forcedeth.c 145 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey. It's neither supported nor endorsed
  7. * by NVIDIA Corp. Use at your own risk.
  8. *
  9. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  10. * trademarks of NVIDIA Corporation in the United States and other
  11. * countries.
  12. *
  13. * Copyright (C) 2003,4,5 Manfred Spraul
  14. * Copyright (C) 2004 Andrew de Quincey (wol support)
  15. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  16. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  17. * Copyright (c) 2004 NVIDIA Corporation
  18. *
  19. * This program is free software; you can redistribute it and/or modify
  20. * it under the terms of the GNU General Public License as published by
  21. * the Free Software Foundation; either version 2 of the License, or
  22. * (at your option) any later version.
  23. *
  24. * This program is distributed in the hope that it will be useful,
  25. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  26. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  27. * GNU General Public License for more details.
  28. *
  29. * You should have received a copy of the GNU General Public License
  30. * along with this program; if not, write to the Free Software
  31. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  32. *
  33. * Changelog:
  34. * 0.01: 05 Oct 2003: First release that compiles without warnings.
  35. * 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
  36. * Check all PCI BARs for the register window.
  37. * udelay added to mii_rw.
  38. * 0.03: 06 Oct 2003: Initialize dev->irq.
  39. * 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
  40. * 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
  41. * 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
  42. * irq mask updated
  43. * 0.07: 14 Oct 2003: Further irq mask updates.
  44. * 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
  45. * added into irq handler, NULL check for drain_ring.
  46. * 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
  47. * requested interrupt sources.
  48. * 0.10: 20 Oct 2003: First cleanup for release.
  49. * 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
  50. * MAC Address init fix, set_multicast cleanup.
  51. * 0.12: 23 Oct 2003: Cleanups for release.
  52. * 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
  53. * Set link speed correctly. start rx before starting
  54. * tx (nv_start_rx sets the link speed).
  55. * 0.14: 25 Oct 2003: Nic dependant irq mask.
  56. * 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
  57. * open.
  58. * 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
  59. * increased to 1628 bytes.
  60. * 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
  61. * the tx length.
  62. * 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
  63. * 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
  64. * addresses, really stop rx if already running
  65. * in nv_start_rx, clean up a bit.
  66. * 0.20: 07 Dec 2003: alloc fixes
  67. * 0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
  68. * 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
  69. * on close.
  70. * 0.23: 26 Jan 2004: various small cleanups
  71. * 0.24: 27 Feb 2004: make driver even less anonymous in backtraces
  72. * 0.25: 09 Mar 2004: wol support
  73. * 0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
  74. * 0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
  75. * added CK804/MCP04 device IDs, code fixes
  76. * for registers, link status and other minor fixes.
  77. * 0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
  78. * 0.29: 31 Aug 2004: Add backup timer for link change notification.
  79. * 0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
  80. * into nv_close, otherwise reenabling for wol can
  81. * cause DMA to kfree'd memory.
  82. * 0.31: 14 Nov 2004: ethtool support for getting/setting link
  83. * capabilities.
  84. * 0.32: 16 Apr 2005: RX_ERROR4 handling added.
  85. * 0.33: 16 May 2005: Support for MCP51 added.
  86. * 0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
  87. * 0.35: 26 Jun 2005: Support for MCP55 added.
  88. * 0.36: 28 Jun 2005: Add jumbo frame support.
  89. * 0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
  90. * 0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
  91. * per-packet flags.
  92. * 0.39: 18 Jul 2005: Add 64bit descriptor support.
  93. * 0.40: 19 Jul 2005: Add support for mac address change.
  94. * 0.41: 30 Jul 2005: Write back original MAC in nv_close instead
  95. * of nv_remove
  96. * 0.42: 06 Aug 2005: Fix lack of link speed initialization
  97. * in the second (and later) nv_open call
  98. * 0.43: 10 Aug 2005: Add support for tx checksum.
  99. * 0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
  100. * 0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
  101. * 0.46: 20 Oct 2005: Add irq optimization modes.
  102. * 0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
  103. * 0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
  104. * 0.49: 10 Dec 2005: Fix tso for large buffers.
  105. * 0.50: 20 Jan 2006: Add 8021pq tagging support.
  106. * 0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
  107. * 0.52: 20 Jan 2006: Add MSI/MSIX support.
  108. * 0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
  109. * 0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
  110. * 0.55: 22 Mar 2006: Add flow control (pause frame).
  111. * 0.56: 22 Mar 2006: Additional ethtool config and moduleparam support.
  112. * 0.57: 14 May 2006: Mac address set in probe/remove and order corrections.
  113. * 0.58: 30 Oct 2006: Added support for sideband management unit.
  114. *
  115. * Known bugs:
  116. * We suspect that on some hardware no TX done interrupts are generated.
  117. * This means recovery from netif_stop_queue only happens if the hw timer
  118. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  119. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  120. * If your hardware reliably generates tx done interrupts, then you can remove
  121. * DEV_NEED_TIMERIRQ from the driver_data flags.
  122. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  123. * superfluous timer interrupts from the nic.
  124. */
  125. #ifdef CONFIG_FORCEDETH_NAPI
  126. #define DRIVERNAPI "-NAPI"
  127. #else
  128. #define DRIVERNAPI
  129. #endif
  130. #define FORCEDETH_VERSION "0.58"
  131. #define DRV_NAME "forcedeth"
  132. #include <linux/module.h>
  133. #include <linux/types.h>
  134. #include <linux/pci.h>
  135. #include <linux/interrupt.h>
  136. #include <linux/netdevice.h>
  137. #include <linux/etherdevice.h>
  138. #include <linux/delay.h>
  139. #include <linux/spinlock.h>
  140. #include <linux/ethtool.h>
  141. #include <linux/timer.h>
  142. #include <linux/skbuff.h>
  143. #include <linux/mii.h>
  144. #include <linux/random.h>
  145. #include <linux/init.h>
  146. #include <linux/if_vlan.h>
  147. #include <linux/dma-mapping.h>
  148. #include <asm/irq.h>
  149. #include <asm/io.h>
  150. #include <asm/uaccess.h>
  151. #include <asm/system.h>
  152. #if 0
  153. #define dprintk printk
  154. #else
  155. #define dprintk(x...) do { } while (0)
  156. #endif
  157. /*
  158. * Hardware access:
  159. */
  160. #define DEV_NEED_TIMERIRQ 0x0001 /* set the timer irq flag in the irq mask */
  161. #define DEV_NEED_LINKTIMER 0x0002 /* poll link settings. Relies on the timer irq */
  162. #define DEV_HAS_LARGEDESC 0x0004 /* device supports jumbo frames and needs packet format 2 */
  163. #define DEV_HAS_HIGH_DMA 0x0008 /* device supports 64bit dma */
  164. #define DEV_HAS_CHECKSUM 0x0010 /* device supports tx and rx checksum offloads */
  165. #define DEV_HAS_VLAN 0x0020 /* device supports vlan tagging and striping */
  166. #define DEV_HAS_MSI 0x0040 /* device supports MSI */
  167. #define DEV_HAS_MSI_X 0x0080 /* device supports MSI-X */
  168. #define DEV_HAS_POWER_CNTRL 0x0100 /* device supports power savings */
  169. #define DEV_HAS_PAUSEFRAME_TX 0x0200 /* device supports tx pause frames */
  170. #define DEV_HAS_STATISTICS 0x0400 /* device supports hw statistics */
  171. #define DEV_HAS_TEST_EXTENDED 0x0800 /* device supports extended diagnostic test */
  172. #define DEV_HAS_MGMT_UNIT 0x1000 /* device supports management unit */
  173. enum {
  174. NvRegIrqStatus = 0x000,
  175. #define NVREG_IRQSTAT_MIIEVENT 0x040
  176. #define NVREG_IRQSTAT_MASK 0x1ff
  177. NvRegIrqMask = 0x004,
  178. #define NVREG_IRQ_RX_ERROR 0x0001
  179. #define NVREG_IRQ_RX 0x0002
  180. #define NVREG_IRQ_RX_NOBUF 0x0004
  181. #define NVREG_IRQ_TX_ERR 0x0008
  182. #define NVREG_IRQ_TX_OK 0x0010
  183. #define NVREG_IRQ_TIMER 0x0020
  184. #define NVREG_IRQ_LINK 0x0040
  185. #define NVREG_IRQ_RX_FORCED 0x0080
  186. #define NVREG_IRQ_TX_FORCED 0x0100
  187. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  188. #define NVREG_IRQMASK_CPU 0x0040
  189. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  190. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  191. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK)
  192. #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
  193. NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
  194. NVREG_IRQ_TX_FORCED))
  195. NvRegUnknownSetupReg6 = 0x008,
  196. #define NVREG_UNKSETUP6_VAL 3
  197. /*
  198. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  199. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  200. */
  201. NvRegPollingInterval = 0x00c,
  202. #define NVREG_POLL_DEFAULT_THROUGHPUT 970
  203. #define NVREG_POLL_DEFAULT_CPU 13
  204. NvRegMSIMap0 = 0x020,
  205. NvRegMSIMap1 = 0x024,
  206. NvRegMSIIrqMask = 0x030,
  207. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  208. NvRegMisc1 = 0x080,
  209. #define NVREG_MISC1_PAUSE_TX 0x01
  210. #define NVREG_MISC1_HD 0x02
  211. #define NVREG_MISC1_FORCE 0x3b0f3c
  212. NvRegMacReset = 0x3c,
  213. #define NVREG_MAC_RESET_ASSERT 0x0F3
  214. NvRegTransmitterControl = 0x084,
  215. #define NVREG_XMITCTL_START 0x01
  216. #define NVREG_XMITCTL_MGMT_ST 0x40000000
  217. #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
  218. #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
  219. #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
  220. #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
  221. #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
  222. #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
  223. #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
  224. #define NVREG_XMITCTL_HOST_LOADED 0x00004000
  225. NvRegTransmitterStatus = 0x088,
  226. #define NVREG_XMITSTAT_BUSY 0x01
  227. NvRegPacketFilterFlags = 0x8c,
  228. #define NVREG_PFF_PAUSE_RX 0x08
  229. #define NVREG_PFF_ALWAYS 0x7F0000
  230. #define NVREG_PFF_PROMISC 0x80
  231. #define NVREG_PFF_MYADDR 0x20
  232. #define NVREG_PFF_LOOPBACK 0x10
  233. NvRegOffloadConfig = 0x90,
  234. #define NVREG_OFFLOAD_HOMEPHY 0x601
  235. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  236. NvRegReceiverControl = 0x094,
  237. #define NVREG_RCVCTL_START 0x01
  238. NvRegReceiverStatus = 0x98,
  239. #define NVREG_RCVSTAT_BUSY 0x01
  240. NvRegRandomSeed = 0x9c,
  241. #define NVREG_RNDSEED_MASK 0x00ff
  242. #define NVREG_RNDSEED_FORCE 0x7f00
  243. #define NVREG_RNDSEED_FORCE2 0x2d00
  244. #define NVREG_RNDSEED_FORCE3 0x7400
  245. NvRegTxDeferral = 0xA0,
  246. #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
  247. #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
  248. #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
  249. NvRegRxDeferral = 0xA4,
  250. #define NVREG_RX_DEFERRAL_DEFAULT 0x16
  251. NvRegMacAddrA = 0xA8,
  252. NvRegMacAddrB = 0xAC,
  253. NvRegMulticastAddrA = 0xB0,
  254. #define NVREG_MCASTADDRA_FORCE 0x01
  255. NvRegMulticastAddrB = 0xB4,
  256. NvRegMulticastMaskA = 0xB8,
  257. NvRegMulticastMaskB = 0xBC,
  258. NvRegPhyInterface = 0xC0,
  259. #define PHY_RGMII 0x10000000
  260. NvRegTxRingPhysAddr = 0x100,
  261. NvRegRxRingPhysAddr = 0x104,
  262. NvRegRingSizes = 0x108,
  263. #define NVREG_RINGSZ_TXSHIFT 0
  264. #define NVREG_RINGSZ_RXSHIFT 16
  265. NvRegTransmitPoll = 0x10c,
  266. #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
  267. NvRegLinkSpeed = 0x110,
  268. #define NVREG_LINKSPEED_FORCE 0x10000
  269. #define NVREG_LINKSPEED_10 1000
  270. #define NVREG_LINKSPEED_100 100
  271. #define NVREG_LINKSPEED_1000 50
  272. #define NVREG_LINKSPEED_MASK (0xFFF)
  273. NvRegUnknownSetupReg5 = 0x130,
  274. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  275. NvRegTxWatermark = 0x13c,
  276. #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
  277. #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
  278. #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
  279. NvRegTxRxControl = 0x144,
  280. #define NVREG_TXRXCTL_KICK 0x0001
  281. #define NVREG_TXRXCTL_BIT1 0x0002
  282. #define NVREG_TXRXCTL_BIT2 0x0004
  283. #define NVREG_TXRXCTL_IDLE 0x0008
  284. #define NVREG_TXRXCTL_RESET 0x0010
  285. #define NVREG_TXRXCTL_RXCHECK 0x0400
  286. #define NVREG_TXRXCTL_DESC_1 0
  287. #define NVREG_TXRXCTL_DESC_2 0x02100
  288. #define NVREG_TXRXCTL_DESC_3 0x02200
  289. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  290. #define NVREG_TXRXCTL_VLANINS 0x00080
  291. NvRegTxRingPhysAddrHigh = 0x148,
  292. NvRegRxRingPhysAddrHigh = 0x14C,
  293. NvRegTxPauseFrame = 0x170,
  294. #define NVREG_TX_PAUSEFRAME_DISABLE 0x1ff0080
  295. #define NVREG_TX_PAUSEFRAME_ENABLE 0x0c00030
  296. NvRegMIIStatus = 0x180,
  297. #define NVREG_MIISTAT_ERROR 0x0001
  298. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  299. #define NVREG_MIISTAT_MASK 0x000f
  300. #define NVREG_MIISTAT_MASK2 0x000f
  301. NvRegMIIMask = 0x184,
  302. #define NVREG_MII_LINKCHANGE 0x0008
  303. NvRegAdapterControl = 0x188,
  304. #define NVREG_ADAPTCTL_START 0x02
  305. #define NVREG_ADAPTCTL_LINKUP 0x04
  306. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  307. #define NVREG_ADAPTCTL_RUNNING 0x100000
  308. #define NVREG_ADAPTCTL_PHYSHIFT 24
  309. NvRegMIISpeed = 0x18c,
  310. #define NVREG_MIISPEED_BIT8 (1<<8)
  311. #define NVREG_MIIDELAY 5
  312. NvRegMIIControl = 0x190,
  313. #define NVREG_MIICTL_INUSE 0x08000
  314. #define NVREG_MIICTL_WRITE 0x00400
  315. #define NVREG_MIICTL_ADDRSHIFT 5
  316. NvRegMIIData = 0x194,
  317. NvRegWakeUpFlags = 0x200,
  318. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  319. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  320. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  321. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  322. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  323. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  324. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  325. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  326. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  327. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  328. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  329. NvRegPatternCRC = 0x204,
  330. NvRegPatternMask = 0x208,
  331. NvRegPowerCap = 0x268,
  332. #define NVREG_POWERCAP_D3SUPP (1<<30)
  333. #define NVREG_POWERCAP_D2SUPP (1<<26)
  334. #define NVREG_POWERCAP_D1SUPP (1<<25)
  335. NvRegPowerState = 0x26c,
  336. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  337. #define NVREG_POWERSTATE_VALID 0x0100
  338. #define NVREG_POWERSTATE_MASK 0x0003
  339. #define NVREG_POWERSTATE_D0 0x0000
  340. #define NVREG_POWERSTATE_D1 0x0001
  341. #define NVREG_POWERSTATE_D2 0x0002
  342. #define NVREG_POWERSTATE_D3 0x0003
  343. NvRegTxCnt = 0x280,
  344. NvRegTxZeroReXmt = 0x284,
  345. NvRegTxOneReXmt = 0x288,
  346. NvRegTxManyReXmt = 0x28c,
  347. NvRegTxLateCol = 0x290,
  348. NvRegTxUnderflow = 0x294,
  349. NvRegTxLossCarrier = 0x298,
  350. NvRegTxExcessDef = 0x29c,
  351. NvRegTxRetryErr = 0x2a0,
  352. NvRegRxFrameErr = 0x2a4,
  353. NvRegRxExtraByte = 0x2a8,
  354. NvRegRxLateCol = 0x2ac,
  355. NvRegRxRunt = 0x2b0,
  356. NvRegRxFrameTooLong = 0x2b4,
  357. NvRegRxOverflow = 0x2b8,
  358. NvRegRxFCSErr = 0x2bc,
  359. NvRegRxFrameAlignErr = 0x2c0,
  360. NvRegRxLenErr = 0x2c4,
  361. NvRegRxUnicast = 0x2c8,
  362. NvRegRxMulticast = 0x2cc,
  363. NvRegRxBroadcast = 0x2d0,
  364. NvRegTxDef = 0x2d4,
  365. NvRegTxFrame = 0x2d8,
  366. NvRegRxCnt = 0x2dc,
  367. NvRegTxPause = 0x2e0,
  368. NvRegRxPause = 0x2e4,
  369. NvRegRxDropFrame = 0x2e8,
  370. NvRegVlanControl = 0x300,
  371. #define NVREG_VLANCONTROL_ENABLE 0x2000
  372. NvRegMSIXMap0 = 0x3e0,
  373. NvRegMSIXMap1 = 0x3e4,
  374. NvRegMSIXIrqStatus = 0x3f0,
  375. NvRegPowerState2 = 0x600,
  376. #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F11
  377. #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
  378. };
  379. /* Big endian: should work, but is untested */
  380. struct ring_desc {
  381. __le32 buf;
  382. __le32 flaglen;
  383. };
  384. struct ring_desc_ex {
  385. __le32 bufhigh;
  386. __le32 buflow;
  387. __le32 txvlan;
  388. __le32 flaglen;
  389. };
  390. union ring_type {
  391. struct ring_desc* orig;
  392. struct ring_desc_ex* ex;
  393. };
  394. #define FLAG_MASK_V1 0xffff0000
  395. #define FLAG_MASK_V2 0xffffc000
  396. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  397. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  398. #define NV_TX_LASTPACKET (1<<16)
  399. #define NV_TX_RETRYERROR (1<<19)
  400. #define NV_TX_FORCED_INTERRUPT (1<<24)
  401. #define NV_TX_DEFERRED (1<<26)
  402. #define NV_TX_CARRIERLOST (1<<27)
  403. #define NV_TX_LATECOLLISION (1<<28)
  404. #define NV_TX_UNDERFLOW (1<<29)
  405. #define NV_TX_ERROR (1<<30)
  406. #define NV_TX_VALID (1<<31)
  407. #define NV_TX2_LASTPACKET (1<<29)
  408. #define NV_TX2_RETRYERROR (1<<18)
  409. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  410. #define NV_TX2_DEFERRED (1<<25)
  411. #define NV_TX2_CARRIERLOST (1<<26)
  412. #define NV_TX2_LATECOLLISION (1<<27)
  413. #define NV_TX2_UNDERFLOW (1<<28)
  414. /* error and valid are the same for both */
  415. #define NV_TX2_ERROR (1<<30)
  416. #define NV_TX2_VALID (1<<31)
  417. #define NV_TX2_TSO (1<<28)
  418. #define NV_TX2_TSO_SHIFT 14
  419. #define NV_TX2_TSO_MAX_SHIFT 14
  420. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  421. #define NV_TX2_CHECKSUM_L3 (1<<27)
  422. #define NV_TX2_CHECKSUM_L4 (1<<26)
  423. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  424. #define NV_RX_DESCRIPTORVALID (1<<16)
  425. #define NV_RX_MISSEDFRAME (1<<17)
  426. #define NV_RX_SUBSTRACT1 (1<<18)
  427. #define NV_RX_ERROR1 (1<<23)
  428. #define NV_RX_ERROR2 (1<<24)
  429. #define NV_RX_ERROR3 (1<<25)
  430. #define NV_RX_ERROR4 (1<<26)
  431. #define NV_RX_CRCERR (1<<27)
  432. #define NV_RX_OVERFLOW (1<<28)
  433. #define NV_RX_FRAMINGERR (1<<29)
  434. #define NV_RX_ERROR (1<<30)
  435. #define NV_RX_AVAIL (1<<31)
  436. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  437. #define NV_RX2_CHECKSUMOK1 (0x10000000)
  438. #define NV_RX2_CHECKSUMOK2 (0x14000000)
  439. #define NV_RX2_CHECKSUMOK3 (0x18000000)
  440. #define NV_RX2_DESCRIPTORVALID (1<<29)
  441. #define NV_RX2_SUBSTRACT1 (1<<25)
  442. #define NV_RX2_ERROR1 (1<<18)
  443. #define NV_RX2_ERROR2 (1<<19)
  444. #define NV_RX2_ERROR3 (1<<20)
  445. #define NV_RX2_ERROR4 (1<<21)
  446. #define NV_RX2_CRCERR (1<<22)
  447. #define NV_RX2_OVERFLOW (1<<23)
  448. #define NV_RX2_FRAMINGERR (1<<24)
  449. /* error and avail are the same for both */
  450. #define NV_RX2_ERROR (1<<30)
  451. #define NV_RX2_AVAIL (1<<31)
  452. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  453. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  454. /* Miscelaneous hardware related defines: */
  455. #define NV_PCI_REGSZ_VER1 0x270
  456. #define NV_PCI_REGSZ_VER2 0x604
  457. /* various timeout delays: all in usec */
  458. #define NV_TXRX_RESET_DELAY 4
  459. #define NV_TXSTOP_DELAY1 10
  460. #define NV_TXSTOP_DELAY1MAX 500000
  461. #define NV_TXSTOP_DELAY2 100
  462. #define NV_RXSTOP_DELAY1 10
  463. #define NV_RXSTOP_DELAY1MAX 500000
  464. #define NV_RXSTOP_DELAY2 100
  465. #define NV_SETUP5_DELAY 5
  466. #define NV_SETUP5_DELAYMAX 50000
  467. #define NV_POWERUP_DELAY 5
  468. #define NV_POWERUP_DELAYMAX 5000
  469. #define NV_MIIBUSY_DELAY 50
  470. #define NV_MIIPHY_DELAY 10
  471. #define NV_MIIPHY_DELAYMAX 10000
  472. #define NV_MAC_RESET_DELAY 64
  473. #define NV_WAKEUPPATTERNS 5
  474. #define NV_WAKEUPMASKENTRIES 4
  475. /* General driver defaults */
  476. #define NV_WATCHDOG_TIMEO (5*HZ)
  477. #define RX_RING_DEFAULT 128
  478. #define TX_RING_DEFAULT 256
  479. #define RX_RING_MIN 128
  480. #define TX_RING_MIN 64
  481. #define RING_MAX_DESC_VER_1 1024
  482. #define RING_MAX_DESC_VER_2_3 16384
  483. /*
  484. * Difference between the get and put pointers for the tx ring.
  485. * This is used to throttle the amount of data outstanding in the
  486. * tx ring.
  487. */
  488. #define TX_LIMIT_DIFFERENCE 1
  489. /* rx/tx mac addr + type + vlan + align + slack*/
  490. #define NV_RX_HEADERS (64)
  491. /* even more slack. */
  492. #define NV_RX_ALLOC_PAD (64)
  493. /* maximum mtu size */
  494. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  495. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  496. #define OOM_REFILL (1+HZ/20)
  497. #define POLL_WAIT (1+HZ/100)
  498. #define LINK_TIMEOUT (3*HZ)
  499. #define STATS_INTERVAL (10*HZ)
  500. /*
  501. * desc_ver values:
  502. * The nic supports three different descriptor types:
  503. * - DESC_VER_1: Original
  504. * - DESC_VER_2: support for jumbo frames.
  505. * - DESC_VER_3: 64-bit format.
  506. */
  507. #define DESC_VER_1 1
  508. #define DESC_VER_2 2
  509. #define DESC_VER_3 3
  510. /* PHY defines */
  511. #define PHY_OUI_MARVELL 0x5043
  512. #define PHY_OUI_CICADA 0x03f1
  513. #define PHYID1_OUI_MASK 0x03ff
  514. #define PHYID1_OUI_SHFT 6
  515. #define PHYID2_OUI_MASK 0xfc00
  516. #define PHYID2_OUI_SHFT 10
  517. #define PHYID2_MODEL_MASK 0x03f0
  518. #define PHY_MODEL_MARVELL_E3016 0x220
  519. #define PHY_MARVELL_E3016_INITMASK 0x0300
  520. #define PHY_INIT1 0x0f000
  521. #define PHY_INIT2 0x0e00
  522. #define PHY_INIT3 0x01000
  523. #define PHY_INIT4 0x0200
  524. #define PHY_INIT5 0x0004
  525. #define PHY_INIT6 0x02000
  526. #define PHY_GIGABIT 0x0100
  527. #define PHY_TIMEOUT 0x1
  528. #define PHY_ERROR 0x2
  529. #define PHY_100 0x1
  530. #define PHY_1000 0x2
  531. #define PHY_HALF 0x100
  532. #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
  533. #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
  534. #define NV_PAUSEFRAME_RX_ENABLE 0x0004
  535. #define NV_PAUSEFRAME_TX_ENABLE 0x0008
  536. #define NV_PAUSEFRAME_RX_REQ 0x0010
  537. #define NV_PAUSEFRAME_TX_REQ 0x0020
  538. #define NV_PAUSEFRAME_AUTONEG 0x0040
  539. /* MSI/MSI-X defines */
  540. #define NV_MSI_X_MAX_VECTORS 8
  541. #define NV_MSI_X_VECTORS_MASK 0x000f
  542. #define NV_MSI_CAPABLE 0x0010
  543. #define NV_MSI_X_CAPABLE 0x0020
  544. #define NV_MSI_ENABLED 0x0040
  545. #define NV_MSI_X_ENABLED 0x0080
  546. #define NV_MSI_X_VECTOR_ALL 0x0
  547. #define NV_MSI_X_VECTOR_RX 0x0
  548. #define NV_MSI_X_VECTOR_TX 0x1
  549. #define NV_MSI_X_VECTOR_OTHER 0x2
  550. /* statistics */
  551. struct nv_ethtool_str {
  552. char name[ETH_GSTRING_LEN];
  553. };
  554. static const struct nv_ethtool_str nv_estats_str[] = {
  555. { "tx_bytes" },
  556. { "tx_zero_rexmt" },
  557. { "tx_one_rexmt" },
  558. { "tx_many_rexmt" },
  559. { "tx_late_collision" },
  560. { "tx_fifo_errors" },
  561. { "tx_carrier_errors" },
  562. { "tx_excess_deferral" },
  563. { "tx_retry_error" },
  564. { "tx_deferral" },
  565. { "tx_packets" },
  566. { "tx_pause" },
  567. { "rx_frame_error" },
  568. { "rx_extra_byte" },
  569. { "rx_late_collision" },
  570. { "rx_runt" },
  571. { "rx_frame_too_long" },
  572. { "rx_over_errors" },
  573. { "rx_crc_errors" },
  574. { "rx_frame_align_error" },
  575. { "rx_length_error" },
  576. { "rx_unicast" },
  577. { "rx_multicast" },
  578. { "rx_broadcast" },
  579. { "rx_bytes" },
  580. { "rx_pause" },
  581. { "rx_drop_frame" },
  582. { "rx_packets" },
  583. { "rx_errors_total" }
  584. };
  585. struct nv_ethtool_stats {
  586. u64 tx_bytes;
  587. u64 tx_zero_rexmt;
  588. u64 tx_one_rexmt;
  589. u64 tx_many_rexmt;
  590. u64 tx_late_collision;
  591. u64 tx_fifo_errors;
  592. u64 tx_carrier_errors;
  593. u64 tx_excess_deferral;
  594. u64 tx_retry_error;
  595. u64 tx_deferral;
  596. u64 tx_packets;
  597. u64 tx_pause;
  598. u64 rx_frame_error;
  599. u64 rx_extra_byte;
  600. u64 rx_late_collision;
  601. u64 rx_runt;
  602. u64 rx_frame_too_long;
  603. u64 rx_over_errors;
  604. u64 rx_crc_errors;
  605. u64 rx_frame_align_error;
  606. u64 rx_length_error;
  607. u64 rx_unicast;
  608. u64 rx_multicast;
  609. u64 rx_broadcast;
  610. u64 rx_bytes;
  611. u64 rx_pause;
  612. u64 rx_drop_frame;
  613. u64 rx_packets;
  614. u64 rx_errors_total;
  615. };
  616. /* diagnostics */
  617. #define NV_TEST_COUNT_BASE 3
  618. #define NV_TEST_COUNT_EXTENDED 4
  619. static const struct nv_ethtool_str nv_etests_str[] = {
  620. { "link (online/offline)" },
  621. { "register (offline) " },
  622. { "interrupt (offline) " },
  623. { "loopback (offline) " }
  624. };
  625. struct register_test {
  626. __le32 reg;
  627. __le32 mask;
  628. };
  629. static const struct register_test nv_registers_test[] = {
  630. { NvRegUnknownSetupReg6, 0x01 },
  631. { NvRegMisc1, 0x03c },
  632. { NvRegOffloadConfig, 0x03ff },
  633. { NvRegMulticastAddrA, 0xffffffff },
  634. { NvRegTxWatermark, 0x0ff },
  635. { NvRegWakeUpFlags, 0x07777 },
  636. { 0,0 }
  637. };
  638. /*
  639. * SMP locking:
  640. * All hardware access under dev->priv->lock, except the performance
  641. * critical parts:
  642. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  643. * by the arch code for interrupts.
  644. * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
  645. * needs dev->priv->lock :-(
  646. * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
  647. */
  648. /* in dev: base, irq */
  649. struct fe_priv {
  650. spinlock_t lock;
  651. /* General data:
  652. * Locking: spin_lock(&np->lock); */
  653. struct net_device_stats stats;
  654. struct nv_ethtool_stats estats;
  655. int in_shutdown;
  656. u32 linkspeed;
  657. int duplex;
  658. int autoneg;
  659. int fixed_mode;
  660. int phyaddr;
  661. int wolenabled;
  662. unsigned int phy_oui;
  663. unsigned int phy_model;
  664. u16 gigabit;
  665. int intr_test;
  666. /* General data: RO fields */
  667. dma_addr_t ring_addr;
  668. struct pci_dev *pci_dev;
  669. u32 orig_mac[2];
  670. u32 irqmask;
  671. u32 desc_ver;
  672. u32 txrxctl_bits;
  673. u32 vlanctl_bits;
  674. u32 driver_data;
  675. u32 register_size;
  676. int rx_csum;
  677. u32 mac_in_use;
  678. void __iomem *base;
  679. /* rx specific fields.
  680. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  681. */
  682. union ring_type rx_ring;
  683. unsigned int cur_rx, refill_rx;
  684. struct sk_buff **rx_skbuff;
  685. dma_addr_t *rx_dma;
  686. unsigned int rx_buf_sz;
  687. unsigned int pkt_limit;
  688. struct timer_list oom_kick;
  689. struct timer_list nic_poll;
  690. struct timer_list stats_poll;
  691. u32 nic_poll_irq;
  692. int rx_ring_size;
  693. /* media detection workaround.
  694. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  695. */
  696. int need_linktimer;
  697. unsigned long link_timeout;
  698. /*
  699. * tx specific fields.
  700. */
  701. union ring_type tx_ring;
  702. unsigned int next_tx, nic_tx;
  703. struct sk_buff **tx_skbuff;
  704. dma_addr_t *tx_dma;
  705. unsigned int *tx_dma_len;
  706. u32 tx_flags;
  707. int tx_ring_size;
  708. int tx_limit_start;
  709. int tx_limit_stop;
  710. /* vlan fields */
  711. struct vlan_group *vlangrp;
  712. /* msi/msi-x fields */
  713. u32 msi_flags;
  714. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  715. /* flow control */
  716. u32 pause_flags;
  717. };
  718. /*
  719. * Maximum number of loops until we assume that a bit in the irq mask
  720. * is stuck. Overridable with module param.
  721. */
  722. static int max_interrupt_work = 5;
  723. /*
  724. * Optimization can be either throuput mode or cpu mode
  725. *
  726. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  727. * CPU Mode: Interrupts are controlled by a timer.
  728. */
  729. enum {
  730. NV_OPTIMIZATION_MODE_THROUGHPUT,
  731. NV_OPTIMIZATION_MODE_CPU
  732. };
  733. static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  734. /*
  735. * Poll interval for timer irq
  736. *
  737. * This interval determines how frequent an interrupt is generated.
  738. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  739. * Min = 0, and Max = 65535
  740. */
  741. static int poll_interval = -1;
  742. /*
  743. * MSI interrupts
  744. */
  745. enum {
  746. NV_MSI_INT_DISABLED,
  747. NV_MSI_INT_ENABLED
  748. };
  749. static int msi = NV_MSI_INT_ENABLED;
  750. /*
  751. * MSIX interrupts
  752. */
  753. enum {
  754. NV_MSIX_INT_DISABLED,
  755. NV_MSIX_INT_ENABLED
  756. };
  757. static int msix = NV_MSIX_INT_ENABLED;
  758. /*
  759. * DMA 64bit
  760. */
  761. enum {
  762. NV_DMA_64BIT_DISABLED,
  763. NV_DMA_64BIT_ENABLED
  764. };
  765. static int dma_64bit = NV_DMA_64BIT_ENABLED;
  766. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  767. {
  768. return netdev_priv(dev);
  769. }
  770. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  771. {
  772. return ((struct fe_priv *)netdev_priv(dev))->base;
  773. }
  774. static inline void pci_push(u8 __iomem *base)
  775. {
  776. /* force out pending posted writes */
  777. readl(base);
  778. }
  779. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  780. {
  781. return le32_to_cpu(prd->flaglen)
  782. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  783. }
  784. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  785. {
  786. return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
  787. }
  788. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  789. int delay, int delaymax, const char *msg)
  790. {
  791. u8 __iomem *base = get_hwbase(dev);
  792. pci_push(base);
  793. do {
  794. udelay(delay);
  795. delaymax -= delay;
  796. if (delaymax < 0) {
  797. if (msg)
  798. printk(msg);
  799. return 1;
  800. }
  801. } while ((readl(base + offset) & mask) != target);
  802. return 0;
  803. }
  804. #define NV_SETUP_RX_RING 0x01
  805. #define NV_SETUP_TX_RING 0x02
  806. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  807. {
  808. struct fe_priv *np = get_nvpriv(dev);
  809. u8 __iomem *base = get_hwbase(dev);
  810. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  811. if (rxtx_flags & NV_SETUP_RX_RING) {
  812. writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
  813. }
  814. if (rxtx_flags & NV_SETUP_TX_RING) {
  815. writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  816. }
  817. } else {
  818. if (rxtx_flags & NV_SETUP_RX_RING) {
  819. writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
  820. writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
  821. }
  822. if (rxtx_flags & NV_SETUP_TX_RING) {
  823. writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  824. writel((u32) (cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
  825. }
  826. }
  827. }
  828. static void free_rings(struct net_device *dev)
  829. {
  830. struct fe_priv *np = get_nvpriv(dev);
  831. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  832. if (np->rx_ring.orig)
  833. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  834. np->rx_ring.orig, np->ring_addr);
  835. } else {
  836. if (np->rx_ring.ex)
  837. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  838. np->rx_ring.ex, np->ring_addr);
  839. }
  840. if (np->rx_skbuff)
  841. kfree(np->rx_skbuff);
  842. if (np->rx_dma)
  843. kfree(np->rx_dma);
  844. if (np->tx_skbuff)
  845. kfree(np->tx_skbuff);
  846. if (np->tx_dma)
  847. kfree(np->tx_dma);
  848. if (np->tx_dma_len)
  849. kfree(np->tx_dma_len);
  850. }
  851. static int using_multi_irqs(struct net_device *dev)
  852. {
  853. struct fe_priv *np = get_nvpriv(dev);
  854. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  855. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  856. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
  857. return 0;
  858. else
  859. return 1;
  860. }
  861. static void nv_enable_irq(struct net_device *dev)
  862. {
  863. struct fe_priv *np = get_nvpriv(dev);
  864. if (!using_multi_irqs(dev)) {
  865. if (np->msi_flags & NV_MSI_X_ENABLED)
  866. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  867. else
  868. enable_irq(dev->irq);
  869. } else {
  870. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  871. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  872. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  873. }
  874. }
  875. static void nv_disable_irq(struct net_device *dev)
  876. {
  877. struct fe_priv *np = get_nvpriv(dev);
  878. if (!using_multi_irqs(dev)) {
  879. if (np->msi_flags & NV_MSI_X_ENABLED)
  880. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  881. else
  882. disable_irq(dev->irq);
  883. } else {
  884. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  885. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  886. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  887. }
  888. }
  889. /* In MSIX mode, a write to irqmask behaves as XOR */
  890. static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
  891. {
  892. u8 __iomem *base = get_hwbase(dev);
  893. writel(mask, base + NvRegIrqMask);
  894. }
  895. static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
  896. {
  897. struct fe_priv *np = get_nvpriv(dev);
  898. u8 __iomem *base = get_hwbase(dev);
  899. if (np->msi_flags & NV_MSI_X_ENABLED) {
  900. writel(mask, base + NvRegIrqMask);
  901. } else {
  902. if (np->msi_flags & NV_MSI_ENABLED)
  903. writel(0, base + NvRegMSIIrqMask);
  904. writel(0, base + NvRegIrqMask);
  905. }
  906. }
  907. #define MII_READ (-1)
  908. /* mii_rw: read/write a register on the PHY.
  909. *
  910. * Caller must guarantee serialization
  911. */
  912. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  913. {
  914. u8 __iomem *base = get_hwbase(dev);
  915. u32 reg;
  916. int retval;
  917. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  918. reg = readl(base + NvRegMIIControl);
  919. if (reg & NVREG_MIICTL_INUSE) {
  920. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  921. udelay(NV_MIIBUSY_DELAY);
  922. }
  923. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  924. if (value != MII_READ) {
  925. writel(value, base + NvRegMIIData);
  926. reg |= NVREG_MIICTL_WRITE;
  927. }
  928. writel(reg, base + NvRegMIIControl);
  929. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  930. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
  931. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
  932. dev->name, miireg, addr);
  933. retval = -1;
  934. } else if (value != MII_READ) {
  935. /* it was a write operation - fewer failures are detectable */
  936. dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
  937. dev->name, value, miireg, addr);
  938. retval = 0;
  939. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  940. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
  941. dev->name, miireg, addr);
  942. retval = -1;
  943. } else {
  944. retval = readl(base + NvRegMIIData);
  945. dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
  946. dev->name, miireg, addr, retval);
  947. }
  948. return retval;
  949. }
  950. static int phy_reset(struct net_device *dev, u32 bmcr_setup)
  951. {
  952. struct fe_priv *np = netdev_priv(dev);
  953. u32 miicontrol;
  954. unsigned int tries = 0;
  955. miicontrol = BMCR_RESET | bmcr_setup;
  956. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
  957. return -1;
  958. }
  959. /* wait for 500ms */
  960. msleep(500);
  961. /* must wait till reset is deasserted */
  962. while (miicontrol & BMCR_RESET) {
  963. msleep(10);
  964. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  965. /* FIXME: 100 tries seem excessive */
  966. if (tries++ > 100)
  967. return -1;
  968. }
  969. return 0;
  970. }
  971. static int phy_init(struct net_device *dev)
  972. {
  973. struct fe_priv *np = get_nvpriv(dev);
  974. u8 __iomem *base = get_hwbase(dev);
  975. u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
  976. /* phy errata for E3016 phy */
  977. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  978. reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  979. reg &= ~PHY_MARVELL_E3016_INITMASK;
  980. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
  981. printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
  982. return PHY_ERROR;
  983. }
  984. }
  985. /* set advertise register */
  986. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  987. reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
  988. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  989. printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
  990. return PHY_ERROR;
  991. }
  992. /* get phy interface type */
  993. phyinterface = readl(base + NvRegPhyInterface);
  994. /* see if gigabit phy */
  995. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  996. if (mii_status & PHY_GIGABIT) {
  997. np->gigabit = PHY_GIGABIT;
  998. mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  999. mii_control_1000 &= ~ADVERTISE_1000HALF;
  1000. if (phyinterface & PHY_RGMII)
  1001. mii_control_1000 |= ADVERTISE_1000FULL;
  1002. else
  1003. mii_control_1000 &= ~ADVERTISE_1000FULL;
  1004. if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
  1005. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1006. return PHY_ERROR;
  1007. }
  1008. }
  1009. else
  1010. np->gigabit = 0;
  1011. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1012. mii_control |= BMCR_ANENABLE;
  1013. /* reset the phy
  1014. * (certain phys need bmcr to be setup with reset)
  1015. */
  1016. if (phy_reset(dev, mii_control)) {
  1017. printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
  1018. return PHY_ERROR;
  1019. }
  1020. /* phy vendor specific configuration */
  1021. if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
  1022. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  1023. phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
  1024. phy_reserved |= (PHY_INIT3 | PHY_INIT4);
  1025. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
  1026. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1027. return PHY_ERROR;
  1028. }
  1029. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1030. phy_reserved |= PHY_INIT5;
  1031. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
  1032. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1033. return PHY_ERROR;
  1034. }
  1035. }
  1036. if (np->phy_oui == PHY_OUI_CICADA) {
  1037. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  1038. phy_reserved |= PHY_INIT6;
  1039. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
  1040. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1041. return PHY_ERROR;
  1042. }
  1043. }
  1044. /* some phys clear out pause advertisment on reset, set it back */
  1045. mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
  1046. /* restart auto negotiation */
  1047. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1048. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  1049. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1050. return PHY_ERROR;
  1051. }
  1052. return 0;
  1053. }
  1054. static void nv_start_rx(struct net_device *dev)
  1055. {
  1056. struct fe_priv *np = netdev_priv(dev);
  1057. u8 __iomem *base = get_hwbase(dev);
  1058. dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
  1059. /* Already running? Stop it. */
  1060. if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
  1061. writel(0, base + NvRegReceiverControl);
  1062. pci_push(base);
  1063. }
  1064. writel(np->linkspeed, base + NvRegLinkSpeed);
  1065. pci_push(base);
  1066. writel(NVREG_RCVCTL_START, base + NvRegReceiverControl);
  1067. dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
  1068. dev->name, np->duplex, np->linkspeed);
  1069. pci_push(base);
  1070. }
  1071. static void nv_stop_rx(struct net_device *dev)
  1072. {
  1073. u8 __iomem *base = get_hwbase(dev);
  1074. dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
  1075. writel(0, base + NvRegReceiverControl);
  1076. reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  1077. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
  1078. KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
  1079. udelay(NV_RXSTOP_DELAY2);
  1080. writel(0, base + NvRegLinkSpeed);
  1081. }
  1082. static void nv_start_tx(struct net_device *dev)
  1083. {
  1084. u8 __iomem *base = get_hwbase(dev);
  1085. dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
  1086. writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl);
  1087. pci_push(base);
  1088. }
  1089. static void nv_stop_tx(struct net_device *dev)
  1090. {
  1091. u8 __iomem *base = get_hwbase(dev);
  1092. dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
  1093. writel(0, base + NvRegTransmitterControl);
  1094. reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  1095. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
  1096. KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
  1097. udelay(NV_TXSTOP_DELAY2);
  1098. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  1099. }
  1100. static void nv_txrx_reset(struct net_device *dev)
  1101. {
  1102. struct fe_priv *np = netdev_priv(dev);
  1103. u8 __iomem *base = get_hwbase(dev);
  1104. dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
  1105. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1106. pci_push(base);
  1107. udelay(NV_TXRX_RESET_DELAY);
  1108. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1109. pci_push(base);
  1110. }
  1111. static void nv_mac_reset(struct net_device *dev)
  1112. {
  1113. struct fe_priv *np = netdev_priv(dev);
  1114. u8 __iomem *base = get_hwbase(dev);
  1115. dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
  1116. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1117. pci_push(base);
  1118. writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
  1119. pci_push(base);
  1120. udelay(NV_MAC_RESET_DELAY);
  1121. writel(0, base + NvRegMacReset);
  1122. pci_push(base);
  1123. udelay(NV_MAC_RESET_DELAY);
  1124. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1125. pci_push(base);
  1126. }
  1127. /*
  1128. * nv_get_stats: dev->get_stats function
  1129. * Get latest stats value from the nic.
  1130. * Called with read_lock(&dev_base_lock) held for read -
  1131. * only synchronized against unregister_netdevice.
  1132. */
  1133. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  1134. {
  1135. struct fe_priv *np = netdev_priv(dev);
  1136. /* It seems that the nic always generates interrupts and doesn't
  1137. * accumulate errors internally. Thus the current values in np->stats
  1138. * are already up to date.
  1139. */
  1140. return &np->stats;
  1141. }
  1142. /*
  1143. * nv_alloc_rx: fill rx ring entries.
  1144. * Return 1 if the allocations for the skbs failed and the
  1145. * rx engine is without Available descriptors
  1146. */
  1147. static int nv_alloc_rx(struct net_device *dev)
  1148. {
  1149. struct fe_priv *np = netdev_priv(dev);
  1150. unsigned int refill_rx = np->refill_rx;
  1151. int nr;
  1152. while (np->cur_rx != refill_rx) {
  1153. struct sk_buff *skb;
  1154. nr = refill_rx % np->rx_ring_size;
  1155. if (np->rx_skbuff[nr] == NULL) {
  1156. skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1157. if (!skb)
  1158. break;
  1159. skb->dev = dev;
  1160. np->rx_skbuff[nr] = skb;
  1161. } else {
  1162. skb = np->rx_skbuff[nr];
  1163. }
  1164. np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data,
  1165. skb->end-skb->data, PCI_DMA_FROMDEVICE);
  1166. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1167. np->rx_ring.orig[nr].buf = cpu_to_le32(np->rx_dma[nr]);
  1168. wmb();
  1169. np->rx_ring.orig[nr].flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  1170. } else {
  1171. np->rx_ring.ex[nr].bufhigh = cpu_to_le64(np->rx_dma[nr]) >> 32;
  1172. np->rx_ring.ex[nr].buflow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF;
  1173. wmb();
  1174. np->rx_ring.ex[nr].flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  1175. }
  1176. dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n",
  1177. dev->name, refill_rx);
  1178. refill_rx++;
  1179. }
  1180. np->refill_rx = refill_rx;
  1181. if (np->cur_rx - refill_rx == np->rx_ring_size)
  1182. return 1;
  1183. return 0;
  1184. }
  1185. /* If rx bufs are exhausted called after 50ms to attempt to refresh */
  1186. #ifdef CONFIG_FORCEDETH_NAPI
  1187. static void nv_do_rx_refill(unsigned long data)
  1188. {
  1189. struct net_device *dev = (struct net_device *) data;
  1190. /* Just reschedule NAPI rx processing */
  1191. netif_rx_schedule(dev);
  1192. }
  1193. #else
  1194. static void nv_do_rx_refill(unsigned long data)
  1195. {
  1196. struct net_device *dev = (struct net_device *) data;
  1197. struct fe_priv *np = netdev_priv(dev);
  1198. if (!using_multi_irqs(dev)) {
  1199. if (np->msi_flags & NV_MSI_X_ENABLED)
  1200. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1201. else
  1202. disable_irq(dev->irq);
  1203. } else {
  1204. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1205. }
  1206. if (nv_alloc_rx(dev)) {
  1207. spin_lock_irq(&np->lock);
  1208. if (!np->in_shutdown)
  1209. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1210. spin_unlock_irq(&np->lock);
  1211. }
  1212. if (!using_multi_irqs(dev)) {
  1213. if (np->msi_flags & NV_MSI_X_ENABLED)
  1214. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1215. else
  1216. enable_irq(dev->irq);
  1217. } else {
  1218. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1219. }
  1220. }
  1221. #endif
  1222. static void nv_init_rx(struct net_device *dev)
  1223. {
  1224. struct fe_priv *np = netdev_priv(dev);
  1225. int i;
  1226. np->cur_rx = np->rx_ring_size;
  1227. np->refill_rx = 0;
  1228. for (i = 0; i < np->rx_ring_size; i++)
  1229. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1230. np->rx_ring.orig[i].flaglen = 0;
  1231. else
  1232. np->rx_ring.ex[i].flaglen = 0;
  1233. }
  1234. static void nv_init_tx(struct net_device *dev)
  1235. {
  1236. struct fe_priv *np = netdev_priv(dev);
  1237. int i;
  1238. np->next_tx = np->nic_tx = 0;
  1239. for (i = 0; i < np->tx_ring_size; i++) {
  1240. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1241. np->tx_ring.orig[i].flaglen = 0;
  1242. else
  1243. np->tx_ring.ex[i].flaglen = 0;
  1244. np->tx_skbuff[i] = NULL;
  1245. np->tx_dma[i] = 0;
  1246. }
  1247. }
  1248. static int nv_init_ring(struct net_device *dev)
  1249. {
  1250. nv_init_tx(dev);
  1251. nv_init_rx(dev);
  1252. return nv_alloc_rx(dev);
  1253. }
  1254. static int nv_release_txskb(struct net_device *dev, unsigned int skbnr)
  1255. {
  1256. struct fe_priv *np = netdev_priv(dev);
  1257. dprintk(KERN_INFO "%s: nv_release_txskb for skbnr %d\n",
  1258. dev->name, skbnr);
  1259. if (np->tx_dma[skbnr]) {
  1260. pci_unmap_page(np->pci_dev, np->tx_dma[skbnr],
  1261. np->tx_dma_len[skbnr],
  1262. PCI_DMA_TODEVICE);
  1263. np->tx_dma[skbnr] = 0;
  1264. }
  1265. if (np->tx_skbuff[skbnr]) {
  1266. dev_kfree_skb_any(np->tx_skbuff[skbnr]);
  1267. np->tx_skbuff[skbnr] = NULL;
  1268. return 1;
  1269. } else {
  1270. return 0;
  1271. }
  1272. }
  1273. static void nv_drain_tx(struct net_device *dev)
  1274. {
  1275. struct fe_priv *np = netdev_priv(dev);
  1276. unsigned int i;
  1277. for (i = 0; i < np->tx_ring_size; i++) {
  1278. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1279. np->tx_ring.orig[i].flaglen = 0;
  1280. else
  1281. np->tx_ring.ex[i].flaglen = 0;
  1282. if (nv_release_txskb(dev, i))
  1283. np->stats.tx_dropped++;
  1284. }
  1285. }
  1286. static void nv_drain_rx(struct net_device *dev)
  1287. {
  1288. struct fe_priv *np = netdev_priv(dev);
  1289. int i;
  1290. for (i = 0; i < np->rx_ring_size; i++) {
  1291. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1292. np->rx_ring.orig[i].flaglen = 0;
  1293. else
  1294. np->rx_ring.ex[i].flaglen = 0;
  1295. wmb();
  1296. if (np->rx_skbuff[i]) {
  1297. pci_unmap_single(np->pci_dev, np->rx_dma[i],
  1298. np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
  1299. PCI_DMA_FROMDEVICE);
  1300. dev_kfree_skb(np->rx_skbuff[i]);
  1301. np->rx_skbuff[i] = NULL;
  1302. }
  1303. }
  1304. }
  1305. static void drain_ring(struct net_device *dev)
  1306. {
  1307. nv_drain_tx(dev);
  1308. nv_drain_rx(dev);
  1309. }
  1310. /*
  1311. * nv_start_xmit: dev->hard_start_xmit function
  1312. * Called with netif_tx_lock held.
  1313. */
  1314. static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1315. {
  1316. struct fe_priv *np = netdev_priv(dev);
  1317. u32 tx_flags = 0;
  1318. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1319. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1320. unsigned int nr = (np->next_tx - 1) % np->tx_ring_size;
  1321. unsigned int start_nr = np->next_tx % np->tx_ring_size;
  1322. unsigned int i;
  1323. u32 offset = 0;
  1324. u32 bcnt;
  1325. u32 size = skb->len-skb->data_len;
  1326. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1327. u32 tx_flags_vlan = 0;
  1328. /* add fragments to entries count */
  1329. for (i = 0; i < fragments; i++) {
  1330. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1331. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1332. }
  1333. spin_lock_irq(&np->lock);
  1334. if ((np->next_tx - np->nic_tx + entries - 1) > np->tx_limit_stop) {
  1335. spin_unlock_irq(&np->lock);
  1336. netif_stop_queue(dev);
  1337. return NETDEV_TX_BUSY;
  1338. }
  1339. /* setup the header buffer */
  1340. do {
  1341. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1342. nr = (nr + 1) % np->tx_ring_size;
  1343. np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1344. PCI_DMA_TODEVICE);
  1345. np->tx_dma_len[nr] = bcnt;
  1346. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1347. np->tx_ring.orig[nr].buf = cpu_to_le32(np->tx_dma[nr]);
  1348. np->tx_ring.orig[nr].flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1349. } else {
  1350. np->tx_ring.ex[nr].bufhigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
  1351. np->tx_ring.ex[nr].buflow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
  1352. np->tx_ring.ex[nr].flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1353. }
  1354. tx_flags = np->tx_flags;
  1355. offset += bcnt;
  1356. size -= bcnt;
  1357. } while (size);
  1358. /* setup the fragments */
  1359. for (i = 0; i < fragments; i++) {
  1360. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1361. u32 size = frag->size;
  1362. offset = 0;
  1363. do {
  1364. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1365. nr = (nr + 1) % np->tx_ring_size;
  1366. np->tx_dma[nr] = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1367. PCI_DMA_TODEVICE);
  1368. np->tx_dma_len[nr] = bcnt;
  1369. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1370. np->tx_ring.orig[nr].buf = cpu_to_le32(np->tx_dma[nr]);
  1371. np->tx_ring.orig[nr].flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1372. } else {
  1373. np->tx_ring.ex[nr].bufhigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
  1374. np->tx_ring.ex[nr].buflow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
  1375. np->tx_ring.ex[nr].flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1376. }
  1377. offset += bcnt;
  1378. size -= bcnt;
  1379. } while (size);
  1380. }
  1381. /* set last fragment flag */
  1382. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1383. np->tx_ring.orig[nr].flaglen |= cpu_to_le32(tx_flags_extra);
  1384. } else {
  1385. np->tx_ring.ex[nr].flaglen |= cpu_to_le32(tx_flags_extra);
  1386. }
  1387. np->tx_skbuff[nr] = skb;
  1388. #ifdef NETIF_F_TSO
  1389. if (skb_is_gso(skb))
  1390. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  1391. else
  1392. #endif
  1393. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  1394. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  1395. /* vlan tag */
  1396. if (np->vlangrp && vlan_tx_tag_present(skb)) {
  1397. tx_flags_vlan = NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb);
  1398. }
  1399. /* set tx flags */
  1400. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1401. np->tx_ring.orig[start_nr].flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1402. } else {
  1403. np->tx_ring.ex[start_nr].txvlan = cpu_to_le32(tx_flags_vlan);
  1404. np->tx_ring.ex[start_nr].flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1405. }
  1406. dprintk(KERN_DEBUG "%s: nv_start_xmit: packet %d (entries %d) queued for transmission. tx_flags_extra: %x\n",
  1407. dev->name, np->next_tx, entries, tx_flags_extra);
  1408. {
  1409. int j;
  1410. for (j=0; j<64; j++) {
  1411. if ((j%16) == 0)
  1412. dprintk("\n%03x:", j);
  1413. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1414. }
  1415. dprintk("\n");
  1416. }
  1417. np->next_tx += entries;
  1418. dev->trans_start = jiffies;
  1419. spin_unlock_irq(&np->lock);
  1420. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1421. pci_push(get_hwbase(dev));
  1422. return NETDEV_TX_OK;
  1423. }
  1424. /*
  1425. * nv_tx_done: check for completed packets, release the skbs.
  1426. *
  1427. * Caller must own np->lock.
  1428. */
  1429. static void nv_tx_done(struct net_device *dev)
  1430. {
  1431. struct fe_priv *np = netdev_priv(dev);
  1432. u32 flags;
  1433. unsigned int i;
  1434. struct sk_buff *skb;
  1435. while (np->nic_tx != np->next_tx) {
  1436. i = np->nic_tx % np->tx_ring_size;
  1437. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1438. flags = le32_to_cpu(np->tx_ring.orig[i].flaglen);
  1439. else
  1440. flags = le32_to_cpu(np->tx_ring.ex[i].flaglen);
  1441. dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, flags 0x%x.\n",
  1442. dev->name, np->nic_tx, flags);
  1443. if (flags & NV_TX_VALID)
  1444. break;
  1445. if (np->desc_ver == DESC_VER_1) {
  1446. if (flags & NV_TX_LASTPACKET) {
  1447. skb = np->tx_skbuff[i];
  1448. if (flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
  1449. NV_TX_UNDERFLOW|NV_TX_ERROR)) {
  1450. if (flags & NV_TX_UNDERFLOW)
  1451. np->stats.tx_fifo_errors++;
  1452. if (flags & NV_TX_CARRIERLOST)
  1453. np->stats.tx_carrier_errors++;
  1454. np->stats.tx_errors++;
  1455. } else {
  1456. np->stats.tx_packets++;
  1457. np->stats.tx_bytes += skb->len;
  1458. }
  1459. }
  1460. } else {
  1461. if (flags & NV_TX2_LASTPACKET) {
  1462. skb = np->tx_skbuff[i];
  1463. if (flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
  1464. NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
  1465. if (flags & NV_TX2_UNDERFLOW)
  1466. np->stats.tx_fifo_errors++;
  1467. if (flags & NV_TX2_CARRIERLOST)
  1468. np->stats.tx_carrier_errors++;
  1469. np->stats.tx_errors++;
  1470. } else {
  1471. np->stats.tx_packets++;
  1472. np->stats.tx_bytes += skb->len;
  1473. }
  1474. }
  1475. }
  1476. nv_release_txskb(dev, i);
  1477. np->nic_tx++;
  1478. }
  1479. if (np->next_tx - np->nic_tx < np->tx_limit_start)
  1480. netif_wake_queue(dev);
  1481. }
  1482. /*
  1483. * nv_tx_timeout: dev->tx_timeout function
  1484. * Called with netif_tx_lock held.
  1485. */
  1486. static void nv_tx_timeout(struct net_device *dev)
  1487. {
  1488. struct fe_priv *np = netdev_priv(dev);
  1489. u8 __iomem *base = get_hwbase(dev);
  1490. u32 status;
  1491. if (np->msi_flags & NV_MSI_X_ENABLED)
  1492. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  1493. else
  1494. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  1495. printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
  1496. {
  1497. int i;
  1498. printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n",
  1499. dev->name, (unsigned long)np->ring_addr,
  1500. np->next_tx, np->nic_tx);
  1501. printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
  1502. for (i=0;i<=np->register_size;i+= 32) {
  1503. printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
  1504. i,
  1505. readl(base + i + 0), readl(base + i + 4),
  1506. readl(base + i + 8), readl(base + i + 12),
  1507. readl(base + i + 16), readl(base + i + 20),
  1508. readl(base + i + 24), readl(base + i + 28));
  1509. }
  1510. printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
  1511. for (i=0;i<np->tx_ring_size;i+= 4) {
  1512. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1513. printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
  1514. i,
  1515. le32_to_cpu(np->tx_ring.orig[i].buf),
  1516. le32_to_cpu(np->tx_ring.orig[i].flaglen),
  1517. le32_to_cpu(np->tx_ring.orig[i+1].buf),
  1518. le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
  1519. le32_to_cpu(np->tx_ring.orig[i+2].buf),
  1520. le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
  1521. le32_to_cpu(np->tx_ring.orig[i+3].buf),
  1522. le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
  1523. } else {
  1524. printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
  1525. i,
  1526. le32_to_cpu(np->tx_ring.ex[i].bufhigh),
  1527. le32_to_cpu(np->tx_ring.ex[i].buflow),
  1528. le32_to_cpu(np->tx_ring.ex[i].flaglen),
  1529. le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
  1530. le32_to_cpu(np->tx_ring.ex[i+1].buflow),
  1531. le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
  1532. le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
  1533. le32_to_cpu(np->tx_ring.ex[i+2].buflow),
  1534. le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
  1535. le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
  1536. le32_to_cpu(np->tx_ring.ex[i+3].buflow),
  1537. le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
  1538. }
  1539. }
  1540. }
  1541. spin_lock_irq(&np->lock);
  1542. /* 1) stop tx engine */
  1543. nv_stop_tx(dev);
  1544. /* 2) check that the packets were not sent already: */
  1545. nv_tx_done(dev);
  1546. /* 3) if there are dead entries: clear everything */
  1547. if (np->next_tx != np->nic_tx) {
  1548. printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
  1549. nv_drain_tx(dev);
  1550. np->next_tx = np->nic_tx = 0;
  1551. setup_hw_rings(dev, NV_SETUP_TX_RING);
  1552. netif_wake_queue(dev);
  1553. }
  1554. /* 4) restart tx engine */
  1555. nv_start_tx(dev);
  1556. spin_unlock_irq(&np->lock);
  1557. }
  1558. /*
  1559. * Called when the nic notices a mismatch between the actual data len on the
  1560. * wire and the len indicated in the 802 header
  1561. */
  1562. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  1563. {
  1564. int hdrlen; /* length of the 802 header */
  1565. int protolen; /* length as stored in the proto field */
  1566. /* 1) calculate len according to header */
  1567. if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
  1568. protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
  1569. hdrlen = VLAN_HLEN;
  1570. } else {
  1571. protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
  1572. hdrlen = ETH_HLEN;
  1573. }
  1574. dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
  1575. dev->name, datalen, protolen, hdrlen);
  1576. if (protolen > ETH_DATA_LEN)
  1577. return datalen; /* Value in proto field not a len, no checks possible */
  1578. protolen += hdrlen;
  1579. /* consistency checks: */
  1580. if (datalen > ETH_ZLEN) {
  1581. if (datalen >= protolen) {
  1582. /* more data on wire than in 802 header, trim of
  1583. * additional data.
  1584. */
  1585. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  1586. dev->name, protolen);
  1587. return protolen;
  1588. } else {
  1589. /* less data on wire than mentioned in header.
  1590. * Discard the packet.
  1591. */
  1592. dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
  1593. dev->name);
  1594. return -1;
  1595. }
  1596. } else {
  1597. /* short packet. Accept only if 802 values are also short */
  1598. if (protolen > ETH_ZLEN) {
  1599. dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
  1600. dev->name);
  1601. return -1;
  1602. }
  1603. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  1604. dev->name, datalen);
  1605. return datalen;
  1606. }
  1607. }
  1608. static int nv_rx_process(struct net_device *dev, int limit)
  1609. {
  1610. struct fe_priv *np = netdev_priv(dev);
  1611. u32 flags;
  1612. u32 vlanflags = 0;
  1613. int count;
  1614. for (count = 0; count < limit; ++count) {
  1615. struct sk_buff *skb;
  1616. int len;
  1617. int i;
  1618. if (np->cur_rx - np->refill_rx >= np->rx_ring_size)
  1619. break; /* we scanned the whole ring - do not continue */
  1620. i = np->cur_rx % np->rx_ring_size;
  1621. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1622. flags = le32_to_cpu(np->rx_ring.orig[i].flaglen);
  1623. len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver);
  1624. } else {
  1625. flags = le32_to_cpu(np->rx_ring.ex[i].flaglen);
  1626. len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver);
  1627. vlanflags = le32_to_cpu(np->rx_ring.ex[i].buflow);
  1628. }
  1629. dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, flags 0x%x.\n",
  1630. dev->name, np->cur_rx, flags);
  1631. if (flags & NV_RX_AVAIL)
  1632. break; /* still owned by hardware, */
  1633. /*
  1634. * the packet is for us - immediately tear down the pci mapping.
  1635. * TODO: check if a prefetch of the first cacheline improves
  1636. * the performance.
  1637. */
  1638. pci_unmap_single(np->pci_dev, np->rx_dma[i],
  1639. np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
  1640. PCI_DMA_FROMDEVICE);
  1641. {
  1642. int j;
  1643. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  1644. for (j=0; j<64; j++) {
  1645. if ((j%16) == 0)
  1646. dprintk("\n%03x:", j);
  1647. dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]);
  1648. }
  1649. dprintk("\n");
  1650. }
  1651. /* look at what we actually got: */
  1652. if (np->desc_ver == DESC_VER_1) {
  1653. if (!(flags & NV_RX_DESCRIPTORVALID))
  1654. goto next_pkt;
  1655. if (flags & NV_RX_ERROR) {
  1656. if (flags & NV_RX_MISSEDFRAME) {
  1657. np->stats.rx_missed_errors++;
  1658. np->stats.rx_errors++;
  1659. goto next_pkt;
  1660. }
  1661. if (flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) {
  1662. np->stats.rx_errors++;
  1663. goto next_pkt;
  1664. }
  1665. if (flags & NV_RX_CRCERR) {
  1666. np->stats.rx_crc_errors++;
  1667. np->stats.rx_errors++;
  1668. goto next_pkt;
  1669. }
  1670. if (flags & NV_RX_OVERFLOW) {
  1671. np->stats.rx_over_errors++;
  1672. np->stats.rx_errors++;
  1673. goto next_pkt;
  1674. }
  1675. if (flags & NV_RX_ERROR4) {
  1676. len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
  1677. if (len < 0) {
  1678. np->stats.rx_errors++;
  1679. goto next_pkt;
  1680. }
  1681. }
  1682. /* framing errors are soft errors. */
  1683. if (flags & NV_RX_FRAMINGERR) {
  1684. if (flags & NV_RX_SUBSTRACT1) {
  1685. len--;
  1686. }
  1687. }
  1688. }
  1689. } else {
  1690. if (!(flags & NV_RX2_DESCRIPTORVALID))
  1691. goto next_pkt;
  1692. if (flags & NV_RX2_ERROR) {
  1693. if (flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) {
  1694. np->stats.rx_errors++;
  1695. goto next_pkt;
  1696. }
  1697. if (flags & NV_RX2_CRCERR) {
  1698. np->stats.rx_crc_errors++;
  1699. np->stats.rx_errors++;
  1700. goto next_pkt;
  1701. }
  1702. if (flags & NV_RX2_OVERFLOW) {
  1703. np->stats.rx_over_errors++;
  1704. np->stats.rx_errors++;
  1705. goto next_pkt;
  1706. }
  1707. if (flags & NV_RX2_ERROR4) {
  1708. len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
  1709. if (len < 0) {
  1710. np->stats.rx_errors++;
  1711. goto next_pkt;
  1712. }
  1713. }
  1714. /* framing errors are soft errors */
  1715. if (flags & NV_RX2_FRAMINGERR) {
  1716. if (flags & NV_RX2_SUBSTRACT1) {
  1717. len--;
  1718. }
  1719. }
  1720. }
  1721. if (np->rx_csum) {
  1722. flags &= NV_RX2_CHECKSUMMASK;
  1723. if (flags == NV_RX2_CHECKSUMOK1 ||
  1724. flags == NV_RX2_CHECKSUMOK2 ||
  1725. flags == NV_RX2_CHECKSUMOK3) {
  1726. dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
  1727. np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY;
  1728. } else {
  1729. dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
  1730. }
  1731. }
  1732. }
  1733. /* got a valid packet - forward it to the network core */
  1734. skb = np->rx_skbuff[i];
  1735. np->rx_skbuff[i] = NULL;
  1736. skb_put(skb, len);
  1737. skb->protocol = eth_type_trans(skb, dev);
  1738. dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n",
  1739. dev->name, np->cur_rx, len, skb->protocol);
  1740. #ifdef CONFIG_FORCEDETH_NAPI
  1741. if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT))
  1742. vlan_hwaccel_receive_skb(skb, np->vlangrp,
  1743. vlanflags & NV_RX3_VLAN_TAG_MASK);
  1744. else
  1745. netif_receive_skb(skb);
  1746. #else
  1747. if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT))
  1748. vlan_hwaccel_rx(skb, np->vlangrp,
  1749. vlanflags & NV_RX3_VLAN_TAG_MASK);
  1750. else
  1751. netif_rx(skb);
  1752. #endif
  1753. dev->last_rx = jiffies;
  1754. np->stats.rx_packets++;
  1755. np->stats.rx_bytes += len;
  1756. next_pkt:
  1757. np->cur_rx++;
  1758. }
  1759. return count;
  1760. }
  1761. static void set_bufsize(struct net_device *dev)
  1762. {
  1763. struct fe_priv *np = netdev_priv(dev);
  1764. if (dev->mtu <= ETH_DATA_LEN)
  1765. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  1766. else
  1767. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  1768. }
  1769. /*
  1770. * nv_change_mtu: dev->change_mtu function
  1771. * Called with dev_base_lock held for read.
  1772. */
  1773. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  1774. {
  1775. struct fe_priv *np = netdev_priv(dev);
  1776. int old_mtu;
  1777. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  1778. return -EINVAL;
  1779. old_mtu = dev->mtu;
  1780. dev->mtu = new_mtu;
  1781. /* return early if the buffer sizes will not change */
  1782. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  1783. return 0;
  1784. if (old_mtu == new_mtu)
  1785. return 0;
  1786. /* synchronized against open : rtnl_lock() held by caller */
  1787. if (netif_running(dev)) {
  1788. u8 __iomem *base = get_hwbase(dev);
  1789. /*
  1790. * It seems that the nic preloads valid ring entries into an
  1791. * internal buffer. The procedure for flushing everything is
  1792. * guessed, there is probably a simpler approach.
  1793. * Changing the MTU is a rare event, it shouldn't matter.
  1794. */
  1795. nv_disable_irq(dev);
  1796. netif_tx_lock_bh(dev);
  1797. spin_lock(&np->lock);
  1798. /* stop engines */
  1799. nv_stop_rx(dev);
  1800. nv_stop_tx(dev);
  1801. nv_txrx_reset(dev);
  1802. /* drain rx queue */
  1803. nv_drain_rx(dev);
  1804. nv_drain_tx(dev);
  1805. /* reinit driver view of the rx queue */
  1806. set_bufsize(dev);
  1807. if (nv_init_ring(dev)) {
  1808. if (!np->in_shutdown)
  1809. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1810. }
  1811. /* reinit nic view of the rx queue */
  1812. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  1813. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  1814. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  1815. base + NvRegRingSizes);
  1816. pci_push(base);
  1817. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1818. pci_push(base);
  1819. /* restart rx engine */
  1820. nv_start_rx(dev);
  1821. nv_start_tx(dev);
  1822. spin_unlock(&np->lock);
  1823. netif_tx_unlock_bh(dev);
  1824. nv_enable_irq(dev);
  1825. }
  1826. return 0;
  1827. }
  1828. static void nv_copy_mac_to_hw(struct net_device *dev)
  1829. {
  1830. u8 __iomem *base = get_hwbase(dev);
  1831. u32 mac[2];
  1832. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  1833. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  1834. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  1835. writel(mac[0], base + NvRegMacAddrA);
  1836. writel(mac[1], base + NvRegMacAddrB);
  1837. }
  1838. /*
  1839. * nv_set_mac_address: dev->set_mac_address function
  1840. * Called with rtnl_lock() held.
  1841. */
  1842. static int nv_set_mac_address(struct net_device *dev, void *addr)
  1843. {
  1844. struct fe_priv *np = netdev_priv(dev);
  1845. struct sockaddr *macaddr = (struct sockaddr*)addr;
  1846. if (!is_valid_ether_addr(macaddr->sa_data))
  1847. return -EADDRNOTAVAIL;
  1848. /* synchronized against open : rtnl_lock() held by caller */
  1849. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  1850. if (netif_running(dev)) {
  1851. netif_tx_lock_bh(dev);
  1852. spin_lock_irq(&np->lock);
  1853. /* stop rx engine */
  1854. nv_stop_rx(dev);
  1855. /* set mac address */
  1856. nv_copy_mac_to_hw(dev);
  1857. /* restart rx engine */
  1858. nv_start_rx(dev);
  1859. spin_unlock_irq(&np->lock);
  1860. netif_tx_unlock_bh(dev);
  1861. } else {
  1862. nv_copy_mac_to_hw(dev);
  1863. }
  1864. return 0;
  1865. }
  1866. /*
  1867. * nv_set_multicast: dev->set_multicast function
  1868. * Called with netif_tx_lock held.
  1869. */
  1870. static void nv_set_multicast(struct net_device *dev)
  1871. {
  1872. struct fe_priv *np = netdev_priv(dev);
  1873. u8 __iomem *base = get_hwbase(dev);
  1874. u32 addr[2];
  1875. u32 mask[2];
  1876. u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
  1877. memset(addr, 0, sizeof(addr));
  1878. memset(mask, 0, sizeof(mask));
  1879. if (dev->flags & IFF_PROMISC) {
  1880. pff |= NVREG_PFF_PROMISC;
  1881. } else {
  1882. pff |= NVREG_PFF_MYADDR;
  1883. if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
  1884. u32 alwaysOff[2];
  1885. u32 alwaysOn[2];
  1886. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  1887. if (dev->flags & IFF_ALLMULTI) {
  1888. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  1889. } else {
  1890. struct dev_mc_list *walk;
  1891. walk = dev->mc_list;
  1892. while (walk != NULL) {
  1893. u32 a, b;
  1894. a = le32_to_cpu(*(u32 *) walk->dmi_addr);
  1895. b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
  1896. alwaysOn[0] &= a;
  1897. alwaysOff[0] &= ~a;
  1898. alwaysOn[1] &= b;
  1899. alwaysOff[1] &= ~b;
  1900. walk = walk->next;
  1901. }
  1902. }
  1903. addr[0] = alwaysOn[0];
  1904. addr[1] = alwaysOn[1];
  1905. mask[0] = alwaysOn[0] | alwaysOff[0];
  1906. mask[1] = alwaysOn[1] | alwaysOff[1];
  1907. }
  1908. }
  1909. addr[0] |= NVREG_MCASTADDRA_FORCE;
  1910. pff |= NVREG_PFF_ALWAYS;
  1911. spin_lock_irq(&np->lock);
  1912. nv_stop_rx(dev);
  1913. writel(addr[0], base + NvRegMulticastAddrA);
  1914. writel(addr[1], base + NvRegMulticastAddrB);
  1915. writel(mask[0], base + NvRegMulticastMaskA);
  1916. writel(mask[1], base + NvRegMulticastMaskB);
  1917. writel(pff, base + NvRegPacketFilterFlags);
  1918. dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
  1919. dev->name);
  1920. nv_start_rx(dev);
  1921. spin_unlock_irq(&np->lock);
  1922. }
  1923. static void nv_update_pause(struct net_device *dev, u32 pause_flags)
  1924. {
  1925. struct fe_priv *np = netdev_priv(dev);
  1926. u8 __iomem *base = get_hwbase(dev);
  1927. np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
  1928. if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
  1929. u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
  1930. if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
  1931. writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
  1932. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  1933. } else {
  1934. writel(pff, base + NvRegPacketFilterFlags);
  1935. }
  1936. }
  1937. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
  1938. u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
  1939. if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
  1940. writel(NVREG_TX_PAUSEFRAME_ENABLE, base + NvRegTxPauseFrame);
  1941. writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
  1942. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  1943. } else {
  1944. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  1945. writel(regmisc, base + NvRegMisc1);
  1946. }
  1947. }
  1948. }
  1949. /**
  1950. * nv_update_linkspeed: Setup the MAC according to the link partner
  1951. * @dev: Network device to be configured
  1952. *
  1953. * The function queries the PHY and checks if there is a link partner.
  1954. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  1955. * set to 10 MBit HD.
  1956. *
  1957. * The function returns 0 if there is no link partner and 1 if there is
  1958. * a good link partner.
  1959. */
  1960. static int nv_update_linkspeed(struct net_device *dev)
  1961. {
  1962. struct fe_priv *np = netdev_priv(dev);
  1963. u8 __iomem *base = get_hwbase(dev);
  1964. int adv = 0;
  1965. int lpa = 0;
  1966. int adv_lpa, adv_pause, lpa_pause;
  1967. int newls = np->linkspeed;
  1968. int newdup = np->duplex;
  1969. int mii_status;
  1970. int retval = 0;
  1971. u32 control_1000, status_1000, phyreg, pause_flags, txreg;
  1972. /* BMSR_LSTATUS is latched, read it twice:
  1973. * we want the current value.
  1974. */
  1975. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1976. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1977. if (!(mii_status & BMSR_LSTATUS)) {
  1978. dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
  1979. dev->name);
  1980. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1981. newdup = 0;
  1982. retval = 0;
  1983. goto set_speed;
  1984. }
  1985. if (np->autoneg == 0) {
  1986. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
  1987. dev->name, np->fixed_mode);
  1988. if (np->fixed_mode & LPA_100FULL) {
  1989. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1990. newdup = 1;
  1991. } else if (np->fixed_mode & LPA_100HALF) {
  1992. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1993. newdup = 0;
  1994. } else if (np->fixed_mode & LPA_10FULL) {
  1995. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1996. newdup = 1;
  1997. } else {
  1998. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1999. newdup = 0;
  2000. }
  2001. retval = 1;
  2002. goto set_speed;
  2003. }
  2004. /* check auto negotiation is complete */
  2005. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  2006. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  2007. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2008. newdup = 0;
  2009. retval = 0;
  2010. dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
  2011. goto set_speed;
  2012. }
  2013. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2014. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  2015. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
  2016. dev->name, adv, lpa);
  2017. retval = 1;
  2018. if (np->gigabit == PHY_GIGABIT) {
  2019. control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2020. status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
  2021. if ((control_1000 & ADVERTISE_1000FULL) &&
  2022. (status_1000 & LPA_1000FULL)) {
  2023. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
  2024. dev->name);
  2025. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  2026. newdup = 1;
  2027. goto set_speed;
  2028. }
  2029. }
  2030. /* FIXME: handle parallel detection properly */
  2031. adv_lpa = lpa & adv;
  2032. if (adv_lpa & LPA_100FULL) {
  2033. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2034. newdup = 1;
  2035. } else if (adv_lpa & LPA_100HALF) {
  2036. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2037. newdup = 0;
  2038. } else if (adv_lpa & LPA_10FULL) {
  2039. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2040. newdup = 1;
  2041. } else if (adv_lpa & LPA_10HALF) {
  2042. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2043. newdup = 0;
  2044. } else {
  2045. dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
  2046. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2047. newdup = 0;
  2048. }
  2049. set_speed:
  2050. if (np->duplex == newdup && np->linkspeed == newls)
  2051. return retval;
  2052. dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
  2053. dev->name, np->linkspeed, np->duplex, newls, newdup);
  2054. np->duplex = newdup;
  2055. np->linkspeed = newls;
  2056. if (np->gigabit == PHY_GIGABIT) {
  2057. phyreg = readl(base + NvRegRandomSeed);
  2058. phyreg &= ~(0x3FF00);
  2059. if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
  2060. phyreg |= NVREG_RNDSEED_FORCE3;
  2061. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
  2062. phyreg |= NVREG_RNDSEED_FORCE2;
  2063. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  2064. phyreg |= NVREG_RNDSEED_FORCE;
  2065. writel(phyreg, base + NvRegRandomSeed);
  2066. }
  2067. phyreg = readl(base + NvRegPhyInterface);
  2068. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  2069. if (np->duplex == 0)
  2070. phyreg |= PHY_HALF;
  2071. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  2072. phyreg |= PHY_100;
  2073. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2074. phyreg |= PHY_1000;
  2075. writel(phyreg, base + NvRegPhyInterface);
  2076. if (phyreg & PHY_RGMII) {
  2077. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2078. txreg = NVREG_TX_DEFERRAL_RGMII_1000;
  2079. else
  2080. txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
  2081. } else {
  2082. txreg = NVREG_TX_DEFERRAL_DEFAULT;
  2083. }
  2084. writel(txreg, base + NvRegTxDeferral);
  2085. if (np->desc_ver == DESC_VER_1) {
  2086. txreg = NVREG_TX_WM_DESC1_DEFAULT;
  2087. } else {
  2088. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2089. txreg = NVREG_TX_WM_DESC2_3_1000;
  2090. else
  2091. txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
  2092. }
  2093. writel(txreg, base + NvRegTxWatermark);
  2094. writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
  2095. base + NvRegMisc1);
  2096. pci_push(base);
  2097. writel(np->linkspeed, base + NvRegLinkSpeed);
  2098. pci_push(base);
  2099. pause_flags = 0;
  2100. /* setup pause frame */
  2101. if (np->duplex != 0) {
  2102. if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
  2103. adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
  2104. lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
  2105. switch (adv_pause) {
  2106. case ADVERTISE_PAUSE_CAP:
  2107. if (lpa_pause & LPA_PAUSE_CAP) {
  2108. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2109. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2110. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2111. }
  2112. break;
  2113. case ADVERTISE_PAUSE_ASYM:
  2114. if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
  2115. {
  2116. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2117. }
  2118. break;
  2119. case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
  2120. if (lpa_pause & LPA_PAUSE_CAP)
  2121. {
  2122. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2123. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2124. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2125. }
  2126. if (lpa_pause == LPA_PAUSE_ASYM)
  2127. {
  2128. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2129. }
  2130. break;
  2131. }
  2132. } else {
  2133. pause_flags = np->pause_flags;
  2134. }
  2135. }
  2136. nv_update_pause(dev, pause_flags);
  2137. return retval;
  2138. }
  2139. static void nv_linkchange(struct net_device *dev)
  2140. {
  2141. if (nv_update_linkspeed(dev)) {
  2142. if (!netif_carrier_ok(dev)) {
  2143. netif_carrier_on(dev);
  2144. printk(KERN_INFO "%s: link up.\n", dev->name);
  2145. nv_start_rx(dev);
  2146. }
  2147. } else {
  2148. if (netif_carrier_ok(dev)) {
  2149. netif_carrier_off(dev);
  2150. printk(KERN_INFO "%s: link down.\n", dev->name);
  2151. nv_stop_rx(dev);
  2152. }
  2153. }
  2154. }
  2155. static void nv_link_irq(struct net_device *dev)
  2156. {
  2157. u8 __iomem *base = get_hwbase(dev);
  2158. u32 miistat;
  2159. miistat = readl(base + NvRegMIIStatus);
  2160. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  2161. dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
  2162. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  2163. nv_linkchange(dev);
  2164. dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
  2165. }
  2166. static irqreturn_t nv_nic_irq(int foo, void *data)
  2167. {
  2168. struct net_device *dev = (struct net_device *) data;
  2169. struct fe_priv *np = netdev_priv(dev);
  2170. u8 __iomem *base = get_hwbase(dev);
  2171. u32 events;
  2172. int i;
  2173. dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
  2174. for (i=0; ; i++) {
  2175. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  2176. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2177. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2178. } else {
  2179. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2180. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  2181. }
  2182. pci_push(base);
  2183. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2184. if (!(events & np->irqmask))
  2185. break;
  2186. spin_lock(&np->lock);
  2187. nv_tx_done(dev);
  2188. spin_unlock(&np->lock);
  2189. if (events & NVREG_IRQ_LINK) {
  2190. spin_lock(&np->lock);
  2191. nv_link_irq(dev);
  2192. spin_unlock(&np->lock);
  2193. }
  2194. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  2195. spin_lock(&np->lock);
  2196. nv_linkchange(dev);
  2197. spin_unlock(&np->lock);
  2198. np->link_timeout = jiffies + LINK_TIMEOUT;
  2199. }
  2200. if (events & (NVREG_IRQ_TX_ERR)) {
  2201. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2202. dev->name, events);
  2203. }
  2204. if (events & (NVREG_IRQ_UNKNOWN)) {
  2205. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  2206. dev->name, events);
  2207. }
  2208. #ifdef CONFIG_FORCEDETH_NAPI
  2209. if (events & NVREG_IRQ_RX_ALL) {
  2210. netif_rx_schedule(dev);
  2211. /* Disable furthur receive irq's */
  2212. spin_lock(&np->lock);
  2213. np->irqmask &= ~NVREG_IRQ_RX_ALL;
  2214. if (np->msi_flags & NV_MSI_X_ENABLED)
  2215. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2216. else
  2217. writel(np->irqmask, base + NvRegIrqMask);
  2218. spin_unlock(&np->lock);
  2219. }
  2220. #else
  2221. nv_rx_process(dev, dev->weight);
  2222. if (nv_alloc_rx(dev)) {
  2223. spin_lock(&np->lock);
  2224. if (!np->in_shutdown)
  2225. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2226. spin_unlock(&np->lock);
  2227. }
  2228. #endif
  2229. if (i > max_interrupt_work) {
  2230. spin_lock(&np->lock);
  2231. /* disable interrupts on the nic */
  2232. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2233. writel(0, base + NvRegIrqMask);
  2234. else
  2235. writel(np->irqmask, base + NvRegIrqMask);
  2236. pci_push(base);
  2237. if (!np->in_shutdown) {
  2238. np->nic_poll_irq = np->irqmask;
  2239. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2240. }
  2241. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  2242. spin_unlock(&np->lock);
  2243. break;
  2244. }
  2245. }
  2246. dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
  2247. return IRQ_RETVAL(i);
  2248. }
  2249. static irqreturn_t nv_nic_irq_tx(int foo, void *data)
  2250. {
  2251. struct net_device *dev = (struct net_device *) data;
  2252. struct fe_priv *np = netdev_priv(dev);
  2253. u8 __iomem *base = get_hwbase(dev);
  2254. u32 events;
  2255. int i;
  2256. unsigned long flags;
  2257. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
  2258. for (i=0; ; i++) {
  2259. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  2260. writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
  2261. pci_push(base);
  2262. dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
  2263. if (!(events & np->irqmask))
  2264. break;
  2265. spin_lock_irqsave(&np->lock, flags);
  2266. nv_tx_done(dev);
  2267. spin_unlock_irqrestore(&np->lock, flags);
  2268. if (events & (NVREG_IRQ_TX_ERR)) {
  2269. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2270. dev->name, events);
  2271. }
  2272. if (i > max_interrupt_work) {
  2273. spin_lock_irqsave(&np->lock, flags);
  2274. /* disable interrupts on the nic */
  2275. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  2276. pci_push(base);
  2277. if (!np->in_shutdown) {
  2278. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  2279. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2280. }
  2281. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
  2282. spin_unlock_irqrestore(&np->lock, flags);
  2283. break;
  2284. }
  2285. }
  2286. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
  2287. return IRQ_RETVAL(i);
  2288. }
  2289. #ifdef CONFIG_FORCEDETH_NAPI
  2290. static int nv_napi_poll(struct net_device *dev, int *budget)
  2291. {
  2292. int pkts, limit = min(*budget, dev->quota);
  2293. struct fe_priv *np = netdev_priv(dev);
  2294. u8 __iomem *base = get_hwbase(dev);
  2295. pkts = nv_rx_process(dev, limit);
  2296. if (nv_alloc_rx(dev)) {
  2297. spin_lock_irq(&np->lock);
  2298. if (!np->in_shutdown)
  2299. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2300. spin_unlock_irq(&np->lock);
  2301. }
  2302. if (pkts < limit) {
  2303. /* all done, no more packets present */
  2304. netif_rx_complete(dev);
  2305. /* re-enable receive interrupts */
  2306. spin_lock_irq(&np->lock);
  2307. np->irqmask |= NVREG_IRQ_RX_ALL;
  2308. if (np->msi_flags & NV_MSI_X_ENABLED)
  2309. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2310. else
  2311. writel(np->irqmask, base + NvRegIrqMask);
  2312. spin_unlock_irq(&np->lock);
  2313. return 0;
  2314. } else {
  2315. /* used up our quantum, so reschedule */
  2316. dev->quota -= pkts;
  2317. *budget -= pkts;
  2318. return 1;
  2319. }
  2320. }
  2321. #endif
  2322. #ifdef CONFIG_FORCEDETH_NAPI
  2323. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  2324. {
  2325. struct net_device *dev = (struct net_device *) data;
  2326. u8 __iomem *base = get_hwbase(dev);
  2327. u32 events;
  2328. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  2329. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  2330. if (events) {
  2331. netif_rx_schedule(dev);
  2332. /* disable receive interrupts on the nic */
  2333. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2334. pci_push(base);
  2335. }
  2336. return IRQ_HANDLED;
  2337. }
  2338. #else
  2339. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  2340. {
  2341. struct net_device *dev = (struct net_device *) data;
  2342. struct fe_priv *np = netdev_priv(dev);
  2343. u8 __iomem *base = get_hwbase(dev);
  2344. u32 events;
  2345. int i;
  2346. unsigned long flags;
  2347. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
  2348. for (i=0; ; i++) {
  2349. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  2350. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  2351. pci_push(base);
  2352. dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
  2353. if (!(events & np->irqmask))
  2354. break;
  2355. nv_rx_process(dev, dev->weight);
  2356. if (nv_alloc_rx(dev)) {
  2357. spin_lock_irqsave(&np->lock, flags);
  2358. if (!np->in_shutdown)
  2359. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2360. spin_unlock_irqrestore(&np->lock, flags);
  2361. }
  2362. if (i > max_interrupt_work) {
  2363. spin_lock_irqsave(&np->lock, flags);
  2364. /* disable interrupts on the nic */
  2365. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2366. pci_push(base);
  2367. if (!np->in_shutdown) {
  2368. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  2369. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2370. }
  2371. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
  2372. spin_unlock_irqrestore(&np->lock, flags);
  2373. break;
  2374. }
  2375. }
  2376. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
  2377. return IRQ_RETVAL(i);
  2378. }
  2379. #endif
  2380. static irqreturn_t nv_nic_irq_other(int foo, void *data)
  2381. {
  2382. struct net_device *dev = (struct net_device *) data;
  2383. struct fe_priv *np = netdev_priv(dev);
  2384. u8 __iomem *base = get_hwbase(dev);
  2385. u32 events;
  2386. int i;
  2387. unsigned long flags;
  2388. dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
  2389. for (i=0; ; i++) {
  2390. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  2391. writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
  2392. pci_push(base);
  2393. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2394. if (!(events & np->irqmask))
  2395. break;
  2396. if (events & NVREG_IRQ_LINK) {
  2397. spin_lock_irqsave(&np->lock, flags);
  2398. nv_link_irq(dev);
  2399. spin_unlock_irqrestore(&np->lock, flags);
  2400. }
  2401. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  2402. spin_lock_irqsave(&np->lock, flags);
  2403. nv_linkchange(dev);
  2404. spin_unlock_irqrestore(&np->lock, flags);
  2405. np->link_timeout = jiffies + LINK_TIMEOUT;
  2406. }
  2407. if (events & (NVREG_IRQ_UNKNOWN)) {
  2408. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  2409. dev->name, events);
  2410. }
  2411. if (i > max_interrupt_work) {
  2412. spin_lock_irqsave(&np->lock, flags);
  2413. /* disable interrupts on the nic */
  2414. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  2415. pci_push(base);
  2416. if (!np->in_shutdown) {
  2417. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  2418. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2419. }
  2420. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
  2421. spin_unlock_irqrestore(&np->lock, flags);
  2422. break;
  2423. }
  2424. }
  2425. dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
  2426. return IRQ_RETVAL(i);
  2427. }
  2428. static irqreturn_t nv_nic_irq_test(int foo, void *data)
  2429. {
  2430. struct net_device *dev = (struct net_device *) data;
  2431. struct fe_priv *np = netdev_priv(dev);
  2432. u8 __iomem *base = get_hwbase(dev);
  2433. u32 events;
  2434. dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
  2435. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  2436. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2437. writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
  2438. } else {
  2439. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2440. writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
  2441. }
  2442. pci_push(base);
  2443. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2444. if (!(events & NVREG_IRQ_TIMER))
  2445. return IRQ_RETVAL(0);
  2446. spin_lock(&np->lock);
  2447. np->intr_test = 1;
  2448. spin_unlock(&np->lock);
  2449. dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
  2450. return IRQ_RETVAL(1);
  2451. }
  2452. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  2453. {
  2454. u8 __iomem *base = get_hwbase(dev);
  2455. int i;
  2456. u32 msixmap = 0;
  2457. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  2458. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  2459. * the remaining 8 interrupts.
  2460. */
  2461. for (i = 0; i < 8; i++) {
  2462. if ((irqmask >> i) & 0x1) {
  2463. msixmap |= vector << (i << 2);
  2464. }
  2465. }
  2466. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  2467. msixmap = 0;
  2468. for (i = 0; i < 8; i++) {
  2469. if ((irqmask >> (i + 8)) & 0x1) {
  2470. msixmap |= vector << (i << 2);
  2471. }
  2472. }
  2473. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  2474. }
  2475. static int nv_request_irq(struct net_device *dev, int intr_test)
  2476. {
  2477. struct fe_priv *np = get_nvpriv(dev);
  2478. u8 __iomem *base = get_hwbase(dev);
  2479. int ret = 1;
  2480. int i;
  2481. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  2482. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  2483. np->msi_x_entry[i].entry = i;
  2484. }
  2485. if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
  2486. np->msi_flags |= NV_MSI_X_ENABLED;
  2487. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
  2488. /* Request irq for rx handling */
  2489. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, IRQF_SHARED, dev->name, dev) != 0) {
  2490. printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
  2491. pci_disable_msix(np->pci_dev);
  2492. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2493. goto out_err;
  2494. }
  2495. /* Request irq for tx handling */
  2496. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, IRQF_SHARED, dev->name, dev) != 0) {
  2497. printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
  2498. pci_disable_msix(np->pci_dev);
  2499. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2500. goto out_free_rx;
  2501. }
  2502. /* Request irq for link and timer handling */
  2503. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, IRQF_SHARED, dev->name, dev) != 0) {
  2504. printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
  2505. pci_disable_msix(np->pci_dev);
  2506. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2507. goto out_free_tx;
  2508. }
  2509. /* map interrupts to their respective vector */
  2510. writel(0, base + NvRegMSIXMap0);
  2511. writel(0, base + NvRegMSIXMap1);
  2512. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  2513. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  2514. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  2515. } else {
  2516. /* Request irq for all interrupts */
  2517. if ((!intr_test &&
  2518. request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq, IRQF_SHARED, dev->name, dev) != 0) ||
  2519. (intr_test &&
  2520. request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq_test, IRQF_SHARED, dev->name, dev) != 0)) {
  2521. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  2522. pci_disable_msix(np->pci_dev);
  2523. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2524. goto out_err;
  2525. }
  2526. /* map interrupts to vector 0 */
  2527. writel(0, base + NvRegMSIXMap0);
  2528. writel(0, base + NvRegMSIXMap1);
  2529. }
  2530. }
  2531. }
  2532. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  2533. if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
  2534. np->msi_flags |= NV_MSI_ENABLED;
  2535. if ((!intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq, IRQF_SHARED, dev->name, dev) != 0) ||
  2536. (intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq_test, IRQF_SHARED, dev->name, dev) != 0)) {
  2537. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  2538. pci_disable_msi(np->pci_dev);
  2539. np->msi_flags &= ~NV_MSI_ENABLED;
  2540. goto out_err;
  2541. }
  2542. /* map interrupts to vector 0 */
  2543. writel(0, base + NvRegMSIMap0);
  2544. writel(0, base + NvRegMSIMap1);
  2545. /* enable msi vector 0 */
  2546. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  2547. }
  2548. }
  2549. if (ret != 0) {
  2550. if ((!intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq, IRQF_SHARED, dev->name, dev) != 0) ||
  2551. (intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq_test, IRQF_SHARED, dev->name, dev) != 0))
  2552. goto out_err;
  2553. }
  2554. return 0;
  2555. out_free_tx:
  2556. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
  2557. out_free_rx:
  2558. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
  2559. out_err:
  2560. return 1;
  2561. }
  2562. static void nv_free_irq(struct net_device *dev)
  2563. {
  2564. struct fe_priv *np = get_nvpriv(dev);
  2565. int i;
  2566. if (np->msi_flags & NV_MSI_X_ENABLED) {
  2567. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  2568. free_irq(np->msi_x_entry[i].vector, dev);
  2569. }
  2570. pci_disable_msix(np->pci_dev);
  2571. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2572. } else {
  2573. free_irq(np->pci_dev->irq, dev);
  2574. if (np->msi_flags & NV_MSI_ENABLED) {
  2575. pci_disable_msi(np->pci_dev);
  2576. np->msi_flags &= ~NV_MSI_ENABLED;
  2577. }
  2578. }
  2579. }
  2580. static void nv_do_nic_poll(unsigned long data)
  2581. {
  2582. struct net_device *dev = (struct net_device *) data;
  2583. struct fe_priv *np = netdev_priv(dev);
  2584. u8 __iomem *base = get_hwbase(dev);
  2585. u32 mask = 0;
  2586. /*
  2587. * First disable irq(s) and then
  2588. * reenable interrupts on the nic, we have to do this before calling
  2589. * nv_nic_irq because that may decide to do otherwise
  2590. */
  2591. if (!using_multi_irqs(dev)) {
  2592. if (np->msi_flags & NV_MSI_X_ENABLED)
  2593. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  2594. else
  2595. disable_irq_lockdep(dev->irq);
  2596. mask = np->irqmask;
  2597. } else {
  2598. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  2599. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  2600. mask |= NVREG_IRQ_RX_ALL;
  2601. }
  2602. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  2603. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  2604. mask |= NVREG_IRQ_TX_ALL;
  2605. }
  2606. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  2607. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  2608. mask |= NVREG_IRQ_OTHER;
  2609. }
  2610. }
  2611. np->nic_poll_irq = 0;
  2612. /* FIXME: Do we need synchronize_irq(dev->irq) here? */
  2613. writel(mask, base + NvRegIrqMask);
  2614. pci_push(base);
  2615. if (!using_multi_irqs(dev)) {
  2616. nv_nic_irq(0, dev);
  2617. if (np->msi_flags & NV_MSI_X_ENABLED)
  2618. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  2619. else
  2620. enable_irq_lockdep(dev->irq);
  2621. } else {
  2622. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  2623. nv_nic_irq_rx(0, dev);
  2624. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  2625. }
  2626. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  2627. nv_nic_irq_tx(0, dev);
  2628. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  2629. }
  2630. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  2631. nv_nic_irq_other(0, dev);
  2632. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  2633. }
  2634. }
  2635. }
  2636. #ifdef CONFIG_NET_POLL_CONTROLLER
  2637. static void nv_poll_controller(struct net_device *dev)
  2638. {
  2639. nv_do_nic_poll((unsigned long) dev);
  2640. }
  2641. #endif
  2642. static void nv_do_stats_poll(unsigned long data)
  2643. {
  2644. struct net_device *dev = (struct net_device *) data;
  2645. struct fe_priv *np = netdev_priv(dev);
  2646. u8 __iomem *base = get_hwbase(dev);
  2647. np->estats.tx_bytes += readl(base + NvRegTxCnt);
  2648. np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
  2649. np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
  2650. np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
  2651. np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
  2652. np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
  2653. np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
  2654. np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
  2655. np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
  2656. np->estats.tx_deferral += readl(base + NvRegTxDef);
  2657. np->estats.tx_packets += readl(base + NvRegTxFrame);
  2658. np->estats.tx_pause += readl(base + NvRegTxPause);
  2659. np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
  2660. np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
  2661. np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
  2662. np->estats.rx_runt += readl(base + NvRegRxRunt);
  2663. np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
  2664. np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
  2665. np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
  2666. np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
  2667. np->estats.rx_length_error += readl(base + NvRegRxLenErr);
  2668. np->estats.rx_unicast += readl(base + NvRegRxUnicast);
  2669. np->estats.rx_multicast += readl(base + NvRegRxMulticast);
  2670. np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
  2671. np->estats.rx_bytes += readl(base + NvRegRxCnt);
  2672. np->estats.rx_pause += readl(base + NvRegRxPause);
  2673. np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
  2674. np->estats.rx_packets =
  2675. np->estats.rx_unicast +
  2676. np->estats.rx_multicast +
  2677. np->estats.rx_broadcast;
  2678. np->estats.rx_errors_total =
  2679. np->estats.rx_crc_errors +
  2680. np->estats.rx_over_errors +
  2681. np->estats.rx_frame_error +
  2682. (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
  2683. np->estats.rx_late_collision +
  2684. np->estats.rx_runt +
  2685. np->estats.rx_frame_too_long;
  2686. if (!np->in_shutdown)
  2687. mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
  2688. }
  2689. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  2690. {
  2691. struct fe_priv *np = netdev_priv(dev);
  2692. strcpy(info->driver, "forcedeth");
  2693. strcpy(info->version, FORCEDETH_VERSION);
  2694. strcpy(info->bus_info, pci_name(np->pci_dev));
  2695. }
  2696. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  2697. {
  2698. struct fe_priv *np = netdev_priv(dev);
  2699. wolinfo->supported = WAKE_MAGIC;
  2700. spin_lock_irq(&np->lock);
  2701. if (np->wolenabled)
  2702. wolinfo->wolopts = WAKE_MAGIC;
  2703. spin_unlock_irq(&np->lock);
  2704. }
  2705. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  2706. {
  2707. struct fe_priv *np = netdev_priv(dev);
  2708. u8 __iomem *base = get_hwbase(dev);
  2709. u32 flags = 0;
  2710. if (wolinfo->wolopts == 0) {
  2711. np->wolenabled = 0;
  2712. } else if (wolinfo->wolopts & WAKE_MAGIC) {
  2713. np->wolenabled = 1;
  2714. flags = NVREG_WAKEUPFLAGS_ENABLE;
  2715. }
  2716. if (netif_running(dev)) {
  2717. spin_lock_irq(&np->lock);
  2718. writel(flags, base + NvRegWakeUpFlags);
  2719. spin_unlock_irq(&np->lock);
  2720. }
  2721. return 0;
  2722. }
  2723. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  2724. {
  2725. struct fe_priv *np = netdev_priv(dev);
  2726. int adv;
  2727. spin_lock_irq(&np->lock);
  2728. ecmd->port = PORT_MII;
  2729. if (!netif_running(dev)) {
  2730. /* We do not track link speed / duplex setting if the
  2731. * interface is disabled. Force a link check */
  2732. if (nv_update_linkspeed(dev)) {
  2733. if (!netif_carrier_ok(dev))
  2734. netif_carrier_on(dev);
  2735. } else {
  2736. if (netif_carrier_ok(dev))
  2737. netif_carrier_off(dev);
  2738. }
  2739. }
  2740. if (netif_carrier_ok(dev)) {
  2741. switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  2742. case NVREG_LINKSPEED_10:
  2743. ecmd->speed = SPEED_10;
  2744. break;
  2745. case NVREG_LINKSPEED_100:
  2746. ecmd->speed = SPEED_100;
  2747. break;
  2748. case NVREG_LINKSPEED_1000:
  2749. ecmd->speed = SPEED_1000;
  2750. break;
  2751. }
  2752. ecmd->duplex = DUPLEX_HALF;
  2753. if (np->duplex)
  2754. ecmd->duplex = DUPLEX_FULL;
  2755. } else {
  2756. ecmd->speed = -1;
  2757. ecmd->duplex = -1;
  2758. }
  2759. ecmd->autoneg = np->autoneg;
  2760. ecmd->advertising = ADVERTISED_MII;
  2761. if (np->autoneg) {
  2762. ecmd->advertising |= ADVERTISED_Autoneg;
  2763. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2764. if (adv & ADVERTISE_10HALF)
  2765. ecmd->advertising |= ADVERTISED_10baseT_Half;
  2766. if (adv & ADVERTISE_10FULL)
  2767. ecmd->advertising |= ADVERTISED_10baseT_Full;
  2768. if (adv & ADVERTISE_100HALF)
  2769. ecmd->advertising |= ADVERTISED_100baseT_Half;
  2770. if (adv & ADVERTISE_100FULL)
  2771. ecmd->advertising |= ADVERTISED_100baseT_Full;
  2772. if (np->gigabit == PHY_GIGABIT) {
  2773. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2774. if (adv & ADVERTISE_1000FULL)
  2775. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  2776. }
  2777. }
  2778. ecmd->supported = (SUPPORTED_Autoneg |
  2779. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  2780. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  2781. SUPPORTED_MII);
  2782. if (np->gigabit == PHY_GIGABIT)
  2783. ecmd->supported |= SUPPORTED_1000baseT_Full;
  2784. ecmd->phy_address = np->phyaddr;
  2785. ecmd->transceiver = XCVR_EXTERNAL;
  2786. /* ignore maxtxpkt, maxrxpkt for now */
  2787. spin_unlock_irq(&np->lock);
  2788. return 0;
  2789. }
  2790. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  2791. {
  2792. struct fe_priv *np = netdev_priv(dev);
  2793. if (ecmd->port != PORT_MII)
  2794. return -EINVAL;
  2795. if (ecmd->transceiver != XCVR_EXTERNAL)
  2796. return -EINVAL;
  2797. if (ecmd->phy_address != np->phyaddr) {
  2798. /* TODO: support switching between multiple phys. Should be
  2799. * trivial, but not enabled due to lack of test hardware. */
  2800. return -EINVAL;
  2801. }
  2802. if (ecmd->autoneg == AUTONEG_ENABLE) {
  2803. u32 mask;
  2804. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  2805. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  2806. if (np->gigabit == PHY_GIGABIT)
  2807. mask |= ADVERTISED_1000baseT_Full;
  2808. if ((ecmd->advertising & mask) == 0)
  2809. return -EINVAL;
  2810. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  2811. /* Note: autonegotiation disable, speed 1000 intentionally
  2812. * forbidden - noone should need that. */
  2813. if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
  2814. return -EINVAL;
  2815. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  2816. return -EINVAL;
  2817. } else {
  2818. return -EINVAL;
  2819. }
  2820. netif_carrier_off(dev);
  2821. if (netif_running(dev)) {
  2822. nv_disable_irq(dev);
  2823. netif_tx_lock_bh(dev);
  2824. spin_lock(&np->lock);
  2825. /* stop engines */
  2826. nv_stop_rx(dev);
  2827. nv_stop_tx(dev);
  2828. spin_unlock(&np->lock);
  2829. netif_tx_unlock_bh(dev);
  2830. }
  2831. if (ecmd->autoneg == AUTONEG_ENABLE) {
  2832. int adv, bmcr;
  2833. np->autoneg = 1;
  2834. /* advertise only what has been requested */
  2835. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2836. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  2837. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  2838. adv |= ADVERTISE_10HALF;
  2839. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  2840. adv |= ADVERTISE_10FULL;
  2841. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  2842. adv |= ADVERTISE_100HALF;
  2843. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  2844. adv |= ADVERTISE_100FULL;
  2845. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  2846. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  2847. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2848. adv |= ADVERTISE_PAUSE_ASYM;
  2849. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  2850. if (np->gigabit == PHY_GIGABIT) {
  2851. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2852. adv &= ~ADVERTISE_1000FULL;
  2853. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  2854. adv |= ADVERTISE_1000FULL;
  2855. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  2856. }
  2857. if (netif_running(dev))
  2858. printk(KERN_INFO "%s: link down.\n", dev->name);
  2859. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  2860. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  2861. bmcr |= BMCR_ANENABLE;
  2862. /* reset the phy in order for settings to stick,
  2863. * and cause autoneg to start */
  2864. if (phy_reset(dev, bmcr)) {
  2865. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  2866. return -EINVAL;
  2867. }
  2868. } else {
  2869. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  2870. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  2871. }
  2872. } else {
  2873. int adv, bmcr;
  2874. np->autoneg = 0;
  2875. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2876. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  2877. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  2878. adv |= ADVERTISE_10HALF;
  2879. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  2880. adv |= ADVERTISE_10FULL;
  2881. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  2882. adv |= ADVERTISE_100HALF;
  2883. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  2884. adv |= ADVERTISE_100FULL;
  2885. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  2886. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
  2887. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  2888. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2889. }
  2890. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
  2891. adv |= ADVERTISE_PAUSE_ASYM;
  2892. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2893. }
  2894. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  2895. np->fixed_mode = adv;
  2896. if (np->gigabit == PHY_GIGABIT) {
  2897. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2898. adv &= ~ADVERTISE_1000FULL;
  2899. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  2900. }
  2901. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  2902. bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
  2903. if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  2904. bmcr |= BMCR_FULLDPLX;
  2905. if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  2906. bmcr |= BMCR_SPEED100;
  2907. if (np->phy_oui == PHY_OUI_MARVELL) {
  2908. /* reset the phy in order for forced mode settings to stick */
  2909. if (phy_reset(dev, bmcr)) {
  2910. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  2911. return -EINVAL;
  2912. }
  2913. } else {
  2914. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  2915. if (netif_running(dev)) {
  2916. /* Wait a bit and then reconfigure the nic. */
  2917. udelay(10);
  2918. nv_linkchange(dev);
  2919. }
  2920. }
  2921. }
  2922. if (netif_running(dev)) {
  2923. nv_start_rx(dev);
  2924. nv_start_tx(dev);
  2925. nv_enable_irq(dev);
  2926. }
  2927. return 0;
  2928. }
  2929. #define FORCEDETH_REGS_VER 1
  2930. static int nv_get_regs_len(struct net_device *dev)
  2931. {
  2932. struct fe_priv *np = netdev_priv(dev);
  2933. return np->register_size;
  2934. }
  2935. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  2936. {
  2937. struct fe_priv *np = netdev_priv(dev);
  2938. u8 __iomem *base = get_hwbase(dev);
  2939. u32 *rbuf = buf;
  2940. int i;
  2941. regs->version = FORCEDETH_REGS_VER;
  2942. spin_lock_irq(&np->lock);
  2943. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  2944. rbuf[i] = readl(base + i*sizeof(u32));
  2945. spin_unlock_irq(&np->lock);
  2946. }
  2947. static int nv_nway_reset(struct net_device *dev)
  2948. {
  2949. struct fe_priv *np = netdev_priv(dev);
  2950. int ret;
  2951. if (np->autoneg) {
  2952. int bmcr;
  2953. netif_carrier_off(dev);
  2954. if (netif_running(dev)) {
  2955. nv_disable_irq(dev);
  2956. netif_tx_lock_bh(dev);
  2957. spin_lock(&np->lock);
  2958. /* stop engines */
  2959. nv_stop_rx(dev);
  2960. nv_stop_tx(dev);
  2961. spin_unlock(&np->lock);
  2962. netif_tx_unlock_bh(dev);
  2963. printk(KERN_INFO "%s: link down.\n", dev->name);
  2964. }
  2965. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  2966. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  2967. bmcr |= BMCR_ANENABLE;
  2968. /* reset the phy in order for settings to stick*/
  2969. if (phy_reset(dev, bmcr)) {
  2970. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  2971. return -EINVAL;
  2972. }
  2973. } else {
  2974. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  2975. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  2976. }
  2977. if (netif_running(dev)) {
  2978. nv_start_rx(dev);
  2979. nv_start_tx(dev);
  2980. nv_enable_irq(dev);
  2981. }
  2982. ret = 0;
  2983. } else {
  2984. ret = -EINVAL;
  2985. }
  2986. return ret;
  2987. }
  2988. static int nv_set_tso(struct net_device *dev, u32 value)
  2989. {
  2990. struct fe_priv *np = netdev_priv(dev);
  2991. if ((np->driver_data & DEV_HAS_CHECKSUM))
  2992. return ethtool_op_set_tso(dev, value);
  2993. else
  2994. return -EOPNOTSUPP;
  2995. }
  2996. static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  2997. {
  2998. struct fe_priv *np = netdev_priv(dev);
  2999. ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  3000. ring->rx_mini_max_pending = 0;
  3001. ring->rx_jumbo_max_pending = 0;
  3002. ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  3003. ring->rx_pending = np->rx_ring_size;
  3004. ring->rx_mini_pending = 0;
  3005. ring->rx_jumbo_pending = 0;
  3006. ring->tx_pending = np->tx_ring_size;
  3007. }
  3008. static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  3009. {
  3010. struct fe_priv *np = netdev_priv(dev);
  3011. u8 __iomem *base = get_hwbase(dev);
  3012. u8 *rxtx_ring, *rx_skbuff, *tx_skbuff, *rx_dma, *tx_dma, *tx_dma_len;
  3013. dma_addr_t ring_addr;
  3014. if (ring->rx_pending < RX_RING_MIN ||
  3015. ring->tx_pending < TX_RING_MIN ||
  3016. ring->rx_mini_pending != 0 ||
  3017. ring->rx_jumbo_pending != 0 ||
  3018. (np->desc_ver == DESC_VER_1 &&
  3019. (ring->rx_pending > RING_MAX_DESC_VER_1 ||
  3020. ring->tx_pending > RING_MAX_DESC_VER_1)) ||
  3021. (np->desc_ver != DESC_VER_1 &&
  3022. (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
  3023. ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
  3024. return -EINVAL;
  3025. }
  3026. /* allocate new rings */
  3027. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3028. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  3029. sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  3030. &ring_addr);
  3031. } else {
  3032. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  3033. sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  3034. &ring_addr);
  3035. }
  3036. rx_skbuff = kmalloc(sizeof(struct sk_buff*) * ring->rx_pending, GFP_KERNEL);
  3037. rx_dma = kmalloc(sizeof(dma_addr_t) * ring->rx_pending, GFP_KERNEL);
  3038. tx_skbuff = kmalloc(sizeof(struct sk_buff*) * ring->tx_pending, GFP_KERNEL);
  3039. tx_dma = kmalloc(sizeof(dma_addr_t) * ring->tx_pending, GFP_KERNEL);
  3040. tx_dma_len = kmalloc(sizeof(unsigned int) * ring->tx_pending, GFP_KERNEL);
  3041. if (!rxtx_ring || !rx_skbuff || !rx_dma || !tx_skbuff || !tx_dma || !tx_dma_len) {
  3042. /* fall back to old rings */
  3043. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3044. if (rxtx_ring)
  3045. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  3046. rxtx_ring, ring_addr);
  3047. } else {
  3048. if (rxtx_ring)
  3049. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  3050. rxtx_ring, ring_addr);
  3051. }
  3052. if (rx_skbuff)
  3053. kfree(rx_skbuff);
  3054. if (rx_dma)
  3055. kfree(rx_dma);
  3056. if (tx_skbuff)
  3057. kfree(tx_skbuff);
  3058. if (tx_dma)
  3059. kfree(tx_dma);
  3060. if (tx_dma_len)
  3061. kfree(tx_dma_len);
  3062. goto exit;
  3063. }
  3064. if (netif_running(dev)) {
  3065. nv_disable_irq(dev);
  3066. netif_tx_lock_bh(dev);
  3067. spin_lock(&np->lock);
  3068. /* stop engines */
  3069. nv_stop_rx(dev);
  3070. nv_stop_tx(dev);
  3071. nv_txrx_reset(dev);
  3072. /* drain queues */
  3073. nv_drain_rx(dev);
  3074. nv_drain_tx(dev);
  3075. /* delete queues */
  3076. free_rings(dev);
  3077. }
  3078. /* set new values */
  3079. np->rx_ring_size = ring->rx_pending;
  3080. np->tx_ring_size = ring->tx_pending;
  3081. np->tx_limit_stop = ring->tx_pending - TX_LIMIT_DIFFERENCE;
  3082. np->tx_limit_start = ring->tx_pending - TX_LIMIT_DIFFERENCE - 1;
  3083. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3084. np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
  3085. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  3086. } else {
  3087. np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
  3088. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  3089. }
  3090. np->rx_skbuff = (struct sk_buff**)rx_skbuff;
  3091. np->rx_dma = (dma_addr_t*)rx_dma;
  3092. np->tx_skbuff = (struct sk_buff**)tx_skbuff;
  3093. np->tx_dma = (dma_addr_t*)tx_dma;
  3094. np->tx_dma_len = (unsigned int*)tx_dma_len;
  3095. np->ring_addr = ring_addr;
  3096. memset(np->rx_skbuff, 0, sizeof(struct sk_buff*) * np->rx_ring_size);
  3097. memset(np->rx_dma, 0, sizeof(dma_addr_t) * np->rx_ring_size);
  3098. memset(np->tx_skbuff, 0, sizeof(struct sk_buff*) * np->tx_ring_size);
  3099. memset(np->tx_dma, 0, sizeof(dma_addr_t) * np->tx_ring_size);
  3100. memset(np->tx_dma_len, 0, sizeof(unsigned int) * np->tx_ring_size);
  3101. if (netif_running(dev)) {
  3102. /* reinit driver view of the queues */
  3103. set_bufsize(dev);
  3104. if (nv_init_ring(dev)) {
  3105. if (!np->in_shutdown)
  3106. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3107. }
  3108. /* reinit nic view of the queues */
  3109. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3110. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3111. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3112. base + NvRegRingSizes);
  3113. pci_push(base);
  3114. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3115. pci_push(base);
  3116. /* restart engines */
  3117. nv_start_rx(dev);
  3118. nv_start_tx(dev);
  3119. spin_unlock(&np->lock);
  3120. netif_tx_unlock_bh(dev);
  3121. nv_enable_irq(dev);
  3122. }
  3123. return 0;
  3124. exit:
  3125. return -ENOMEM;
  3126. }
  3127. static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  3128. {
  3129. struct fe_priv *np = netdev_priv(dev);
  3130. pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
  3131. pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
  3132. pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
  3133. }
  3134. static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  3135. {
  3136. struct fe_priv *np = netdev_priv(dev);
  3137. int adv, bmcr;
  3138. if ((!np->autoneg && np->duplex == 0) ||
  3139. (np->autoneg && !pause->autoneg && np->duplex == 0)) {
  3140. printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
  3141. dev->name);
  3142. return -EINVAL;
  3143. }
  3144. if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
  3145. printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
  3146. return -EINVAL;
  3147. }
  3148. netif_carrier_off(dev);
  3149. if (netif_running(dev)) {
  3150. nv_disable_irq(dev);
  3151. netif_tx_lock_bh(dev);
  3152. spin_lock(&np->lock);
  3153. /* stop engines */
  3154. nv_stop_rx(dev);
  3155. nv_stop_tx(dev);
  3156. spin_unlock(&np->lock);
  3157. netif_tx_unlock_bh(dev);
  3158. }
  3159. np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
  3160. if (pause->rx_pause)
  3161. np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
  3162. if (pause->tx_pause)
  3163. np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
  3164. if (np->autoneg && pause->autoneg) {
  3165. np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
  3166. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3167. adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3168. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3169. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3170. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3171. adv |= ADVERTISE_PAUSE_ASYM;
  3172. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3173. if (netif_running(dev))
  3174. printk(KERN_INFO "%s: link down.\n", dev->name);
  3175. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3176. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3177. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3178. } else {
  3179. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3180. if (pause->rx_pause)
  3181. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3182. if (pause->tx_pause)
  3183. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3184. if (!netif_running(dev))
  3185. nv_update_linkspeed(dev);
  3186. else
  3187. nv_update_pause(dev, np->pause_flags);
  3188. }
  3189. if (netif_running(dev)) {
  3190. nv_start_rx(dev);
  3191. nv_start_tx(dev);
  3192. nv_enable_irq(dev);
  3193. }
  3194. return 0;
  3195. }
  3196. static u32 nv_get_rx_csum(struct net_device *dev)
  3197. {
  3198. struct fe_priv *np = netdev_priv(dev);
  3199. return (np->rx_csum) != 0;
  3200. }
  3201. static int nv_set_rx_csum(struct net_device *dev, u32 data)
  3202. {
  3203. struct fe_priv *np = netdev_priv(dev);
  3204. u8 __iomem *base = get_hwbase(dev);
  3205. int retcode = 0;
  3206. if (np->driver_data & DEV_HAS_CHECKSUM) {
  3207. if (data) {
  3208. np->rx_csum = 1;
  3209. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  3210. } else {
  3211. np->rx_csum = 0;
  3212. /* vlan is dependent on rx checksum offload */
  3213. if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
  3214. np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
  3215. }
  3216. if (netif_running(dev)) {
  3217. spin_lock_irq(&np->lock);
  3218. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  3219. spin_unlock_irq(&np->lock);
  3220. }
  3221. } else {
  3222. return -EINVAL;
  3223. }
  3224. return retcode;
  3225. }
  3226. static int nv_set_tx_csum(struct net_device *dev, u32 data)
  3227. {
  3228. struct fe_priv *np = netdev_priv(dev);
  3229. if (np->driver_data & DEV_HAS_CHECKSUM)
  3230. return ethtool_op_set_tx_hw_csum(dev, data);
  3231. else
  3232. return -EOPNOTSUPP;
  3233. }
  3234. static int nv_set_sg(struct net_device *dev, u32 data)
  3235. {
  3236. struct fe_priv *np = netdev_priv(dev);
  3237. if (np->driver_data & DEV_HAS_CHECKSUM)
  3238. return ethtool_op_set_sg(dev, data);
  3239. else
  3240. return -EOPNOTSUPP;
  3241. }
  3242. static int nv_get_stats_count(struct net_device *dev)
  3243. {
  3244. struct fe_priv *np = netdev_priv(dev);
  3245. if (np->driver_data & DEV_HAS_STATISTICS)
  3246. return sizeof(struct nv_ethtool_stats)/sizeof(u64);
  3247. else
  3248. return 0;
  3249. }
  3250. static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
  3251. {
  3252. struct fe_priv *np = netdev_priv(dev);
  3253. /* update stats */
  3254. nv_do_stats_poll((unsigned long)dev);
  3255. memcpy(buffer, &np->estats, nv_get_stats_count(dev)*sizeof(u64));
  3256. }
  3257. static int nv_self_test_count(struct net_device *dev)
  3258. {
  3259. struct fe_priv *np = netdev_priv(dev);
  3260. if (np->driver_data & DEV_HAS_TEST_EXTENDED)
  3261. return NV_TEST_COUNT_EXTENDED;
  3262. else
  3263. return NV_TEST_COUNT_BASE;
  3264. }
  3265. static int nv_link_test(struct net_device *dev)
  3266. {
  3267. struct fe_priv *np = netdev_priv(dev);
  3268. int mii_status;
  3269. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  3270. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  3271. /* check phy link status */
  3272. if (!(mii_status & BMSR_LSTATUS))
  3273. return 0;
  3274. else
  3275. return 1;
  3276. }
  3277. static int nv_register_test(struct net_device *dev)
  3278. {
  3279. u8 __iomem *base = get_hwbase(dev);
  3280. int i = 0;
  3281. u32 orig_read, new_read;
  3282. do {
  3283. orig_read = readl(base + nv_registers_test[i].reg);
  3284. /* xor with mask to toggle bits */
  3285. orig_read ^= nv_registers_test[i].mask;
  3286. writel(orig_read, base + nv_registers_test[i].reg);
  3287. new_read = readl(base + nv_registers_test[i].reg);
  3288. if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
  3289. return 0;
  3290. /* restore original value */
  3291. orig_read ^= nv_registers_test[i].mask;
  3292. writel(orig_read, base + nv_registers_test[i].reg);
  3293. } while (nv_registers_test[++i].reg != 0);
  3294. return 1;
  3295. }
  3296. static int nv_interrupt_test(struct net_device *dev)
  3297. {
  3298. struct fe_priv *np = netdev_priv(dev);
  3299. u8 __iomem *base = get_hwbase(dev);
  3300. int ret = 1;
  3301. int testcnt;
  3302. u32 save_msi_flags, save_poll_interval = 0;
  3303. if (netif_running(dev)) {
  3304. /* free current irq */
  3305. nv_free_irq(dev);
  3306. save_poll_interval = readl(base+NvRegPollingInterval);
  3307. }
  3308. /* flag to test interrupt handler */
  3309. np->intr_test = 0;
  3310. /* setup test irq */
  3311. save_msi_flags = np->msi_flags;
  3312. np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
  3313. np->msi_flags |= 0x001; /* setup 1 vector */
  3314. if (nv_request_irq(dev, 1))
  3315. return 0;
  3316. /* setup timer interrupt */
  3317. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  3318. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  3319. nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  3320. /* wait for at least one interrupt */
  3321. msleep(100);
  3322. spin_lock_irq(&np->lock);
  3323. /* flag should be set within ISR */
  3324. testcnt = np->intr_test;
  3325. if (!testcnt)
  3326. ret = 2;
  3327. nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  3328. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3329. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3330. else
  3331. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3332. spin_unlock_irq(&np->lock);
  3333. nv_free_irq(dev);
  3334. np->msi_flags = save_msi_flags;
  3335. if (netif_running(dev)) {
  3336. writel(save_poll_interval, base + NvRegPollingInterval);
  3337. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  3338. /* restore original irq */
  3339. if (nv_request_irq(dev, 0))
  3340. return 0;
  3341. }
  3342. return ret;
  3343. }
  3344. static int nv_loopback_test(struct net_device *dev)
  3345. {
  3346. struct fe_priv *np = netdev_priv(dev);
  3347. u8 __iomem *base = get_hwbase(dev);
  3348. struct sk_buff *tx_skb, *rx_skb;
  3349. dma_addr_t test_dma_addr;
  3350. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  3351. u32 flags;
  3352. int len, i, pkt_len;
  3353. u8 *pkt_data;
  3354. u32 filter_flags = 0;
  3355. u32 misc1_flags = 0;
  3356. int ret = 1;
  3357. if (netif_running(dev)) {
  3358. nv_disable_irq(dev);
  3359. filter_flags = readl(base + NvRegPacketFilterFlags);
  3360. misc1_flags = readl(base + NvRegMisc1);
  3361. } else {
  3362. nv_txrx_reset(dev);
  3363. }
  3364. /* reinit driver view of the rx queue */
  3365. set_bufsize(dev);
  3366. nv_init_ring(dev);
  3367. /* setup hardware for loopback */
  3368. writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
  3369. writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
  3370. /* reinit nic view of the rx queue */
  3371. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3372. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3373. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3374. base + NvRegRingSizes);
  3375. pci_push(base);
  3376. /* restart rx engine */
  3377. nv_start_rx(dev);
  3378. nv_start_tx(dev);
  3379. /* setup packet for tx */
  3380. pkt_len = ETH_DATA_LEN;
  3381. tx_skb = dev_alloc_skb(pkt_len);
  3382. if (!tx_skb) {
  3383. printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
  3384. " of %s\n", dev->name);
  3385. ret = 0;
  3386. goto out;
  3387. }
  3388. pkt_data = skb_put(tx_skb, pkt_len);
  3389. for (i = 0; i < pkt_len; i++)
  3390. pkt_data[i] = (u8)(i & 0xff);
  3391. test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
  3392. tx_skb->end-tx_skb->data, PCI_DMA_FROMDEVICE);
  3393. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3394. np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
  3395. np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  3396. } else {
  3397. np->tx_ring.ex[0].bufhigh = cpu_to_le64(test_dma_addr) >> 32;
  3398. np->tx_ring.ex[0].buflow = cpu_to_le64(test_dma_addr) & 0x0FFFFFFFF;
  3399. np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  3400. }
  3401. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3402. pci_push(get_hwbase(dev));
  3403. msleep(500);
  3404. /* check for rx of the packet */
  3405. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3406. flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
  3407. len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
  3408. } else {
  3409. flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
  3410. len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
  3411. }
  3412. if (flags & NV_RX_AVAIL) {
  3413. ret = 0;
  3414. } else if (np->desc_ver == DESC_VER_1) {
  3415. if (flags & NV_RX_ERROR)
  3416. ret = 0;
  3417. } else {
  3418. if (flags & NV_RX2_ERROR) {
  3419. ret = 0;
  3420. }
  3421. }
  3422. if (ret) {
  3423. if (len != pkt_len) {
  3424. ret = 0;
  3425. dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
  3426. dev->name, len, pkt_len);
  3427. } else {
  3428. rx_skb = np->rx_skbuff[0];
  3429. for (i = 0; i < pkt_len; i++) {
  3430. if (rx_skb->data[i] != (u8)(i & 0xff)) {
  3431. ret = 0;
  3432. dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
  3433. dev->name, i);
  3434. break;
  3435. }
  3436. }
  3437. }
  3438. } else {
  3439. dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
  3440. }
  3441. pci_unmap_page(np->pci_dev, test_dma_addr,
  3442. tx_skb->end-tx_skb->data,
  3443. PCI_DMA_TODEVICE);
  3444. dev_kfree_skb_any(tx_skb);
  3445. out:
  3446. /* stop engines */
  3447. nv_stop_rx(dev);
  3448. nv_stop_tx(dev);
  3449. nv_txrx_reset(dev);
  3450. /* drain rx queue */
  3451. nv_drain_rx(dev);
  3452. nv_drain_tx(dev);
  3453. if (netif_running(dev)) {
  3454. writel(misc1_flags, base + NvRegMisc1);
  3455. writel(filter_flags, base + NvRegPacketFilterFlags);
  3456. nv_enable_irq(dev);
  3457. }
  3458. return ret;
  3459. }
  3460. static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
  3461. {
  3462. struct fe_priv *np = netdev_priv(dev);
  3463. u8 __iomem *base = get_hwbase(dev);
  3464. int result;
  3465. memset(buffer, 0, nv_self_test_count(dev)*sizeof(u64));
  3466. if (!nv_link_test(dev)) {
  3467. test->flags |= ETH_TEST_FL_FAILED;
  3468. buffer[0] = 1;
  3469. }
  3470. if (test->flags & ETH_TEST_FL_OFFLINE) {
  3471. if (netif_running(dev)) {
  3472. netif_stop_queue(dev);
  3473. netif_poll_disable(dev);
  3474. netif_tx_lock_bh(dev);
  3475. spin_lock_irq(&np->lock);
  3476. nv_disable_hw_interrupts(dev, np->irqmask);
  3477. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3478. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3479. } else {
  3480. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3481. }
  3482. /* stop engines */
  3483. nv_stop_rx(dev);
  3484. nv_stop_tx(dev);
  3485. nv_txrx_reset(dev);
  3486. /* drain rx queue */
  3487. nv_drain_rx(dev);
  3488. nv_drain_tx(dev);
  3489. spin_unlock_irq(&np->lock);
  3490. netif_tx_unlock_bh(dev);
  3491. }
  3492. if (!nv_register_test(dev)) {
  3493. test->flags |= ETH_TEST_FL_FAILED;
  3494. buffer[1] = 1;
  3495. }
  3496. result = nv_interrupt_test(dev);
  3497. if (result != 1) {
  3498. test->flags |= ETH_TEST_FL_FAILED;
  3499. buffer[2] = 1;
  3500. }
  3501. if (result == 0) {
  3502. /* bail out */
  3503. return;
  3504. }
  3505. if (!nv_loopback_test(dev)) {
  3506. test->flags |= ETH_TEST_FL_FAILED;
  3507. buffer[3] = 1;
  3508. }
  3509. if (netif_running(dev)) {
  3510. /* reinit driver view of the rx queue */
  3511. set_bufsize(dev);
  3512. if (nv_init_ring(dev)) {
  3513. if (!np->in_shutdown)
  3514. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3515. }
  3516. /* reinit nic view of the rx queue */
  3517. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3518. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3519. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3520. base + NvRegRingSizes);
  3521. pci_push(base);
  3522. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3523. pci_push(base);
  3524. /* restart rx engine */
  3525. nv_start_rx(dev);
  3526. nv_start_tx(dev);
  3527. netif_start_queue(dev);
  3528. netif_poll_enable(dev);
  3529. nv_enable_hw_interrupts(dev, np->irqmask);
  3530. }
  3531. }
  3532. }
  3533. static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
  3534. {
  3535. switch (stringset) {
  3536. case ETH_SS_STATS:
  3537. memcpy(buffer, &nv_estats_str, nv_get_stats_count(dev)*sizeof(struct nv_ethtool_str));
  3538. break;
  3539. case ETH_SS_TEST:
  3540. memcpy(buffer, &nv_etests_str, nv_self_test_count(dev)*sizeof(struct nv_ethtool_str));
  3541. break;
  3542. }
  3543. }
  3544. static const struct ethtool_ops ops = {
  3545. .get_drvinfo = nv_get_drvinfo,
  3546. .get_link = ethtool_op_get_link,
  3547. .get_wol = nv_get_wol,
  3548. .set_wol = nv_set_wol,
  3549. .get_settings = nv_get_settings,
  3550. .set_settings = nv_set_settings,
  3551. .get_regs_len = nv_get_regs_len,
  3552. .get_regs = nv_get_regs,
  3553. .nway_reset = nv_nway_reset,
  3554. .get_perm_addr = ethtool_op_get_perm_addr,
  3555. .get_tso = ethtool_op_get_tso,
  3556. .set_tso = nv_set_tso,
  3557. .get_ringparam = nv_get_ringparam,
  3558. .set_ringparam = nv_set_ringparam,
  3559. .get_pauseparam = nv_get_pauseparam,
  3560. .set_pauseparam = nv_set_pauseparam,
  3561. .get_rx_csum = nv_get_rx_csum,
  3562. .set_rx_csum = nv_set_rx_csum,
  3563. .get_tx_csum = ethtool_op_get_tx_csum,
  3564. .set_tx_csum = nv_set_tx_csum,
  3565. .get_sg = ethtool_op_get_sg,
  3566. .set_sg = nv_set_sg,
  3567. .get_strings = nv_get_strings,
  3568. .get_stats_count = nv_get_stats_count,
  3569. .get_ethtool_stats = nv_get_ethtool_stats,
  3570. .self_test_count = nv_self_test_count,
  3571. .self_test = nv_self_test,
  3572. };
  3573. static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  3574. {
  3575. struct fe_priv *np = get_nvpriv(dev);
  3576. spin_lock_irq(&np->lock);
  3577. /* save vlan group */
  3578. np->vlangrp = grp;
  3579. if (grp) {
  3580. /* enable vlan on MAC */
  3581. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
  3582. } else {
  3583. /* disable vlan on MAC */
  3584. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  3585. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  3586. }
  3587. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3588. spin_unlock_irq(&np->lock);
  3589. };
  3590. static void nv_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
  3591. {
  3592. /* nothing to do */
  3593. };
  3594. /* The mgmt unit and driver use a semaphore to access the phy during init */
  3595. static int nv_mgmt_acquire_sema(struct net_device *dev)
  3596. {
  3597. u8 __iomem *base = get_hwbase(dev);
  3598. int i;
  3599. u32 tx_ctrl, mgmt_sema;
  3600. for (i = 0; i < 10; i++) {
  3601. mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
  3602. if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
  3603. break;
  3604. msleep(500);
  3605. }
  3606. if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
  3607. return 0;
  3608. for (i = 0; i < 2; i++) {
  3609. tx_ctrl = readl(base + NvRegTransmitterControl);
  3610. tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
  3611. writel(tx_ctrl, base + NvRegTransmitterControl);
  3612. /* verify that semaphore was acquired */
  3613. tx_ctrl = readl(base + NvRegTransmitterControl);
  3614. if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
  3615. ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE))
  3616. return 1;
  3617. else
  3618. udelay(50);
  3619. }
  3620. return 0;
  3621. }
  3622. /* Indicate to mgmt unit whether driver is loaded or not */
  3623. static void nv_mgmt_driver_loaded(struct net_device *dev, int loaded)
  3624. {
  3625. u8 __iomem *base = get_hwbase(dev);
  3626. u32 tx_ctrl;
  3627. tx_ctrl = readl(base + NvRegTransmitterControl);
  3628. if (loaded)
  3629. tx_ctrl |= NVREG_XMITCTL_HOST_LOADED;
  3630. else
  3631. tx_ctrl &= ~NVREG_XMITCTL_HOST_LOADED;
  3632. writel(tx_ctrl, base + NvRegTransmitterControl);
  3633. }
  3634. static int nv_open(struct net_device *dev)
  3635. {
  3636. struct fe_priv *np = netdev_priv(dev);
  3637. u8 __iomem *base = get_hwbase(dev);
  3638. int ret = 1;
  3639. int oom, i;
  3640. dprintk(KERN_DEBUG "nv_open: begin\n");
  3641. /* erase previous misconfiguration */
  3642. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  3643. nv_mac_reset(dev);
  3644. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  3645. writel(0, base + NvRegMulticastAddrB);
  3646. writel(0, base + NvRegMulticastMaskA);
  3647. writel(0, base + NvRegMulticastMaskB);
  3648. writel(0, base + NvRegPacketFilterFlags);
  3649. writel(0, base + NvRegTransmitterControl);
  3650. writel(0, base + NvRegReceiverControl);
  3651. writel(0, base + NvRegAdapterControl);
  3652. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
  3653. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  3654. /* initialize descriptor rings */
  3655. set_bufsize(dev);
  3656. oom = nv_init_ring(dev);
  3657. writel(0, base + NvRegLinkSpeed);
  3658. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  3659. nv_txrx_reset(dev);
  3660. writel(0, base + NvRegUnknownSetupReg6);
  3661. np->in_shutdown = 0;
  3662. /* give hw rings */
  3663. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3664. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3665. base + NvRegRingSizes);
  3666. writel(np->linkspeed, base + NvRegLinkSpeed);
  3667. if (np->desc_ver == DESC_VER_1)
  3668. writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
  3669. else
  3670. writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
  3671. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  3672. writel(np->vlanctl_bits, base + NvRegVlanControl);
  3673. pci_push(base);
  3674. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  3675. reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  3676. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
  3677. KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
  3678. writel(0, base + NvRegMIIMask);
  3679. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3680. writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
  3681. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  3682. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  3683. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  3684. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3685. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  3686. get_random_bytes(&i, sizeof(i));
  3687. writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
  3688. writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
  3689. writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
  3690. if (poll_interval == -1) {
  3691. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  3692. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  3693. else
  3694. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  3695. }
  3696. else
  3697. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  3698. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  3699. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  3700. base + NvRegAdapterControl);
  3701. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  3702. writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
  3703. if (np->wolenabled)
  3704. writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
  3705. i = readl(base + NvRegPowerState);
  3706. if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
  3707. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  3708. pci_push(base);
  3709. udelay(10);
  3710. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  3711. nv_disable_hw_interrupts(dev, np->irqmask);
  3712. pci_push(base);
  3713. writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
  3714. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3715. pci_push(base);
  3716. if (nv_request_irq(dev, 0)) {
  3717. goto out_drain;
  3718. }
  3719. /* ask for interrupts */
  3720. nv_enable_hw_interrupts(dev, np->irqmask);
  3721. spin_lock_irq(&np->lock);
  3722. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  3723. writel(0, base + NvRegMulticastAddrB);
  3724. writel(0, base + NvRegMulticastMaskA);
  3725. writel(0, base + NvRegMulticastMaskB);
  3726. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  3727. /* One manual link speed update: Interrupts are enabled, future link
  3728. * speed changes cause interrupts and are handled by nv_link_irq().
  3729. */
  3730. {
  3731. u32 miistat;
  3732. miistat = readl(base + NvRegMIIStatus);
  3733. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  3734. dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
  3735. }
  3736. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  3737. * to init hw */
  3738. np->linkspeed = 0;
  3739. ret = nv_update_linkspeed(dev);
  3740. nv_start_rx(dev);
  3741. nv_start_tx(dev);
  3742. netif_start_queue(dev);
  3743. netif_poll_enable(dev);
  3744. if (ret) {
  3745. netif_carrier_on(dev);
  3746. } else {
  3747. printk("%s: no link during initialization.\n", dev->name);
  3748. netif_carrier_off(dev);
  3749. }
  3750. if (oom)
  3751. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3752. /* start statistics timer */
  3753. if (np->driver_data & DEV_HAS_STATISTICS)
  3754. mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
  3755. spin_unlock_irq(&np->lock);
  3756. return 0;
  3757. out_drain:
  3758. drain_ring(dev);
  3759. return ret;
  3760. }
  3761. static int nv_close(struct net_device *dev)
  3762. {
  3763. struct fe_priv *np = netdev_priv(dev);
  3764. u8 __iomem *base;
  3765. spin_lock_irq(&np->lock);
  3766. np->in_shutdown = 1;
  3767. spin_unlock_irq(&np->lock);
  3768. netif_poll_disable(dev);
  3769. synchronize_irq(dev->irq);
  3770. del_timer_sync(&np->oom_kick);
  3771. del_timer_sync(&np->nic_poll);
  3772. del_timer_sync(&np->stats_poll);
  3773. netif_stop_queue(dev);
  3774. spin_lock_irq(&np->lock);
  3775. nv_stop_tx(dev);
  3776. nv_stop_rx(dev);
  3777. nv_txrx_reset(dev);
  3778. /* disable interrupts on the nic or we will lock up */
  3779. base = get_hwbase(dev);
  3780. nv_disable_hw_interrupts(dev, np->irqmask);
  3781. pci_push(base);
  3782. dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
  3783. spin_unlock_irq(&np->lock);
  3784. nv_free_irq(dev);
  3785. drain_ring(dev);
  3786. if (np->wolenabled)
  3787. nv_start_rx(dev);
  3788. /* FIXME: power down nic */
  3789. return 0;
  3790. }
  3791. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  3792. {
  3793. struct net_device *dev;
  3794. struct fe_priv *np;
  3795. unsigned long addr;
  3796. u8 __iomem *base;
  3797. int err, i;
  3798. u32 powerstate, txreg;
  3799. u32 phystate_orig = 0, phystate;
  3800. int phyinitialized = 0;
  3801. dev = alloc_etherdev(sizeof(struct fe_priv));
  3802. err = -ENOMEM;
  3803. if (!dev)
  3804. goto out;
  3805. np = netdev_priv(dev);
  3806. np->pci_dev = pci_dev;
  3807. spin_lock_init(&np->lock);
  3808. SET_MODULE_OWNER(dev);
  3809. SET_NETDEV_DEV(dev, &pci_dev->dev);
  3810. init_timer(&np->oom_kick);
  3811. np->oom_kick.data = (unsigned long) dev;
  3812. np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
  3813. init_timer(&np->nic_poll);
  3814. np->nic_poll.data = (unsigned long) dev;
  3815. np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
  3816. init_timer(&np->stats_poll);
  3817. np->stats_poll.data = (unsigned long) dev;
  3818. np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
  3819. err = pci_enable_device(pci_dev);
  3820. if (err) {
  3821. printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
  3822. err, pci_name(pci_dev));
  3823. goto out_free;
  3824. }
  3825. pci_set_master(pci_dev);
  3826. err = pci_request_regions(pci_dev, DRV_NAME);
  3827. if (err < 0)
  3828. goto out_disable;
  3829. if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS))
  3830. np->register_size = NV_PCI_REGSZ_VER2;
  3831. else
  3832. np->register_size = NV_PCI_REGSZ_VER1;
  3833. err = -EINVAL;
  3834. addr = 0;
  3835. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  3836. dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
  3837. pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
  3838. pci_resource_len(pci_dev, i),
  3839. pci_resource_flags(pci_dev, i));
  3840. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  3841. pci_resource_len(pci_dev, i) >= np->register_size) {
  3842. addr = pci_resource_start(pci_dev, i);
  3843. break;
  3844. }
  3845. }
  3846. if (i == DEVICE_COUNT_RESOURCE) {
  3847. printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
  3848. pci_name(pci_dev));
  3849. goto out_relreg;
  3850. }
  3851. /* copy of driver data */
  3852. np->driver_data = id->driver_data;
  3853. /* handle different descriptor versions */
  3854. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  3855. /* packet format 3: supports 40-bit addressing */
  3856. np->desc_ver = DESC_VER_3;
  3857. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  3858. if (dma_64bit) {
  3859. if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK)) {
  3860. printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
  3861. pci_name(pci_dev));
  3862. } else {
  3863. dev->features |= NETIF_F_HIGHDMA;
  3864. printk(KERN_INFO "forcedeth: using HIGHDMA\n");
  3865. }
  3866. if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) {
  3867. printk(KERN_INFO "forcedeth: 64-bit DMA (consistent) failed, using 32-bit ring buffers for device %s.\n",
  3868. pci_name(pci_dev));
  3869. }
  3870. }
  3871. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  3872. /* packet format 2: supports jumbo frames */
  3873. np->desc_ver = DESC_VER_2;
  3874. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  3875. } else {
  3876. /* original packet format */
  3877. np->desc_ver = DESC_VER_1;
  3878. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  3879. }
  3880. np->pkt_limit = NV_PKTLIMIT_1;
  3881. if (id->driver_data & DEV_HAS_LARGEDESC)
  3882. np->pkt_limit = NV_PKTLIMIT_2;
  3883. if (id->driver_data & DEV_HAS_CHECKSUM) {
  3884. np->rx_csum = 1;
  3885. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  3886. dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
  3887. #ifdef NETIF_F_TSO
  3888. dev->features |= NETIF_F_TSO;
  3889. #endif
  3890. }
  3891. np->vlanctl_bits = 0;
  3892. if (id->driver_data & DEV_HAS_VLAN) {
  3893. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  3894. dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  3895. dev->vlan_rx_register = nv_vlan_rx_register;
  3896. dev->vlan_rx_kill_vid = nv_vlan_rx_kill_vid;
  3897. }
  3898. np->msi_flags = 0;
  3899. if ((id->driver_data & DEV_HAS_MSI) && msi) {
  3900. np->msi_flags |= NV_MSI_CAPABLE;
  3901. }
  3902. if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
  3903. np->msi_flags |= NV_MSI_X_CAPABLE;
  3904. }
  3905. np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
  3906. if (id->driver_data & DEV_HAS_PAUSEFRAME_TX) {
  3907. np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
  3908. }
  3909. err = -ENOMEM;
  3910. np->base = ioremap(addr, np->register_size);
  3911. if (!np->base)
  3912. goto out_relreg;
  3913. dev->base_addr = (unsigned long)np->base;
  3914. dev->irq = pci_dev->irq;
  3915. np->rx_ring_size = RX_RING_DEFAULT;
  3916. np->tx_ring_size = TX_RING_DEFAULT;
  3917. np->tx_limit_stop = np->tx_ring_size - TX_LIMIT_DIFFERENCE;
  3918. np->tx_limit_start = np->tx_ring_size - TX_LIMIT_DIFFERENCE - 1;
  3919. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3920. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  3921. sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  3922. &np->ring_addr);
  3923. if (!np->rx_ring.orig)
  3924. goto out_unmap;
  3925. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  3926. } else {
  3927. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  3928. sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  3929. &np->ring_addr);
  3930. if (!np->rx_ring.ex)
  3931. goto out_unmap;
  3932. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  3933. }
  3934. np->rx_skbuff = kmalloc(sizeof(struct sk_buff*) * np->rx_ring_size, GFP_KERNEL);
  3935. np->rx_dma = kmalloc(sizeof(dma_addr_t) * np->rx_ring_size, GFP_KERNEL);
  3936. np->tx_skbuff = kmalloc(sizeof(struct sk_buff*) * np->tx_ring_size, GFP_KERNEL);
  3937. np->tx_dma = kmalloc(sizeof(dma_addr_t) * np->tx_ring_size, GFP_KERNEL);
  3938. np->tx_dma_len = kmalloc(sizeof(unsigned int) * np->tx_ring_size, GFP_KERNEL);
  3939. if (!np->rx_skbuff || !np->rx_dma || !np->tx_skbuff || !np->tx_dma || !np->tx_dma_len)
  3940. goto out_freering;
  3941. memset(np->rx_skbuff, 0, sizeof(struct sk_buff*) * np->rx_ring_size);
  3942. memset(np->rx_dma, 0, sizeof(dma_addr_t) * np->rx_ring_size);
  3943. memset(np->tx_skbuff, 0, sizeof(struct sk_buff*) * np->tx_ring_size);
  3944. memset(np->tx_dma, 0, sizeof(dma_addr_t) * np->tx_ring_size);
  3945. memset(np->tx_dma_len, 0, sizeof(unsigned int) * np->tx_ring_size);
  3946. dev->open = nv_open;
  3947. dev->stop = nv_close;
  3948. dev->hard_start_xmit = nv_start_xmit;
  3949. dev->get_stats = nv_get_stats;
  3950. dev->change_mtu = nv_change_mtu;
  3951. dev->set_mac_address = nv_set_mac_address;
  3952. dev->set_multicast_list = nv_set_multicast;
  3953. #ifdef CONFIG_NET_POLL_CONTROLLER
  3954. dev->poll_controller = nv_poll_controller;
  3955. #endif
  3956. dev->weight = 64;
  3957. #ifdef CONFIG_FORCEDETH_NAPI
  3958. dev->poll = nv_napi_poll;
  3959. #endif
  3960. SET_ETHTOOL_OPS(dev, &ops);
  3961. dev->tx_timeout = nv_tx_timeout;
  3962. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  3963. pci_set_drvdata(pci_dev, dev);
  3964. /* read the mac address */
  3965. base = get_hwbase(dev);
  3966. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  3967. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  3968. /* check the workaround bit for correct mac address order */
  3969. txreg = readl(base + NvRegTransmitPoll);
  3970. if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
  3971. /* mac address is already in correct order */
  3972. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  3973. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  3974. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  3975. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  3976. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  3977. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  3978. } else {
  3979. /* need to reverse mac address to correct order */
  3980. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  3981. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  3982. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  3983. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  3984. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  3985. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  3986. /* set permanent address to be correct aswell */
  3987. np->orig_mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  3988. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  3989. np->orig_mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  3990. writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  3991. }
  3992. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  3993. if (!is_valid_ether_addr(dev->perm_addr)) {
  3994. /*
  3995. * Bad mac address. At least one bios sets the mac address
  3996. * to 01:23:45:67:89:ab
  3997. */
  3998. printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
  3999. pci_name(pci_dev),
  4000. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  4001. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  4002. printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
  4003. dev->dev_addr[0] = 0x00;
  4004. dev->dev_addr[1] = 0x00;
  4005. dev->dev_addr[2] = 0x6c;
  4006. get_random_bytes(&dev->dev_addr[3], 3);
  4007. }
  4008. dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
  4009. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  4010. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  4011. /* set mac address */
  4012. nv_copy_mac_to_hw(dev);
  4013. /* disable WOL */
  4014. writel(0, base + NvRegWakeUpFlags);
  4015. np->wolenabled = 0;
  4016. if (id->driver_data & DEV_HAS_POWER_CNTRL) {
  4017. u8 revision_id;
  4018. pci_read_config_byte(pci_dev, PCI_REVISION_ID, &revision_id);
  4019. /* take phy and nic out of low power mode */
  4020. powerstate = readl(base + NvRegPowerState2);
  4021. powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
  4022. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
  4023. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
  4024. revision_id >= 0xA3)
  4025. powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
  4026. writel(powerstate, base + NvRegPowerState2);
  4027. }
  4028. if (np->desc_ver == DESC_VER_1) {
  4029. np->tx_flags = NV_TX_VALID;
  4030. } else {
  4031. np->tx_flags = NV_TX2_VALID;
  4032. }
  4033. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
  4034. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  4035. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  4036. np->msi_flags |= 0x0003;
  4037. } else {
  4038. np->irqmask = NVREG_IRQMASK_CPU;
  4039. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  4040. np->msi_flags |= 0x0001;
  4041. }
  4042. if (id->driver_data & DEV_NEED_TIMERIRQ)
  4043. np->irqmask |= NVREG_IRQ_TIMER;
  4044. if (id->driver_data & DEV_NEED_LINKTIMER) {
  4045. dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
  4046. np->need_linktimer = 1;
  4047. np->link_timeout = jiffies + LINK_TIMEOUT;
  4048. } else {
  4049. dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
  4050. np->need_linktimer = 0;
  4051. }
  4052. /* clear phy state and temporarily halt phy interrupts */
  4053. writel(0, base + NvRegMIIMask);
  4054. phystate = readl(base + NvRegAdapterControl);
  4055. if (phystate & NVREG_ADAPTCTL_RUNNING) {
  4056. phystate_orig = 1;
  4057. phystate &= ~NVREG_ADAPTCTL_RUNNING;
  4058. writel(phystate, base + NvRegAdapterControl);
  4059. }
  4060. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  4061. if (id->driver_data & DEV_HAS_MGMT_UNIT) {
  4062. writel(0x1, base + 0x204); pci_push(base);
  4063. msleep(500);
  4064. /* management unit running on the mac? */
  4065. np->mac_in_use = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST;
  4066. if (np->mac_in_use) {
  4067. u32 mgmt_sync;
  4068. /* management unit setup the phy already? */
  4069. mgmt_sync = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK;
  4070. if (mgmt_sync == NVREG_XMITCTL_SYNC_NOT_READY) {
  4071. if (!nv_mgmt_acquire_sema(dev)) {
  4072. for (i = 0; i < 5000; i++) {
  4073. msleep(1);
  4074. mgmt_sync = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK;
  4075. if (mgmt_sync == NVREG_XMITCTL_SYNC_NOT_READY)
  4076. continue;
  4077. if (mgmt_sync == NVREG_XMITCTL_SYNC_PHY_INIT)
  4078. phyinitialized = 1;
  4079. break;
  4080. }
  4081. } else {
  4082. /* we need to init the phy */
  4083. }
  4084. } else if (mgmt_sync == NVREG_XMITCTL_SYNC_PHY_INIT) {
  4085. /* phy is inited by SMU */
  4086. phyinitialized = 1;
  4087. } else {
  4088. /* we need to init the phy */
  4089. }
  4090. }
  4091. }
  4092. /* find a suitable phy */
  4093. for (i = 1; i <= 32; i++) {
  4094. int id1, id2;
  4095. int phyaddr = i & 0x1F;
  4096. spin_lock_irq(&np->lock);
  4097. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  4098. spin_unlock_irq(&np->lock);
  4099. if (id1 < 0 || id1 == 0xffff)
  4100. continue;
  4101. spin_lock_irq(&np->lock);
  4102. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  4103. spin_unlock_irq(&np->lock);
  4104. if (id2 < 0 || id2 == 0xffff)
  4105. continue;
  4106. np->phy_model = id2 & PHYID2_MODEL_MASK;
  4107. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  4108. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  4109. dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
  4110. pci_name(pci_dev), id1, id2, phyaddr);
  4111. np->phyaddr = phyaddr;
  4112. np->phy_oui = id1 | id2;
  4113. break;
  4114. }
  4115. if (i == 33) {
  4116. printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
  4117. pci_name(pci_dev));
  4118. goto out_error;
  4119. }
  4120. if (!phyinitialized) {
  4121. /* reset it */
  4122. phy_init(dev);
  4123. }
  4124. if (id->driver_data & DEV_HAS_MGMT_UNIT) {
  4125. nv_mgmt_driver_loaded(dev, 1);
  4126. }
  4127. /* set default link speed settings */
  4128. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  4129. np->duplex = 0;
  4130. np->autoneg = 1;
  4131. err = register_netdev(dev);
  4132. if (err) {
  4133. printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
  4134. goto out_error;
  4135. }
  4136. printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
  4137. dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
  4138. pci_name(pci_dev));
  4139. return 0;
  4140. out_error:
  4141. if (phystate_orig)
  4142. writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
  4143. if (np->mac_in_use)
  4144. nv_mgmt_driver_loaded(dev, 0);
  4145. pci_set_drvdata(pci_dev, NULL);
  4146. out_freering:
  4147. free_rings(dev);
  4148. out_unmap:
  4149. iounmap(get_hwbase(dev));
  4150. out_relreg:
  4151. pci_release_regions(pci_dev);
  4152. out_disable:
  4153. pci_disable_device(pci_dev);
  4154. out_free:
  4155. free_netdev(dev);
  4156. out:
  4157. return err;
  4158. }
  4159. static void __devexit nv_remove(struct pci_dev *pci_dev)
  4160. {
  4161. struct net_device *dev = pci_get_drvdata(pci_dev);
  4162. struct fe_priv *np = netdev_priv(dev);
  4163. u8 __iomem *base = get_hwbase(dev);
  4164. unregister_netdev(dev);
  4165. /* special op: write back the misordered MAC address - otherwise
  4166. * the next nv_probe would see a wrong address.
  4167. */
  4168. writel(np->orig_mac[0], base + NvRegMacAddrA);
  4169. writel(np->orig_mac[1], base + NvRegMacAddrB);
  4170. if (np->mac_in_use)
  4171. nv_mgmt_driver_loaded(dev, 0);
  4172. /* free all structures */
  4173. free_rings(dev);
  4174. iounmap(get_hwbase(dev));
  4175. pci_release_regions(pci_dev);
  4176. pci_disable_device(pci_dev);
  4177. free_netdev(dev);
  4178. pci_set_drvdata(pci_dev, NULL);
  4179. }
  4180. #ifdef CONFIG_PM
  4181. static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
  4182. {
  4183. struct net_device *dev = pci_get_drvdata(pdev);
  4184. struct fe_priv *np = netdev_priv(dev);
  4185. if (!netif_running(dev))
  4186. goto out;
  4187. netif_device_detach(dev);
  4188. // Gross.
  4189. nv_close(dev);
  4190. pci_save_state(pdev);
  4191. pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
  4192. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  4193. out:
  4194. return 0;
  4195. }
  4196. static int nv_resume(struct pci_dev *pdev)
  4197. {
  4198. struct net_device *dev = pci_get_drvdata(pdev);
  4199. int rc = 0;
  4200. if (!netif_running(dev))
  4201. goto out;
  4202. netif_device_attach(dev);
  4203. pci_set_power_state(pdev, PCI_D0);
  4204. pci_restore_state(pdev);
  4205. pci_enable_wake(pdev, PCI_D0, 0);
  4206. rc = nv_open(dev);
  4207. out:
  4208. return rc;
  4209. }
  4210. #else
  4211. #define nv_suspend NULL
  4212. #define nv_resume NULL
  4213. #endif /* CONFIG_PM */
  4214. static struct pci_device_id pci_tbl[] = {
  4215. { /* nForce Ethernet Controller */
  4216. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
  4217. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  4218. },
  4219. { /* nForce2 Ethernet Controller */
  4220. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
  4221. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  4222. },
  4223. { /* nForce3 Ethernet Controller */
  4224. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
  4225. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  4226. },
  4227. { /* nForce3 Ethernet Controller */
  4228. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
  4229. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4230. },
  4231. { /* nForce3 Ethernet Controller */
  4232. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
  4233. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4234. },
  4235. { /* nForce3 Ethernet Controller */
  4236. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
  4237. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4238. },
  4239. { /* nForce3 Ethernet Controller */
  4240. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
  4241. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4242. },
  4243. { /* CK804 Ethernet Controller */
  4244. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
  4245. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  4246. },
  4247. { /* CK804 Ethernet Controller */
  4248. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
  4249. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  4250. },
  4251. { /* MCP04 Ethernet Controller */
  4252. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
  4253. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  4254. },
  4255. { /* MCP04 Ethernet Controller */
  4256. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
  4257. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  4258. },
  4259. { /* MCP51 Ethernet Controller */
  4260. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
  4261. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
  4262. },
  4263. { /* MCP51 Ethernet Controller */
  4264. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
  4265. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
  4266. },
  4267. { /* MCP55 Ethernet Controller */
  4268. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
  4269. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4270. },
  4271. { /* MCP55 Ethernet Controller */
  4272. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
  4273. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4274. },
  4275. { /* MCP61 Ethernet Controller */
  4276. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
  4277. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4278. },
  4279. { /* MCP61 Ethernet Controller */
  4280. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
  4281. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4282. },
  4283. { /* MCP61 Ethernet Controller */
  4284. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
  4285. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4286. },
  4287. { /* MCP61 Ethernet Controller */
  4288. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
  4289. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4290. },
  4291. { /* MCP65 Ethernet Controller */
  4292. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
  4293. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4294. },
  4295. { /* MCP65 Ethernet Controller */
  4296. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
  4297. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4298. },
  4299. { /* MCP65 Ethernet Controller */
  4300. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
  4301. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4302. },
  4303. { /* MCP65 Ethernet Controller */
  4304. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
  4305. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4306. },
  4307. {0,},
  4308. };
  4309. static struct pci_driver driver = {
  4310. .name = "forcedeth",
  4311. .id_table = pci_tbl,
  4312. .probe = nv_probe,
  4313. .remove = __devexit_p(nv_remove),
  4314. .suspend = nv_suspend,
  4315. .resume = nv_resume,
  4316. };
  4317. static int __init init_nic(void)
  4318. {
  4319. printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
  4320. return pci_register_driver(&driver);
  4321. }
  4322. static void __exit exit_nic(void)
  4323. {
  4324. pci_unregister_driver(&driver);
  4325. }
  4326. module_param(max_interrupt_work, int, 0);
  4327. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  4328. module_param(optimization_mode, int, 0);
  4329. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
  4330. module_param(poll_interval, int, 0);
  4331. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  4332. module_param(msi, int, 0);
  4333. MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
  4334. module_param(msix, int, 0);
  4335. MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
  4336. module_param(dma_64bit, int, 0);
  4337. MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
  4338. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  4339. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  4340. MODULE_LICENSE("GPL");
  4341. MODULE_DEVICE_TABLE(pci, pci_tbl);
  4342. module_init(init_nic);
  4343. module_exit(exit_nic);