xmit.c 64 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/dma-mapping.h>
  17. #include "ath9k.h"
  18. #include "ar9003_mac.h"
  19. #define BITS_PER_BYTE 8
  20. #define OFDM_PLCP_BITS 22
  21. #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
  22. #define L_STF 8
  23. #define L_LTF 8
  24. #define L_SIG 4
  25. #define HT_SIG 8
  26. #define HT_STF 4
  27. #define HT_LTF(_ns) (4 * (_ns))
  28. #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
  29. #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
  30. #define TIME_SYMBOLS(t) ((t) >> 2)
  31. #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18)
  32. #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
  33. #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
  34. static u16 bits_per_symbol[][2] = {
  35. /* 20MHz 40MHz */
  36. { 26, 54 }, /* 0: BPSK */
  37. { 52, 108 }, /* 1: QPSK 1/2 */
  38. { 78, 162 }, /* 2: QPSK 3/4 */
  39. { 104, 216 }, /* 3: 16-QAM 1/2 */
  40. { 156, 324 }, /* 4: 16-QAM 3/4 */
  41. { 208, 432 }, /* 5: 64-QAM 2/3 */
  42. { 234, 486 }, /* 6: 64-QAM 3/4 */
  43. { 260, 540 }, /* 7: 64-QAM 5/6 */
  44. };
  45. #define IS_HT_RATE(_rate) ((_rate) & 0x80)
  46. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  47. struct ath_atx_tid *tid, struct sk_buff *skb);
  48. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  49. int tx_flags, struct ath_txq *txq);
  50. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  51. struct ath_txq *txq, struct list_head *bf_q,
  52. struct ath_tx_status *ts, int txok);
  53. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  54. struct list_head *head, bool internal);
  55. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  56. struct ath_tx_status *ts, int nframes, int nbad,
  57. int txok);
  58. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  59. int seqno);
  60. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  61. struct ath_txq *txq,
  62. struct ath_atx_tid *tid,
  63. struct sk_buff *skb,
  64. bool dequeue);
  65. enum {
  66. MCS_HT20,
  67. MCS_HT20_SGI,
  68. MCS_HT40,
  69. MCS_HT40_SGI,
  70. };
  71. /*********************/
  72. /* Aggregation logic */
  73. /*********************/
  74. void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
  75. __acquires(&txq->axq_lock)
  76. {
  77. spin_lock_bh(&txq->axq_lock);
  78. }
  79. void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
  80. __releases(&txq->axq_lock)
  81. {
  82. spin_unlock_bh(&txq->axq_lock);
  83. }
  84. void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
  85. __releases(&txq->axq_lock)
  86. {
  87. struct sk_buff_head q;
  88. struct sk_buff *skb;
  89. __skb_queue_head_init(&q);
  90. skb_queue_splice_init(&txq->complete_q, &q);
  91. spin_unlock_bh(&txq->axq_lock);
  92. while ((skb = __skb_dequeue(&q)))
  93. ieee80211_tx_status(sc->hw, skb);
  94. }
  95. static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
  96. {
  97. struct ath_atx_ac *ac = tid->ac;
  98. if (tid->paused)
  99. return;
  100. if (tid->sched)
  101. return;
  102. tid->sched = true;
  103. list_add_tail(&tid->list, &ac->tid_q);
  104. if (ac->sched)
  105. return;
  106. ac->sched = true;
  107. list_add_tail(&ac->list, &txq->axq_acq);
  108. }
  109. static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  110. {
  111. struct ath_txq *txq = tid->ac->txq;
  112. WARN_ON(!tid->paused);
  113. ath_txq_lock(sc, txq);
  114. tid->paused = false;
  115. if (skb_queue_empty(&tid->buf_q))
  116. goto unlock;
  117. ath_tx_queue_tid(txq, tid);
  118. ath_txq_schedule(sc, txq);
  119. unlock:
  120. ath_txq_unlock_complete(sc, txq);
  121. }
  122. static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
  123. {
  124. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  125. BUILD_BUG_ON(sizeof(struct ath_frame_info) >
  126. sizeof(tx_info->rate_driver_data));
  127. return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
  128. }
  129. static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
  130. {
  131. ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
  132. seqno << IEEE80211_SEQ_SEQ_SHIFT);
  133. }
  134. static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  135. {
  136. struct ath_txq *txq = tid->ac->txq;
  137. struct sk_buff *skb;
  138. struct ath_buf *bf;
  139. struct list_head bf_head;
  140. struct ath_tx_status ts;
  141. struct ath_frame_info *fi;
  142. bool sendbar = false;
  143. INIT_LIST_HEAD(&bf_head);
  144. memset(&ts, 0, sizeof(ts));
  145. while ((skb = __skb_dequeue(&tid->buf_q))) {
  146. fi = get_frame_info(skb);
  147. bf = fi->bf;
  148. if (bf && fi->retries) {
  149. list_add_tail(&bf->list, &bf_head);
  150. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  151. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  152. sendbar = true;
  153. } else {
  154. ath_tx_send_normal(sc, txq, NULL, skb);
  155. }
  156. }
  157. if (tid->baw_head == tid->baw_tail) {
  158. tid->state &= ~AGGR_ADDBA_COMPLETE;
  159. tid->state &= ~AGGR_CLEANUP;
  160. }
  161. if (sendbar) {
  162. ath_txq_unlock(sc, txq);
  163. ath_send_bar(tid, tid->seq_start);
  164. ath_txq_lock(sc, txq);
  165. }
  166. }
  167. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  168. int seqno)
  169. {
  170. int index, cindex;
  171. index = ATH_BA_INDEX(tid->seq_start, seqno);
  172. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  173. __clear_bit(cindex, tid->tx_buf);
  174. while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
  175. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  176. INCR(tid->baw_head, ATH_TID_MAX_BUFS);
  177. if (tid->bar_index >= 0)
  178. tid->bar_index--;
  179. }
  180. }
  181. static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  182. u16 seqno)
  183. {
  184. int index, cindex;
  185. index = ATH_BA_INDEX(tid->seq_start, seqno);
  186. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  187. __set_bit(cindex, tid->tx_buf);
  188. if (index >= ((tid->baw_tail - tid->baw_head) &
  189. (ATH_TID_MAX_BUFS - 1))) {
  190. tid->baw_tail = cindex;
  191. INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
  192. }
  193. }
  194. /*
  195. * TODO: For frame(s) that are in the retry state, we will reuse the
  196. * sequence number(s) without setting the retry bit. The
  197. * alternative is to give up on these and BAR the receiver's window
  198. * forward.
  199. */
  200. static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
  201. struct ath_atx_tid *tid)
  202. {
  203. struct sk_buff *skb;
  204. struct ath_buf *bf;
  205. struct list_head bf_head;
  206. struct ath_tx_status ts;
  207. struct ath_frame_info *fi;
  208. memset(&ts, 0, sizeof(ts));
  209. INIT_LIST_HEAD(&bf_head);
  210. while ((skb = __skb_dequeue(&tid->buf_q))) {
  211. fi = get_frame_info(skb);
  212. bf = fi->bf;
  213. if (!bf) {
  214. ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
  215. continue;
  216. }
  217. list_add_tail(&bf->list, &bf_head);
  218. if (fi->retries)
  219. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  220. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  221. }
  222. tid->seq_next = tid->seq_start;
  223. tid->baw_tail = tid->baw_head;
  224. tid->bar_index = -1;
  225. }
  226. static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
  227. struct sk_buff *skb, int count)
  228. {
  229. struct ath_frame_info *fi = get_frame_info(skb);
  230. struct ath_buf *bf = fi->bf;
  231. struct ieee80211_hdr *hdr;
  232. int prev = fi->retries;
  233. TX_STAT_INC(txq->axq_qnum, a_retries);
  234. fi->retries += count;
  235. if (prev > 0)
  236. return;
  237. hdr = (struct ieee80211_hdr *)skb->data;
  238. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
  239. dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
  240. sizeof(*hdr), DMA_TO_DEVICE);
  241. }
  242. static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
  243. {
  244. struct ath_buf *bf = NULL;
  245. spin_lock_bh(&sc->tx.txbuflock);
  246. if (unlikely(list_empty(&sc->tx.txbuf))) {
  247. spin_unlock_bh(&sc->tx.txbuflock);
  248. return NULL;
  249. }
  250. bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
  251. list_del(&bf->list);
  252. spin_unlock_bh(&sc->tx.txbuflock);
  253. return bf;
  254. }
  255. static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
  256. {
  257. spin_lock_bh(&sc->tx.txbuflock);
  258. list_add_tail(&bf->list, &sc->tx.txbuf);
  259. spin_unlock_bh(&sc->tx.txbuflock);
  260. }
  261. static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
  262. {
  263. struct ath_buf *tbf;
  264. tbf = ath_tx_get_buffer(sc);
  265. if (WARN_ON(!tbf))
  266. return NULL;
  267. ATH_TXBUF_RESET(tbf);
  268. tbf->bf_mpdu = bf->bf_mpdu;
  269. tbf->bf_buf_addr = bf->bf_buf_addr;
  270. memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
  271. tbf->bf_state = bf->bf_state;
  272. return tbf;
  273. }
  274. static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
  275. struct ath_tx_status *ts, int txok,
  276. int *nframes, int *nbad)
  277. {
  278. struct ath_frame_info *fi;
  279. u16 seq_st = 0;
  280. u32 ba[WME_BA_BMP_SIZE >> 5];
  281. int ba_index;
  282. int isaggr = 0;
  283. *nbad = 0;
  284. *nframes = 0;
  285. isaggr = bf_isaggr(bf);
  286. if (isaggr) {
  287. seq_st = ts->ts_seqnum;
  288. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  289. }
  290. while (bf) {
  291. fi = get_frame_info(bf->bf_mpdu);
  292. ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
  293. (*nframes)++;
  294. if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
  295. (*nbad)++;
  296. bf = bf->bf_next;
  297. }
  298. }
  299. static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
  300. struct ath_buf *bf, struct list_head *bf_q,
  301. struct ath_tx_status *ts, int txok, bool retry)
  302. {
  303. struct ath_node *an = NULL;
  304. struct sk_buff *skb;
  305. struct ieee80211_sta *sta;
  306. struct ieee80211_hw *hw = sc->hw;
  307. struct ieee80211_hdr *hdr;
  308. struct ieee80211_tx_info *tx_info;
  309. struct ath_atx_tid *tid = NULL;
  310. struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
  311. struct list_head bf_head;
  312. struct sk_buff_head bf_pending;
  313. u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
  314. u32 ba[WME_BA_BMP_SIZE >> 5];
  315. int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
  316. bool rc_update = true;
  317. struct ieee80211_tx_rate rates[4];
  318. struct ath_frame_info *fi;
  319. int nframes;
  320. u8 tidno;
  321. bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
  322. int i, retries;
  323. int bar_index = -1;
  324. skb = bf->bf_mpdu;
  325. hdr = (struct ieee80211_hdr *)skb->data;
  326. tx_info = IEEE80211_SKB_CB(skb);
  327. memcpy(rates, tx_info->control.rates, sizeof(rates));
  328. retries = ts->ts_longretry + 1;
  329. for (i = 0; i < ts->ts_rateindex; i++)
  330. retries += rates[i].count;
  331. rcu_read_lock();
  332. sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
  333. if (!sta) {
  334. rcu_read_unlock();
  335. INIT_LIST_HEAD(&bf_head);
  336. while (bf) {
  337. bf_next = bf->bf_next;
  338. if (!bf->bf_stale || bf_next != NULL)
  339. list_move_tail(&bf->list, &bf_head);
  340. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
  341. bf = bf_next;
  342. }
  343. return;
  344. }
  345. an = (struct ath_node *)sta->drv_priv;
  346. tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
  347. tid = ATH_AN_2_TID(an, tidno);
  348. seq_first = tid->seq_start;
  349. /*
  350. * The hardware occasionally sends a tx status for the wrong TID.
  351. * In this case, the BA status cannot be considered valid and all
  352. * subframes need to be retransmitted
  353. */
  354. if (tidno != ts->tid)
  355. txok = false;
  356. isaggr = bf_isaggr(bf);
  357. memset(ba, 0, WME_BA_BMP_SIZE >> 3);
  358. if (isaggr && txok) {
  359. if (ts->ts_flags & ATH9K_TX_BA) {
  360. seq_st = ts->ts_seqnum;
  361. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  362. } else {
  363. /*
  364. * AR5416 can become deaf/mute when BA
  365. * issue happens. Chip needs to be reset.
  366. * But AP code may have sychronization issues
  367. * when perform internal reset in this routine.
  368. * Only enable reset in STA mode for now.
  369. */
  370. if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
  371. needreset = 1;
  372. }
  373. }
  374. __skb_queue_head_init(&bf_pending);
  375. ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
  376. while (bf) {
  377. u16 seqno = bf->bf_state.seqno;
  378. txfail = txpending = sendbar = 0;
  379. bf_next = bf->bf_next;
  380. skb = bf->bf_mpdu;
  381. tx_info = IEEE80211_SKB_CB(skb);
  382. fi = get_frame_info(skb);
  383. if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
  384. /* transmit completion, subframe is
  385. * acked by block ack */
  386. acked_cnt++;
  387. } else if (!isaggr && txok) {
  388. /* transmit completion */
  389. acked_cnt++;
  390. } else if ((tid->state & AGGR_CLEANUP) || !retry) {
  391. /*
  392. * cleanup in progress, just fail
  393. * the un-acked sub-frames
  394. */
  395. txfail = 1;
  396. } else if (flush) {
  397. txpending = 1;
  398. } else if (fi->retries < ATH_MAX_SW_RETRIES) {
  399. if (txok || !an->sleeping)
  400. ath_tx_set_retry(sc, txq, bf->bf_mpdu,
  401. retries);
  402. txpending = 1;
  403. } else {
  404. txfail = 1;
  405. txfail_cnt++;
  406. bar_index = max_t(int, bar_index,
  407. ATH_BA_INDEX(seq_first, seqno));
  408. }
  409. /*
  410. * Make sure the last desc is reclaimed if it
  411. * not a holding desc.
  412. */
  413. INIT_LIST_HEAD(&bf_head);
  414. if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) ||
  415. bf_next != NULL || !bf_last->bf_stale)
  416. list_move_tail(&bf->list, &bf_head);
  417. if (!txpending || (tid->state & AGGR_CLEANUP)) {
  418. /*
  419. * complete the acked-ones/xretried ones; update
  420. * block-ack window
  421. */
  422. ath_tx_update_baw(sc, tid, seqno);
  423. if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
  424. memcpy(tx_info->control.rates, rates, sizeof(rates));
  425. ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
  426. rc_update = false;
  427. }
  428. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
  429. !txfail);
  430. } else {
  431. /* retry the un-acked ones */
  432. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) &&
  433. bf->bf_next == NULL && bf_last->bf_stale) {
  434. struct ath_buf *tbf;
  435. tbf = ath_clone_txbuf(sc, bf_last);
  436. /*
  437. * Update tx baw and complete the
  438. * frame with failed status if we
  439. * run out of tx buf.
  440. */
  441. if (!tbf) {
  442. ath_tx_update_baw(sc, tid, seqno);
  443. ath_tx_complete_buf(sc, bf, txq,
  444. &bf_head, ts, 0);
  445. bar_index = max_t(int, bar_index,
  446. ATH_BA_INDEX(seq_first, seqno));
  447. break;
  448. }
  449. fi->bf = tbf;
  450. }
  451. /*
  452. * Put this buffer to the temporary pending
  453. * queue to retain ordering
  454. */
  455. __skb_queue_tail(&bf_pending, skb);
  456. }
  457. bf = bf_next;
  458. }
  459. /* prepend un-acked frames to the beginning of the pending frame queue */
  460. if (!skb_queue_empty(&bf_pending)) {
  461. if (an->sleeping)
  462. ieee80211_sta_set_buffered(sta, tid->tidno, true);
  463. skb_queue_splice(&bf_pending, &tid->buf_q);
  464. if (!an->sleeping) {
  465. ath_tx_queue_tid(txq, tid);
  466. if (ts->ts_status & ATH9K_TXERR_FILT)
  467. tid->ac->clear_ps_filter = true;
  468. }
  469. }
  470. if (bar_index >= 0) {
  471. u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
  472. if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
  473. tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
  474. ath_txq_unlock(sc, txq);
  475. ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
  476. ath_txq_lock(sc, txq);
  477. }
  478. if (tid->state & AGGR_CLEANUP)
  479. ath_tx_flush_tid(sc, tid);
  480. rcu_read_unlock();
  481. if (needreset) {
  482. RESET_STAT_INC(sc, RESET_TYPE_TX_ERROR);
  483. ieee80211_queue_work(sc->hw, &sc->hw_reset_work);
  484. }
  485. }
  486. static bool ath_lookup_legacy(struct ath_buf *bf)
  487. {
  488. struct sk_buff *skb;
  489. struct ieee80211_tx_info *tx_info;
  490. struct ieee80211_tx_rate *rates;
  491. int i;
  492. skb = bf->bf_mpdu;
  493. tx_info = IEEE80211_SKB_CB(skb);
  494. rates = tx_info->control.rates;
  495. for (i = 0; i < 4; i++) {
  496. if (!rates[i].count || rates[i].idx < 0)
  497. break;
  498. if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
  499. return true;
  500. }
  501. return false;
  502. }
  503. static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
  504. struct ath_atx_tid *tid)
  505. {
  506. struct sk_buff *skb;
  507. struct ieee80211_tx_info *tx_info;
  508. struct ieee80211_tx_rate *rates;
  509. u32 max_4ms_framelen, frmlen;
  510. u16 aggr_limit, bt_aggr_limit, legacy = 0;
  511. int q = tid->ac->txq->mac80211_qnum;
  512. int i;
  513. skb = bf->bf_mpdu;
  514. tx_info = IEEE80211_SKB_CB(skb);
  515. rates = tx_info->control.rates;
  516. /*
  517. * Find the lowest frame length among the rate series that will have a
  518. * 4ms (or TXOP limited) transmit duration.
  519. */
  520. max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
  521. for (i = 0; i < 4; i++) {
  522. int modeidx;
  523. if (!rates[i].count)
  524. continue;
  525. if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
  526. legacy = 1;
  527. break;
  528. }
  529. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  530. modeidx = MCS_HT40;
  531. else
  532. modeidx = MCS_HT20;
  533. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  534. modeidx++;
  535. frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
  536. max_4ms_framelen = min(max_4ms_framelen, frmlen);
  537. }
  538. /*
  539. * limit aggregate size by the minimum rate if rate selected is
  540. * not a probe rate, if rate selected is a probe rate then
  541. * avoid aggregation of this packet.
  542. */
  543. if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
  544. return 0;
  545. aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
  546. /*
  547. * Override the default aggregation limit for BTCOEX.
  548. */
  549. bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
  550. if (bt_aggr_limit)
  551. aggr_limit = bt_aggr_limit;
  552. /*
  553. * h/w can accept aggregates up to 16 bit lengths (65535).
  554. * The IE, however can hold up to 65536, which shows up here
  555. * as zero. Ignore 65536 since we are constrained by hw.
  556. */
  557. if (tid->an->maxampdu)
  558. aggr_limit = min(aggr_limit, tid->an->maxampdu);
  559. return aggr_limit;
  560. }
  561. /*
  562. * Returns the number of delimiters to be added to
  563. * meet the minimum required mpdudensity.
  564. */
  565. static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
  566. struct ath_buf *bf, u16 frmlen,
  567. bool first_subfrm)
  568. {
  569. #define FIRST_DESC_NDELIMS 60
  570. struct sk_buff *skb = bf->bf_mpdu;
  571. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  572. u32 nsymbits, nsymbols;
  573. u16 minlen;
  574. u8 flags, rix;
  575. int width, streams, half_gi, ndelim, mindelim;
  576. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  577. /* Select standard number of delimiters based on frame length alone */
  578. ndelim = ATH_AGGR_GET_NDELIM(frmlen);
  579. /*
  580. * If encryption enabled, hardware requires some more padding between
  581. * subframes.
  582. * TODO - this could be improved to be dependent on the rate.
  583. * The hardware can keep up at lower rates, but not higher rates
  584. */
  585. if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
  586. !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
  587. ndelim += ATH_AGGR_ENCRYPTDELIM;
  588. /*
  589. * Add delimiter when using RTS/CTS with aggregation
  590. * and non enterprise AR9003 card
  591. */
  592. if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
  593. (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
  594. ndelim = max(ndelim, FIRST_DESC_NDELIMS);
  595. /*
  596. * Convert desired mpdu density from microeconds to bytes based
  597. * on highest rate in rate series (i.e. first rate) to determine
  598. * required minimum length for subframe. Take into account
  599. * whether high rate is 20 or 40Mhz and half or full GI.
  600. *
  601. * If there is no mpdu density restriction, no further calculation
  602. * is needed.
  603. */
  604. if (tid->an->mpdudensity == 0)
  605. return ndelim;
  606. rix = tx_info->control.rates[0].idx;
  607. flags = tx_info->control.rates[0].flags;
  608. width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
  609. half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
  610. if (half_gi)
  611. nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
  612. else
  613. nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
  614. if (nsymbols == 0)
  615. nsymbols = 1;
  616. streams = HT_RC_2_STREAMS(rix);
  617. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  618. minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
  619. if (frmlen < minlen) {
  620. mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
  621. ndelim = max(mindelim, ndelim);
  622. }
  623. return ndelim;
  624. }
  625. static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
  626. struct ath_txq *txq,
  627. struct ath_atx_tid *tid,
  628. struct list_head *bf_q,
  629. int *aggr_len)
  630. {
  631. #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
  632. struct ath_buf *bf, *bf_first = NULL, *bf_prev = NULL;
  633. int rl = 0, nframes = 0, ndelim, prev_al = 0;
  634. u16 aggr_limit = 0, al = 0, bpad = 0,
  635. al_delta, h_baw = tid->baw_size / 2;
  636. enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
  637. struct ieee80211_tx_info *tx_info;
  638. struct ath_frame_info *fi;
  639. struct sk_buff *skb;
  640. u16 seqno;
  641. do {
  642. skb = skb_peek(&tid->buf_q);
  643. fi = get_frame_info(skb);
  644. bf = fi->bf;
  645. if (!fi->bf)
  646. bf = ath_tx_setup_buffer(sc, txq, tid, skb, true);
  647. if (!bf)
  648. continue;
  649. bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
  650. seqno = bf->bf_state.seqno;
  651. /* do not step over block-ack window */
  652. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
  653. status = ATH_AGGR_BAW_CLOSED;
  654. break;
  655. }
  656. if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
  657. struct ath_tx_status ts = {};
  658. struct list_head bf_head;
  659. INIT_LIST_HEAD(&bf_head);
  660. list_add(&bf->list, &bf_head);
  661. __skb_unlink(skb, &tid->buf_q);
  662. ath_tx_update_baw(sc, tid, seqno);
  663. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  664. continue;
  665. }
  666. if (!bf_first)
  667. bf_first = bf;
  668. if (!rl) {
  669. aggr_limit = ath_lookup_rate(sc, bf, tid);
  670. rl = 1;
  671. }
  672. /* do not exceed aggregation limit */
  673. al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
  674. if (nframes &&
  675. ((aggr_limit < (al + bpad + al_delta + prev_al)) ||
  676. ath_lookup_legacy(bf))) {
  677. status = ATH_AGGR_LIMITED;
  678. break;
  679. }
  680. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  681. if (nframes && (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
  682. break;
  683. /* do not exceed subframe limit */
  684. if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
  685. status = ATH_AGGR_LIMITED;
  686. break;
  687. }
  688. /* add padding for previous frame to aggregation length */
  689. al += bpad + al_delta;
  690. /*
  691. * Get the delimiters needed to meet the MPDU
  692. * density for this node.
  693. */
  694. ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
  695. !nframes);
  696. bpad = PADBYTES(al_delta) + (ndelim << 2);
  697. nframes++;
  698. bf->bf_next = NULL;
  699. /* link buffers of this frame to the aggregate */
  700. if (!fi->retries)
  701. ath_tx_addto_baw(sc, tid, seqno);
  702. bf->bf_state.ndelim = ndelim;
  703. __skb_unlink(skb, &tid->buf_q);
  704. list_add_tail(&bf->list, bf_q);
  705. if (bf_prev)
  706. bf_prev->bf_next = bf;
  707. bf_prev = bf;
  708. } while (!skb_queue_empty(&tid->buf_q));
  709. *aggr_len = al;
  710. return status;
  711. #undef PADBYTES
  712. }
  713. /*
  714. * rix - rate index
  715. * pktlen - total bytes (delims + data + fcs + pads + pad delims)
  716. * width - 0 for 20 MHz, 1 for 40 MHz
  717. * half_gi - to use 4us v/s 3.6 us for symbol time
  718. */
  719. static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
  720. int width, int half_gi, bool shortPreamble)
  721. {
  722. u32 nbits, nsymbits, duration, nsymbols;
  723. int streams;
  724. /* find number of symbols: PLCP + data */
  725. streams = HT_RC_2_STREAMS(rix);
  726. nbits = (pktlen << 3) + OFDM_PLCP_BITS;
  727. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  728. nsymbols = (nbits + nsymbits - 1) / nsymbits;
  729. if (!half_gi)
  730. duration = SYMBOL_TIME(nsymbols);
  731. else
  732. duration = SYMBOL_TIME_HALFGI(nsymbols);
  733. /* addup duration for legacy/ht training and signal fields */
  734. duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  735. return duration;
  736. }
  737. static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
  738. {
  739. int streams = HT_RC_2_STREAMS(mcs);
  740. int symbols, bits;
  741. int bytes = 0;
  742. symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
  743. bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
  744. bits -= OFDM_PLCP_BITS;
  745. bytes = bits / 8;
  746. bytes -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  747. if (bytes > 65532)
  748. bytes = 65532;
  749. return bytes;
  750. }
  751. void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
  752. {
  753. u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
  754. int mcs;
  755. /* 4ms is the default (and maximum) duration */
  756. if (!txop || txop > 4096)
  757. txop = 4096;
  758. cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
  759. cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
  760. cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
  761. cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
  762. for (mcs = 0; mcs < 32; mcs++) {
  763. cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
  764. cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
  765. cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
  766. cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
  767. }
  768. }
  769. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
  770. struct ath_tx_info *info, int len)
  771. {
  772. struct ath_hw *ah = sc->sc_ah;
  773. struct sk_buff *skb;
  774. struct ieee80211_tx_info *tx_info;
  775. struct ieee80211_tx_rate *rates;
  776. const struct ieee80211_rate *rate;
  777. struct ieee80211_hdr *hdr;
  778. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  779. int i;
  780. u8 rix = 0;
  781. skb = bf->bf_mpdu;
  782. tx_info = IEEE80211_SKB_CB(skb);
  783. rates = tx_info->control.rates;
  784. hdr = (struct ieee80211_hdr *)skb->data;
  785. /* set dur_update_en for l-sig computation except for PS-Poll frames */
  786. info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
  787. info->rtscts_rate = fi->rtscts_rate;
  788. for (i = 0; i < 4; i++) {
  789. bool is_40, is_sgi, is_sp;
  790. int phy;
  791. if (!rates[i].count || (rates[i].idx < 0))
  792. continue;
  793. rix = rates[i].idx;
  794. info->rates[i].Tries = rates[i].count;
  795. if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
  796. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  797. info->flags |= ATH9K_TXDESC_RTSENA;
  798. } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
  799. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  800. info->flags |= ATH9K_TXDESC_CTSENA;
  801. }
  802. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  803. info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
  804. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  805. info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
  806. is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
  807. is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
  808. is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
  809. if (rates[i].flags & IEEE80211_TX_RC_MCS) {
  810. /* MCS rates */
  811. info->rates[i].Rate = rix | 0x80;
  812. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  813. ah->txchainmask, info->rates[i].Rate);
  814. info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
  815. is_40, is_sgi, is_sp);
  816. if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
  817. info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
  818. continue;
  819. }
  820. /* legacy rates */
  821. rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
  822. if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
  823. !(rate->flags & IEEE80211_RATE_ERP_G))
  824. phy = WLAN_RC_PHY_CCK;
  825. else
  826. phy = WLAN_RC_PHY_OFDM;
  827. info->rates[i].Rate = rate->hw_value;
  828. if (rate->hw_value_short) {
  829. if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  830. info->rates[i].Rate |= rate->hw_value_short;
  831. } else {
  832. is_sp = false;
  833. }
  834. if (bf->bf_state.bfs_paprd)
  835. info->rates[i].ChSel = ah->txchainmask;
  836. else
  837. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  838. ah->txchainmask, info->rates[i].Rate);
  839. info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
  840. phy, rate->bitrate * 100, len, rix, is_sp);
  841. }
  842. /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
  843. if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
  844. info->flags &= ~ATH9K_TXDESC_RTSENA;
  845. /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
  846. if (info->flags & ATH9K_TXDESC_RTSENA)
  847. info->flags &= ~ATH9K_TXDESC_CTSENA;
  848. }
  849. static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
  850. {
  851. struct ieee80211_hdr *hdr;
  852. enum ath9k_pkt_type htype;
  853. __le16 fc;
  854. hdr = (struct ieee80211_hdr *)skb->data;
  855. fc = hdr->frame_control;
  856. if (ieee80211_is_beacon(fc))
  857. htype = ATH9K_PKT_TYPE_BEACON;
  858. else if (ieee80211_is_probe_resp(fc))
  859. htype = ATH9K_PKT_TYPE_PROBE_RESP;
  860. else if (ieee80211_is_atim(fc))
  861. htype = ATH9K_PKT_TYPE_ATIM;
  862. else if (ieee80211_is_pspoll(fc))
  863. htype = ATH9K_PKT_TYPE_PSPOLL;
  864. else
  865. htype = ATH9K_PKT_TYPE_NORMAL;
  866. return htype;
  867. }
  868. static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
  869. struct ath_txq *txq, int len)
  870. {
  871. struct ath_hw *ah = sc->sc_ah;
  872. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  873. struct ath_buf *bf_first = bf;
  874. struct ath_tx_info info;
  875. bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
  876. memset(&info, 0, sizeof(info));
  877. info.is_first = true;
  878. info.is_last = true;
  879. info.txpower = MAX_RATE_POWER;
  880. info.qcu = txq->axq_qnum;
  881. info.flags = ATH9K_TXDESC_INTREQ;
  882. if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
  883. info.flags |= ATH9K_TXDESC_NOACK;
  884. if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
  885. info.flags |= ATH9K_TXDESC_LDPC;
  886. ath_buf_set_rate(sc, bf, &info, len);
  887. if (tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
  888. info.flags |= ATH9K_TXDESC_CLRDMASK;
  889. if (bf->bf_state.bfs_paprd)
  890. info.flags |= (u32) bf->bf_state.bfs_paprd << ATH9K_TXDESC_PAPRD_S;
  891. while (bf) {
  892. struct sk_buff *skb = bf->bf_mpdu;
  893. struct ath_frame_info *fi = get_frame_info(skb);
  894. info.type = get_hw_packet_type(skb);
  895. if (bf->bf_next)
  896. info.link = bf->bf_next->bf_daddr;
  897. else
  898. info.link = 0;
  899. info.buf_addr[0] = bf->bf_buf_addr;
  900. info.buf_len[0] = skb->len;
  901. info.pkt_len = fi->framelen;
  902. info.keyix = fi->keyix;
  903. info.keytype = fi->keytype;
  904. if (aggr) {
  905. if (bf == bf_first)
  906. info.aggr = AGGR_BUF_FIRST;
  907. else if (!bf->bf_next)
  908. info.aggr = AGGR_BUF_LAST;
  909. else
  910. info.aggr = AGGR_BUF_MIDDLE;
  911. info.ndelim = bf->bf_state.ndelim;
  912. info.aggr_len = len;
  913. }
  914. ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
  915. bf = bf->bf_next;
  916. }
  917. }
  918. static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
  919. struct ath_atx_tid *tid)
  920. {
  921. struct ath_buf *bf;
  922. enum ATH_AGGR_STATUS status;
  923. struct ieee80211_tx_info *tx_info;
  924. struct list_head bf_q;
  925. int aggr_len;
  926. do {
  927. if (skb_queue_empty(&tid->buf_q))
  928. return;
  929. INIT_LIST_HEAD(&bf_q);
  930. status = ath_tx_form_aggr(sc, txq, tid, &bf_q, &aggr_len);
  931. /*
  932. * no frames picked up to be aggregated;
  933. * block-ack window is not open.
  934. */
  935. if (list_empty(&bf_q))
  936. break;
  937. bf = list_first_entry(&bf_q, struct ath_buf, list);
  938. bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
  939. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  940. if (tid->ac->clear_ps_filter) {
  941. tid->ac->clear_ps_filter = false;
  942. tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  943. } else {
  944. tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
  945. }
  946. /* if only one frame, send as non-aggregate */
  947. if (bf == bf->bf_lastbf) {
  948. aggr_len = get_frame_info(bf->bf_mpdu)->framelen;
  949. bf->bf_state.bf_type = BUF_AMPDU;
  950. } else {
  951. TX_STAT_INC(txq->axq_qnum, a_aggr);
  952. }
  953. ath_tx_fill_desc(sc, bf, txq, aggr_len);
  954. ath_tx_txqaddbuf(sc, txq, &bf_q, false);
  955. } while (txq->axq_ampdu_depth < ATH_AGGR_MIN_QDEPTH &&
  956. status != ATH_AGGR_BAW_CLOSED);
  957. }
  958. int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
  959. u16 tid, u16 *ssn)
  960. {
  961. struct ath_atx_tid *txtid;
  962. struct ath_node *an;
  963. u8 density;
  964. an = (struct ath_node *)sta->drv_priv;
  965. txtid = ATH_AN_2_TID(an, tid);
  966. if (txtid->state & (AGGR_CLEANUP | AGGR_ADDBA_COMPLETE))
  967. return -EAGAIN;
  968. /* update ampdu factor/density, they may have changed. This may happen
  969. * in HT IBSS when a beacon with HT-info is received after the station
  970. * has already been added.
  971. */
  972. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
  973. an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
  974. sta->ht_cap.ampdu_factor);
  975. density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
  976. an->mpdudensity = density;
  977. }
  978. txtid->state |= AGGR_ADDBA_PROGRESS;
  979. txtid->paused = true;
  980. *ssn = txtid->seq_start = txtid->seq_next;
  981. txtid->bar_index = -1;
  982. memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
  983. txtid->baw_head = txtid->baw_tail = 0;
  984. return 0;
  985. }
  986. void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  987. {
  988. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  989. struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
  990. struct ath_txq *txq = txtid->ac->txq;
  991. if (txtid->state & AGGR_CLEANUP)
  992. return;
  993. if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
  994. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  995. return;
  996. }
  997. ath_txq_lock(sc, txq);
  998. txtid->paused = true;
  999. /*
  1000. * If frames are still being transmitted for this TID, they will be
  1001. * cleaned up during tx completion. To prevent race conditions, this
  1002. * TID can only be reused after all in-progress subframes have been
  1003. * completed.
  1004. */
  1005. if (txtid->baw_head != txtid->baw_tail)
  1006. txtid->state |= AGGR_CLEANUP;
  1007. else
  1008. txtid->state &= ~AGGR_ADDBA_COMPLETE;
  1009. ath_tx_flush_tid(sc, txtid);
  1010. ath_txq_unlock_complete(sc, txq);
  1011. }
  1012. void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
  1013. struct ath_node *an)
  1014. {
  1015. struct ath_atx_tid *tid;
  1016. struct ath_atx_ac *ac;
  1017. struct ath_txq *txq;
  1018. bool buffered;
  1019. int tidno;
  1020. for (tidno = 0, tid = &an->tid[tidno];
  1021. tidno < WME_NUM_TID; tidno++, tid++) {
  1022. if (!tid->sched)
  1023. continue;
  1024. ac = tid->ac;
  1025. txq = ac->txq;
  1026. ath_txq_lock(sc, txq);
  1027. buffered = !skb_queue_empty(&tid->buf_q);
  1028. tid->sched = false;
  1029. list_del(&tid->list);
  1030. if (ac->sched) {
  1031. ac->sched = false;
  1032. list_del(&ac->list);
  1033. }
  1034. ath_txq_unlock(sc, txq);
  1035. ieee80211_sta_set_buffered(sta, tidno, buffered);
  1036. }
  1037. }
  1038. void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
  1039. {
  1040. struct ath_atx_tid *tid;
  1041. struct ath_atx_ac *ac;
  1042. struct ath_txq *txq;
  1043. int tidno;
  1044. for (tidno = 0, tid = &an->tid[tidno];
  1045. tidno < WME_NUM_TID; tidno++, tid++) {
  1046. ac = tid->ac;
  1047. txq = ac->txq;
  1048. ath_txq_lock(sc, txq);
  1049. ac->clear_ps_filter = true;
  1050. if (!skb_queue_empty(&tid->buf_q) && !tid->paused) {
  1051. ath_tx_queue_tid(txq, tid);
  1052. ath_txq_schedule(sc, txq);
  1053. }
  1054. ath_txq_unlock_complete(sc, txq);
  1055. }
  1056. }
  1057. void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  1058. {
  1059. struct ath_atx_tid *txtid;
  1060. struct ath_node *an;
  1061. an = (struct ath_node *)sta->drv_priv;
  1062. txtid = ATH_AN_2_TID(an, tid);
  1063. txtid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
  1064. txtid->state |= AGGR_ADDBA_COMPLETE;
  1065. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  1066. ath_tx_resume_tid(sc, txtid);
  1067. }
  1068. /********************/
  1069. /* Queue Management */
  1070. /********************/
  1071. static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
  1072. struct ath_txq *txq)
  1073. {
  1074. struct ath_atx_ac *ac, *ac_tmp;
  1075. struct ath_atx_tid *tid, *tid_tmp;
  1076. list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
  1077. list_del(&ac->list);
  1078. ac->sched = false;
  1079. list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
  1080. list_del(&tid->list);
  1081. tid->sched = false;
  1082. ath_tid_drain(sc, txq, tid);
  1083. }
  1084. }
  1085. }
  1086. struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
  1087. {
  1088. struct ath_hw *ah = sc->sc_ah;
  1089. struct ath9k_tx_queue_info qi;
  1090. static const int subtype_txq_to_hwq[] = {
  1091. [WME_AC_BE] = ATH_TXQ_AC_BE,
  1092. [WME_AC_BK] = ATH_TXQ_AC_BK,
  1093. [WME_AC_VI] = ATH_TXQ_AC_VI,
  1094. [WME_AC_VO] = ATH_TXQ_AC_VO,
  1095. };
  1096. int axq_qnum, i;
  1097. memset(&qi, 0, sizeof(qi));
  1098. qi.tqi_subtype = subtype_txq_to_hwq[subtype];
  1099. qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
  1100. qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
  1101. qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
  1102. qi.tqi_physCompBuf = 0;
  1103. /*
  1104. * Enable interrupts only for EOL and DESC conditions.
  1105. * We mark tx descriptors to receive a DESC interrupt
  1106. * when a tx queue gets deep; otherwise waiting for the
  1107. * EOL to reap descriptors. Note that this is done to
  1108. * reduce interrupt load and this only defers reaping
  1109. * descriptors, never transmitting frames. Aside from
  1110. * reducing interrupts this also permits more concurrency.
  1111. * The only potential downside is if the tx queue backs
  1112. * up in which case the top half of the kernel may backup
  1113. * due to a lack of tx descriptors.
  1114. *
  1115. * The UAPSD queue is an exception, since we take a desc-
  1116. * based intr on the EOSP frames.
  1117. */
  1118. if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1119. qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
  1120. } else {
  1121. if (qtype == ATH9K_TX_QUEUE_UAPSD)
  1122. qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
  1123. else
  1124. qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
  1125. TXQ_FLAG_TXDESCINT_ENABLE;
  1126. }
  1127. axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
  1128. if (axq_qnum == -1) {
  1129. /*
  1130. * NB: don't print a message, this happens
  1131. * normally on parts with too few tx queues
  1132. */
  1133. return NULL;
  1134. }
  1135. if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
  1136. struct ath_txq *txq = &sc->tx.txq[axq_qnum];
  1137. txq->axq_qnum = axq_qnum;
  1138. txq->mac80211_qnum = -1;
  1139. txq->axq_link = NULL;
  1140. __skb_queue_head_init(&txq->complete_q);
  1141. INIT_LIST_HEAD(&txq->axq_q);
  1142. INIT_LIST_HEAD(&txq->axq_acq);
  1143. spin_lock_init(&txq->axq_lock);
  1144. txq->axq_depth = 0;
  1145. txq->axq_ampdu_depth = 0;
  1146. txq->axq_tx_inprogress = false;
  1147. sc->tx.txqsetup |= 1<<axq_qnum;
  1148. txq->txq_headidx = txq->txq_tailidx = 0;
  1149. for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
  1150. INIT_LIST_HEAD(&txq->txq_fifo[i]);
  1151. }
  1152. return &sc->tx.txq[axq_qnum];
  1153. }
  1154. int ath_txq_update(struct ath_softc *sc, int qnum,
  1155. struct ath9k_tx_queue_info *qinfo)
  1156. {
  1157. struct ath_hw *ah = sc->sc_ah;
  1158. int error = 0;
  1159. struct ath9k_tx_queue_info qi;
  1160. BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
  1161. ath9k_hw_get_txq_props(ah, qnum, &qi);
  1162. qi.tqi_aifs = qinfo->tqi_aifs;
  1163. qi.tqi_cwmin = qinfo->tqi_cwmin;
  1164. qi.tqi_cwmax = qinfo->tqi_cwmax;
  1165. qi.tqi_burstTime = qinfo->tqi_burstTime;
  1166. qi.tqi_readyTime = qinfo->tqi_readyTime;
  1167. if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
  1168. ath_err(ath9k_hw_common(sc->sc_ah),
  1169. "Unable to update hardware queue %u!\n", qnum);
  1170. error = -EIO;
  1171. } else {
  1172. ath9k_hw_resettxqueue(ah, qnum);
  1173. }
  1174. return error;
  1175. }
  1176. int ath_cabq_update(struct ath_softc *sc)
  1177. {
  1178. struct ath9k_tx_queue_info qi;
  1179. struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
  1180. int qnum = sc->beacon.cabq->axq_qnum;
  1181. ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
  1182. /*
  1183. * Ensure the readytime % is within the bounds.
  1184. */
  1185. if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
  1186. sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
  1187. else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
  1188. sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
  1189. qi.tqi_readyTime = (cur_conf->beacon_interval *
  1190. sc->config.cabqReadytime) / 100;
  1191. ath_txq_update(sc, qnum, &qi);
  1192. return 0;
  1193. }
  1194. static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
  1195. {
  1196. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
  1197. return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
  1198. }
  1199. static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
  1200. struct list_head *list, bool retry_tx)
  1201. {
  1202. struct ath_buf *bf, *lastbf;
  1203. struct list_head bf_head;
  1204. struct ath_tx_status ts;
  1205. memset(&ts, 0, sizeof(ts));
  1206. ts.ts_status = ATH9K_TX_FLUSH;
  1207. INIT_LIST_HEAD(&bf_head);
  1208. while (!list_empty(list)) {
  1209. bf = list_first_entry(list, struct ath_buf, list);
  1210. if (bf->bf_stale) {
  1211. list_del(&bf->list);
  1212. ath_tx_return_buffer(sc, bf);
  1213. continue;
  1214. }
  1215. lastbf = bf->bf_lastbf;
  1216. list_cut_position(&bf_head, list, &lastbf->list);
  1217. txq->axq_depth--;
  1218. if (bf_is_ampdu_not_probing(bf))
  1219. txq->axq_ampdu_depth--;
  1220. if (bf_isampdu(bf))
  1221. ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, 0,
  1222. retry_tx);
  1223. else
  1224. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  1225. }
  1226. }
  1227. /*
  1228. * Drain a given TX queue (could be Beacon or Data)
  1229. *
  1230. * This assumes output has been stopped and
  1231. * we do not need to block ath_tx_tasklet.
  1232. */
  1233. void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
  1234. {
  1235. ath_txq_lock(sc, txq);
  1236. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1237. int idx = txq->txq_tailidx;
  1238. while (!list_empty(&txq->txq_fifo[idx])) {
  1239. ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx],
  1240. retry_tx);
  1241. INCR(idx, ATH_TXFIFO_DEPTH);
  1242. }
  1243. txq->txq_tailidx = idx;
  1244. }
  1245. txq->axq_link = NULL;
  1246. txq->axq_tx_inprogress = false;
  1247. ath_drain_txq_list(sc, txq, &txq->axq_q, retry_tx);
  1248. /* flush any pending frames if aggregation is enabled */
  1249. if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) && !retry_tx)
  1250. ath_txq_drain_pending_buffers(sc, txq);
  1251. ath_txq_unlock_complete(sc, txq);
  1252. }
  1253. bool ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
  1254. {
  1255. struct ath_hw *ah = sc->sc_ah;
  1256. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1257. struct ath_txq *txq;
  1258. int i;
  1259. u32 npend = 0;
  1260. if (test_bit(SC_OP_INVALID, &sc->sc_flags))
  1261. return true;
  1262. ath9k_hw_abort_tx_dma(ah);
  1263. /* Check if any queue remains active */
  1264. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1265. if (!ATH_TXQ_SETUP(sc, i))
  1266. continue;
  1267. if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
  1268. npend |= BIT(i);
  1269. }
  1270. if (npend)
  1271. ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
  1272. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1273. if (!ATH_TXQ_SETUP(sc, i))
  1274. continue;
  1275. /*
  1276. * The caller will resume queues with ieee80211_wake_queues.
  1277. * Mark the queue as not stopped to prevent ath_tx_complete
  1278. * from waking the queue too early.
  1279. */
  1280. txq = &sc->tx.txq[i];
  1281. txq->stopped = false;
  1282. ath_draintxq(sc, txq, retry_tx);
  1283. }
  1284. return !npend;
  1285. }
  1286. void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
  1287. {
  1288. ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
  1289. sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
  1290. }
  1291. /* For each axq_acq entry, for each tid, try to schedule packets
  1292. * for transmit until ampdu_depth has reached min Q depth.
  1293. */
  1294. void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
  1295. {
  1296. struct ath_atx_ac *ac, *ac_tmp, *last_ac;
  1297. struct ath_atx_tid *tid, *last_tid;
  1298. if (work_pending(&sc->hw_reset_work) || list_empty(&txq->axq_acq) ||
  1299. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1300. return;
  1301. ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
  1302. last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
  1303. list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
  1304. last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
  1305. list_del(&ac->list);
  1306. ac->sched = false;
  1307. while (!list_empty(&ac->tid_q)) {
  1308. tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
  1309. list);
  1310. list_del(&tid->list);
  1311. tid->sched = false;
  1312. if (tid->paused)
  1313. continue;
  1314. ath_tx_sched_aggr(sc, txq, tid);
  1315. /*
  1316. * add tid to round-robin queue if more frames
  1317. * are pending for the tid
  1318. */
  1319. if (!skb_queue_empty(&tid->buf_q))
  1320. ath_tx_queue_tid(txq, tid);
  1321. if (tid == last_tid ||
  1322. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1323. break;
  1324. }
  1325. if (!list_empty(&ac->tid_q) && !ac->sched) {
  1326. ac->sched = true;
  1327. list_add_tail(&ac->list, &txq->axq_acq);
  1328. }
  1329. if (ac == last_ac ||
  1330. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1331. return;
  1332. }
  1333. }
  1334. /***********/
  1335. /* TX, DMA */
  1336. /***********/
  1337. /*
  1338. * Insert a chain of ath_buf (descriptors) on a txq and
  1339. * assume the descriptors are already chained together by caller.
  1340. */
  1341. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  1342. struct list_head *head, bool internal)
  1343. {
  1344. struct ath_hw *ah = sc->sc_ah;
  1345. struct ath_common *common = ath9k_hw_common(ah);
  1346. struct ath_buf *bf, *bf_last;
  1347. bool puttxbuf = false;
  1348. bool edma;
  1349. /*
  1350. * Insert the frame on the outbound list and
  1351. * pass it on to the hardware.
  1352. */
  1353. if (list_empty(head))
  1354. return;
  1355. edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
  1356. bf = list_first_entry(head, struct ath_buf, list);
  1357. bf_last = list_entry(head->prev, struct ath_buf, list);
  1358. ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
  1359. txq->axq_qnum, txq->axq_depth);
  1360. if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
  1361. list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
  1362. INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
  1363. puttxbuf = true;
  1364. } else {
  1365. list_splice_tail_init(head, &txq->axq_q);
  1366. if (txq->axq_link) {
  1367. ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
  1368. ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
  1369. txq->axq_qnum, txq->axq_link,
  1370. ito64(bf->bf_daddr), bf->bf_desc);
  1371. } else if (!edma)
  1372. puttxbuf = true;
  1373. txq->axq_link = bf_last->bf_desc;
  1374. }
  1375. if (puttxbuf) {
  1376. TX_STAT_INC(txq->axq_qnum, puttxbuf);
  1377. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1378. ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
  1379. txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
  1380. }
  1381. if (!edma) {
  1382. TX_STAT_INC(txq->axq_qnum, txstart);
  1383. ath9k_hw_txstart(ah, txq->axq_qnum);
  1384. }
  1385. if (!internal) {
  1386. txq->axq_depth++;
  1387. if (bf_is_ampdu_not_probing(bf))
  1388. txq->axq_ampdu_depth++;
  1389. }
  1390. }
  1391. static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
  1392. struct sk_buff *skb, struct ath_tx_control *txctl)
  1393. {
  1394. struct ath_frame_info *fi = get_frame_info(skb);
  1395. struct list_head bf_head;
  1396. struct ath_buf *bf;
  1397. /*
  1398. * Do not queue to h/w when any of the following conditions is true:
  1399. * - there are pending frames in software queue
  1400. * - the TID is currently paused for ADDBA/BAR request
  1401. * - seqno is not within block-ack window
  1402. * - h/w queue depth exceeds low water mark
  1403. */
  1404. if (!skb_queue_empty(&tid->buf_q) || tid->paused ||
  1405. !BAW_WITHIN(tid->seq_start, tid->baw_size, tid->seq_next) ||
  1406. txctl->txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) {
  1407. /*
  1408. * Add this frame to software queue for scheduling later
  1409. * for aggregation.
  1410. */
  1411. TX_STAT_INC(txctl->txq->axq_qnum, a_queued_sw);
  1412. __skb_queue_tail(&tid->buf_q, skb);
  1413. if (!txctl->an || !txctl->an->sleeping)
  1414. ath_tx_queue_tid(txctl->txq, tid);
  1415. return;
  1416. }
  1417. bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb, false);
  1418. if (!bf)
  1419. return;
  1420. bf->bf_state.bf_type = BUF_AMPDU;
  1421. INIT_LIST_HEAD(&bf_head);
  1422. list_add(&bf->list, &bf_head);
  1423. /* Add sub-frame to BAW */
  1424. ath_tx_addto_baw(sc, tid, bf->bf_state.seqno);
  1425. /* Queue to h/w without aggregation */
  1426. TX_STAT_INC(txctl->txq->axq_qnum, a_queued_hw);
  1427. bf->bf_lastbf = bf;
  1428. ath_tx_fill_desc(sc, bf, txctl->txq, fi->framelen);
  1429. ath_tx_txqaddbuf(sc, txctl->txq, &bf_head, false);
  1430. }
  1431. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  1432. struct ath_atx_tid *tid, struct sk_buff *skb)
  1433. {
  1434. struct ath_frame_info *fi = get_frame_info(skb);
  1435. struct list_head bf_head;
  1436. struct ath_buf *bf;
  1437. bf = fi->bf;
  1438. if (!bf)
  1439. bf = ath_tx_setup_buffer(sc, txq, tid, skb, false);
  1440. if (!bf)
  1441. return;
  1442. INIT_LIST_HEAD(&bf_head);
  1443. list_add_tail(&bf->list, &bf_head);
  1444. bf->bf_state.bf_type = 0;
  1445. bf->bf_lastbf = bf;
  1446. ath_tx_fill_desc(sc, bf, txq, fi->framelen);
  1447. ath_tx_txqaddbuf(sc, txq, &bf_head, false);
  1448. TX_STAT_INC(txq->axq_qnum, queued);
  1449. }
  1450. static void setup_frame_info(struct ieee80211_hw *hw, struct sk_buff *skb,
  1451. int framelen)
  1452. {
  1453. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1454. struct ieee80211_sta *sta = tx_info->control.sta;
  1455. struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
  1456. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1457. const struct ieee80211_rate *rate;
  1458. struct ath_frame_info *fi = get_frame_info(skb);
  1459. struct ath_node *an = NULL;
  1460. enum ath9k_key_type keytype;
  1461. bool short_preamble = false;
  1462. /*
  1463. * We check if Short Preamble is needed for the CTS rate by
  1464. * checking the BSS's global flag.
  1465. * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
  1466. */
  1467. if (tx_info->control.vif &&
  1468. tx_info->control.vif->bss_conf.use_short_preamble)
  1469. short_preamble = true;
  1470. rate = ieee80211_get_rts_cts_rate(hw, tx_info);
  1471. keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
  1472. if (sta)
  1473. an = (struct ath_node *) sta->drv_priv;
  1474. memset(fi, 0, sizeof(*fi));
  1475. if (hw_key)
  1476. fi->keyix = hw_key->hw_key_idx;
  1477. else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
  1478. fi->keyix = an->ps_key;
  1479. else
  1480. fi->keyix = ATH9K_TXKEYIX_INVALID;
  1481. fi->keytype = keytype;
  1482. fi->framelen = framelen;
  1483. fi->rtscts_rate = rate->hw_value;
  1484. if (short_preamble)
  1485. fi->rtscts_rate |= rate->hw_value_short;
  1486. }
  1487. u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
  1488. {
  1489. struct ath_hw *ah = sc->sc_ah;
  1490. struct ath9k_channel *curchan = ah->curchan;
  1491. if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) &&
  1492. (curchan->channelFlags & CHANNEL_5GHZ) &&
  1493. (chainmask == 0x7) && (rate < 0x90))
  1494. return 0x3;
  1495. else
  1496. return chainmask;
  1497. }
  1498. /*
  1499. * Assign a descriptor (and sequence number if necessary,
  1500. * and map buffer for DMA. Frees skb on error
  1501. */
  1502. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  1503. struct ath_txq *txq,
  1504. struct ath_atx_tid *tid,
  1505. struct sk_buff *skb,
  1506. bool dequeue)
  1507. {
  1508. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1509. struct ath_frame_info *fi = get_frame_info(skb);
  1510. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1511. struct ath_buf *bf;
  1512. int fragno;
  1513. u16 seqno;
  1514. bf = ath_tx_get_buffer(sc);
  1515. if (!bf) {
  1516. ath_dbg(common, XMIT, "TX buffers are full\n");
  1517. goto error;
  1518. }
  1519. ATH_TXBUF_RESET(bf);
  1520. if (tid) {
  1521. fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
  1522. seqno = tid->seq_next;
  1523. hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
  1524. if (fragno)
  1525. hdr->seq_ctrl |= cpu_to_le16(fragno);
  1526. if (!ieee80211_has_morefrags(hdr->frame_control))
  1527. INCR(tid->seq_next, IEEE80211_SEQ_MAX);
  1528. bf->bf_state.seqno = seqno;
  1529. }
  1530. bf->bf_mpdu = skb;
  1531. bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
  1532. skb->len, DMA_TO_DEVICE);
  1533. if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
  1534. bf->bf_mpdu = NULL;
  1535. bf->bf_buf_addr = 0;
  1536. ath_err(ath9k_hw_common(sc->sc_ah),
  1537. "dma_mapping_error() on TX\n");
  1538. ath_tx_return_buffer(sc, bf);
  1539. goto error;
  1540. }
  1541. fi->bf = bf;
  1542. return bf;
  1543. error:
  1544. if (dequeue)
  1545. __skb_unlink(skb, &tid->buf_q);
  1546. dev_kfree_skb_any(skb);
  1547. return NULL;
  1548. }
  1549. /* FIXME: tx power */
  1550. static void ath_tx_start_dma(struct ath_softc *sc, struct sk_buff *skb,
  1551. struct ath_tx_control *txctl)
  1552. {
  1553. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1554. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1555. struct ath_atx_tid *tid = NULL;
  1556. struct ath_buf *bf;
  1557. u8 tidno;
  1558. if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) && txctl->an &&
  1559. ieee80211_is_data_qos(hdr->frame_control)) {
  1560. tidno = ieee80211_get_qos_ctl(hdr)[0] &
  1561. IEEE80211_QOS_CTL_TID_MASK;
  1562. tid = ATH_AN_2_TID(txctl->an, tidno);
  1563. WARN_ON(tid->ac->txq != txctl->txq);
  1564. }
  1565. if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && tid) {
  1566. /*
  1567. * Try aggregation if it's a unicast data frame
  1568. * and the destination is HT capable.
  1569. */
  1570. ath_tx_send_ampdu(sc, tid, skb, txctl);
  1571. } else {
  1572. bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb, false);
  1573. if (!bf)
  1574. return;
  1575. bf->bf_state.bfs_paprd = txctl->paprd;
  1576. if (txctl->paprd)
  1577. bf->bf_state.bfs_paprd_timestamp = jiffies;
  1578. ath_tx_send_normal(sc, txctl->txq, tid, skb);
  1579. }
  1580. }
  1581. /* Upon failure caller should free skb */
  1582. int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
  1583. struct ath_tx_control *txctl)
  1584. {
  1585. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  1586. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1587. struct ieee80211_sta *sta = info->control.sta;
  1588. struct ieee80211_vif *vif = info->control.vif;
  1589. struct ath_softc *sc = hw->priv;
  1590. struct ath_txq *txq = txctl->txq;
  1591. int padpos, padsize;
  1592. int frmlen = skb->len + FCS_LEN;
  1593. int q;
  1594. /* NOTE: sta can be NULL according to net/mac80211.h */
  1595. if (sta)
  1596. txctl->an = (struct ath_node *)sta->drv_priv;
  1597. if (info->control.hw_key)
  1598. frmlen += info->control.hw_key->icv_len;
  1599. /*
  1600. * As a temporary workaround, assign seq# here; this will likely need
  1601. * to be cleaned up to work better with Beacon transmission and virtual
  1602. * BSSes.
  1603. */
  1604. if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
  1605. if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
  1606. sc->tx.seq_no += 0x10;
  1607. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  1608. hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
  1609. }
  1610. /* Add the padding after the header if this is not already done */
  1611. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1612. padsize = padpos & 3;
  1613. if (padsize && skb->len > padpos) {
  1614. if (skb_headroom(skb) < padsize)
  1615. return -ENOMEM;
  1616. skb_push(skb, padsize);
  1617. memmove(skb->data, skb->data + padsize, padpos);
  1618. hdr = (struct ieee80211_hdr *) skb->data;
  1619. }
  1620. if ((vif && vif->type != NL80211_IFTYPE_AP &&
  1621. vif->type != NL80211_IFTYPE_AP_VLAN) ||
  1622. !ieee80211_is_data(hdr->frame_control))
  1623. info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  1624. setup_frame_info(hw, skb, frmlen);
  1625. /*
  1626. * At this point, the vif, hw_key and sta pointers in the tx control
  1627. * info are no longer valid (overwritten by the ath_frame_info data.
  1628. */
  1629. q = skb_get_queue_mapping(skb);
  1630. ath_txq_lock(sc, txq);
  1631. if (txq == sc->tx.txq_map[q] &&
  1632. ++txq->pending_frames > sc->tx.txq_max_pending[q] &&
  1633. !txq->stopped) {
  1634. ieee80211_stop_queue(sc->hw, q);
  1635. txq->stopped = true;
  1636. }
  1637. ath_tx_start_dma(sc, skb, txctl);
  1638. ath_txq_unlock(sc, txq);
  1639. return 0;
  1640. }
  1641. /*****************/
  1642. /* TX Completion */
  1643. /*****************/
  1644. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  1645. int tx_flags, struct ath_txq *txq)
  1646. {
  1647. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1648. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1649. struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
  1650. int q, padpos, padsize;
  1651. unsigned long flags;
  1652. ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
  1653. if (!(tx_flags & ATH_TX_ERROR))
  1654. /* Frame was ACKed */
  1655. tx_info->flags |= IEEE80211_TX_STAT_ACK;
  1656. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1657. padsize = padpos & 3;
  1658. if (padsize && skb->len>padpos+padsize) {
  1659. /*
  1660. * Remove MAC header padding before giving the frame back to
  1661. * mac80211.
  1662. */
  1663. memmove(skb->data + padsize, skb->data, padpos);
  1664. skb_pull(skb, padsize);
  1665. }
  1666. spin_lock_irqsave(&sc->sc_pm_lock, flags);
  1667. if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
  1668. sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
  1669. ath_dbg(common, PS,
  1670. "Going back to sleep after having received TX status (0x%lx)\n",
  1671. sc->ps_flags & (PS_WAIT_FOR_BEACON |
  1672. PS_WAIT_FOR_CAB |
  1673. PS_WAIT_FOR_PSPOLL_DATA |
  1674. PS_WAIT_FOR_TX_ACK));
  1675. }
  1676. spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
  1677. q = skb_get_queue_mapping(skb);
  1678. if (txq == sc->tx.txq_map[q]) {
  1679. if (WARN_ON(--txq->pending_frames < 0))
  1680. txq->pending_frames = 0;
  1681. if (txq->stopped &&
  1682. txq->pending_frames < sc->tx.txq_max_pending[q]) {
  1683. ieee80211_wake_queue(sc->hw, q);
  1684. txq->stopped = false;
  1685. }
  1686. }
  1687. __skb_queue_tail(&txq->complete_q, skb);
  1688. }
  1689. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  1690. struct ath_txq *txq, struct list_head *bf_q,
  1691. struct ath_tx_status *ts, int txok)
  1692. {
  1693. struct sk_buff *skb = bf->bf_mpdu;
  1694. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1695. unsigned long flags;
  1696. int tx_flags = 0;
  1697. if (!txok)
  1698. tx_flags |= ATH_TX_ERROR;
  1699. if (ts->ts_status & ATH9K_TXERR_FILT)
  1700. tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
  1701. dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
  1702. bf->bf_buf_addr = 0;
  1703. if (bf->bf_state.bfs_paprd) {
  1704. if (time_after(jiffies,
  1705. bf->bf_state.bfs_paprd_timestamp +
  1706. msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
  1707. dev_kfree_skb_any(skb);
  1708. else
  1709. complete(&sc->paprd_complete);
  1710. } else {
  1711. ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
  1712. ath_tx_complete(sc, skb, tx_flags, txq);
  1713. }
  1714. /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
  1715. * accidentally reference it later.
  1716. */
  1717. bf->bf_mpdu = NULL;
  1718. /*
  1719. * Return the list of ath_buf of this mpdu to free queue
  1720. */
  1721. spin_lock_irqsave(&sc->tx.txbuflock, flags);
  1722. list_splice_tail_init(bf_q, &sc->tx.txbuf);
  1723. spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
  1724. }
  1725. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  1726. struct ath_tx_status *ts, int nframes, int nbad,
  1727. int txok)
  1728. {
  1729. struct sk_buff *skb = bf->bf_mpdu;
  1730. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1731. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1732. struct ieee80211_hw *hw = sc->hw;
  1733. struct ath_hw *ah = sc->sc_ah;
  1734. u8 i, tx_rateindex;
  1735. if (txok)
  1736. tx_info->status.ack_signal = ts->ts_rssi;
  1737. tx_rateindex = ts->ts_rateindex;
  1738. WARN_ON(tx_rateindex >= hw->max_rates);
  1739. if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
  1740. tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
  1741. BUG_ON(nbad > nframes);
  1742. }
  1743. tx_info->status.ampdu_len = nframes;
  1744. tx_info->status.ampdu_ack_len = nframes - nbad;
  1745. if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
  1746. (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
  1747. /*
  1748. * If an underrun error is seen assume it as an excessive
  1749. * retry only if max frame trigger level has been reached
  1750. * (2 KB for single stream, and 4 KB for dual stream).
  1751. * Adjust the long retry as if the frame was tried
  1752. * hw->max_rate_tries times to affect how rate control updates
  1753. * PER for the failed rate.
  1754. * In case of congestion on the bus penalizing this type of
  1755. * underruns should help hardware actually transmit new frames
  1756. * successfully by eventually preferring slower rates.
  1757. * This itself should also alleviate congestion on the bus.
  1758. */
  1759. if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
  1760. ATH9K_TX_DELIM_UNDERRUN)) &&
  1761. ieee80211_is_data(hdr->frame_control) &&
  1762. ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
  1763. tx_info->status.rates[tx_rateindex].count =
  1764. hw->max_rate_tries;
  1765. }
  1766. for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
  1767. tx_info->status.rates[i].count = 0;
  1768. tx_info->status.rates[i].idx = -1;
  1769. }
  1770. tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
  1771. }
  1772. static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
  1773. struct ath_tx_status *ts, struct ath_buf *bf,
  1774. struct list_head *bf_head)
  1775. {
  1776. int txok;
  1777. txq->axq_depth--;
  1778. txok = !(ts->ts_status & ATH9K_TXERR_MASK);
  1779. txq->axq_tx_inprogress = false;
  1780. if (bf_is_ampdu_not_probing(bf))
  1781. txq->axq_ampdu_depth--;
  1782. if (!bf_isampdu(bf)) {
  1783. ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
  1784. ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
  1785. } else
  1786. ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok, true);
  1787. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
  1788. ath_txq_schedule(sc, txq);
  1789. }
  1790. static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
  1791. {
  1792. struct ath_hw *ah = sc->sc_ah;
  1793. struct ath_common *common = ath9k_hw_common(ah);
  1794. struct ath_buf *bf, *lastbf, *bf_held = NULL;
  1795. struct list_head bf_head;
  1796. struct ath_desc *ds;
  1797. struct ath_tx_status ts;
  1798. int status;
  1799. ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
  1800. txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
  1801. txq->axq_link);
  1802. ath_txq_lock(sc, txq);
  1803. for (;;) {
  1804. if (work_pending(&sc->hw_reset_work))
  1805. break;
  1806. if (list_empty(&txq->axq_q)) {
  1807. txq->axq_link = NULL;
  1808. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
  1809. ath_txq_schedule(sc, txq);
  1810. break;
  1811. }
  1812. bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
  1813. /*
  1814. * There is a race condition that a BH gets scheduled
  1815. * after sw writes TxE and before hw re-load the last
  1816. * descriptor to get the newly chained one.
  1817. * Software must keep the last DONE descriptor as a
  1818. * holding descriptor - software does so by marking
  1819. * it with the STALE flag.
  1820. */
  1821. bf_held = NULL;
  1822. if (bf->bf_stale) {
  1823. bf_held = bf;
  1824. if (list_is_last(&bf_held->list, &txq->axq_q))
  1825. break;
  1826. bf = list_entry(bf_held->list.next, struct ath_buf,
  1827. list);
  1828. }
  1829. lastbf = bf->bf_lastbf;
  1830. ds = lastbf->bf_desc;
  1831. memset(&ts, 0, sizeof(ts));
  1832. status = ath9k_hw_txprocdesc(ah, ds, &ts);
  1833. if (status == -EINPROGRESS)
  1834. break;
  1835. TX_STAT_INC(txq->axq_qnum, txprocdesc);
  1836. /*
  1837. * Remove ath_buf's of the same transmit unit from txq,
  1838. * however leave the last descriptor back as the holding
  1839. * descriptor for hw.
  1840. */
  1841. lastbf->bf_stale = true;
  1842. INIT_LIST_HEAD(&bf_head);
  1843. if (!list_is_singular(&lastbf->list))
  1844. list_cut_position(&bf_head,
  1845. &txq->axq_q, lastbf->list.prev);
  1846. if (bf_held) {
  1847. list_del(&bf_held->list);
  1848. ath_tx_return_buffer(sc, bf_held);
  1849. }
  1850. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1851. }
  1852. ath_txq_unlock_complete(sc, txq);
  1853. }
  1854. void ath_tx_tasklet(struct ath_softc *sc)
  1855. {
  1856. struct ath_hw *ah = sc->sc_ah;
  1857. u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
  1858. int i;
  1859. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1860. if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
  1861. ath_tx_processq(sc, &sc->tx.txq[i]);
  1862. }
  1863. }
  1864. void ath_tx_edma_tasklet(struct ath_softc *sc)
  1865. {
  1866. struct ath_tx_status ts;
  1867. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1868. struct ath_hw *ah = sc->sc_ah;
  1869. struct ath_txq *txq;
  1870. struct ath_buf *bf, *lastbf;
  1871. struct list_head bf_head;
  1872. int status;
  1873. for (;;) {
  1874. if (work_pending(&sc->hw_reset_work))
  1875. break;
  1876. status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
  1877. if (status == -EINPROGRESS)
  1878. break;
  1879. if (status == -EIO) {
  1880. ath_dbg(common, XMIT, "Error processing tx status\n");
  1881. break;
  1882. }
  1883. /* Process beacon completions separately */
  1884. if (ts.qid == sc->beacon.beaconq) {
  1885. sc->beacon.tx_processed = true;
  1886. sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
  1887. continue;
  1888. }
  1889. txq = &sc->tx.txq[ts.qid];
  1890. ath_txq_lock(sc, txq);
  1891. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  1892. ath_txq_unlock(sc, txq);
  1893. return;
  1894. }
  1895. bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
  1896. struct ath_buf, list);
  1897. lastbf = bf->bf_lastbf;
  1898. INIT_LIST_HEAD(&bf_head);
  1899. list_cut_position(&bf_head, &txq->txq_fifo[txq->txq_tailidx],
  1900. &lastbf->list);
  1901. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  1902. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  1903. if (!list_empty(&txq->axq_q)) {
  1904. struct list_head bf_q;
  1905. INIT_LIST_HEAD(&bf_q);
  1906. txq->axq_link = NULL;
  1907. list_splice_tail_init(&txq->axq_q, &bf_q);
  1908. ath_tx_txqaddbuf(sc, txq, &bf_q, true);
  1909. }
  1910. }
  1911. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1912. ath_txq_unlock_complete(sc, txq);
  1913. }
  1914. }
  1915. /*****************/
  1916. /* Init, Cleanup */
  1917. /*****************/
  1918. static int ath_txstatus_setup(struct ath_softc *sc, int size)
  1919. {
  1920. struct ath_descdma *dd = &sc->txsdma;
  1921. u8 txs_len = sc->sc_ah->caps.txs_len;
  1922. dd->dd_desc_len = size * txs_len;
  1923. dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
  1924. &dd->dd_desc_paddr, GFP_KERNEL);
  1925. if (!dd->dd_desc)
  1926. return -ENOMEM;
  1927. return 0;
  1928. }
  1929. static int ath_tx_edma_init(struct ath_softc *sc)
  1930. {
  1931. int err;
  1932. err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
  1933. if (!err)
  1934. ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
  1935. sc->txsdma.dd_desc_paddr,
  1936. ATH_TXSTATUS_RING_SIZE);
  1937. return err;
  1938. }
  1939. static void ath_tx_edma_cleanup(struct ath_softc *sc)
  1940. {
  1941. struct ath_descdma *dd = &sc->txsdma;
  1942. dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
  1943. dd->dd_desc_paddr);
  1944. }
  1945. int ath_tx_init(struct ath_softc *sc, int nbufs)
  1946. {
  1947. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1948. int error = 0;
  1949. spin_lock_init(&sc->tx.txbuflock);
  1950. error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
  1951. "tx", nbufs, 1, 1);
  1952. if (error != 0) {
  1953. ath_err(common,
  1954. "Failed to allocate tx descriptors: %d\n", error);
  1955. goto err;
  1956. }
  1957. error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
  1958. "beacon", ATH_BCBUF, 1, 1);
  1959. if (error != 0) {
  1960. ath_err(common,
  1961. "Failed to allocate beacon descriptors: %d\n", error);
  1962. goto err;
  1963. }
  1964. INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
  1965. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1966. error = ath_tx_edma_init(sc);
  1967. if (error)
  1968. goto err;
  1969. }
  1970. err:
  1971. if (error != 0)
  1972. ath_tx_cleanup(sc);
  1973. return error;
  1974. }
  1975. void ath_tx_cleanup(struct ath_softc *sc)
  1976. {
  1977. if (sc->beacon.bdma.dd_desc_len != 0)
  1978. ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
  1979. if (sc->tx.txdma.dd_desc_len != 0)
  1980. ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
  1981. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
  1982. ath_tx_edma_cleanup(sc);
  1983. }
  1984. void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
  1985. {
  1986. struct ath_atx_tid *tid;
  1987. struct ath_atx_ac *ac;
  1988. int tidno, acno;
  1989. for (tidno = 0, tid = &an->tid[tidno];
  1990. tidno < WME_NUM_TID;
  1991. tidno++, tid++) {
  1992. tid->an = an;
  1993. tid->tidno = tidno;
  1994. tid->seq_start = tid->seq_next = 0;
  1995. tid->baw_size = WME_MAX_BA;
  1996. tid->baw_head = tid->baw_tail = 0;
  1997. tid->sched = false;
  1998. tid->paused = false;
  1999. tid->state &= ~AGGR_CLEANUP;
  2000. __skb_queue_head_init(&tid->buf_q);
  2001. acno = TID_TO_WME_AC(tidno);
  2002. tid->ac = &an->ac[acno];
  2003. tid->state &= ~AGGR_ADDBA_COMPLETE;
  2004. tid->state &= ~AGGR_ADDBA_PROGRESS;
  2005. }
  2006. for (acno = 0, ac = &an->ac[acno];
  2007. acno < WME_NUM_AC; acno++, ac++) {
  2008. ac->sched = false;
  2009. ac->txq = sc->tx.txq_map[acno];
  2010. INIT_LIST_HEAD(&ac->tid_q);
  2011. }
  2012. }
  2013. void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
  2014. {
  2015. struct ath_atx_ac *ac;
  2016. struct ath_atx_tid *tid;
  2017. struct ath_txq *txq;
  2018. int tidno;
  2019. for (tidno = 0, tid = &an->tid[tidno];
  2020. tidno < WME_NUM_TID; tidno++, tid++) {
  2021. ac = tid->ac;
  2022. txq = ac->txq;
  2023. ath_txq_lock(sc, txq);
  2024. if (tid->sched) {
  2025. list_del(&tid->list);
  2026. tid->sched = false;
  2027. }
  2028. if (ac->sched) {
  2029. list_del(&ac->list);
  2030. tid->ac->sched = false;
  2031. }
  2032. ath_tid_drain(sc, txq, tid);
  2033. tid->state &= ~AGGR_ADDBA_COMPLETE;
  2034. tid->state &= ~AGGR_CLEANUP;
  2035. ath_txq_unlock(sc, txq);
  2036. }
  2037. }