) {
  3085. if (l3->free_objects > l3->free_limit) {
  3086. l3->free_objects -= cachep->num;
  3087. /* No need to drop any previously held
  3088. * lock here, even if we have a off-slab slab
  3089. * descriptor it is guaranteed to come from
  3090. * a different cache, refer to comments before
  3091. * alloc_slabmgmt.
  3092. */
  3093. slab_destroy(cachep, slabp);
  3094. } else {
  3095. list_add(&slabp->list, &l3->slabs_free);
  3096. }
  3097. } else {
  3098. /* Unconditionally move a slab to the end of the
  3099. * partial list on free - maximum time for the
  3100. * other objects to be freed, too.
  3101. */
  3102. list_add_tail(&slabp->list, &l3->slabs_partial);
  3103. }
  3104. }
  3105. }
  3106. static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
  3107. {
  3108. int batchcount;
  3109. struct kmem_list3 *l3;
  3110. int node = numa_node_id();
  3111. batchcount = ac->batchcount;
  3112. #if DEBUG
  3113. BUG_ON(!batchcount || batchcount > ac->avail);
  3114. #endif
  3115. check_irq_off();
  3116. l3 = cachep->nodelists[node];
  3117. spin_lock(&l3->list_lock);
  3118. if (l3->shared) {
  3119. struct array_cache *shared_array = l3->shared;
  3120. int max = shared_array->limit - shared_array->avail;
  3121. if (max) {
  3122. if (batchcount > max)
  3123. batchcount = max;
  3124. memcpy(&(shared_array->entry[shared_array->avail]),
  3125. ac->entry, sizeof(void *) * batchcount);
  3126. shared_array->avail += batchcount;
  3127. goto free_done;
  3128. }
  3129. }
  3130. free_block(cachep, ac->entry, batchcount, node);
  3131. free_done:
  3132. #if STATS
  3133. {
  3134. int i = 0;
  3135. struct list_head *p;
  3136. p = l3->slabs_free.next;
  3137. while (p != &(l3->slabs_free)) {
  3138. struct slab *slabp;
  3139. slabp = list_entry(p, struct slab, list);
  3140. BUG_ON(slabp->inuse);
  3141. i++;
  3142. p = p->next;
  3143. }
  3144. STATS_SET_FREEABLE(cachep, i);
  3145. }
  3146. #endif
  3147. spin_unlock(&l3->list_lock);
  3148. ac->avail -= batchcount;
  3149. memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
  3150. }
  3151. /*
  3152. * Release an obj back to its cache. If the obj has a constructed state, it must
  3153. * be in this state _before_ it is released. Called with disabled ints.
  3154. */
  3155. static inline void __cache_free(struct kmem_cache *cachep, void *objp)
  3156. {
  3157. struct array_cache *ac = cpu_cache_get(cachep);
  3158. check_irq_off();
  3159. kmemleak_free_recursive(objp, cachep->flags);
  3160. objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
  3161. /*
  3162. * Skip calling cache_free_alien() when the platform is not numa.
  3163. * This will avoid cache misses that happen while accessing slabp (which
  3164. * is per page memory reference) to get nodeid. Instead use a global
  3165. * variable to skip the call, which is mostly likely to be present in
  3166. * the cache.
  3167. */
  3168. if (numa_platform && cache_free_alien(cachep, objp))
  3169. return;
  3170. if (likely(ac->avail < ac->limit)) {
  3171. STATS_INC_FREEHIT(cachep);
  3172. ac->entry[ac->avail++] = objp;
  3173. return;
  3174. } else {
  3175. STATS_INC_FREEMISS(cachep);
  3176. cache_flusharray(cachep, ac);
  3177. ac->entry[ac->avail++] = objp;
  3178. }
  3179. }
  3180. /**
  3181. * kmem_cache_alloc - Allocate an object
  3182. * @cachep: The cache to allocate from.
  3183. * @flags: See kmalloc().
  3184. *
  3185. * Allocate an object from this cache. The flags are only relevant
  3186. * if the cache has no available objects.
  3187. */
  3188. void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  3189. {
  3190. void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
  3191. trace_kmem_cache_alloc(_RET_IP_, ret,
  3192. obj_size(cachep), cachep->buffer_size, flags);
  3193. return ret;
  3194. }
  3195. EXPORT_SYMBOL(kmem_cache_alloc);
  3196. #ifdef CONFIG_KMEMTRACE
  3197. void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
  3198. {
  3199. return __cache_alloc(cachep, flags, __builtin_return_address(0));
  3200. }
  3201. EXPORT_SYMBOL(kmem_cache_alloc_notrace);
  3202. #endif
  3203. /**
  3204. * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
  3205. * @cachep: the cache we're checking against
  3206. * @ptr: pointer to validate
  3207. *
  3208. * This verifies that the untrusted pointer looks sane;
  3209. * it is _not_ a guarantee that the pointer is actually
  3210. * part of the slab cache in question, but it at least
  3211. * validates that the pointer can be dereferenced and
  3212. * looks half-way sane.
  3213. *
  3214. * Currently only used for dentry validation.
  3215. */
  3216. int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
  3217. {
  3218. unsigned long addr = (unsigned long)ptr;
  3219. unsigned long min_addr = PAGE_OFFSET;
  3220. unsigned long align_mask = BYTES_PER_WORD - 1;
  3221. unsigned long size = cachep->buffer_size;
  3222. struct page *page;
  3223. if (unlikely(addr < min_addr))
  3224. goto out;
  3225. if (unlikely(addr > (unsigned long)high_memory - size))
  3226. goto out;
  3227. if (unlikely(addr & align_mask))
  3228. goto out;
  3229. if (unlikely(!kern_addr_valid(addr)))
  3230. goto out;
  3231. if (unlikely(!kern_addr_valid(addr + size - 1)))
  3232. goto out;
  3233. page = virt_to_page(ptr);
  3234. if (unlikely(!PageSlab(page)))
  3235. goto out;
  3236. if (unlikely(page_get_cache(page) != cachep))
  3237. goto out;
  3238. return 1;
  3239. out:
  3240. return 0;
  3241. }
  3242. #ifdef CONFIG_NUMA
  3243. void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  3244. {
  3245. void *ret = __cache_alloc_node(cachep, flags, nodeid,
  3246. __builtin_return_address(0));
  3247. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  3248. obj_size(cachep), cachep->buffer_size,
  3249. flags, nodeid);
  3250. return ret;
  3251. }
  3252. EXPORT_SYMBOL(kmem_cache_alloc_node);
  3253. #ifdef CONFIG_KMEMTRACE
  3254. void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
  3255. gfp_t flags,
  3256. int nodeid)
  3257. {
  3258. return __cache_alloc_node(cachep, flags, nodeid,
  3259. __builtin_return_address(0));
  3260. }
  3261. EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
  3262. #endif
  3263. static __always_inline void *
  3264. __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
  3265. {
  3266. struct kmem_cache *cachep;
  3267. void *ret;
  3268. cachep = kmem_find_general_cachep(size, flags);
  3269. if (unlikely(ZERO_OR_NULL_PTR(cachep)))
  3270. return cachep;
  3271. ret = kmem_cache_alloc_node_notrace(cachep, flags, node);
  3272. trace_kmalloc_node((unsigned long) caller, ret,
  3273. size, cachep->buffer_size, flags, node);
  3274. return ret;
  3275. }
  3276. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
  3277. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3278. {
  3279. return __do_kmalloc_node(size, flags, node,
  3280. __builtin_return_address(0));
  3281. }
  3282. EXPORT_SYMBOL(__kmalloc_node);
  3283. void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
  3284. int node, unsigned long caller)
  3285. {
  3286. return __do_kmalloc_node(size, flags, node, (void *)caller);
  3287. }
  3288. EXPORT_SYMBOL(__kmalloc_node_track_caller);
  3289. #else
  3290. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3291. {
  3292. return __do_kmalloc_node(size, flags, node, NULL);
  3293. }
  3294. EXPORT_SYMBOL(__kmalloc_node);
  3295. #endif /* CONFIG_DEBUG_SLAB */
  3296. #endif /* CONFIG_NUMA */
  3297. /**
  3298. * __do_kmalloc - allocate memory
  3299. * @size: how many bytes of memory are required.
  3300. * @flags: the type of memory to allocate (see kmalloc).
  3301. * @caller: function caller for debug tracking of the caller
  3302. */
  3303. static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
  3304. void *caller)
  3305. {
  3306. struct kmem_cache *cachep;
  3307. void *ret;
  3308. /* If you want to save a few bytes .text space: replace
  3309. * __ with kmem_.
  3310. * Then kmalloc uses the uninlined functions instead of the inline
  3311. * functions.
  3312. */
  3313. cachep = __find_general_cachep(size, flags);
  3314. if (unlikely(ZERO_OR_NULL_PTR(cachep)))
  3315. return cachep;
  3316. ret = __cache_alloc(cachep, flags, caller);
  3317. trace_kmalloc((unsigned long) caller, ret,
  3318. size, cachep->buffer_size, flags);
  3319. return ret;
  3320. }
  3321. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
  3322. void *__kmalloc(size_t size, gfp_t flags)
  3323. {
  3324. return __do_kmalloc(size, flags, __builtin_return_address(0));
  3325. }
  3326. EXPORT_SYMBOL(__kmalloc);
  3327. void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
  3328. {
  3329. return __do_kmalloc(size, flags, (void *)caller);
  3330. }
  3331. EXPORT_SYMBOL(__kmalloc_track_caller);
  3332. #else
  3333. void *__kmalloc(size_t size, gfp_t flags)
  3334. {
  3335. return __do_kmalloc(size, flags, NULL);
  3336. }
  3337. EXPORT_SYMBOL(__kmalloc);
  3338. #endif
  3339. /**
  3340. * kmem_cache_free - Deallocate an object
  3341. * @cachep: The cache the allocation was from.
  3342. * @objp: The previously allocated object.
  3343. *
  3344. * Free an object which was previously allocated from this
  3345. * cache.
  3346. */
  3347. void kmem_cache_free(struct kmem_cache *cachep, void *objp)
  3348. {
  3349. unsigned long flags;
  3350. local_irq_save(flags);
  3351. debug_check_no_locks_freed(objp, obj_size(cachep));
  3352. if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
  3353. debug_check_no_obj_freed(objp, obj_size(cachep));
  3354. __cache_free(cachep, objp);
  3355. local_irq_restore(flags);
  3356. trace_kmem_cache_free(_RET_IP_, objp);
  3357. }
  3358. EXPORT_SYMBOL(kmem_cache_free);
  3359. /**
  3360. * kfree - free previously allocated memory
  3361. * @objp: pointer returned by kmalloc.
  3362. *
  3363. * If @objp is NULL, no operation is performed.
  3364. *
  3365. * Don't free memory not originally allocated by kmalloc()
  3366. * or you will run into trouble.
  3367. */
  3368. void kfree(const void *objp)
  3369. {
  3370. struct kmem_cache *c;
  3371. unsigned long flags;
  3372. trace_kfree(_RET_IP_, objp);
  3373. if (unlikely(ZERO_OR_NULL_PTR(objp)))
  3374. return;
  3375. local_irq_save(flags);
  3376. kfree_debugcheck(objp);
  3377. c = virt_to_cache(objp);
  3378. debug_check_no_locks_freed(objp, obj_size(c));
  3379. debug_check_no_obj_freed(objp, obj_size(c));
  3380. __cache_free(c, (void *)objp);
  3381. local_irq_restore(flags);
  3382. }
  3383. EXPORT_SYMBOL(kfree);
  3384. unsigned int kmem_cache_size(struct kmem_cache *cachep)
  3385. {
  3386. return obj_size(cachep);
  3387. }
  3388. EXPORT_SYMBOL(kmem_cache_size);
  3389. const char *kmem_cache_name(struct kmem_cache *cachep)
  3390. {
  3391. return cachep->name;
  3392. }
  3393. EXPORT_SYMBOL_GPL(kmem_cache_name);
  3394. /*
  3395. * This initializes kmem_list3 or resizes various caches for all nodes.
  3396. */
  3397. static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
  3398. {
  3399. int node;
  3400. struct kmem_list3 *l3;
  3401. struct array_cache *new_shared;
  3402. struct array_cache **new_alien = NULL;
  3403. for_each_online_node(node) {
  3404. if (use_alien_caches) {
  3405. new_alien = alloc_alien_cache(node, cachep->limit, gfp);
  3406. if (!new_alien)
  3407. goto fail;
  3408. }
  3409. new_shared = NULL;
  3410. if (cachep->shared) {
  3411. new_shared = alloc_arraycache(node,
  3412. cachep->shared*cachep->batchcount,
  3413. 0xbaadf00d, gfp);
  3414. if (!new_shared) {
  3415. free_alien_cache(new_alien);
  3416. goto fail;
  3417. }
  3418. }
  3419. l3 = cachep->nodelists[node];
  3420. if (l3) {
  3421. struct array_cache *shared = l3->shared;
  3422. spin_lock_irq(&l3->list_lock);
  3423. if (shared)
  3424. free_block(cachep, shared->entry,
  3425. shared->avail, node);
  3426. l3->shared = new_shared;
  3427. if (!l3->alien) {
  3428. l3->alien = new_alien;
  3429. new_alien = NULL;
  3430. }
  3431. l3->free_limit = (1 + nr_cpus_node(node)) *
  3432. cachep->batchcount + cachep->num;
  3433. spin_unlock_irq(&l3->list_lock);
  3434. kfree(shared);
  3435. free_alien_cache(new_alien);
  3436. continue;
  3437. }
  3438. l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
  3439. if (!l3) {
  3440. free_alien_cache(new_alien);
  3441. kfree(new_shared);
  3442. goto fail;
  3443. }
  3444. kmem_list3_init(l3);
  3445. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  3446. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  3447. l3->shared = new_shared;
  3448. l3->alien = new_alien;
  3449. l3->free_limit = (1 + nr_cpus_node(node)) *
  3450. cachep->batchcount + cachep->num;
  3451. cachep->nodelists[node] = l3;
  3452. }
  3453. return 0;
  3454. fail:
  3455. if (!cachep->next.next) {
  3456. /* Cache is not active yet. Roll back what we did */
  3457. node--;
  3458. while (node >= 0) {
  3459. if (cachep->nodelists[node]) {
  3460. l3 = cachep->nodelists[node];
  3461. kfree(l3->shared);
  3462. free_alien_cache(l3->alien);
  3463. kfree(l3);
  3464. cachep->nodelists[node] = NULL;
  3465. }
  3466. node--;
  3467. }
  3468. }
  3469. return -ENOMEM;
  3470. }
  3471. struct ccupdate_struct {
  3472. struct kmem_cache *cachep;
  3473. struct array_cache *new[NR_CPUS];
  3474. };
  3475. static void do_ccupdate_local(void *info)
  3476. {
  3477. struct ccupdate_struct *new = info;
  3478. struct array_cache *old;
  3479. check_irq_off();
  3480. old = cpu_cache_get(new->cachep);
  3481. new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
  3482. new->new[smp_processor_id()] = old;
  3483. }
  3484. /* Always called with the cache_chain_mutex held */
  3485. static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
  3486. int batchcount, int shared, gfp_t gfp)
  3487. {
  3488. struct ccupdate_struct *new;
  3489. int i;
  3490. new = kzalloc(sizeof(*new), gfp);
  3491. if (!new)
  3492. return -ENOMEM;
  3493. for_each_online_cpu(i) {
  3494. new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
  3495. batchcount, gfp);
  3496. if (!new->new[i]) {
  3497. for (i--; i >= 0; i--)
  3498. kfree(new->new[i]);
  3499. kfree(new);
  3500. return -ENOMEM;
  3501. }
  3502. }
  3503. new->cachep = cachep;
  3504. on_each_cpu(do_ccupdate_local, (void *)new, 1);
  3505. check_irq_on();
  3506. cachep->batchcount = batchcount;
  3507. cachep->limit = limit;
  3508. cachep->shared = shared;
  3509. for_each_online_cpu(i) {
  3510. struct array_cache *ccold = new->new[i];
  3511. if (!ccold)
  3512. continue;
  3513. spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3514. free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
  3515. spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3516. kfree(ccold);
  3517. }
  3518. kfree(new);
  3519. return alloc_kmemlist(cachep, gfp);
  3520. }
  3521. /* Called with cache_chain_mutex held always */
  3522. static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
  3523. {
  3524. int err;
  3525. int limit, shared;
  3526. /*
  3527. * The head array serves three purposes:
  3528. * - create a LIFO ordering, i.e. return objects that are cache-warm
  3529. * - reduce the number of spinlock operations.
  3530. * - reduce the number of linked list operations on the slab and
  3531. * bufctl chains: array operations are cheaper.
  3532. * The numbers are guessed, we should auto-tune as described by
  3533. * Bonwick.
  3534. */
  3535. if (cachep->buffer_size > 131072)
  3536. limit = 1;
  3537. else if (cachep->buffer_size > PAGE_SIZE)
  3538. limit = 8;
  3539. else if (cachep->buffer_size > 1024)
  3540. limit = 24;
  3541. else if (cachep->buffer_size > 256)
  3542. limit = 54;
  3543. else
  3544. limit = 120;
  3545. /*
  3546. * CPU bound tasks (e.g. network routing) can exhibit cpu bound
  3547. * allocation behaviour: Most allocs on one cpu, most free operations
  3548. * on another cpu. For these cases, an efficient object passing between
  3549. * cpus is necessary. This is provided by a shared array. The array
  3550. * replaces Bonwick's magazine layer.
  3551. * On uniprocessor, it's functionally equivalent (but less efficient)
  3552. * to a larger limit. Thus disabled by default.
  3553. */
  3554. shared = 0;
  3555. if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
  3556. shared = 8;
  3557. #if DEBUG
  3558. /*
  3559. * With debugging enabled, large batchcount lead to excessively long
  3560. * periods with disabled local interrupts. Limit the batchcount
  3561. */
  3562. if (limit > 32)
  3563. limit = 32;
  3564. #endif
  3565. err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
  3566. if (err)
  3567. printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
  3568. cachep->name, -err);
  3569. return err;
  3570. }
  3571. /*
  3572. * Drain an array if it contains any elements taking the l3 lock only if
  3573. * necessary. Note that the l3 listlock also protects the array_cache
  3574. * if drain_array() is used on the shared array.
  3575. */
  3576. void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  3577. struct array_cache *ac, int force, int node)
  3578. {
  3579. int tofree;
  3580. if (!ac || !ac->avail)
  3581. return;
  3582. if (ac->touched && !force) {
  3583. ac->touched = 0;
  3584. } else {
  3585. spin_lock_irq(&l3->list_lock);
  3586. if (ac->avail) {
  3587. tofree = force ? ac->avail : (ac->limit + 4) / 5;
  3588. if (tofree > ac->avail)
  3589. tofree = (ac->avail + 1) / 2;
  3590. free_block(cachep, ac->entry, tofree, node);
  3591. ac->avail -= tofree;
  3592. memmove(ac->entry, &(ac->entry[tofree]),
  3593. sizeof(void *) * ac->avail);
  3594. }
  3595. spin_unlock_irq(&l3->list_lock);
  3596. }
  3597. }
  3598. /**
  3599. * cache_reap - Reclaim memory from caches.
  3600. * @w: work descriptor
  3601. *
  3602. * Called from workqueue/eventd every few seconds.
  3603. * Purpose:
  3604. * - clear the per-cpu caches for this CPU.
  3605. * - return freeable pages to the main free memory pool.
  3606. *
  3607. * If we cannot acquire the cache chain mutex then just give up - we'll try
  3608. * again on the next iteration.
  3609. */
  3610. static void cache_reap(struct work_struct *w)
  3611. {
  3612. struct kmem_cache *searchp;
  3613. struct kmem_list3 *l3;
  3614. int node = numa_node_id();
  3615. struct delayed_work *work = to_delayed_work(w);
  3616. if (!mutex_trylock(&cache_chain_mutex))
  3617. /* Give up. Setup the next iteration. */
  3618. goto out;
  3619. list_for_each_entry(searchp, &cache_chain, next) {
  3620. check_irq_on();
  3621. /*
  3622. * We only take the l3 lock if absolutely necessary and we
  3623. * have established with reasonable certainty that
  3624. * we can do some work if the lock was obtained.
  3625. */
  3626. l3 = searchp->nodelists[node];
  3627. reap_alien(searchp, l3);
  3628. drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
  3629. /*
  3630. * These are racy checks but it does not matter
  3631. * if we skip one check or scan twice.
  3632. */
  3633. if (time_after(l3->next_reap, jiffies))
  3634. goto next;
  3635. l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
  3636. drain_array(searchp, l3, l3->shared, 0, node);
  3637. if (l3->free_touched)
  3638. l3->free_touched = 0;
  3639. else {
  3640. int freed;
  3641. freed = drain_freelist(searchp, l3, (l3->free_limit +
  3642. 5 * searchp->num - 1) / (5 * searchp->num));
  3643. STATS_ADD_REAPED(searchp, freed);
  3644. }
  3645. next:
  3646. cond_resched();
  3647. }
  3648. check_irq_on();
  3649. mutex_unlock(&cache_chain_mutex);
  3650. next_reap_node();
  3651. out:
  3652. /* Set up the next iteration */
  3653. schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
  3654. }
  3655. #ifdef CONFIG_SLABINFO
  3656. static void print_slabinfo_header(struct seq_file *m)
  3657. {
  3658. /*
  3659. * Output format version, so at least we can change it
  3660. * without _too_ many complaints.
  3661. */
  3662. #if STATS
  3663. seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
  3664. #else
  3665. seq_puts(m, "slabinfo - version: 2.1\n");
  3666. #endif
  3667. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3668. "<objperslab> <pagesperslab>");
  3669. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3670. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3671. #if STATS
  3672. seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
  3673. "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
  3674. seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
  3675. #endif
  3676. seq_putc(m, '\n');
  3677. }
  3678. static void *s_start(struct seq_file *m, loff_t *pos)
  3679. {
  3680. loff_t n = *pos;
  3681. mutex_lock(&cache_chain_mutex);
  3682. if (!n)
  3683. print_slabinfo_header(m);
  3684. return seq_list_start(&cache_chain, *pos);
  3685. }
  3686. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3687. {
  3688. return seq_list_next(p, &cache_chain, pos);
  3689. }
  3690. static void s_stop(struct seq_file *m, void *p)
  3691. {
  3692. mutex_unlock(&cache_chain_mutex);
  3693. }
  3694. static int s_show(struct seq_file *m, void *p)
  3695. {
  3696. struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
  3697. struct slab *slabp;
  3698. unsigned long active_objs;
  3699. unsigned long num_objs;
  3700. unsigned long active_slabs = 0;
  3701. unsigned long num_slabs, free_objects = 0, shared_avail = 0;
  3702. const char *name;
  3703. char *error = NULL;
  3704. int node;
  3705. struct kmem_list3 *l3;
  3706. active_objs = 0;
  3707. num_slabs = 0;
  3708. for_each_online_node(node) {
  3709. l3 = cachep->nodelists[node];
  3710. if (!l3)
  3711. continue;
  3712. check_irq_on();
  3713. spin_lock_irq(&l3->list_lock);
  3714. list_for_each_entry(slabp, &l3->slabs_full, list) {
  3715. if (slabp->inuse != cachep->num && !error)
  3716. error = "slabs_full accounting error";
  3717. active_objs += cachep->num;
  3718. active_slabs++;
  3719. }
  3720. list_for_each_entry(slabp, &l3->slabs_partial, list) {
  3721. if (slabp->inuse == cachep->num && !error)
  3722. error = "slabs_partial inuse accounting error";
  3723. if (!slabp->inuse && !error)
  3724. error = "slabs_partial/inuse accounting error";
  3725. active_objs += slabp->inuse;
  3726. active_slabs++;
  3727. }
  3728. list_for_each_entry(slabp, &l3->slabs_free, list) {
  3729. if (slabp->inuse && !error)
  3730. error = "slabs_free/inuse accounting error";
  3731. num_slabs++;
  3732. }
  3733. free_objects += l3->free_objects;
  3734. if (l3->shared)
  3735. shared_avail += l3->shared->avail;
  3736. spin_unlock_irq(&l3->list_lock);
  3737. }
  3738. num_slabs += active_slabs;
  3739. num_objs = num_slabs * cachep->num;
  3740. if (num_objs - active_objs != free_objects && !error)
  3741. error = "free_objects accounting error";
  3742. name = cachep->name;
  3743. if (error)
  3744. printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
  3745. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
  3746. name, active_objs, num_objs, cachep->buffer_size,
  3747. cachep->num, (1 << cachep->gfporder));
  3748. seq_printf(m, " : tunables %4u %4u %4u",
  3749. cachep->limit, cachep->batchcount, cachep->shared);
  3750. seq_printf(m, " : slabdata %6lu %6lu %6lu",
  3751. active_slabs, num_slabs, shared_avail);
  3752. #if STATS
  3753. { /* list3 stats */
  3754. unsigned long high = cachep->high_mark;
  3755. unsigned long allocs = cachep->num_allocations;
  3756. unsigned long grown = cachep->grown;
  3757. unsigned long reaped = cachep->reaped;
  3758. unsigned long errors = cachep->errors;
  3759. unsigned long max_freeable = cachep->max_freeable;
  3760. unsigned long node_allocs = cachep->node_allocs;
  3761. unsigned long node_frees = cachep->node_frees;
  3762. unsigned long overflows = cachep->node_overflow;
  3763. seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
  3764. %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
  3765. reaped, errors, max_freeable, node_allocs,
  3766. node_frees, overflows);
  3767. }
  3768. /* cpu stats */
  3769. {
  3770. unsigned long allochit = atomic_read(&cachep->allochit);
  3771. unsigned long allocmiss = atomic_read(&cachep->allocmiss);
  3772. unsigned long freehit = atomic_read(&cachep->freehit);
  3773. unsigned long freemiss = atomic_read(&cachep->freemiss);
  3774. seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
  3775. allochit, allocmiss, freehit, freemiss);
  3776. }
  3777. #endif
  3778. seq_putc(m, '\n');
  3779. return 0;
  3780. }
  3781. /*
  3782. * slabinfo_op - iterator that generates /proc/slabinfo
  3783. *
  3784. * Output layout:
  3785. * cache-name
  3786. * num-active-objs
  3787. * total-objs
  3788. * object size
  3789. * num-active-slabs
  3790. * total-slabs
  3791. * num-pages-per-slab
  3792. * + further values on SMP and with statistics enabled
  3793. */
  3794. static const struct seq_operations slabinfo_op = {
  3795. .start = s_start,
  3796. .next = s_next,
  3797. .stop = s_stop,
  3798. .show = s_show,
  3799. };
  3800. #define MAX_SLABINFO_WRITE 128
  3801. /**
  3802. * slabinfo_write - Tuning for the slab allocator
  3803. * @file: unused
  3804. * @buffer: user buffer
  3805. * @count: data length
  3806. * @ppos: unused
  3807. */
  3808. ssize_t slabinfo_write(struct file *file, const char __user * buffer,
  3809. size_t count, loff_t *ppos)
  3810. {
  3811. char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
  3812. int limit, batchcount, shared, res;
  3813. struct kmem_cache *cachep;
  3814. if (count > MAX_SLABINFO_WRITE)
  3815. return -EINVAL;
  3816. if (copy_from_user(&kbuf, buffer, count))
  3817. return -EFAULT;
  3818. kbuf[MAX_SLABINFO_WRITE] = '\0';
  3819. tmp = strchr(kbuf, ' ');
  3820. if (!tmp)
  3821. return -EINVAL;
  3822. *tmp = '\0';
  3823. tmp++;
  3824. if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
  3825. return -EINVAL;
  3826. /* Find the cache in the chain of caches. */
  3827. mutex_lock(&cache_chain_mutex);
  3828. res = -EINVAL;
  3829. list_for_each_entry(cachep, &cache_chain, next) {
  3830. if (!strcmp(cachep->name, kbuf)) {
  3831. if (limit < 1 || batchcount < 1 ||
  3832. batchcount > limit || shared < 0) {
  3833. res = 0;
  3834. } else {
  3835. res = do_tune_cpucache(cachep, limit,
  3836. batchcount, shared,
  3837. GFP_KERNEL);
  3838. }
  3839. break;
  3840. }
  3841. }
  3842. mutex_unlock(&cache_chain_mutex);
  3843. if (res >= 0)
  3844. res = count;
  3845. return res;
  3846. }
  3847. static int slabinfo_open(struct inode *inode, struct file *file)
  3848. {
  3849. return seq_open(file, &slabinfo_op);
  3850. }
  3851. static const struct file_operations proc_slabinfo_operations = {
  3852. .open = slabinfo_open,
  3853. .read = seq_read,
  3854. .write = slabinfo_write,
  3855. .llseek = seq_lseek,
  3856. .release = seq_release,
  3857. };
  3858. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3859. static void *leaks_start(struct seq_file *m, loff_t *pos)
  3860. {
  3861. mutex_lock(&cache_chain_mutex);
  3862. return seq_list_start(&cache_chain, *pos);
  3863. }
  3864. static inline int add_caller(unsigned long *n, unsigned long v)
  3865. {
  3866. unsigned long *p;
  3867. int l;
  3868. if (!v)
  3869. return 1;
  3870. l = n[1];
  3871. p = n + 2;
  3872. while (l) {
  3873. int i = l/2;
  3874. unsigned long *q = p + 2 * i;
  3875. if (*q == v) {
  3876. q[1]++;
  3877. return 1;
  3878. }
  3879. if (*q > v) {
  3880. l = i;
  3881. } else {
  3882. p = q + 2;
  3883. l -= i + 1;
  3884. }
  3885. }
  3886. if (++n[1] == n[0])
  3887. return 0;
  3888. memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
  3889. p[0] = v;
  3890. p[1] = 1;
  3891. return 1;
  3892. }
  3893. static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
  3894. {
  3895. void *p;
  3896. int i;
  3897. if (n[0] == n[1])
  3898. return;
  3899. for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
  3900. if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
  3901. continue;
  3902. if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
  3903. return;
  3904. }
  3905. }
  3906. static void show_symbol(struct seq_file *m, unsigned long address)
  3907. {
  3908. #ifdef CONFIG_KALLSYMS
  3909. unsigned long offset, size;
  3910. char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
  3911. if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
  3912. seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
  3913. if (modname[0])
  3914. seq_printf(m, " [%s]", modname);
  3915. return;
  3916. }
  3917. #endif
  3918. seq_printf(m, "%p", (void *)address);
  3919. }
  3920. static int leaks_show(struct seq_file *m, void *p)
  3921. {
  3922. struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
  3923. struct slab *slabp;
  3924. struct kmem_list3 *l3;
  3925. const char *name;
  3926. unsigned long *n = m->private;
  3927. int node;
  3928. int i;
  3929. if (!(cachep->flags & SLAB_STORE_USER))
  3930. return 0;
  3931. if (!(cachep->flags & SLAB_RED_ZONE))
  3932. return 0;
  3933. /* OK, we can do it */
  3934. n[1] = 0;
  3935. for_each_online_node(node) {
  3936. l3 = cachep->nodelists[node];
  3937. if (!l3)
  3938. continue;
  3939. check_irq_on();
  3940. spin_lock_irq(&l3->list_lock);
  3941. list_for_each_entry(slabp, &l3->slabs_full, list)
  3942. handle_slab(n, cachep, slabp);
  3943. list_for_each_entry(slabp, &l3->slabs_partial, list)
  3944. handle_slab(n, cachep, slabp);
  3945. spin_unlock_irq(&l3->list_lock);
  3946. }
  3947. name = cachep->name;
  3948. if (n[0] == n[1]) {
  3949. /* Increase the buffer size */
  3950. mutex_unlock(&cache_chain_mutex);
  3951. m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
  3952. if (!m->private) {
  3953. /* Too bad, we are really out */
  3954. m->private = n;
  3955. mutex_lock(&cache_chain_mutex);
  3956. return -ENOMEM;
  3957. }
  3958. *(unsigned long *)m->private = n[0] * 2;
  3959. kfree(n);
  3960. mutex_lock(&cache_chain_mutex);
  3961. /* Now make sure this entry will be retried */
  3962. m->count = m->size;
  3963. return 0;
  3964. }
  3965. for (i = 0; i < n[1]; i++) {
  3966. seq_printf(m, "%s: %lu ", name, n[2*i+3]);
  3967. show_symbol(m, n[2*i+2]);
  3968. seq_putc(m, '\n');
  3969. }
  3970. return 0;
  3971. }
  3972. static const struct seq_operations slabstats_op = {
  3973. .start = leaks_start,
  3974. .next = s_next,
  3975. .stop = s_stop,
  3976. .show = leaks_show,
  3977. };
  3978. static int slabstats_open(struct inode *inode, struct file *file)
  3979. {
  3980. unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
  3981. int ret = -ENOMEM;
  3982. if (n) {
  3983. ret = seq_open(file, &slabstats_op);
  3984. if (!ret) {
  3985. struct seq_file *m = file->private_data;
  3986. *n = PAGE_SIZE / (2 * sizeof(unsigned long));
  3987. m->private = n;
  3988. n = NULL;
  3989. }
  3990. kfree(n);
  3991. }
  3992. return ret;
  3993. }
  3994. static const struct file_operations proc_slabstats_operations = {
  3995. .open = slabstats_open,
  3996. .read = seq_read,
  3997. .llseek = seq_lseek,
  3998. .release = seq_release_private,
  3999. };
  4000. #endif
  4001. static int __init slab_proc_init(void)
  4002. {
  4003. proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
  4004. #ifdef CONFIG_DEBUG_SLAB_LEAK
  4005. proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
  4006. #endif
  4007. return 0;
  4008. }
  4009. module_init(slab_proc_init);
  4010. #endif
  4011. /**
  4012. * ksize - get the actual amount of memory allocated for a given object
  4013. * @objp: Pointer to the object
  4014. *
  4015. * kmalloc may internally round up allocations and return more memory
  4016. * than requested. ksize() can be used to determine the actual amount of
  4017. * memory allocated. The caller may use this additional memory, even though
  4018. * a smaller amount of memory was initially specified with the kmalloc call.
  4019. * The caller must guarantee that objp points to a valid object previously
  4020. * allocated with either kmalloc() or kmem_cache_alloc(). The object
  4021. * must not be freed during the duration of the call.
  4022. */
  4023. size_t ksize(const void *objp)
  4024. {
  4025. BUG_ON(!objp);
  4026. if (unlikely(objp == ZERO_SIZE_PTR))
  4027. return 0;
  4028. return obj_size(virt_to_cache(objp));
  4029. }
  4030. EXPORT_SYMBOL(ksize);