intel_dp.c 51 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include "drmP.h"
  30. #include "drm.h"
  31. #include "drm_crtc.h"
  32. #include "drm_crtc_helper.h"
  33. #include "intel_drv.h"
  34. #include "i915_drm.h"
  35. #include "i915_drv.h"
  36. #include "drm_dp_helper.h"
  37. #define DP_LINK_STATUS_SIZE 6
  38. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  39. #define DP_LINK_CONFIGURATION_SIZE 9
  40. struct intel_dp {
  41. struct intel_encoder base;
  42. uint32_t output_reg;
  43. uint32_t DP;
  44. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
  45. bool has_audio;
  46. int force_audio;
  47. uint32_t color_range;
  48. int dpms_mode;
  49. uint8_t link_bw;
  50. uint8_t lane_count;
  51. uint8_t dpcd[4];
  52. struct i2c_adapter adapter;
  53. struct i2c_algo_dp_aux_data algo;
  54. bool is_pch_edp;
  55. uint8_t train_set[4];
  56. uint8_t link_status[DP_LINK_STATUS_SIZE];
  57. };
  58. /**
  59. * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
  60. * @intel_dp: DP struct
  61. *
  62. * If a CPU or PCH DP output is attached to an eDP panel, this function
  63. * will return true, and false otherwise.
  64. */
  65. static bool is_edp(struct intel_dp *intel_dp)
  66. {
  67. return intel_dp->base.type == INTEL_OUTPUT_EDP;
  68. }
  69. /**
  70. * is_pch_edp - is the port on the PCH and attached to an eDP panel?
  71. * @intel_dp: DP struct
  72. *
  73. * Returns true if the given DP struct corresponds to a PCH DP port attached
  74. * to an eDP panel, false otherwise. Helpful for determining whether we
  75. * may need FDI resources for a given DP output or not.
  76. */
  77. static bool is_pch_edp(struct intel_dp *intel_dp)
  78. {
  79. return intel_dp->is_pch_edp;
  80. }
  81. static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
  82. {
  83. return container_of(encoder, struct intel_dp, base.base);
  84. }
  85. static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
  86. {
  87. return container_of(intel_attached_encoder(connector),
  88. struct intel_dp, base);
  89. }
  90. /**
  91. * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
  92. * @encoder: DRM encoder
  93. *
  94. * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
  95. * by intel_display.c.
  96. */
  97. bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
  98. {
  99. struct intel_dp *intel_dp;
  100. if (!encoder)
  101. return false;
  102. intel_dp = enc_to_intel_dp(encoder);
  103. return is_pch_edp(intel_dp);
  104. }
  105. static void intel_dp_start_link_train(struct intel_dp *intel_dp);
  106. static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
  107. static void intel_dp_link_down(struct intel_dp *intel_dp);
  108. void
  109. intel_edp_link_config (struct intel_encoder *intel_encoder,
  110. int *lane_num, int *link_bw)
  111. {
  112. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  113. *lane_num = intel_dp->lane_count;
  114. if (intel_dp->link_bw == DP_LINK_BW_1_62)
  115. *link_bw = 162000;
  116. else if (intel_dp->link_bw == DP_LINK_BW_2_7)
  117. *link_bw = 270000;
  118. }
  119. static int
  120. intel_dp_max_lane_count(struct intel_dp *intel_dp)
  121. {
  122. int max_lane_count = 4;
  123. if (intel_dp->dpcd[0] >= 0x11) {
  124. max_lane_count = intel_dp->dpcd[2] & 0x1f;
  125. switch (max_lane_count) {
  126. case 1: case 2: case 4:
  127. break;
  128. default:
  129. max_lane_count = 4;
  130. }
  131. }
  132. return max_lane_count;
  133. }
  134. static int
  135. intel_dp_max_link_bw(struct intel_dp *intel_dp)
  136. {
  137. int max_link_bw = intel_dp->dpcd[1];
  138. switch (max_link_bw) {
  139. case DP_LINK_BW_1_62:
  140. case DP_LINK_BW_2_7:
  141. break;
  142. default:
  143. max_link_bw = DP_LINK_BW_1_62;
  144. break;
  145. }
  146. return max_link_bw;
  147. }
  148. static int
  149. intel_dp_link_clock(uint8_t link_bw)
  150. {
  151. if (link_bw == DP_LINK_BW_2_7)
  152. return 270000;
  153. else
  154. return 162000;
  155. }
  156. /* I think this is a fiction */
  157. static int
  158. intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
  159. {
  160. struct drm_i915_private *dev_priv = dev->dev_private;
  161. if (is_edp(intel_dp))
  162. return (pixel_clock * dev_priv->edp.bpp + 7) / 8;
  163. else
  164. return pixel_clock * 3;
  165. }
  166. static int
  167. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  168. {
  169. return (max_link_clock * max_lanes * 8) / 10;
  170. }
  171. static int
  172. intel_dp_mode_valid(struct drm_connector *connector,
  173. struct drm_display_mode *mode)
  174. {
  175. struct intel_dp *intel_dp = intel_attached_dp(connector);
  176. struct drm_device *dev = connector->dev;
  177. struct drm_i915_private *dev_priv = dev->dev_private;
  178. int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
  179. int max_lanes = intel_dp_max_lane_count(intel_dp);
  180. if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
  181. if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
  182. return MODE_PANEL;
  183. if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
  184. return MODE_PANEL;
  185. }
  186. /* only refuse the mode on non eDP since we have seen some weird eDP panels
  187. which are outside spec tolerances but somehow work by magic */
  188. if (!is_edp(intel_dp) &&
  189. (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
  190. > intel_dp_max_data_rate(max_link_clock, max_lanes)))
  191. return MODE_CLOCK_HIGH;
  192. if (mode->clock < 10000)
  193. return MODE_CLOCK_LOW;
  194. return MODE_OK;
  195. }
  196. static uint32_t
  197. pack_aux(uint8_t *src, int src_bytes)
  198. {
  199. int i;
  200. uint32_t v = 0;
  201. if (src_bytes > 4)
  202. src_bytes = 4;
  203. for (i = 0; i < src_bytes; i++)
  204. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  205. return v;
  206. }
  207. static void
  208. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  209. {
  210. int i;
  211. if (dst_bytes > 4)
  212. dst_bytes = 4;
  213. for (i = 0; i < dst_bytes; i++)
  214. dst[i] = src >> ((3-i) * 8);
  215. }
  216. /* hrawclock is 1/4 the FSB frequency */
  217. static int
  218. intel_hrawclk(struct drm_device *dev)
  219. {
  220. struct drm_i915_private *dev_priv = dev->dev_private;
  221. uint32_t clkcfg;
  222. clkcfg = I915_READ(CLKCFG);
  223. switch (clkcfg & CLKCFG_FSB_MASK) {
  224. case CLKCFG_FSB_400:
  225. return 100;
  226. case CLKCFG_FSB_533:
  227. return 133;
  228. case CLKCFG_FSB_667:
  229. return 166;
  230. case CLKCFG_FSB_800:
  231. return 200;
  232. case CLKCFG_FSB_1067:
  233. return 266;
  234. case CLKCFG_FSB_1333:
  235. return 333;
  236. /* these two are just a guess; one of them might be right */
  237. case CLKCFG_FSB_1600:
  238. case CLKCFG_FSB_1600_ALT:
  239. return 400;
  240. default:
  241. return 133;
  242. }
  243. }
  244. static int
  245. intel_dp_aux_ch(struct intel_dp *intel_dp,
  246. uint8_t *send, int send_bytes,
  247. uint8_t *recv, int recv_size)
  248. {
  249. uint32_t output_reg = intel_dp->output_reg;
  250. struct drm_device *dev = intel_dp->base.base.dev;
  251. struct drm_i915_private *dev_priv = dev->dev_private;
  252. uint32_t ch_ctl = output_reg + 0x10;
  253. uint32_t ch_data = ch_ctl + 4;
  254. int i;
  255. int recv_bytes;
  256. uint32_t status;
  257. uint32_t aux_clock_divider;
  258. int try, precharge;
  259. /* The clock divider is based off the hrawclk,
  260. * and would like to run at 2MHz. So, take the
  261. * hrawclk value and divide by 2 and use that
  262. *
  263. * Note that PCH attached eDP panels should use a 125MHz input
  264. * clock divider.
  265. */
  266. if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
  267. if (IS_GEN6(dev))
  268. aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
  269. else
  270. aux_clock_divider = 225; /* eDP input clock at 450Mhz */
  271. } else if (HAS_PCH_SPLIT(dev))
  272. aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
  273. else
  274. aux_clock_divider = intel_hrawclk(dev) / 2;
  275. if (IS_GEN6(dev))
  276. precharge = 3;
  277. else
  278. precharge = 5;
  279. if (I915_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
  280. DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
  281. I915_READ(ch_ctl));
  282. return -EBUSY;
  283. }
  284. /* Must try at least 3 times according to DP spec */
  285. for (try = 0; try < 5; try++) {
  286. /* Load the send data into the aux channel data registers */
  287. for (i = 0; i < send_bytes; i += 4)
  288. I915_WRITE(ch_data + i,
  289. pack_aux(send + i, send_bytes - i));
  290. /* Send the command and wait for it to complete */
  291. I915_WRITE(ch_ctl,
  292. DP_AUX_CH_CTL_SEND_BUSY |
  293. DP_AUX_CH_CTL_TIME_OUT_400us |
  294. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  295. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  296. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  297. DP_AUX_CH_CTL_DONE |
  298. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  299. DP_AUX_CH_CTL_RECEIVE_ERROR);
  300. for (;;) {
  301. status = I915_READ(ch_ctl);
  302. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  303. break;
  304. udelay(100);
  305. }
  306. /* Clear done status and any errors */
  307. I915_WRITE(ch_ctl,
  308. status |
  309. DP_AUX_CH_CTL_DONE |
  310. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  311. DP_AUX_CH_CTL_RECEIVE_ERROR);
  312. if (status & DP_AUX_CH_CTL_DONE)
  313. break;
  314. }
  315. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  316. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  317. return -EBUSY;
  318. }
  319. /* Check for timeout or receive error.
  320. * Timeouts occur when the sink is not connected
  321. */
  322. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  323. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  324. return -EIO;
  325. }
  326. /* Timeouts occur when the device isn't connected, so they're
  327. * "normal" -- don't fill the kernel log with these */
  328. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  329. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  330. return -ETIMEDOUT;
  331. }
  332. /* Unload any bytes sent back from the other side */
  333. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  334. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  335. if (recv_bytes > recv_size)
  336. recv_bytes = recv_size;
  337. for (i = 0; i < recv_bytes; i += 4)
  338. unpack_aux(I915_READ(ch_data + i),
  339. recv + i, recv_bytes - i);
  340. return recv_bytes;
  341. }
  342. /* Write data to the aux channel in native mode */
  343. static int
  344. intel_dp_aux_native_write(struct intel_dp *intel_dp,
  345. uint16_t address, uint8_t *send, int send_bytes)
  346. {
  347. int ret;
  348. uint8_t msg[20];
  349. int msg_bytes;
  350. uint8_t ack;
  351. if (send_bytes > 16)
  352. return -1;
  353. msg[0] = AUX_NATIVE_WRITE << 4;
  354. msg[1] = address >> 8;
  355. msg[2] = address & 0xff;
  356. msg[3] = send_bytes - 1;
  357. memcpy(&msg[4], send, send_bytes);
  358. msg_bytes = send_bytes + 4;
  359. for (;;) {
  360. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
  361. if (ret < 0)
  362. return ret;
  363. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  364. break;
  365. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  366. udelay(100);
  367. else
  368. return -EIO;
  369. }
  370. return send_bytes;
  371. }
  372. /* Write a single byte to the aux channel in native mode */
  373. static int
  374. intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
  375. uint16_t address, uint8_t byte)
  376. {
  377. return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
  378. }
  379. /* read bytes from a native aux channel */
  380. static int
  381. intel_dp_aux_native_read(struct intel_dp *intel_dp,
  382. uint16_t address, uint8_t *recv, int recv_bytes)
  383. {
  384. uint8_t msg[4];
  385. int msg_bytes;
  386. uint8_t reply[20];
  387. int reply_bytes;
  388. uint8_t ack;
  389. int ret;
  390. msg[0] = AUX_NATIVE_READ << 4;
  391. msg[1] = address >> 8;
  392. msg[2] = address & 0xff;
  393. msg[3] = recv_bytes - 1;
  394. msg_bytes = 4;
  395. reply_bytes = recv_bytes + 1;
  396. for (;;) {
  397. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
  398. reply, reply_bytes);
  399. if (ret == 0)
  400. return -EPROTO;
  401. if (ret < 0)
  402. return ret;
  403. ack = reply[0];
  404. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  405. memcpy(recv, reply + 1, ret - 1);
  406. return ret - 1;
  407. }
  408. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  409. udelay(100);
  410. else
  411. return -EIO;
  412. }
  413. }
  414. static int
  415. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  416. uint8_t write_byte, uint8_t *read_byte)
  417. {
  418. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  419. struct intel_dp *intel_dp = container_of(adapter,
  420. struct intel_dp,
  421. adapter);
  422. uint16_t address = algo_data->address;
  423. uint8_t msg[5];
  424. uint8_t reply[2];
  425. unsigned retry;
  426. int msg_bytes;
  427. int reply_bytes;
  428. int ret;
  429. /* Set up the command byte */
  430. if (mode & MODE_I2C_READ)
  431. msg[0] = AUX_I2C_READ << 4;
  432. else
  433. msg[0] = AUX_I2C_WRITE << 4;
  434. if (!(mode & MODE_I2C_STOP))
  435. msg[0] |= AUX_I2C_MOT << 4;
  436. msg[1] = address >> 8;
  437. msg[2] = address;
  438. switch (mode) {
  439. case MODE_I2C_WRITE:
  440. msg[3] = 0;
  441. msg[4] = write_byte;
  442. msg_bytes = 5;
  443. reply_bytes = 1;
  444. break;
  445. case MODE_I2C_READ:
  446. msg[3] = 0;
  447. msg_bytes = 4;
  448. reply_bytes = 2;
  449. break;
  450. default:
  451. msg_bytes = 3;
  452. reply_bytes = 1;
  453. break;
  454. }
  455. for (retry = 0; retry < 5; retry++) {
  456. ret = intel_dp_aux_ch(intel_dp,
  457. msg, msg_bytes,
  458. reply, reply_bytes);
  459. if (ret < 0) {
  460. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  461. return ret;
  462. }
  463. switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
  464. case AUX_NATIVE_REPLY_ACK:
  465. /* I2C-over-AUX Reply field is only valid
  466. * when paired with AUX ACK.
  467. */
  468. break;
  469. case AUX_NATIVE_REPLY_NACK:
  470. DRM_DEBUG_KMS("aux_ch native nack\n");
  471. return -EREMOTEIO;
  472. case AUX_NATIVE_REPLY_DEFER:
  473. udelay(100);
  474. continue;
  475. default:
  476. DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
  477. reply[0]);
  478. return -EREMOTEIO;
  479. }
  480. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  481. case AUX_I2C_REPLY_ACK:
  482. if (mode == MODE_I2C_READ) {
  483. *read_byte = reply[1];
  484. }
  485. return reply_bytes - 1;
  486. case AUX_I2C_REPLY_NACK:
  487. DRM_DEBUG_KMS("aux_i2c nack\n");
  488. return -EREMOTEIO;
  489. case AUX_I2C_REPLY_DEFER:
  490. DRM_DEBUG_KMS("aux_i2c defer\n");
  491. udelay(100);
  492. break;
  493. default:
  494. DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
  495. return -EREMOTEIO;
  496. }
  497. }
  498. DRM_ERROR("too many retries, giving up\n");
  499. return -EREMOTEIO;
  500. }
  501. static int
  502. intel_dp_i2c_init(struct intel_dp *intel_dp,
  503. struct intel_connector *intel_connector, const char *name)
  504. {
  505. DRM_DEBUG_KMS("i2c_init %s\n", name);
  506. intel_dp->algo.running = false;
  507. intel_dp->algo.address = 0;
  508. intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
  509. memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
  510. intel_dp->adapter.owner = THIS_MODULE;
  511. intel_dp->adapter.class = I2C_CLASS_DDC;
  512. strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
  513. intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
  514. intel_dp->adapter.algo_data = &intel_dp->algo;
  515. intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
  516. return i2c_dp_aux_add_bus(&intel_dp->adapter);
  517. }
  518. static bool
  519. intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
  520. struct drm_display_mode *adjusted_mode)
  521. {
  522. struct drm_device *dev = encoder->dev;
  523. struct drm_i915_private *dev_priv = dev->dev_private;
  524. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  525. int lane_count, clock;
  526. int max_lane_count = intel_dp_max_lane_count(intel_dp);
  527. int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
  528. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  529. if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
  530. intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
  531. intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
  532. mode, adjusted_mode);
  533. /*
  534. * the mode->clock is used to calculate the Data&Link M/N
  535. * of the pipe. For the eDP the fixed clock should be used.
  536. */
  537. mode->clock = dev_priv->panel_fixed_mode->clock;
  538. }
  539. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  540. for (clock = 0; clock <= max_clock; clock++) {
  541. int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
  542. if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
  543. <= link_avail) {
  544. intel_dp->link_bw = bws[clock];
  545. intel_dp->lane_count = lane_count;
  546. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  547. DRM_DEBUG_KMS("Display port link bw %02x lane "
  548. "count %d clock %d\n",
  549. intel_dp->link_bw, intel_dp->lane_count,
  550. adjusted_mode->clock);
  551. return true;
  552. }
  553. }
  554. }
  555. if (is_edp(intel_dp)) {
  556. /* okay we failed just pick the highest */
  557. intel_dp->lane_count = max_lane_count;
  558. intel_dp->link_bw = bws[max_clock];
  559. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  560. DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
  561. "count %d clock %d\n",
  562. intel_dp->link_bw, intel_dp->lane_count,
  563. adjusted_mode->clock);
  564. return true;
  565. }
  566. return false;
  567. }
  568. struct intel_dp_m_n {
  569. uint32_t tu;
  570. uint32_t gmch_m;
  571. uint32_t gmch_n;
  572. uint32_t link_m;
  573. uint32_t link_n;
  574. };
  575. static void
  576. intel_reduce_ratio(uint32_t *num, uint32_t *den)
  577. {
  578. while (*num > 0xffffff || *den > 0xffffff) {
  579. *num >>= 1;
  580. *den >>= 1;
  581. }
  582. }
  583. static void
  584. intel_dp_compute_m_n(int bpp,
  585. int nlanes,
  586. int pixel_clock,
  587. int link_clock,
  588. struct intel_dp_m_n *m_n)
  589. {
  590. m_n->tu = 64;
  591. m_n->gmch_m = (pixel_clock * bpp) >> 3;
  592. m_n->gmch_n = link_clock * nlanes;
  593. intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  594. m_n->link_m = pixel_clock;
  595. m_n->link_n = link_clock;
  596. intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  597. }
  598. void
  599. intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
  600. struct drm_display_mode *adjusted_mode)
  601. {
  602. struct drm_device *dev = crtc->dev;
  603. struct drm_mode_config *mode_config = &dev->mode_config;
  604. struct drm_encoder *encoder;
  605. struct drm_i915_private *dev_priv = dev->dev_private;
  606. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  607. int lane_count = 4, bpp = 24;
  608. struct intel_dp_m_n m_n;
  609. int pipe = intel_crtc->pipe;
  610. /*
  611. * Find the lane count in the intel_encoder private
  612. */
  613. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  614. struct intel_dp *intel_dp;
  615. if (encoder->crtc != crtc)
  616. continue;
  617. intel_dp = enc_to_intel_dp(encoder);
  618. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
  619. lane_count = intel_dp->lane_count;
  620. break;
  621. } else if (is_edp(intel_dp)) {
  622. lane_count = dev_priv->edp.lanes;
  623. bpp = dev_priv->edp.bpp;
  624. break;
  625. }
  626. }
  627. /*
  628. * Compute the GMCH and Link ratios. The '3' here is
  629. * the number of bytes_per_pixel post-LUT, which we always
  630. * set up for 8-bits of R/G/B, or 3 bytes total.
  631. */
  632. intel_dp_compute_m_n(bpp, lane_count,
  633. mode->clock, adjusted_mode->clock, &m_n);
  634. if (HAS_PCH_SPLIT(dev)) {
  635. I915_WRITE(TRANSDATA_M1(pipe),
  636. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  637. m_n.gmch_m);
  638. I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
  639. I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
  640. I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
  641. } else {
  642. I915_WRITE(PIPE_GMCH_DATA_M(pipe),
  643. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  644. m_n.gmch_m);
  645. I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
  646. I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
  647. I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
  648. }
  649. }
  650. static void
  651. intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
  652. struct drm_display_mode *adjusted_mode)
  653. {
  654. struct drm_device *dev = encoder->dev;
  655. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  656. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  657. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  658. intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
  659. intel_dp->DP |= intel_dp->color_range;
  660. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  661. intel_dp->DP |= DP_SYNC_HS_HIGH;
  662. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  663. intel_dp->DP |= DP_SYNC_VS_HIGH;
  664. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  665. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  666. else
  667. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  668. switch (intel_dp->lane_count) {
  669. case 1:
  670. intel_dp->DP |= DP_PORT_WIDTH_1;
  671. break;
  672. case 2:
  673. intel_dp->DP |= DP_PORT_WIDTH_2;
  674. break;
  675. case 4:
  676. intel_dp->DP |= DP_PORT_WIDTH_4;
  677. break;
  678. }
  679. if (intel_dp->has_audio)
  680. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  681. memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  682. intel_dp->link_configuration[0] = intel_dp->link_bw;
  683. intel_dp->link_configuration[1] = intel_dp->lane_count;
  684. /*
  685. * Check for DPCD version > 1.1 and enhanced framing support
  686. */
  687. if (intel_dp->dpcd[0] >= 0x11 && (intel_dp->dpcd[2] & DP_ENHANCED_FRAME_CAP)) {
  688. intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  689. intel_dp->DP |= DP_ENHANCED_FRAMING;
  690. }
  691. /* CPT DP's pipe select is decided in TRANS_DP_CTL */
  692. if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
  693. intel_dp->DP |= DP_PIPEB_SELECT;
  694. if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
  695. /* don't miss out required setting for eDP */
  696. intel_dp->DP |= DP_PLL_ENABLE;
  697. if (adjusted_mode->clock < 200000)
  698. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  699. else
  700. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  701. }
  702. }
  703. static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
  704. {
  705. struct drm_device *dev = intel_dp->base.base.dev;
  706. struct drm_i915_private *dev_priv = dev->dev_private;
  707. u32 pp;
  708. /*
  709. * If the panel wasn't on, make sure there's not a currently
  710. * active PP sequence before enabling AUX VDD.
  711. */
  712. if (!(I915_READ(PCH_PP_STATUS) & PP_ON))
  713. msleep(dev_priv->panel_t3);
  714. pp = I915_READ(PCH_PP_CONTROL);
  715. pp |= EDP_FORCE_VDD;
  716. I915_WRITE(PCH_PP_CONTROL, pp);
  717. POSTING_READ(PCH_PP_CONTROL);
  718. }
  719. static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp)
  720. {
  721. struct drm_device *dev = intel_dp->base.base.dev;
  722. struct drm_i915_private *dev_priv = dev->dev_private;
  723. u32 pp;
  724. pp = I915_READ(PCH_PP_CONTROL);
  725. pp &= ~EDP_FORCE_VDD;
  726. I915_WRITE(PCH_PP_CONTROL, pp);
  727. POSTING_READ(PCH_PP_CONTROL);
  728. /* Make sure sequencer is idle before allowing subsequent activity */
  729. msleep(dev_priv->panel_t12);
  730. }
  731. /* Returns true if the panel was already on when called */
  732. static bool ironlake_edp_panel_on (struct intel_dp *intel_dp)
  733. {
  734. struct drm_device *dev = intel_dp->base.base.dev;
  735. struct drm_i915_private *dev_priv = dev->dev_private;
  736. u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_STATE_ON_IDLE;
  737. if (I915_READ(PCH_PP_STATUS) & PP_ON)
  738. return true;
  739. pp = I915_READ(PCH_PP_CONTROL);
  740. /* ILK workaround: disable reset around power sequence */
  741. pp &= ~PANEL_POWER_RESET;
  742. I915_WRITE(PCH_PP_CONTROL, pp);
  743. POSTING_READ(PCH_PP_CONTROL);
  744. pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
  745. I915_WRITE(PCH_PP_CONTROL, pp);
  746. POSTING_READ(PCH_PP_CONTROL);
  747. if (wait_for((I915_READ(PCH_PP_STATUS) & idle_on_mask) == idle_on_mask,
  748. 5000))
  749. DRM_ERROR("panel on wait timed out: 0x%08x\n",
  750. I915_READ(PCH_PP_STATUS));
  751. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  752. I915_WRITE(PCH_PP_CONTROL, pp);
  753. POSTING_READ(PCH_PP_CONTROL);
  754. return false;
  755. }
  756. static void ironlake_edp_panel_off (struct drm_device *dev)
  757. {
  758. struct drm_i915_private *dev_priv = dev->dev_private;
  759. u32 pp, idle_off_mask = PP_ON | PP_SEQUENCE_MASK |
  760. PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK;
  761. pp = I915_READ(PCH_PP_CONTROL);
  762. /* ILK workaround: disable reset around power sequence */
  763. pp &= ~PANEL_POWER_RESET;
  764. I915_WRITE(PCH_PP_CONTROL, pp);
  765. POSTING_READ(PCH_PP_CONTROL);
  766. pp &= ~POWER_TARGET_ON;
  767. I915_WRITE(PCH_PP_CONTROL, pp);
  768. POSTING_READ(PCH_PP_CONTROL);
  769. if (wait_for((I915_READ(PCH_PP_STATUS) & idle_off_mask) == 0, 5000))
  770. DRM_ERROR("panel off wait timed out: 0x%08x\n",
  771. I915_READ(PCH_PP_STATUS));
  772. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  773. I915_WRITE(PCH_PP_CONTROL, pp);
  774. POSTING_READ(PCH_PP_CONTROL);
  775. }
  776. static void ironlake_edp_backlight_on (struct drm_device *dev)
  777. {
  778. struct drm_i915_private *dev_priv = dev->dev_private;
  779. u32 pp;
  780. DRM_DEBUG_KMS("\n");
  781. /*
  782. * If we enable the backlight right away following a panel power
  783. * on, we may see slight flicker as the panel syncs with the eDP
  784. * link. So delay a bit to make sure the image is solid before
  785. * allowing it to appear.
  786. */
  787. msleep(300);
  788. pp = I915_READ(PCH_PP_CONTROL);
  789. pp |= EDP_BLC_ENABLE;
  790. I915_WRITE(PCH_PP_CONTROL, pp);
  791. }
  792. static void ironlake_edp_backlight_off (struct drm_device *dev)
  793. {
  794. struct drm_i915_private *dev_priv = dev->dev_private;
  795. u32 pp;
  796. DRM_DEBUG_KMS("\n");
  797. pp = I915_READ(PCH_PP_CONTROL);
  798. pp &= ~EDP_BLC_ENABLE;
  799. I915_WRITE(PCH_PP_CONTROL, pp);
  800. }
  801. static void ironlake_edp_pll_on(struct drm_encoder *encoder)
  802. {
  803. struct drm_device *dev = encoder->dev;
  804. struct drm_i915_private *dev_priv = dev->dev_private;
  805. u32 dpa_ctl;
  806. DRM_DEBUG_KMS("\n");
  807. dpa_ctl = I915_READ(DP_A);
  808. dpa_ctl |= DP_PLL_ENABLE;
  809. I915_WRITE(DP_A, dpa_ctl);
  810. POSTING_READ(DP_A);
  811. udelay(200);
  812. }
  813. static void ironlake_edp_pll_off(struct drm_encoder *encoder)
  814. {
  815. struct drm_device *dev = encoder->dev;
  816. struct drm_i915_private *dev_priv = dev->dev_private;
  817. u32 dpa_ctl;
  818. dpa_ctl = I915_READ(DP_A);
  819. dpa_ctl &= ~DP_PLL_ENABLE;
  820. I915_WRITE(DP_A, dpa_ctl);
  821. POSTING_READ(DP_A);
  822. udelay(200);
  823. }
  824. static void intel_dp_prepare(struct drm_encoder *encoder)
  825. {
  826. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  827. struct drm_device *dev = encoder->dev;
  828. if (is_edp(intel_dp)) {
  829. ironlake_edp_backlight_off(dev);
  830. ironlake_edp_panel_off(dev);
  831. if (!is_pch_edp(intel_dp))
  832. ironlake_edp_pll_on(encoder);
  833. else
  834. ironlake_edp_pll_off(encoder);
  835. }
  836. intel_dp_link_down(intel_dp);
  837. }
  838. static void intel_dp_commit(struct drm_encoder *encoder)
  839. {
  840. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  841. struct drm_device *dev = encoder->dev;
  842. if (is_edp(intel_dp))
  843. ironlake_edp_panel_vdd_on(intel_dp);
  844. intel_dp_start_link_train(intel_dp);
  845. if (is_edp(intel_dp)) {
  846. ironlake_edp_panel_on(intel_dp);
  847. ironlake_edp_panel_vdd_off(intel_dp);
  848. }
  849. intel_dp_complete_link_train(intel_dp);
  850. if (is_edp(intel_dp))
  851. ironlake_edp_backlight_on(dev);
  852. }
  853. static void
  854. intel_dp_dpms(struct drm_encoder *encoder, int mode)
  855. {
  856. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  857. struct drm_device *dev = encoder->dev;
  858. struct drm_i915_private *dev_priv = dev->dev_private;
  859. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  860. if (mode != DRM_MODE_DPMS_ON) {
  861. if (is_edp(intel_dp))
  862. ironlake_edp_backlight_off(dev);
  863. intel_dp_link_down(intel_dp);
  864. if (is_edp(intel_dp))
  865. ironlake_edp_panel_off(dev);
  866. if (is_edp(intel_dp) && !is_pch_edp(intel_dp))
  867. ironlake_edp_pll_off(encoder);
  868. } else {
  869. if (is_edp(intel_dp))
  870. ironlake_edp_panel_vdd_on(intel_dp);
  871. if (!(dp_reg & DP_PORT_EN)) {
  872. intel_dp_start_link_train(intel_dp);
  873. if (is_edp(intel_dp)) {
  874. ironlake_edp_panel_on(intel_dp);
  875. ironlake_edp_panel_vdd_off(intel_dp);
  876. }
  877. intel_dp_complete_link_train(intel_dp);
  878. }
  879. if (is_edp(intel_dp))
  880. ironlake_edp_backlight_on(dev);
  881. }
  882. intel_dp->dpms_mode = mode;
  883. }
  884. /*
  885. * Fetch AUX CH registers 0x202 - 0x207 which contain
  886. * link status information
  887. */
  888. static bool
  889. intel_dp_get_link_status(struct intel_dp *intel_dp)
  890. {
  891. int ret;
  892. ret = intel_dp_aux_native_read(intel_dp,
  893. DP_LANE0_1_STATUS,
  894. intel_dp->link_status, DP_LINK_STATUS_SIZE);
  895. if (ret != DP_LINK_STATUS_SIZE)
  896. return false;
  897. return true;
  898. }
  899. static uint8_t
  900. intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  901. int r)
  902. {
  903. return link_status[r - DP_LANE0_1_STATUS];
  904. }
  905. static uint8_t
  906. intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
  907. int lane)
  908. {
  909. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  910. int s = ((lane & 1) ?
  911. DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
  912. DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
  913. uint8_t l = intel_dp_link_status(link_status, i);
  914. return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
  915. }
  916. static uint8_t
  917. intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
  918. int lane)
  919. {
  920. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  921. int s = ((lane & 1) ?
  922. DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
  923. DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
  924. uint8_t l = intel_dp_link_status(link_status, i);
  925. return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
  926. }
  927. #if 0
  928. static char *voltage_names[] = {
  929. "0.4V", "0.6V", "0.8V", "1.2V"
  930. };
  931. static char *pre_emph_names[] = {
  932. "0dB", "3.5dB", "6dB", "9.5dB"
  933. };
  934. static char *link_train_names[] = {
  935. "pattern 1", "pattern 2", "idle", "off"
  936. };
  937. #endif
  938. /*
  939. * These are source-specific values; current Intel hardware supports
  940. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  941. */
  942. #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
  943. static uint8_t
  944. intel_dp_pre_emphasis_max(uint8_t voltage_swing)
  945. {
  946. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  947. case DP_TRAIN_VOLTAGE_SWING_400:
  948. return DP_TRAIN_PRE_EMPHASIS_6;
  949. case DP_TRAIN_VOLTAGE_SWING_600:
  950. return DP_TRAIN_PRE_EMPHASIS_6;
  951. case DP_TRAIN_VOLTAGE_SWING_800:
  952. return DP_TRAIN_PRE_EMPHASIS_3_5;
  953. case DP_TRAIN_VOLTAGE_SWING_1200:
  954. default:
  955. return DP_TRAIN_PRE_EMPHASIS_0;
  956. }
  957. }
  958. static void
  959. intel_get_adjust_train(struct intel_dp *intel_dp)
  960. {
  961. uint8_t v = 0;
  962. uint8_t p = 0;
  963. int lane;
  964. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  965. uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane);
  966. uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
  967. if (this_v > v)
  968. v = this_v;
  969. if (this_p > p)
  970. p = this_p;
  971. }
  972. if (v >= I830_DP_VOLTAGE_MAX)
  973. v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
  974. if (p >= intel_dp_pre_emphasis_max(v))
  975. p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  976. for (lane = 0; lane < 4; lane++)
  977. intel_dp->train_set[lane] = v | p;
  978. }
  979. static uint32_t
  980. intel_dp_signal_levels(uint8_t train_set, int lane_count)
  981. {
  982. uint32_t signal_levels = 0;
  983. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  984. case DP_TRAIN_VOLTAGE_SWING_400:
  985. default:
  986. signal_levels |= DP_VOLTAGE_0_4;
  987. break;
  988. case DP_TRAIN_VOLTAGE_SWING_600:
  989. signal_levels |= DP_VOLTAGE_0_6;
  990. break;
  991. case DP_TRAIN_VOLTAGE_SWING_800:
  992. signal_levels |= DP_VOLTAGE_0_8;
  993. break;
  994. case DP_TRAIN_VOLTAGE_SWING_1200:
  995. signal_levels |= DP_VOLTAGE_1_2;
  996. break;
  997. }
  998. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  999. case DP_TRAIN_PRE_EMPHASIS_0:
  1000. default:
  1001. signal_levels |= DP_PRE_EMPHASIS_0;
  1002. break;
  1003. case DP_TRAIN_PRE_EMPHASIS_3_5:
  1004. signal_levels |= DP_PRE_EMPHASIS_3_5;
  1005. break;
  1006. case DP_TRAIN_PRE_EMPHASIS_6:
  1007. signal_levels |= DP_PRE_EMPHASIS_6;
  1008. break;
  1009. case DP_TRAIN_PRE_EMPHASIS_9_5:
  1010. signal_levels |= DP_PRE_EMPHASIS_9_5;
  1011. break;
  1012. }
  1013. return signal_levels;
  1014. }
  1015. /* Gen6's DP voltage swing and pre-emphasis control */
  1016. static uint32_t
  1017. intel_gen6_edp_signal_levels(uint8_t train_set)
  1018. {
  1019. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1020. DP_TRAIN_PRE_EMPHASIS_MASK);
  1021. switch (signal_levels) {
  1022. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1023. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1024. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1025. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1026. return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
  1027. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1028. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  1029. return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
  1030. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1031. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1032. return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
  1033. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1034. case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
  1035. return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
  1036. default:
  1037. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1038. "0x%x\n", signal_levels);
  1039. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1040. }
  1041. }
  1042. static uint8_t
  1043. intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  1044. int lane)
  1045. {
  1046. int i = DP_LANE0_1_STATUS + (lane >> 1);
  1047. int s = (lane & 1) * 4;
  1048. uint8_t l = intel_dp_link_status(link_status, i);
  1049. return (l >> s) & 0xf;
  1050. }
  1051. /* Check for clock recovery is done on all channels */
  1052. static bool
  1053. intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  1054. {
  1055. int lane;
  1056. uint8_t lane_status;
  1057. for (lane = 0; lane < lane_count; lane++) {
  1058. lane_status = intel_get_lane_status(link_status, lane);
  1059. if ((lane_status & DP_LANE_CR_DONE) == 0)
  1060. return false;
  1061. }
  1062. return true;
  1063. }
  1064. /* Check to see if channel eq is done on all channels */
  1065. #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
  1066. DP_LANE_CHANNEL_EQ_DONE|\
  1067. DP_LANE_SYMBOL_LOCKED)
  1068. static bool
  1069. intel_channel_eq_ok(struct intel_dp *intel_dp)
  1070. {
  1071. uint8_t lane_align;
  1072. uint8_t lane_status;
  1073. int lane;
  1074. lane_align = intel_dp_link_status(intel_dp->link_status,
  1075. DP_LANE_ALIGN_STATUS_UPDATED);
  1076. if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
  1077. return false;
  1078. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1079. lane_status = intel_get_lane_status(intel_dp->link_status, lane);
  1080. if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
  1081. return false;
  1082. }
  1083. return true;
  1084. }
  1085. static bool
  1086. intel_dp_set_link_train(struct intel_dp *intel_dp,
  1087. uint32_t dp_reg_value,
  1088. uint8_t dp_train_pat)
  1089. {
  1090. struct drm_device *dev = intel_dp->base.base.dev;
  1091. struct drm_i915_private *dev_priv = dev->dev_private;
  1092. int ret;
  1093. I915_WRITE(intel_dp->output_reg, dp_reg_value);
  1094. POSTING_READ(intel_dp->output_reg);
  1095. intel_dp_aux_native_write_1(intel_dp,
  1096. DP_TRAINING_PATTERN_SET,
  1097. dp_train_pat);
  1098. ret = intel_dp_aux_native_write(intel_dp,
  1099. DP_TRAINING_LANE0_SET,
  1100. intel_dp->train_set, 4);
  1101. if (ret != 4)
  1102. return false;
  1103. return true;
  1104. }
  1105. /* Enable corresponding port and start training pattern 1 */
  1106. static void
  1107. intel_dp_start_link_train(struct intel_dp *intel_dp)
  1108. {
  1109. struct drm_device *dev = intel_dp->base.base.dev;
  1110. struct drm_i915_private *dev_priv = dev->dev_private;
  1111. struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
  1112. int i;
  1113. uint8_t voltage;
  1114. bool clock_recovery = false;
  1115. int tries;
  1116. u32 reg;
  1117. uint32_t DP = intel_dp->DP;
  1118. /* Enable output, wait for it to become active */
  1119. I915_WRITE(intel_dp->output_reg, intel_dp->DP);
  1120. POSTING_READ(intel_dp->output_reg);
  1121. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1122. /* Write the link configuration data */
  1123. intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
  1124. intel_dp->link_configuration,
  1125. DP_LINK_CONFIGURATION_SIZE);
  1126. DP |= DP_PORT_EN;
  1127. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1128. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1129. else
  1130. DP &= ~DP_LINK_TRAIN_MASK;
  1131. memset(intel_dp->train_set, 0, 4);
  1132. voltage = 0xff;
  1133. tries = 0;
  1134. clock_recovery = false;
  1135. for (;;) {
  1136. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1137. uint32_t signal_levels;
  1138. if (IS_GEN6(dev) && is_edp(intel_dp)) {
  1139. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1140. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1141. } else {
  1142. signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
  1143. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1144. }
  1145. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1146. reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
  1147. else
  1148. reg = DP | DP_LINK_TRAIN_PAT_1;
  1149. if (!intel_dp_set_link_train(intel_dp, reg,
  1150. DP_TRAINING_PATTERN_1))
  1151. break;
  1152. /* Set training pattern 1 */
  1153. udelay(100);
  1154. if (!intel_dp_get_link_status(intel_dp))
  1155. break;
  1156. if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
  1157. clock_recovery = true;
  1158. break;
  1159. }
  1160. /* Check to see if we've tried the max voltage */
  1161. for (i = 0; i < intel_dp->lane_count; i++)
  1162. if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  1163. break;
  1164. if (i == intel_dp->lane_count)
  1165. break;
  1166. /* Check to see if we've tried the same voltage 5 times */
  1167. if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  1168. ++tries;
  1169. if (tries == 5)
  1170. break;
  1171. } else
  1172. tries = 0;
  1173. voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  1174. /* Compute new intel_dp->train_set as requested by target */
  1175. intel_get_adjust_train(intel_dp);
  1176. }
  1177. intel_dp->DP = DP;
  1178. }
  1179. static void
  1180. intel_dp_complete_link_train(struct intel_dp *intel_dp)
  1181. {
  1182. struct drm_device *dev = intel_dp->base.base.dev;
  1183. struct drm_i915_private *dev_priv = dev->dev_private;
  1184. bool channel_eq = false;
  1185. int tries, cr_tries;
  1186. u32 reg;
  1187. uint32_t DP = intel_dp->DP;
  1188. /* channel equalization */
  1189. tries = 0;
  1190. cr_tries = 0;
  1191. channel_eq = false;
  1192. for (;;) {
  1193. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1194. uint32_t signal_levels;
  1195. if (cr_tries > 5) {
  1196. DRM_ERROR("failed to train DP, aborting\n");
  1197. intel_dp_link_down(intel_dp);
  1198. break;
  1199. }
  1200. if (IS_GEN6(dev) && is_edp(intel_dp)) {
  1201. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1202. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1203. } else {
  1204. signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
  1205. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1206. }
  1207. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1208. reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
  1209. else
  1210. reg = DP | DP_LINK_TRAIN_PAT_2;
  1211. /* channel eq pattern */
  1212. if (!intel_dp_set_link_train(intel_dp, reg,
  1213. DP_TRAINING_PATTERN_2))
  1214. break;
  1215. udelay(400);
  1216. if (!intel_dp_get_link_status(intel_dp))
  1217. break;
  1218. /* Make sure clock is still ok */
  1219. if (!intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
  1220. intel_dp_start_link_train(intel_dp);
  1221. cr_tries++;
  1222. continue;
  1223. }
  1224. if (intel_channel_eq_ok(intel_dp)) {
  1225. channel_eq = true;
  1226. break;
  1227. }
  1228. /* Try 5 times, then try clock recovery if that fails */
  1229. if (tries > 5) {
  1230. intel_dp_link_down(intel_dp);
  1231. intel_dp_start_link_train(intel_dp);
  1232. tries = 0;
  1233. cr_tries++;
  1234. continue;
  1235. }
  1236. /* Compute new intel_dp->train_set as requested by target */
  1237. intel_get_adjust_train(intel_dp);
  1238. ++tries;
  1239. }
  1240. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1241. reg = DP | DP_LINK_TRAIN_OFF_CPT;
  1242. else
  1243. reg = DP | DP_LINK_TRAIN_OFF;
  1244. I915_WRITE(intel_dp->output_reg, reg);
  1245. POSTING_READ(intel_dp->output_reg);
  1246. intel_dp_aux_native_write_1(intel_dp,
  1247. DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
  1248. }
  1249. static void
  1250. intel_dp_link_down(struct intel_dp *intel_dp)
  1251. {
  1252. struct drm_device *dev = intel_dp->base.base.dev;
  1253. struct drm_i915_private *dev_priv = dev->dev_private;
  1254. uint32_t DP = intel_dp->DP;
  1255. if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
  1256. return;
  1257. DRM_DEBUG_KMS("\n");
  1258. if (is_edp(intel_dp)) {
  1259. DP &= ~DP_PLL_ENABLE;
  1260. I915_WRITE(intel_dp->output_reg, DP);
  1261. POSTING_READ(intel_dp->output_reg);
  1262. udelay(100);
  1263. }
  1264. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) {
  1265. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1266. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  1267. } else {
  1268. DP &= ~DP_LINK_TRAIN_MASK;
  1269. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  1270. }
  1271. POSTING_READ(intel_dp->output_reg);
  1272. msleep(17);
  1273. if (is_edp(intel_dp))
  1274. DP |= DP_LINK_TRAIN_OFF;
  1275. if (!HAS_PCH_CPT(dev) &&
  1276. I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
  1277. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  1278. /* Hardware workaround: leaving our transcoder select
  1279. * set to transcoder B while it's off will prevent the
  1280. * corresponding HDMI output on transcoder A.
  1281. *
  1282. * Combine this with another hardware workaround:
  1283. * transcoder select bit can only be cleared while the
  1284. * port is enabled.
  1285. */
  1286. DP &= ~DP_PIPEB_SELECT;
  1287. I915_WRITE(intel_dp->output_reg, DP);
  1288. /* Changes to enable or select take place the vblank
  1289. * after being written.
  1290. */
  1291. if (crtc == NULL) {
  1292. /* We can arrive here never having been attached
  1293. * to a CRTC, for instance, due to inheriting
  1294. * random state from the BIOS.
  1295. *
  1296. * If the pipe is not running, play safe and
  1297. * wait for the clocks to stabilise before
  1298. * continuing.
  1299. */
  1300. POSTING_READ(intel_dp->output_reg);
  1301. msleep(50);
  1302. } else
  1303. intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
  1304. }
  1305. I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  1306. POSTING_READ(intel_dp->output_reg);
  1307. }
  1308. /*
  1309. * According to DP spec
  1310. * 5.1.2:
  1311. * 1. Read DPCD
  1312. * 2. Configure link according to Receiver Capabilities
  1313. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  1314. * 4. Check link status on receipt of hot-plug interrupt
  1315. */
  1316. static void
  1317. intel_dp_check_link_status(struct intel_dp *intel_dp)
  1318. {
  1319. if (!intel_dp->base.base.crtc)
  1320. return;
  1321. if (!intel_dp_get_link_status(intel_dp)) {
  1322. intel_dp_link_down(intel_dp);
  1323. return;
  1324. }
  1325. if (!intel_channel_eq_ok(intel_dp)) {
  1326. intel_dp_start_link_train(intel_dp);
  1327. intel_dp_complete_link_train(intel_dp);
  1328. }
  1329. }
  1330. static enum drm_connector_status
  1331. ironlake_dp_detect(struct intel_dp *intel_dp)
  1332. {
  1333. enum drm_connector_status status;
  1334. /* Can't disconnect eDP, but you can close the lid... */
  1335. if (is_edp(intel_dp)) {
  1336. status = intel_panel_detect(intel_dp->base.base.dev);
  1337. if (status == connector_status_unknown)
  1338. status = connector_status_connected;
  1339. return status;
  1340. }
  1341. status = connector_status_disconnected;
  1342. if (intel_dp_aux_native_read(intel_dp,
  1343. 0x000, intel_dp->dpcd,
  1344. sizeof (intel_dp->dpcd))
  1345. == sizeof(intel_dp->dpcd)) {
  1346. if (intel_dp->dpcd[0] != 0)
  1347. status = connector_status_connected;
  1348. }
  1349. DRM_DEBUG_KMS("DPCD: %hx%hx%hx%hx\n", intel_dp->dpcd[0],
  1350. intel_dp->dpcd[1], intel_dp->dpcd[2], intel_dp->dpcd[3]);
  1351. return status;
  1352. }
  1353. static enum drm_connector_status
  1354. g4x_dp_detect(struct intel_dp *intel_dp)
  1355. {
  1356. struct drm_device *dev = intel_dp->base.base.dev;
  1357. struct drm_i915_private *dev_priv = dev->dev_private;
  1358. enum drm_connector_status status;
  1359. uint32_t temp, bit;
  1360. switch (intel_dp->output_reg) {
  1361. case DP_B:
  1362. bit = DPB_HOTPLUG_INT_STATUS;
  1363. break;
  1364. case DP_C:
  1365. bit = DPC_HOTPLUG_INT_STATUS;
  1366. break;
  1367. case DP_D:
  1368. bit = DPD_HOTPLUG_INT_STATUS;
  1369. break;
  1370. default:
  1371. return connector_status_unknown;
  1372. }
  1373. temp = I915_READ(PORT_HOTPLUG_STAT);
  1374. if ((temp & bit) == 0)
  1375. return connector_status_disconnected;
  1376. status = connector_status_disconnected;
  1377. if (intel_dp_aux_native_read(intel_dp, 0x000, intel_dp->dpcd,
  1378. sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
  1379. {
  1380. if (intel_dp->dpcd[0] != 0)
  1381. status = connector_status_connected;
  1382. }
  1383. return status;
  1384. }
  1385. /**
  1386. * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
  1387. *
  1388. * \return true if DP port is connected.
  1389. * \return false if DP port is disconnected.
  1390. */
  1391. static enum drm_connector_status
  1392. intel_dp_detect(struct drm_connector *connector, bool force)
  1393. {
  1394. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1395. struct drm_device *dev = intel_dp->base.base.dev;
  1396. enum drm_connector_status status;
  1397. struct edid *edid = NULL;
  1398. intel_dp->has_audio = false;
  1399. if (HAS_PCH_SPLIT(dev))
  1400. status = ironlake_dp_detect(intel_dp);
  1401. else
  1402. status = g4x_dp_detect(intel_dp);
  1403. if (status != connector_status_connected)
  1404. return status;
  1405. if (intel_dp->force_audio) {
  1406. intel_dp->has_audio = intel_dp->force_audio > 0;
  1407. } else {
  1408. edid = drm_get_edid(connector, &intel_dp->adapter);
  1409. if (edid) {
  1410. intel_dp->has_audio = drm_detect_monitor_audio(edid);
  1411. connector->display_info.raw_edid = NULL;
  1412. kfree(edid);
  1413. }
  1414. }
  1415. return connector_status_connected;
  1416. }
  1417. static int intel_dp_get_modes(struct drm_connector *connector)
  1418. {
  1419. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1420. struct drm_device *dev = intel_dp->base.base.dev;
  1421. struct drm_i915_private *dev_priv = dev->dev_private;
  1422. int ret;
  1423. /* We should parse the EDID data and find out if it has an audio sink
  1424. */
  1425. ret = intel_ddc_get_modes(connector, &intel_dp->adapter);
  1426. if (ret) {
  1427. if (is_edp(intel_dp) && !dev_priv->panel_fixed_mode) {
  1428. struct drm_display_mode *newmode;
  1429. list_for_each_entry(newmode, &connector->probed_modes,
  1430. head) {
  1431. if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
  1432. dev_priv->panel_fixed_mode =
  1433. drm_mode_duplicate(dev, newmode);
  1434. break;
  1435. }
  1436. }
  1437. }
  1438. return ret;
  1439. }
  1440. /* if eDP has no EDID, try to use fixed panel mode from VBT */
  1441. if (is_edp(intel_dp)) {
  1442. if (dev_priv->panel_fixed_mode != NULL) {
  1443. struct drm_display_mode *mode;
  1444. mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
  1445. drm_mode_probed_add(connector, mode);
  1446. return 1;
  1447. }
  1448. }
  1449. return 0;
  1450. }
  1451. static bool
  1452. intel_dp_detect_audio(struct drm_connector *connector)
  1453. {
  1454. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1455. struct edid *edid;
  1456. bool has_audio = false;
  1457. edid = drm_get_edid(connector, &intel_dp->adapter);
  1458. if (edid) {
  1459. has_audio = drm_detect_monitor_audio(edid);
  1460. connector->display_info.raw_edid = NULL;
  1461. kfree(edid);
  1462. }
  1463. return has_audio;
  1464. }
  1465. static int
  1466. intel_dp_set_property(struct drm_connector *connector,
  1467. struct drm_property *property,
  1468. uint64_t val)
  1469. {
  1470. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  1471. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1472. int ret;
  1473. ret = drm_connector_property_set_value(connector, property, val);
  1474. if (ret)
  1475. return ret;
  1476. if (property == dev_priv->force_audio_property) {
  1477. int i = val;
  1478. bool has_audio;
  1479. if (i == intel_dp->force_audio)
  1480. return 0;
  1481. intel_dp->force_audio = i;
  1482. if (i == 0)
  1483. has_audio = intel_dp_detect_audio(connector);
  1484. else
  1485. has_audio = i > 0;
  1486. if (has_audio == intel_dp->has_audio)
  1487. return 0;
  1488. intel_dp->has_audio = has_audio;
  1489. goto done;
  1490. }
  1491. if (property == dev_priv->broadcast_rgb_property) {
  1492. if (val == !!intel_dp->color_range)
  1493. return 0;
  1494. intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
  1495. goto done;
  1496. }
  1497. return -EINVAL;
  1498. done:
  1499. if (intel_dp->base.base.crtc) {
  1500. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  1501. drm_crtc_helper_set_mode(crtc, &crtc->mode,
  1502. crtc->x, crtc->y,
  1503. crtc->fb);
  1504. }
  1505. return 0;
  1506. }
  1507. static void
  1508. intel_dp_destroy (struct drm_connector *connector)
  1509. {
  1510. drm_sysfs_connector_remove(connector);
  1511. drm_connector_cleanup(connector);
  1512. kfree(connector);
  1513. }
  1514. static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
  1515. {
  1516. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1517. i2c_del_adapter(&intel_dp->adapter);
  1518. drm_encoder_cleanup(encoder);
  1519. kfree(intel_dp);
  1520. }
  1521. static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
  1522. .dpms = intel_dp_dpms,
  1523. .mode_fixup = intel_dp_mode_fixup,
  1524. .prepare = intel_dp_prepare,
  1525. .mode_set = intel_dp_mode_set,
  1526. .commit = intel_dp_commit,
  1527. };
  1528. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  1529. .dpms = drm_helper_connector_dpms,
  1530. .detect = intel_dp_detect,
  1531. .fill_modes = drm_helper_probe_single_connector_modes,
  1532. .set_property = intel_dp_set_property,
  1533. .destroy = intel_dp_destroy,
  1534. };
  1535. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  1536. .get_modes = intel_dp_get_modes,
  1537. .mode_valid = intel_dp_mode_valid,
  1538. .best_encoder = intel_best_encoder,
  1539. };
  1540. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  1541. .destroy = intel_dp_encoder_destroy,
  1542. };
  1543. static void
  1544. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  1545. {
  1546. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  1547. if (intel_dp->dpms_mode == DRM_MODE_DPMS_ON)
  1548. intel_dp_check_link_status(intel_dp);
  1549. }
  1550. /* Return which DP Port should be selected for Transcoder DP control */
  1551. int
  1552. intel_trans_dp_port_sel (struct drm_crtc *crtc)
  1553. {
  1554. struct drm_device *dev = crtc->dev;
  1555. struct drm_mode_config *mode_config = &dev->mode_config;
  1556. struct drm_encoder *encoder;
  1557. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  1558. struct intel_dp *intel_dp;
  1559. if (encoder->crtc != crtc)
  1560. continue;
  1561. intel_dp = enc_to_intel_dp(encoder);
  1562. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
  1563. return intel_dp->output_reg;
  1564. }
  1565. return -1;
  1566. }
  1567. /* check the VBT to see whether the eDP is on DP-D port */
  1568. bool intel_dpd_is_edp(struct drm_device *dev)
  1569. {
  1570. struct drm_i915_private *dev_priv = dev->dev_private;
  1571. struct child_device_config *p_child;
  1572. int i;
  1573. if (!dev_priv->child_dev_num)
  1574. return false;
  1575. for (i = 0; i < dev_priv->child_dev_num; i++) {
  1576. p_child = dev_priv->child_dev + i;
  1577. if (p_child->dvo_port == PORT_IDPD &&
  1578. p_child->device_type == DEVICE_TYPE_eDP)
  1579. return true;
  1580. }
  1581. return false;
  1582. }
  1583. static void
  1584. intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
  1585. {
  1586. intel_attach_force_audio_property(connector);
  1587. intel_attach_broadcast_rgb_property(connector);
  1588. }
  1589. void
  1590. intel_dp_init(struct drm_device *dev, int output_reg)
  1591. {
  1592. struct drm_i915_private *dev_priv = dev->dev_private;
  1593. struct drm_connector *connector;
  1594. struct intel_dp *intel_dp;
  1595. struct intel_encoder *intel_encoder;
  1596. struct intel_connector *intel_connector;
  1597. const char *name = NULL;
  1598. int type;
  1599. intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
  1600. if (!intel_dp)
  1601. return;
  1602. intel_dp->output_reg = output_reg;
  1603. intel_dp->dpms_mode = -1;
  1604. intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  1605. if (!intel_connector) {
  1606. kfree(intel_dp);
  1607. return;
  1608. }
  1609. intel_encoder = &intel_dp->base;
  1610. if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
  1611. if (intel_dpd_is_edp(dev))
  1612. intel_dp->is_pch_edp = true;
  1613. if (output_reg == DP_A || is_pch_edp(intel_dp)) {
  1614. type = DRM_MODE_CONNECTOR_eDP;
  1615. intel_encoder->type = INTEL_OUTPUT_EDP;
  1616. } else {
  1617. type = DRM_MODE_CONNECTOR_DisplayPort;
  1618. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  1619. }
  1620. connector = &intel_connector->base;
  1621. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  1622. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  1623. connector->polled = DRM_CONNECTOR_POLL_HPD;
  1624. if (output_reg == DP_B || output_reg == PCH_DP_B)
  1625. intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
  1626. else if (output_reg == DP_C || output_reg == PCH_DP_C)
  1627. intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
  1628. else if (output_reg == DP_D || output_reg == PCH_DP_D)
  1629. intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
  1630. if (is_edp(intel_dp))
  1631. intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
  1632. intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
  1633. connector->interlace_allowed = true;
  1634. connector->doublescan_allowed = 0;
  1635. drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
  1636. DRM_MODE_ENCODER_TMDS);
  1637. drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
  1638. intel_connector_attach_encoder(intel_connector, intel_encoder);
  1639. drm_sysfs_connector_add(connector);
  1640. /* Set up the DDC bus. */
  1641. switch (output_reg) {
  1642. case DP_A:
  1643. name = "DPDDC-A";
  1644. break;
  1645. case DP_B:
  1646. case PCH_DP_B:
  1647. dev_priv->hotplug_supported_mask |=
  1648. HDMIB_HOTPLUG_INT_STATUS;
  1649. name = "DPDDC-B";
  1650. break;
  1651. case DP_C:
  1652. case PCH_DP_C:
  1653. dev_priv->hotplug_supported_mask |=
  1654. HDMIC_HOTPLUG_INT_STATUS;
  1655. name = "DPDDC-C";
  1656. break;
  1657. case DP_D:
  1658. case PCH_DP_D:
  1659. dev_priv->hotplug_supported_mask |=
  1660. HDMID_HOTPLUG_INT_STATUS;
  1661. name = "DPDDC-D";
  1662. break;
  1663. }
  1664. intel_dp_i2c_init(intel_dp, intel_connector, name);
  1665. /* Cache some DPCD data in the eDP case */
  1666. if (is_edp(intel_dp)) {
  1667. int ret;
  1668. u32 pp_on, pp_div;
  1669. pp_on = I915_READ(PCH_PP_ON_DELAYS);
  1670. pp_div = I915_READ(PCH_PP_DIVISOR);
  1671. /* Get T3 & T12 values (note: VESA not bspec terminology) */
  1672. dev_priv->panel_t3 = (pp_on & 0x1fff0000) >> 16;
  1673. dev_priv->panel_t3 /= 10; /* t3 in 100us units */
  1674. dev_priv->panel_t12 = pp_div & 0xf;
  1675. dev_priv->panel_t12 *= 100; /* t12 in 100ms units */
  1676. ironlake_edp_panel_vdd_on(intel_dp);
  1677. ret = intel_dp_aux_native_read(intel_dp, DP_DPCD_REV,
  1678. intel_dp->dpcd,
  1679. sizeof(intel_dp->dpcd));
  1680. ironlake_edp_panel_vdd_off(intel_dp);
  1681. if (ret == sizeof(intel_dp->dpcd)) {
  1682. if (intel_dp->dpcd[0] >= 0x11)
  1683. dev_priv->no_aux_handshake = intel_dp->dpcd[3] &
  1684. DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
  1685. } else {
  1686. /* if this fails, presume the device is a ghost */
  1687. DRM_INFO("failed to retrieve link info, disabling eDP\n");
  1688. intel_dp_encoder_destroy(&intel_dp->base.base);
  1689. intel_dp_destroy(&intel_connector->base);
  1690. return;
  1691. }
  1692. }
  1693. intel_encoder->hot_plug = intel_dp_hot_plug;
  1694. if (is_edp(intel_dp)) {
  1695. /* initialize panel mode from VBT if available for eDP */
  1696. if (dev_priv->lfp_lvds_vbt_mode) {
  1697. dev_priv->panel_fixed_mode =
  1698. drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
  1699. if (dev_priv->panel_fixed_mode) {
  1700. dev_priv->panel_fixed_mode->type |=
  1701. DRM_MODE_TYPE_PREFERRED;
  1702. }
  1703. }
  1704. }
  1705. intel_dp_add_properties(intel_dp, connector);
  1706. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  1707. * 0xd. Failure to do so will result in spurious interrupts being
  1708. * generated on the port when a cable is not attached.
  1709. */
  1710. if (IS_G4X(dev) && !IS_GM45(dev)) {
  1711. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  1712. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  1713. }
  1714. }