ctree.c 112 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411
  1. /*
  2. * Copyright (C) 2007,2008 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include "ctree.h"
  21. #include "disk-io.h"
  22. #include "transaction.h"
  23. #include "print-tree.h"
  24. #include "locking.h"
  25. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  26. *root, struct btrfs_path *path, int level);
  27. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  28. *root, struct btrfs_key *ins_key,
  29. struct btrfs_path *path, int data_size, int extend);
  30. static int push_node_left(struct btrfs_trans_handle *trans,
  31. struct btrfs_root *root, struct extent_buffer *dst,
  32. struct extent_buffer *src, int empty);
  33. static int balance_node_right(struct btrfs_trans_handle *trans,
  34. struct btrfs_root *root,
  35. struct extent_buffer *dst_buf,
  36. struct extent_buffer *src_buf);
  37. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  38. struct btrfs_path *path, int level, int slot);
  39. static int setup_items_for_insert(struct btrfs_trans_handle *trans,
  40. struct btrfs_root *root, struct btrfs_path *path,
  41. struct btrfs_key *cpu_key, u32 *data_size,
  42. u32 total_data, u32 total_size, int nr);
  43. struct btrfs_path *btrfs_alloc_path(void)
  44. {
  45. struct btrfs_path *path;
  46. path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  47. if (path)
  48. path->reada = 1;
  49. return path;
  50. }
  51. /*
  52. * set all locked nodes in the path to blocking locks. This should
  53. * be done before scheduling
  54. */
  55. noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  56. {
  57. int i;
  58. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  59. if (p->nodes[i] && p->locks[i])
  60. btrfs_set_lock_blocking(p->nodes[i]);
  61. }
  62. }
  63. /*
  64. * reset all the locked nodes in the patch to spinning locks.
  65. *
  66. * held is used to keep lockdep happy, when lockdep is enabled
  67. * we set held to a blocking lock before we go around and
  68. * retake all the spinlocks in the path. You can safely use NULL
  69. * for held
  70. */
  71. noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  72. struct extent_buffer *held)
  73. {
  74. int i;
  75. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  76. /* lockdep really cares that we take all of these spinlocks
  77. * in the right order. If any of the locks in the path are not
  78. * currently blocking, it is going to complain. So, make really
  79. * really sure by forcing the path to blocking before we clear
  80. * the path blocking.
  81. */
  82. if (held)
  83. btrfs_set_lock_blocking(held);
  84. btrfs_set_path_blocking(p);
  85. #endif
  86. for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  87. if (p->nodes[i] && p->locks[i])
  88. btrfs_clear_lock_blocking(p->nodes[i]);
  89. }
  90. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  91. if (held)
  92. btrfs_clear_lock_blocking(held);
  93. #endif
  94. }
  95. /* this also releases the path */
  96. void btrfs_free_path(struct btrfs_path *p)
  97. {
  98. if (!p)
  99. return;
  100. btrfs_release_path(NULL, p);
  101. kmem_cache_free(btrfs_path_cachep, p);
  102. }
  103. /*
  104. * path release drops references on the extent buffers in the path
  105. * and it drops any locks held by this path
  106. *
  107. * It is safe to call this on paths that no locks or extent buffers held.
  108. */
  109. noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
  110. {
  111. int i;
  112. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  113. p->slots[i] = 0;
  114. if (!p->nodes[i])
  115. continue;
  116. if (p->locks[i]) {
  117. btrfs_tree_unlock(p->nodes[i]);
  118. p->locks[i] = 0;
  119. }
  120. free_extent_buffer(p->nodes[i]);
  121. p->nodes[i] = NULL;
  122. }
  123. }
  124. /*
  125. * safely gets a reference on the root node of a tree. A lock
  126. * is not taken, so a concurrent writer may put a different node
  127. * at the root of the tree. See btrfs_lock_root_node for the
  128. * looping required.
  129. *
  130. * The extent buffer returned by this has a reference taken, so
  131. * it won't disappear. It may stop being the root of the tree
  132. * at any time because there are no locks held.
  133. */
  134. struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
  135. {
  136. struct extent_buffer *eb;
  137. rcu_read_lock();
  138. eb = rcu_dereference(root->node);
  139. extent_buffer_get(eb);
  140. rcu_read_unlock();
  141. return eb;
  142. }
  143. /* loop around taking references on and locking the root node of the
  144. * tree until you end up with a lock on the root. A locked buffer
  145. * is returned, with a reference held.
  146. */
  147. struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
  148. {
  149. struct extent_buffer *eb;
  150. while (1) {
  151. eb = btrfs_root_node(root);
  152. btrfs_tree_lock(eb);
  153. if (eb == root->node)
  154. break;
  155. btrfs_tree_unlock(eb);
  156. free_extent_buffer(eb);
  157. }
  158. return eb;
  159. }
  160. /* cowonly root (everything not a reference counted cow subvolume), just get
  161. * put onto a simple dirty list. transaction.c walks this to make sure they
  162. * get properly updated on disk.
  163. */
  164. static void add_root_to_dirty_list(struct btrfs_root *root)
  165. {
  166. if (root->track_dirty && list_empty(&root->dirty_list)) {
  167. list_add(&root->dirty_list,
  168. &root->fs_info->dirty_cowonly_roots);
  169. }
  170. }
  171. /*
  172. * used by snapshot creation to make a copy of a root for a tree with
  173. * a given objectid. The buffer with the new root node is returned in
  174. * cow_ret, and this func returns zero on success or a negative error code.
  175. */
  176. int btrfs_copy_root(struct btrfs_trans_handle *trans,
  177. struct btrfs_root *root,
  178. struct extent_buffer *buf,
  179. struct extent_buffer **cow_ret, u64 new_root_objectid)
  180. {
  181. struct extent_buffer *cow;
  182. int ret = 0;
  183. int level;
  184. struct btrfs_disk_key disk_key;
  185. WARN_ON(root->ref_cows && trans->transid !=
  186. root->fs_info->running_transaction->transid);
  187. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  188. level = btrfs_header_level(buf);
  189. if (level == 0)
  190. btrfs_item_key(buf, &disk_key, 0);
  191. else
  192. btrfs_node_key(buf, &disk_key, 0);
  193. cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
  194. new_root_objectid, &disk_key, level,
  195. buf->start, 0);
  196. if (IS_ERR(cow))
  197. return PTR_ERR(cow);
  198. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  199. btrfs_set_header_bytenr(cow, cow->start);
  200. btrfs_set_header_generation(cow, trans->transid);
  201. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  202. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  203. BTRFS_HEADER_FLAG_RELOC);
  204. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  205. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  206. else
  207. btrfs_set_header_owner(cow, new_root_objectid);
  208. write_extent_buffer(cow, root->fs_info->fsid,
  209. (unsigned long)btrfs_header_fsid(cow),
  210. BTRFS_FSID_SIZE);
  211. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  212. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  213. ret = btrfs_inc_ref(trans, root, cow, 1);
  214. else
  215. ret = btrfs_inc_ref(trans, root, cow, 0);
  216. if (ret)
  217. return ret;
  218. btrfs_mark_buffer_dirty(cow);
  219. *cow_ret = cow;
  220. return 0;
  221. }
  222. /*
  223. * check if the tree block can be shared by multiple trees
  224. */
  225. int btrfs_block_can_be_shared(struct btrfs_root *root,
  226. struct extent_buffer *buf)
  227. {
  228. /*
  229. * Tree blocks not in refernece counted trees and tree roots
  230. * are never shared. If a block was allocated after the last
  231. * snapshot and the block was not allocated by tree relocation,
  232. * we know the block is not shared.
  233. */
  234. if (root->ref_cows &&
  235. buf != root->node && buf != root->commit_root &&
  236. (btrfs_header_generation(buf) <=
  237. btrfs_root_last_snapshot(&root->root_item) ||
  238. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
  239. return 1;
  240. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  241. if (root->ref_cows &&
  242. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  243. return 1;
  244. #endif
  245. return 0;
  246. }
  247. static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
  248. struct btrfs_root *root,
  249. struct extent_buffer *buf,
  250. struct extent_buffer *cow,
  251. int *last_ref)
  252. {
  253. u64 refs;
  254. u64 owner;
  255. u64 flags;
  256. u64 new_flags = 0;
  257. int ret;
  258. /*
  259. * Backrefs update rules:
  260. *
  261. * Always use full backrefs for extent pointers in tree block
  262. * allocated by tree relocation.
  263. *
  264. * If a shared tree block is no longer referenced by its owner
  265. * tree (btrfs_header_owner(buf) == root->root_key.objectid),
  266. * use full backrefs for extent pointers in tree block.
  267. *
  268. * If a tree block is been relocating
  269. * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
  270. * use full backrefs for extent pointers in tree block.
  271. * The reason for this is some operations (such as drop tree)
  272. * are only allowed for blocks use full backrefs.
  273. */
  274. if (btrfs_block_can_be_shared(root, buf)) {
  275. ret = btrfs_lookup_extent_info(trans, root, buf->start,
  276. buf->len, &refs, &flags);
  277. BUG_ON(ret);
  278. BUG_ON(refs == 0);
  279. } else {
  280. refs = 1;
  281. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  282. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  283. flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  284. else
  285. flags = 0;
  286. }
  287. owner = btrfs_header_owner(buf);
  288. BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
  289. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
  290. if (refs > 1) {
  291. if ((owner == root->root_key.objectid ||
  292. root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
  293. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
  294. ret = btrfs_inc_ref(trans, root, buf, 1);
  295. BUG_ON(ret);
  296. if (root->root_key.objectid ==
  297. BTRFS_TREE_RELOC_OBJECTID) {
  298. ret = btrfs_dec_ref(trans, root, buf, 0);
  299. BUG_ON(ret);
  300. ret = btrfs_inc_ref(trans, root, cow, 1);
  301. BUG_ON(ret);
  302. }
  303. new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
  304. } else {
  305. if (root->root_key.objectid ==
  306. BTRFS_TREE_RELOC_OBJECTID)
  307. ret = btrfs_inc_ref(trans, root, cow, 1);
  308. else
  309. ret = btrfs_inc_ref(trans, root, cow, 0);
  310. BUG_ON(ret);
  311. }
  312. if (new_flags != 0) {
  313. ret = btrfs_set_disk_extent_flags(trans, root,
  314. buf->start,
  315. buf->len,
  316. new_flags, 0);
  317. BUG_ON(ret);
  318. }
  319. } else {
  320. if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
  321. if (root->root_key.objectid ==
  322. BTRFS_TREE_RELOC_OBJECTID)
  323. ret = btrfs_inc_ref(trans, root, cow, 1);
  324. else
  325. ret = btrfs_inc_ref(trans, root, cow, 0);
  326. BUG_ON(ret);
  327. ret = btrfs_dec_ref(trans, root, buf, 1);
  328. BUG_ON(ret);
  329. }
  330. clean_tree_block(trans, root, buf);
  331. *last_ref = 1;
  332. }
  333. return 0;
  334. }
  335. /*
  336. * does the dirty work in cow of a single block. The parent block (if
  337. * supplied) is updated to point to the new cow copy. The new buffer is marked
  338. * dirty and returned locked. If you modify the block it needs to be marked
  339. * dirty again.
  340. *
  341. * search_start -- an allocation hint for the new block
  342. *
  343. * empty_size -- a hint that you plan on doing more cow. This is the size in
  344. * bytes the allocator should try to find free next to the block it returns.
  345. * This is just a hint and may be ignored by the allocator.
  346. */
  347. static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
  348. struct btrfs_root *root,
  349. struct extent_buffer *buf,
  350. struct extent_buffer *parent, int parent_slot,
  351. struct extent_buffer **cow_ret,
  352. u64 search_start, u64 empty_size)
  353. {
  354. struct btrfs_disk_key disk_key;
  355. struct extent_buffer *cow;
  356. int level;
  357. int last_ref = 0;
  358. int unlock_orig = 0;
  359. u64 parent_start;
  360. if (*cow_ret == buf)
  361. unlock_orig = 1;
  362. btrfs_assert_tree_locked(buf);
  363. WARN_ON(root->ref_cows && trans->transid !=
  364. root->fs_info->running_transaction->transid);
  365. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  366. level = btrfs_header_level(buf);
  367. if (level == 0)
  368. btrfs_item_key(buf, &disk_key, 0);
  369. else
  370. btrfs_node_key(buf, &disk_key, 0);
  371. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  372. if (parent)
  373. parent_start = parent->start;
  374. else
  375. parent_start = 0;
  376. } else
  377. parent_start = 0;
  378. cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
  379. root->root_key.objectid, &disk_key,
  380. level, search_start, empty_size);
  381. if (IS_ERR(cow))
  382. return PTR_ERR(cow);
  383. /* cow is set to blocking by btrfs_init_new_buffer */
  384. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  385. btrfs_set_header_bytenr(cow, cow->start);
  386. btrfs_set_header_generation(cow, trans->transid);
  387. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  388. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  389. BTRFS_HEADER_FLAG_RELOC);
  390. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  391. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  392. else
  393. btrfs_set_header_owner(cow, root->root_key.objectid);
  394. write_extent_buffer(cow, root->fs_info->fsid,
  395. (unsigned long)btrfs_header_fsid(cow),
  396. BTRFS_FSID_SIZE);
  397. update_ref_for_cow(trans, root, buf, cow, &last_ref);
  398. if (root->ref_cows)
  399. btrfs_reloc_cow_block(trans, root, buf, cow);
  400. if (buf == root->node) {
  401. WARN_ON(parent && parent != buf);
  402. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  403. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  404. parent_start = buf->start;
  405. else
  406. parent_start = 0;
  407. extent_buffer_get(cow);
  408. rcu_assign_pointer(root->node, cow);
  409. btrfs_free_tree_block(trans, root, buf, parent_start,
  410. last_ref);
  411. free_extent_buffer(buf);
  412. add_root_to_dirty_list(root);
  413. } else {
  414. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  415. parent_start = parent->start;
  416. else
  417. parent_start = 0;
  418. WARN_ON(trans->transid != btrfs_header_generation(parent));
  419. btrfs_set_node_blockptr(parent, parent_slot,
  420. cow->start);
  421. btrfs_set_node_ptr_generation(parent, parent_slot,
  422. trans->transid);
  423. btrfs_mark_buffer_dirty(parent);
  424. btrfs_free_tree_block(trans, root, buf, parent_start,
  425. last_ref);
  426. }
  427. if (unlock_orig)
  428. btrfs_tree_unlock(buf);
  429. free_extent_buffer(buf);
  430. btrfs_mark_buffer_dirty(cow);
  431. *cow_ret = cow;
  432. return 0;
  433. }
  434. static inline int should_cow_block(struct btrfs_trans_handle *trans,
  435. struct btrfs_root *root,
  436. struct extent_buffer *buf)
  437. {
  438. if (btrfs_header_generation(buf) == trans->transid &&
  439. !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
  440. !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
  441. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
  442. return 0;
  443. return 1;
  444. }
  445. /*
  446. * cows a single block, see __btrfs_cow_block for the real work.
  447. * This version of it has extra checks so that a block isn't cow'd more than
  448. * once per transaction, as long as it hasn't been written yet
  449. */
  450. noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
  451. struct btrfs_root *root, struct extent_buffer *buf,
  452. struct extent_buffer *parent, int parent_slot,
  453. struct extent_buffer **cow_ret)
  454. {
  455. u64 search_start;
  456. int ret;
  457. if (trans->transaction != root->fs_info->running_transaction) {
  458. printk(KERN_CRIT "trans %llu running %llu\n",
  459. (unsigned long long)trans->transid,
  460. (unsigned long long)
  461. root->fs_info->running_transaction->transid);
  462. WARN_ON(1);
  463. }
  464. if (trans->transid != root->fs_info->generation) {
  465. printk(KERN_CRIT "trans %llu running %llu\n",
  466. (unsigned long long)trans->transid,
  467. (unsigned long long)root->fs_info->generation);
  468. WARN_ON(1);
  469. }
  470. if (!should_cow_block(trans, root, buf)) {
  471. *cow_ret = buf;
  472. return 0;
  473. }
  474. search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
  475. if (parent)
  476. btrfs_set_lock_blocking(parent);
  477. btrfs_set_lock_blocking(buf);
  478. ret = __btrfs_cow_block(trans, root, buf, parent,
  479. parent_slot, cow_ret, search_start, 0);
  480. trace_btrfs_cow_block(root, buf, *cow_ret);
  481. return ret;
  482. }
  483. /*
  484. * helper function for defrag to decide if two blocks pointed to by a
  485. * node are actually close by
  486. */
  487. static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
  488. {
  489. if (blocknr < other && other - (blocknr + blocksize) < 32768)
  490. return 1;
  491. if (blocknr > other && blocknr - (other + blocksize) < 32768)
  492. return 1;
  493. return 0;
  494. }
  495. /*
  496. * compare two keys in a memcmp fashion
  497. */
  498. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  499. {
  500. struct btrfs_key k1;
  501. btrfs_disk_key_to_cpu(&k1, disk);
  502. return btrfs_comp_cpu_keys(&k1, k2);
  503. }
  504. /*
  505. * same as comp_keys only with two btrfs_key's
  506. */
  507. int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
  508. {
  509. if (k1->objectid > k2->objectid)
  510. return 1;
  511. if (k1->objectid < k2->objectid)
  512. return -1;
  513. if (k1->type > k2->type)
  514. return 1;
  515. if (k1->type < k2->type)
  516. return -1;
  517. if (k1->offset > k2->offset)
  518. return 1;
  519. if (k1->offset < k2->offset)
  520. return -1;
  521. return 0;
  522. }
  523. /*
  524. * this is used by the defrag code to go through all the
  525. * leaves pointed to by a node and reallocate them so that
  526. * disk order is close to key order
  527. */
  528. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  529. struct btrfs_root *root, struct extent_buffer *parent,
  530. int start_slot, int cache_only, u64 *last_ret,
  531. struct btrfs_key *progress)
  532. {
  533. struct extent_buffer *cur;
  534. u64 blocknr;
  535. u64 gen;
  536. u64 search_start = *last_ret;
  537. u64 last_block = 0;
  538. u64 other;
  539. u32 parent_nritems;
  540. int end_slot;
  541. int i;
  542. int err = 0;
  543. int parent_level;
  544. int uptodate;
  545. u32 blocksize;
  546. int progress_passed = 0;
  547. struct btrfs_disk_key disk_key;
  548. parent_level = btrfs_header_level(parent);
  549. if (cache_only && parent_level != 1)
  550. return 0;
  551. if (trans->transaction != root->fs_info->running_transaction)
  552. WARN_ON(1);
  553. if (trans->transid != root->fs_info->generation)
  554. WARN_ON(1);
  555. parent_nritems = btrfs_header_nritems(parent);
  556. blocksize = btrfs_level_size(root, parent_level - 1);
  557. end_slot = parent_nritems;
  558. if (parent_nritems == 1)
  559. return 0;
  560. btrfs_set_lock_blocking(parent);
  561. for (i = start_slot; i < end_slot; i++) {
  562. int close = 1;
  563. if (!parent->map_token) {
  564. map_extent_buffer(parent,
  565. btrfs_node_key_ptr_offset(i),
  566. sizeof(struct btrfs_key_ptr),
  567. &parent->map_token, &parent->kaddr,
  568. &parent->map_start, &parent->map_len,
  569. KM_USER1);
  570. }
  571. btrfs_node_key(parent, &disk_key, i);
  572. if (!progress_passed && comp_keys(&disk_key, progress) < 0)
  573. continue;
  574. progress_passed = 1;
  575. blocknr = btrfs_node_blockptr(parent, i);
  576. gen = btrfs_node_ptr_generation(parent, i);
  577. if (last_block == 0)
  578. last_block = blocknr;
  579. if (i > 0) {
  580. other = btrfs_node_blockptr(parent, i - 1);
  581. close = close_blocks(blocknr, other, blocksize);
  582. }
  583. if (!close && i < end_slot - 2) {
  584. other = btrfs_node_blockptr(parent, i + 1);
  585. close = close_blocks(blocknr, other, blocksize);
  586. }
  587. if (close) {
  588. last_block = blocknr;
  589. continue;
  590. }
  591. if (parent->map_token) {
  592. unmap_extent_buffer(parent, parent->map_token,
  593. KM_USER1);
  594. parent->map_token = NULL;
  595. }
  596. cur = btrfs_find_tree_block(root, blocknr, blocksize);
  597. if (cur)
  598. uptodate = btrfs_buffer_uptodate(cur, gen);
  599. else
  600. uptodate = 0;
  601. if (!cur || !uptodate) {
  602. if (cache_only) {
  603. free_extent_buffer(cur);
  604. continue;
  605. }
  606. if (!cur) {
  607. cur = read_tree_block(root, blocknr,
  608. blocksize, gen);
  609. if (!cur)
  610. return -EIO;
  611. } else if (!uptodate) {
  612. btrfs_read_buffer(cur, gen);
  613. }
  614. }
  615. if (search_start == 0)
  616. search_start = last_block;
  617. btrfs_tree_lock(cur);
  618. btrfs_set_lock_blocking(cur);
  619. err = __btrfs_cow_block(trans, root, cur, parent, i,
  620. &cur, search_start,
  621. min(16 * blocksize,
  622. (end_slot - i) * blocksize));
  623. if (err) {
  624. btrfs_tree_unlock(cur);
  625. free_extent_buffer(cur);
  626. break;
  627. }
  628. search_start = cur->start;
  629. last_block = cur->start;
  630. *last_ret = search_start;
  631. btrfs_tree_unlock(cur);
  632. free_extent_buffer(cur);
  633. }
  634. if (parent->map_token) {
  635. unmap_extent_buffer(parent, parent->map_token,
  636. KM_USER1);
  637. parent->map_token = NULL;
  638. }
  639. return err;
  640. }
  641. /*
  642. * The leaf data grows from end-to-front in the node.
  643. * this returns the address of the start of the last item,
  644. * which is the stop of the leaf data stack
  645. */
  646. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  647. struct extent_buffer *leaf)
  648. {
  649. u32 nr = btrfs_header_nritems(leaf);
  650. if (nr == 0)
  651. return BTRFS_LEAF_DATA_SIZE(root);
  652. return btrfs_item_offset_nr(leaf, nr - 1);
  653. }
  654. /*
  655. * search for key in the extent_buffer. The items start at offset p,
  656. * and they are item_size apart. There are 'max' items in p.
  657. *
  658. * the slot in the array is returned via slot, and it points to
  659. * the place where you would insert key if it is not found in
  660. * the array.
  661. *
  662. * slot may point to max if the key is bigger than all of the keys
  663. */
  664. static noinline int generic_bin_search(struct extent_buffer *eb,
  665. unsigned long p,
  666. int item_size, struct btrfs_key *key,
  667. int max, int *slot)
  668. {
  669. int low = 0;
  670. int high = max;
  671. int mid;
  672. int ret;
  673. struct btrfs_disk_key *tmp = NULL;
  674. struct btrfs_disk_key unaligned;
  675. unsigned long offset;
  676. char *map_token = NULL;
  677. char *kaddr = NULL;
  678. unsigned long map_start = 0;
  679. unsigned long map_len = 0;
  680. int err;
  681. while (low < high) {
  682. mid = (low + high) / 2;
  683. offset = p + mid * item_size;
  684. if (!map_token || offset < map_start ||
  685. (offset + sizeof(struct btrfs_disk_key)) >
  686. map_start + map_len) {
  687. if (map_token) {
  688. unmap_extent_buffer(eb, map_token, KM_USER0);
  689. map_token = NULL;
  690. }
  691. err = map_private_extent_buffer(eb, offset,
  692. sizeof(struct btrfs_disk_key),
  693. &map_token, &kaddr,
  694. &map_start, &map_len, KM_USER0);
  695. if (!err) {
  696. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  697. map_start);
  698. } else {
  699. read_extent_buffer(eb, &unaligned,
  700. offset, sizeof(unaligned));
  701. tmp = &unaligned;
  702. }
  703. } else {
  704. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  705. map_start);
  706. }
  707. ret = comp_keys(tmp, key);
  708. if (ret < 0)
  709. low = mid + 1;
  710. else if (ret > 0)
  711. high = mid;
  712. else {
  713. *slot = mid;
  714. if (map_token)
  715. unmap_extent_buffer(eb, map_token, KM_USER0);
  716. return 0;
  717. }
  718. }
  719. *slot = low;
  720. if (map_token)
  721. unmap_extent_buffer(eb, map_token, KM_USER0);
  722. return 1;
  723. }
  724. /*
  725. * simple bin_search frontend that does the right thing for
  726. * leaves vs nodes
  727. */
  728. static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  729. int level, int *slot)
  730. {
  731. if (level == 0) {
  732. return generic_bin_search(eb,
  733. offsetof(struct btrfs_leaf, items),
  734. sizeof(struct btrfs_item),
  735. key, btrfs_header_nritems(eb),
  736. slot);
  737. } else {
  738. return generic_bin_search(eb,
  739. offsetof(struct btrfs_node, ptrs),
  740. sizeof(struct btrfs_key_ptr),
  741. key, btrfs_header_nritems(eb),
  742. slot);
  743. }
  744. return -1;
  745. }
  746. int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  747. int level, int *slot)
  748. {
  749. return bin_search(eb, key, level, slot);
  750. }
  751. static void root_add_used(struct btrfs_root *root, u32 size)
  752. {
  753. spin_lock(&root->accounting_lock);
  754. btrfs_set_root_used(&root->root_item,
  755. btrfs_root_used(&root->root_item) + size);
  756. spin_unlock(&root->accounting_lock);
  757. }
  758. static void root_sub_used(struct btrfs_root *root, u32 size)
  759. {
  760. spin_lock(&root->accounting_lock);
  761. btrfs_set_root_used(&root->root_item,
  762. btrfs_root_used(&root->root_item) - size);
  763. spin_unlock(&root->accounting_lock);
  764. }
  765. /* given a node and slot number, this reads the blocks it points to. The
  766. * extent buffer is returned with a reference taken (but unlocked).
  767. * NULL is returned on error.
  768. */
  769. static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
  770. struct extent_buffer *parent, int slot)
  771. {
  772. int level = btrfs_header_level(parent);
  773. if (slot < 0)
  774. return NULL;
  775. if (slot >= btrfs_header_nritems(parent))
  776. return NULL;
  777. BUG_ON(level == 0);
  778. return read_tree_block(root, btrfs_node_blockptr(parent, slot),
  779. btrfs_level_size(root, level - 1),
  780. btrfs_node_ptr_generation(parent, slot));
  781. }
  782. /*
  783. * node level balancing, used to make sure nodes are in proper order for
  784. * item deletion. We balance from the top down, so we have to make sure
  785. * that a deletion won't leave an node completely empty later on.
  786. */
  787. static noinline int balance_level(struct btrfs_trans_handle *trans,
  788. struct btrfs_root *root,
  789. struct btrfs_path *path, int level)
  790. {
  791. struct extent_buffer *right = NULL;
  792. struct extent_buffer *mid;
  793. struct extent_buffer *left = NULL;
  794. struct extent_buffer *parent = NULL;
  795. int ret = 0;
  796. int wret;
  797. int pslot;
  798. int orig_slot = path->slots[level];
  799. u64 orig_ptr;
  800. if (level == 0)
  801. return 0;
  802. mid = path->nodes[level];
  803. WARN_ON(!path->locks[level]);
  804. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  805. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  806. if (level < BTRFS_MAX_LEVEL - 1)
  807. parent = path->nodes[level + 1];
  808. pslot = path->slots[level + 1];
  809. /*
  810. * deal with the case where there is only one pointer in the root
  811. * by promoting the node below to a root
  812. */
  813. if (!parent) {
  814. struct extent_buffer *child;
  815. if (btrfs_header_nritems(mid) != 1)
  816. return 0;
  817. /* promote the child to a root */
  818. child = read_node_slot(root, mid, 0);
  819. BUG_ON(!child);
  820. btrfs_tree_lock(child);
  821. btrfs_set_lock_blocking(child);
  822. ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
  823. if (ret) {
  824. btrfs_tree_unlock(child);
  825. free_extent_buffer(child);
  826. goto enospc;
  827. }
  828. rcu_assign_pointer(root->node, child);
  829. add_root_to_dirty_list(root);
  830. btrfs_tree_unlock(child);
  831. path->locks[level] = 0;
  832. path->nodes[level] = NULL;
  833. clean_tree_block(trans, root, mid);
  834. btrfs_tree_unlock(mid);
  835. /* once for the path */
  836. free_extent_buffer(mid);
  837. root_sub_used(root, mid->len);
  838. btrfs_free_tree_block(trans, root, mid, 0, 1);
  839. /* once for the root ptr */
  840. free_extent_buffer(mid);
  841. return 0;
  842. }
  843. if (btrfs_header_nritems(mid) >
  844. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  845. return 0;
  846. btrfs_header_nritems(mid);
  847. left = read_node_slot(root, parent, pslot - 1);
  848. if (left) {
  849. btrfs_tree_lock(left);
  850. btrfs_set_lock_blocking(left);
  851. wret = btrfs_cow_block(trans, root, left,
  852. parent, pslot - 1, &left);
  853. if (wret) {
  854. ret = wret;
  855. goto enospc;
  856. }
  857. }
  858. right = read_node_slot(root, parent, pslot + 1);
  859. if (right) {
  860. btrfs_tree_lock(right);
  861. btrfs_set_lock_blocking(right);
  862. wret = btrfs_cow_block(trans, root, right,
  863. parent, pslot + 1, &right);
  864. if (wret) {
  865. ret = wret;
  866. goto enospc;
  867. }
  868. }
  869. /* first, try to make some room in the middle buffer */
  870. if (left) {
  871. orig_slot += btrfs_header_nritems(left);
  872. wret = push_node_left(trans, root, left, mid, 1);
  873. if (wret < 0)
  874. ret = wret;
  875. btrfs_header_nritems(mid);
  876. }
  877. /*
  878. * then try to empty the right most buffer into the middle
  879. */
  880. if (right) {
  881. wret = push_node_left(trans, root, mid, right, 1);
  882. if (wret < 0 && wret != -ENOSPC)
  883. ret = wret;
  884. if (btrfs_header_nritems(right) == 0) {
  885. clean_tree_block(trans, root, right);
  886. btrfs_tree_unlock(right);
  887. wret = del_ptr(trans, root, path, level + 1, pslot +
  888. 1);
  889. if (wret)
  890. ret = wret;
  891. root_sub_used(root, right->len);
  892. btrfs_free_tree_block(trans, root, right, 0, 1);
  893. free_extent_buffer(right);
  894. right = NULL;
  895. } else {
  896. struct btrfs_disk_key right_key;
  897. btrfs_node_key(right, &right_key, 0);
  898. btrfs_set_node_key(parent, &right_key, pslot + 1);
  899. btrfs_mark_buffer_dirty(parent);
  900. }
  901. }
  902. if (btrfs_header_nritems(mid) == 1) {
  903. /*
  904. * we're not allowed to leave a node with one item in the
  905. * tree during a delete. A deletion from lower in the tree
  906. * could try to delete the only pointer in this node.
  907. * So, pull some keys from the left.
  908. * There has to be a left pointer at this point because
  909. * otherwise we would have pulled some pointers from the
  910. * right
  911. */
  912. BUG_ON(!left);
  913. wret = balance_node_right(trans, root, mid, left);
  914. if (wret < 0) {
  915. ret = wret;
  916. goto enospc;
  917. }
  918. if (wret == 1) {
  919. wret = push_node_left(trans, root, left, mid, 1);
  920. if (wret < 0)
  921. ret = wret;
  922. }
  923. BUG_ON(wret == 1);
  924. }
  925. if (btrfs_header_nritems(mid) == 0) {
  926. clean_tree_block(trans, root, mid);
  927. btrfs_tree_unlock(mid);
  928. wret = del_ptr(trans, root, path, level + 1, pslot);
  929. if (wret)
  930. ret = wret;
  931. root_sub_used(root, mid->len);
  932. btrfs_free_tree_block(trans, root, mid, 0, 1);
  933. free_extent_buffer(mid);
  934. mid = NULL;
  935. } else {
  936. /* update the parent key to reflect our changes */
  937. struct btrfs_disk_key mid_key;
  938. btrfs_node_key(mid, &mid_key, 0);
  939. btrfs_set_node_key(parent, &mid_key, pslot);
  940. btrfs_mark_buffer_dirty(parent);
  941. }
  942. /* update the path */
  943. if (left) {
  944. if (btrfs_header_nritems(left) > orig_slot) {
  945. extent_buffer_get(left);
  946. /* left was locked after cow */
  947. path->nodes[level] = left;
  948. path->slots[level + 1] -= 1;
  949. path->slots[level] = orig_slot;
  950. if (mid) {
  951. btrfs_tree_unlock(mid);
  952. free_extent_buffer(mid);
  953. }
  954. } else {
  955. orig_slot -= btrfs_header_nritems(left);
  956. path->slots[level] = orig_slot;
  957. }
  958. }
  959. /* double check we haven't messed things up */
  960. if (orig_ptr !=
  961. btrfs_node_blockptr(path->nodes[level], path->slots[level]))
  962. BUG();
  963. enospc:
  964. if (right) {
  965. btrfs_tree_unlock(right);
  966. free_extent_buffer(right);
  967. }
  968. if (left) {
  969. if (path->nodes[level] != left)
  970. btrfs_tree_unlock(left);
  971. free_extent_buffer(left);
  972. }
  973. return ret;
  974. }
  975. /* Node balancing for insertion. Here we only split or push nodes around
  976. * when they are completely full. This is also done top down, so we
  977. * have to be pessimistic.
  978. */
  979. static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
  980. struct btrfs_root *root,
  981. struct btrfs_path *path, int level)
  982. {
  983. struct extent_buffer *right = NULL;
  984. struct extent_buffer *mid;
  985. struct extent_buffer *left = NULL;
  986. struct extent_buffer *parent = NULL;
  987. int ret = 0;
  988. int wret;
  989. int pslot;
  990. int orig_slot = path->slots[level];
  991. if (level == 0)
  992. return 1;
  993. mid = path->nodes[level];
  994. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  995. if (level < BTRFS_MAX_LEVEL - 1)
  996. parent = path->nodes[level + 1];
  997. pslot = path->slots[level + 1];
  998. if (!parent)
  999. return 1;
  1000. left = read_node_slot(root, parent, pslot - 1);
  1001. /* first, try to make some room in the middle buffer */
  1002. if (left) {
  1003. u32 left_nr;
  1004. btrfs_tree_lock(left);
  1005. btrfs_set_lock_blocking(left);
  1006. left_nr = btrfs_header_nritems(left);
  1007. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1008. wret = 1;
  1009. } else {
  1010. ret = btrfs_cow_block(trans, root, left, parent,
  1011. pslot - 1, &left);
  1012. if (ret)
  1013. wret = 1;
  1014. else {
  1015. wret = push_node_left(trans, root,
  1016. left, mid, 0);
  1017. }
  1018. }
  1019. if (wret < 0)
  1020. ret = wret;
  1021. if (wret == 0) {
  1022. struct btrfs_disk_key disk_key;
  1023. orig_slot += left_nr;
  1024. btrfs_node_key(mid, &disk_key, 0);
  1025. btrfs_set_node_key(parent, &disk_key, pslot);
  1026. btrfs_mark_buffer_dirty(parent);
  1027. if (btrfs_header_nritems(left) > orig_slot) {
  1028. path->nodes[level] = left;
  1029. path->slots[level + 1] -= 1;
  1030. path->slots[level] = orig_slot;
  1031. btrfs_tree_unlock(mid);
  1032. free_extent_buffer(mid);
  1033. } else {
  1034. orig_slot -=
  1035. btrfs_header_nritems(left);
  1036. path->slots[level] = orig_slot;
  1037. btrfs_tree_unlock(left);
  1038. free_extent_buffer(left);
  1039. }
  1040. return 0;
  1041. }
  1042. btrfs_tree_unlock(left);
  1043. free_extent_buffer(left);
  1044. }
  1045. right = read_node_slot(root, parent, pslot + 1);
  1046. /*
  1047. * then try to empty the right most buffer into the middle
  1048. */
  1049. if (right) {
  1050. u32 right_nr;
  1051. btrfs_tree_lock(right);
  1052. btrfs_set_lock_blocking(right);
  1053. right_nr = btrfs_header_nritems(right);
  1054. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1055. wret = 1;
  1056. } else {
  1057. ret = btrfs_cow_block(trans, root, right,
  1058. parent, pslot + 1,
  1059. &right);
  1060. if (ret)
  1061. wret = 1;
  1062. else {
  1063. wret = balance_node_right(trans, root,
  1064. right, mid);
  1065. }
  1066. }
  1067. if (wret < 0)
  1068. ret = wret;
  1069. if (wret == 0) {
  1070. struct btrfs_disk_key disk_key;
  1071. btrfs_node_key(right, &disk_key, 0);
  1072. btrfs_set_node_key(parent, &disk_key, pslot + 1);
  1073. btrfs_mark_buffer_dirty(parent);
  1074. if (btrfs_header_nritems(mid) <= orig_slot) {
  1075. path->nodes[level] = right;
  1076. path->slots[level + 1] += 1;
  1077. path->slots[level] = orig_slot -
  1078. btrfs_header_nritems(mid);
  1079. btrfs_tree_unlock(mid);
  1080. free_extent_buffer(mid);
  1081. } else {
  1082. btrfs_tree_unlock(right);
  1083. free_extent_buffer(right);
  1084. }
  1085. return 0;
  1086. }
  1087. btrfs_tree_unlock(right);
  1088. free_extent_buffer(right);
  1089. }
  1090. return 1;
  1091. }
  1092. /*
  1093. * readahead one full node of leaves, finding things that are close
  1094. * to the block in 'slot', and triggering ra on them.
  1095. */
  1096. static void reada_for_search(struct btrfs_root *root,
  1097. struct btrfs_path *path,
  1098. int level, int slot, u64 objectid)
  1099. {
  1100. struct extent_buffer *node;
  1101. struct btrfs_disk_key disk_key;
  1102. u32 nritems;
  1103. u64 search;
  1104. u64 target;
  1105. u64 nread = 0;
  1106. u64 gen;
  1107. int direction = path->reada;
  1108. struct extent_buffer *eb;
  1109. u32 nr;
  1110. u32 blocksize;
  1111. u32 nscan = 0;
  1112. if (level != 1)
  1113. return;
  1114. if (!path->nodes[level])
  1115. return;
  1116. node = path->nodes[level];
  1117. search = btrfs_node_blockptr(node, slot);
  1118. blocksize = btrfs_level_size(root, level - 1);
  1119. eb = btrfs_find_tree_block(root, search, blocksize);
  1120. if (eb) {
  1121. free_extent_buffer(eb);
  1122. return;
  1123. }
  1124. target = search;
  1125. nritems = btrfs_header_nritems(node);
  1126. nr = slot;
  1127. while (1) {
  1128. if (!node->map_token) {
  1129. unsigned long offset = btrfs_node_key_ptr_offset(nr);
  1130. map_private_extent_buffer(node, offset,
  1131. sizeof(struct btrfs_key_ptr),
  1132. &node->map_token,
  1133. &node->kaddr,
  1134. &node->map_start,
  1135. &node->map_len, KM_USER1);
  1136. }
  1137. if (direction < 0) {
  1138. if (nr == 0)
  1139. break;
  1140. nr--;
  1141. } else if (direction > 0) {
  1142. nr++;
  1143. if (nr >= nritems)
  1144. break;
  1145. }
  1146. if (path->reada < 0 && objectid) {
  1147. btrfs_node_key(node, &disk_key, nr);
  1148. if (btrfs_disk_key_objectid(&disk_key) != objectid)
  1149. break;
  1150. }
  1151. search = btrfs_node_blockptr(node, nr);
  1152. if ((search <= target && target - search <= 65536) ||
  1153. (search > target && search - target <= 65536)) {
  1154. gen = btrfs_node_ptr_generation(node, nr);
  1155. if (node->map_token) {
  1156. unmap_extent_buffer(node, node->map_token,
  1157. KM_USER1);
  1158. node->map_token = NULL;
  1159. }
  1160. readahead_tree_block(root, search, blocksize, gen);
  1161. nread += blocksize;
  1162. }
  1163. nscan++;
  1164. if ((nread > 65536 || nscan > 32))
  1165. break;
  1166. }
  1167. if (node->map_token) {
  1168. unmap_extent_buffer(node, node->map_token, KM_USER1);
  1169. node->map_token = NULL;
  1170. }
  1171. }
  1172. /*
  1173. * returns -EAGAIN if it had to drop the path, or zero if everything was in
  1174. * cache
  1175. */
  1176. static noinline int reada_for_balance(struct btrfs_root *root,
  1177. struct btrfs_path *path, int level)
  1178. {
  1179. int slot;
  1180. int nritems;
  1181. struct extent_buffer *parent;
  1182. struct extent_buffer *eb;
  1183. u64 gen;
  1184. u64 block1 = 0;
  1185. u64 block2 = 0;
  1186. int ret = 0;
  1187. int blocksize;
  1188. parent = path->nodes[level + 1];
  1189. if (!parent)
  1190. return 0;
  1191. nritems = btrfs_header_nritems(parent);
  1192. slot = path->slots[level + 1];
  1193. blocksize = btrfs_level_size(root, level);
  1194. if (slot > 0) {
  1195. block1 = btrfs_node_blockptr(parent, slot - 1);
  1196. gen = btrfs_node_ptr_generation(parent, slot - 1);
  1197. eb = btrfs_find_tree_block(root, block1, blocksize);
  1198. if (eb && btrfs_buffer_uptodate(eb, gen))
  1199. block1 = 0;
  1200. free_extent_buffer(eb);
  1201. }
  1202. if (slot + 1 < nritems) {
  1203. block2 = btrfs_node_blockptr(parent, slot + 1);
  1204. gen = btrfs_node_ptr_generation(parent, slot + 1);
  1205. eb = btrfs_find_tree_block(root, block2, blocksize);
  1206. if (eb && btrfs_buffer_uptodate(eb, gen))
  1207. block2 = 0;
  1208. free_extent_buffer(eb);
  1209. }
  1210. if (block1 || block2) {
  1211. ret = -EAGAIN;
  1212. /* release the whole path */
  1213. btrfs_release_path(root, path);
  1214. /* read the blocks */
  1215. if (block1)
  1216. readahead_tree_block(root, block1, blocksize, 0);
  1217. if (block2)
  1218. readahead_tree_block(root, block2, blocksize, 0);
  1219. if (block1) {
  1220. eb = read_tree_block(root, block1, blocksize, 0);
  1221. free_extent_buffer(eb);
  1222. }
  1223. if (block2) {
  1224. eb = read_tree_block(root, block2, blocksize, 0);
  1225. free_extent_buffer(eb);
  1226. }
  1227. }
  1228. return ret;
  1229. }
  1230. /*
  1231. * when we walk down the tree, it is usually safe to unlock the higher layers
  1232. * in the tree. The exceptions are when our path goes through slot 0, because
  1233. * operations on the tree might require changing key pointers higher up in the
  1234. * tree.
  1235. *
  1236. * callers might also have set path->keep_locks, which tells this code to keep
  1237. * the lock if the path points to the last slot in the block. This is part of
  1238. * walking through the tree, and selecting the next slot in the higher block.
  1239. *
  1240. * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
  1241. * if lowest_unlock is 1, level 0 won't be unlocked
  1242. */
  1243. static noinline void unlock_up(struct btrfs_path *path, int level,
  1244. int lowest_unlock)
  1245. {
  1246. int i;
  1247. int skip_level = level;
  1248. int no_skips = 0;
  1249. struct extent_buffer *t;
  1250. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1251. if (!path->nodes[i])
  1252. break;
  1253. if (!path->locks[i])
  1254. break;
  1255. if (!no_skips && path->slots[i] == 0) {
  1256. skip_level = i + 1;
  1257. continue;
  1258. }
  1259. if (!no_skips && path->keep_locks) {
  1260. u32 nritems;
  1261. t = path->nodes[i];
  1262. nritems = btrfs_header_nritems(t);
  1263. if (nritems < 1 || path->slots[i] >= nritems - 1) {
  1264. skip_level = i + 1;
  1265. continue;
  1266. }
  1267. }
  1268. if (skip_level < i && i >= lowest_unlock)
  1269. no_skips = 1;
  1270. t = path->nodes[i];
  1271. if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
  1272. btrfs_tree_unlock(t);
  1273. path->locks[i] = 0;
  1274. }
  1275. }
  1276. }
  1277. /*
  1278. * This releases any locks held in the path starting at level and
  1279. * going all the way up to the root.
  1280. *
  1281. * btrfs_search_slot will keep the lock held on higher nodes in a few
  1282. * corner cases, such as COW of the block at slot zero in the node. This
  1283. * ignores those rules, and it should only be called when there are no
  1284. * more updates to be done higher up in the tree.
  1285. */
  1286. noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
  1287. {
  1288. int i;
  1289. if (path->keep_locks)
  1290. return;
  1291. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1292. if (!path->nodes[i])
  1293. continue;
  1294. if (!path->locks[i])
  1295. continue;
  1296. btrfs_tree_unlock(path->nodes[i]);
  1297. path->locks[i] = 0;
  1298. }
  1299. }
  1300. /*
  1301. * helper function for btrfs_search_slot. The goal is to find a block
  1302. * in cache without setting the path to blocking. If we find the block
  1303. * we return zero and the path is unchanged.
  1304. *
  1305. * If we can't find the block, we set the path blocking and do some
  1306. * reada. -EAGAIN is returned and the search must be repeated.
  1307. */
  1308. static int
  1309. read_block_for_search(struct btrfs_trans_handle *trans,
  1310. struct btrfs_root *root, struct btrfs_path *p,
  1311. struct extent_buffer **eb_ret, int level, int slot,
  1312. struct btrfs_key *key)
  1313. {
  1314. u64 blocknr;
  1315. u64 gen;
  1316. u32 blocksize;
  1317. struct extent_buffer *b = *eb_ret;
  1318. struct extent_buffer *tmp;
  1319. int ret;
  1320. blocknr = btrfs_node_blockptr(b, slot);
  1321. gen = btrfs_node_ptr_generation(b, slot);
  1322. blocksize = btrfs_level_size(root, level - 1);
  1323. tmp = btrfs_find_tree_block(root, blocknr, blocksize);
  1324. if (tmp) {
  1325. if (btrfs_buffer_uptodate(tmp, 0)) {
  1326. if (btrfs_buffer_uptodate(tmp, gen)) {
  1327. /*
  1328. * we found an up to date block without
  1329. * sleeping, return
  1330. * right away
  1331. */
  1332. *eb_ret = tmp;
  1333. return 0;
  1334. }
  1335. /* the pages were up to date, but we failed
  1336. * the generation number check. Do a full
  1337. * read for the generation number that is correct.
  1338. * We must do this without dropping locks so
  1339. * we can trust our generation number
  1340. */
  1341. free_extent_buffer(tmp);
  1342. tmp = read_tree_block(root, blocknr, blocksize, gen);
  1343. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  1344. *eb_ret = tmp;
  1345. return 0;
  1346. }
  1347. free_extent_buffer(tmp);
  1348. btrfs_release_path(NULL, p);
  1349. return -EIO;
  1350. }
  1351. }
  1352. /*
  1353. * reduce lock contention at high levels
  1354. * of the btree by dropping locks before
  1355. * we read. Don't release the lock on the current
  1356. * level because we need to walk this node to figure
  1357. * out which blocks to read.
  1358. */
  1359. btrfs_unlock_up_safe(p, level + 1);
  1360. btrfs_set_path_blocking(p);
  1361. free_extent_buffer(tmp);
  1362. if (p->reada)
  1363. reada_for_search(root, p, level, slot, key->objectid);
  1364. btrfs_release_path(NULL, p);
  1365. ret = -EAGAIN;
  1366. tmp = read_tree_block(root, blocknr, blocksize, 0);
  1367. if (tmp) {
  1368. /*
  1369. * If the read above didn't mark this buffer up to date,
  1370. * it will never end up being up to date. Set ret to EIO now
  1371. * and give up so that our caller doesn't loop forever
  1372. * on our EAGAINs.
  1373. */
  1374. if (!btrfs_buffer_uptodate(tmp, 0))
  1375. ret = -EIO;
  1376. free_extent_buffer(tmp);
  1377. }
  1378. return ret;
  1379. }
  1380. /*
  1381. * helper function for btrfs_search_slot. This does all of the checks
  1382. * for node-level blocks and does any balancing required based on
  1383. * the ins_len.
  1384. *
  1385. * If no extra work was required, zero is returned. If we had to
  1386. * drop the path, -EAGAIN is returned and btrfs_search_slot must
  1387. * start over
  1388. */
  1389. static int
  1390. setup_nodes_for_search(struct btrfs_trans_handle *trans,
  1391. struct btrfs_root *root, struct btrfs_path *p,
  1392. struct extent_buffer *b, int level, int ins_len)
  1393. {
  1394. int ret;
  1395. if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
  1396. BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
  1397. int sret;
  1398. sret = reada_for_balance(root, p, level);
  1399. if (sret)
  1400. goto again;
  1401. btrfs_set_path_blocking(p);
  1402. sret = split_node(trans, root, p, level);
  1403. btrfs_clear_path_blocking(p, NULL);
  1404. BUG_ON(sret > 0);
  1405. if (sret) {
  1406. ret = sret;
  1407. goto done;
  1408. }
  1409. b = p->nodes[level];
  1410. } else if (ins_len < 0 && btrfs_header_nritems(b) <
  1411. BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
  1412. int sret;
  1413. sret = reada_for_balance(root, p, level);
  1414. if (sret)
  1415. goto again;
  1416. btrfs_set_path_blocking(p);
  1417. sret = balance_level(trans, root, p, level);
  1418. btrfs_clear_path_blocking(p, NULL);
  1419. if (sret) {
  1420. ret = sret;
  1421. goto done;
  1422. }
  1423. b = p->nodes[level];
  1424. if (!b) {
  1425. btrfs_release_path(NULL, p);
  1426. goto again;
  1427. }
  1428. BUG_ON(btrfs_header_nritems(b) == 1);
  1429. }
  1430. return 0;
  1431. again:
  1432. ret = -EAGAIN;
  1433. done:
  1434. return ret;
  1435. }
  1436. /*
  1437. * look for key in the tree. path is filled in with nodes along the way
  1438. * if key is found, we return zero and you can find the item in the leaf
  1439. * level of the path (level 0)
  1440. *
  1441. * If the key isn't found, the path points to the slot where it should
  1442. * be inserted, and 1 is returned. If there are other errors during the
  1443. * search a negative error number is returned.
  1444. *
  1445. * if ins_len > 0, nodes and leaves will be split as we walk down the
  1446. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  1447. * possible)
  1448. */
  1449. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  1450. *root, struct btrfs_key *key, struct btrfs_path *p, int
  1451. ins_len, int cow)
  1452. {
  1453. struct extent_buffer *b;
  1454. int slot;
  1455. int ret;
  1456. int err;
  1457. int level;
  1458. int lowest_unlock = 1;
  1459. u8 lowest_level = 0;
  1460. lowest_level = p->lowest_level;
  1461. WARN_ON(lowest_level && ins_len > 0);
  1462. WARN_ON(p->nodes[0] != NULL);
  1463. if (ins_len < 0)
  1464. lowest_unlock = 2;
  1465. again:
  1466. if (p->search_commit_root) {
  1467. b = root->commit_root;
  1468. extent_buffer_get(b);
  1469. if (!p->skip_locking)
  1470. btrfs_tree_lock(b);
  1471. } else {
  1472. if (p->skip_locking)
  1473. b = btrfs_root_node(root);
  1474. else
  1475. b = btrfs_lock_root_node(root);
  1476. }
  1477. while (b) {
  1478. level = btrfs_header_level(b);
  1479. /*
  1480. * setup the path here so we can release it under lock
  1481. * contention with the cow code
  1482. */
  1483. p->nodes[level] = b;
  1484. if (!p->skip_locking)
  1485. p->locks[level] = 1;
  1486. if (cow) {
  1487. /*
  1488. * if we don't really need to cow this block
  1489. * then we don't want to set the path blocking,
  1490. * so we test it here
  1491. */
  1492. if (!should_cow_block(trans, root, b))
  1493. goto cow_done;
  1494. btrfs_set_path_blocking(p);
  1495. err = btrfs_cow_block(trans, root, b,
  1496. p->nodes[level + 1],
  1497. p->slots[level + 1], &b);
  1498. if (err) {
  1499. ret = err;
  1500. goto done;
  1501. }
  1502. }
  1503. cow_done:
  1504. BUG_ON(!cow && ins_len);
  1505. p->nodes[level] = b;
  1506. if (!p->skip_locking)
  1507. p->locks[level] = 1;
  1508. btrfs_clear_path_blocking(p, NULL);
  1509. /*
  1510. * we have a lock on b and as long as we aren't changing
  1511. * the tree, there is no way to for the items in b to change.
  1512. * It is safe to drop the lock on our parent before we
  1513. * go through the expensive btree search on b.
  1514. *
  1515. * If cow is true, then we might be changing slot zero,
  1516. * which may require changing the parent. So, we can't
  1517. * drop the lock until after we know which slot we're
  1518. * operating on.
  1519. */
  1520. if (!cow)
  1521. btrfs_unlock_up_safe(p, level + 1);
  1522. ret = bin_search(b, key, level, &slot);
  1523. if (level != 0) {
  1524. int dec = 0;
  1525. if (ret && slot > 0) {
  1526. dec = 1;
  1527. slot -= 1;
  1528. }
  1529. p->slots[level] = slot;
  1530. err = setup_nodes_for_search(trans, root, p, b, level,
  1531. ins_len);
  1532. if (err == -EAGAIN)
  1533. goto again;
  1534. if (err) {
  1535. ret = err;
  1536. goto done;
  1537. }
  1538. b = p->nodes[level];
  1539. slot = p->slots[level];
  1540. unlock_up(p, level, lowest_unlock);
  1541. if (level == lowest_level) {
  1542. if (dec)
  1543. p->slots[level]++;
  1544. goto done;
  1545. }
  1546. err = read_block_for_search(trans, root, p,
  1547. &b, level, slot, key);
  1548. if (err == -EAGAIN)
  1549. goto again;
  1550. if (err) {
  1551. ret = err;
  1552. goto done;
  1553. }
  1554. if (!p->skip_locking) {
  1555. btrfs_clear_path_blocking(p, NULL);
  1556. err = btrfs_try_spin_lock(b);
  1557. if (!err) {
  1558. btrfs_set_path_blocking(p);
  1559. btrfs_tree_lock(b);
  1560. btrfs_clear_path_blocking(p, b);
  1561. }
  1562. }
  1563. } else {
  1564. p->slots[level] = slot;
  1565. if (ins_len > 0 &&
  1566. btrfs_leaf_free_space(root, b) < ins_len) {
  1567. btrfs_set_path_blocking(p);
  1568. err = split_leaf(trans, root, key,
  1569. p, ins_len, ret == 0);
  1570. btrfs_clear_path_blocking(p, NULL);
  1571. BUG_ON(err > 0);
  1572. if (err) {
  1573. ret = err;
  1574. goto done;
  1575. }
  1576. }
  1577. if (!p->search_for_split)
  1578. unlock_up(p, level, lowest_unlock);
  1579. goto done;
  1580. }
  1581. }
  1582. ret = 1;
  1583. done:
  1584. /*
  1585. * we don't really know what they plan on doing with the path
  1586. * from here on, so for now just mark it as blocking
  1587. */
  1588. if (!p->leave_spinning)
  1589. btrfs_set_path_blocking(p);
  1590. if (ret < 0)
  1591. btrfs_release_path(root, p);
  1592. return ret;
  1593. }
  1594. /*
  1595. * adjust the pointers going up the tree, starting at level
  1596. * making sure the right key of each node is points to 'key'.
  1597. * This is used after shifting pointers to the left, so it stops
  1598. * fixing up pointers when a given leaf/node is not in slot 0 of the
  1599. * higher levels
  1600. *
  1601. * If this fails to write a tree block, it returns -1, but continues
  1602. * fixing up the blocks in ram so the tree is consistent.
  1603. */
  1604. static int fixup_low_keys(struct btrfs_trans_handle *trans,
  1605. struct btrfs_root *root, struct btrfs_path *path,
  1606. struct btrfs_disk_key *key, int level)
  1607. {
  1608. int i;
  1609. int ret = 0;
  1610. struct extent_buffer *t;
  1611. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1612. int tslot = path->slots[i];
  1613. if (!path->nodes[i])
  1614. break;
  1615. t = path->nodes[i];
  1616. btrfs_set_node_key(t, key, tslot);
  1617. btrfs_mark_buffer_dirty(path->nodes[i]);
  1618. if (tslot != 0)
  1619. break;
  1620. }
  1621. return ret;
  1622. }
  1623. /*
  1624. * update item key.
  1625. *
  1626. * This function isn't completely safe. It's the caller's responsibility
  1627. * that the new key won't break the order
  1628. */
  1629. int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
  1630. struct btrfs_root *root, struct btrfs_path *path,
  1631. struct btrfs_key *new_key)
  1632. {
  1633. struct btrfs_disk_key disk_key;
  1634. struct extent_buffer *eb;
  1635. int slot;
  1636. eb = path->nodes[0];
  1637. slot = path->slots[0];
  1638. if (slot > 0) {
  1639. btrfs_item_key(eb, &disk_key, slot - 1);
  1640. if (comp_keys(&disk_key, new_key) >= 0)
  1641. return -1;
  1642. }
  1643. if (slot < btrfs_header_nritems(eb) - 1) {
  1644. btrfs_item_key(eb, &disk_key, slot + 1);
  1645. if (comp_keys(&disk_key, new_key) <= 0)
  1646. return -1;
  1647. }
  1648. btrfs_cpu_key_to_disk(&disk_key, new_key);
  1649. btrfs_set_item_key(eb, &disk_key, slot);
  1650. btrfs_mark_buffer_dirty(eb);
  1651. if (slot == 0)
  1652. fixup_low_keys(trans, root, path, &disk_key, 1);
  1653. return 0;
  1654. }
  1655. /*
  1656. * try to push data from one node into the next node left in the
  1657. * tree.
  1658. *
  1659. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  1660. * error, and > 0 if there was no room in the left hand block.
  1661. */
  1662. static int push_node_left(struct btrfs_trans_handle *trans,
  1663. struct btrfs_root *root, struct extent_buffer *dst,
  1664. struct extent_buffer *src, int empty)
  1665. {
  1666. int push_items = 0;
  1667. int src_nritems;
  1668. int dst_nritems;
  1669. int ret = 0;
  1670. src_nritems = btrfs_header_nritems(src);
  1671. dst_nritems = btrfs_header_nritems(dst);
  1672. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1673. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1674. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1675. if (!empty && src_nritems <= 8)
  1676. return 1;
  1677. if (push_items <= 0)
  1678. return 1;
  1679. if (empty) {
  1680. push_items = min(src_nritems, push_items);
  1681. if (push_items < src_nritems) {
  1682. /* leave at least 8 pointers in the node if
  1683. * we aren't going to empty it
  1684. */
  1685. if (src_nritems - push_items < 8) {
  1686. if (push_items <= 8)
  1687. return 1;
  1688. push_items -= 8;
  1689. }
  1690. }
  1691. } else
  1692. push_items = min(src_nritems - 8, push_items);
  1693. copy_extent_buffer(dst, src,
  1694. btrfs_node_key_ptr_offset(dst_nritems),
  1695. btrfs_node_key_ptr_offset(0),
  1696. push_items * sizeof(struct btrfs_key_ptr));
  1697. if (push_items < src_nritems) {
  1698. memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
  1699. btrfs_node_key_ptr_offset(push_items),
  1700. (src_nritems - push_items) *
  1701. sizeof(struct btrfs_key_ptr));
  1702. }
  1703. btrfs_set_header_nritems(src, src_nritems - push_items);
  1704. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1705. btrfs_mark_buffer_dirty(src);
  1706. btrfs_mark_buffer_dirty(dst);
  1707. return ret;
  1708. }
  1709. /*
  1710. * try to push data from one node into the next node right in the
  1711. * tree.
  1712. *
  1713. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  1714. * error, and > 0 if there was no room in the right hand block.
  1715. *
  1716. * this will only push up to 1/2 the contents of the left node over
  1717. */
  1718. static int balance_node_right(struct btrfs_trans_handle *trans,
  1719. struct btrfs_root *root,
  1720. struct extent_buffer *dst,
  1721. struct extent_buffer *src)
  1722. {
  1723. int push_items = 0;
  1724. int max_push;
  1725. int src_nritems;
  1726. int dst_nritems;
  1727. int ret = 0;
  1728. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1729. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1730. src_nritems = btrfs_header_nritems(src);
  1731. dst_nritems = btrfs_header_nritems(dst);
  1732. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1733. if (push_items <= 0)
  1734. return 1;
  1735. if (src_nritems < 4)
  1736. return 1;
  1737. max_push = src_nritems / 2 + 1;
  1738. /* don't try to empty the node */
  1739. if (max_push >= src_nritems)
  1740. return 1;
  1741. if (max_push < push_items)
  1742. push_items = max_push;
  1743. memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
  1744. btrfs_node_key_ptr_offset(0),
  1745. (dst_nritems) *
  1746. sizeof(struct btrfs_key_ptr));
  1747. copy_extent_buffer(dst, src,
  1748. btrfs_node_key_ptr_offset(0),
  1749. btrfs_node_key_ptr_offset(src_nritems - push_items),
  1750. push_items * sizeof(struct btrfs_key_ptr));
  1751. btrfs_set_header_nritems(src, src_nritems - push_items);
  1752. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1753. btrfs_mark_buffer_dirty(src);
  1754. btrfs_mark_buffer_dirty(dst);
  1755. return ret;
  1756. }
  1757. /*
  1758. * helper function to insert a new root level in the tree.
  1759. * A new node is allocated, and a single item is inserted to
  1760. * point to the existing root
  1761. *
  1762. * returns zero on success or < 0 on failure.
  1763. */
  1764. static noinline int insert_new_root(struct btrfs_trans_handle *trans,
  1765. struct btrfs_root *root,
  1766. struct btrfs_path *path, int level)
  1767. {
  1768. u64 lower_gen;
  1769. struct extent_buffer *lower;
  1770. struct extent_buffer *c;
  1771. struct extent_buffer *old;
  1772. struct btrfs_disk_key lower_key;
  1773. BUG_ON(path->nodes[level]);
  1774. BUG_ON(path->nodes[level-1] != root->node);
  1775. lower = path->nodes[level-1];
  1776. if (level == 1)
  1777. btrfs_item_key(lower, &lower_key, 0);
  1778. else
  1779. btrfs_node_key(lower, &lower_key, 0);
  1780. c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1781. root->root_key.objectid, &lower_key,
  1782. level, root->node->start, 0);
  1783. if (IS_ERR(c))
  1784. return PTR_ERR(c);
  1785. root_add_used(root, root->nodesize);
  1786. memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
  1787. btrfs_set_header_nritems(c, 1);
  1788. btrfs_set_header_level(c, level);
  1789. btrfs_set_header_bytenr(c, c->start);
  1790. btrfs_set_header_generation(c, trans->transid);
  1791. btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
  1792. btrfs_set_header_owner(c, root->root_key.objectid);
  1793. write_extent_buffer(c, root->fs_info->fsid,
  1794. (unsigned long)btrfs_header_fsid(c),
  1795. BTRFS_FSID_SIZE);
  1796. write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
  1797. (unsigned long)btrfs_header_chunk_tree_uuid(c),
  1798. BTRFS_UUID_SIZE);
  1799. btrfs_set_node_key(c, &lower_key, 0);
  1800. btrfs_set_node_blockptr(c, 0, lower->start);
  1801. lower_gen = btrfs_header_generation(lower);
  1802. WARN_ON(lower_gen != trans->transid);
  1803. btrfs_set_node_ptr_generation(c, 0, lower_gen);
  1804. btrfs_mark_buffer_dirty(c);
  1805. old = root->node;
  1806. rcu_assign_pointer(root->node, c);
  1807. /* the super has an extra ref to root->node */
  1808. free_extent_buffer(old);
  1809. add_root_to_dirty_list(root);
  1810. extent_buffer_get(c);
  1811. path->nodes[level] = c;
  1812. path->locks[level] = 1;
  1813. path->slots[level] = 0;
  1814. return 0;
  1815. }
  1816. /*
  1817. * worker function to insert a single pointer in a node.
  1818. * the node should have enough room for the pointer already
  1819. *
  1820. * slot and level indicate where you want the key to go, and
  1821. * blocknr is the block the key points to.
  1822. *
  1823. * returns zero on success and < 0 on any error
  1824. */
  1825. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  1826. *root, struct btrfs_path *path, struct btrfs_disk_key
  1827. *key, u64 bytenr, int slot, int level)
  1828. {
  1829. struct extent_buffer *lower;
  1830. int nritems;
  1831. BUG_ON(!path->nodes[level]);
  1832. btrfs_assert_tree_locked(path->nodes[level]);
  1833. lower = path->nodes[level];
  1834. nritems = btrfs_header_nritems(lower);
  1835. BUG_ON(slot > nritems);
  1836. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  1837. BUG();
  1838. if (slot != nritems) {
  1839. memmove_extent_buffer(lower,
  1840. btrfs_node_key_ptr_offset(slot + 1),
  1841. btrfs_node_key_ptr_offset(slot),
  1842. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  1843. }
  1844. btrfs_set_node_key(lower, key, slot);
  1845. btrfs_set_node_blockptr(lower, slot, bytenr);
  1846. WARN_ON(trans->transid == 0);
  1847. btrfs_set_node_ptr_generation(lower, slot, trans->transid);
  1848. btrfs_set_header_nritems(lower, nritems + 1);
  1849. btrfs_mark_buffer_dirty(lower);
  1850. return 0;
  1851. }
  1852. /*
  1853. * split the node at the specified level in path in two.
  1854. * The path is corrected to point to the appropriate node after the split
  1855. *
  1856. * Before splitting this tries to make some room in the node by pushing
  1857. * left and right, if either one works, it returns right away.
  1858. *
  1859. * returns 0 on success and < 0 on failure
  1860. */
  1861. static noinline int split_node(struct btrfs_trans_handle *trans,
  1862. struct btrfs_root *root,
  1863. struct btrfs_path *path, int level)
  1864. {
  1865. struct extent_buffer *c;
  1866. struct extent_buffer *split;
  1867. struct btrfs_disk_key disk_key;
  1868. int mid;
  1869. int ret;
  1870. int wret;
  1871. u32 c_nritems;
  1872. c = path->nodes[level];
  1873. WARN_ON(btrfs_header_generation(c) != trans->transid);
  1874. if (c == root->node) {
  1875. /* trying to split the root, lets make a new one */
  1876. ret = insert_new_root(trans, root, path, level + 1);
  1877. if (ret)
  1878. return ret;
  1879. } else {
  1880. ret = push_nodes_for_insert(trans, root, path, level);
  1881. c = path->nodes[level];
  1882. if (!ret && btrfs_header_nritems(c) <
  1883. BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
  1884. return 0;
  1885. if (ret < 0)
  1886. return ret;
  1887. }
  1888. c_nritems = btrfs_header_nritems(c);
  1889. mid = (c_nritems + 1) / 2;
  1890. btrfs_node_key(c, &disk_key, mid);
  1891. split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1892. root->root_key.objectid,
  1893. &disk_key, level, c->start, 0);
  1894. if (IS_ERR(split))
  1895. return PTR_ERR(split);
  1896. root_add_used(root, root->nodesize);
  1897. memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
  1898. btrfs_set_header_level(split, btrfs_header_level(c));
  1899. btrfs_set_header_bytenr(split, split->start);
  1900. btrfs_set_header_generation(split, trans->transid);
  1901. btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
  1902. btrfs_set_header_owner(split, root->root_key.objectid);
  1903. write_extent_buffer(split, root->fs_info->fsid,
  1904. (unsigned long)btrfs_header_fsid(split),
  1905. BTRFS_FSID_SIZE);
  1906. write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
  1907. (unsigned long)btrfs_header_chunk_tree_uuid(split),
  1908. BTRFS_UUID_SIZE);
  1909. copy_extent_buffer(split, c,
  1910. btrfs_node_key_ptr_offset(0),
  1911. btrfs_node_key_ptr_offset(mid),
  1912. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  1913. btrfs_set_header_nritems(split, c_nritems - mid);
  1914. btrfs_set_header_nritems(c, mid);
  1915. ret = 0;
  1916. btrfs_mark_buffer_dirty(c);
  1917. btrfs_mark_buffer_dirty(split);
  1918. wret = insert_ptr(trans, root, path, &disk_key, split->start,
  1919. path->slots[level + 1] + 1,
  1920. level + 1);
  1921. if (wret)
  1922. ret = wret;
  1923. if (path->slots[level] >= mid) {
  1924. path->slots[level] -= mid;
  1925. btrfs_tree_unlock(c);
  1926. free_extent_buffer(c);
  1927. path->nodes[level] = split;
  1928. path->slots[level + 1] += 1;
  1929. } else {
  1930. btrfs_tree_unlock(split);
  1931. free_extent_buffer(split);
  1932. }
  1933. return ret;
  1934. }
  1935. /*
  1936. * how many bytes are required to store the items in a leaf. start
  1937. * and nr indicate which items in the leaf to check. This totals up the
  1938. * space used both by the item structs and the item data
  1939. */
  1940. static int leaf_space_used(struct extent_buffer *l, int start, int nr)
  1941. {
  1942. int data_len;
  1943. int nritems = btrfs_header_nritems(l);
  1944. int end = min(nritems, start + nr) - 1;
  1945. if (!nr)
  1946. return 0;
  1947. data_len = btrfs_item_end_nr(l, start);
  1948. data_len = data_len - btrfs_item_offset_nr(l, end);
  1949. data_len += sizeof(struct btrfs_item) * nr;
  1950. WARN_ON(data_len < 0);
  1951. return data_len;
  1952. }
  1953. /*
  1954. * The space between the end of the leaf items and
  1955. * the start of the leaf data. IOW, how much room
  1956. * the leaf has left for both items and data
  1957. */
  1958. noinline int btrfs_leaf_free_space(struct btrfs_root *root,
  1959. struct extent_buffer *leaf)
  1960. {
  1961. int nritems = btrfs_header_nritems(leaf);
  1962. int ret;
  1963. ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  1964. if (ret < 0) {
  1965. printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
  1966. "used %d nritems %d\n",
  1967. ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
  1968. leaf_space_used(leaf, 0, nritems), nritems);
  1969. }
  1970. return ret;
  1971. }
  1972. /*
  1973. * min slot controls the lowest index we're willing to push to the
  1974. * right. We'll push up to and including min_slot, but no lower
  1975. */
  1976. static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
  1977. struct btrfs_root *root,
  1978. struct btrfs_path *path,
  1979. int data_size, int empty,
  1980. struct extent_buffer *right,
  1981. int free_space, u32 left_nritems,
  1982. u32 min_slot)
  1983. {
  1984. struct extent_buffer *left = path->nodes[0];
  1985. struct extent_buffer *upper = path->nodes[1];
  1986. struct btrfs_disk_key disk_key;
  1987. int slot;
  1988. u32 i;
  1989. int push_space = 0;
  1990. int push_items = 0;
  1991. struct btrfs_item *item;
  1992. u32 nr;
  1993. u32 right_nritems;
  1994. u32 data_end;
  1995. u32 this_item_size;
  1996. if (empty)
  1997. nr = 0;
  1998. else
  1999. nr = max_t(u32, 1, min_slot);
  2000. if (path->slots[0] >= left_nritems)
  2001. push_space += data_size;
  2002. slot = path->slots[1];
  2003. i = left_nritems - 1;
  2004. while (i >= nr) {
  2005. item = btrfs_item_nr(left, i);
  2006. if (!empty && push_items > 0) {
  2007. if (path->slots[0] > i)
  2008. break;
  2009. if (path->slots[0] == i) {
  2010. int space = btrfs_leaf_free_space(root, left);
  2011. if (space + push_space * 2 > free_space)
  2012. break;
  2013. }
  2014. }
  2015. if (path->slots[0] == i)
  2016. push_space += data_size;
  2017. if (!left->map_token) {
  2018. map_extent_buffer(left, (unsigned long)item,
  2019. sizeof(struct btrfs_item),
  2020. &left->map_token, &left->kaddr,
  2021. &left->map_start, &left->map_len,
  2022. KM_USER1);
  2023. }
  2024. this_item_size = btrfs_item_size(left, item);
  2025. if (this_item_size + sizeof(*item) + push_space > free_space)
  2026. break;
  2027. push_items++;
  2028. push_space += this_item_size + sizeof(*item);
  2029. if (i == 0)
  2030. break;
  2031. i--;
  2032. }
  2033. if (left->map_token) {
  2034. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2035. left->map_token = NULL;
  2036. }
  2037. if (push_items == 0)
  2038. goto out_unlock;
  2039. if (!empty && push_items == left_nritems)
  2040. WARN_ON(1);
  2041. /* push left to right */
  2042. right_nritems = btrfs_header_nritems(right);
  2043. push_space = btrfs_item_end_nr(left, left_nritems - push_items);
  2044. push_space -= leaf_data_end(root, left);
  2045. /* make room in the right data area */
  2046. data_end = leaf_data_end(root, right);
  2047. memmove_extent_buffer(right,
  2048. btrfs_leaf_data(right) + data_end - push_space,
  2049. btrfs_leaf_data(right) + data_end,
  2050. BTRFS_LEAF_DATA_SIZE(root) - data_end);
  2051. /* copy from the left data area */
  2052. copy_extent_buffer(right, left, btrfs_leaf_data(right) +
  2053. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2054. btrfs_leaf_data(left) + leaf_data_end(root, left),
  2055. push_space);
  2056. memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
  2057. btrfs_item_nr_offset(0),
  2058. right_nritems * sizeof(struct btrfs_item));
  2059. /* copy the items from left to right */
  2060. copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
  2061. btrfs_item_nr_offset(left_nritems - push_items),
  2062. push_items * sizeof(struct btrfs_item));
  2063. /* update the item pointers */
  2064. right_nritems += push_items;
  2065. btrfs_set_header_nritems(right, right_nritems);
  2066. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2067. for (i = 0; i < right_nritems; i++) {
  2068. item = btrfs_item_nr(right, i);
  2069. if (!right->map_token) {
  2070. map_extent_buffer(right, (unsigned long)item,
  2071. sizeof(struct btrfs_item),
  2072. &right->map_token, &right->kaddr,
  2073. &right->map_start, &right->map_len,
  2074. KM_USER1);
  2075. }
  2076. push_space -= btrfs_item_size(right, item);
  2077. btrfs_set_item_offset(right, item, push_space);
  2078. }
  2079. if (right->map_token) {
  2080. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2081. right->map_token = NULL;
  2082. }
  2083. left_nritems -= push_items;
  2084. btrfs_set_header_nritems(left, left_nritems);
  2085. if (left_nritems)
  2086. btrfs_mark_buffer_dirty(left);
  2087. else
  2088. clean_tree_block(trans, root, left);
  2089. btrfs_mark_buffer_dirty(right);
  2090. btrfs_item_key(right, &disk_key, 0);
  2091. btrfs_set_node_key(upper, &disk_key, slot + 1);
  2092. btrfs_mark_buffer_dirty(upper);
  2093. /* then fixup the leaf pointer in the path */
  2094. if (path->slots[0] >= left_nritems) {
  2095. path->slots[0] -= left_nritems;
  2096. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2097. clean_tree_block(trans, root, path->nodes[0]);
  2098. btrfs_tree_unlock(path->nodes[0]);
  2099. free_extent_buffer(path->nodes[0]);
  2100. path->nodes[0] = right;
  2101. path->slots[1] += 1;
  2102. } else {
  2103. btrfs_tree_unlock(right);
  2104. free_extent_buffer(right);
  2105. }
  2106. return 0;
  2107. out_unlock:
  2108. btrfs_tree_unlock(right);
  2109. free_extent_buffer(right);
  2110. return 1;
  2111. }
  2112. /*
  2113. * push some data in the path leaf to the right, trying to free up at
  2114. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2115. *
  2116. * returns 1 if the push failed because the other node didn't have enough
  2117. * room, 0 if everything worked out and < 0 if there were major errors.
  2118. *
  2119. * this will push starting from min_slot to the end of the leaf. It won't
  2120. * push any slot lower than min_slot
  2121. */
  2122. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  2123. *root, struct btrfs_path *path,
  2124. int min_data_size, int data_size,
  2125. int empty, u32 min_slot)
  2126. {
  2127. struct extent_buffer *left = path->nodes[0];
  2128. struct extent_buffer *right;
  2129. struct extent_buffer *upper;
  2130. int slot;
  2131. int free_space;
  2132. u32 left_nritems;
  2133. int ret;
  2134. if (!path->nodes[1])
  2135. return 1;
  2136. slot = path->slots[1];
  2137. upper = path->nodes[1];
  2138. if (slot >= btrfs_header_nritems(upper) - 1)
  2139. return 1;
  2140. btrfs_assert_tree_locked(path->nodes[1]);
  2141. right = read_node_slot(root, upper, slot + 1);
  2142. if (right == NULL)
  2143. return 1;
  2144. btrfs_tree_lock(right);
  2145. btrfs_set_lock_blocking(right);
  2146. free_space = btrfs_leaf_free_space(root, right);
  2147. if (free_space < data_size)
  2148. goto out_unlock;
  2149. /* cow and double check */
  2150. ret = btrfs_cow_block(trans, root, right, upper,
  2151. slot + 1, &right);
  2152. if (ret)
  2153. goto out_unlock;
  2154. free_space = btrfs_leaf_free_space(root, right);
  2155. if (free_space < data_size)
  2156. goto out_unlock;
  2157. left_nritems = btrfs_header_nritems(left);
  2158. if (left_nritems == 0)
  2159. goto out_unlock;
  2160. return __push_leaf_right(trans, root, path, min_data_size, empty,
  2161. right, free_space, left_nritems, min_slot);
  2162. out_unlock:
  2163. btrfs_tree_unlock(right);
  2164. free_extent_buffer(right);
  2165. return 1;
  2166. }
  2167. /*
  2168. * push some data in the path leaf to the left, trying to free up at
  2169. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2170. *
  2171. * max_slot can put a limit on how far into the leaf we'll push items. The
  2172. * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
  2173. * items
  2174. */
  2175. static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
  2176. struct btrfs_root *root,
  2177. struct btrfs_path *path, int data_size,
  2178. int empty, struct extent_buffer *left,
  2179. int free_space, u32 right_nritems,
  2180. u32 max_slot)
  2181. {
  2182. struct btrfs_disk_key disk_key;
  2183. struct extent_buffer *right = path->nodes[0];
  2184. int i;
  2185. int push_space = 0;
  2186. int push_items = 0;
  2187. struct btrfs_item *item;
  2188. u32 old_left_nritems;
  2189. u32 nr;
  2190. int ret = 0;
  2191. int wret;
  2192. u32 this_item_size;
  2193. u32 old_left_item_size;
  2194. if (empty)
  2195. nr = min(right_nritems, max_slot);
  2196. else
  2197. nr = min(right_nritems - 1, max_slot);
  2198. for (i = 0; i < nr; i++) {
  2199. item = btrfs_item_nr(right, i);
  2200. if (!right->map_token) {
  2201. map_extent_buffer(right, (unsigned long)item,
  2202. sizeof(struct btrfs_item),
  2203. &right->map_token, &right->kaddr,
  2204. &right->map_start, &right->map_len,
  2205. KM_USER1);
  2206. }
  2207. if (!empty && push_items > 0) {
  2208. if (path->slots[0] < i)
  2209. break;
  2210. if (path->slots[0] == i) {
  2211. int space = btrfs_leaf_free_space(root, right);
  2212. if (space + push_space * 2 > free_space)
  2213. break;
  2214. }
  2215. }
  2216. if (path->slots[0] == i)
  2217. push_space += data_size;
  2218. this_item_size = btrfs_item_size(right, item);
  2219. if (this_item_size + sizeof(*item) + push_space > free_space)
  2220. break;
  2221. push_items++;
  2222. push_space += this_item_size + sizeof(*item);
  2223. }
  2224. if (right->map_token) {
  2225. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2226. right->map_token = NULL;
  2227. }
  2228. if (push_items == 0) {
  2229. ret = 1;
  2230. goto out;
  2231. }
  2232. if (!empty && push_items == btrfs_header_nritems(right))
  2233. WARN_ON(1);
  2234. /* push data from right to left */
  2235. copy_extent_buffer(left, right,
  2236. btrfs_item_nr_offset(btrfs_header_nritems(left)),
  2237. btrfs_item_nr_offset(0),
  2238. push_items * sizeof(struct btrfs_item));
  2239. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  2240. btrfs_item_offset_nr(right, push_items - 1);
  2241. copy_extent_buffer(left, right, btrfs_leaf_data(left) +
  2242. leaf_data_end(root, left) - push_space,
  2243. btrfs_leaf_data(right) +
  2244. btrfs_item_offset_nr(right, push_items - 1),
  2245. push_space);
  2246. old_left_nritems = btrfs_header_nritems(left);
  2247. BUG_ON(old_left_nritems <= 0);
  2248. old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
  2249. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  2250. u32 ioff;
  2251. item = btrfs_item_nr(left, i);
  2252. if (!left->map_token) {
  2253. map_extent_buffer(left, (unsigned long)item,
  2254. sizeof(struct btrfs_item),
  2255. &left->map_token, &left->kaddr,
  2256. &left->map_start, &left->map_len,
  2257. KM_USER1);
  2258. }
  2259. ioff = btrfs_item_offset(left, item);
  2260. btrfs_set_item_offset(left, item,
  2261. ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
  2262. }
  2263. btrfs_set_header_nritems(left, old_left_nritems + push_items);
  2264. if (left->map_token) {
  2265. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2266. left->map_token = NULL;
  2267. }
  2268. /* fixup right node */
  2269. if (push_items > right_nritems) {
  2270. printk(KERN_CRIT "push items %d nr %u\n", push_items,
  2271. right_nritems);
  2272. WARN_ON(1);
  2273. }
  2274. if (push_items < right_nritems) {
  2275. push_space = btrfs_item_offset_nr(right, push_items - 1) -
  2276. leaf_data_end(root, right);
  2277. memmove_extent_buffer(right, btrfs_leaf_data(right) +
  2278. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2279. btrfs_leaf_data(right) +
  2280. leaf_data_end(root, right), push_space);
  2281. memmove_extent_buffer(right, btrfs_item_nr_offset(0),
  2282. btrfs_item_nr_offset(push_items),
  2283. (btrfs_header_nritems(right) - push_items) *
  2284. sizeof(struct btrfs_item));
  2285. }
  2286. right_nritems -= push_items;
  2287. btrfs_set_header_nritems(right, right_nritems);
  2288. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2289. for (i = 0; i < right_nritems; i++) {
  2290. item = btrfs_item_nr(right, i);
  2291. if (!right->map_token) {
  2292. map_extent_buffer(right, (unsigned long)item,
  2293. sizeof(struct btrfs_item),
  2294. &right->map_token, &right->kaddr,
  2295. &right->map_start, &right->map_len,
  2296. KM_USER1);
  2297. }
  2298. push_space = push_space - btrfs_item_size(right, item);
  2299. btrfs_set_item_offset(right, item, push_space);
  2300. }
  2301. if (right->map_token) {
  2302. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2303. right->map_token = NULL;
  2304. }
  2305. btrfs_mark_buffer_dirty(left);
  2306. if (right_nritems)
  2307. btrfs_mark_buffer_dirty(right);
  2308. else
  2309. clean_tree_block(trans, root, right);
  2310. btrfs_item_key(right, &disk_key, 0);
  2311. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  2312. if (wret)
  2313. ret = wret;
  2314. /* then fixup the leaf pointer in the path */
  2315. if (path->slots[0] < push_items) {
  2316. path->slots[0] += old_left_nritems;
  2317. btrfs_tree_unlock(path->nodes[0]);
  2318. free_extent_buffer(path->nodes[0]);
  2319. path->nodes[0] = left;
  2320. path->slots[1] -= 1;
  2321. } else {
  2322. btrfs_tree_unlock(left);
  2323. free_extent_buffer(left);
  2324. path->slots[0] -= push_items;
  2325. }
  2326. BUG_ON(path->slots[0] < 0);
  2327. return ret;
  2328. out:
  2329. btrfs_tree_unlock(left);
  2330. free_extent_buffer(left);
  2331. return ret;
  2332. }
  2333. /*
  2334. * push some data in the path leaf to the left, trying to free up at
  2335. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2336. *
  2337. * max_slot can put a limit on how far into the leaf we'll push items. The
  2338. * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
  2339. * items
  2340. */
  2341. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  2342. *root, struct btrfs_path *path, int min_data_size,
  2343. int data_size, int empty, u32 max_slot)
  2344. {
  2345. struct extent_buffer *right = path->nodes[0];
  2346. struct extent_buffer *left;
  2347. int slot;
  2348. int free_space;
  2349. u32 right_nritems;
  2350. int ret = 0;
  2351. slot = path->slots[1];
  2352. if (slot == 0)
  2353. return 1;
  2354. if (!path->nodes[1])
  2355. return 1;
  2356. right_nritems = btrfs_header_nritems(right);
  2357. if (right_nritems == 0)
  2358. return 1;
  2359. btrfs_assert_tree_locked(path->nodes[1]);
  2360. left = read_node_slot(root, path->nodes[1], slot - 1);
  2361. if (left == NULL)
  2362. return 1;
  2363. btrfs_tree_lock(left);
  2364. btrfs_set_lock_blocking(left);
  2365. free_space = btrfs_leaf_free_space(root, left);
  2366. if (free_space < data_size) {
  2367. ret = 1;
  2368. goto out;
  2369. }
  2370. /* cow and double check */
  2371. ret = btrfs_cow_block(trans, root, left,
  2372. path->nodes[1], slot - 1, &left);
  2373. if (ret) {
  2374. /* we hit -ENOSPC, but it isn't fatal here */
  2375. ret = 1;
  2376. goto out;
  2377. }
  2378. free_space = btrfs_leaf_free_space(root, left);
  2379. if (free_space < data_size) {
  2380. ret = 1;
  2381. goto out;
  2382. }
  2383. return __push_leaf_left(trans, root, path, min_data_size,
  2384. empty, left, free_space, right_nritems,
  2385. max_slot);
  2386. out:
  2387. btrfs_tree_unlock(left);
  2388. free_extent_buffer(left);
  2389. return ret;
  2390. }
  2391. /*
  2392. * split the path's leaf in two, making sure there is at least data_size
  2393. * available for the resulting leaf level of the path.
  2394. *
  2395. * returns 0 if all went well and < 0 on failure.
  2396. */
  2397. static noinline int copy_for_split(struct btrfs_trans_handle *trans,
  2398. struct btrfs_root *root,
  2399. struct btrfs_path *path,
  2400. struct extent_buffer *l,
  2401. struct extent_buffer *right,
  2402. int slot, int mid, int nritems)
  2403. {
  2404. int data_copy_size;
  2405. int rt_data_off;
  2406. int i;
  2407. int ret = 0;
  2408. int wret;
  2409. struct btrfs_disk_key disk_key;
  2410. nritems = nritems - mid;
  2411. btrfs_set_header_nritems(right, nritems);
  2412. data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
  2413. copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
  2414. btrfs_item_nr_offset(mid),
  2415. nritems * sizeof(struct btrfs_item));
  2416. copy_extent_buffer(right, l,
  2417. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  2418. data_copy_size, btrfs_leaf_data(l) +
  2419. leaf_data_end(root, l), data_copy_size);
  2420. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  2421. btrfs_item_end_nr(l, mid);
  2422. for (i = 0; i < nritems; i++) {
  2423. struct btrfs_item *item = btrfs_item_nr(right, i);
  2424. u32 ioff;
  2425. if (!right->map_token) {
  2426. map_extent_buffer(right, (unsigned long)item,
  2427. sizeof(struct btrfs_item),
  2428. &right->map_token, &right->kaddr,
  2429. &right->map_start, &right->map_len,
  2430. KM_USER1);
  2431. }
  2432. ioff = btrfs_item_offset(right, item);
  2433. btrfs_set_item_offset(right, item, ioff + rt_data_off);
  2434. }
  2435. if (right->map_token) {
  2436. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2437. right->map_token = NULL;
  2438. }
  2439. btrfs_set_header_nritems(l, mid);
  2440. ret = 0;
  2441. btrfs_item_key(right, &disk_key, 0);
  2442. wret = insert_ptr(trans, root, path, &disk_key, right->start,
  2443. path->slots[1] + 1, 1);
  2444. if (wret)
  2445. ret = wret;
  2446. btrfs_mark_buffer_dirty(right);
  2447. btrfs_mark_buffer_dirty(l);
  2448. BUG_ON(path->slots[0] != slot);
  2449. if (mid <= slot) {
  2450. btrfs_tree_unlock(path->nodes[0]);
  2451. free_extent_buffer(path->nodes[0]);
  2452. path->nodes[0] = right;
  2453. path->slots[0] -= mid;
  2454. path->slots[1] += 1;
  2455. } else {
  2456. btrfs_tree_unlock(right);
  2457. free_extent_buffer(right);
  2458. }
  2459. BUG_ON(path->slots[0] < 0);
  2460. return ret;
  2461. }
  2462. /*
  2463. * double splits happen when we need to insert a big item in the middle
  2464. * of a leaf. A double split can leave us with 3 mostly empty leaves:
  2465. * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
  2466. * A B C
  2467. *
  2468. * We avoid this by trying to push the items on either side of our target
  2469. * into the adjacent leaves. If all goes well we can avoid the double split
  2470. * completely.
  2471. */
  2472. static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
  2473. struct btrfs_root *root,
  2474. struct btrfs_path *path,
  2475. int data_size)
  2476. {
  2477. int ret;
  2478. int progress = 0;
  2479. int slot;
  2480. u32 nritems;
  2481. slot = path->slots[0];
  2482. /*
  2483. * try to push all the items after our slot into the
  2484. * right leaf
  2485. */
  2486. ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
  2487. if (ret < 0)
  2488. return ret;
  2489. if (ret == 0)
  2490. progress++;
  2491. nritems = btrfs_header_nritems(path->nodes[0]);
  2492. /*
  2493. * our goal is to get our slot at the start or end of a leaf. If
  2494. * we've done so we're done
  2495. */
  2496. if (path->slots[0] == 0 || path->slots[0] == nritems)
  2497. return 0;
  2498. if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
  2499. return 0;
  2500. /* try to push all the items before our slot into the next leaf */
  2501. slot = path->slots[0];
  2502. ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
  2503. if (ret < 0)
  2504. return ret;
  2505. if (ret == 0)
  2506. progress++;
  2507. if (progress)
  2508. return 0;
  2509. return 1;
  2510. }
  2511. /*
  2512. * split the path's leaf in two, making sure there is at least data_size
  2513. * available for the resulting leaf level of the path.
  2514. *
  2515. * returns 0 if all went well and < 0 on failure.
  2516. */
  2517. static noinline int split_leaf(struct btrfs_trans_handle *trans,
  2518. struct btrfs_root *root,
  2519. struct btrfs_key *ins_key,
  2520. struct btrfs_path *path, int data_size,
  2521. int extend)
  2522. {
  2523. struct btrfs_disk_key disk_key;
  2524. struct extent_buffer *l;
  2525. u32 nritems;
  2526. int mid;
  2527. int slot;
  2528. struct extent_buffer *right;
  2529. int ret = 0;
  2530. int wret;
  2531. int split;
  2532. int num_doubles = 0;
  2533. int tried_avoid_double = 0;
  2534. l = path->nodes[0];
  2535. slot = path->slots[0];
  2536. if (extend && data_size + btrfs_item_size_nr(l, slot) +
  2537. sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
  2538. return -EOVERFLOW;
  2539. /* first try to make some room by pushing left and right */
  2540. if (data_size) {
  2541. wret = push_leaf_right(trans, root, path, data_size,
  2542. data_size, 0, 0);
  2543. if (wret < 0)
  2544. return wret;
  2545. if (wret) {
  2546. wret = push_leaf_left(trans, root, path, data_size,
  2547. data_size, 0, (u32)-1);
  2548. if (wret < 0)
  2549. return wret;
  2550. }
  2551. l = path->nodes[0];
  2552. /* did the pushes work? */
  2553. if (btrfs_leaf_free_space(root, l) >= data_size)
  2554. return 0;
  2555. }
  2556. if (!path->nodes[1]) {
  2557. ret = insert_new_root(trans, root, path, 1);
  2558. if (ret)
  2559. return ret;
  2560. }
  2561. again:
  2562. split = 1;
  2563. l = path->nodes[0];
  2564. slot = path->slots[0];
  2565. nritems = btrfs_header_nritems(l);
  2566. mid = (nritems + 1) / 2;
  2567. if (mid <= slot) {
  2568. if (nritems == 1 ||
  2569. leaf_space_used(l, mid, nritems - mid) + data_size >
  2570. BTRFS_LEAF_DATA_SIZE(root)) {
  2571. if (slot >= nritems) {
  2572. split = 0;
  2573. } else {
  2574. mid = slot;
  2575. if (mid != nritems &&
  2576. leaf_space_used(l, mid, nritems - mid) +
  2577. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2578. if (data_size && !tried_avoid_double)
  2579. goto push_for_double;
  2580. split = 2;
  2581. }
  2582. }
  2583. }
  2584. } else {
  2585. if (leaf_space_used(l, 0, mid) + data_size >
  2586. BTRFS_LEAF_DATA_SIZE(root)) {
  2587. if (!extend && data_size && slot == 0) {
  2588. split = 0;
  2589. } else if ((extend || !data_size) && slot == 0) {
  2590. mid = 1;
  2591. } else {
  2592. mid = slot;
  2593. if (mid != nritems &&
  2594. leaf_space_used(l, mid, nritems - mid) +
  2595. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2596. if (data_size && !tried_avoid_double)
  2597. goto push_for_double;
  2598. split = 2 ;
  2599. }
  2600. }
  2601. }
  2602. }
  2603. if (split == 0)
  2604. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2605. else
  2606. btrfs_item_key(l, &disk_key, mid);
  2607. right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  2608. root->root_key.objectid,
  2609. &disk_key, 0, l->start, 0);
  2610. if (IS_ERR(right))
  2611. return PTR_ERR(right);
  2612. root_add_used(root, root->leafsize);
  2613. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  2614. btrfs_set_header_bytenr(right, right->start);
  2615. btrfs_set_header_generation(right, trans->transid);
  2616. btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
  2617. btrfs_set_header_owner(right, root->root_key.objectid);
  2618. btrfs_set_header_level(right, 0);
  2619. write_extent_buffer(right, root->fs_info->fsid,
  2620. (unsigned long)btrfs_header_fsid(right),
  2621. BTRFS_FSID_SIZE);
  2622. write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
  2623. (unsigned long)btrfs_header_chunk_tree_uuid(right),
  2624. BTRFS_UUID_SIZE);
  2625. if (split == 0) {
  2626. if (mid <= slot) {
  2627. btrfs_set_header_nritems(right, 0);
  2628. wret = insert_ptr(trans, root, path,
  2629. &disk_key, right->start,
  2630. path->slots[1] + 1, 1);
  2631. if (wret)
  2632. ret = wret;
  2633. btrfs_tree_unlock(path->nodes[0]);
  2634. free_extent_buffer(path->nodes[0]);
  2635. path->nodes[0] = right;
  2636. path->slots[0] = 0;
  2637. path->slots[1] += 1;
  2638. } else {
  2639. btrfs_set_header_nritems(right, 0);
  2640. wret = insert_ptr(trans, root, path,
  2641. &disk_key,
  2642. right->start,
  2643. path->slots[1], 1);
  2644. if (wret)
  2645. ret = wret;
  2646. btrfs_tree_unlock(path->nodes[0]);
  2647. free_extent_buffer(path->nodes[0]);
  2648. path->nodes[0] = right;
  2649. path->slots[0] = 0;
  2650. if (path->slots[1] == 0) {
  2651. wret = fixup_low_keys(trans, root,
  2652. path, &disk_key, 1);
  2653. if (wret)
  2654. ret = wret;
  2655. }
  2656. }
  2657. btrfs_mark_buffer_dirty(right);
  2658. return ret;
  2659. }
  2660. ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
  2661. BUG_ON(ret);
  2662. if (split == 2) {
  2663. BUG_ON(num_doubles != 0);
  2664. num_doubles++;
  2665. goto again;
  2666. }
  2667. return ret;
  2668. push_for_double:
  2669. push_for_double_split(trans, root, path, data_size);
  2670. tried_avoid_double = 1;
  2671. if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
  2672. return 0;
  2673. goto again;
  2674. }
  2675. static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
  2676. struct btrfs_root *root,
  2677. struct btrfs_path *path, int ins_len)
  2678. {
  2679. struct btrfs_key key;
  2680. struct extent_buffer *leaf;
  2681. struct btrfs_file_extent_item *fi;
  2682. u64 extent_len = 0;
  2683. u32 item_size;
  2684. int ret;
  2685. leaf = path->nodes[0];
  2686. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  2687. BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
  2688. key.type != BTRFS_EXTENT_CSUM_KEY);
  2689. if (btrfs_leaf_free_space(root, leaf) >= ins_len)
  2690. return 0;
  2691. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2692. if (key.type == BTRFS_EXTENT_DATA_KEY) {
  2693. fi = btrfs_item_ptr(leaf, path->slots[0],
  2694. struct btrfs_file_extent_item);
  2695. extent_len = btrfs_file_extent_num_bytes(leaf, fi);
  2696. }
  2697. btrfs_release_path(root, path);
  2698. path->keep_locks = 1;
  2699. path->search_for_split = 1;
  2700. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  2701. path->search_for_split = 0;
  2702. if (ret < 0)
  2703. goto err;
  2704. ret = -EAGAIN;
  2705. leaf = path->nodes[0];
  2706. /* if our item isn't there or got smaller, return now */
  2707. if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
  2708. goto err;
  2709. /* the leaf has changed, it now has room. return now */
  2710. if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
  2711. goto err;
  2712. if (key.type == BTRFS_EXTENT_DATA_KEY) {
  2713. fi = btrfs_item_ptr(leaf, path->slots[0],
  2714. struct btrfs_file_extent_item);
  2715. if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
  2716. goto err;
  2717. }
  2718. btrfs_set_path_blocking(path);
  2719. ret = split_leaf(trans, root, &key, path, ins_len, 1);
  2720. if (ret)
  2721. goto err;
  2722. path->keep_locks = 0;
  2723. btrfs_unlock_up_safe(path, 1);
  2724. return 0;
  2725. err:
  2726. path->keep_locks = 0;
  2727. return ret;
  2728. }
  2729. static noinline int split_item(struct btrfs_trans_handle *trans,
  2730. struct btrfs_root *root,
  2731. struct btrfs_path *path,
  2732. struct btrfs_key *new_key,
  2733. unsigned long split_offset)
  2734. {
  2735. struct extent_buffer *leaf;
  2736. struct btrfs_item *item;
  2737. struct btrfs_item *new_item;
  2738. int slot;
  2739. char *buf;
  2740. u32 nritems;
  2741. u32 item_size;
  2742. u32 orig_offset;
  2743. struct btrfs_disk_key disk_key;
  2744. leaf = path->nodes[0];
  2745. BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
  2746. btrfs_set_path_blocking(path);
  2747. item = btrfs_item_nr(leaf, path->slots[0]);
  2748. orig_offset = btrfs_item_offset(leaf, item);
  2749. item_size = btrfs_item_size(leaf, item);
  2750. buf = kmalloc(item_size, GFP_NOFS);
  2751. if (!buf)
  2752. return -ENOMEM;
  2753. read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
  2754. path->slots[0]), item_size);
  2755. slot = path->slots[0] + 1;
  2756. nritems = btrfs_header_nritems(leaf);
  2757. if (slot != nritems) {
  2758. /* shift the items */
  2759. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
  2760. btrfs_item_nr_offset(slot),
  2761. (nritems - slot) * sizeof(struct btrfs_item));
  2762. }
  2763. btrfs_cpu_key_to_disk(&disk_key, new_key);
  2764. btrfs_set_item_key(leaf, &disk_key, slot);
  2765. new_item = btrfs_item_nr(leaf, slot);
  2766. btrfs_set_item_offset(leaf, new_item, orig_offset);
  2767. btrfs_set_item_size(leaf, new_item, item_size - split_offset);
  2768. btrfs_set_item_offset(leaf, item,
  2769. orig_offset + item_size - split_offset);
  2770. btrfs_set_item_size(leaf, item, split_offset);
  2771. btrfs_set_header_nritems(leaf, nritems + 1);
  2772. /* write the data for the start of the original item */
  2773. write_extent_buffer(leaf, buf,
  2774. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2775. split_offset);
  2776. /* write the data for the new item */
  2777. write_extent_buffer(leaf, buf + split_offset,
  2778. btrfs_item_ptr_offset(leaf, slot),
  2779. item_size - split_offset);
  2780. btrfs_mark_buffer_dirty(leaf);
  2781. BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
  2782. kfree(buf);
  2783. return 0;
  2784. }
  2785. /*
  2786. * This function splits a single item into two items,
  2787. * giving 'new_key' to the new item and splitting the
  2788. * old one at split_offset (from the start of the item).
  2789. *
  2790. * The path may be released by this operation. After
  2791. * the split, the path is pointing to the old item. The
  2792. * new item is going to be in the same node as the old one.
  2793. *
  2794. * Note, the item being split must be smaller enough to live alone on
  2795. * a tree block with room for one extra struct btrfs_item
  2796. *
  2797. * This allows us to split the item in place, keeping a lock on the
  2798. * leaf the entire time.
  2799. */
  2800. int btrfs_split_item(struct btrfs_trans_handle *trans,
  2801. struct btrfs_root *root,
  2802. struct btrfs_path *path,
  2803. struct btrfs_key *new_key,
  2804. unsigned long split_offset)
  2805. {
  2806. int ret;
  2807. ret = setup_leaf_for_split(trans, root, path,
  2808. sizeof(struct btrfs_item));
  2809. if (ret)
  2810. return ret;
  2811. ret = split_item(trans, root, path, new_key, split_offset);
  2812. return ret;
  2813. }
  2814. /*
  2815. * This function duplicate a item, giving 'new_key' to the new item.
  2816. * It guarantees both items live in the same tree leaf and the new item
  2817. * is contiguous with the original item.
  2818. *
  2819. * This allows us to split file extent in place, keeping a lock on the
  2820. * leaf the entire time.
  2821. */
  2822. int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
  2823. struct btrfs_root *root,
  2824. struct btrfs_path *path,
  2825. struct btrfs_key *new_key)
  2826. {
  2827. struct extent_buffer *leaf;
  2828. int ret;
  2829. u32 item_size;
  2830. leaf = path->nodes[0];
  2831. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2832. ret = setup_leaf_for_split(trans, root, path,
  2833. item_size + sizeof(struct btrfs_item));
  2834. if (ret)
  2835. return ret;
  2836. path->slots[0]++;
  2837. ret = setup_items_for_insert(trans, root, path, new_key, &item_size,
  2838. item_size, item_size +
  2839. sizeof(struct btrfs_item), 1);
  2840. BUG_ON(ret);
  2841. leaf = path->nodes[0];
  2842. memcpy_extent_buffer(leaf,
  2843. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2844. btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
  2845. item_size);
  2846. return 0;
  2847. }
  2848. /*
  2849. * make the item pointed to by the path smaller. new_size indicates
  2850. * how small to make it, and from_end tells us if we just chop bytes
  2851. * off the end of the item or if we shift the item to chop bytes off
  2852. * the front.
  2853. */
  2854. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  2855. struct btrfs_root *root,
  2856. struct btrfs_path *path,
  2857. u32 new_size, int from_end)
  2858. {
  2859. int ret = 0;
  2860. int slot;
  2861. struct extent_buffer *leaf;
  2862. struct btrfs_item *item;
  2863. u32 nritems;
  2864. unsigned int data_end;
  2865. unsigned int old_data_start;
  2866. unsigned int old_size;
  2867. unsigned int size_diff;
  2868. int i;
  2869. leaf = path->nodes[0];
  2870. slot = path->slots[0];
  2871. old_size = btrfs_item_size_nr(leaf, slot);
  2872. if (old_size == new_size)
  2873. return 0;
  2874. nritems = btrfs_header_nritems(leaf);
  2875. data_end = leaf_data_end(root, leaf);
  2876. old_data_start = btrfs_item_offset_nr(leaf, slot);
  2877. size_diff = old_size - new_size;
  2878. BUG_ON(slot < 0);
  2879. BUG_ON(slot >= nritems);
  2880. /*
  2881. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2882. */
  2883. /* first correct the data pointers */
  2884. for (i = slot; i < nritems; i++) {
  2885. u32 ioff;
  2886. item = btrfs_item_nr(leaf, i);
  2887. if (!leaf->map_token) {
  2888. map_extent_buffer(leaf, (unsigned long)item,
  2889. sizeof(struct btrfs_item),
  2890. &leaf->map_token, &leaf->kaddr,
  2891. &leaf->map_start, &leaf->map_len,
  2892. KM_USER1);
  2893. }
  2894. ioff = btrfs_item_offset(leaf, item);
  2895. btrfs_set_item_offset(leaf, item, ioff + size_diff);
  2896. }
  2897. if (leaf->map_token) {
  2898. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2899. leaf->map_token = NULL;
  2900. }
  2901. /* shift the data */
  2902. if (from_end) {
  2903. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2904. data_end + size_diff, btrfs_leaf_data(leaf) +
  2905. data_end, old_data_start + new_size - data_end);
  2906. } else {
  2907. struct btrfs_disk_key disk_key;
  2908. u64 offset;
  2909. btrfs_item_key(leaf, &disk_key, slot);
  2910. if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
  2911. unsigned long ptr;
  2912. struct btrfs_file_extent_item *fi;
  2913. fi = btrfs_item_ptr(leaf, slot,
  2914. struct btrfs_file_extent_item);
  2915. fi = (struct btrfs_file_extent_item *)(
  2916. (unsigned long)fi - size_diff);
  2917. if (btrfs_file_extent_type(leaf, fi) ==
  2918. BTRFS_FILE_EXTENT_INLINE) {
  2919. ptr = btrfs_item_ptr_offset(leaf, slot);
  2920. memmove_extent_buffer(leaf, ptr,
  2921. (unsigned long)fi,
  2922. offsetof(struct btrfs_file_extent_item,
  2923. disk_bytenr));
  2924. }
  2925. }
  2926. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2927. data_end + size_diff, btrfs_leaf_data(leaf) +
  2928. data_end, old_data_start - data_end);
  2929. offset = btrfs_disk_key_offset(&disk_key);
  2930. btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
  2931. btrfs_set_item_key(leaf, &disk_key, slot);
  2932. if (slot == 0)
  2933. fixup_low_keys(trans, root, path, &disk_key, 1);
  2934. }
  2935. item = btrfs_item_nr(leaf, slot);
  2936. btrfs_set_item_size(leaf, item, new_size);
  2937. btrfs_mark_buffer_dirty(leaf);
  2938. ret = 0;
  2939. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2940. btrfs_print_leaf(root, leaf);
  2941. BUG();
  2942. }
  2943. return ret;
  2944. }
  2945. /*
  2946. * make the item pointed to by the path bigger, data_size is the new size.
  2947. */
  2948. int btrfs_extend_item(struct btrfs_trans_handle *trans,
  2949. struct btrfs_root *root, struct btrfs_path *path,
  2950. u32 data_size)
  2951. {
  2952. int ret = 0;
  2953. int slot;
  2954. struct extent_buffer *leaf;
  2955. struct btrfs_item *item;
  2956. u32 nritems;
  2957. unsigned int data_end;
  2958. unsigned int old_data;
  2959. unsigned int old_size;
  2960. int i;
  2961. leaf = path->nodes[0];
  2962. nritems = btrfs_header_nritems(leaf);
  2963. data_end = leaf_data_end(root, leaf);
  2964. if (btrfs_leaf_free_space(root, leaf) < data_size) {
  2965. btrfs_print_leaf(root, leaf);
  2966. BUG();
  2967. }
  2968. slot = path->slots[0];
  2969. old_data = btrfs_item_end_nr(leaf, slot);
  2970. BUG_ON(slot < 0);
  2971. if (slot >= nritems) {
  2972. btrfs_print_leaf(root, leaf);
  2973. printk(KERN_CRIT "slot %d too large, nritems %d\n",
  2974. slot, nritems);
  2975. BUG_ON(1);
  2976. }
  2977. /*
  2978. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2979. */
  2980. /* first correct the data pointers */
  2981. for (i = slot; i < nritems; i++) {
  2982. u32 ioff;
  2983. item = btrfs_item_nr(leaf, i);
  2984. if (!leaf->map_token) {
  2985. map_extent_buffer(leaf, (unsigned long)item,
  2986. sizeof(struct btrfs_item),
  2987. &leaf->map_token, &leaf->kaddr,
  2988. &leaf->map_start, &leaf->map_len,
  2989. KM_USER1);
  2990. }
  2991. ioff = btrfs_item_offset(leaf, item);
  2992. btrfs_set_item_offset(leaf, item, ioff - data_size);
  2993. }
  2994. if (leaf->map_token) {
  2995. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2996. leaf->map_token = NULL;
  2997. }
  2998. /* shift the data */
  2999. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3000. data_end - data_size, btrfs_leaf_data(leaf) +
  3001. data_end, old_data - data_end);
  3002. data_end = old_data;
  3003. old_size = btrfs_item_size_nr(leaf, slot);
  3004. item = btrfs_item_nr(leaf, slot);
  3005. btrfs_set_item_size(leaf, item, old_size + data_size);
  3006. btrfs_mark_buffer_dirty(leaf);
  3007. ret = 0;
  3008. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3009. btrfs_print_leaf(root, leaf);
  3010. BUG();
  3011. }
  3012. return ret;
  3013. }
  3014. /*
  3015. * Given a key and some data, insert items into the tree.
  3016. * This does all the path init required, making room in the tree if needed.
  3017. * Returns the number of keys that were inserted.
  3018. */
  3019. int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
  3020. struct btrfs_root *root,
  3021. struct btrfs_path *path,
  3022. struct btrfs_key *cpu_key, u32 *data_size,
  3023. int nr)
  3024. {
  3025. struct extent_buffer *leaf;
  3026. struct btrfs_item *item;
  3027. int ret = 0;
  3028. int slot;
  3029. int i;
  3030. u32 nritems;
  3031. u32 total_data = 0;
  3032. u32 total_size = 0;
  3033. unsigned int data_end;
  3034. struct btrfs_disk_key disk_key;
  3035. struct btrfs_key found_key;
  3036. for (i = 0; i < nr; i++) {
  3037. if (total_size + data_size[i] + sizeof(struct btrfs_item) >
  3038. BTRFS_LEAF_DATA_SIZE(root)) {
  3039. break;
  3040. nr = i;
  3041. }
  3042. total_data += data_size[i];
  3043. total_size += data_size[i] + sizeof(struct btrfs_item);
  3044. }
  3045. BUG_ON(nr == 0);
  3046. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3047. if (ret == 0)
  3048. return -EEXIST;
  3049. if (ret < 0)
  3050. goto out;
  3051. leaf = path->nodes[0];
  3052. nritems = btrfs_header_nritems(leaf);
  3053. data_end = leaf_data_end(root, leaf);
  3054. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3055. for (i = nr; i >= 0; i--) {
  3056. total_data -= data_size[i];
  3057. total_size -= data_size[i] + sizeof(struct btrfs_item);
  3058. if (total_size < btrfs_leaf_free_space(root, leaf))
  3059. break;
  3060. }
  3061. nr = i;
  3062. }
  3063. slot = path->slots[0];
  3064. BUG_ON(slot < 0);
  3065. if (slot != nritems) {
  3066. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3067. item = btrfs_item_nr(leaf, slot);
  3068. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  3069. /* figure out how many keys we can insert in here */
  3070. total_data = data_size[0];
  3071. for (i = 1; i < nr; i++) {
  3072. if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
  3073. break;
  3074. total_data += data_size[i];
  3075. }
  3076. nr = i;
  3077. if (old_data < data_end) {
  3078. btrfs_print_leaf(root, leaf);
  3079. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3080. slot, old_data, data_end);
  3081. BUG_ON(1);
  3082. }
  3083. /*
  3084. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3085. */
  3086. /* first correct the data pointers */
  3087. WARN_ON(leaf->map_token);
  3088. for (i = slot; i < nritems; i++) {
  3089. u32 ioff;
  3090. item = btrfs_item_nr(leaf, i);
  3091. if (!leaf->map_token) {
  3092. map_extent_buffer(leaf, (unsigned long)item,
  3093. sizeof(struct btrfs_item),
  3094. &leaf->map_token, &leaf->kaddr,
  3095. &leaf->map_start, &leaf->map_len,
  3096. KM_USER1);
  3097. }
  3098. ioff = btrfs_item_offset(leaf, item);
  3099. btrfs_set_item_offset(leaf, item, ioff - total_data);
  3100. }
  3101. if (leaf->map_token) {
  3102. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3103. leaf->map_token = NULL;
  3104. }
  3105. /* shift the items */
  3106. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3107. btrfs_item_nr_offset(slot),
  3108. (nritems - slot) * sizeof(struct btrfs_item));
  3109. /* shift the data */
  3110. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3111. data_end - total_data, btrfs_leaf_data(leaf) +
  3112. data_end, old_data - data_end);
  3113. data_end = old_data;
  3114. } else {
  3115. /*
  3116. * this sucks but it has to be done, if we are inserting at
  3117. * the end of the leaf only insert 1 of the items, since we
  3118. * have no way of knowing whats on the next leaf and we'd have
  3119. * to drop our current locks to figure it out
  3120. */
  3121. nr = 1;
  3122. }
  3123. /* setup the item for the new data */
  3124. for (i = 0; i < nr; i++) {
  3125. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3126. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3127. item = btrfs_item_nr(leaf, slot + i);
  3128. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3129. data_end -= data_size[i];
  3130. btrfs_set_item_size(leaf, item, data_size[i]);
  3131. }
  3132. btrfs_set_header_nritems(leaf, nritems + nr);
  3133. btrfs_mark_buffer_dirty(leaf);
  3134. ret = 0;
  3135. if (slot == 0) {
  3136. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3137. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3138. }
  3139. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3140. btrfs_print_leaf(root, leaf);
  3141. BUG();
  3142. }
  3143. out:
  3144. if (!ret)
  3145. ret = nr;
  3146. return ret;
  3147. }
  3148. /*
  3149. * this is a helper for btrfs_insert_empty_items, the main goal here is
  3150. * to save stack depth by doing the bulk of the work in a function
  3151. * that doesn't call btrfs_search_slot
  3152. */
  3153. static noinline_for_stack int
  3154. setup_items_for_insert(struct btrfs_trans_handle *trans,
  3155. struct btrfs_root *root, struct btrfs_path *path,
  3156. struct btrfs_key *cpu_key, u32 *data_size,
  3157. u32 total_data, u32 total_size, int nr)
  3158. {
  3159. struct btrfs_item *item;
  3160. int i;
  3161. u32 nritems;
  3162. unsigned int data_end;
  3163. struct btrfs_disk_key disk_key;
  3164. int ret;
  3165. struct extent_buffer *leaf;
  3166. int slot;
  3167. leaf = path->nodes[0];
  3168. slot = path->slots[0];
  3169. nritems = btrfs_header_nritems(leaf);
  3170. data_end = leaf_data_end(root, leaf);
  3171. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3172. btrfs_print_leaf(root, leaf);
  3173. printk(KERN_CRIT "not enough freespace need %u have %d\n",
  3174. total_size, btrfs_leaf_free_space(root, leaf));
  3175. BUG();
  3176. }
  3177. if (slot != nritems) {
  3178. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3179. if (old_data < data_end) {
  3180. btrfs_print_leaf(root, leaf);
  3181. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3182. slot, old_data, data_end);
  3183. BUG_ON(1);
  3184. }
  3185. /*
  3186. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3187. */
  3188. /* first correct the data pointers */
  3189. WARN_ON(leaf->map_token);
  3190. for (i = slot; i < nritems; i++) {
  3191. u32 ioff;
  3192. item = btrfs_item_nr(leaf, i);
  3193. if (!leaf->map_token) {
  3194. map_extent_buffer(leaf, (unsigned long)item,
  3195. sizeof(struct btrfs_item),
  3196. &leaf->map_token, &leaf->kaddr,
  3197. &leaf->map_start, &leaf->map_len,
  3198. KM_USER1);
  3199. }
  3200. ioff = btrfs_item_offset(leaf, item);
  3201. btrfs_set_item_offset(leaf, item, ioff - total_data);
  3202. }
  3203. if (leaf->map_token) {
  3204. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3205. leaf->map_token = NULL;
  3206. }
  3207. /* shift the items */
  3208. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3209. btrfs_item_nr_offset(slot),
  3210. (nritems - slot) * sizeof(struct btrfs_item));
  3211. /* shift the data */
  3212. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3213. data_end - total_data, btrfs_leaf_data(leaf) +
  3214. data_end, old_data - data_end);
  3215. data_end = old_data;
  3216. }
  3217. /* setup the item for the new data */
  3218. for (i = 0; i < nr; i++) {
  3219. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3220. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3221. item = btrfs_item_nr(leaf, slot + i);
  3222. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3223. data_end -= data_size[i];
  3224. btrfs_set_item_size(leaf, item, data_size[i]);
  3225. }
  3226. btrfs_set_header_nritems(leaf, nritems + nr);
  3227. ret = 0;
  3228. if (slot == 0) {
  3229. struct btrfs_disk_key disk_key;
  3230. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3231. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3232. }
  3233. btrfs_unlock_up_safe(path, 1);
  3234. btrfs_mark_buffer_dirty(leaf);
  3235. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3236. btrfs_print_leaf(root, leaf);
  3237. BUG();
  3238. }
  3239. return ret;
  3240. }
  3241. /*
  3242. * Given a key and some data, insert items into the tree.
  3243. * This does all the path init required, making room in the tree if needed.
  3244. */
  3245. int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
  3246. struct btrfs_root *root,
  3247. struct btrfs_path *path,
  3248. struct btrfs_key *cpu_key, u32 *data_size,
  3249. int nr)
  3250. {
  3251. int ret = 0;
  3252. int slot;
  3253. int i;
  3254. u32 total_size = 0;
  3255. u32 total_data = 0;
  3256. for (i = 0; i < nr; i++)
  3257. total_data += data_size[i];
  3258. total_size = total_data + (nr * sizeof(struct btrfs_item));
  3259. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3260. if (ret == 0)
  3261. return -EEXIST;
  3262. if (ret < 0)
  3263. goto out;
  3264. slot = path->slots[0];
  3265. BUG_ON(slot < 0);
  3266. ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
  3267. total_data, total_size, nr);
  3268. out:
  3269. return ret;
  3270. }
  3271. /*
  3272. * Given a key and some data, insert an item into the tree.
  3273. * This does all the path init required, making room in the tree if needed.
  3274. */
  3275. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  3276. *root, struct btrfs_key *cpu_key, void *data, u32
  3277. data_size)
  3278. {
  3279. int ret = 0;
  3280. struct btrfs_path *path;
  3281. struct extent_buffer *leaf;
  3282. unsigned long ptr;
  3283. path = btrfs_alloc_path();
  3284. if (!path)
  3285. return -ENOMEM;
  3286. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  3287. if (!ret) {
  3288. leaf = path->nodes[0];
  3289. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  3290. write_extent_buffer(leaf, data, ptr, data_size);
  3291. btrfs_mark_buffer_dirty(leaf);
  3292. }
  3293. btrfs_free_path(path);
  3294. return ret;
  3295. }
  3296. /*
  3297. * delete the pointer from a given node.
  3298. *
  3299. * the tree should have been previously balanced so the deletion does not
  3300. * empty a node.
  3301. */
  3302. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3303. struct btrfs_path *path, int level, int slot)
  3304. {
  3305. struct extent_buffer *parent = path->nodes[level];
  3306. u32 nritems;
  3307. int ret = 0;
  3308. int wret;
  3309. nritems = btrfs_header_nritems(parent);
  3310. if (slot != nritems - 1) {
  3311. memmove_extent_buffer(parent,
  3312. btrfs_node_key_ptr_offset(slot),
  3313. btrfs_node_key_ptr_offset(slot + 1),
  3314. sizeof(struct btrfs_key_ptr) *
  3315. (nritems - slot - 1));
  3316. }
  3317. nritems--;
  3318. btrfs_set_header_nritems(parent, nritems);
  3319. if (nritems == 0 && parent == root->node) {
  3320. BUG_ON(btrfs_header_level(root->node) != 1);
  3321. /* just turn the root into a leaf and break */
  3322. btrfs_set_header_level(root->node, 0);
  3323. } else if (slot == 0) {
  3324. struct btrfs_disk_key disk_key;
  3325. btrfs_node_key(parent, &disk_key, 0);
  3326. wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
  3327. if (wret)
  3328. ret = wret;
  3329. }
  3330. btrfs_mark_buffer_dirty(parent);
  3331. return ret;
  3332. }
  3333. /*
  3334. * a helper function to delete the leaf pointed to by path->slots[1] and
  3335. * path->nodes[1].
  3336. *
  3337. * This deletes the pointer in path->nodes[1] and frees the leaf
  3338. * block extent. zero is returned if it all worked out, < 0 otherwise.
  3339. *
  3340. * The path must have already been setup for deleting the leaf, including
  3341. * all the proper balancing. path->nodes[1] must be locked.
  3342. */
  3343. static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
  3344. struct btrfs_root *root,
  3345. struct btrfs_path *path,
  3346. struct extent_buffer *leaf)
  3347. {
  3348. int ret;
  3349. WARN_ON(btrfs_header_generation(leaf) != trans->transid);
  3350. ret = del_ptr(trans, root, path, 1, path->slots[1]);
  3351. if (ret)
  3352. return ret;
  3353. /*
  3354. * btrfs_free_extent is expensive, we want to make sure we
  3355. * aren't holding any locks when we call it
  3356. */
  3357. btrfs_unlock_up_safe(path, 0);
  3358. root_sub_used(root, leaf->len);
  3359. btrfs_free_tree_block(trans, root, leaf, 0, 1);
  3360. return 0;
  3361. }
  3362. /*
  3363. * delete the item at the leaf level in path. If that empties
  3364. * the leaf, remove it from the tree
  3365. */
  3366. int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3367. struct btrfs_path *path, int slot, int nr)
  3368. {
  3369. struct extent_buffer *leaf;
  3370. struct btrfs_item *item;
  3371. int last_off;
  3372. int dsize = 0;
  3373. int ret = 0;
  3374. int wret;
  3375. int i;
  3376. u32 nritems;
  3377. leaf = path->nodes[0];
  3378. last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
  3379. for (i = 0; i < nr; i++)
  3380. dsize += btrfs_item_size_nr(leaf, slot + i);
  3381. nritems = btrfs_header_nritems(leaf);
  3382. if (slot + nr != nritems) {
  3383. int data_end = leaf_data_end(root, leaf);
  3384. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3385. data_end + dsize,
  3386. btrfs_leaf_data(leaf) + data_end,
  3387. last_off - data_end);
  3388. for (i = slot + nr; i < nritems; i++) {
  3389. u32 ioff;
  3390. item = btrfs_item_nr(leaf, i);
  3391. if (!leaf->map_token) {
  3392. map_extent_buffer(leaf, (unsigned long)item,
  3393. sizeof(struct btrfs_item),
  3394. &leaf->map_token, &leaf->kaddr,
  3395. &leaf->map_start, &leaf->map_len,
  3396. KM_USER1);
  3397. }
  3398. ioff = btrfs_item_offset(leaf, item);
  3399. btrfs_set_item_offset(leaf, item, ioff + dsize);
  3400. }
  3401. if (leaf->map_token) {
  3402. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3403. leaf->map_token = NULL;
  3404. }
  3405. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
  3406. btrfs_item_nr_offset(slot + nr),
  3407. sizeof(struct btrfs_item) *
  3408. (nritems - slot - nr));
  3409. }
  3410. btrfs_set_header_nritems(leaf, nritems - nr);
  3411. nritems -= nr;
  3412. /* delete the leaf if we've emptied it */
  3413. if (nritems == 0) {
  3414. if (leaf == root->node) {
  3415. btrfs_set_header_level(leaf, 0);
  3416. } else {
  3417. btrfs_set_path_blocking(path);
  3418. clean_tree_block(trans, root, leaf);
  3419. ret = btrfs_del_leaf(trans, root, path, leaf);
  3420. BUG_ON(ret);
  3421. }
  3422. } else {
  3423. int used = leaf_space_used(leaf, 0, nritems);
  3424. if (slot == 0) {
  3425. struct btrfs_disk_key disk_key;
  3426. btrfs_item_key(leaf, &disk_key, 0);
  3427. wret = fixup_low_keys(trans, root, path,
  3428. &disk_key, 1);
  3429. if (wret)
  3430. ret = wret;
  3431. }
  3432. /* delete the leaf if it is mostly empty */
  3433. if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
  3434. /* push_leaf_left fixes the path.
  3435. * make sure the path still points to our leaf
  3436. * for possible call to del_ptr below
  3437. */
  3438. slot = path->slots[1];
  3439. extent_buffer_get(leaf);
  3440. btrfs_set_path_blocking(path);
  3441. wret = push_leaf_left(trans, root, path, 1, 1,
  3442. 1, (u32)-1);
  3443. if (wret < 0 && wret != -ENOSPC)
  3444. ret = wret;
  3445. if (path->nodes[0] == leaf &&
  3446. btrfs_header_nritems(leaf)) {
  3447. wret = push_leaf_right(trans, root, path, 1,
  3448. 1, 1, 0);
  3449. if (wret < 0 && wret != -ENOSPC)
  3450. ret = wret;
  3451. }
  3452. if (btrfs_header_nritems(leaf) == 0) {
  3453. path->slots[1] = slot;
  3454. ret = btrfs_del_leaf(trans, root, path, leaf);
  3455. BUG_ON(ret);
  3456. free_extent_buffer(leaf);
  3457. } else {
  3458. /* if we're still in the path, make sure
  3459. * we're dirty. Otherwise, one of the
  3460. * push_leaf functions must have already
  3461. * dirtied this buffer
  3462. */
  3463. if (path->nodes[0] == leaf)
  3464. btrfs_mark_buffer_dirty(leaf);
  3465. free_extent_buffer(leaf);
  3466. }
  3467. } else {
  3468. btrfs_mark_buffer_dirty(leaf);
  3469. }
  3470. }
  3471. return ret;
  3472. }
  3473. /*
  3474. * search the tree again to find a leaf with lesser keys
  3475. * returns 0 if it found something or 1 if there are no lesser leaves.
  3476. * returns < 0 on io errors.
  3477. *
  3478. * This may release the path, and so you may lose any locks held at the
  3479. * time you call it.
  3480. */
  3481. int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3482. {
  3483. struct btrfs_key key;
  3484. struct btrfs_disk_key found_key;
  3485. int ret;
  3486. btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
  3487. if (key.offset > 0)
  3488. key.offset--;
  3489. else if (key.type > 0)
  3490. key.type--;
  3491. else if (key.objectid > 0)
  3492. key.objectid--;
  3493. else
  3494. return 1;
  3495. btrfs_release_path(root, path);
  3496. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3497. if (ret < 0)
  3498. return ret;
  3499. btrfs_item_key(path->nodes[0], &found_key, 0);
  3500. ret = comp_keys(&found_key, &key);
  3501. if (ret < 0)
  3502. return 0;
  3503. return 1;
  3504. }
  3505. /*
  3506. * A helper function to walk down the tree starting at min_key, and looking
  3507. * for nodes or leaves that are either in cache or have a minimum
  3508. * transaction id. This is used by the btree defrag code, and tree logging
  3509. *
  3510. * This does not cow, but it does stuff the starting key it finds back
  3511. * into min_key, so you can call btrfs_search_slot with cow=1 on the
  3512. * key and get a writable path.
  3513. *
  3514. * This does lock as it descends, and path->keep_locks should be set
  3515. * to 1 by the caller.
  3516. *
  3517. * This honors path->lowest_level to prevent descent past a given level
  3518. * of the tree.
  3519. *
  3520. * min_trans indicates the oldest transaction that you are interested
  3521. * in walking through. Any nodes or leaves older than min_trans are
  3522. * skipped over (without reading them).
  3523. *
  3524. * returns zero if something useful was found, < 0 on error and 1 if there
  3525. * was nothing in the tree that matched the search criteria.
  3526. */
  3527. int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
  3528. struct btrfs_key *max_key,
  3529. struct btrfs_path *path, int cache_only,
  3530. u64 min_trans)
  3531. {
  3532. struct extent_buffer *cur;
  3533. struct btrfs_key found_key;
  3534. int slot;
  3535. int sret;
  3536. u32 nritems;
  3537. int level;
  3538. int ret = 1;
  3539. WARN_ON(!path->keep_locks);
  3540. again:
  3541. cur = btrfs_lock_root_node(root);
  3542. level = btrfs_header_level(cur);
  3543. WARN_ON(path->nodes[level]);
  3544. path->nodes[level] = cur;
  3545. path->locks[level] = 1;
  3546. if (btrfs_header_generation(cur) < min_trans) {
  3547. ret = 1;
  3548. goto out;
  3549. }
  3550. while (1) {
  3551. nritems = btrfs_header_nritems(cur);
  3552. level = btrfs_header_level(cur);
  3553. sret = bin_search(cur, min_key, level, &slot);
  3554. /* at the lowest level, we're done, setup the path and exit */
  3555. if (level == path->lowest_level) {
  3556. if (slot >= nritems)
  3557. goto find_next_key;
  3558. ret = 0;
  3559. path->slots[level] = slot;
  3560. btrfs_item_key_to_cpu(cur, &found_key, slot);
  3561. goto out;
  3562. }
  3563. if (sret && slot > 0)
  3564. slot--;
  3565. /*
  3566. * check this node pointer against the cache_only and
  3567. * min_trans parameters. If it isn't in cache or is too
  3568. * old, skip to the next one.
  3569. */
  3570. while (slot < nritems) {
  3571. u64 blockptr;
  3572. u64 gen;
  3573. struct extent_buffer *tmp;
  3574. struct btrfs_disk_key disk_key;
  3575. blockptr = btrfs_node_blockptr(cur, slot);
  3576. gen = btrfs_node_ptr_generation(cur, slot);
  3577. if (gen < min_trans) {
  3578. slot++;
  3579. continue;
  3580. }
  3581. if (!cache_only)
  3582. break;
  3583. if (max_key) {
  3584. btrfs_node_key(cur, &disk_key, slot);
  3585. if (comp_keys(&disk_key, max_key) >= 0) {
  3586. ret = 1;
  3587. goto out;
  3588. }
  3589. }
  3590. tmp = btrfs_find_tree_block(root, blockptr,
  3591. btrfs_level_size(root, level - 1));
  3592. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  3593. free_extent_buffer(tmp);
  3594. break;
  3595. }
  3596. if (tmp)
  3597. free_extent_buffer(tmp);
  3598. slot++;
  3599. }
  3600. find_next_key:
  3601. /*
  3602. * we didn't find a candidate key in this node, walk forward
  3603. * and find another one
  3604. */
  3605. if (slot >= nritems) {
  3606. path->slots[level] = slot;
  3607. btrfs_set_path_blocking(path);
  3608. sret = btrfs_find_next_key(root, path, min_key, level,
  3609. cache_only, min_trans);
  3610. if (sret == 0) {
  3611. btrfs_release_path(root, path);
  3612. goto again;
  3613. } else {
  3614. goto out;
  3615. }
  3616. }
  3617. /* save our key for returning back */
  3618. btrfs_node_key_to_cpu(cur, &found_key, slot);
  3619. path->slots[level] = slot;
  3620. if (level == path->lowest_level) {
  3621. ret = 0;
  3622. unlock_up(path, level, 1);
  3623. goto out;
  3624. }
  3625. btrfs_set_path_blocking(path);
  3626. cur = read_node_slot(root, cur, slot);
  3627. BUG_ON(!cur);
  3628. btrfs_tree_lock(cur);
  3629. path->locks[level - 1] = 1;
  3630. path->nodes[level - 1] = cur;
  3631. unlock_up(path, level, 1);
  3632. btrfs_clear_path_blocking(path, NULL);
  3633. }
  3634. out:
  3635. if (ret == 0)
  3636. memcpy(min_key, &found_key, sizeof(found_key));
  3637. btrfs_set_path_blocking(path);
  3638. return ret;
  3639. }
  3640. /*
  3641. * this is similar to btrfs_next_leaf, but does not try to preserve
  3642. * and fixup the path. It looks for and returns the next key in the
  3643. * tree based on the current path and the cache_only and min_trans
  3644. * parameters.
  3645. *
  3646. * 0 is returned if another key is found, < 0 if there are any errors
  3647. * and 1 is returned if there are no higher keys in the tree
  3648. *
  3649. * path->keep_locks should be set to 1 on the search made before
  3650. * calling this function.
  3651. */
  3652. int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
  3653. struct btrfs_key *key, int level,
  3654. int cache_only, u64 min_trans)
  3655. {
  3656. int slot;
  3657. struct extent_buffer *c;
  3658. WARN_ON(!path->keep_locks);
  3659. while (level < BTRFS_MAX_LEVEL) {
  3660. if (!path->nodes[level])
  3661. return 1;
  3662. slot = path->slots[level] + 1;
  3663. c = path->nodes[level];
  3664. next:
  3665. if (slot >= btrfs_header_nritems(c)) {
  3666. int ret;
  3667. int orig_lowest;
  3668. struct btrfs_key cur_key;
  3669. if (level + 1 >= BTRFS_MAX_LEVEL ||
  3670. !path->nodes[level + 1])
  3671. return 1;
  3672. if (path->locks[level + 1]) {
  3673. level++;
  3674. continue;
  3675. }
  3676. slot = btrfs_header_nritems(c) - 1;
  3677. if (level == 0)
  3678. btrfs_item_key_to_cpu(c, &cur_key, slot);
  3679. else
  3680. btrfs_node_key_to_cpu(c, &cur_key, slot);
  3681. orig_lowest = path->lowest_level;
  3682. btrfs_release_path(root, path);
  3683. path->lowest_level = level;
  3684. ret = btrfs_search_slot(NULL, root, &cur_key, path,
  3685. 0, 0);
  3686. path->lowest_level = orig_lowest;
  3687. if (ret < 0)
  3688. return ret;
  3689. c = path->nodes[level];
  3690. slot = path->slots[level];
  3691. if (ret == 0)
  3692. slot++;
  3693. goto next;
  3694. }
  3695. if (level == 0)
  3696. btrfs_item_key_to_cpu(c, key, slot);
  3697. else {
  3698. u64 blockptr = btrfs_node_blockptr(c, slot);
  3699. u64 gen = btrfs_node_ptr_generation(c, slot);
  3700. if (cache_only) {
  3701. struct extent_buffer *cur;
  3702. cur = btrfs_find_tree_block(root, blockptr,
  3703. btrfs_level_size(root, level - 1));
  3704. if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
  3705. slot++;
  3706. if (cur)
  3707. free_extent_buffer(cur);
  3708. goto next;
  3709. }
  3710. free_extent_buffer(cur);
  3711. }
  3712. if (gen < min_trans) {
  3713. slot++;
  3714. goto next;
  3715. }
  3716. btrfs_node_key_to_cpu(c, key, slot);
  3717. }
  3718. return 0;
  3719. }
  3720. return 1;
  3721. }
  3722. /*
  3723. * search the tree again to find a leaf with greater keys
  3724. * returns 0 if it found something or 1 if there are no greater leaves.
  3725. * returns < 0 on io errors.
  3726. */
  3727. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3728. {
  3729. int slot;
  3730. int level;
  3731. struct extent_buffer *c;
  3732. struct extent_buffer *next;
  3733. struct btrfs_key key;
  3734. u32 nritems;
  3735. int ret;
  3736. int old_spinning = path->leave_spinning;
  3737. int force_blocking = 0;
  3738. nritems = btrfs_header_nritems(path->nodes[0]);
  3739. if (nritems == 0)
  3740. return 1;
  3741. /*
  3742. * we take the blocks in an order that upsets lockdep. Using
  3743. * blocking mode is the only way around it.
  3744. */
  3745. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  3746. force_blocking = 1;
  3747. #endif
  3748. btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
  3749. again:
  3750. level = 1;
  3751. next = NULL;
  3752. btrfs_release_path(root, path);
  3753. path->keep_locks = 1;
  3754. if (!force_blocking)
  3755. path->leave_spinning = 1;
  3756. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3757. path->keep_locks = 0;
  3758. if (ret < 0)
  3759. return ret;
  3760. nritems = btrfs_header_nritems(path->nodes[0]);
  3761. /*
  3762. * by releasing the path above we dropped all our locks. A balance
  3763. * could have added more items next to the key that used to be
  3764. * at the very end of the block. So, check again here and
  3765. * advance the path if there are now more items available.
  3766. */
  3767. if (nritems > 0 && path->slots[0] < nritems - 1) {
  3768. if (ret == 0)
  3769. path->slots[0]++;
  3770. ret = 0;
  3771. goto done;
  3772. }
  3773. while (level < BTRFS_MAX_LEVEL) {
  3774. if (!path->nodes[level]) {
  3775. ret = 1;
  3776. goto done;
  3777. }
  3778. slot = path->slots[level] + 1;
  3779. c = path->nodes[level];
  3780. if (slot >= btrfs_header_nritems(c)) {
  3781. level++;
  3782. if (level == BTRFS_MAX_LEVEL) {
  3783. ret = 1;
  3784. goto done;
  3785. }
  3786. continue;
  3787. }
  3788. if (next) {
  3789. btrfs_tree_unlock(next);
  3790. free_extent_buffer(next);
  3791. }
  3792. next = c;
  3793. ret = read_block_for_search(NULL, root, path, &next, level,
  3794. slot, &key);
  3795. if (ret == -EAGAIN)
  3796. goto again;
  3797. if (ret < 0) {
  3798. btrfs_release_path(root, path);
  3799. goto done;
  3800. }
  3801. if (!path->skip_locking) {
  3802. ret = btrfs_try_spin_lock(next);
  3803. if (!ret) {
  3804. btrfs_set_path_blocking(path);
  3805. btrfs_tree_lock(next);
  3806. if (!force_blocking)
  3807. btrfs_clear_path_blocking(path, next);
  3808. }
  3809. if (force_blocking)
  3810. btrfs_set_lock_blocking(next);
  3811. }
  3812. break;
  3813. }
  3814. path->slots[level] = slot;
  3815. while (1) {
  3816. level--;
  3817. c = path->nodes[level];
  3818. if (path->locks[level])
  3819. btrfs_tree_unlock(c);
  3820. free_extent_buffer(c);
  3821. path->nodes[level] = next;
  3822. path->slots[level] = 0;
  3823. if (!path->skip_locking)
  3824. path->locks[level] = 1;
  3825. if (!level)
  3826. break;
  3827. ret = read_block_for_search(NULL, root, path, &next, level,
  3828. 0, &key);
  3829. if (ret == -EAGAIN)
  3830. goto again;
  3831. if (ret < 0) {
  3832. btrfs_release_path(root, path);
  3833. goto done;
  3834. }
  3835. if (!path->skip_locking) {
  3836. btrfs_assert_tree_locked(path->nodes[level]);
  3837. ret = btrfs_try_spin_lock(next);
  3838. if (!ret) {
  3839. btrfs_set_path_blocking(path);
  3840. btrfs_tree_lock(next);
  3841. if (!force_blocking)
  3842. btrfs_clear_path_blocking(path, next);
  3843. }
  3844. if (force_blocking)
  3845. btrfs_set_lock_blocking(next);
  3846. }
  3847. }
  3848. ret = 0;
  3849. done:
  3850. unlock_up(path, 0, 1);
  3851. path->leave_spinning = old_spinning;
  3852. if (!old_spinning)
  3853. btrfs_set_path_blocking(path);
  3854. return ret;
  3855. }
  3856. /*
  3857. * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
  3858. * searching until it gets past min_objectid or finds an item of 'type'
  3859. *
  3860. * returns 0 if something is found, 1 if nothing was found and < 0 on error
  3861. */
  3862. int btrfs_previous_item(struct btrfs_root *root,
  3863. struct btrfs_path *path, u64 min_objectid,
  3864. int type)
  3865. {
  3866. struct btrfs_key found_key;
  3867. struct extent_buffer *leaf;
  3868. u32 nritems;
  3869. int ret;
  3870. while (1) {
  3871. if (path->slots[0] == 0) {
  3872. btrfs_set_path_blocking(path);
  3873. ret = btrfs_prev_leaf(root, path);
  3874. if (ret != 0)
  3875. return ret;
  3876. } else {
  3877. path->slots[0]--;
  3878. }
  3879. leaf = path->nodes[0];
  3880. nritems = btrfs_header_nritems(leaf);
  3881. if (nritems == 0)
  3882. return 1;
  3883. if (path->slots[0] == nritems)
  3884. path->slots[0]--;
  3885. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  3886. if (found_key.objectid < min_objectid)
  3887. break;
  3888. if (found_key.type == type)
  3889. return 0;
  3890. if (found_key.objectid == min_objectid &&
  3891. found_key.type < type)
  3892. break;
  3893. }
  3894. return 1;
  3895. }