slab.h 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324
  1. /*
  2. * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
  3. *
  4. * (C) SGI 2006, Christoph Lameter
  5. * Cleaned up and restructured to ease the addition of alternative
  6. * implementations of SLAB allocators.
  7. */
  8. #ifndef _LINUX_SLAB_H
  9. #define _LINUX_SLAB_H
  10. #include <linux/gfp.h>
  11. #include <linux/types.h>
  12. /*
  13. * Flags to pass to kmem_cache_create().
  14. * The ones marked DEBUG are only valid if CONFIG_SLAB_DEBUG is set.
  15. */
  16. #define SLAB_DEBUG_FREE 0x00000100UL /* DEBUG: Perform (expensive) checks on free */
  17. #define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */
  18. #define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */
  19. #define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */
  20. #define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */
  21. #define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */
  22. #define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */
  23. /*
  24. * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
  25. *
  26. * This delays freeing the SLAB page by a grace period, it does _NOT_
  27. * delay object freeing. This means that if you do kmem_cache_free()
  28. * that memory location is free to be reused at any time. Thus it may
  29. * be possible to see another object there in the same RCU grace period.
  30. *
  31. * This feature only ensures the memory location backing the object
  32. * stays valid, the trick to using this is relying on an independent
  33. * object validation pass. Something like:
  34. *
  35. * rcu_read_lock()
  36. * again:
  37. * obj = lockless_lookup(key);
  38. * if (obj) {
  39. * if (!try_get_ref(obj)) // might fail for free objects
  40. * goto again;
  41. *
  42. * if (obj->key != key) { // not the object we expected
  43. * put_ref(obj);
  44. * goto again;
  45. * }
  46. * }
  47. * rcu_read_unlock();
  48. *
  49. * See also the comment on struct slab_rcu in mm/slab.c.
  50. */
  51. #define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */
  52. #define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */
  53. #define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */
  54. /* Flag to prevent checks on free */
  55. #ifdef CONFIG_DEBUG_OBJECTS
  56. # define SLAB_DEBUG_OBJECTS 0x00400000UL
  57. #else
  58. # define SLAB_DEBUG_OBJECTS 0x00000000UL
  59. #endif
  60. #define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */
  61. /* The following flags affect the page allocator grouping pages by mobility */
  62. #define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */
  63. #define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
  64. /*
  65. * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
  66. *
  67. * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
  68. *
  69. * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
  70. * Both make kfree a no-op.
  71. */
  72. #define ZERO_SIZE_PTR ((void *)16)
  73. #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
  74. (unsigned long)ZERO_SIZE_PTR)
  75. /*
  76. * struct kmem_cache related prototypes
  77. */
  78. void __init kmem_cache_init(void);
  79. int slab_is_available(void);
  80. struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
  81. unsigned long,
  82. void (*)(void *));
  83. void kmem_cache_destroy(struct kmem_cache *);
  84. int kmem_cache_shrink(struct kmem_cache *);
  85. void kmem_cache_free(struct kmem_cache *, void *);
  86. unsigned int kmem_cache_size(struct kmem_cache *);
  87. const char *kmem_cache_name(struct kmem_cache *);
  88. int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr);
  89. /*
  90. * Please use this macro to create slab caches. Simply specify the
  91. * name of the structure and maybe some flags that are listed above.
  92. *
  93. * The alignment of the struct determines object alignment. If you
  94. * f.e. add ____cacheline_aligned_in_smp to the struct declaration
  95. * then the objects will be properly aligned in SMP configurations.
  96. */
  97. #define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
  98. sizeof(struct __struct), __alignof__(struct __struct),\
  99. (__flags), NULL)
  100. /*
  101. * The largest kmalloc size supported by the slab allocators is
  102. * 32 megabyte (2^25) or the maximum allocatable page order if that is
  103. * less than 32 MB.
  104. *
  105. * WARNING: Its not easy to increase this value since the allocators have
  106. * to do various tricks to work around compiler limitations in order to
  107. * ensure proper constant folding.
  108. */
  109. #define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
  110. (MAX_ORDER + PAGE_SHIFT - 1) : 25)
  111. #define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_HIGH)
  112. #define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_HIGH - PAGE_SHIFT)
  113. /*
  114. * Common kmalloc functions provided by all allocators
  115. */
  116. void * __must_check __krealloc(const void *, size_t, gfp_t);
  117. void * __must_check krealloc(const void *, size_t, gfp_t);
  118. void kfree(const void *);
  119. void kzfree(const void *);
  120. size_t ksize(const void *);
  121. /*
  122. * Allocator specific definitions. These are mainly used to establish optimized
  123. * ways to convert kmalloc() calls to kmem_cache_alloc() invocations by
  124. * selecting the appropriate general cache at compile time.
  125. *
  126. * Allocators must define at least:
  127. *
  128. * kmem_cache_alloc()
  129. * __kmalloc()
  130. * kmalloc()
  131. *
  132. * Those wishing to support NUMA must also define:
  133. *
  134. * kmem_cache_alloc_node()
  135. * kmalloc_node()
  136. *
  137. * See each allocator definition file for additional comments and
  138. * implementation notes.
  139. */
  140. #ifdef CONFIG_SLUB
  141. #include <linux/slub_def.h>
  142. #elif defined(CONFIG_SLOB)
  143. #include <linux/slob_def.h>
  144. #else
  145. #include <linux/slab_def.h>
  146. #endif
  147. /**
  148. * kcalloc - allocate memory for an array. The memory is set to zero.
  149. * @n: number of elements.
  150. * @size: element size.
  151. * @flags: the type of memory to allocate.
  152. *
  153. * The @flags argument may be one of:
  154. *
  155. * %GFP_USER - Allocate memory on behalf of user. May sleep.
  156. *
  157. * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
  158. *
  159. * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools.
  160. * For example, use this inside interrupt handlers.
  161. *
  162. * %GFP_HIGHUSER - Allocate pages from high memory.
  163. *
  164. * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
  165. *
  166. * %GFP_NOFS - Do not make any fs calls while trying to get memory.
  167. *
  168. * %GFP_NOWAIT - Allocation will not sleep.
  169. *
  170. * %GFP_THISNODE - Allocate node-local memory only.
  171. *
  172. * %GFP_DMA - Allocation suitable for DMA.
  173. * Should only be used for kmalloc() caches. Otherwise, use a
  174. * slab created with SLAB_DMA.
  175. *
  176. * Also it is possible to set different flags by OR'ing
  177. * in one or more of the following additional @flags:
  178. *
  179. * %__GFP_COLD - Request cache-cold pages instead of
  180. * trying to return cache-warm pages.
  181. *
  182. * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
  183. *
  184. * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
  185. * (think twice before using).
  186. *
  187. * %__GFP_NORETRY - If memory is not immediately available,
  188. * then give up at once.
  189. *
  190. * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
  191. *
  192. * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
  193. *
  194. * There are other flags available as well, but these are not intended
  195. * for general use, and so are not documented here. For a full list of
  196. * potential flags, always refer to linux/gfp.h.
  197. */
  198. static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
  199. {
  200. if (size != 0 && n > ULONG_MAX / size)
  201. return NULL;
  202. return __kmalloc(n * size, flags | __GFP_ZERO);
  203. }
  204. #if !defined(CONFIG_NUMA) && !defined(CONFIG_SLOB)
  205. /**
  206. * kmalloc_node - allocate memory from a specific node
  207. * @size: how many bytes of memory are required.
  208. * @flags: the type of memory to allocate (see kcalloc).
  209. * @node: node to allocate from.
  210. *
  211. * kmalloc() for non-local nodes, used to allocate from a specific node
  212. * if available. Equivalent to kmalloc() in the non-NUMA single-node
  213. * case.
  214. */
  215. static inline void *kmalloc_node(size_t size, gfp_t flags, int node)
  216. {
  217. return kmalloc(size, flags);
  218. }
  219. static inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
  220. {
  221. return __kmalloc(size, flags);
  222. }
  223. void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
  224. static inline void *kmem_cache_alloc_node(struct kmem_cache *cachep,
  225. gfp_t flags, int node)
  226. {
  227. return kmem_cache_alloc(cachep, flags);
  228. }
  229. #endif /* !CONFIG_NUMA && !CONFIG_SLOB */
  230. /*
  231. * kmalloc_track_caller is a special version of kmalloc that records the
  232. * calling function of the routine calling it for slab leak tracking instead
  233. * of just the calling function (confusing, eh?).
  234. * It's useful when the call to kmalloc comes from a widely-used standard
  235. * allocator where we care about the real place the memory allocation
  236. * request comes from.
  237. */
  238. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB)
  239. extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
  240. #define kmalloc_track_caller(size, flags) \
  241. __kmalloc_track_caller(size, flags, _RET_IP_)
  242. #else
  243. #define kmalloc_track_caller(size, flags) \
  244. __kmalloc(size, flags)
  245. #endif /* DEBUG_SLAB */
  246. #ifdef CONFIG_NUMA
  247. /*
  248. * kmalloc_node_track_caller is a special version of kmalloc_node that
  249. * records the calling function of the routine calling it for slab leak
  250. * tracking instead of just the calling function (confusing, eh?).
  251. * It's useful when the call to kmalloc_node comes from a widely-used
  252. * standard allocator where we care about the real place the memory
  253. * allocation request comes from.
  254. */
  255. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB)
  256. extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
  257. #define kmalloc_node_track_caller(size, flags, node) \
  258. __kmalloc_node_track_caller(size, flags, node, \
  259. _RET_IP_)
  260. #else
  261. #define kmalloc_node_track_caller(size, flags, node) \
  262. __kmalloc_node(size, flags, node)
  263. #endif
  264. #else /* CONFIG_NUMA */
  265. #define kmalloc_node_track_caller(size, flags, node) \
  266. kmalloc_track_caller(size, flags)
  267. #endif /* CONFIG_NUMA */
  268. /*
  269. * Shortcuts
  270. */
  271. static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
  272. {
  273. return kmem_cache_alloc(k, flags | __GFP_ZERO);
  274. }
  275. /**
  276. * kzalloc - allocate memory. The memory is set to zero.
  277. * @size: how many bytes of memory are required.
  278. * @flags: the type of memory to allocate (see kmalloc).
  279. */
  280. static inline void *kzalloc(size_t size, gfp_t flags)
  281. {
  282. return kmalloc(size, flags | __GFP_ZERO);
  283. }
  284. /**
  285. * kzalloc_node - allocate zeroed memory from a particular memory node.
  286. * @size: how many bytes of memory are required.
  287. * @flags: the type of memory to allocate (see kmalloc).
  288. * @node: memory node from which to allocate
  289. */
  290. static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
  291. {
  292. return kmalloc_node(size, flags | __GFP_ZERO, node);
  293. }
  294. void __init kmem_cache_init_late(void);
  295. #endif /* _LINUX_SLAB_H */