phy_lp.c 82 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205
  1. /*
  2. Broadcom B43 wireless driver
  3. IEEE 802.11g LP-PHY driver
  4. Copyright (c) 2008-2009 Michael Buesch <mb@bu3sch.de>
  5. This program is free software; you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation; either version 2 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program; see the file COPYING. If not, write to
  15. the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor,
  16. Boston, MA 02110-1301, USA.
  17. */
  18. #include "b43.h"
  19. #include "main.h"
  20. #include "phy_lp.h"
  21. #include "phy_common.h"
  22. #include "tables_lpphy.h"
  23. static inline u16 channel2freq_lp(u8 channel)
  24. {
  25. if (channel < 14)
  26. return (2407 + 5 * channel);
  27. else if (channel == 14)
  28. return 2484;
  29. else if (channel < 184)
  30. return (5000 + 5 * channel);
  31. else
  32. return (4000 + 5 * channel);
  33. }
  34. static unsigned int b43_lpphy_op_get_default_chan(struct b43_wldev *dev)
  35. {
  36. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  37. return 1;
  38. return 36;
  39. }
  40. static int b43_lpphy_op_allocate(struct b43_wldev *dev)
  41. {
  42. struct b43_phy_lp *lpphy;
  43. lpphy = kzalloc(sizeof(*lpphy), GFP_KERNEL);
  44. if (!lpphy)
  45. return -ENOMEM;
  46. dev->phy.lp = lpphy;
  47. return 0;
  48. }
  49. static void b43_lpphy_op_prepare_structs(struct b43_wldev *dev)
  50. {
  51. struct b43_phy *phy = &dev->phy;
  52. struct b43_phy_lp *lpphy = phy->lp;
  53. memset(lpphy, 0, sizeof(*lpphy));
  54. //TODO
  55. }
  56. static void b43_lpphy_op_free(struct b43_wldev *dev)
  57. {
  58. struct b43_phy_lp *lpphy = dev->phy.lp;
  59. kfree(lpphy);
  60. dev->phy.lp = NULL;
  61. }
  62. static void lpphy_read_band_sprom(struct b43_wldev *dev)
  63. {
  64. struct b43_phy_lp *lpphy = dev->phy.lp;
  65. struct ssb_bus *bus = dev->dev->bus;
  66. u16 cckpo, maxpwr;
  67. u32 ofdmpo;
  68. int i;
  69. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  70. lpphy->tx_isolation_med_band = bus->sprom.tri2g;
  71. lpphy->bx_arch = bus->sprom.bxa2g;
  72. lpphy->rx_pwr_offset = bus->sprom.rxpo2g;
  73. lpphy->rssi_vf = bus->sprom.rssismf2g;
  74. lpphy->rssi_vc = bus->sprom.rssismc2g;
  75. lpphy->rssi_gs = bus->sprom.rssisav2g;
  76. lpphy->txpa[0] = bus->sprom.pa0b0;
  77. lpphy->txpa[1] = bus->sprom.pa0b1;
  78. lpphy->txpa[2] = bus->sprom.pa0b2;
  79. maxpwr = bus->sprom.maxpwr_bg;
  80. lpphy->max_tx_pwr_med_band = maxpwr;
  81. cckpo = bus->sprom.cck2gpo;
  82. ofdmpo = bus->sprom.ofdm2gpo;
  83. if (cckpo) {
  84. for (i = 0; i < 4; i++) {
  85. lpphy->tx_max_rate[i] =
  86. maxpwr - (ofdmpo & 0xF) * 2;
  87. ofdmpo >>= 4;
  88. }
  89. ofdmpo = bus->sprom.ofdm2gpo;
  90. for (i = 4; i < 15; i++) {
  91. lpphy->tx_max_rate[i] =
  92. maxpwr - (ofdmpo & 0xF) * 2;
  93. ofdmpo >>= 4;
  94. }
  95. } else {
  96. ofdmpo &= 0xFF;
  97. for (i = 0; i < 4; i++)
  98. lpphy->tx_max_rate[i] = maxpwr;
  99. for (i = 4; i < 15; i++)
  100. lpphy->tx_max_rate[i] = maxpwr - ofdmpo;
  101. }
  102. } else { /* 5GHz */
  103. lpphy->tx_isolation_low_band = bus->sprom.tri5gl;
  104. lpphy->tx_isolation_med_band = bus->sprom.tri5g;
  105. lpphy->tx_isolation_hi_band = bus->sprom.tri5gh;
  106. lpphy->bx_arch = bus->sprom.bxa5g;
  107. lpphy->rx_pwr_offset = bus->sprom.rxpo5g;
  108. lpphy->rssi_vf = bus->sprom.rssismf5g;
  109. lpphy->rssi_vc = bus->sprom.rssismc5g;
  110. lpphy->rssi_gs = bus->sprom.rssisav5g;
  111. lpphy->txpa[0] = bus->sprom.pa1b0;
  112. lpphy->txpa[1] = bus->sprom.pa1b1;
  113. lpphy->txpa[2] = bus->sprom.pa1b2;
  114. lpphy->txpal[0] = bus->sprom.pa1lob0;
  115. lpphy->txpal[1] = bus->sprom.pa1lob1;
  116. lpphy->txpal[2] = bus->sprom.pa1lob2;
  117. lpphy->txpah[0] = bus->sprom.pa1hib0;
  118. lpphy->txpah[1] = bus->sprom.pa1hib1;
  119. lpphy->txpah[2] = bus->sprom.pa1hib2;
  120. maxpwr = bus->sprom.maxpwr_al;
  121. ofdmpo = bus->sprom.ofdm5glpo;
  122. lpphy->max_tx_pwr_low_band = maxpwr;
  123. for (i = 4; i < 12; i++) {
  124. lpphy->tx_max_ratel[i] = maxpwr - (ofdmpo & 0xF) * 2;
  125. ofdmpo >>= 4;
  126. }
  127. maxpwr = bus->sprom.maxpwr_a;
  128. ofdmpo = bus->sprom.ofdm5gpo;
  129. lpphy->max_tx_pwr_med_band = maxpwr;
  130. for (i = 4; i < 12; i++) {
  131. lpphy->tx_max_rate[i] = maxpwr - (ofdmpo & 0xF) * 2;
  132. ofdmpo >>= 4;
  133. }
  134. maxpwr = bus->sprom.maxpwr_ah;
  135. ofdmpo = bus->sprom.ofdm5ghpo;
  136. lpphy->max_tx_pwr_hi_band = maxpwr;
  137. for (i = 4; i < 12; i++) {
  138. lpphy->tx_max_rateh[i] = maxpwr - (ofdmpo & 0xF) * 2;
  139. ofdmpo >>= 4;
  140. }
  141. }
  142. }
  143. static void lpphy_adjust_gain_table(struct b43_wldev *dev, u32 freq)
  144. {
  145. struct b43_phy_lp *lpphy = dev->phy.lp;
  146. u16 temp[3];
  147. u16 isolation;
  148. B43_WARN_ON(dev->phy.rev >= 2);
  149. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  150. isolation = lpphy->tx_isolation_med_band;
  151. else if (freq <= 5320)
  152. isolation = lpphy->tx_isolation_low_band;
  153. else if (freq <= 5700)
  154. isolation = lpphy->tx_isolation_med_band;
  155. else
  156. isolation = lpphy->tx_isolation_hi_band;
  157. temp[0] = ((isolation - 26) / 12) << 12;
  158. temp[1] = temp[0] + 0x1000;
  159. temp[2] = temp[0] + 0x2000;
  160. b43_lptab_write_bulk(dev, B43_LPTAB16(12, 0), 3, temp);
  161. b43_lptab_write_bulk(dev, B43_LPTAB16(13, 0), 3, temp);
  162. }
  163. static void lpphy_table_init(struct b43_wldev *dev)
  164. {
  165. u32 freq = channel2freq_lp(b43_lpphy_op_get_default_chan(dev));
  166. if (dev->phy.rev < 2)
  167. lpphy_rev0_1_table_init(dev);
  168. else
  169. lpphy_rev2plus_table_init(dev);
  170. lpphy_init_tx_gain_table(dev);
  171. if (dev->phy.rev < 2)
  172. lpphy_adjust_gain_table(dev, freq);
  173. }
  174. static void lpphy_baseband_rev0_1_init(struct b43_wldev *dev)
  175. {
  176. struct ssb_bus *bus = dev->dev->bus;
  177. struct b43_phy_lp *lpphy = dev->phy.lp;
  178. u16 tmp, tmp2;
  179. b43_phy_mask(dev, B43_LPPHY_AFE_DAC_CTL, 0xF7FF);
  180. b43_phy_write(dev, B43_LPPHY_AFE_CTL, 0);
  181. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVR, 0);
  182. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_0, 0);
  183. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_2, 0);
  184. b43_phy_set(dev, B43_LPPHY_AFE_DAC_CTL, 0x0004);
  185. b43_phy_maskset(dev, B43_LPPHY_OFDMSYNCTHRESH0, 0xFF00, 0x0078);
  186. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0x83FF, 0x5800);
  187. b43_phy_write(dev, B43_LPPHY_ADC_COMPENSATION_CTL, 0x0016);
  188. b43_phy_maskset(dev, B43_LPPHY_AFE_ADC_CTL_0, 0xFFF8, 0x0004);
  189. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0x00FF, 0x5400);
  190. b43_phy_maskset(dev, B43_LPPHY_HIGAINDB, 0x00FF, 0x2400);
  191. b43_phy_maskset(dev, B43_LPPHY_LOWGAINDB, 0x00FF, 0x2100);
  192. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0xFF00, 0x0006);
  193. b43_phy_mask(dev, B43_LPPHY_RX_RADIO_CTL, 0xFFFE);
  194. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0xFFE0, 0x0005);
  195. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0xFC10, 0x0180);
  196. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0x83FF, 0x3800);
  197. b43_phy_maskset(dev, B43_LPPHY_GAINDIRECTMISMATCH, 0xFFF0, 0x0005);
  198. b43_phy_maskset(dev, B43_LPPHY_GAIN_MISMATCH_LIMIT, 0xFFC0, 0x001A);
  199. b43_phy_maskset(dev, B43_LPPHY_CRS_ED_THRESH, 0xFF00, 0x00B3);
  200. b43_phy_maskset(dev, B43_LPPHY_CRS_ED_THRESH, 0x00FF, 0xAD00);
  201. b43_phy_maskset(dev, B43_LPPHY_INPUT_PWRDB,
  202. 0xFF00, lpphy->rx_pwr_offset);
  203. if ((bus->sprom.boardflags_lo & B43_BFL_FEM) &&
  204. ((b43_current_band(dev->wl) == IEEE80211_BAND_5GHZ) ||
  205. (bus->sprom.boardflags_hi & B43_BFH_PAREF))) {
  206. /* TODO:
  207. * Set the LDO voltage to 0x0028 - FIXME: What is this?
  208. * Call sb_pmu_set_ldo_voltage with 4 and the LDO voltage
  209. * as arguments
  210. * Call sb_pmu_paref_ldo_enable with argument TRUE
  211. */
  212. if (dev->phy.rev == 0) {
  213. b43_phy_maskset(dev, B43_LPPHY_LP_RF_SIGNAL_LUT,
  214. 0xFFCF, 0x0010);
  215. }
  216. b43_lptab_write(dev, B43_LPTAB16(11, 7), 60);
  217. } else {
  218. //TODO: Call ssb_pmu_paref_ldo_enable with argument FALSE
  219. b43_phy_maskset(dev, B43_LPPHY_LP_RF_SIGNAL_LUT,
  220. 0xFFCF, 0x0020);
  221. b43_lptab_write(dev, B43_LPTAB16(11, 7), 100);
  222. }
  223. tmp = lpphy->rssi_vf | lpphy->rssi_vc << 4 | 0xA000;
  224. b43_phy_write(dev, B43_LPPHY_AFE_RSSI_CTL_0, tmp);
  225. if (bus->sprom.boardflags_hi & B43_BFH_RSSIINV)
  226. b43_phy_maskset(dev, B43_LPPHY_AFE_RSSI_CTL_1, 0xF000, 0x0AAA);
  227. else
  228. b43_phy_maskset(dev, B43_LPPHY_AFE_RSSI_CTL_1, 0xF000, 0x02AA);
  229. b43_lptab_write(dev, B43_LPTAB16(11, 1), 24);
  230. b43_phy_maskset(dev, B43_LPPHY_RX_RADIO_CTL,
  231. 0xFFF9, (lpphy->bx_arch << 1));
  232. if (dev->phy.rev == 1 &&
  233. (bus->sprom.boardflags_hi & B43_BFH_FEM_BT)) {
  234. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xFFC0, 0x000A);
  235. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0x3F00, 0x0900);
  236. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xFFC0, 0x000A);
  237. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xC0FF, 0x0B00);
  238. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xFFC0, 0x000A);
  239. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xC0FF, 0x0400);
  240. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xFFC0, 0x000A);
  241. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xC0FF, 0x0B00);
  242. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_5, 0xFFC0, 0x000A);
  243. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_5, 0xC0FF, 0x0900);
  244. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_6, 0xFFC0, 0x000A);
  245. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_6, 0xC0FF, 0x0B00);
  246. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_7, 0xFFC0, 0x000A);
  247. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_7, 0xC0FF, 0x0900);
  248. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_8, 0xFFC0, 0x000A);
  249. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_8, 0xC0FF, 0x0B00);
  250. } else if (b43_current_band(dev->wl) == IEEE80211_BAND_5GHZ ||
  251. (bus->boardinfo.type == 0x048A) || ((dev->phy.rev == 0) &&
  252. (bus->sprom.boardflags_lo & B43_BFL_FEM))) {
  253. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xFFC0, 0x0001);
  254. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xC0FF, 0x0400);
  255. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xFFC0, 0x0001);
  256. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xC0FF, 0x0500);
  257. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xFFC0, 0x0002);
  258. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xC0FF, 0x0800);
  259. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xFFC0, 0x0002);
  260. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xC0FF, 0x0A00);
  261. } else if (dev->phy.rev == 1 ||
  262. (bus->sprom.boardflags_lo & B43_BFL_FEM)) {
  263. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xFFC0, 0x0004);
  264. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xC0FF, 0x0800);
  265. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xFFC0, 0x0004);
  266. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xC0FF, 0x0C00);
  267. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xFFC0, 0x0002);
  268. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xC0FF, 0x0100);
  269. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xFFC0, 0x0002);
  270. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xC0FF, 0x0300);
  271. } else {
  272. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xFFC0, 0x000A);
  273. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xC0FF, 0x0900);
  274. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xFFC0, 0x000A);
  275. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xC0FF, 0x0B00);
  276. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xFFC0, 0x0006);
  277. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xC0FF, 0x0500);
  278. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xFFC0, 0x0006);
  279. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xC0FF, 0x0700);
  280. }
  281. if (dev->phy.rev == 1 && (bus->sprom.boardflags_hi & B43_BFH_PAREF)) {
  282. b43_phy_copy(dev, B43_LPPHY_TR_LOOKUP_5, B43_LPPHY_TR_LOOKUP_1);
  283. b43_phy_copy(dev, B43_LPPHY_TR_LOOKUP_6, B43_LPPHY_TR_LOOKUP_2);
  284. b43_phy_copy(dev, B43_LPPHY_TR_LOOKUP_7, B43_LPPHY_TR_LOOKUP_3);
  285. b43_phy_copy(dev, B43_LPPHY_TR_LOOKUP_8, B43_LPPHY_TR_LOOKUP_4);
  286. }
  287. if ((bus->sprom.boardflags_hi & B43_BFH_FEM_BT) &&
  288. (bus->chip_id == 0x5354) &&
  289. (bus->chip_package == SSB_CHIPPACK_BCM4712S)) {
  290. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x0006);
  291. b43_phy_write(dev, B43_LPPHY_GPIO_SELECT, 0x0005);
  292. b43_phy_write(dev, B43_LPPHY_GPIO_OUTEN, 0xFFFF);
  293. //FIXME the Broadcom driver caches & delays this HF write!
  294. b43_hf_write(dev, b43_hf_read(dev) | B43_HF_PR45960W);
  295. }
  296. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  297. b43_phy_set(dev, B43_LPPHY_LP_PHY_CTL, 0x8000);
  298. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x0040);
  299. b43_phy_maskset(dev, B43_LPPHY_MINPWR_LEVEL, 0x00FF, 0xA400);
  300. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xF0FF, 0x0B00);
  301. b43_phy_maskset(dev, B43_LPPHY_SYNCPEAKCNT, 0xFFF8, 0x0007);
  302. b43_phy_maskset(dev, B43_LPPHY_DSSS_CONFIRM_CNT, 0xFFF8, 0x0003);
  303. b43_phy_maskset(dev, B43_LPPHY_DSSS_CONFIRM_CNT, 0xFFC7, 0x0020);
  304. b43_phy_mask(dev, B43_LPPHY_IDLEAFTERPKTRXTO, 0x00FF);
  305. } else { /* 5GHz */
  306. b43_phy_mask(dev, B43_LPPHY_LP_PHY_CTL, 0x7FFF);
  307. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, 0xFFBF);
  308. }
  309. if (dev->phy.rev == 1) {
  310. tmp = b43_phy_read(dev, B43_LPPHY_CLIPCTRTHRESH);
  311. tmp2 = (tmp & 0x03E0) >> 5;
  312. tmp2 |= tmp << 5;
  313. b43_phy_write(dev, B43_LPPHY_4C3, tmp2);
  314. tmp = b43_phy_read(dev, B43_LPPHY_OFDMSYNCTHRESH0);
  315. tmp2 = (tmp & 0x1F00) >> 8;
  316. tmp2 |= tmp << 5;
  317. b43_phy_write(dev, B43_LPPHY_4C4, tmp2);
  318. tmp = b43_phy_read(dev, B43_LPPHY_VERYLOWGAINDB);
  319. tmp2 = tmp & 0x00FF;
  320. tmp2 |= tmp << 8;
  321. b43_phy_write(dev, B43_LPPHY_4C5, tmp2);
  322. }
  323. }
  324. static void lpphy_save_dig_flt_state(struct b43_wldev *dev)
  325. {
  326. static const u16 addr[] = {
  327. B43_PHY_OFDM(0xC1),
  328. B43_PHY_OFDM(0xC2),
  329. B43_PHY_OFDM(0xC3),
  330. B43_PHY_OFDM(0xC4),
  331. B43_PHY_OFDM(0xC5),
  332. B43_PHY_OFDM(0xC6),
  333. B43_PHY_OFDM(0xC7),
  334. B43_PHY_OFDM(0xC8),
  335. B43_PHY_OFDM(0xCF),
  336. };
  337. static const u16 coefs[] = {
  338. 0xDE5E, 0xE832, 0xE331, 0x4D26,
  339. 0x0026, 0x1420, 0x0020, 0xFE08,
  340. 0x0008,
  341. };
  342. struct b43_phy_lp *lpphy = dev->phy.lp;
  343. int i;
  344. for (i = 0; i < ARRAY_SIZE(addr); i++) {
  345. lpphy->dig_flt_state[i] = b43_phy_read(dev, addr[i]);
  346. b43_phy_write(dev, addr[i], coefs[i]);
  347. }
  348. }
  349. static void lpphy_restore_dig_flt_state(struct b43_wldev *dev)
  350. {
  351. static const u16 addr[] = {
  352. B43_PHY_OFDM(0xC1),
  353. B43_PHY_OFDM(0xC2),
  354. B43_PHY_OFDM(0xC3),
  355. B43_PHY_OFDM(0xC4),
  356. B43_PHY_OFDM(0xC5),
  357. B43_PHY_OFDM(0xC6),
  358. B43_PHY_OFDM(0xC7),
  359. B43_PHY_OFDM(0xC8),
  360. B43_PHY_OFDM(0xCF),
  361. };
  362. struct b43_phy_lp *lpphy = dev->phy.lp;
  363. int i;
  364. for (i = 0; i < ARRAY_SIZE(addr); i++)
  365. b43_phy_write(dev, addr[i], lpphy->dig_flt_state[i]);
  366. }
  367. static void lpphy_baseband_rev2plus_init(struct b43_wldev *dev)
  368. {
  369. struct ssb_bus *bus = dev->dev->bus;
  370. struct b43_phy_lp *lpphy = dev->phy.lp;
  371. b43_phy_write(dev, B43_LPPHY_AFE_DAC_CTL, 0x50);
  372. b43_phy_write(dev, B43_LPPHY_AFE_CTL, 0x8800);
  373. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVR, 0);
  374. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVRVAL, 0);
  375. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_0, 0);
  376. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_2, 0);
  377. b43_phy_write(dev, B43_PHY_OFDM(0xF9), 0);
  378. b43_phy_write(dev, B43_LPPHY_TR_LOOKUP_1, 0);
  379. b43_phy_set(dev, B43_LPPHY_ADC_COMPENSATION_CTL, 0x10);
  380. b43_phy_maskset(dev, B43_LPPHY_OFDMSYNCTHRESH0, 0xFF00, 0xB4);
  381. b43_phy_maskset(dev, B43_LPPHY_DCOFFSETTRANSIENT, 0xF8FF, 0x200);
  382. b43_phy_maskset(dev, B43_LPPHY_DCOFFSETTRANSIENT, 0xFF00, 0x7F);
  383. b43_phy_maskset(dev, B43_LPPHY_GAINDIRECTMISMATCH, 0xFF0F, 0x40);
  384. b43_phy_maskset(dev, B43_LPPHY_PREAMBLECONFIRMTO, 0xFF00, 0x2);
  385. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, ~0x4000);
  386. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, ~0x2000);
  387. b43_phy_set(dev, B43_PHY_OFDM(0x10A), 0x1);
  388. if (bus->boardinfo.rev >= 0x18) {
  389. b43_lptab_write(dev, B43_LPTAB32(17, 65), 0xEC);
  390. b43_phy_maskset(dev, B43_PHY_OFDM(0x10A), 0xFF01, 0x14);
  391. } else {
  392. b43_phy_maskset(dev, B43_PHY_OFDM(0x10A), 0xFF01, 0x10);
  393. }
  394. b43_phy_maskset(dev, B43_PHY_OFDM(0xDF), 0xFF00, 0xF4);
  395. b43_phy_maskset(dev, B43_PHY_OFDM(0xDF), 0x00FF, 0xF100);
  396. b43_phy_write(dev, B43_LPPHY_CLIPTHRESH, 0x48);
  397. b43_phy_maskset(dev, B43_LPPHY_HIGAINDB, 0xFF00, 0x46);
  398. b43_phy_maskset(dev, B43_PHY_OFDM(0xE4), 0xFF00, 0x10);
  399. b43_phy_maskset(dev, B43_LPPHY_PWR_THRESH1, 0xFFF0, 0x9);
  400. b43_phy_mask(dev, B43_LPPHY_GAINDIRECTMISMATCH, ~0xF);
  401. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0x00FF, 0x5500);
  402. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0xFC1F, 0xA0);
  403. b43_phy_maskset(dev, B43_LPPHY_GAINDIRECTMISMATCH, 0xE0FF, 0x300);
  404. b43_phy_maskset(dev, B43_LPPHY_HIGAINDB, 0x00FF, 0x2A00);
  405. if ((bus->chip_id == 0x4325) && (bus->chip_rev == 0)) {
  406. b43_phy_maskset(dev, B43_LPPHY_LOWGAINDB, 0x00FF, 0x2100);
  407. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0xFF00, 0xA);
  408. } else {
  409. b43_phy_maskset(dev, B43_LPPHY_LOWGAINDB, 0x00FF, 0x1E00);
  410. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0xFF00, 0xD);
  411. }
  412. b43_phy_maskset(dev, B43_PHY_OFDM(0xFE), 0xFFE0, 0x1F);
  413. b43_phy_maskset(dev, B43_PHY_OFDM(0xFF), 0xFFE0, 0xC);
  414. b43_phy_maskset(dev, B43_PHY_OFDM(0x100), 0xFF00, 0x19);
  415. b43_phy_maskset(dev, B43_PHY_OFDM(0xFF), 0x03FF, 0x3C00);
  416. b43_phy_maskset(dev, B43_PHY_OFDM(0xFE), 0xFC1F, 0x3E0);
  417. b43_phy_maskset(dev, B43_PHY_OFDM(0xFF), 0xFFE0, 0xC);
  418. b43_phy_maskset(dev, B43_PHY_OFDM(0x100), 0x00FF, 0x1900);
  419. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0x83FF, 0x5800);
  420. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0xFFE0, 0x12);
  421. b43_phy_maskset(dev, B43_LPPHY_GAINMISMATCH, 0x0FFF, 0x9000);
  422. if ((bus->chip_id == 0x4325) && (bus->chip_rev == 0)) {
  423. b43_lptab_write(dev, B43_LPTAB16(0x08, 0x14), 0);
  424. b43_lptab_write(dev, B43_LPTAB16(0x08, 0x12), 0x40);
  425. }
  426. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  427. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x40);
  428. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xF0FF, 0xB00);
  429. b43_phy_maskset(dev, B43_LPPHY_SYNCPEAKCNT, 0xFFF8, 0x6);
  430. b43_phy_maskset(dev, B43_LPPHY_MINPWR_LEVEL, 0x00FF, 0x9D00);
  431. b43_phy_maskset(dev, B43_LPPHY_MINPWR_LEVEL, 0xFF00, 0xA1);
  432. b43_phy_mask(dev, B43_LPPHY_IDLEAFTERPKTRXTO, 0x00FF);
  433. } else /* 5GHz */
  434. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, ~0x40);
  435. b43_phy_maskset(dev, B43_LPPHY_CRS_ED_THRESH, 0xFF00, 0xB3);
  436. b43_phy_maskset(dev, B43_LPPHY_CRS_ED_THRESH, 0x00FF, 0xAD00);
  437. b43_phy_maskset(dev, B43_LPPHY_INPUT_PWRDB, 0xFF00, lpphy->rx_pwr_offset);
  438. b43_phy_set(dev, B43_LPPHY_RESET_CTL, 0x44);
  439. b43_phy_write(dev, B43_LPPHY_RESET_CTL, 0x80);
  440. b43_phy_write(dev, B43_LPPHY_AFE_RSSI_CTL_0, 0xA954);
  441. b43_phy_write(dev, B43_LPPHY_AFE_RSSI_CTL_1,
  442. 0x2000 | ((u16)lpphy->rssi_gs << 10) |
  443. ((u16)lpphy->rssi_vc << 4) | lpphy->rssi_vf);
  444. if ((bus->chip_id == 0x4325) && (bus->chip_rev == 0)) {
  445. b43_phy_set(dev, B43_LPPHY_AFE_ADC_CTL_0, 0x1C);
  446. b43_phy_maskset(dev, B43_LPPHY_AFE_CTL, 0x00FF, 0x8800);
  447. b43_phy_maskset(dev, B43_LPPHY_AFE_ADC_CTL_1, 0xFC3C, 0x0400);
  448. }
  449. lpphy_save_dig_flt_state(dev);
  450. }
  451. static void lpphy_baseband_init(struct b43_wldev *dev)
  452. {
  453. lpphy_table_init(dev);
  454. if (dev->phy.rev >= 2)
  455. lpphy_baseband_rev2plus_init(dev);
  456. else
  457. lpphy_baseband_rev0_1_init(dev);
  458. }
  459. struct b2062_freqdata {
  460. u16 freq;
  461. u8 data[6];
  462. };
  463. /* Initialize the 2062 radio. */
  464. static void lpphy_2062_init(struct b43_wldev *dev)
  465. {
  466. struct b43_phy_lp *lpphy = dev->phy.lp;
  467. struct ssb_bus *bus = dev->dev->bus;
  468. u32 crystalfreq, tmp, ref;
  469. unsigned int i;
  470. const struct b2062_freqdata *fd = NULL;
  471. static const struct b2062_freqdata freqdata_tab[] = {
  472. { .freq = 12000, .data[0] = 6, .data[1] = 6, .data[2] = 6,
  473. .data[3] = 6, .data[4] = 10, .data[5] = 6, },
  474. { .freq = 13000, .data[0] = 4, .data[1] = 4, .data[2] = 4,
  475. .data[3] = 4, .data[4] = 11, .data[5] = 7, },
  476. { .freq = 14400, .data[0] = 3, .data[1] = 3, .data[2] = 3,
  477. .data[3] = 3, .data[4] = 12, .data[5] = 7, },
  478. { .freq = 16200, .data[0] = 3, .data[1] = 3, .data[2] = 3,
  479. .data[3] = 3, .data[4] = 13, .data[5] = 8, },
  480. { .freq = 18000, .data[0] = 2, .data[1] = 2, .data[2] = 2,
  481. .data[3] = 2, .data[4] = 14, .data[5] = 8, },
  482. { .freq = 19200, .data[0] = 1, .data[1] = 1, .data[2] = 1,
  483. .data[3] = 1, .data[4] = 14, .data[5] = 9, },
  484. };
  485. b2062_upload_init_table(dev);
  486. b43_radio_write(dev, B2062_N_TX_CTL3, 0);
  487. b43_radio_write(dev, B2062_N_TX_CTL4, 0);
  488. b43_radio_write(dev, B2062_N_TX_CTL5, 0);
  489. b43_radio_write(dev, B2062_N_TX_CTL6, 0);
  490. b43_radio_write(dev, B2062_N_PDN_CTL0, 0x40);
  491. b43_radio_write(dev, B2062_N_PDN_CTL0, 0);
  492. b43_radio_write(dev, B2062_N_CALIB_TS, 0x10);
  493. b43_radio_write(dev, B2062_N_CALIB_TS, 0);
  494. if (dev->phy.rev > 0) {
  495. b43_radio_write(dev, B2062_S_BG_CTL1,
  496. (b43_radio_read(dev, B2062_N_COMM2) >> 1) | 0x80);
  497. }
  498. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  499. b43_radio_set(dev, B2062_N_TSSI_CTL0, 0x1);
  500. else
  501. b43_radio_mask(dev, B2062_N_TSSI_CTL0, ~0x1);
  502. /* Get the crystal freq, in Hz. */
  503. crystalfreq = bus->chipco.pmu.crystalfreq * 1000;
  504. B43_WARN_ON(!(bus->chipco.capabilities & SSB_CHIPCO_CAP_PMU));
  505. B43_WARN_ON(crystalfreq == 0);
  506. if (crystalfreq <= 30000000) {
  507. lpphy->pdiv = 1;
  508. b43_radio_mask(dev, B2062_S_RFPLL_CTL1, 0xFFFB);
  509. } else {
  510. lpphy->pdiv = 2;
  511. b43_radio_set(dev, B2062_S_RFPLL_CTL1, 0x4);
  512. }
  513. tmp = (((800000000 * lpphy->pdiv + crystalfreq) /
  514. (2 * crystalfreq)) - 8) & 0xFF;
  515. b43_radio_write(dev, B2062_S_RFPLL_CTL7, tmp);
  516. tmp = (((100 * crystalfreq + 16000000 * lpphy->pdiv) /
  517. (32000000 * lpphy->pdiv)) - 1) & 0xFF;
  518. b43_radio_write(dev, B2062_S_RFPLL_CTL18, tmp);
  519. tmp = (((2 * crystalfreq + 1000000 * lpphy->pdiv) /
  520. (2000000 * lpphy->pdiv)) - 1) & 0xFF;
  521. b43_radio_write(dev, B2062_S_RFPLL_CTL19, tmp);
  522. ref = (1000 * lpphy->pdiv + 2 * crystalfreq) / (2000 * lpphy->pdiv);
  523. ref &= 0xFFFF;
  524. for (i = 0; i < ARRAY_SIZE(freqdata_tab); i++) {
  525. if (ref < freqdata_tab[i].freq) {
  526. fd = &freqdata_tab[i];
  527. break;
  528. }
  529. }
  530. if (!fd)
  531. fd = &freqdata_tab[ARRAY_SIZE(freqdata_tab) - 1];
  532. b43dbg(dev->wl, "b2062: Using crystal tab entry %u kHz.\n",
  533. fd->freq); /* FIXME: Keep this printk until the code is fully debugged. */
  534. b43_radio_write(dev, B2062_S_RFPLL_CTL8,
  535. ((u16)(fd->data[1]) << 4) | fd->data[0]);
  536. b43_radio_write(dev, B2062_S_RFPLL_CTL9,
  537. ((u16)(fd->data[3]) << 4) | fd->data[2]);
  538. b43_radio_write(dev, B2062_S_RFPLL_CTL10, fd->data[4]);
  539. b43_radio_write(dev, B2062_S_RFPLL_CTL11, fd->data[5]);
  540. }
  541. /* Initialize the 2063 radio. */
  542. static void lpphy_2063_init(struct b43_wldev *dev)
  543. {
  544. b2063_upload_init_table(dev);
  545. b43_radio_write(dev, B2063_LOGEN_SP5, 0);
  546. b43_radio_set(dev, B2063_COMM8, 0x38);
  547. b43_radio_write(dev, B2063_REG_SP1, 0x56);
  548. b43_radio_mask(dev, B2063_RX_BB_CTL2, ~0x2);
  549. b43_radio_write(dev, B2063_PA_SP7, 0);
  550. b43_radio_write(dev, B2063_TX_RF_SP6, 0x20);
  551. b43_radio_write(dev, B2063_TX_RF_SP9, 0x40);
  552. b43_radio_write(dev, B2063_PA_SP3, 0xa0);
  553. b43_radio_write(dev, B2063_PA_SP4, 0xa0);
  554. b43_radio_write(dev, B2063_PA_SP2, 0x18);
  555. }
  556. struct lpphy_stx_table_entry {
  557. u16 phy_offset;
  558. u16 phy_shift;
  559. u16 rf_addr;
  560. u16 rf_shift;
  561. u16 mask;
  562. };
  563. static const struct lpphy_stx_table_entry lpphy_stx_table[] = {
  564. { .phy_offset = 2, .phy_shift = 6, .rf_addr = 0x3d, .rf_shift = 3, .mask = 0x01, },
  565. { .phy_offset = 1, .phy_shift = 12, .rf_addr = 0x4c, .rf_shift = 1, .mask = 0x01, },
  566. { .phy_offset = 1, .phy_shift = 8, .rf_addr = 0x50, .rf_shift = 0, .mask = 0x7f, },
  567. { .phy_offset = 0, .phy_shift = 8, .rf_addr = 0x44, .rf_shift = 0, .mask = 0xff, },
  568. { .phy_offset = 1, .phy_shift = 0, .rf_addr = 0x4a, .rf_shift = 0, .mask = 0xff, },
  569. { .phy_offset = 0, .phy_shift = 4, .rf_addr = 0x4d, .rf_shift = 0, .mask = 0xff, },
  570. { .phy_offset = 1, .phy_shift = 4, .rf_addr = 0x4e, .rf_shift = 0, .mask = 0xff, },
  571. { .phy_offset = 0, .phy_shift = 12, .rf_addr = 0x4f, .rf_shift = 0, .mask = 0x0f, },
  572. { .phy_offset = 1, .phy_shift = 0, .rf_addr = 0x4f, .rf_shift = 4, .mask = 0x0f, },
  573. { .phy_offset = 3, .phy_shift = 0, .rf_addr = 0x49, .rf_shift = 0, .mask = 0x0f, },
  574. { .phy_offset = 4, .phy_shift = 3, .rf_addr = 0x46, .rf_shift = 4, .mask = 0x07, },
  575. { .phy_offset = 3, .phy_shift = 15, .rf_addr = 0x46, .rf_shift = 0, .mask = 0x01, },
  576. { .phy_offset = 4, .phy_shift = 0, .rf_addr = 0x46, .rf_shift = 1, .mask = 0x07, },
  577. { .phy_offset = 3, .phy_shift = 8, .rf_addr = 0x48, .rf_shift = 4, .mask = 0x07, },
  578. { .phy_offset = 3, .phy_shift = 11, .rf_addr = 0x48, .rf_shift = 0, .mask = 0x0f, },
  579. { .phy_offset = 3, .phy_shift = 4, .rf_addr = 0x49, .rf_shift = 4, .mask = 0x0f, },
  580. { .phy_offset = 2, .phy_shift = 15, .rf_addr = 0x45, .rf_shift = 0, .mask = 0x01, },
  581. { .phy_offset = 5, .phy_shift = 13, .rf_addr = 0x52, .rf_shift = 4, .mask = 0x07, },
  582. { .phy_offset = 6, .phy_shift = 0, .rf_addr = 0x52, .rf_shift = 7, .mask = 0x01, },
  583. { .phy_offset = 5, .phy_shift = 3, .rf_addr = 0x41, .rf_shift = 5, .mask = 0x07, },
  584. { .phy_offset = 5, .phy_shift = 6, .rf_addr = 0x41, .rf_shift = 0, .mask = 0x0f, },
  585. { .phy_offset = 5, .phy_shift = 10, .rf_addr = 0x42, .rf_shift = 5, .mask = 0x07, },
  586. { .phy_offset = 4, .phy_shift = 15, .rf_addr = 0x42, .rf_shift = 0, .mask = 0x01, },
  587. { .phy_offset = 5, .phy_shift = 0, .rf_addr = 0x42, .rf_shift = 1, .mask = 0x07, },
  588. { .phy_offset = 4, .phy_shift = 11, .rf_addr = 0x43, .rf_shift = 4, .mask = 0x0f, },
  589. { .phy_offset = 4, .phy_shift = 7, .rf_addr = 0x43, .rf_shift = 0, .mask = 0x0f, },
  590. { .phy_offset = 4, .phy_shift = 6, .rf_addr = 0x45, .rf_shift = 1, .mask = 0x01, },
  591. { .phy_offset = 2, .phy_shift = 7, .rf_addr = 0x40, .rf_shift = 4, .mask = 0x0f, },
  592. { .phy_offset = 2, .phy_shift = 11, .rf_addr = 0x40, .rf_shift = 0, .mask = 0x0f, },
  593. };
  594. static void lpphy_sync_stx(struct b43_wldev *dev)
  595. {
  596. const struct lpphy_stx_table_entry *e;
  597. unsigned int i;
  598. u16 tmp;
  599. for (i = 0; i < ARRAY_SIZE(lpphy_stx_table); i++) {
  600. e = &lpphy_stx_table[i];
  601. tmp = b43_radio_read(dev, e->rf_addr);
  602. tmp >>= e->rf_shift;
  603. tmp <<= e->phy_shift;
  604. b43_phy_maskset(dev, B43_PHY_OFDM(0xF2 + e->phy_offset),
  605. ~(e->mask << e->phy_shift), tmp);
  606. }
  607. }
  608. static void lpphy_radio_init(struct b43_wldev *dev)
  609. {
  610. /* The radio is attached through the 4wire bus. */
  611. b43_phy_set(dev, B43_LPPHY_FOURWIRE_CTL, 0x2);
  612. udelay(1);
  613. b43_phy_mask(dev, B43_LPPHY_FOURWIRE_CTL, 0xFFFD);
  614. udelay(1);
  615. if (dev->phy.radio_ver == 0x2062) {
  616. lpphy_2062_init(dev);
  617. } else {
  618. lpphy_2063_init(dev);
  619. lpphy_sync_stx(dev);
  620. b43_phy_write(dev, B43_PHY_OFDM(0xF0), 0x5F80);
  621. b43_phy_write(dev, B43_PHY_OFDM(0xF1), 0);
  622. if (dev->dev->bus->chip_id == 0x4325) {
  623. // TODO SSB PMU recalibration
  624. }
  625. }
  626. }
  627. struct lpphy_iq_est { u32 iq_prod, i_pwr, q_pwr; };
  628. static void lpphy_set_rc_cap(struct b43_wldev *dev)
  629. {
  630. struct b43_phy_lp *lpphy = dev->phy.lp;
  631. u8 rc_cap = (lpphy->rc_cap & 0x1F) >> 1;
  632. if (dev->phy.rev == 1) //FIXME check channel 14!
  633. rc_cap = max_t(u8, rc_cap + 5, 15);
  634. b43_radio_write(dev, B2062_N_RXBB_CALIB2,
  635. max_t(u8, lpphy->rc_cap - 4, 0x80));
  636. b43_radio_write(dev, B2062_N_TX_CTL_A, rc_cap | 0x80);
  637. b43_radio_write(dev, B2062_S_RXG_CNT16,
  638. ((lpphy->rc_cap & 0x1F) >> 2) | 0x80);
  639. }
  640. static u8 lpphy_get_bb_mult(struct b43_wldev *dev)
  641. {
  642. return (b43_lptab_read(dev, B43_LPTAB16(0, 87)) & 0xFF00) >> 8;
  643. }
  644. static void lpphy_set_bb_mult(struct b43_wldev *dev, u8 bb_mult)
  645. {
  646. b43_lptab_write(dev, B43_LPTAB16(0, 87), (u16)bb_mult << 8);
  647. }
  648. static void lpphy_disable_crs(struct b43_wldev *dev)
  649. {
  650. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xFF1F, 0x80);
  651. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFFC, 0x1);
  652. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x3);
  653. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFFB);
  654. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x4);
  655. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFFF7);
  656. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x8);
  657. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0x10);
  658. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x10);
  659. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFDF);
  660. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x20);
  661. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFBF);
  662. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x40);
  663. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0x7);
  664. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0x38);
  665. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFF3F);
  666. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0x100);
  667. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFDFF);
  668. b43_phy_write(dev, B43_LPPHY_PS_CTL_OVERRIDE_VAL0, 0);
  669. b43_phy_write(dev, B43_LPPHY_PS_CTL_OVERRIDE_VAL1, 1);
  670. b43_phy_write(dev, B43_LPPHY_PS_CTL_OVERRIDE_VAL2, 0x20);
  671. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFBFF);
  672. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xF7FF);
  673. b43_phy_write(dev, B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL, 0);
  674. b43_phy_write(dev, B43_LPPHY_RX_GAIN_CTL_OVERRIDE_VAL, 0x45AF);
  675. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_2, 0x3FF);
  676. }
  677. static void lpphy_restore_crs(struct b43_wldev *dev)
  678. {
  679. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  680. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xFF1F, 0x60);
  681. else
  682. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xFF1F, 0x20);
  683. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFF80);
  684. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFC00);
  685. }
  686. struct lpphy_tx_gains { u16 gm, pga, pad, dac; };
  687. static struct lpphy_tx_gains lpphy_get_tx_gains(struct b43_wldev *dev)
  688. {
  689. struct lpphy_tx_gains gains;
  690. u16 tmp;
  691. gains.dac = (b43_phy_read(dev, B43_LPPHY_AFE_DAC_CTL) & 0x380) >> 7;
  692. if (dev->phy.rev < 2) {
  693. tmp = b43_phy_read(dev,
  694. B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL) & 0x7FF;
  695. gains.gm = tmp & 0x0007;
  696. gains.pga = (tmp & 0x0078) >> 3;
  697. gains.pad = (tmp & 0x780) >> 7;
  698. } else {
  699. tmp = b43_phy_read(dev, B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL);
  700. gains.pad = b43_phy_read(dev, B43_PHY_OFDM(0xFB)) & 0xFF;
  701. gains.gm = tmp & 0xFF;
  702. gains.pga = (tmp >> 8) & 0xFF;
  703. }
  704. return gains;
  705. }
  706. static void lpphy_set_dac_gain(struct b43_wldev *dev, u16 dac)
  707. {
  708. u16 ctl = b43_phy_read(dev, B43_LPPHY_AFE_DAC_CTL) & 0xC7F;
  709. ctl |= dac << 7;
  710. b43_phy_maskset(dev, B43_LPPHY_AFE_DAC_CTL, 0xF000, ctl);
  711. }
  712. static void lpphy_set_tx_gains(struct b43_wldev *dev,
  713. struct lpphy_tx_gains gains)
  714. {
  715. u16 rf_gain, pa_gain;
  716. if (dev->phy.rev < 2) {
  717. rf_gain = (gains.pad << 7) | (gains.pga << 3) | gains.gm;
  718. b43_phy_maskset(dev, B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL,
  719. 0xF800, rf_gain);
  720. } else {
  721. pa_gain = b43_phy_read(dev, B43_PHY_OFDM(0xFB)) & 0x7F00;
  722. b43_phy_write(dev, B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL,
  723. (gains.pga << 8) | gains.gm);
  724. b43_phy_maskset(dev, B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL,
  725. 0x8000, gains.pad | pa_gain);
  726. b43_phy_write(dev, B43_PHY_OFDM(0xFC),
  727. (gains.pga << 8) | gains.gm);
  728. b43_phy_maskset(dev, B43_PHY_OFDM(0xFD),
  729. 0x8000, gains.pad | pa_gain);
  730. }
  731. lpphy_set_dac_gain(dev, gains.dac);
  732. if (dev->phy.rev < 2) {
  733. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFEFF, 1 << 8);
  734. } else {
  735. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFF7F, 1 << 7);
  736. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2, 0xBFFF, 1 << 14);
  737. }
  738. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFFBF, 1 << 6);
  739. }
  740. static void lpphy_rev0_1_set_rx_gain(struct b43_wldev *dev, u32 gain)
  741. {
  742. u16 trsw = gain & 0x1;
  743. u16 lna = (gain & 0xFFFC) | ((gain & 0xC) >> 2);
  744. u16 ext_lna = (gain & 2) >> 1;
  745. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFFE, trsw);
  746. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL,
  747. 0xFBFF, ext_lna << 10);
  748. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL,
  749. 0xF7FF, ext_lna << 11);
  750. b43_phy_write(dev, B43_LPPHY_RX_GAIN_CTL_OVERRIDE_VAL, lna);
  751. }
  752. static void lpphy_rev2plus_set_rx_gain(struct b43_wldev *dev, u32 gain)
  753. {
  754. u16 low_gain = gain & 0xFFFF;
  755. u16 high_gain = (gain >> 16) & 0xF;
  756. u16 ext_lna = (gain >> 21) & 0x1;
  757. u16 trsw = ~(gain >> 20) & 0x1;
  758. u16 tmp;
  759. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFFE, trsw);
  760. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL,
  761. 0xFDFF, ext_lna << 9);
  762. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL,
  763. 0xFBFF, ext_lna << 10);
  764. b43_phy_write(dev, B43_LPPHY_RX_GAIN_CTL_OVERRIDE_VAL, low_gain);
  765. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS, 0xFFF0, high_gain);
  766. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  767. tmp = (gain >> 2) & 0x3;
  768. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL,
  769. 0xE7FF, tmp<<11);
  770. b43_phy_maskset(dev, B43_PHY_OFDM(0xE6), 0xFFE7, tmp << 3);
  771. }
  772. }
  773. static void lpphy_enable_rx_gain_override(struct b43_wldev *dev)
  774. {
  775. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFFFE);
  776. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFFEF);
  777. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFFBF);
  778. if (dev->phy.rev >= 2) {
  779. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFEFF);
  780. if (b43_current_band(dev->wl) != IEEE80211_BAND_2GHZ)
  781. return;
  782. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFBFF);
  783. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFFF7);
  784. } else {
  785. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFDFF);
  786. }
  787. }
  788. static void lpphy_disable_rx_gain_override(struct b43_wldev *dev)
  789. {
  790. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x1);
  791. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x10);
  792. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x40);
  793. if (dev->phy.rev >= 2) {
  794. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x100);
  795. if (b43_current_band(dev->wl) != IEEE80211_BAND_2GHZ)
  796. return;
  797. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x400);
  798. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x8);
  799. } else {
  800. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x200);
  801. }
  802. }
  803. static void lpphy_set_rx_gain(struct b43_wldev *dev, u32 gain)
  804. {
  805. if (dev->phy.rev < 2)
  806. lpphy_rev0_1_set_rx_gain(dev, gain);
  807. else
  808. lpphy_rev2plus_set_rx_gain(dev, gain);
  809. lpphy_enable_rx_gain_override(dev);
  810. }
  811. static void lpphy_set_rx_gain_by_index(struct b43_wldev *dev, u16 idx)
  812. {
  813. u32 gain = b43_lptab_read(dev, B43_LPTAB16(12, idx));
  814. lpphy_set_rx_gain(dev, gain);
  815. }
  816. static void lpphy_stop_ddfs(struct b43_wldev *dev)
  817. {
  818. b43_phy_mask(dev, B43_LPPHY_AFE_DDFS, 0xFFFD);
  819. b43_phy_mask(dev, B43_LPPHY_LP_PHY_CTL, 0xFFDF);
  820. }
  821. static void lpphy_run_ddfs(struct b43_wldev *dev, int i_on, int q_on,
  822. int incr1, int incr2, int scale_idx)
  823. {
  824. lpphy_stop_ddfs(dev);
  825. b43_phy_mask(dev, B43_LPPHY_AFE_DDFS_POINTER_INIT, 0xFF80);
  826. b43_phy_mask(dev, B43_LPPHY_AFE_DDFS_POINTER_INIT, 0x80FF);
  827. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS_INCR_INIT, 0xFF80, incr1);
  828. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS_INCR_INIT, 0x80FF, incr2 << 8);
  829. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS, 0xFFF7, i_on << 3);
  830. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS, 0xFFEF, q_on << 4);
  831. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS, 0xFF9F, scale_idx << 5);
  832. b43_phy_mask(dev, B43_LPPHY_AFE_DDFS, 0xFFFB);
  833. b43_phy_set(dev, B43_LPPHY_AFE_DDFS, 0x2);
  834. b43_phy_set(dev, B43_LPPHY_AFE_DDFS, 0x20);
  835. }
  836. static bool lpphy_rx_iq_est(struct b43_wldev *dev, u16 samples, u8 time,
  837. struct lpphy_iq_est *iq_est)
  838. {
  839. int i;
  840. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, 0xFFF7);
  841. b43_phy_write(dev, B43_LPPHY_IQ_NUM_SMPLS_ADDR, samples);
  842. b43_phy_maskset(dev, B43_LPPHY_IQ_ENABLE_WAIT_TIME_ADDR, 0xFF00, time);
  843. b43_phy_mask(dev, B43_LPPHY_IQ_ENABLE_WAIT_TIME_ADDR, 0xFEFF);
  844. b43_phy_set(dev, B43_LPPHY_IQ_ENABLE_WAIT_TIME_ADDR, 0xFDFF);
  845. for (i = 0; i < 500; i++) {
  846. if (!(b43_phy_read(dev,
  847. B43_LPPHY_IQ_ENABLE_WAIT_TIME_ADDR) & 0x200))
  848. break;
  849. msleep(1);
  850. }
  851. if ((b43_phy_read(dev, B43_LPPHY_IQ_ENABLE_WAIT_TIME_ADDR) & 0x200)) {
  852. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x8);
  853. return false;
  854. }
  855. iq_est->iq_prod = b43_phy_read(dev, B43_LPPHY_IQ_ACC_HI_ADDR);
  856. iq_est->iq_prod <<= 16;
  857. iq_est->iq_prod |= b43_phy_read(dev, B43_LPPHY_IQ_ACC_LO_ADDR);
  858. iq_est->i_pwr = b43_phy_read(dev, B43_LPPHY_IQ_I_PWR_ACC_HI_ADDR);
  859. iq_est->i_pwr <<= 16;
  860. iq_est->i_pwr |= b43_phy_read(dev, B43_LPPHY_IQ_I_PWR_ACC_LO_ADDR);
  861. iq_est->q_pwr = b43_phy_read(dev, B43_LPPHY_IQ_Q_PWR_ACC_HI_ADDR);
  862. iq_est->q_pwr <<= 16;
  863. iq_est->q_pwr |= b43_phy_read(dev, B43_LPPHY_IQ_Q_PWR_ACC_LO_ADDR);
  864. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x8);
  865. return true;
  866. }
  867. static int lpphy_loopback(struct b43_wldev *dev)
  868. {
  869. struct lpphy_iq_est iq_est;
  870. int i, index = -1;
  871. u32 tmp;
  872. memset(&iq_est, 0, sizeof(iq_est));
  873. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFFC, 0x3);
  874. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x3);
  875. b43_phy_mask(dev, B43_LPPHY_AFE_CTL_OVRVAL, 0xFFFE);
  876. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x800);
  877. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0x800);
  878. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x8);
  879. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0x8);
  880. b43_radio_write(dev, B2062_N_TX_CTL_A, 0x80);
  881. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x80);
  882. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0x80);
  883. for (i = 0; i < 32; i++) {
  884. lpphy_set_rx_gain_by_index(dev, i);
  885. lpphy_run_ddfs(dev, 1, 1, 5, 5, 0);
  886. if (!(lpphy_rx_iq_est(dev, 1000, 32, &iq_est)))
  887. continue;
  888. tmp = (iq_est.i_pwr + iq_est.q_pwr) / 1000;
  889. if ((tmp > 4000) && (tmp < 10000)) {
  890. index = i;
  891. break;
  892. }
  893. }
  894. lpphy_stop_ddfs(dev);
  895. return index;
  896. }
  897. static u32 lpphy_qdiv_roundup(u32 dividend, u32 divisor, u8 precision)
  898. {
  899. u32 quotient, remainder, rbit, roundup, tmp;
  900. if (divisor == 0) {
  901. quotient = 0;
  902. remainder = 0;
  903. } else {
  904. quotient = dividend / divisor;
  905. remainder = dividend % divisor;
  906. }
  907. rbit = divisor & 0x1;
  908. roundup = (divisor >> 1) + rbit;
  909. precision--;
  910. while (precision != 0xFF) {
  911. tmp = remainder - roundup;
  912. quotient <<= 1;
  913. remainder <<= 1;
  914. if (remainder >= roundup) {
  915. remainder = (tmp << 1) + rbit;
  916. quotient--;
  917. }
  918. precision--;
  919. }
  920. if (remainder >= roundup)
  921. quotient++;
  922. return quotient;
  923. }
  924. /* Read the TX power control mode from hardware. */
  925. static void lpphy_read_tx_pctl_mode_from_hardware(struct b43_wldev *dev)
  926. {
  927. struct b43_phy_lp *lpphy = dev->phy.lp;
  928. u16 ctl;
  929. ctl = b43_phy_read(dev, B43_LPPHY_TX_PWR_CTL_CMD);
  930. switch (ctl & B43_LPPHY_TX_PWR_CTL_CMD_MODE) {
  931. case B43_LPPHY_TX_PWR_CTL_CMD_MODE_OFF:
  932. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_OFF;
  933. break;
  934. case B43_LPPHY_TX_PWR_CTL_CMD_MODE_SW:
  935. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_SW;
  936. break;
  937. case B43_LPPHY_TX_PWR_CTL_CMD_MODE_HW:
  938. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_HW;
  939. break;
  940. default:
  941. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_UNKNOWN;
  942. B43_WARN_ON(1);
  943. break;
  944. }
  945. }
  946. /* Set the TX power control mode in hardware. */
  947. static void lpphy_write_tx_pctl_mode_to_hardware(struct b43_wldev *dev)
  948. {
  949. struct b43_phy_lp *lpphy = dev->phy.lp;
  950. u16 ctl;
  951. switch (lpphy->txpctl_mode) {
  952. case B43_LPPHY_TXPCTL_OFF:
  953. ctl = B43_LPPHY_TX_PWR_CTL_CMD_MODE_OFF;
  954. break;
  955. case B43_LPPHY_TXPCTL_HW:
  956. ctl = B43_LPPHY_TX_PWR_CTL_CMD_MODE_HW;
  957. break;
  958. case B43_LPPHY_TXPCTL_SW:
  959. ctl = B43_LPPHY_TX_PWR_CTL_CMD_MODE_SW;
  960. break;
  961. default:
  962. ctl = 0;
  963. B43_WARN_ON(1);
  964. }
  965. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_CMD,
  966. (u16)~B43_LPPHY_TX_PWR_CTL_CMD_MODE, ctl);
  967. }
  968. static void lpphy_set_tx_power_control(struct b43_wldev *dev,
  969. enum b43_lpphy_txpctl_mode mode)
  970. {
  971. struct b43_phy_lp *lpphy = dev->phy.lp;
  972. enum b43_lpphy_txpctl_mode oldmode;
  973. oldmode = lpphy->txpctl_mode;
  974. lpphy_read_tx_pctl_mode_from_hardware(dev);
  975. if (lpphy->txpctl_mode == mode)
  976. return;
  977. lpphy->txpctl_mode = mode;
  978. if (oldmode == B43_LPPHY_TXPCTL_HW) {
  979. //TODO Update TX Power NPT
  980. //TODO Clear all TX Power offsets
  981. } else {
  982. if (mode == B43_LPPHY_TXPCTL_HW) {
  983. //TODO Recalculate target TX power
  984. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_CMD,
  985. 0xFF80, lpphy->tssi_idx);
  986. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_NNUM,
  987. 0x8FFF, ((u16)lpphy->tssi_npt << 16));
  988. //TODO Set "TSSI Transmit Count" variable to total transmitted frame count
  989. //TODO Disable TX gain override
  990. lpphy->tx_pwr_idx_over = -1;
  991. }
  992. }
  993. if (dev->phy.rev >= 2) {
  994. if (mode == B43_LPPHY_TXPCTL_HW)
  995. b43_phy_maskset(dev, B43_PHY_OFDM(0xD0), 0xFD, 0x2);
  996. else
  997. b43_phy_maskset(dev, B43_PHY_OFDM(0xD0), 0xFD, 0);
  998. }
  999. lpphy_write_tx_pctl_mode_to_hardware(dev);
  1000. }
  1001. static int b43_lpphy_op_switch_channel(struct b43_wldev *dev,
  1002. unsigned int new_channel);
  1003. static void lpphy_rev0_1_rc_calib(struct b43_wldev *dev)
  1004. {
  1005. struct b43_phy_lp *lpphy = dev->phy.lp;
  1006. struct lpphy_iq_est iq_est;
  1007. struct lpphy_tx_gains tx_gains;
  1008. static const u32 ideal_pwr_table[22] = {
  1009. 0x10000, 0x10557, 0x10e2d, 0x113e0, 0x10f22, 0x0ff64,
  1010. 0x0eda2, 0x0e5d4, 0x0efd1, 0x0fbe8, 0x0b7b8, 0x04b35,
  1011. 0x01a5e, 0x00a0b, 0x00444, 0x001fd, 0x000ff, 0x00088,
  1012. 0x0004c, 0x0002c, 0x0001a, 0xc0006,
  1013. };
  1014. bool old_txg_ovr;
  1015. u8 old_bbmult;
  1016. u16 old_rf_ovr, old_rf_ovrval, old_afe_ovr, old_afe_ovrval,
  1017. old_rf2_ovr, old_rf2_ovrval, old_phy_ctl;
  1018. enum b43_lpphy_txpctl_mode old_txpctl;
  1019. u32 normal_pwr, ideal_pwr, mean_sq_pwr, tmp = 0, mean_sq_pwr_min = 0;
  1020. int loopback, i, j, inner_sum, err;
  1021. memset(&iq_est, 0, sizeof(iq_est));
  1022. err = b43_lpphy_op_switch_channel(dev, 7);
  1023. if (err) {
  1024. b43dbg(dev->wl,
  1025. "RC calib: Failed to switch to channel 7, error = %d",
  1026. err);
  1027. }
  1028. old_txg_ovr = (b43_phy_read(dev, B43_LPPHY_AFE_CTL_OVR) >> 6) & 1;
  1029. old_bbmult = lpphy_get_bb_mult(dev);
  1030. if (old_txg_ovr)
  1031. tx_gains = lpphy_get_tx_gains(dev);
  1032. old_rf_ovr = b43_phy_read(dev, B43_LPPHY_RF_OVERRIDE_0);
  1033. old_rf_ovrval = b43_phy_read(dev, B43_LPPHY_RF_OVERRIDE_VAL_0);
  1034. old_afe_ovr = b43_phy_read(dev, B43_LPPHY_AFE_CTL_OVR);
  1035. old_afe_ovrval = b43_phy_read(dev, B43_LPPHY_AFE_CTL_OVRVAL);
  1036. old_rf2_ovr = b43_phy_read(dev, B43_LPPHY_RF_OVERRIDE_2);
  1037. old_rf2_ovrval = b43_phy_read(dev, B43_LPPHY_RF_OVERRIDE_2_VAL);
  1038. old_phy_ctl = b43_phy_read(dev, B43_LPPHY_LP_PHY_CTL);
  1039. lpphy_read_tx_pctl_mode_from_hardware(dev);
  1040. old_txpctl = lpphy->txpctl_mode;
  1041. lpphy_set_tx_power_control(dev, B43_LPPHY_TX_PWR_CTL_CMD_MODE_OFF);
  1042. lpphy_disable_crs(dev);
  1043. loopback = lpphy_loopback(dev);
  1044. if (loopback == -1)
  1045. goto finish;
  1046. lpphy_set_rx_gain_by_index(dev, loopback);
  1047. b43_phy_maskset(dev, B43_LPPHY_LP_PHY_CTL, 0xFFBF, 0x40);
  1048. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFFF8, 0x1);
  1049. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFFC7, 0x8);
  1050. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFF3F, 0xC0);
  1051. for (i = 128; i <= 159; i++) {
  1052. b43_radio_write(dev, B2062_N_RXBB_CALIB2, i);
  1053. inner_sum = 0;
  1054. for (j = 5; j <= 25; j++) {
  1055. lpphy_run_ddfs(dev, 1, 1, j, j, 0);
  1056. if (!(lpphy_rx_iq_est(dev, 1000, 32, &iq_est)))
  1057. goto finish;
  1058. mean_sq_pwr = iq_est.i_pwr + iq_est.q_pwr;
  1059. if (j == 5)
  1060. tmp = mean_sq_pwr;
  1061. ideal_pwr = ((ideal_pwr_table[j-5] >> 3) + 1) >> 1;
  1062. normal_pwr = lpphy_qdiv_roundup(mean_sq_pwr, tmp, 12);
  1063. mean_sq_pwr = ideal_pwr - normal_pwr;
  1064. mean_sq_pwr *= mean_sq_pwr;
  1065. inner_sum += mean_sq_pwr;
  1066. if ((i = 128) || (inner_sum < mean_sq_pwr_min)) {
  1067. lpphy->rc_cap = i;
  1068. mean_sq_pwr_min = inner_sum;
  1069. }
  1070. }
  1071. }
  1072. lpphy_stop_ddfs(dev);
  1073. finish:
  1074. lpphy_restore_crs(dev);
  1075. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, old_rf_ovrval);
  1076. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_0, old_rf_ovr);
  1077. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVRVAL, old_afe_ovrval);
  1078. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVR, old_afe_ovr);
  1079. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, old_rf2_ovrval);
  1080. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_2, old_rf2_ovr);
  1081. b43_phy_write(dev, B43_LPPHY_LP_PHY_CTL, old_phy_ctl);
  1082. lpphy_set_bb_mult(dev, old_bbmult);
  1083. if (old_txg_ovr) {
  1084. /*
  1085. * SPEC FIXME: The specs say "get_tx_gains" here, which is
  1086. * illogical. According to lwfinger, vendor driver v4.150.10.5
  1087. * has a Set here, while v4.174.64.19 has a Get - regression in
  1088. * the vendor driver? This should be tested this once the code
  1089. * is testable.
  1090. */
  1091. lpphy_set_tx_gains(dev, tx_gains);
  1092. }
  1093. lpphy_set_tx_power_control(dev, old_txpctl);
  1094. if (lpphy->rc_cap)
  1095. lpphy_set_rc_cap(dev);
  1096. }
  1097. static void lpphy_rev2plus_rc_calib(struct b43_wldev *dev)
  1098. {
  1099. struct ssb_bus *bus = dev->dev->bus;
  1100. u32 crystal_freq = bus->chipco.pmu.crystalfreq * 1000;
  1101. u8 tmp = b43_radio_read(dev, B2063_RX_BB_SP8) & 0xFF;
  1102. int i;
  1103. b43_radio_write(dev, B2063_RX_BB_SP8, 0x0);
  1104. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7E);
  1105. b43_radio_mask(dev, B2063_PLL_SP1, 0xF7);
  1106. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7C);
  1107. b43_radio_write(dev, B2063_RC_CALIB_CTL2, 0x15);
  1108. b43_radio_write(dev, B2063_RC_CALIB_CTL3, 0x70);
  1109. b43_radio_write(dev, B2063_RC_CALIB_CTL4, 0x52);
  1110. b43_radio_write(dev, B2063_RC_CALIB_CTL5, 0x1);
  1111. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7D);
  1112. for (i = 0; i < 10000; i++) {
  1113. if (b43_radio_read(dev, B2063_RC_CALIB_CTL6) & 0x2)
  1114. break;
  1115. msleep(1);
  1116. }
  1117. if (!(b43_radio_read(dev, B2063_RC_CALIB_CTL6) & 0x2))
  1118. b43_radio_write(dev, B2063_RX_BB_SP8, tmp);
  1119. tmp = b43_radio_read(dev, B2063_TX_BB_SP3) & 0xFF;
  1120. b43_radio_write(dev, B2063_TX_BB_SP3, 0x0);
  1121. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7E);
  1122. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7C);
  1123. b43_radio_write(dev, B2063_RC_CALIB_CTL2, 0x55);
  1124. b43_radio_write(dev, B2063_RC_CALIB_CTL3, 0x76);
  1125. if (crystal_freq == 24000000) {
  1126. b43_radio_write(dev, B2063_RC_CALIB_CTL4, 0xFC);
  1127. b43_radio_write(dev, B2063_RC_CALIB_CTL5, 0x0);
  1128. } else {
  1129. b43_radio_write(dev, B2063_RC_CALIB_CTL4, 0x13);
  1130. b43_radio_write(dev, B2063_RC_CALIB_CTL5, 0x1);
  1131. }
  1132. b43_radio_write(dev, B2063_PA_SP7, 0x7D);
  1133. for (i = 0; i < 10000; i++) {
  1134. if (b43_radio_read(dev, B2063_RC_CALIB_CTL6) & 0x2)
  1135. break;
  1136. msleep(1);
  1137. }
  1138. if (!(b43_radio_read(dev, B2063_RC_CALIB_CTL6) & 0x2))
  1139. b43_radio_write(dev, B2063_TX_BB_SP3, tmp);
  1140. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7E);
  1141. }
  1142. static void lpphy_calibrate_rc(struct b43_wldev *dev)
  1143. {
  1144. struct b43_phy_lp *lpphy = dev->phy.lp;
  1145. if (dev->phy.rev >= 2) {
  1146. lpphy_rev2plus_rc_calib(dev);
  1147. } else if (!lpphy->rc_cap) {
  1148. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  1149. lpphy_rev0_1_rc_calib(dev);
  1150. } else {
  1151. lpphy_set_rc_cap(dev);
  1152. }
  1153. }
  1154. static void lpphy_set_tx_power_by_index(struct b43_wldev *dev, u8 index)
  1155. {
  1156. struct b43_phy_lp *lpphy = dev->phy.lp;
  1157. lpphy->tx_pwr_idx_over = index;
  1158. if (lpphy->txpctl_mode != B43_LPPHY_TXPCTL_OFF)
  1159. lpphy_set_tx_power_control(dev, B43_LPPHY_TXPCTL_SW);
  1160. //TODO
  1161. }
  1162. static void lpphy_btcoex_override(struct b43_wldev *dev)
  1163. {
  1164. b43_write16(dev, B43_MMIO_BTCOEX_CTL, 0x3);
  1165. b43_write16(dev, B43_MMIO_BTCOEX_TXCTL, 0xFF);
  1166. }
  1167. static void lpphy_pr41573_workaround(struct b43_wldev *dev)
  1168. {
  1169. struct b43_phy_lp *lpphy = dev->phy.lp;
  1170. u32 *saved_tab;
  1171. const unsigned int saved_tab_size = 256;
  1172. enum b43_lpphy_txpctl_mode txpctl_mode;
  1173. s8 tx_pwr_idx_over;
  1174. u16 tssi_npt, tssi_idx;
  1175. saved_tab = kcalloc(saved_tab_size, sizeof(saved_tab[0]), GFP_KERNEL);
  1176. if (!saved_tab) {
  1177. b43err(dev->wl, "PR41573 failed. Out of memory!\n");
  1178. return;
  1179. }
  1180. lpphy_read_tx_pctl_mode_from_hardware(dev);
  1181. txpctl_mode = lpphy->txpctl_mode;
  1182. tx_pwr_idx_over = lpphy->tx_pwr_idx_over;
  1183. tssi_npt = lpphy->tssi_npt;
  1184. tssi_idx = lpphy->tssi_idx;
  1185. if (dev->phy.rev < 2) {
  1186. b43_lptab_read_bulk(dev, B43_LPTAB32(10, 0x140),
  1187. saved_tab_size, saved_tab);
  1188. } else {
  1189. b43_lptab_read_bulk(dev, B43_LPTAB32(7, 0x140),
  1190. saved_tab_size, saved_tab);
  1191. }
  1192. //TODO
  1193. kfree(saved_tab);
  1194. }
  1195. static void lpphy_calibration(struct b43_wldev *dev)
  1196. {
  1197. struct b43_phy_lp *lpphy = dev->phy.lp;
  1198. enum b43_lpphy_txpctl_mode saved_pctl_mode;
  1199. b43_mac_suspend(dev);
  1200. lpphy_btcoex_override(dev);
  1201. lpphy_read_tx_pctl_mode_from_hardware(dev);
  1202. saved_pctl_mode = lpphy->txpctl_mode;
  1203. lpphy_set_tx_power_control(dev, B43_LPPHY_TXPCTL_OFF);
  1204. //TODO Perform transmit power table I/Q LO calibration
  1205. if ((dev->phy.rev == 0) && (saved_pctl_mode != B43_LPPHY_TXPCTL_OFF))
  1206. lpphy_pr41573_workaround(dev);
  1207. //TODO If a full calibration has not been performed on this channel yet, perform PAPD TX-power calibration
  1208. lpphy_set_tx_power_control(dev, saved_pctl_mode);
  1209. //TODO Perform I/Q calibration with a single control value set
  1210. b43_mac_enable(dev);
  1211. }
  1212. static void lpphy_set_tssi_mux(struct b43_wldev *dev, enum tssi_mux_mode mode)
  1213. {
  1214. if (mode != TSSI_MUX_EXT) {
  1215. b43_radio_set(dev, B2063_PA_SP1, 0x2);
  1216. b43_phy_set(dev, B43_PHY_OFDM(0xF3), 0x1000);
  1217. b43_radio_write(dev, B2063_PA_CTL10, 0x51);
  1218. if (mode == TSSI_MUX_POSTPA) {
  1219. b43_radio_mask(dev, B2063_PA_SP1, 0xFFFE);
  1220. b43_phy_mask(dev, B43_LPPHY_AFE_CTL_OVRVAL, 0xFFC7);
  1221. } else {
  1222. b43_radio_maskset(dev, B2063_PA_SP1, 0xFFFE, 0x1);
  1223. b43_phy_maskset(dev, B43_LPPHY_AFE_CTL_OVRVAL,
  1224. 0xFFC7, 0x20);
  1225. }
  1226. } else {
  1227. B43_WARN_ON(1);
  1228. }
  1229. }
  1230. static void lpphy_tx_pctl_init_hw(struct b43_wldev *dev)
  1231. {
  1232. u16 tmp;
  1233. int i;
  1234. //SPEC TODO Call LP PHY Clear TX Power offsets
  1235. for (i = 0; i < 64; i++) {
  1236. if (dev->phy.rev >= 2)
  1237. b43_lptab_write(dev, B43_LPTAB32(7, i + 1), i);
  1238. else
  1239. b43_lptab_write(dev, B43_LPTAB32(10, i + 1), i);
  1240. }
  1241. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_NNUM, 0xFF00, 0xFF);
  1242. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_NNUM, 0x8FFF, 0x5000);
  1243. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_IDLETSSI, 0xFFC0, 0x1F);
  1244. if (dev->phy.rev < 2) {
  1245. b43_phy_mask(dev, B43_LPPHY_LP_PHY_CTL, 0xEFFF);
  1246. b43_phy_maskset(dev, B43_LPPHY_LP_PHY_CTL, 0xDFFF, 0x2000);
  1247. } else {
  1248. b43_phy_mask(dev, B43_PHY_OFDM(0x103), 0xFFFE);
  1249. b43_phy_maskset(dev, B43_PHY_OFDM(0x103), 0xFFFB, 0x4);
  1250. b43_phy_maskset(dev, B43_PHY_OFDM(0x103), 0xFFEF, 0x10);
  1251. b43_radio_maskset(dev, B2063_IQ_CALIB_CTL2, 0xF3, 0x1);
  1252. lpphy_set_tssi_mux(dev, TSSI_MUX_POSTPA);
  1253. }
  1254. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_IDLETSSI, 0x7FFF, 0x8000);
  1255. b43_phy_mask(dev, B43_LPPHY_TX_PWR_CTL_DELTAPWR_LIMIT, 0xFF);
  1256. b43_phy_write(dev, B43_LPPHY_TX_PWR_CTL_DELTAPWR_LIMIT, 0xA);
  1257. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_CMD,
  1258. (u16)~B43_LPPHY_TX_PWR_CTL_CMD_MODE,
  1259. B43_LPPHY_TX_PWR_CTL_CMD_MODE_OFF);
  1260. b43_phy_mask(dev, B43_LPPHY_TX_PWR_CTL_NNUM, 0xF8FF);
  1261. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_CMD,
  1262. (u16)~B43_LPPHY_TX_PWR_CTL_CMD_MODE,
  1263. B43_LPPHY_TX_PWR_CTL_CMD_MODE_SW);
  1264. if (dev->phy.rev < 2) {
  1265. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_0, 0xEFFF, 0x1000);
  1266. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xEFFF);
  1267. } else {
  1268. lpphy_set_tx_power_by_index(dev, 0x7F);
  1269. }
  1270. b43_dummy_transmission(dev, true, true);
  1271. tmp = b43_phy_read(dev, B43_LPPHY_TX_PWR_CTL_STAT);
  1272. if (tmp & 0x8000) {
  1273. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_IDLETSSI,
  1274. 0xFFC0, (tmp & 0xFF) - 32);
  1275. }
  1276. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xEFFF);
  1277. // (SPEC?) TODO Set "Target TX frequency" variable to 0
  1278. // SPEC FIXME "Set BB Multiplier to 0xE000" impossible - bb_mult is u8!
  1279. }
  1280. static void lpphy_tx_pctl_init_sw(struct b43_wldev *dev)
  1281. {
  1282. struct lpphy_tx_gains gains;
  1283. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  1284. gains.gm = 4;
  1285. gains.pad = 12;
  1286. gains.pga = 12;
  1287. gains.dac = 0;
  1288. } else {
  1289. gains.gm = 7;
  1290. gains.pad = 14;
  1291. gains.pga = 15;
  1292. gains.dac = 0;
  1293. }
  1294. lpphy_set_tx_gains(dev, gains);
  1295. lpphy_set_bb_mult(dev, 150);
  1296. }
  1297. /* Initialize TX power control */
  1298. static void lpphy_tx_pctl_init(struct b43_wldev *dev)
  1299. {
  1300. if (0/*FIXME HWPCTL capable */) {
  1301. lpphy_tx_pctl_init_hw(dev);
  1302. } else { /* This device is only software TX power control capable. */
  1303. lpphy_tx_pctl_init_sw(dev);
  1304. }
  1305. }
  1306. static u16 b43_lpphy_op_read(struct b43_wldev *dev, u16 reg)
  1307. {
  1308. b43_write16(dev, B43_MMIO_PHY_CONTROL, reg);
  1309. return b43_read16(dev, B43_MMIO_PHY_DATA);
  1310. }
  1311. static void b43_lpphy_op_write(struct b43_wldev *dev, u16 reg, u16 value)
  1312. {
  1313. b43_write16(dev, B43_MMIO_PHY_CONTROL, reg);
  1314. b43_write16(dev, B43_MMIO_PHY_DATA, value);
  1315. }
  1316. static u16 b43_lpphy_op_radio_read(struct b43_wldev *dev, u16 reg)
  1317. {
  1318. /* Register 1 is a 32-bit register. */
  1319. B43_WARN_ON(reg == 1);
  1320. /* LP-PHY needs a special bit set for read access */
  1321. if (dev->phy.rev < 2) {
  1322. if (reg != 0x4001)
  1323. reg |= 0x100;
  1324. } else
  1325. reg |= 0x200;
  1326. b43_write16(dev, B43_MMIO_RADIO_CONTROL, reg);
  1327. return b43_read16(dev, B43_MMIO_RADIO_DATA_LOW);
  1328. }
  1329. static void b43_lpphy_op_radio_write(struct b43_wldev *dev, u16 reg, u16 value)
  1330. {
  1331. /* Register 1 is a 32-bit register. */
  1332. B43_WARN_ON(reg == 1);
  1333. b43_write16(dev, B43_MMIO_RADIO_CONTROL, reg);
  1334. b43_write16(dev, B43_MMIO_RADIO_DATA_LOW, value);
  1335. }
  1336. static void b43_lpphy_op_software_rfkill(struct b43_wldev *dev,
  1337. bool blocked)
  1338. {
  1339. //TODO
  1340. }
  1341. struct b206x_channel {
  1342. u8 channel;
  1343. u16 freq;
  1344. u8 data[12];
  1345. };
  1346. static const struct b206x_channel b2062_chantbl[] = {
  1347. { .channel = 1, .freq = 2412, .data[0] = 0xFF, .data[1] = 0xFF,
  1348. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1349. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1350. { .channel = 2, .freq = 2417, .data[0] = 0xFF, .data[1] = 0xFF,
  1351. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1352. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1353. { .channel = 3, .freq = 2422, .data[0] = 0xFF, .data[1] = 0xFF,
  1354. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1355. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1356. { .channel = 4, .freq = 2427, .data[0] = 0xFF, .data[1] = 0xFF,
  1357. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1358. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1359. { .channel = 5, .freq = 2432, .data[0] = 0xFF, .data[1] = 0xFF,
  1360. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1361. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1362. { .channel = 6, .freq = 2437, .data[0] = 0xFF, .data[1] = 0xFF,
  1363. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1364. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1365. { .channel = 7, .freq = 2442, .data[0] = 0xFF, .data[1] = 0xFF,
  1366. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1367. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1368. { .channel = 8, .freq = 2447, .data[0] = 0xFF, .data[1] = 0xFF,
  1369. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1370. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1371. { .channel = 9, .freq = 2452, .data[0] = 0xFF, .data[1] = 0xFF,
  1372. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1373. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1374. { .channel = 10, .freq = 2457, .data[0] = 0xFF, .data[1] = 0xFF,
  1375. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1376. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1377. { .channel = 11, .freq = 2462, .data[0] = 0xFF, .data[1] = 0xFF,
  1378. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1379. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1380. { .channel = 12, .freq = 2467, .data[0] = 0xFF, .data[1] = 0xFF,
  1381. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1382. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1383. { .channel = 13, .freq = 2472, .data[0] = 0xFF, .data[1] = 0xFF,
  1384. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1385. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1386. { .channel = 14, .freq = 2484, .data[0] = 0xFF, .data[1] = 0xFF,
  1387. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1388. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1389. { .channel = 34, .freq = 5170, .data[0] = 0x00, .data[1] = 0x22,
  1390. .data[2] = 0x20, .data[3] = 0x84, .data[4] = 0x3C, .data[5] = 0x77,
  1391. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1392. { .channel = 38, .freq = 5190, .data[0] = 0x00, .data[1] = 0x11,
  1393. .data[2] = 0x10, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1394. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1395. { .channel = 42, .freq = 5210, .data[0] = 0x00, .data[1] = 0x11,
  1396. .data[2] = 0x10, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1397. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1398. { .channel = 46, .freq = 5230, .data[0] = 0x00, .data[1] = 0x00,
  1399. .data[2] = 0x00, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1400. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1401. { .channel = 36, .freq = 5180, .data[0] = 0x00, .data[1] = 0x11,
  1402. .data[2] = 0x20, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1403. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1404. { .channel = 40, .freq = 5200, .data[0] = 0x00, .data[1] = 0x11,
  1405. .data[2] = 0x10, .data[3] = 0x84, .data[4] = 0x3C, .data[5] = 0x77,
  1406. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1407. { .channel = 44, .freq = 5220, .data[0] = 0x00, .data[1] = 0x11,
  1408. .data[2] = 0x00, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1409. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1410. { .channel = 48, .freq = 5240, .data[0] = 0x00, .data[1] = 0x00,
  1411. .data[2] = 0x00, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1412. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1413. { .channel = 52, .freq = 5260, .data[0] = 0x00, .data[1] = 0x00,
  1414. .data[2] = 0x00, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1415. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1416. { .channel = 56, .freq = 5280, .data[0] = 0x00, .data[1] = 0x00,
  1417. .data[2] = 0x00, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1418. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1419. { .channel = 60, .freq = 5300, .data[0] = 0x00, .data[1] = 0x00,
  1420. .data[2] = 0x00, .data[3] = 0x63, .data[4] = 0x3C, .data[5] = 0x77,
  1421. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1422. { .channel = 64, .freq = 5320, .data[0] = 0x00, .data[1] = 0x00,
  1423. .data[2] = 0x00, .data[3] = 0x62, .data[4] = 0x3C, .data[5] = 0x77,
  1424. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1425. { .channel = 100, .freq = 5500, .data[0] = 0x00, .data[1] = 0x00,
  1426. .data[2] = 0x00, .data[3] = 0x30, .data[4] = 0x3C, .data[5] = 0x77,
  1427. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1428. { .channel = 104, .freq = 5520, .data[0] = 0x00, .data[1] = 0x00,
  1429. .data[2] = 0x00, .data[3] = 0x20, .data[4] = 0x3C, .data[5] = 0x77,
  1430. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1431. { .channel = 108, .freq = 5540, .data[0] = 0x00, .data[1] = 0x00,
  1432. .data[2] = 0x00, .data[3] = 0x20, .data[4] = 0x3C, .data[5] = 0x77,
  1433. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1434. { .channel = 112, .freq = 5560, .data[0] = 0x00, .data[1] = 0x00,
  1435. .data[2] = 0x00, .data[3] = 0x20, .data[4] = 0x3C, .data[5] = 0x77,
  1436. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1437. { .channel = 116, .freq = 5580, .data[0] = 0x00, .data[1] = 0x00,
  1438. .data[2] = 0x00, .data[3] = 0x10, .data[4] = 0x3C, .data[5] = 0x77,
  1439. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1440. { .channel = 120, .freq = 5600, .data[0] = 0x00, .data[1] = 0x00,
  1441. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1442. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1443. { .channel = 124, .freq = 5620, .data[0] = 0x00, .data[1] = 0x00,
  1444. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1445. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1446. { .channel = 128, .freq = 5640, .data[0] = 0x00, .data[1] = 0x00,
  1447. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1448. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1449. { .channel = 132, .freq = 5660, .data[0] = 0x00, .data[1] = 0x00,
  1450. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1451. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1452. { .channel = 136, .freq = 5680, .data[0] = 0x00, .data[1] = 0x00,
  1453. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1454. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1455. { .channel = 140, .freq = 5700, .data[0] = 0x00, .data[1] = 0x00,
  1456. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1457. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1458. { .channel = 149, .freq = 5745, .data[0] = 0x00, .data[1] = 0x00,
  1459. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1460. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1461. { .channel = 153, .freq = 5765, .data[0] = 0x00, .data[1] = 0x00,
  1462. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1463. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1464. { .channel = 157, .freq = 5785, .data[0] = 0x00, .data[1] = 0x00,
  1465. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1466. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1467. { .channel = 161, .freq = 5805, .data[0] = 0x00, .data[1] = 0x00,
  1468. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1469. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1470. { .channel = 165, .freq = 5825, .data[0] = 0x00, .data[1] = 0x00,
  1471. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1472. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1473. { .channel = 184, .freq = 4920, .data[0] = 0x55, .data[1] = 0x77,
  1474. .data[2] = 0x90, .data[3] = 0xF7, .data[4] = 0x3C, .data[5] = 0x77,
  1475. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0xFF, },
  1476. { .channel = 188, .freq = 4940, .data[0] = 0x44, .data[1] = 0x77,
  1477. .data[2] = 0x80, .data[3] = 0xE7, .data[4] = 0x3C, .data[5] = 0x77,
  1478. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0xFF, },
  1479. { .channel = 192, .freq = 4960, .data[0] = 0x44, .data[1] = 0x66,
  1480. .data[2] = 0x80, .data[3] = 0xE7, .data[4] = 0x3C, .data[5] = 0x77,
  1481. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0xFF, },
  1482. { .channel = 196, .freq = 4980, .data[0] = 0x33, .data[1] = 0x66,
  1483. .data[2] = 0x70, .data[3] = 0xC7, .data[4] = 0x3C, .data[5] = 0x77,
  1484. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0xFF, },
  1485. { .channel = 200, .freq = 5000, .data[0] = 0x22, .data[1] = 0x55,
  1486. .data[2] = 0x60, .data[3] = 0xD7, .data[4] = 0x3C, .data[5] = 0x77,
  1487. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0xFF, },
  1488. { .channel = 204, .freq = 5020, .data[0] = 0x22, .data[1] = 0x55,
  1489. .data[2] = 0x60, .data[3] = 0xC7, .data[4] = 0x3C, .data[5] = 0x77,
  1490. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0xFF, },
  1491. { .channel = 208, .freq = 5040, .data[0] = 0x22, .data[1] = 0x44,
  1492. .data[2] = 0x50, .data[3] = 0xC7, .data[4] = 0x3C, .data[5] = 0x77,
  1493. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0xFF, },
  1494. { .channel = 212, .freq = 5060, .data[0] = 0x11, .data[1] = 0x44,
  1495. .data[2] = 0x50, .data[3] = 0xA5, .data[4] = 0x3C, .data[5] = 0x77,
  1496. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1497. { .channel = 216, .freq = 5080, .data[0] = 0x00, .data[1] = 0x44,
  1498. .data[2] = 0x40, .data[3] = 0xB6, .data[4] = 0x3C, .data[5] = 0x77,
  1499. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1500. };
  1501. static const struct b206x_channel b2063_chantbl[] = {
  1502. { .channel = 1, .freq = 2412, .data[0] = 0x6F, .data[1] = 0x3C,
  1503. .data[2] = 0x3C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1504. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1505. .data[10] = 0x80, .data[11] = 0x70, },
  1506. { .channel = 2, .freq = 2417, .data[0] = 0x6F, .data[1] = 0x3C,
  1507. .data[2] = 0x3C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1508. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1509. .data[10] = 0x80, .data[11] = 0x70, },
  1510. { .channel = 3, .freq = 2422, .data[0] = 0x6F, .data[1] = 0x3C,
  1511. .data[2] = 0x3C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1512. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1513. .data[10] = 0x80, .data[11] = 0x70, },
  1514. { .channel = 4, .freq = 2427, .data[0] = 0x6F, .data[1] = 0x2C,
  1515. .data[2] = 0x2C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1516. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1517. .data[10] = 0x80, .data[11] = 0x70, },
  1518. { .channel = 5, .freq = 2432, .data[0] = 0x6F, .data[1] = 0x2C,
  1519. .data[2] = 0x2C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1520. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1521. .data[10] = 0x80, .data[11] = 0x70, },
  1522. { .channel = 6, .freq = 2437, .data[0] = 0x6F, .data[1] = 0x2C,
  1523. .data[2] = 0x2C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1524. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1525. .data[10] = 0x80, .data[11] = 0x70, },
  1526. { .channel = 7, .freq = 2442, .data[0] = 0x6F, .data[1] = 0x2C,
  1527. .data[2] = 0x2C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1528. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1529. .data[10] = 0x80, .data[11] = 0x70, },
  1530. { .channel = 8, .freq = 2447, .data[0] = 0x6F, .data[1] = 0x2C,
  1531. .data[2] = 0x2C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1532. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1533. .data[10] = 0x80, .data[11] = 0x70, },
  1534. { .channel = 9, .freq = 2452, .data[0] = 0x6F, .data[1] = 0x1C,
  1535. .data[2] = 0x1C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1536. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1537. .data[10] = 0x80, .data[11] = 0x70, },
  1538. { .channel = 10, .freq = 2457, .data[0] = 0x6F, .data[1] = 0x1C,
  1539. .data[2] = 0x1C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1540. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1541. .data[10] = 0x80, .data[11] = 0x70, },
  1542. { .channel = 11, .freq = 2462, .data[0] = 0x6E, .data[1] = 0x1C,
  1543. .data[2] = 0x1C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1544. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1545. .data[10] = 0x80, .data[11] = 0x70, },
  1546. { .channel = 12, .freq = 2467, .data[0] = 0x6E, .data[1] = 0x1C,
  1547. .data[2] = 0x1C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1548. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1549. .data[10] = 0x80, .data[11] = 0x70, },
  1550. { .channel = 13, .freq = 2472, .data[0] = 0x6E, .data[1] = 0x1C,
  1551. .data[2] = 0x1C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1552. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1553. .data[10] = 0x80, .data[11] = 0x70, },
  1554. { .channel = 14, .freq = 2484, .data[0] = 0x6E, .data[1] = 0x0C,
  1555. .data[2] = 0x0C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1556. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1557. .data[10] = 0x80, .data[11] = 0x70, },
  1558. { .channel = 34, .freq = 5170, .data[0] = 0x6A, .data[1] = 0x0C,
  1559. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x02, .data[5] = 0x05,
  1560. .data[6] = 0x0D, .data[7] = 0x0D, .data[8] = 0x77, .data[9] = 0x80,
  1561. .data[10] = 0x20, .data[11] = 0x00, },
  1562. { .channel = 36, .freq = 5180, .data[0] = 0x6A, .data[1] = 0x0C,
  1563. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x01, .data[5] = 0x05,
  1564. .data[6] = 0x0D, .data[7] = 0x0C, .data[8] = 0x77, .data[9] = 0x80,
  1565. .data[10] = 0x20, .data[11] = 0x00, },
  1566. { .channel = 38, .freq = 5190, .data[0] = 0x6A, .data[1] = 0x0C,
  1567. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x01, .data[5] = 0x04,
  1568. .data[6] = 0x0C, .data[7] = 0x0C, .data[8] = 0x77, .data[9] = 0x80,
  1569. .data[10] = 0x20, .data[11] = 0x00, },
  1570. { .channel = 40, .freq = 5200, .data[0] = 0x69, .data[1] = 0x0C,
  1571. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x01, .data[5] = 0x04,
  1572. .data[6] = 0x0C, .data[7] = 0x0C, .data[8] = 0x77, .data[9] = 0x70,
  1573. .data[10] = 0x20, .data[11] = 0x00, },
  1574. { .channel = 42, .freq = 5210, .data[0] = 0x69, .data[1] = 0x0C,
  1575. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x01, .data[5] = 0x04,
  1576. .data[6] = 0x0B, .data[7] = 0x0C, .data[8] = 0x77, .data[9] = 0x70,
  1577. .data[10] = 0x20, .data[11] = 0x00, },
  1578. { .channel = 44, .freq = 5220, .data[0] = 0x69, .data[1] = 0x0C,
  1579. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x04,
  1580. .data[6] = 0x0B, .data[7] = 0x0B, .data[8] = 0x77, .data[9] = 0x60,
  1581. .data[10] = 0x20, .data[11] = 0x00, },
  1582. { .channel = 46, .freq = 5230, .data[0] = 0x69, .data[1] = 0x0C,
  1583. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x03,
  1584. .data[6] = 0x0A, .data[7] = 0x0B, .data[8] = 0x77, .data[9] = 0x60,
  1585. .data[10] = 0x20, .data[11] = 0x00, },
  1586. { .channel = 48, .freq = 5240, .data[0] = 0x69, .data[1] = 0x0C,
  1587. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x03,
  1588. .data[6] = 0x0A, .data[7] = 0x0A, .data[8] = 0x77, .data[9] = 0x60,
  1589. .data[10] = 0x20, .data[11] = 0x00, },
  1590. { .channel = 52, .freq = 5260, .data[0] = 0x68, .data[1] = 0x0C,
  1591. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x02,
  1592. .data[6] = 0x09, .data[7] = 0x09, .data[8] = 0x77, .data[9] = 0x60,
  1593. .data[10] = 0x20, .data[11] = 0x00, },
  1594. { .channel = 56, .freq = 5280, .data[0] = 0x68, .data[1] = 0x0C,
  1595. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x01,
  1596. .data[6] = 0x08, .data[7] = 0x08, .data[8] = 0x77, .data[9] = 0x50,
  1597. .data[10] = 0x10, .data[11] = 0x00, },
  1598. { .channel = 60, .freq = 5300, .data[0] = 0x68, .data[1] = 0x0C,
  1599. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x01,
  1600. .data[6] = 0x08, .data[7] = 0x08, .data[8] = 0x77, .data[9] = 0x50,
  1601. .data[10] = 0x10, .data[11] = 0x00, },
  1602. { .channel = 64, .freq = 5320, .data[0] = 0x67, .data[1] = 0x0C,
  1603. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1604. .data[6] = 0x08, .data[7] = 0x08, .data[8] = 0x77, .data[9] = 0x50,
  1605. .data[10] = 0x10, .data[11] = 0x00, },
  1606. { .channel = 100, .freq = 5500, .data[0] = 0x64, .data[1] = 0x0C,
  1607. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1608. .data[6] = 0x02, .data[7] = 0x01, .data[8] = 0x77, .data[9] = 0x20,
  1609. .data[10] = 0x00, .data[11] = 0x00, },
  1610. { .channel = 104, .freq = 5520, .data[0] = 0x64, .data[1] = 0x0C,
  1611. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1612. .data[6] = 0x01, .data[7] = 0x01, .data[8] = 0x77, .data[9] = 0x20,
  1613. .data[10] = 0x00, .data[11] = 0x00, },
  1614. { .channel = 108, .freq = 5540, .data[0] = 0x63, .data[1] = 0x0C,
  1615. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1616. .data[6] = 0x01, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x10,
  1617. .data[10] = 0x00, .data[11] = 0x00, },
  1618. { .channel = 112, .freq = 5560, .data[0] = 0x63, .data[1] = 0x0C,
  1619. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1620. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x10,
  1621. .data[10] = 0x00, .data[11] = 0x00, },
  1622. { .channel = 116, .freq = 5580, .data[0] = 0x62, .data[1] = 0x0C,
  1623. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1624. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x10,
  1625. .data[10] = 0x00, .data[11] = 0x00, },
  1626. { .channel = 120, .freq = 5600, .data[0] = 0x62, .data[1] = 0x0C,
  1627. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1628. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1629. .data[10] = 0x00, .data[11] = 0x00, },
  1630. { .channel = 124, .freq = 5620, .data[0] = 0x62, .data[1] = 0x0C,
  1631. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1632. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1633. .data[10] = 0x00, .data[11] = 0x00, },
  1634. { .channel = 128, .freq = 5640, .data[0] = 0x61, .data[1] = 0x0C,
  1635. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1636. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1637. .data[10] = 0x00, .data[11] = 0x00, },
  1638. { .channel = 132, .freq = 5660, .data[0] = 0x61, .data[1] = 0x0C,
  1639. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1640. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1641. .data[10] = 0x00, .data[11] = 0x00, },
  1642. { .channel = 136, .freq = 5680, .data[0] = 0x61, .data[1] = 0x0C,
  1643. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1644. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1645. .data[10] = 0x00, .data[11] = 0x00, },
  1646. { .channel = 140, .freq = 5700, .data[0] = 0x60, .data[1] = 0x0C,
  1647. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1648. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1649. .data[10] = 0x00, .data[11] = 0x00, },
  1650. { .channel = 149, .freq = 5745, .data[0] = 0x60, .data[1] = 0x0C,
  1651. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1652. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1653. .data[10] = 0x00, .data[11] = 0x00, },
  1654. { .channel = 153, .freq = 5765, .data[0] = 0x60, .data[1] = 0x0C,
  1655. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1656. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1657. .data[10] = 0x00, .data[11] = 0x00, },
  1658. { .channel = 157, .freq = 5785, .data[0] = 0x60, .data[1] = 0x0C,
  1659. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1660. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1661. .data[10] = 0x00, .data[11] = 0x00, },
  1662. { .channel = 161, .freq = 5805, .data[0] = 0x60, .data[1] = 0x0C,
  1663. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1664. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1665. .data[10] = 0x00, .data[11] = 0x00, },
  1666. { .channel = 165, .freq = 5825, .data[0] = 0x60, .data[1] = 0x0C,
  1667. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1668. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1669. .data[10] = 0x00, .data[11] = 0x00, },
  1670. { .channel = 184, .freq = 4920, .data[0] = 0x6E, .data[1] = 0x0C,
  1671. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x09, .data[5] = 0x0E,
  1672. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0xC0,
  1673. .data[10] = 0x50, .data[11] = 0x00, },
  1674. { .channel = 188, .freq = 4940, .data[0] = 0x6E, .data[1] = 0x0C,
  1675. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x09, .data[5] = 0x0D,
  1676. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0xB0,
  1677. .data[10] = 0x50, .data[11] = 0x00, },
  1678. { .channel = 192, .freq = 4960, .data[0] = 0x6E, .data[1] = 0x0C,
  1679. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x08, .data[5] = 0x0C,
  1680. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0xB0,
  1681. .data[10] = 0x50, .data[11] = 0x00, },
  1682. { .channel = 196, .freq = 4980, .data[0] = 0x6D, .data[1] = 0x0C,
  1683. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x08, .data[5] = 0x0C,
  1684. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0xA0,
  1685. .data[10] = 0x40, .data[11] = 0x00, },
  1686. { .channel = 200, .freq = 5000, .data[0] = 0x6D, .data[1] = 0x0C,
  1687. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x08, .data[5] = 0x0B,
  1688. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0xA0,
  1689. .data[10] = 0x40, .data[11] = 0x00, },
  1690. { .channel = 204, .freq = 5020, .data[0] = 0x6D, .data[1] = 0x0C,
  1691. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x08, .data[5] = 0x0A,
  1692. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0xA0,
  1693. .data[10] = 0x40, .data[11] = 0x00, },
  1694. { .channel = 208, .freq = 5040, .data[0] = 0x6C, .data[1] = 0x0C,
  1695. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x07, .data[5] = 0x09,
  1696. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0x90,
  1697. .data[10] = 0x40, .data[11] = 0x00, },
  1698. { .channel = 212, .freq = 5060, .data[0] = 0x6C, .data[1] = 0x0C,
  1699. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x06, .data[5] = 0x08,
  1700. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0x90,
  1701. .data[10] = 0x40, .data[11] = 0x00, },
  1702. { .channel = 216, .freq = 5080, .data[0] = 0x6C, .data[1] = 0x0C,
  1703. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x05, .data[5] = 0x08,
  1704. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0x90,
  1705. .data[10] = 0x40, .data[11] = 0x00, },
  1706. };
  1707. static void lpphy_b2062_reset_pll_bias(struct b43_wldev *dev)
  1708. {
  1709. struct ssb_bus *bus = dev->dev->bus;
  1710. b43_radio_write(dev, B2062_S_RFPLL_CTL2, 0xFF);
  1711. udelay(20);
  1712. if (bus->chip_id == 0x5354) {
  1713. b43_radio_write(dev, B2062_N_COMM1, 4);
  1714. b43_radio_write(dev, B2062_S_RFPLL_CTL2, 4);
  1715. } else {
  1716. b43_radio_write(dev, B2062_S_RFPLL_CTL2, 0);
  1717. }
  1718. udelay(5);
  1719. }
  1720. static void lpphy_b2062_vco_calib(struct b43_wldev *dev)
  1721. {
  1722. b43_phy_write(dev, B2062_S_RFPLL_CTL21, 0x42);
  1723. b43_phy_write(dev, B2062_S_RFPLL_CTL21, 0x62);
  1724. udelay(200);
  1725. }
  1726. static int lpphy_b2062_tune(struct b43_wldev *dev,
  1727. unsigned int channel)
  1728. {
  1729. struct b43_phy_lp *lpphy = dev->phy.lp;
  1730. struct ssb_bus *bus = dev->dev->bus;
  1731. const struct b206x_channel *chandata = NULL;
  1732. u32 crystal_freq = bus->chipco.pmu.crystalfreq * 1000;
  1733. u32 tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8, tmp9;
  1734. int i, err = 0;
  1735. for (i = 0; i < ARRAY_SIZE(b2062_chantbl); i++) {
  1736. if (b2062_chantbl[i].channel == channel) {
  1737. chandata = &b2062_chantbl[i];
  1738. break;
  1739. }
  1740. }
  1741. if (B43_WARN_ON(!chandata))
  1742. return -EINVAL;
  1743. b43_radio_set(dev, B2062_S_RFPLL_CTL14, 0x04);
  1744. b43_radio_write(dev, B2062_N_LGENA_TUNE0, chandata->data[0]);
  1745. b43_radio_write(dev, B2062_N_LGENA_TUNE2, chandata->data[1]);
  1746. b43_radio_write(dev, B2062_N_LGENA_TUNE3, chandata->data[2]);
  1747. b43_radio_write(dev, B2062_N_TX_TUNE, chandata->data[3]);
  1748. b43_radio_write(dev, B2062_S_LGENG_CTL1, chandata->data[4]);
  1749. b43_radio_write(dev, B2062_N_LGENA_CTL5, chandata->data[5]);
  1750. b43_radio_write(dev, B2062_N_LGENA_CTL6, chandata->data[6]);
  1751. b43_radio_write(dev, B2062_N_TX_PGA, chandata->data[7]);
  1752. b43_radio_write(dev, B2062_N_TX_PAD, chandata->data[8]);
  1753. tmp1 = crystal_freq / 1000;
  1754. tmp2 = lpphy->pdiv * 1000;
  1755. b43_radio_write(dev, B2062_S_RFPLL_CTL33, 0xCC);
  1756. b43_radio_write(dev, B2062_S_RFPLL_CTL34, 0x07);
  1757. lpphy_b2062_reset_pll_bias(dev);
  1758. tmp3 = tmp2 * channel2freq_lp(channel);
  1759. if (channel2freq_lp(channel) < 4000)
  1760. tmp3 *= 2;
  1761. tmp4 = 48 * tmp1;
  1762. tmp6 = tmp3 / tmp4;
  1763. tmp7 = tmp3 % tmp4;
  1764. b43_radio_write(dev, B2062_S_RFPLL_CTL26, tmp6);
  1765. tmp5 = tmp7 * 0x100;
  1766. tmp6 = tmp5 / tmp4;
  1767. tmp7 = tmp5 % tmp4;
  1768. b43_radio_write(dev, B2062_S_RFPLL_CTL27, tmp6);
  1769. tmp5 = tmp7 * 0x100;
  1770. tmp6 = tmp5 / tmp4;
  1771. tmp7 = tmp5 % tmp4;
  1772. b43_radio_write(dev, B2062_S_RFPLL_CTL28, tmp6);
  1773. tmp5 = tmp7 * 0x100;
  1774. tmp6 = tmp5 / tmp4;
  1775. tmp7 = tmp5 % tmp4;
  1776. b43_radio_write(dev, B2062_S_RFPLL_CTL29, tmp6 + ((2 * tmp7) / tmp4));
  1777. tmp8 = b43_phy_read(dev, B2062_S_RFPLL_CTL19);
  1778. tmp9 = ((2 * tmp3 * (tmp8 + 1)) + (3 * tmp1)) / (6 * tmp1);
  1779. b43_radio_write(dev, B2062_S_RFPLL_CTL23, (tmp9 >> 8) + 16);
  1780. b43_radio_write(dev, B2062_S_RFPLL_CTL24, tmp9 & 0xFF);
  1781. lpphy_b2062_vco_calib(dev);
  1782. if (b43_radio_read(dev, B2062_S_RFPLL_CTL3) & 0x10) {
  1783. b43_radio_write(dev, B2062_S_RFPLL_CTL33, 0xFC);
  1784. b43_radio_write(dev, B2062_S_RFPLL_CTL34, 0);
  1785. lpphy_b2062_reset_pll_bias(dev);
  1786. lpphy_b2062_vco_calib(dev);
  1787. if (b43_radio_read(dev, B2062_S_RFPLL_CTL3) & 0x10)
  1788. err = -EIO;
  1789. }
  1790. b43_radio_mask(dev, B2062_S_RFPLL_CTL14, ~0x04);
  1791. return err;
  1792. }
  1793. static void lpphy_japan_filter(struct b43_wldev *dev, int channel)
  1794. {
  1795. struct b43_phy_lp *lpphy = dev->phy.lp;
  1796. u16 tmp = (channel == 14); //SPEC FIXME check japanwidefilter!
  1797. if (dev->phy.rev < 2) { //SPEC FIXME Isn't this rev0/1-specific?
  1798. b43_phy_maskset(dev, B43_LPPHY_LP_PHY_CTL, 0xFCFF, tmp << 9);
  1799. if ((dev->phy.rev == 1) && (lpphy->rc_cap))
  1800. lpphy_set_rc_cap(dev);
  1801. } else {
  1802. b43_radio_write(dev, B2063_TX_BB_SP3, 0x3F);
  1803. }
  1804. }
  1805. static void lpphy_b2063_vco_calib(struct b43_wldev *dev)
  1806. {
  1807. u16 tmp;
  1808. b43_phy_mask(dev, B2063_PLL_SP1, ~0x40);
  1809. tmp = b43_phy_read(dev, B2063_PLL_JTAG_CALNRST) & 0xF8;
  1810. b43_phy_write(dev, B2063_PLL_JTAG_CALNRST, tmp);
  1811. udelay(1);
  1812. b43_phy_write(dev, B2063_PLL_JTAG_CALNRST, tmp | 0x4);
  1813. udelay(1);
  1814. b43_phy_write(dev, B2063_PLL_JTAG_CALNRST, tmp | 0x6);
  1815. udelay(1);
  1816. b43_phy_write(dev, B2063_PLL_JTAG_CALNRST, tmp | 0x7);
  1817. udelay(300);
  1818. b43_phy_set(dev, B2063_PLL_SP1, 0x40);
  1819. }
  1820. static int lpphy_b2063_tune(struct b43_wldev *dev,
  1821. unsigned int channel)
  1822. {
  1823. struct ssb_bus *bus = dev->dev->bus;
  1824. static const struct b206x_channel *chandata = NULL;
  1825. u32 crystal_freq = bus->chipco.pmu.crystalfreq * 1000;
  1826. u32 freqref, vco_freq, val1, val2, val3, timeout, timeoutref, count;
  1827. u16 old_comm15, scale;
  1828. u32 tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
  1829. int i, div = (crystal_freq <= 26000000 ? 1 : 2);
  1830. for (i = 0; i < ARRAY_SIZE(b2063_chantbl); i++) {
  1831. if (b2063_chantbl[i].channel == channel) {
  1832. chandata = &b2063_chantbl[i];
  1833. break;
  1834. }
  1835. }
  1836. if (B43_WARN_ON(!chandata))
  1837. return -EINVAL;
  1838. b43_radio_write(dev, B2063_LOGEN_VCOBUF1, chandata->data[0]);
  1839. b43_radio_write(dev, B2063_LOGEN_MIXER2, chandata->data[1]);
  1840. b43_radio_write(dev, B2063_LOGEN_BUF2, chandata->data[2]);
  1841. b43_radio_write(dev, B2063_LOGEN_RCCR1, chandata->data[3]);
  1842. b43_radio_write(dev, B2063_A_RX_1ST3, chandata->data[4]);
  1843. b43_radio_write(dev, B2063_A_RX_2ND1, chandata->data[5]);
  1844. b43_radio_write(dev, B2063_A_RX_2ND4, chandata->data[6]);
  1845. b43_radio_write(dev, B2063_A_RX_2ND7, chandata->data[7]);
  1846. b43_radio_write(dev, B2063_A_RX_PS6, chandata->data[8]);
  1847. b43_radio_write(dev, B2063_TX_RF_CTL2, chandata->data[9]);
  1848. b43_radio_write(dev, B2063_TX_RF_CTL5, chandata->data[10]);
  1849. b43_radio_write(dev, B2063_PA_CTL11, chandata->data[11]);
  1850. old_comm15 = b43_radio_read(dev, B2063_COMM15);
  1851. b43_radio_set(dev, B2063_COMM15, 0x1E);
  1852. if (chandata->freq > 4000) /* spec says 2484, but 4000 is safer */
  1853. vco_freq = chandata->freq << 1;
  1854. else
  1855. vco_freq = chandata->freq << 2;
  1856. freqref = crystal_freq * 3;
  1857. val1 = lpphy_qdiv_roundup(crystal_freq, 1000000, 16);
  1858. val2 = lpphy_qdiv_roundup(crystal_freq, 1000000 * div, 16);
  1859. val3 = lpphy_qdiv_roundup(vco_freq, 3, 16);
  1860. timeout = ((((8 * crystal_freq) / (div * 5000000)) + 1) >> 1) - 1;
  1861. b43_radio_write(dev, B2063_PLL_JTAG_PLL_VCO_CALIB3, 0x2);
  1862. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_VCO_CALIB6,
  1863. 0xFFF8, timeout >> 2);
  1864. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_VCO_CALIB7,
  1865. 0xFF9F,timeout << 5);
  1866. timeoutref = ((((8 * crystal_freq) / (div * (timeout + 1))) +
  1867. 999999) / 1000000) + 1;
  1868. b43_radio_write(dev, B2063_PLL_JTAG_PLL_VCO_CALIB5, timeoutref);
  1869. count = lpphy_qdiv_roundup(val3, val2 + 16, 16);
  1870. count *= (timeout + 1) * (timeoutref + 1);
  1871. count--;
  1872. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_VCO_CALIB7,
  1873. 0xF0, count >> 8);
  1874. b43_radio_write(dev, B2063_PLL_JTAG_PLL_VCO_CALIB8, count & 0xFF);
  1875. tmp1 = ((val3 * 62500) / freqref) << 4;
  1876. tmp2 = ((val3 * 62500) % freqref) << 4;
  1877. while (tmp2 >= freqref) {
  1878. tmp1++;
  1879. tmp2 -= freqref;
  1880. }
  1881. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_SG1, 0xFFE0, tmp1 >> 4);
  1882. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_SG2, 0xFE0F, tmp1 << 4);
  1883. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_SG2, 0xFFF0, tmp1 >> 16);
  1884. b43_radio_write(dev, B2063_PLL_JTAG_PLL_SG3, (tmp2 >> 8) & 0xFF);
  1885. b43_radio_write(dev, B2063_PLL_JTAG_PLL_SG4, tmp2 & 0xFF);
  1886. b43_radio_write(dev, B2063_PLL_JTAG_PLL_LF1, 0xB9);
  1887. b43_radio_write(dev, B2063_PLL_JTAG_PLL_LF2, 0x88);
  1888. b43_radio_write(dev, B2063_PLL_JTAG_PLL_LF3, 0x28);
  1889. b43_radio_write(dev, B2063_PLL_JTAG_PLL_LF4, 0x63);
  1890. tmp3 = ((41 * (val3 - 3000)) /1200) + 27;
  1891. tmp4 = lpphy_qdiv_roundup(132000 * tmp1, 8451, 16);
  1892. if ((tmp4 + tmp3 - 1) / tmp3 > 60) {
  1893. scale = 1;
  1894. tmp5 = ((tmp4 + tmp3) / (tmp3 << 1)) - 8;
  1895. } else {
  1896. scale = 0;
  1897. tmp5 = ((tmp4 + (tmp3 >> 1)) / tmp3) - 8;
  1898. }
  1899. b43_phy_maskset(dev, B2063_PLL_JTAG_PLL_CP2, 0xFFC0, tmp5);
  1900. b43_phy_maskset(dev, B2063_PLL_JTAG_PLL_CP2, 0xFFBF, scale << 6);
  1901. tmp6 = lpphy_qdiv_roundup(100 * val1, val3, 16);
  1902. tmp6 *= (tmp5 * 8) * (scale + 1);
  1903. if (tmp6 > 150)
  1904. tmp6 = 0;
  1905. b43_phy_maskset(dev, B2063_PLL_JTAG_PLL_CP3, 0xFFE0, tmp6);
  1906. b43_phy_maskset(dev, B2063_PLL_JTAG_PLL_CP3, 0xFFDF, scale << 5);
  1907. b43_phy_maskset(dev, B2063_PLL_JTAG_PLL_XTAL_12, 0xFFFB, 0x4);
  1908. if (crystal_freq > 26000000)
  1909. b43_phy_set(dev, B2063_PLL_JTAG_PLL_XTAL_12, 0x2);
  1910. else
  1911. b43_phy_mask(dev, B2063_PLL_JTAG_PLL_XTAL_12, 0xFD);
  1912. if (val1 == 45)
  1913. b43_phy_set(dev, B2063_PLL_JTAG_PLL_VCO1, 0x2);
  1914. else
  1915. b43_phy_mask(dev, B2063_PLL_JTAG_PLL_VCO1, 0xFD);
  1916. b43_phy_set(dev, B2063_PLL_SP2, 0x3);
  1917. udelay(1);
  1918. b43_phy_mask(dev, B2063_PLL_SP2, 0xFFFC);
  1919. lpphy_b2063_vco_calib(dev);
  1920. b43_radio_write(dev, B2063_COMM15, old_comm15);
  1921. return 0;
  1922. }
  1923. static int b43_lpphy_op_switch_channel(struct b43_wldev *dev,
  1924. unsigned int new_channel)
  1925. {
  1926. int err;
  1927. b43_write16(dev, B43_MMIO_CHANNEL, new_channel);
  1928. if (dev->phy.radio_ver == 0x2063) {
  1929. err = lpphy_b2063_tune(dev, new_channel);
  1930. if (err)
  1931. return err;
  1932. } else {
  1933. err = lpphy_b2062_tune(dev, new_channel);
  1934. if (err)
  1935. return err;
  1936. lpphy_japan_filter(dev, new_channel);
  1937. lpphy_adjust_gain_table(dev, channel2freq_lp(new_channel));
  1938. }
  1939. return 0;
  1940. }
  1941. static int b43_lpphy_op_init(struct b43_wldev *dev)
  1942. {
  1943. int err;
  1944. lpphy_read_band_sprom(dev); //FIXME should this be in prepare_structs?
  1945. lpphy_baseband_init(dev);
  1946. lpphy_radio_init(dev);
  1947. lpphy_calibrate_rc(dev);
  1948. err = b43_lpphy_op_switch_channel(dev,
  1949. b43_lpphy_op_get_default_chan(dev));
  1950. if (err) {
  1951. b43dbg(dev->wl, "Switch to init channel failed, error = %d.\n",
  1952. err);
  1953. }
  1954. lpphy_tx_pctl_init(dev);
  1955. lpphy_calibration(dev);
  1956. //TODO ACI init
  1957. return 0;
  1958. }
  1959. static void b43_lpphy_op_set_rx_antenna(struct b43_wldev *dev, int antenna)
  1960. {
  1961. //TODO
  1962. }
  1963. static void b43_lpphy_op_adjust_txpower(struct b43_wldev *dev)
  1964. {
  1965. //TODO
  1966. }
  1967. static enum b43_txpwr_result b43_lpphy_op_recalc_txpower(struct b43_wldev *dev,
  1968. bool ignore_tssi)
  1969. {
  1970. //TODO
  1971. return B43_TXPWR_RES_DONE;
  1972. }
  1973. const struct b43_phy_operations b43_phyops_lp = {
  1974. .allocate = b43_lpphy_op_allocate,
  1975. .free = b43_lpphy_op_free,
  1976. .prepare_structs = b43_lpphy_op_prepare_structs,
  1977. .init = b43_lpphy_op_init,
  1978. .phy_read = b43_lpphy_op_read,
  1979. .phy_write = b43_lpphy_op_write,
  1980. .radio_read = b43_lpphy_op_radio_read,
  1981. .radio_write = b43_lpphy_op_radio_write,
  1982. .software_rfkill = b43_lpphy_op_software_rfkill,
  1983. .switch_analog = b43_phyop_switch_analog_generic,
  1984. .switch_channel = b43_lpphy_op_switch_channel,
  1985. .get_default_chan = b43_lpphy_op_get_default_chan,
  1986. .set_rx_antenna = b43_lpphy_op_set_rx_antenna,
  1987. .recalc_txpower = b43_lpphy_op_recalc_txpower,
  1988. .adjust_txpower = b43_lpphy_op_adjust_txpower,
  1989. };