perf_event.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594
  1. /*
  2. * Linux performance counter support for MIPS.
  3. *
  4. * Copyright (C) 2010 MIPS Technologies, Inc.
  5. * Author: Deng-Cheng Zhu
  6. *
  7. * This code is based on the implementation for ARM, which is in turn
  8. * based on the sparc64 perf event code and the x86 code. Performance
  9. * counter access is based on the MIPS Oprofile code. And the callchain
  10. * support references the code of MIPS stacktrace.c.
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License version 2 as
  14. * published by the Free Software Foundation.
  15. */
  16. #include <linux/cpumask.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/smp.h>
  19. #include <linux/kernel.h>
  20. #include <linux/perf_event.h>
  21. #include <linux/uaccess.h>
  22. #include <asm/irq.h>
  23. #include <asm/irq_regs.h>
  24. #include <asm/stacktrace.h>
  25. #include <asm/time.h> /* For perf_irq */
  26. /* These are for 32bit counters. For 64bit ones, define them accordingly. */
  27. #define MAX_PERIOD ((1ULL << 32) - 1)
  28. #define VALID_COUNT 0x7fffffff
  29. #define TOTAL_BITS 32
  30. #define HIGHEST_BIT 31
  31. #define MIPS_MAX_HWEVENTS 4
  32. struct cpu_hw_events {
  33. /* Array of events on this cpu. */
  34. struct perf_event *events[MIPS_MAX_HWEVENTS];
  35. /*
  36. * Set the bit (indexed by the counter number) when the counter
  37. * is used for an event.
  38. */
  39. unsigned long used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
  40. /*
  41. * The borrowed MSB for the performance counter. A MIPS performance
  42. * counter uses its bit 31 (for 32bit counters) or bit 63 (for 64bit
  43. * counters) as a factor of determining whether a counter overflow
  44. * should be signaled. So here we use a separate MSB for each
  45. * counter to make things easy.
  46. */
  47. unsigned long msbs[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
  48. /*
  49. * Software copy of the control register for each performance counter.
  50. * MIPS CPUs vary in performance counters. They use this differently,
  51. * and even may not use it.
  52. */
  53. unsigned int saved_ctrl[MIPS_MAX_HWEVENTS];
  54. };
  55. DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
  56. .saved_ctrl = {0},
  57. };
  58. /* The description of MIPS performance events. */
  59. struct mips_perf_event {
  60. unsigned int event_id;
  61. /*
  62. * MIPS performance counters are indexed starting from 0.
  63. * CNTR_EVEN indicates the indexes of the counters to be used are
  64. * even numbers.
  65. */
  66. unsigned int cntr_mask;
  67. #define CNTR_EVEN 0x55555555
  68. #define CNTR_ODD 0xaaaaaaaa
  69. #ifdef CONFIG_MIPS_MT_SMP
  70. enum {
  71. T = 0,
  72. V = 1,
  73. P = 2,
  74. } range;
  75. #else
  76. #define T
  77. #define V
  78. #define P
  79. #endif
  80. };
  81. #define UNSUPPORTED_PERF_EVENT_ID 0xffffffff
  82. #define C(x) PERF_COUNT_HW_CACHE_##x
  83. struct mips_pmu {
  84. const char *name;
  85. int irq;
  86. irqreturn_t (*handle_irq)(int irq, void *dev);
  87. int (*handle_shared_irq)(void);
  88. void (*start)(void);
  89. void (*stop)(void);
  90. int (*alloc_counter)(struct cpu_hw_events *cpuc,
  91. struct hw_perf_event *hwc);
  92. u64 (*read_counter)(unsigned int idx);
  93. void (*write_counter)(unsigned int idx, u64 val);
  94. void (*enable_event)(struct hw_perf_event *evt, int idx);
  95. void (*disable_event)(int idx);
  96. const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
  97. const struct mips_perf_event (*cache_event_map)
  98. [PERF_COUNT_HW_CACHE_MAX]
  99. [PERF_COUNT_HW_CACHE_OP_MAX]
  100. [PERF_COUNT_HW_CACHE_RESULT_MAX];
  101. unsigned int num_counters;
  102. };
  103. static const struct mips_pmu *mipspmu;
  104. static int
  105. mipspmu_event_set_period(struct perf_event *event,
  106. struct hw_perf_event *hwc,
  107. int idx)
  108. {
  109. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  110. s64 left = local64_read(&hwc->period_left);
  111. s64 period = hwc->sample_period;
  112. int ret = 0;
  113. u64 uleft;
  114. unsigned long flags;
  115. if (unlikely(left <= -period)) {
  116. left = period;
  117. local64_set(&hwc->period_left, left);
  118. hwc->last_period = period;
  119. ret = 1;
  120. }
  121. if (unlikely(left <= 0)) {
  122. left += period;
  123. local64_set(&hwc->period_left, left);
  124. hwc->last_period = period;
  125. ret = 1;
  126. }
  127. if (left > (s64)MAX_PERIOD)
  128. left = MAX_PERIOD;
  129. local64_set(&hwc->prev_count, (u64)-left);
  130. local_irq_save(flags);
  131. uleft = (u64)(-left) & MAX_PERIOD;
  132. uleft > VALID_COUNT ?
  133. set_bit(idx, cpuc->msbs) : clear_bit(idx, cpuc->msbs);
  134. mipspmu->write_counter(idx, (u64)(-left) & VALID_COUNT);
  135. local_irq_restore(flags);
  136. perf_event_update_userpage(event);
  137. return ret;
  138. }
  139. static int mipspmu_enable(struct perf_event *event)
  140. {
  141. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  142. struct hw_perf_event *hwc = &event->hw;
  143. int idx;
  144. int err = 0;
  145. /* To look for a free counter for this event. */
  146. idx = mipspmu->alloc_counter(cpuc, hwc);
  147. if (idx < 0) {
  148. err = idx;
  149. goto out;
  150. }
  151. /*
  152. * If there is an event in the counter we are going to use then
  153. * make sure it is disabled.
  154. */
  155. event->hw.idx = idx;
  156. mipspmu->disable_event(idx);
  157. cpuc->events[idx] = event;
  158. /* Set the period for the event. */
  159. mipspmu_event_set_period(event, hwc, idx);
  160. /* Enable the event. */
  161. mipspmu->enable_event(hwc, idx);
  162. /* Propagate our changes to the userspace mapping. */
  163. perf_event_update_userpage(event);
  164. out:
  165. return err;
  166. }
  167. static void mipspmu_event_update(struct perf_event *event,
  168. struct hw_perf_event *hwc,
  169. int idx)
  170. {
  171. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  172. unsigned long flags;
  173. int shift = 64 - TOTAL_BITS;
  174. s64 prev_raw_count, new_raw_count;
  175. s64 delta;
  176. again:
  177. prev_raw_count = local64_read(&hwc->prev_count);
  178. local_irq_save(flags);
  179. /* Make the counter value be a "real" one. */
  180. new_raw_count = mipspmu->read_counter(idx);
  181. if (new_raw_count & (test_bit(idx, cpuc->msbs) << HIGHEST_BIT)) {
  182. new_raw_count &= VALID_COUNT;
  183. clear_bit(idx, cpuc->msbs);
  184. } else
  185. new_raw_count |= (test_bit(idx, cpuc->msbs) << HIGHEST_BIT);
  186. local_irq_restore(flags);
  187. if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
  188. new_raw_count) != prev_raw_count)
  189. goto again;
  190. delta = (new_raw_count << shift) - (prev_raw_count << shift);
  191. delta >>= shift;
  192. local64_add(delta, &event->count);
  193. local64_sub(delta, &hwc->period_left);
  194. return;
  195. }
  196. static void mipspmu_disable(struct perf_event *event)
  197. {
  198. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  199. struct hw_perf_event *hwc = &event->hw;
  200. int idx = hwc->idx;
  201. WARN_ON(idx < 0 || idx >= mipspmu->num_counters);
  202. /* We are working on a local event. */
  203. mipspmu->disable_event(idx);
  204. barrier();
  205. mipspmu_event_update(event, hwc, idx);
  206. cpuc->events[idx] = NULL;
  207. clear_bit(idx, cpuc->used_mask);
  208. perf_event_update_userpage(event);
  209. }
  210. static void mipspmu_unthrottle(struct perf_event *event)
  211. {
  212. struct hw_perf_event *hwc = &event->hw;
  213. mipspmu->enable_event(hwc, hwc->idx);
  214. }
  215. static void mipspmu_read(struct perf_event *event)
  216. {
  217. struct hw_perf_event *hwc = &event->hw;
  218. /* Don't read disabled counters! */
  219. if (hwc->idx < 0)
  220. return;
  221. mipspmu_event_update(event, hwc, hwc->idx);
  222. }
  223. static struct pmu pmu = {
  224. .enable = mipspmu_enable,
  225. .disable = mipspmu_disable,
  226. .unthrottle = mipspmu_unthrottle,
  227. .read = mipspmu_read,
  228. };
  229. static atomic_t active_events = ATOMIC_INIT(0);
  230. static DEFINE_MUTEX(pmu_reserve_mutex);
  231. static int (*save_perf_irq)(void);
  232. static int mipspmu_get_irq(void)
  233. {
  234. int err;
  235. if (mipspmu->irq >= 0) {
  236. /* Request my own irq handler. */
  237. err = request_irq(mipspmu->irq, mipspmu->handle_irq,
  238. IRQF_DISABLED | IRQF_NOBALANCING,
  239. "mips_perf_pmu", NULL);
  240. if (err) {
  241. pr_warning("Unable to request IRQ%d for MIPS "
  242. "performance counters!\n", mipspmu->irq);
  243. }
  244. } else if (cp0_perfcount_irq < 0) {
  245. /*
  246. * We are sharing the irq number with the timer interrupt.
  247. */
  248. save_perf_irq = perf_irq;
  249. perf_irq = mipspmu->handle_shared_irq;
  250. err = 0;
  251. } else {
  252. pr_warning("The platform hasn't properly defined its "
  253. "interrupt controller.\n");
  254. err = -ENOENT;
  255. }
  256. return err;
  257. }
  258. static void mipspmu_free_irq(void)
  259. {
  260. if (mipspmu->irq >= 0)
  261. free_irq(mipspmu->irq, NULL);
  262. else if (cp0_perfcount_irq < 0)
  263. perf_irq = save_perf_irq;
  264. }
  265. static inline unsigned int
  266. mipspmu_perf_event_encode(const struct mips_perf_event *pev)
  267. {
  268. /*
  269. * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
  270. * event_id.
  271. */
  272. #ifdef CONFIG_MIPS_MT_SMP
  273. return ((unsigned int)pev->range << 24) |
  274. (pev->cntr_mask & 0xffff00) |
  275. (pev->event_id & 0xff);
  276. #else
  277. return (pev->cntr_mask & 0xffff00) |
  278. (pev->event_id & 0xff);
  279. #endif
  280. }
  281. static const struct mips_perf_event *
  282. mipspmu_map_general_event(int idx)
  283. {
  284. const struct mips_perf_event *pev;
  285. pev = ((*mipspmu->general_event_map)[idx].event_id ==
  286. UNSUPPORTED_PERF_EVENT_ID ? ERR_PTR(-EOPNOTSUPP) :
  287. &(*mipspmu->general_event_map)[idx]);
  288. return pev;
  289. }
  290. static const struct mips_perf_event *
  291. mipspmu_map_cache_event(u64 config)
  292. {
  293. unsigned int cache_type, cache_op, cache_result;
  294. const struct mips_perf_event *pev;
  295. cache_type = (config >> 0) & 0xff;
  296. if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
  297. return ERR_PTR(-EINVAL);
  298. cache_op = (config >> 8) & 0xff;
  299. if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
  300. return ERR_PTR(-EINVAL);
  301. cache_result = (config >> 16) & 0xff;
  302. if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  303. return ERR_PTR(-EINVAL);
  304. pev = &((*mipspmu->cache_event_map)
  305. [cache_type]
  306. [cache_op]
  307. [cache_result]);
  308. if (pev->event_id == UNSUPPORTED_PERF_EVENT_ID)
  309. return ERR_PTR(-EOPNOTSUPP);
  310. return pev;
  311. }
  312. static int validate_event(struct cpu_hw_events *cpuc,
  313. struct perf_event *event)
  314. {
  315. struct hw_perf_event fake_hwc = event->hw;
  316. if (event->pmu && event->pmu != &pmu)
  317. return 0;
  318. return mipspmu->alloc_counter(cpuc, &fake_hwc) >= 0;
  319. }
  320. static int validate_group(struct perf_event *event)
  321. {
  322. struct perf_event *sibling, *leader = event->group_leader;
  323. struct cpu_hw_events fake_cpuc;
  324. memset(&fake_cpuc, 0, sizeof(fake_cpuc));
  325. if (!validate_event(&fake_cpuc, leader))
  326. return -ENOSPC;
  327. list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
  328. if (!validate_event(&fake_cpuc, sibling))
  329. return -ENOSPC;
  330. }
  331. if (!validate_event(&fake_cpuc, event))
  332. return -ENOSPC;
  333. return 0;
  334. }
  335. /*
  336. * mipsxx/rm9000/loongson2 have different performance counters, they have
  337. * specific low-level init routines.
  338. */
  339. static int __hw_perf_event_init(struct perf_event *event);
  340. static void hw_perf_event_destroy(struct perf_event *event)
  341. {
  342. if (atomic_dec_and_mutex_lock(&active_events,
  343. &pmu_reserve_mutex)) {
  344. /*
  345. * We must not call the destroy function with interrupts
  346. * disabled.
  347. */
  348. on_each_cpu(reset_counters,
  349. (void *)(long)mipspmu->num_counters, 1);
  350. mipspmu_free_irq();
  351. mutex_unlock(&pmu_reserve_mutex);
  352. }
  353. }
  354. const struct pmu *hw_perf_event_init(struct perf_event *event)
  355. {
  356. int err = 0;
  357. if (!mipspmu || event->cpu >= nr_cpumask_bits ||
  358. (event->cpu >= 0 && !cpu_online(event->cpu)))
  359. return ERR_PTR(-ENODEV);
  360. if (!atomic_inc_not_zero(&active_events)) {
  361. if (atomic_read(&active_events) > MIPS_MAX_HWEVENTS) {
  362. atomic_dec(&active_events);
  363. return ERR_PTR(-ENOSPC);
  364. }
  365. mutex_lock(&pmu_reserve_mutex);
  366. if (atomic_read(&active_events) == 0)
  367. err = mipspmu_get_irq();
  368. if (!err)
  369. atomic_inc(&active_events);
  370. mutex_unlock(&pmu_reserve_mutex);
  371. }
  372. if (err)
  373. return ERR_PTR(err);
  374. err = __hw_perf_event_init(event);
  375. if (err)
  376. hw_perf_event_destroy(event);
  377. return err ? ERR_PTR(err) : &pmu;
  378. }
  379. void hw_perf_enable(void)
  380. {
  381. if (mipspmu)
  382. mipspmu->start();
  383. }
  384. void hw_perf_disable(void)
  385. {
  386. if (mipspmu)
  387. mipspmu->stop();
  388. }
  389. /* This is needed by specific irq handlers in perf_event_*.c */
  390. static void
  391. handle_associated_event(struct cpu_hw_events *cpuc,
  392. int idx, struct perf_sample_data *data, struct pt_regs *regs)
  393. {
  394. struct perf_event *event = cpuc->events[idx];
  395. struct hw_perf_event *hwc = &event->hw;
  396. mipspmu_event_update(event, hwc, idx);
  397. data->period = event->hw.last_period;
  398. if (!mipspmu_event_set_period(event, hwc, idx))
  399. return;
  400. if (perf_event_overflow(event, 0, data, regs))
  401. mipspmu->disable_event(idx);
  402. }
  403. /* Callchain handling code. */
  404. static inline void
  405. callchain_store(struct perf_callchain_entry *entry,
  406. u64 ip)
  407. {
  408. if (entry->nr < PERF_MAX_STACK_DEPTH)
  409. entry->ip[entry->nr++] = ip;
  410. }
  411. /*
  412. * Leave userspace callchain empty for now. When we find a way to trace
  413. * the user stack callchains, we add here.
  414. */
  415. static void
  416. perf_callchain_user(struct pt_regs *regs,
  417. struct perf_callchain_entry *entry)
  418. {
  419. }
  420. static void save_raw_perf_callchain(struct perf_callchain_entry *entry,
  421. unsigned long reg29)
  422. {
  423. unsigned long *sp = (unsigned long *)reg29;
  424. unsigned long addr;
  425. while (!kstack_end(sp)) {
  426. addr = *sp++;
  427. if (__kernel_text_address(addr)) {
  428. callchain_store(entry, addr);
  429. if (entry->nr >= PERF_MAX_STACK_DEPTH)
  430. break;
  431. }
  432. }
  433. }
  434. static void
  435. perf_callchain_kernel(struct pt_regs *regs,
  436. struct perf_callchain_entry *entry)
  437. {
  438. unsigned long sp = regs->regs[29];
  439. #ifdef CONFIG_KALLSYMS
  440. unsigned long ra = regs->regs[31];
  441. unsigned long pc = regs->cp0_epc;
  442. callchain_store(entry, PERF_CONTEXT_KERNEL);
  443. if (raw_show_trace || !__kernel_text_address(pc)) {
  444. unsigned long stack_page =
  445. (unsigned long)task_stack_page(current);
  446. if (stack_page && sp >= stack_page &&
  447. sp <= stack_page + THREAD_SIZE - 32)
  448. save_raw_perf_callchain(entry, sp);
  449. return;
  450. }
  451. do {
  452. callchain_store(entry, pc);
  453. if (entry->nr >= PERF_MAX_STACK_DEPTH)
  454. break;
  455. pc = unwind_stack(current, &sp, pc, &ra);
  456. } while (pc);
  457. #else
  458. callchain_store(entry, PERF_CONTEXT_KERNEL);
  459. save_raw_perf_callchain(entry, sp);
  460. #endif
  461. }
  462. static void
  463. perf_do_callchain(struct pt_regs *regs,
  464. struct perf_callchain_entry *entry)
  465. {
  466. int is_user;
  467. if (!regs)
  468. return;
  469. is_user = user_mode(regs);
  470. if (!current || !current->pid)
  471. return;
  472. if (is_user && current->state != TASK_RUNNING)
  473. return;
  474. if (!is_user) {
  475. perf_callchain_kernel(regs, entry);
  476. if (current->mm)
  477. regs = task_pt_regs(current);
  478. else
  479. regs = NULL;
  480. }
  481. if (regs)
  482. perf_callchain_user(regs, entry);
  483. }
  484. static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_irq_entry);
  485. struct perf_callchain_entry *
  486. perf_callchain(struct pt_regs *regs)
  487. {
  488. struct perf_callchain_entry *entry = &__get_cpu_var(pmc_irq_entry);
  489. entry->nr = 0;
  490. perf_do_callchain(regs, entry);
  491. return entry;
  492. }