pmbus_core.c 43 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799
  1. /*
  2. * Hardware monitoring driver for PMBus devices
  3. *
  4. * Copyright (c) 2010, 2011 Ericsson AB.
  5. * Copyright (c) 2012 Guenter Roeck
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  20. */
  21. #include <linux/kernel.h>
  22. #include <linux/module.h>
  23. #include <linux/init.h>
  24. #include <linux/err.h>
  25. #include <linux/slab.h>
  26. #include <linux/i2c.h>
  27. #include <linux/hwmon.h>
  28. #include <linux/hwmon-sysfs.h>
  29. #include <linux/jiffies.h>
  30. #include <linux/i2c/pmbus.h>
  31. #include "pmbus.h"
  32. /*
  33. * Number of additional attribute pointers to allocate
  34. * with each call to krealloc
  35. */
  36. #define PMBUS_ATTR_ALLOC_SIZE 32
  37. /*
  38. * Index into status register array, per status register group
  39. */
  40. #define PB_STATUS_BASE 0
  41. #define PB_STATUS_VOUT_BASE (PB_STATUS_BASE + PMBUS_PAGES)
  42. #define PB_STATUS_IOUT_BASE (PB_STATUS_VOUT_BASE + PMBUS_PAGES)
  43. #define PB_STATUS_FAN_BASE (PB_STATUS_IOUT_BASE + PMBUS_PAGES)
  44. #define PB_STATUS_FAN34_BASE (PB_STATUS_FAN_BASE + PMBUS_PAGES)
  45. #define PB_STATUS_TEMP_BASE (PB_STATUS_FAN34_BASE + PMBUS_PAGES)
  46. #define PB_STATUS_INPUT_BASE (PB_STATUS_TEMP_BASE + PMBUS_PAGES)
  47. #define PB_STATUS_VMON_BASE (PB_STATUS_INPUT_BASE + 1)
  48. #define PB_NUM_STATUS_REG (PB_STATUS_VMON_BASE + 1)
  49. #define PMBUS_NAME_SIZE 24
  50. struct pmbus_sensor {
  51. struct pmbus_sensor *next;
  52. char name[PMBUS_NAME_SIZE]; /* sysfs sensor name */
  53. struct device_attribute attribute;
  54. u8 page; /* page number */
  55. u16 reg; /* register */
  56. enum pmbus_sensor_classes class; /* sensor class */
  57. bool update; /* runtime sensor update needed */
  58. int data; /* Sensor data.
  59. Negative if there was a read error */
  60. };
  61. #define to_pmbus_sensor(_attr) \
  62. container_of(_attr, struct pmbus_sensor, attribute)
  63. struct pmbus_boolean {
  64. char name[PMBUS_NAME_SIZE]; /* sysfs boolean name */
  65. struct sensor_device_attribute attribute;
  66. struct pmbus_sensor *s1;
  67. struct pmbus_sensor *s2;
  68. };
  69. #define to_pmbus_boolean(_attr) \
  70. container_of(_attr, struct pmbus_boolean, attribute)
  71. struct pmbus_label {
  72. char name[PMBUS_NAME_SIZE]; /* sysfs label name */
  73. struct device_attribute attribute;
  74. char label[PMBUS_NAME_SIZE]; /* label */
  75. };
  76. #define to_pmbus_label(_attr) \
  77. container_of(_attr, struct pmbus_label, attribute)
  78. struct pmbus_data {
  79. struct device *dev;
  80. struct device *hwmon_dev;
  81. u32 flags; /* from platform data */
  82. int exponent; /* linear mode: exponent for output voltages */
  83. const struct pmbus_driver_info *info;
  84. int max_attributes;
  85. int num_attributes;
  86. struct attribute_group group;
  87. const struct attribute_group *groups[2];
  88. struct pmbus_sensor *sensors;
  89. struct mutex update_lock;
  90. bool valid;
  91. unsigned long last_updated; /* in jiffies */
  92. /*
  93. * A single status register covers multiple attributes,
  94. * so we keep them all together.
  95. */
  96. u8 status[PB_NUM_STATUS_REG];
  97. u8 status_register;
  98. u8 currpage;
  99. };
  100. void pmbus_clear_cache(struct i2c_client *client)
  101. {
  102. struct pmbus_data *data = i2c_get_clientdata(client);
  103. data->valid = false;
  104. }
  105. EXPORT_SYMBOL_GPL(pmbus_clear_cache);
  106. int pmbus_set_page(struct i2c_client *client, u8 page)
  107. {
  108. struct pmbus_data *data = i2c_get_clientdata(client);
  109. int rv = 0;
  110. int newpage;
  111. if (page != data->currpage) {
  112. rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
  113. newpage = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
  114. if (newpage != page)
  115. rv = -EIO;
  116. else
  117. data->currpage = page;
  118. }
  119. return rv;
  120. }
  121. EXPORT_SYMBOL_GPL(pmbus_set_page);
  122. int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
  123. {
  124. int rv;
  125. if (page >= 0) {
  126. rv = pmbus_set_page(client, page);
  127. if (rv < 0)
  128. return rv;
  129. }
  130. return i2c_smbus_write_byte(client, value);
  131. }
  132. EXPORT_SYMBOL_GPL(pmbus_write_byte);
  133. /*
  134. * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
  135. * a device specific mapping function exists and calls it if necessary.
  136. */
  137. static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
  138. {
  139. struct pmbus_data *data = i2c_get_clientdata(client);
  140. const struct pmbus_driver_info *info = data->info;
  141. int status;
  142. if (info->write_byte) {
  143. status = info->write_byte(client, page, value);
  144. if (status != -ENODATA)
  145. return status;
  146. }
  147. return pmbus_write_byte(client, page, value);
  148. }
  149. int pmbus_write_word_data(struct i2c_client *client, u8 page, u8 reg, u16 word)
  150. {
  151. int rv;
  152. rv = pmbus_set_page(client, page);
  153. if (rv < 0)
  154. return rv;
  155. return i2c_smbus_write_word_data(client, reg, word);
  156. }
  157. EXPORT_SYMBOL_GPL(pmbus_write_word_data);
  158. /*
  159. * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
  160. * a device specific mapping function exists and calls it if necessary.
  161. */
  162. static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
  163. u16 word)
  164. {
  165. struct pmbus_data *data = i2c_get_clientdata(client);
  166. const struct pmbus_driver_info *info = data->info;
  167. int status;
  168. if (info->write_word_data) {
  169. status = info->write_word_data(client, page, reg, word);
  170. if (status != -ENODATA)
  171. return status;
  172. }
  173. if (reg >= PMBUS_VIRT_BASE)
  174. return -ENXIO;
  175. return pmbus_write_word_data(client, page, reg, word);
  176. }
  177. int pmbus_read_word_data(struct i2c_client *client, u8 page, u8 reg)
  178. {
  179. int rv;
  180. rv = pmbus_set_page(client, page);
  181. if (rv < 0)
  182. return rv;
  183. return i2c_smbus_read_word_data(client, reg);
  184. }
  185. EXPORT_SYMBOL_GPL(pmbus_read_word_data);
  186. /*
  187. * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
  188. * a device specific mapping function exists and calls it if necessary.
  189. */
  190. static int _pmbus_read_word_data(struct i2c_client *client, int page, int reg)
  191. {
  192. struct pmbus_data *data = i2c_get_clientdata(client);
  193. const struct pmbus_driver_info *info = data->info;
  194. int status;
  195. if (info->read_word_data) {
  196. status = info->read_word_data(client, page, reg);
  197. if (status != -ENODATA)
  198. return status;
  199. }
  200. if (reg >= PMBUS_VIRT_BASE)
  201. return -ENXIO;
  202. return pmbus_read_word_data(client, page, reg);
  203. }
  204. int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
  205. {
  206. int rv;
  207. if (page >= 0) {
  208. rv = pmbus_set_page(client, page);
  209. if (rv < 0)
  210. return rv;
  211. }
  212. return i2c_smbus_read_byte_data(client, reg);
  213. }
  214. EXPORT_SYMBOL_GPL(pmbus_read_byte_data);
  215. /*
  216. * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
  217. * a device specific mapping function exists and calls it if necessary.
  218. */
  219. static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
  220. {
  221. struct pmbus_data *data = i2c_get_clientdata(client);
  222. const struct pmbus_driver_info *info = data->info;
  223. int status;
  224. if (info->read_byte_data) {
  225. status = info->read_byte_data(client, page, reg);
  226. if (status != -ENODATA)
  227. return status;
  228. }
  229. return pmbus_read_byte_data(client, page, reg);
  230. }
  231. static void pmbus_clear_fault_page(struct i2c_client *client, int page)
  232. {
  233. _pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
  234. }
  235. void pmbus_clear_faults(struct i2c_client *client)
  236. {
  237. struct pmbus_data *data = i2c_get_clientdata(client);
  238. int i;
  239. for (i = 0; i < data->info->pages; i++)
  240. pmbus_clear_fault_page(client, i);
  241. }
  242. EXPORT_SYMBOL_GPL(pmbus_clear_faults);
  243. static int pmbus_check_status_cml(struct i2c_client *client)
  244. {
  245. struct pmbus_data *data = i2c_get_clientdata(client);
  246. int status, status2;
  247. status = _pmbus_read_byte_data(client, -1, data->status_register);
  248. if (status < 0 || (status & PB_STATUS_CML)) {
  249. status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
  250. if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
  251. return -EIO;
  252. }
  253. return 0;
  254. }
  255. static bool pmbus_check_register(struct i2c_client *client,
  256. int (*func)(struct i2c_client *client,
  257. int page, int reg),
  258. int page, int reg)
  259. {
  260. int rv;
  261. struct pmbus_data *data = i2c_get_clientdata(client);
  262. rv = func(client, page, reg);
  263. if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
  264. rv = pmbus_check_status_cml(client);
  265. pmbus_clear_fault_page(client, -1);
  266. return rv >= 0;
  267. }
  268. bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
  269. {
  270. return pmbus_check_register(client, _pmbus_read_byte_data, page, reg);
  271. }
  272. EXPORT_SYMBOL_GPL(pmbus_check_byte_register);
  273. bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
  274. {
  275. return pmbus_check_register(client, _pmbus_read_word_data, page, reg);
  276. }
  277. EXPORT_SYMBOL_GPL(pmbus_check_word_register);
  278. const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
  279. {
  280. struct pmbus_data *data = i2c_get_clientdata(client);
  281. return data->info;
  282. }
  283. EXPORT_SYMBOL_GPL(pmbus_get_driver_info);
  284. static struct _pmbus_status {
  285. u32 func;
  286. u16 base;
  287. u16 reg;
  288. } pmbus_status[] = {
  289. { PMBUS_HAVE_STATUS_VOUT, PB_STATUS_VOUT_BASE, PMBUS_STATUS_VOUT },
  290. { PMBUS_HAVE_STATUS_IOUT, PB_STATUS_IOUT_BASE, PMBUS_STATUS_IOUT },
  291. { PMBUS_HAVE_STATUS_TEMP, PB_STATUS_TEMP_BASE,
  292. PMBUS_STATUS_TEMPERATURE },
  293. { PMBUS_HAVE_STATUS_FAN12, PB_STATUS_FAN_BASE, PMBUS_STATUS_FAN_12 },
  294. { PMBUS_HAVE_STATUS_FAN34, PB_STATUS_FAN34_BASE, PMBUS_STATUS_FAN_34 },
  295. };
  296. static struct pmbus_data *pmbus_update_device(struct device *dev)
  297. {
  298. struct i2c_client *client = to_i2c_client(dev->parent);
  299. struct pmbus_data *data = i2c_get_clientdata(client);
  300. const struct pmbus_driver_info *info = data->info;
  301. struct pmbus_sensor *sensor;
  302. mutex_lock(&data->update_lock);
  303. if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
  304. int i, j;
  305. for (i = 0; i < info->pages; i++) {
  306. data->status[PB_STATUS_BASE + i]
  307. = _pmbus_read_byte_data(client, i,
  308. data->status_register);
  309. for (j = 0; j < ARRAY_SIZE(pmbus_status); j++) {
  310. struct _pmbus_status *s = &pmbus_status[j];
  311. if (!(info->func[i] & s->func))
  312. continue;
  313. data->status[s->base + i]
  314. = _pmbus_read_byte_data(client, i,
  315. s->reg);
  316. }
  317. }
  318. if (info->func[0] & PMBUS_HAVE_STATUS_INPUT)
  319. data->status[PB_STATUS_INPUT_BASE]
  320. = _pmbus_read_byte_data(client, 0,
  321. PMBUS_STATUS_INPUT);
  322. if (info->func[0] & PMBUS_HAVE_STATUS_VMON)
  323. data->status[PB_STATUS_VMON_BASE]
  324. = _pmbus_read_byte_data(client, 0,
  325. PMBUS_VIRT_STATUS_VMON);
  326. for (sensor = data->sensors; sensor; sensor = sensor->next) {
  327. if (!data->valid || sensor->update)
  328. sensor->data
  329. = _pmbus_read_word_data(client,
  330. sensor->page,
  331. sensor->reg);
  332. }
  333. pmbus_clear_faults(client);
  334. data->last_updated = jiffies;
  335. data->valid = 1;
  336. }
  337. mutex_unlock(&data->update_lock);
  338. return data;
  339. }
  340. /*
  341. * Convert linear sensor values to milli- or micro-units
  342. * depending on sensor type.
  343. */
  344. static long pmbus_reg2data_linear(struct pmbus_data *data,
  345. struct pmbus_sensor *sensor)
  346. {
  347. s16 exponent;
  348. s32 mantissa;
  349. long val;
  350. if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 */
  351. exponent = data->exponent;
  352. mantissa = (u16) sensor->data;
  353. } else { /* LINEAR11 */
  354. exponent = ((s16)sensor->data) >> 11;
  355. mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5;
  356. }
  357. val = mantissa;
  358. /* scale result to milli-units for all sensors except fans */
  359. if (sensor->class != PSC_FAN)
  360. val = val * 1000L;
  361. /* scale result to micro-units for power sensors */
  362. if (sensor->class == PSC_POWER)
  363. val = val * 1000L;
  364. if (exponent >= 0)
  365. val <<= exponent;
  366. else
  367. val >>= -exponent;
  368. return val;
  369. }
  370. /*
  371. * Convert direct sensor values to milli- or micro-units
  372. * depending on sensor type.
  373. */
  374. static long pmbus_reg2data_direct(struct pmbus_data *data,
  375. struct pmbus_sensor *sensor)
  376. {
  377. long val = (s16) sensor->data;
  378. long m, b, R;
  379. m = data->info->m[sensor->class];
  380. b = data->info->b[sensor->class];
  381. R = data->info->R[sensor->class];
  382. if (m == 0)
  383. return 0;
  384. /* X = 1/m * (Y * 10^-R - b) */
  385. R = -R;
  386. /* scale result to milli-units for everything but fans */
  387. if (sensor->class != PSC_FAN) {
  388. R += 3;
  389. b *= 1000;
  390. }
  391. /* scale result to micro-units for power sensors */
  392. if (sensor->class == PSC_POWER) {
  393. R += 3;
  394. b *= 1000;
  395. }
  396. while (R > 0) {
  397. val *= 10;
  398. R--;
  399. }
  400. while (R < 0) {
  401. val = DIV_ROUND_CLOSEST(val, 10);
  402. R++;
  403. }
  404. return (val - b) / m;
  405. }
  406. /*
  407. * Convert VID sensor values to milli- or micro-units
  408. * depending on sensor type.
  409. * We currently only support VR11.
  410. */
  411. static long pmbus_reg2data_vid(struct pmbus_data *data,
  412. struct pmbus_sensor *sensor)
  413. {
  414. long val = sensor->data;
  415. if (val < 0x02 || val > 0xb2)
  416. return 0;
  417. return DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
  418. }
  419. static long pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
  420. {
  421. long val;
  422. switch (data->info->format[sensor->class]) {
  423. case direct:
  424. val = pmbus_reg2data_direct(data, sensor);
  425. break;
  426. case vid:
  427. val = pmbus_reg2data_vid(data, sensor);
  428. break;
  429. case linear:
  430. default:
  431. val = pmbus_reg2data_linear(data, sensor);
  432. break;
  433. }
  434. return val;
  435. }
  436. #define MAX_MANTISSA (1023 * 1000)
  437. #define MIN_MANTISSA (511 * 1000)
  438. static u16 pmbus_data2reg_linear(struct pmbus_data *data,
  439. enum pmbus_sensor_classes class, long val)
  440. {
  441. s16 exponent = 0, mantissa;
  442. bool negative = false;
  443. /* simple case */
  444. if (val == 0)
  445. return 0;
  446. if (class == PSC_VOLTAGE_OUT) {
  447. /* LINEAR16 does not support negative voltages */
  448. if (val < 0)
  449. return 0;
  450. /*
  451. * For a static exponents, we don't have a choice
  452. * but to adjust the value to it.
  453. */
  454. if (data->exponent < 0)
  455. val <<= -data->exponent;
  456. else
  457. val >>= data->exponent;
  458. val = DIV_ROUND_CLOSEST(val, 1000);
  459. return val & 0xffff;
  460. }
  461. if (val < 0) {
  462. negative = true;
  463. val = -val;
  464. }
  465. /* Power is in uW. Convert to mW before converting. */
  466. if (class == PSC_POWER)
  467. val = DIV_ROUND_CLOSEST(val, 1000L);
  468. /*
  469. * For simplicity, convert fan data to milli-units
  470. * before calculating the exponent.
  471. */
  472. if (class == PSC_FAN)
  473. val = val * 1000;
  474. /* Reduce large mantissa until it fits into 10 bit */
  475. while (val >= MAX_MANTISSA && exponent < 15) {
  476. exponent++;
  477. val >>= 1;
  478. }
  479. /* Increase small mantissa to improve precision */
  480. while (val < MIN_MANTISSA && exponent > -15) {
  481. exponent--;
  482. val <<= 1;
  483. }
  484. /* Convert mantissa from milli-units to units */
  485. mantissa = DIV_ROUND_CLOSEST(val, 1000);
  486. /* Ensure that resulting number is within range */
  487. if (mantissa > 0x3ff)
  488. mantissa = 0x3ff;
  489. /* restore sign */
  490. if (negative)
  491. mantissa = -mantissa;
  492. /* Convert to 5 bit exponent, 11 bit mantissa */
  493. return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
  494. }
  495. static u16 pmbus_data2reg_direct(struct pmbus_data *data,
  496. enum pmbus_sensor_classes class, long val)
  497. {
  498. long m, b, R;
  499. m = data->info->m[class];
  500. b = data->info->b[class];
  501. R = data->info->R[class];
  502. /* Power is in uW. Adjust R and b. */
  503. if (class == PSC_POWER) {
  504. R -= 3;
  505. b *= 1000;
  506. }
  507. /* Calculate Y = (m * X + b) * 10^R */
  508. if (class != PSC_FAN) {
  509. R -= 3; /* Adjust R and b for data in milli-units */
  510. b *= 1000;
  511. }
  512. val = val * m + b;
  513. while (R > 0) {
  514. val *= 10;
  515. R--;
  516. }
  517. while (R < 0) {
  518. val = DIV_ROUND_CLOSEST(val, 10);
  519. R++;
  520. }
  521. return val;
  522. }
  523. static u16 pmbus_data2reg_vid(struct pmbus_data *data,
  524. enum pmbus_sensor_classes class, long val)
  525. {
  526. val = clamp_val(val, 500, 1600);
  527. return 2 + DIV_ROUND_CLOSEST((1600 - val) * 100, 625);
  528. }
  529. static u16 pmbus_data2reg(struct pmbus_data *data,
  530. enum pmbus_sensor_classes class, long val)
  531. {
  532. u16 regval;
  533. switch (data->info->format[class]) {
  534. case direct:
  535. regval = pmbus_data2reg_direct(data, class, val);
  536. break;
  537. case vid:
  538. regval = pmbus_data2reg_vid(data, class, val);
  539. break;
  540. case linear:
  541. default:
  542. regval = pmbus_data2reg_linear(data, class, val);
  543. break;
  544. }
  545. return regval;
  546. }
  547. /*
  548. * Return boolean calculated from converted data.
  549. * <index> defines a status register index and mask.
  550. * The mask is in the lower 8 bits, the register index is in bits 8..23.
  551. *
  552. * The associated pmbus_boolean structure contains optional pointers to two
  553. * sensor attributes. If specified, those attributes are compared against each
  554. * other to determine if a limit has been exceeded.
  555. *
  556. * If the sensor attribute pointers are NULL, the function returns true if
  557. * (status[reg] & mask) is true.
  558. *
  559. * If sensor attribute pointers are provided, a comparison against a specified
  560. * limit has to be performed to determine the boolean result.
  561. * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
  562. * sensor values referenced by sensor attribute pointers s1 and s2).
  563. *
  564. * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
  565. * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
  566. *
  567. * If a negative value is stored in any of the referenced registers, this value
  568. * reflects an error code which will be returned.
  569. */
  570. static int pmbus_get_boolean(struct pmbus_data *data, struct pmbus_boolean *b,
  571. int index)
  572. {
  573. struct pmbus_sensor *s1 = b->s1;
  574. struct pmbus_sensor *s2 = b->s2;
  575. u16 reg = (index >> 8) & 0xffff;
  576. u8 mask = index & 0xff;
  577. int ret, status;
  578. u8 regval;
  579. status = data->status[reg];
  580. if (status < 0)
  581. return status;
  582. regval = status & mask;
  583. if (!s1 && !s2) {
  584. ret = !!regval;
  585. } else if (!s1 || !s2) {
  586. WARN(1, "Bad boolean descriptor %p: s1=%p, s2=%p\n", b, s1, s2);
  587. return 0;
  588. } else {
  589. long v1, v2;
  590. if (s1->data < 0)
  591. return s1->data;
  592. if (s2->data < 0)
  593. return s2->data;
  594. v1 = pmbus_reg2data(data, s1);
  595. v2 = pmbus_reg2data(data, s2);
  596. ret = !!(regval && v1 >= v2);
  597. }
  598. return ret;
  599. }
  600. static ssize_t pmbus_show_boolean(struct device *dev,
  601. struct device_attribute *da, char *buf)
  602. {
  603. struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
  604. struct pmbus_boolean *boolean = to_pmbus_boolean(attr);
  605. struct pmbus_data *data = pmbus_update_device(dev);
  606. int val;
  607. val = pmbus_get_boolean(data, boolean, attr->index);
  608. if (val < 0)
  609. return val;
  610. return snprintf(buf, PAGE_SIZE, "%d\n", val);
  611. }
  612. static ssize_t pmbus_show_sensor(struct device *dev,
  613. struct device_attribute *devattr, char *buf)
  614. {
  615. struct pmbus_data *data = pmbus_update_device(dev);
  616. struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
  617. if (sensor->data < 0)
  618. return sensor->data;
  619. return snprintf(buf, PAGE_SIZE, "%ld\n", pmbus_reg2data(data, sensor));
  620. }
  621. static ssize_t pmbus_set_sensor(struct device *dev,
  622. struct device_attribute *devattr,
  623. const char *buf, size_t count)
  624. {
  625. struct i2c_client *client = to_i2c_client(dev->parent);
  626. struct pmbus_data *data = i2c_get_clientdata(client);
  627. struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
  628. ssize_t rv = count;
  629. long val = 0;
  630. int ret;
  631. u16 regval;
  632. if (kstrtol(buf, 10, &val) < 0)
  633. return -EINVAL;
  634. mutex_lock(&data->update_lock);
  635. regval = pmbus_data2reg(data, sensor->class, val);
  636. ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
  637. if (ret < 0)
  638. rv = ret;
  639. else
  640. sensor->data = regval;
  641. mutex_unlock(&data->update_lock);
  642. return rv;
  643. }
  644. static ssize_t pmbus_show_label(struct device *dev,
  645. struct device_attribute *da, char *buf)
  646. {
  647. struct pmbus_label *label = to_pmbus_label(da);
  648. return snprintf(buf, PAGE_SIZE, "%s\n", label->label);
  649. }
  650. static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr)
  651. {
  652. if (data->num_attributes >= data->max_attributes - 1) {
  653. int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE;
  654. void *new_attrs = krealloc(data->group.attrs,
  655. new_max_attrs * sizeof(void *),
  656. GFP_KERNEL);
  657. if (!new_attrs)
  658. return -ENOMEM;
  659. data->group.attrs = new_attrs;
  660. data->max_attributes = new_max_attrs;
  661. }
  662. data->group.attrs[data->num_attributes++] = attr;
  663. data->group.attrs[data->num_attributes] = NULL;
  664. return 0;
  665. }
  666. static void pmbus_dev_attr_init(struct device_attribute *dev_attr,
  667. const char *name,
  668. umode_t mode,
  669. ssize_t (*show)(struct device *dev,
  670. struct device_attribute *attr,
  671. char *buf),
  672. ssize_t (*store)(struct device *dev,
  673. struct device_attribute *attr,
  674. const char *buf, size_t count))
  675. {
  676. sysfs_attr_init(&dev_attr->attr);
  677. dev_attr->attr.name = name;
  678. dev_attr->attr.mode = mode;
  679. dev_attr->show = show;
  680. dev_attr->store = store;
  681. }
  682. static void pmbus_attr_init(struct sensor_device_attribute *a,
  683. const char *name,
  684. umode_t mode,
  685. ssize_t (*show)(struct device *dev,
  686. struct device_attribute *attr,
  687. char *buf),
  688. ssize_t (*store)(struct device *dev,
  689. struct device_attribute *attr,
  690. const char *buf, size_t count),
  691. int idx)
  692. {
  693. pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store);
  694. a->index = idx;
  695. }
  696. static int pmbus_add_boolean(struct pmbus_data *data,
  697. const char *name, const char *type, int seq,
  698. struct pmbus_sensor *s1,
  699. struct pmbus_sensor *s2,
  700. u16 reg, u8 mask)
  701. {
  702. struct pmbus_boolean *boolean;
  703. struct sensor_device_attribute *a;
  704. boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL);
  705. if (!boolean)
  706. return -ENOMEM;
  707. a = &boolean->attribute;
  708. snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
  709. name, seq, type);
  710. boolean->s1 = s1;
  711. boolean->s2 = s2;
  712. pmbus_attr_init(a, boolean->name, S_IRUGO, pmbus_show_boolean, NULL,
  713. (reg << 8) | mask);
  714. return pmbus_add_attribute(data, &a->dev_attr.attr);
  715. }
  716. static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data,
  717. const char *name, const char *type,
  718. int seq, int page, int reg,
  719. enum pmbus_sensor_classes class,
  720. bool update, bool readonly)
  721. {
  722. struct pmbus_sensor *sensor;
  723. struct device_attribute *a;
  724. sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL);
  725. if (!sensor)
  726. return NULL;
  727. a = &sensor->attribute;
  728. snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
  729. name, seq, type);
  730. sensor->page = page;
  731. sensor->reg = reg;
  732. sensor->class = class;
  733. sensor->update = update;
  734. pmbus_dev_attr_init(a, sensor->name,
  735. readonly ? S_IRUGO : S_IRUGO | S_IWUSR,
  736. pmbus_show_sensor, pmbus_set_sensor);
  737. if (pmbus_add_attribute(data, &a->attr))
  738. return NULL;
  739. sensor->next = data->sensors;
  740. data->sensors = sensor;
  741. return sensor;
  742. }
  743. static int pmbus_add_label(struct pmbus_data *data,
  744. const char *name, int seq,
  745. const char *lstring, int index)
  746. {
  747. struct pmbus_label *label;
  748. struct device_attribute *a;
  749. label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL);
  750. if (!label)
  751. return -ENOMEM;
  752. a = &label->attribute;
  753. snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
  754. if (!index)
  755. strncpy(label->label, lstring, sizeof(label->label) - 1);
  756. else
  757. snprintf(label->label, sizeof(label->label), "%s%d", lstring,
  758. index);
  759. pmbus_dev_attr_init(a, label->name, S_IRUGO, pmbus_show_label, NULL);
  760. return pmbus_add_attribute(data, &a->attr);
  761. }
  762. /*
  763. * Search for attributes. Allocate sensors, booleans, and labels as needed.
  764. */
  765. /*
  766. * The pmbus_limit_attr structure describes a single limit attribute
  767. * and its associated alarm attribute.
  768. */
  769. struct pmbus_limit_attr {
  770. u16 reg; /* Limit register */
  771. u16 sbit; /* Alarm attribute status bit */
  772. bool update; /* True if register needs updates */
  773. bool low; /* True if low limit; for limits with compare
  774. functions only */
  775. const char *attr; /* Attribute name */
  776. const char *alarm; /* Alarm attribute name */
  777. };
  778. /*
  779. * The pmbus_sensor_attr structure describes one sensor attribute. This
  780. * description includes a reference to the associated limit attributes.
  781. */
  782. struct pmbus_sensor_attr {
  783. u16 reg; /* sensor register */
  784. u8 gbit; /* generic status bit */
  785. u8 nlimit; /* # of limit registers */
  786. enum pmbus_sensor_classes class;/* sensor class */
  787. const char *label; /* sensor label */
  788. bool paged; /* true if paged sensor */
  789. bool update; /* true if update needed */
  790. bool compare; /* true if compare function needed */
  791. u32 func; /* sensor mask */
  792. u32 sfunc; /* sensor status mask */
  793. int sbase; /* status base register */
  794. const struct pmbus_limit_attr *limit;/* limit registers */
  795. };
  796. /*
  797. * Add a set of limit attributes and, if supported, the associated
  798. * alarm attributes.
  799. * returns 0 if no alarm register found, 1 if an alarm register was found,
  800. * < 0 on errors.
  801. */
  802. static int pmbus_add_limit_attrs(struct i2c_client *client,
  803. struct pmbus_data *data,
  804. const struct pmbus_driver_info *info,
  805. const char *name, int index, int page,
  806. struct pmbus_sensor *base,
  807. const struct pmbus_sensor_attr *attr)
  808. {
  809. const struct pmbus_limit_attr *l = attr->limit;
  810. int nlimit = attr->nlimit;
  811. int have_alarm = 0;
  812. int i, ret;
  813. struct pmbus_sensor *curr;
  814. for (i = 0; i < nlimit; i++) {
  815. if (pmbus_check_word_register(client, page, l->reg)) {
  816. curr = pmbus_add_sensor(data, name, l->attr, index,
  817. page, l->reg, attr->class,
  818. attr->update || l->update,
  819. false);
  820. if (!curr)
  821. return -ENOMEM;
  822. if (l->sbit && (info->func[page] & attr->sfunc)) {
  823. ret = pmbus_add_boolean(data, name,
  824. l->alarm, index,
  825. attr->compare ? l->low ? curr : base
  826. : NULL,
  827. attr->compare ? l->low ? base : curr
  828. : NULL,
  829. attr->sbase + page, l->sbit);
  830. if (ret)
  831. return ret;
  832. have_alarm = 1;
  833. }
  834. }
  835. l++;
  836. }
  837. return have_alarm;
  838. }
  839. static int pmbus_add_sensor_attrs_one(struct i2c_client *client,
  840. struct pmbus_data *data,
  841. const struct pmbus_driver_info *info,
  842. const char *name,
  843. int index, int page,
  844. const struct pmbus_sensor_attr *attr)
  845. {
  846. struct pmbus_sensor *base;
  847. int ret;
  848. if (attr->label) {
  849. ret = pmbus_add_label(data, name, index, attr->label,
  850. attr->paged ? page + 1 : 0);
  851. if (ret)
  852. return ret;
  853. }
  854. base = pmbus_add_sensor(data, name, "input", index, page, attr->reg,
  855. attr->class, true, true);
  856. if (!base)
  857. return -ENOMEM;
  858. if (attr->sfunc) {
  859. ret = pmbus_add_limit_attrs(client, data, info, name,
  860. index, page, base, attr);
  861. if (ret < 0)
  862. return ret;
  863. /*
  864. * Add generic alarm attribute only if there are no individual
  865. * alarm attributes, if there is a global alarm bit, and if
  866. * the generic status register for this page is accessible.
  867. */
  868. if (!ret && attr->gbit &&
  869. pmbus_check_byte_register(client, page,
  870. data->status_register)) {
  871. ret = pmbus_add_boolean(data, name, "alarm", index,
  872. NULL, NULL,
  873. PB_STATUS_BASE + page,
  874. attr->gbit);
  875. if (ret)
  876. return ret;
  877. }
  878. }
  879. return 0;
  880. }
  881. static int pmbus_add_sensor_attrs(struct i2c_client *client,
  882. struct pmbus_data *data,
  883. const char *name,
  884. const struct pmbus_sensor_attr *attrs,
  885. int nattrs)
  886. {
  887. const struct pmbus_driver_info *info = data->info;
  888. int index, i;
  889. int ret;
  890. index = 1;
  891. for (i = 0; i < nattrs; i++) {
  892. int page, pages;
  893. pages = attrs->paged ? info->pages : 1;
  894. for (page = 0; page < pages; page++) {
  895. if (!(info->func[page] & attrs->func))
  896. continue;
  897. ret = pmbus_add_sensor_attrs_one(client, data, info,
  898. name, index, page,
  899. attrs);
  900. if (ret)
  901. return ret;
  902. index++;
  903. }
  904. attrs++;
  905. }
  906. return 0;
  907. }
  908. static const struct pmbus_limit_attr vin_limit_attrs[] = {
  909. {
  910. .reg = PMBUS_VIN_UV_WARN_LIMIT,
  911. .attr = "min",
  912. .alarm = "min_alarm",
  913. .sbit = PB_VOLTAGE_UV_WARNING,
  914. }, {
  915. .reg = PMBUS_VIN_UV_FAULT_LIMIT,
  916. .attr = "lcrit",
  917. .alarm = "lcrit_alarm",
  918. .sbit = PB_VOLTAGE_UV_FAULT,
  919. }, {
  920. .reg = PMBUS_VIN_OV_WARN_LIMIT,
  921. .attr = "max",
  922. .alarm = "max_alarm",
  923. .sbit = PB_VOLTAGE_OV_WARNING,
  924. }, {
  925. .reg = PMBUS_VIN_OV_FAULT_LIMIT,
  926. .attr = "crit",
  927. .alarm = "crit_alarm",
  928. .sbit = PB_VOLTAGE_OV_FAULT,
  929. }, {
  930. .reg = PMBUS_VIRT_READ_VIN_AVG,
  931. .update = true,
  932. .attr = "average",
  933. }, {
  934. .reg = PMBUS_VIRT_READ_VIN_MIN,
  935. .update = true,
  936. .attr = "lowest",
  937. }, {
  938. .reg = PMBUS_VIRT_READ_VIN_MAX,
  939. .update = true,
  940. .attr = "highest",
  941. }, {
  942. .reg = PMBUS_VIRT_RESET_VIN_HISTORY,
  943. .attr = "reset_history",
  944. },
  945. };
  946. static const struct pmbus_limit_attr vmon_limit_attrs[] = {
  947. {
  948. .reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT,
  949. .attr = "min",
  950. .alarm = "min_alarm",
  951. .sbit = PB_VOLTAGE_UV_WARNING,
  952. }, {
  953. .reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT,
  954. .attr = "lcrit",
  955. .alarm = "lcrit_alarm",
  956. .sbit = PB_VOLTAGE_UV_FAULT,
  957. }, {
  958. .reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT,
  959. .attr = "max",
  960. .alarm = "max_alarm",
  961. .sbit = PB_VOLTAGE_OV_WARNING,
  962. }, {
  963. .reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT,
  964. .attr = "crit",
  965. .alarm = "crit_alarm",
  966. .sbit = PB_VOLTAGE_OV_FAULT,
  967. }
  968. };
  969. static const struct pmbus_limit_attr vout_limit_attrs[] = {
  970. {
  971. .reg = PMBUS_VOUT_UV_WARN_LIMIT,
  972. .attr = "min",
  973. .alarm = "min_alarm",
  974. .sbit = PB_VOLTAGE_UV_WARNING,
  975. }, {
  976. .reg = PMBUS_VOUT_UV_FAULT_LIMIT,
  977. .attr = "lcrit",
  978. .alarm = "lcrit_alarm",
  979. .sbit = PB_VOLTAGE_UV_FAULT,
  980. }, {
  981. .reg = PMBUS_VOUT_OV_WARN_LIMIT,
  982. .attr = "max",
  983. .alarm = "max_alarm",
  984. .sbit = PB_VOLTAGE_OV_WARNING,
  985. }, {
  986. .reg = PMBUS_VOUT_OV_FAULT_LIMIT,
  987. .attr = "crit",
  988. .alarm = "crit_alarm",
  989. .sbit = PB_VOLTAGE_OV_FAULT,
  990. }, {
  991. .reg = PMBUS_VIRT_READ_VOUT_AVG,
  992. .update = true,
  993. .attr = "average",
  994. }, {
  995. .reg = PMBUS_VIRT_READ_VOUT_MIN,
  996. .update = true,
  997. .attr = "lowest",
  998. }, {
  999. .reg = PMBUS_VIRT_READ_VOUT_MAX,
  1000. .update = true,
  1001. .attr = "highest",
  1002. }, {
  1003. .reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
  1004. .attr = "reset_history",
  1005. }
  1006. };
  1007. static const struct pmbus_sensor_attr voltage_attributes[] = {
  1008. {
  1009. .reg = PMBUS_READ_VIN,
  1010. .class = PSC_VOLTAGE_IN,
  1011. .label = "vin",
  1012. .func = PMBUS_HAVE_VIN,
  1013. .sfunc = PMBUS_HAVE_STATUS_INPUT,
  1014. .sbase = PB_STATUS_INPUT_BASE,
  1015. .gbit = PB_STATUS_VIN_UV,
  1016. .limit = vin_limit_attrs,
  1017. .nlimit = ARRAY_SIZE(vin_limit_attrs),
  1018. }, {
  1019. .reg = PMBUS_VIRT_READ_VMON,
  1020. .class = PSC_VOLTAGE_IN,
  1021. .label = "vmon",
  1022. .func = PMBUS_HAVE_VMON,
  1023. .sfunc = PMBUS_HAVE_STATUS_VMON,
  1024. .sbase = PB_STATUS_VMON_BASE,
  1025. .limit = vmon_limit_attrs,
  1026. .nlimit = ARRAY_SIZE(vmon_limit_attrs),
  1027. }, {
  1028. .reg = PMBUS_READ_VCAP,
  1029. .class = PSC_VOLTAGE_IN,
  1030. .label = "vcap",
  1031. .func = PMBUS_HAVE_VCAP,
  1032. }, {
  1033. .reg = PMBUS_READ_VOUT,
  1034. .class = PSC_VOLTAGE_OUT,
  1035. .label = "vout",
  1036. .paged = true,
  1037. .func = PMBUS_HAVE_VOUT,
  1038. .sfunc = PMBUS_HAVE_STATUS_VOUT,
  1039. .sbase = PB_STATUS_VOUT_BASE,
  1040. .gbit = PB_STATUS_VOUT_OV,
  1041. .limit = vout_limit_attrs,
  1042. .nlimit = ARRAY_SIZE(vout_limit_attrs),
  1043. }
  1044. };
  1045. /* Current attributes */
  1046. static const struct pmbus_limit_attr iin_limit_attrs[] = {
  1047. {
  1048. .reg = PMBUS_IIN_OC_WARN_LIMIT,
  1049. .attr = "max",
  1050. .alarm = "max_alarm",
  1051. .sbit = PB_IIN_OC_WARNING,
  1052. }, {
  1053. .reg = PMBUS_IIN_OC_FAULT_LIMIT,
  1054. .attr = "crit",
  1055. .alarm = "crit_alarm",
  1056. .sbit = PB_IIN_OC_FAULT,
  1057. }, {
  1058. .reg = PMBUS_VIRT_READ_IIN_AVG,
  1059. .update = true,
  1060. .attr = "average",
  1061. }, {
  1062. .reg = PMBUS_VIRT_READ_IIN_MIN,
  1063. .update = true,
  1064. .attr = "lowest",
  1065. }, {
  1066. .reg = PMBUS_VIRT_READ_IIN_MAX,
  1067. .update = true,
  1068. .attr = "highest",
  1069. }, {
  1070. .reg = PMBUS_VIRT_RESET_IIN_HISTORY,
  1071. .attr = "reset_history",
  1072. }
  1073. };
  1074. static const struct pmbus_limit_attr iout_limit_attrs[] = {
  1075. {
  1076. .reg = PMBUS_IOUT_OC_WARN_LIMIT,
  1077. .attr = "max",
  1078. .alarm = "max_alarm",
  1079. .sbit = PB_IOUT_OC_WARNING,
  1080. }, {
  1081. .reg = PMBUS_IOUT_UC_FAULT_LIMIT,
  1082. .attr = "lcrit",
  1083. .alarm = "lcrit_alarm",
  1084. .sbit = PB_IOUT_UC_FAULT,
  1085. }, {
  1086. .reg = PMBUS_IOUT_OC_FAULT_LIMIT,
  1087. .attr = "crit",
  1088. .alarm = "crit_alarm",
  1089. .sbit = PB_IOUT_OC_FAULT,
  1090. }, {
  1091. .reg = PMBUS_VIRT_READ_IOUT_AVG,
  1092. .update = true,
  1093. .attr = "average",
  1094. }, {
  1095. .reg = PMBUS_VIRT_READ_IOUT_MIN,
  1096. .update = true,
  1097. .attr = "lowest",
  1098. }, {
  1099. .reg = PMBUS_VIRT_READ_IOUT_MAX,
  1100. .update = true,
  1101. .attr = "highest",
  1102. }, {
  1103. .reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
  1104. .attr = "reset_history",
  1105. }
  1106. };
  1107. static const struct pmbus_sensor_attr current_attributes[] = {
  1108. {
  1109. .reg = PMBUS_READ_IIN,
  1110. .class = PSC_CURRENT_IN,
  1111. .label = "iin",
  1112. .func = PMBUS_HAVE_IIN,
  1113. .sfunc = PMBUS_HAVE_STATUS_INPUT,
  1114. .sbase = PB_STATUS_INPUT_BASE,
  1115. .limit = iin_limit_attrs,
  1116. .nlimit = ARRAY_SIZE(iin_limit_attrs),
  1117. }, {
  1118. .reg = PMBUS_READ_IOUT,
  1119. .class = PSC_CURRENT_OUT,
  1120. .label = "iout",
  1121. .paged = true,
  1122. .func = PMBUS_HAVE_IOUT,
  1123. .sfunc = PMBUS_HAVE_STATUS_IOUT,
  1124. .sbase = PB_STATUS_IOUT_BASE,
  1125. .gbit = PB_STATUS_IOUT_OC,
  1126. .limit = iout_limit_attrs,
  1127. .nlimit = ARRAY_SIZE(iout_limit_attrs),
  1128. }
  1129. };
  1130. /* Power attributes */
  1131. static const struct pmbus_limit_attr pin_limit_attrs[] = {
  1132. {
  1133. .reg = PMBUS_PIN_OP_WARN_LIMIT,
  1134. .attr = "max",
  1135. .alarm = "alarm",
  1136. .sbit = PB_PIN_OP_WARNING,
  1137. }, {
  1138. .reg = PMBUS_VIRT_READ_PIN_AVG,
  1139. .update = true,
  1140. .attr = "average",
  1141. }, {
  1142. .reg = PMBUS_VIRT_READ_PIN_MAX,
  1143. .update = true,
  1144. .attr = "input_highest",
  1145. }, {
  1146. .reg = PMBUS_VIRT_RESET_PIN_HISTORY,
  1147. .attr = "reset_history",
  1148. }
  1149. };
  1150. static const struct pmbus_limit_attr pout_limit_attrs[] = {
  1151. {
  1152. .reg = PMBUS_POUT_MAX,
  1153. .attr = "cap",
  1154. .alarm = "cap_alarm",
  1155. .sbit = PB_POWER_LIMITING,
  1156. }, {
  1157. .reg = PMBUS_POUT_OP_WARN_LIMIT,
  1158. .attr = "max",
  1159. .alarm = "max_alarm",
  1160. .sbit = PB_POUT_OP_WARNING,
  1161. }, {
  1162. .reg = PMBUS_POUT_OP_FAULT_LIMIT,
  1163. .attr = "crit",
  1164. .alarm = "crit_alarm",
  1165. .sbit = PB_POUT_OP_FAULT,
  1166. }, {
  1167. .reg = PMBUS_VIRT_READ_POUT_AVG,
  1168. .update = true,
  1169. .attr = "average",
  1170. }, {
  1171. .reg = PMBUS_VIRT_READ_POUT_MAX,
  1172. .update = true,
  1173. .attr = "input_highest",
  1174. }, {
  1175. .reg = PMBUS_VIRT_RESET_POUT_HISTORY,
  1176. .attr = "reset_history",
  1177. }
  1178. };
  1179. static const struct pmbus_sensor_attr power_attributes[] = {
  1180. {
  1181. .reg = PMBUS_READ_PIN,
  1182. .class = PSC_POWER,
  1183. .label = "pin",
  1184. .func = PMBUS_HAVE_PIN,
  1185. .sfunc = PMBUS_HAVE_STATUS_INPUT,
  1186. .sbase = PB_STATUS_INPUT_BASE,
  1187. .limit = pin_limit_attrs,
  1188. .nlimit = ARRAY_SIZE(pin_limit_attrs),
  1189. }, {
  1190. .reg = PMBUS_READ_POUT,
  1191. .class = PSC_POWER,
  1192. .label = "pout",
  1193. .paged = true,
  1194. .func = PMBUS_HAVE_POUT,
  1195. .sfunc = PMBUS_HAVE_STATUS_IOUT,
  1196. .sbase = PB_STATUS_IOUT_BASE,
  1197. .limit = pout_limit_attrs,
  1198. .nlimit = ARRAY_SIZE(pout_limit_attrs),
  1199. }
  1200. };
  1201. /* Temperature atributes */
  1202. static const struct pmbus_limit_attr temp_limit_attrs[] = {
  1203. {
  1204. .reg = PMBUS_UT_WARN_LIMIT,
  1205. .low = true,
  1206. .attr = "min",
  1207. .alarm = "min_alarm",
  1208. .sbit = PB_TEMP_UT_WARNING,
  1209. }, {
  1210. .reg = PMBUS_UT_FAULT_LIMIT,
  1211. .low = true,
  1212. .attr = "lcrit",
  1213. .alarm = "lcrit_alarm",
  1214. .sbit = PB_TEMP_UT_FAULT,
  1215. }, {
  1216. .reg = PMBUS_OT_WARN_LIMIT,
  1217. .attr = "max",
  1218. .alarm = "max_alarm",
  1219. .sbit = PB_TEMP_OT_WARNING,
  1220. }, {
  1221. .reg = PMBUS_OT_FAULT_LIMIT,
  1222. .attr = "crit",
  1223. .alarm = "crit_alarm",
  1224. .sbit = PB_TEMP_OT_FAULT,
  1225. }, {
  1226. .reg = PMBUS_VIRT_READ_TEMP_MIN,
  1227. .attr = "lowest",
  1228. }, {
  1229. .reg = PMBUS_VIRT_READ_TEMP_AVG,
  1230. .attr = "average",
  1231. }, {
  1232. .reg = PMBUS_VIRT_READ_TEMP_MAX,
  1233. .attr = "highest",
  1234. }, {
  1235. .reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
  1236. .attr = "reset_history",
  1237. }
  1238. };
  1239. static const struct pmbus_limit_attr temp_limit_attrs2[] = {
  1240. {
  1241. .reg = PMBUS_UT_WARN_LIMIT,
  1242. .low = true,
  1243. .attr = "min",
  1244. .alarm = "min_alarm",
  1245. .sbit = PB_TEMP_UT_WARNING,
  1246. }, {
  1247. .reg = PMBUS_UT_FAULT_LIMIT,
  1248. .low = true,
  1249. .attr = "lcrit",
  1250. .alarm = "lcrit_alarm",
  1251. .sbit = PB_TEMP_UT_FAULT,
  1252. }, {
  1253. .reg = PMBUS_OT_WARN_LIMIT,
  1254. .attr = "max",
  1255. .alarm = "max_alarm",
  1256. .sbit = PB_TEMP_OT_WARNING,
  1257. }, {
  1258. .reg = PMBUS_OT_FAULT_LIMIT,
  1259. .attr = "crit",
  1260. .alarm = "crit_alarm",
  1261. .sbit = PB_TEMP_OT_FAULT,
  1262. }, {
  1263. .reg = PMBUS_VIRT_READ_TEMP2_MIN,
  1264. .attr = "lowest",
  1265. }, {
  1266. .reg = PMBUS_VIRT_READ_TEMP2_AVG,
  1267. .attr = "average",
  1268. }, {
  1269. .reg = PMBUS_VIRT_READ_TEMP2_MAX,
  1270. .attr = "highest",
  1271. }, {
  1272. .reg = PMBUS_VIRT_RESET_TEMP2_HISTORY,
  1273. .attr = "reset_history",
  1274. }
  1275. };
  1276. static const struct pmbus_limit_attr temp_limit_attrs3[] = {
  1277. {
  1278. .reg = PMBUS_UT_WARN_LIMIT,
  1279. .low = true,
  1280. .attr = "min",
  1281. .alarm = "min_alarm",
  1282. .sbit = PB_TEMP_UT_WARNING,
  1283. }, {
  1284. .reg = PMBUS_UT_FAULT_LIMIT,
  1285. .low = true,
  1286. .attr = "lcrit",
  1287. .alarm = "lcrit_alarm",
  1288. .sbit = PB_TEMP_UT_FAULT,
  1289. }, {
  1290. .reg = PMBUS_OT_WARN_LIMIT,
  1291. .attr = "max",
  1292. .alarm = "max_alarm",
  1293. .sbit = PB_TEMP_OT_WARNING,
  1294. }, {
  1295. .reg = PMBUS_OT_FAULT_LIMIT,
  1296. .attr = "crit",
  1297. .alarm = "crit_alarm",
  1298. .sbit = PB_TEMP_OT_FAULT,
  1299. }
  1300. };
  1301. static const struct pmbus_sensor_attr temp_attributes[] = {
  1302. {
  1303. .reg = PMBUS_READ_TEMPERATURE_1,
  1304. .class = PSC_TEMPERATURE,
  1305. .paged = true,
  1306. .update = true,
  1307. .compare = true,
  1308. .func = PMBUS_HAVE_TEMP,
  1309. .sfunc = PMBUS_HAVE_STATUS_TEMP,
  1310. .sbase = PB_STATUS_TEMP_BASE,
  1311. .gbit = PB_STATUS_TEMPERATURE,
  1312. .limit = temp_limit_attrs,
  1313. .nlimit = ARRAY_SIZE(temp_limit_attrs),
  1314. }, {
  1315. .reg = PMBUS_READ_TEMPERATURE_2,
  1316. .class = PSC_TEMPERATURE,
  1317. .paged = true,
  1318. .update = true,
  1319. .compare = true,
  1320. .func = PMBUS_HAVE_TEMP2,
  1321. .sfunc = PMBUS_HAVE_STATUS_TEMP,
  1322. .sbase = PB_STATUS_TEMP_BASE,
  1323. .gbit = PB_STATUS_TEMPERATURE,
  1324. .limit = temp_limit_attrs2,
  1325. .nlimit = ARRAY_SIZE(temp_limit_attrs2),
  1326. }, {
  1327. .reg = PMBUS_READ_TEMPERATURE_3,
  1328. .class = PSC_TEMPERATURE,
  1329. .paged = true,
  1330. .update = true,
  1331. .compare = true,
  1332. .func = PMBUS_HAVE_TEMP3,
  1333. .sfunc = PMBUS_HAVE_STATUS_TEMP,
  1334. .sbase = PB_STATUS_TEMP_BASE,
  1335. .gbit = PB_STATUS_TEMPERATURE,
  1336. .limit = temp_limit_attrs3,
  1337. .nlimit = ARRAY_SIZE(temp_limit_attrs3),
  1338. }
  1339. };
  1340. static const int pmbus_fan_registers[] = {
  1341. PMBUS_READ_FAN_SPEED_1,
  1342. PMBUS_READ_FAN_SPEED_2,
  1343. PMBUS_READ_FAN_SPEED_3,
  1344. PMBUS_READ_FAN_SPEED_4
  1345. };
  1346. static const int pmbus_fan_config_registers[] = {
  1347. PMBUS_FAN_CONFIG_12,
  1348. PMBUS_FAN_CONFIG_12,
  1349. PMBUS_FAN_CONFIG_34,
  1350. PMBUS_FAN_CONFIG_34
  1351. };
  1352. static const int pmbus_fan_status_registers[] = {
  1353. PMBUS_STATUS_FAN_12,
  1354. PMBUS_STATUS_FAN_12,
  1355. PMBUS_STATUS_FAN_34,
  1356. PMBUS_STATUS_FAN_34
  1357. };
  1358. static const u32 pmbus_fan_flags[] = {
  1359. PMBUS_HAVE_FAN12,
  1360. PMBUS_HAVE_FAN12,
  1361. PMBUS_HAVE_FAN34,
  1362. PMBUS_HAVE_FAN34
  1363. };
  1364. static const u32 pmbus_fan_status_flags[] = {
  1365. PMBUS_HAVE_STATUS_FAN12,
  1366. PMBUS_HAVE_STATUS_FAN12,
  1367. PMBUS_HAVE_STATUS_FAN34,
  1368. PMBUS_HAVE_STATUS_FAN34
  1369. };
  1370. /* Fans */
  1371. static int pmbus_add_fan_attributes(struct i2c_client *client,
  1372. struct pmbus_data *data)
  1373. {
  1374. const struct pmbus_driver_info *info = data->info;
  1375. int index = 1;
  1376. int page;
  1377. int ret;
  1378. for (page = 0; page < info->pages; page++) {
  1379. int f;
  1380. for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
  1381. int regval;
  1382. if (!(info->func[page] & pmbus_fan_flags[f]))
  1383. break;
  1384. if (!pmbus_check_word_register(client, page,
  1385. pmbus_fan_registers[f]))
  1386. break;
  1387. /*
  1388. * Skip fan if not installed.
  1389. * Each fan configuration register covers multiple fans,
  1390. * so we have to do some magic.
  1391. */
  1392. regval = _pmbus_read_byte_data(client, page,
  1393. pmbus_fan_config_registers[f]);
  1394. if (regval < 0 ||
  1395. (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
  1396. continue;
  1397. if (pmbus_add_sensor(data, "fan", "input", index,
  1398. page, pmbus_fan_registers[f],
  1399. PSC_FAN, true, true) == NULL)
  1400. return -ENOMEM;
  1401. /*
  1402. * Each fan status register covers multiple fans,
  1403. * so we have to do some magic.
  1404. */
  1405. if ((info->func[page] & pmbus_fan_status_flags[f]) &&
  1406. pmbus_check_byte_register(client,
  1407. page, pmbus_fan_status_registers[f])) {
  1408. int base;
  1409. if (f > 1) /* fan 3, 4 */
  1410. base = PB_STATUS_FAN34_BASE + page;
  1411. else
  1412. base = PB_STATUS_FAN_BASE + page;
  1413. ret = pmbus_add_boolean(data, "fan",
  1414. "alarm", index, NULL, NULL, base,
  1415. PB_FAN_FAN1_WARNING >> (f & 1));
  1416. if (ret)
  1417. return ret;
  1418. ret = pmbus_add_boolean(data, "fan",
  1419. "fault", index, NULL, NULL, base,
  1420. PB_FAN_FAN1_FAULT >> (f & 1));
  1421. if (ret)
  1422. return ret;
  1423. }
  1424. index++;
  1425. }
  1426. }
  1427. return 0;
  1428. }
  1429. static int pmbus_find_attributes(struct i2c_client *client,
  1430. struct pmbus_data *data)
  1431. {
  1432. int ret;
  1433. /* Voltage sensors */
  1434. ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
  1435. ARRAY_SIZE(voltage_attributes));
  1436. if (ret)
  1437. return ret;
  1438. /* Current sensors */
  1439. ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
  1440. ARRAY_SIZE(current_attributes));
  1441. if (ret)
  1442. return ret;
  1443. /* Power sensors */
  1444. ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes,
  1445. ARRAY_SIZE(power_attributes));
  1446. if (ret)
  1447. return ret;
  1448. /* Temperature sensors */
  1449. ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
  1450. ARRAY_SIZE(temp_attributes));
  1451. if (ret)
  1452. return ret;
  1453. /* Fans */
  1454. ret = pmbus_add_fan_attributes(client, data);
  1455. return ret;
  1456. }
  1457. /*
  1458. * Identify chip parameters.
  1459. * This function is called for all chips.
  1460. */
  1461. static int pmbus_identify_common(struct i2c_client *client,
  1462. struct pmbus_data *data)
  1463. {
  1464. int vout_mode = -1;
  1465. if (pmbus_check_byte_register(client, 0, PMBUS_VOUT_MODE))
  1466. vout_mode = _pmbus_read_byte_data(client, 0, PMBUS_VOUT_MODE);
  1467. if (vout_mode >= 0 && vout_mode != 0xff) {
  1468. /*
  1469. * Not all chips support the VOUT_MODE command,
  1470. * so a failure to read it is not an error.
  1471. */
  1472. switch (vout_mode >> 5) {
  1473. case 0: /* linear mode */
  1474. if (data->info->format[PSC_VOLTAGE_OUT] != linear)
  1475. return -ENODEV;
  1476. data->exponent = ((s8)(vout_mode << 3)) >> 3;
  1477. break;
  1478. case 1: /* VID mode */
  1479. if (data->info->format[PSC_VOLTAGE_OUT] != vid)
  1480. return -ENODEV;
  1481. break;
  1482. case 2: /* direct mode */
  1483. if (data->info->format[PSC_VOLTAGE_OUT] != direct)
  1484. return -ENODEV;
  1485. break;
  1486. default:
  1487. return -ENODEV;
  1488. }
  1489. }
  1490. pmbus_clear_fault_page(client, 0);
  1491. return 0;
  1492. }
  1493. static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data,
  1494. struct pmbus_driver_info *info)
  1495. {
  1496. struct device *dev = &client->dev;
  1497. int ret;
  1498. /*
  1499. * Some PMBus chips don't support PMBUS_STATUS_BYTE, so try
  1500. * to use PMBUS_STATUS_WORD instead if that is the case.
  1501. * Bail out if both registers are not supported.
  1502. */
  1503. data->status_register = PMBUS_STATUS_BYTE;
  1504. ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE);
  1505. if (ret < 0 || ret == 0xff) {
  1506. data->status_register = PMBUS_STATUS_WORD;
  1507. ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD);
  1508. if (ret < 0 || ret == 0xffff) {
  1509. dev_err(dev, "PMBus status register not found\n");
  1510. return -ENODEV;
  1511. }
  1512. }
  1513. pmbus_clear_faults(client);
  1514. if (info->identify) {
  1515. ret = (*info->identify)(client, info);
  1516. if (ret < 0) {
  1517. dev_err(dev, "Chip identification failed\n");
  1518. return ret;
  1519. }
  1520. }
  1521. if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
  1522. dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages);
  1523. return -ENODEV;
  1524. }
  1525. ret = pmbus_identify_common(client, data);
  1526. if (ret < 0) {
  1527. dev_err(dev, "Failed to identify chip capabilities\n");
  1528. return ret;
  1529. }
  1530. return 0;
  1531. }
  1532. int pmbus_do_probe(struct i2c_client *client, const struct i2c_device_id *id,
  1533. struct pmbus_driver_info *info)
  1534. {
  1535. struct device *dev = &client->dev;
  1536. const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
  1537. struct pmbus_data *data;
  1538. int ret;
  1539. if (!info)
  1540. return -ENODEV;
  1541. if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
  1542. | I2C_FUNC_SMBUS_BYTE_DATA
  1543. | I2C_FUNC_SMBUS_WORD_DATA))
  1544. return -ENODEV;
  1545. data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
  1546. if (!data)
  1547. return -ENOMEM;
  1548. i2c_set_clientdata(client, data);
  1549. mutex_init(&data->update_lock);
  1550. data->dev = dev;
  1551. if (pdata)
  1552. data->flags = pdata->flags;
  1553. data->info = info;
  1554. ret = pmbus_init_common(client, data, info);
  1555. if (ret < 0)
  1556. return ret;
  1557. ret = pmbus_find_attributes(client, data);
  1558. if (ret)
  1559. goto out_kfree;
  1560. /*
  1561. * If there are no attributes, something is wrong.
  1562. * Bail out instead of trying to register nothing.
  1563. */
  1564. if (!data->num_attributes) {
  1565. dev_err(dev, "No attributes found\n");
  1566. ret = -ENODEV;
  1567. goto out_kfree;
  1568. }
  1569. data->groups[0] = &data->group;
  1570. data->hwmon_dev = hwmon_device_register_with_groups(dev, client->name,
  1571. data, data->groups);
  1572. if (IS_ERR(data->hwmon_dev)) {
  1573. ret = PTR_ERR(data->hwmon_dev);
  1574. dev_err(dev, "Failed to register hwmon device\n");
  1575. goto out_kfree;
  1576. }
  1577. return 0;
  1578. out_kfree:
  1579. kfree(data->group.attrs);
  1580. return ret;
  1581. }
  1582. EXPORT_SYMBOL_GPL(pmbus_do_probe);
  1583. int pmbus_do_remove(struct i2c_client *client)
  1584. {
  1585. struct pmbus_data *data = i2c_get_clientdata(client);
  1586. hwmon_device_unregister(data->hwmon_dev);
  1587. kfree(data->group.attrs);
  1588. return 0;
  1589. }
  1590. EXPORT_SYMBOL_GPL(pmbus_do_remove);
  1591. MODULE_AUTHOR("Guenter Roeck");
  1592. MODULE_DESCRIPTION("PMBus core driver");
  1593. MODULE_LICENSE("GPL");