e1000_main.c 133 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771
  1. /*******************************************************************************
  2. Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
  3. This program is free software; you can redistribute it and/or modify it
  4. under the terms of the GNU General Public License as published by the Free
  5. Software Foundation; either version 2 of the License, or (at your option)
  6. any later version.
  7. This program is distributed in the hope that it will be useful, but WITHOUT
  8. ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  9. FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  10. more details.
  11. You should have received a copy of the GNU General Public License along with
  12. this program; if not, write to the Free Software Foundation, Inc., 59
  13. Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  14. The full GNU General Public License is included in this distribution in the
  15. file called LICENSE.
  16. Contact Information:
  17. Linux NICS <linux.nics@intel.com>
  18. e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  19. Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  20. *******************************************************************************/
  21. #include "e1000.h"
  22. char e1000_driver_name[] = "e1000";
  23. static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
  24. #ifndef CONFIG_E1000_NAPI
  25. #define DRIVERNAPI
  26. #else
  27. #define DRIVERNAPI "-NAPI"
  28. #endif
  29. #define DRV_VERSION "7.0.38-k4"DRIVERNAPI
  30. char e1000_driver_version[] = DRV_VERSION;
  31. static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
  32. /* e1000_pci_tbl - PCI Device ID Table
  33. *
  34. * Last entry must be all 0s
  35. *
  36. * Macro expands to...
  37. * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
  38. */
  39. static struct pci_device_id e1000_pci_tbl[] = {
  40. INTEL_E1000_ETHERNET_DEVICE(0x1000),
  41. INTEL_E1000_ETHERNET_DEVICE(0x1001),
  42. INTEL_E1000_ETHERNET_DEVICE(0x1004),
  43. INTEL_E1000_ETHERNET_DEVICE(0x1008),
  44. INTEL_E1000_ETHERNET_DEVICE(0x1009),
  45. INTEL_E1000_ETHERNET_DEVICE(0x100C),
  46. INTEL_E1000_ETHERNET_DEVICE(0x100D),
  47. INTEL_E1000_ETHERNET_DEVICE(0x100E),
  48. INTEL_E1000_ETHERNET_DEVICE(0x100F),
  49. INTEL_E1000_ETHERNET_DEVICE(0x1010),
  50. INTEL_E1000_ETHERNET_DEVICE(0x1011),
  51. INTEL_E1000_ETHERNET_DEVICE(0x1012),
  52. INTEL_E1000_ETHERNET_DEVICE(0x1013),
  53. INTEL_E1000_ETHERNET_DEVICE(0x1014),
  54. INTEL_E1000_ETHERNET_DEVICE(0x1015),
  55. INTEL_E1000_ETHERNET_DEVICE(0x1016),
  56. INTEL_E1000_ETHERNET_DEVICE(0x1017),
  57. INTEL_E1000_ETHERNET_DEVICE(0x1018),
  58. INTEL_E1000_ETHERNET_DEVICE(0x1019),
  59. INTEL_E1000_ETHERNET_DEVICE(0x101A),
  60. INTEL_E1000_ETHERNET_DEVICE(0x101D),
  61. INTEL_E1000_ETHERNET_DEVICE(0x101E),
  62. INTEL_E1000_ETHERNET_DEVICE(0x1026),
  63. INTEL_E1000_ETHERNET_DEVICE(0x1027),
  64. INTEL_E1000_ETHERNET_DEVICE(0x1028),
  65. INTEL_E1000_ETHERNET_DEVICE(0x105E),
  66. INTEL_E1000_ETHERNET_DEVICE(0x105F),
  67. INTEL_E1000_ETHERNET_DEVICE(0x1060),
  68. INTEL_E1000_ETHERNET_DEVICE(0x1075),
  69. INTEL_E1000_ETHERNET_DEVICE(0x1076),
  70. INTEL_E1000_ETHERNET_DEVICE(0x1077),
  71. INTEL_E1000_ETHERNET_DEVICE(0x1078),
  72. INTEL_E1000_ETHERNET_DEVICE(0x1079),
  73. INTEL_E1000_ETHERNET_DEVICE(0x107A),
  74. INTEL_E1000_ETHERNET_DEVICE(0x107B),
  75. INTEL_E1000_ETHERNET_DEVICE(0x107C),
  76. INTEL_E1000_ETHERNET_DEVICE(0x107D),
  77. INTEL_E1000_ETHERNET_DEVICE(0x107E),
  78. INTEL_E1000_ETHERNET_DEVICE(0x107F),
  79. INTEL_E1000_ETHERNET_DEVICE(0x108A),
  80. INTEL_E1000_ETHERNET_DEVICE(0x108B),
  81. INTEL_E1000_ETHERNET_DEVICE(0x108C),
  82. INTEL_E1000_ETHERNET_DEVICE(0x1096),
  83. INTEL_E1000_ETHERNET_DEVICE(0x1098),
  84. INTEL_E1000_ETHERNET_DEVICE(0x1099),
  85. INTEL_E1000_ETHERNET_DEVICE(0x109A),
  86. INTEL_E1000_ETHERNET_DEVICE(0x10B5),
  87. INTEL_E1000_ETHERNET_DEVICE(0x10B9),
  88. /* required last entry */
  89. {0,}
  90. };
  91. MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
  92. static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
  93. struct e1000_tx_ring *txdr);
  94. static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
  95. struct e1000_rx_ring *rxdr);
  96. static void e1000_free_tx_resources(struct e1000_adapter *adapter,
  97. struct e1000_tx_ring *tx_ring);
  98. static void e1000_free_rx_resources(struct e1000_adapter *adapter,
  99. struct e1000_rx_ring *rx_ring);
  100. /* Local Function Prototypes */
  101. static int e1000_init_module(void);
  102. static void e1000_exit_module(void);
  103. static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
  104. static void __devexit e1000_remove(struct pci_dev *pdev);
  105. static int e1000_alloc_queues(struct e1000_adapter *adapter);
  106. static int e1000_sw_init(struct e1000_adapter *adapter);
  107. static int e1000_open(struct net_device *netdev);
  108. static int e1000_close(struct net_device *netdev);
  109. static void e1000_configure_tx(struct e1000_adapter *adapter);
  110. static void e1000_configure_rx(struct e1000_adapter *adapter);
  111. static void e1000_setup_rctl(struct e1000_adapter *adapter);
  112. static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
  113. static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
  114. static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
  115. struct e1000_tx_ring *tx_ring);
  116. static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
  117. struct e1000_rx_ring *rx_ring);
  118. static void e1000_set_multi(struct net_device *netdev);
  119. static void e1000_update_phy_info(unsigned long data);
  120. static void e1000_watchdog(unsigned long data);
  121. static void e1000_82547_tx_fifo_stall(unsigned long data);
  122. static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
  123. static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
  124. static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
  125. static int e1000_set_mac(struct net_device *netdev, void *p);
  126. static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
  127. static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
  128. struct e1000_tx_ring *tx_ring);
  129. #ifdef CONFIG_E1000_NAPI
  130. static int e1000_clean(struct net_device *poll_dev, int *budget);
  131. static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
  132. struct e1000_rx_ring *rx_ring,
  133. int *work_done, int work_to_do);
  134. static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
  135. struct e1000_rx_ring *rx_ring,
  136. int *work_done, int work_to_do);
  137. #else
  138. static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
  139. struct e1000_rx_ring *rx_ring);
  140. static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
  141. struct e1000_rx_ring *rx_ring);
  142. #endif
  143. static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
  144. struct e1000_rx_ring *rx_ring,
  145. int cleaned_count);
  146. static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
  147. struct e1000_rx_ring *rx_ring,
  148. int cleaned_count);
  149. static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
  150. static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
  151. int cmd);
  152. static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
  153. static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
  154. static void e1000_tx_timeout(struct net_device *dev);
  155. static void e1000_reset_task(struct net_device *dev);
  156. static void e1000_smartspeed(struct e1000_adapter *adapter);
  157. static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
  158. struct sk_buff *skb);
  159. static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
  160. static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
  161. static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
  162. static void e1000_restore_vlan(struct e1000_adapter *adapter);
  163. static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
  164. #ifdef CONFIG_PM
  165. static int e1000_resume(struct pci_dev *pdev);
  166. #endif
  167. static void e1000_shutdown(struct pci_dev *pdev);
  168. #ifdef CONFIG_NET_POLL_CONTROLLER
  169. /* for netdump / net console */
  170. static void e1000_netpoll (struct net_device *netdev);
  171. #endif
  172. static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
  173. pci_channel_state_t state);
  174. static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
  175. static void e1000_io_resume(struct pci_dev *pdev);
  176. static struct pci_error_handlers e1000_err_handler = {
  177. .error_detected = e1000_io_error_detected,
  178. .slot_reset = e1000_io_slot_reset,
  179. .resume = e1000_io_resume,
  180. };
  181. static struct pci_driver e1000_driver = {
  182. .name = e1000_driver_name,
  183. .id_table = e1000_pci_tbl,
  184. .probe = e1000_probe,
  185. .remove = __devexit_p(e1000_remove),
  186. /* Power Managment Hooks */
  187. .suspend = e1000_suspend,
  188. #ifdef CONFIG_PM
  189. .resume = e1000_resume,
  190. #endif
  191. .shutdown = e1000_shutdown,
  192. .err_handler = &e1000_err_handler
  193. };
  194. MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  195. MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
  196. MODULE_LICENSE("GPL");
  197. MODULE_VERSION(DRV_VERSION);
  198. static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
  199. module_param(debug, int, 0);
  200. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  201. /**
  202. * e1000_init_module - Driver Registration Routine
  203. *
  204. * e1000_init_module is the first routine called when the driver is
  205. * loaded. All it does is register with the PCI subsystem.
  206. **/
  207. static int __init
  208. e1000_init_module(void)
  209. {
  210. int ret;
  211. printk(KERN_INFO "%s - version %s\n",
  212. e1000_driver_string, e1000_driver_version);
  213. printk(KERN_INFO "%s\n", e1000_copyright);
  214. ret = pci_module_init(&e1000_driver);
  215. return ret;
  216. }
  217. module_init(e1000_init_module);
  218. /**
  219. * e1000_exit_module - Driver Exit Cleanup Routine
  220. *
  221. * e1000_exit_module is called just before the driver is removed
  222. * from memory.
  223. **/
  224. static void __exit
  225. e1000_exit_module(void)
  226. {
  227. pci_unregister_driver(&e1000_driver);
  228. }
  229. module_exit(e1000_exit_module);
  230. static int e1000_request_irq(struct e1000_adapter *adapter)
  231. {
  232. struct net_device *netdev = adapter->netdev;
  233. int flags, err = 0;
  234. flags = SA_SHIRQ | SA_SAMPLE_RANDOM;
  235. #ifdef CONFIG_PCI_MSI
  236. if (adapter->hw.mac_type > e1000_82547_rev_2) {
  237. adapter->have_msi = TRUE;
  238. if ((err = pci_enable_msi(adapter->pdev))) {
  239. DPRINTK(PROBE, ERR,
  240. "Unable to allocate MSI interrupt Error: %d\n", err);
  241. adapter->have_msi = FALSE;
  242. }
  243. }
  244. if (adapter->have_msi)
  245. flags &= ~SA_SHIRQ;
  246. #endif
  247. if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
  248. netdev->name, netdev)))
  249. DPRINTK(PROBE, ERR,
  250. "Unable to allocate interrupt Error: %d\n", err);
  251. return err;
  252. }
  253. static void e1000_free_irq(struct e1000_adapter *adapter)
  254. {
  255. struct net_device *netdev = adapter->netdev;
  256. free_irq(adapter->pdev->irq, netdev);
  257. #ifdef CONFIG_PCI_MSI
  258. if (adapter->have_msi)
  259. pci_disable_msi(adapter->pdev);
  260. #endif
  261. }
  262. /**
  263. * e1000_irq_disable - Mask off interrupt generation on the NIC
  264. * @adapter: board private structure
  265. **/
  266. static void
  267. e1000_irq_disable(struct e1000_adapter *adapter)
  268. {
  269. atomic_inc(&adapter->irq_sem);
  270. E1000_WRITE_REG(&adapter->hw, IMC, ~0);
  271. E1000_WRITE_FLUSH(&adapter->hw);
  272. synchronize_irq(adapter->pdev->irq);
  273. }
  274. /**
  275. * e1000_irq_enable - Enable default interrupt generation settings
  276. * @adapter: board private structure
  277. **/
  278. static void
  279. e1000_irq_enable(struct e1000_adapter *adapter)
  280. {
  281. if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
  282. E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
  283. E1000_WRITE_FLUSH(&adapter->hw);
  284. }
  285. }
  286. static void
  287. e1000_update_mng_vlan(struct e1000_adapter *adapter)
  288. {
  289. struct net_device *netdev = adapter->netdev;
  290. uint16_t vid = adapter->hw.mng_cookie.vlan_id;
  291. uint16_t old_vid = adapter->mng_vlan_id;
  292. if (adapter->vlgrp) {
  293. if (!adapter->vlgrp->vlan_devices[vid]) {
  294. if (adapter->hw.mng_cookie.status &
  295. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
  296. e1000_vlan_rx_add_vid(netdev, vid);
  297. adapter->mng_vlan_id = vid;
  298. } else
  299. adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
  300. if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
  301. (vid != old_vid) &&
  302. !adapter->vlgrp->vlan_devices[old_vid])
  303. e1000_vlan_rx_kill_vid(netdev, old_vid);
  304. } else
  305. adapter->mng_vlan_id = vid;
  306. }
  307. }
  308. /**
  309. * e1000_release_hw_control - release control of the h/w to f/w
  310. * @adapter: address of board private structure
  311. *
  312. * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
  313. * For ASF and Pass Through versions of f/w this means that the
  314. * driver is no longer loaded. For AMT version (only with 82573) i
  315. * of the f/w this means that the netowrk i/f is closed.
  316. *
  317. **/
  318. static void
  319. e1000_release_hw_control(struct e1000_adapter *adapter)
  320. {
  321. uint32_t ctrl_ext;
  322. uint32_t swsm;
  323. /* Let firmware taken over control of h/w */
  324. switch (adapter->hw.mac_type) {
  325. case e1000_82571:
  326. case e1000_82572:
  327. case e1000_80003es2lan:
  328. ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
  329. E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
  330. ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
  331. break;
  332. case e1000_82573:
  333. swsm = E1000_READ_REG(&adapter->hw, SWSM);
  334. E1000_WRITE_REG(&adapter->hw, SWSM,
  335. swsm & ~E1000_SWSM_DRV_LOAD);
  336. default:
  337. break;
  338. }
  339. }
  340. /**
  341. * e1000_get_hw_control - get control of the h/w from f/w
  342. * @adapter: address of board private structure
  343. *
  344. * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
  345. * For ASF and Pass Through versions of f/w this means that
  346. * the driver is loaded. For AMT version (only with 82573)
  347. * of the f/w this means that the netowrk i/f is open.
  348. *
  349. **/
  350. static void
  351. e1000_get_hw_control(struct e1000_adapter *adapter)
  352. {
  353. uint32_t ctrl_ext;
  354. uint32_t swsm;
  355. /* Let firmware know the driver has taken over */
  356. switch (adapter->hw.mac_type) {
  357. case e1000_82571:
  358. case e1000_82572:
  359. case e1000_80003es2lan:
  360. ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
  361. E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
  362. ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
  363. break;
  364. case e1000_82573:
  365. swsm = E1000_READ_REG(&adapter->hw, SWSM);
  366. E1000_WRITE_REG(&adapter->hw, SWSM,
  367. swsm | E1000_SWSM_DRV_LOAD);
  368. break;
  369. default:
  370. break;
  371. }
  372. }
  373. int
  374. e1000_up(struct e1000_adapter *adapter)
  375. {
  376. struct net_device *netdev = adapter->netdev;
  377. int i;
  378. /* hardware has been reset, we need to reload some things */
  379. e1000_set_multi(netdev);
  380. e1000_restore_vlan(adapter);
  381. e1000_configure_tx(adapter);
  382. e1000_setup_rctl(adapter);
  383. e1000_configure_rx(adapter);
  384. /* call E1000_DESC_UNUSED which always leaves
  385. * at least 1 descriptor unused to make sure
  386. * next_to_use != next_to_clean */
  387. for (i = 0; i < adapter->num_rx_queues; i++) {
  388. struct e1000_rx_ring *ring = &adapter->rx_ring[i];
  389. adapter->alloc_rx_buf(adapter, ring,
  390. E1000_DESC_UNUSED(ring));
  391. }
  392. adapter->tx_queue_len = netdev->tx_queue_len;
  393. mod_timer(&adapter->watchdog_timer, jiffies);
  394. #ifdef CONFIG_E1000_NAPI
  395. netif_poll_enable(netdev);
  396. #endif
  397. e1000_irq_enable(adapter);
  398. return 0;
  399. }
  400. /**
  401. * e1000_power_up_phy - restore link in case the phy was powered down
  402. * @adapter: address of board private structure
  403. *
  404. * The phy may be powered down to save power and turn off link when the
  405. * driver is unloaded and wake on lan is not enabled (among others)
  406. * *** this routine MUST be followed by a call to e1000_reset ***
  407. *
  408. **/
  409. static void e1000_power_up_phy(struct e1000_adapter *adapter)
  410. {
  411. uint16_t mii_reg = 0;
  412. /* Just clear the power down bit to wake the phy back up */
  413. if (adapter->hw.media_type == e1000_media_type_copper) {
  414. /* according to the manual, the phy will retain its
  415. * settings across a power-down/up cycle */
  416. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
  417. mii_reg &= ~MII_CR_POWER_DOWN;
  418. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
  419. }
  420. }
  421. static void e1000_power_down_phy(struct e1000_adapter *adapter)
  422. {
  423. boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
  424. e1000_check_mng_mode(&adapter->hw);
  425. /* Power down the PHY so no link is implied when interface is down
  426. * The PHY cannot be powered down if any of the following is TRUE
  427. * (a) WoL is enabled
  428. * (b) AMT is active
  429. * (c) SoL/IDER session is active */
  430. if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
  431. adapter->hw.media_type == e1000_media_type_copper &&
  432. !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
  433. !mng_mode_enabled &&
  434. !e1000_check_phy_reset_block(&adapter->hw)) {
  435. uint16_t mii_reg = 0;
  436. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
  437. mii_reg |= MII_CR_POWER_DOWN;
  438. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
  439. mdelay(1);
  440. }
  441. }
  442. void
  443. e1000_down(struct e1000_adapter *adapter)
  444. {
  445. struct net_device *netdev = adapter->netdev;
  446. e1000_irq_disable(adapter);
  447. del_timer_sync(&adapter->tx_fifo_stall_timer);
  448. del_timer_sync(&adapter->watchdog_timer);
  449. del_timer_sync(&adapter->phy_info_timer);
  450. #ifdef CONFIG_E1000_NAPI
  451. netif_poll_disable(netdev);
  452. #endif
  453. netdev->tx_queue_len = adapter->tx_queue_len;
  454. adapter->link_speed = 0;
  455. adapter->link_duplex = 0;
  456. netif_carrier_off(netdev);
  457. netif_stop_queue(netdev);
  458. e1000_reset(adapter);
  459. e1000_clean_all_tx_rings(adapter);
  460. e1000_clean_all_rx_rings(adapter);
  461. }
  462. void
  463. e1000_reinit_locked(struct e1000_adapter *adapter)
  464. {
  465. WARN_ON(in_interrupt());
  466. while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
  467. msleep(1);
  468. e1000_down(adapter);
  469. e1000_up(adapter);
  470. clear_bit(__E1000_RESETTING, &adapter->flags);
  471. }
  472. void
  473. e1000_reset(struct e1000_adapter *adapter)
  474. {
  475. uint32_t pba, manc;
  476. uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
  477. /* Repartition Pba for greater than 9k mtu
  478. * To take effect CTRL.RST is required.
  479. */
  480. switch (adapter->hw.mac_type) {
  481. case e1000_82547:
  482. case e1000_82547_rev_2:
  483. pba = E1000_PBA_30K;
  484. break;
  485. case e1000_82571:
  486. case e1000_82572:
  487. case e1000_80003es2lan:
  488. pba = E1000_PBA_38K;
  489. break;
  490. case e1000_82573:
  491. pba = E1000_PBA_12K;
  492. break;
  493. default:
  494. pba = E1000_PBA_48K;
  495. break;
  496. }
  497. if ((adapter->hw.mac_type != e1000_82573) &&
  498. (adapter->netdev->mtu > E1000_RXBUFFER_8192))
  499. pba -= 8; /* allocate more FIFO for Tx */
  500. if (adapter->hw.mac_type == e1000_82547) {
  501. adapter->tx_fifo_head = 0;
  502. adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
  503. adapter->tx_fifo_size =
  504. (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
  505. atomic_set(&adapter->tx_fifo_stall, 0);
  506. }
  507. E1000_WRITE_REG(&adapter->hw, PBA, pba);
  508. /* flow control settings */
  509. /* Set the FC high water mark to 90% of the FIFO size.
  510. * Required to clear last 3 LSB */
  511. fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
  512. adapter->hw.fc_high_water = fc_high_water_mark;
  513. adapter->hw.fc_low_water = fc_high_water_mark - 8;
  514. if (adapter->hw.mac_type == e1000_80003es2lan)
  515. adapter->hw.fc_pause_time = 0xFFFF;
  516. else
  517. adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
  518. adapter->hw.fc_send_xon = 1;
  519. adapter->hw.fc = adapter->hw.original_fc;
  520. /* Allow time for pending master requests to run */
  521. e1000_reset_hw(&adapter->hw);
  522. if (adapter->hw.mac_type >= e1000_82544)
  523. E1000_WRITE_REG(&adapter->hw, WUC, 0);
  524. if (e1000_init_hw(&adapter->hw))
  525. DPRINTK(PROBE, ERR, "Hardware Error\n");
  526. e1000_update_mng_vlan(adapter);
  527. /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
  528. E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
  529. e1000_reset_adaptive(&adapter->hw);
  530. e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
  531. if (!adapter->smart_power_down &&
  532. (adapter->hw.mac_type == e1000_82571 ||
  533. adapter->hw.mac_type == e1000_82572)) {
  534. uint16_t phy_data = 0;
  535. /* speed up time to link by disabling smart power down, ignore
  536. * the return value of this function because there is nothing
  537. * different we would do if it failed */
  538. e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
  539. &phy_data);
  540. phy_data &= ~IGP02E1000_PM_SPD;
  541. e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
  542. phy_data);
  543. }
  544. if (adapter->en_mng_pt) {
  545. manc = E1000_READ_REG(&adapter->hw, MANC);
  546. manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
  547. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  548. }
  549. }
  550. /**
  551. * e1000_probe - Device Initialization Routine
  552. * @pdev: PCI device information struct
  553. * @ent: entry in e1000_pci_tbl
  554. *
  555. * Returns 0 on success, negative on failure
  556. *
  557. * e1000_probe initializes an adapter identified by a pci_dev structure.
  558. * The OS initialization, configuring of the adapter private structure,
  559. * and a hardware reset occur.
  560. **/
  561. static int __devinit
  562. e1000_probe(struct pci_dev *pdev,
  563. const struct pci_device_id *ent)
  564. {
  565. struct net_device *netdev;
  566. struct e1000_adapter *adapter;
  567. unsigned long mmio_start, mmio_len;
  568. static int cards_found = 0;
  569. static int e1000_ksp3_port_a = 0; /* global ksp3 port a indication */
  570. int i, err, pci_using_dac;
  571. uint16_t eeprom_data;
  572. uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
  573. if ((err = pci_enable_device(pdev)))
  574. return err;
  575. if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
  576. pci_using_dac = 1;
  577. } else {
  578. if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  579. E1000_ERR("No usable DMA configuration, aborting\n");
  580. return err;
  581. }
  582. pci_using_dac = 0;
  583. }
  584. if ((err = pci_request_regions(pdev, e1000_driver_name)))
  585. return err;
  586. pci_set_master(pdev);
  587. netdev = alloc_etherdev(sizeof(struct e1000_adapter));
  588. if (!netdev) {
  589. err = -ENOMEM;
  590. goto err_alloc_etherdev;
  591. }
  592. SET_MODULE_OWNER(netdev);
  593. SET_NETDEV_DEV(netdev, &pdev->dev);
  594. pci_set_drvdata(pdev, netdev);
  595. adapter = netdev_priv(netdev);
  596. adapter->netdev = netdev;
  597. adapter->pdev = pdev;
  598. adapter->hw.back = adapter;
  599. adapter->msg_enable = (1 << debug) - 1;
  600. mmio_start = pci_resource_start(pdev, BAR_0);
  601. mmio_len = pci_resource_len(pdev, BAR_0);
  602. adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
  603. if (!adapter->hw.hw_addr) {
  604. err = -EIO;
  605. goto err_ioremap;
  606. }
  607. for (i = BAR_1; i <= BAR_5; i++) {
  608. if (pci_resource_len(pdev, i) == 0)
  609. continue;
  610. if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
  611. adapter->hw.io_base = pci_resource_start(pdev, i);
  612. break;
  613. }
  614. }
  615. netdev->open = &e1000_open;
  616. netdev->stop = &e1000_close;
  617. netdev->hard_start_xmit = &e1000_xmit_frame;
  618. netdev->get_stats = &e1000_get_stats;
  619. netdev->set_multicast_list = &e1000_set_multi;
  620. netdev->set_mac_address = &e1000_set_mac;
  621. netdev->change_mtu = &e1000_change_mtu;
  622. netdev->do_ioctl = &e1000_ioctl;
  623. e1000_set_ethtool_ops(netdev);
  624. netdev->tx_timeout = &e1000_tx_timeout;
  625. netdev->watchdog_timeo = 5 * HZ;
  626. #ifdef CONFIG_E1000_NAPI
  627. netdev->poll = &e1000_clean;
  628. netdev->weight = 64;
  629. #endif
  630. netdev->vlan_rx_register = e1000_vlan_rx_register;
  631. netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
  632. netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
  633. #ifdef CONFIG_NET_POLL_CONTROLLER
  634. netdev->poll_controller = e1000_netpoll;
  635. #endif
  636. strcpy(netdev->name, pci_name(pdev));
  637. netdev->mem_start = mmio_start;
  638. netdev->mem_end = mmio_start + mmio_len;
  639. netdev->base_addr = adapter->hw.io_base;
  640. adapter->bd_number = cards_found;
  641. /* setup the private structure */
  642. if ((err = e1000_sw_init(adapter)))
  643. goto err_sw_init;
  644. if ((err = e1000_check_phy_reset_block(&adapter->hw)))
  645. DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
  646. /* if ksp3, indicate if it's port a being setup */
  647. if (pdev->device == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 &&
  648. e1000_ksp3_port_a == 0)
  649. adapter->ksp3_port_a = 1;
  650. e1000_ksp3_port_a++;
  651. /* Reset for multiple KP3 adapters */
  652. if (e1000_ksp3_port_a == 4)
  653. e1000_ksp3_port_a = 0;
  654. if (adapter->hw.mac_type >= e1000_82543) {
  655. netdev->features = NETIF_F_SG |
  656. NETIF_F_HW_CSUM |
  657. NETIF_F_HW_VLAN_TX |
  658. NETIF_F_HW_VLAN_RX |
  659. NETIF_F_HW_VLAN_FILTER;
  660. }
  661. #ifdef NETIF_F_TSO
  662. if ((adapter->hw.mac_type >= e1000_82544) &&
  663. (adapter->hw.mac_type != e1000_82547))
  664. netdev->features |= NETIF_F_TSO;
  665. #ifdef NETIF_F_TSO_IPV6
  666. if (adapter->hw.mac_type > e1000_82547_rev_2)
  667. netdev->features |= NETIF_F_TSO_IPV6;
  668. #endif
  669. #endif
  670. if (pci_using_dac)
  671. netdev->features |= NETIF_F_HIGHDMA;
  672. /* hard_start_xmit is safe against parallel locking */
  673. netdev->features |= NETIF_F_LLTX;
  674. adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
  675. /* before reading the EEPROM, reset the controller to
  676. * put the device in a known good starting state */
  677. e1000_reset_hw(&adapter->hw);
  678. /* make sure the EEPROM is good */
  679. if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
  680. DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
  681. err = -EIO;
  682. goto err_eeprom;
  683. }
  684. /* copy the MAC address out of the EEPROM */
  685. if (e1000_read_mac_addr(&adapter->hw))
  686. DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
  687. memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
  688. memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
  689. if (!is_valid_ether_addr(netdev->perm_addr)) {
  690. DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
  691. err = -EIO;
  692. goto err_eeprom;
  693. }
  694. e1000_read_part_num(&adapter->hw, &(adapter->part_num));
  695. e1000_get_bus_info(&adapter->hw);
  696. init_timer(&adapter->tx_fifo_stall_timer);
  697. adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
  698. adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
  699. init_timer(&adapter->watchdog_timer);
  700. adapter->watchdog_timer.function = &e1000_watchdog;
  701. adapter->watchdog_timer.data = (unsigned long) adapter;
  702. init_timer(&adapter->phy_info_timer);
  703. adapter->phy_info_timer.function = &e1000_update_phy_info;
  704. adapter->phy_info_timer.data = (unsigned long) adapter;
  705. INIT_WORK(&adapter->reset_task,
  706. (void (*)(void *))e1000_reset_task, netdev);
  707. /* we're going to reset, so assume we have no link for now */
  708. netif_carrier_off(netdev);
  709. netif_stop_queue(netdev);
  710. e1000_check_options(adapter);
  711. /* Initial Wake on LAN setting
  712. * If APM wake is enabled in the EEPROM,
  713. * enable the ACPI Magic Packet filter
  714. */
  715. switch (adapter->hw.mac_type) {
  716. case e1000_82542_rev2_0:
  717. case e1000_82542_rev2_1:
  718. case e1000_82543:
  719. break;
  720. case e1000_82544:
  721. e1000_read_eeprom(&adapter->hw,
  722. EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
  723. eeprom_apme_mask = E1000_EEPROM_82544_APM;
  724. break;
  725. case e1000_82546:
  726. case e1000_82546_rev_3:
  727. case e1000_82571:
  728. case e1000_80003es2lan:
  729. if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
  730. e1000_read_eeprom(&adapter->hw,
  731. EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
  732. break;
  733. }
  734. /* Fall Through */
  735. default:
  736. e1000_read_eeprom(&adapter->hw,
  737. EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
  738. break;
  739. }
  740. if (eeprom_data & eeprom_apme_mask)
  741. adapter->wol |= E1000_WUFC_MAG;
  742. /* print bus type/speed/width info */
  743. {
  744. struct e1000_hw *hw = &adapter->hw;
  745. DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
  746. ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
  747. (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
  748. ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
  749. (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
  750. (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
  751. (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
  752. (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
  753. ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
  754. (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
  755. (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
  756. "32-bit"));
  757. }
  758. for (i = 0; i < 6; i++)
  759. printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
  760. /* reset the hardware with the new settings */
  761. e1000_reset(adapter);
  762. /* If the controller is 82573 and f/w is AMT, do not set
  763. * DRV_LOAD until the interface is up. For all other cases,
  764. * let the f/w know that the h/w is now under the control
  765. * of the driver. */
  766. if (adapter->hw.mac_type != e1000_82573 ||
  767. !e1000_check_mng_mode(&adapter->hw))
  768. e1000_get_hw_control(adapter);
  769. strcpy(netdev->name, "eth%d");
  770. if ((err = register_netdev(netdev)))
  771. goto err_register;
  772. DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
  773. cards_found++;
  774. return 0;
  775. err_register:
  776. err_sw_init:
  777. err_eeprom:
  778. iounmap(adapter->hw.hw_addr);
  779. err_ioremap:
  780. free_netdev(netdev);
  781. err_alloc_etherdev:
  782. pci_release_regions(pdev);
  783. return err;
  784. }
  785. /**
  786. * e1000_remove - Device Removal Routine
  787. * @pdev: PCI device information struct
  788. *
  789. * e1000_remove is called by the PCI subsystem to alert the driver
  790. * that it should release a PCI device. The could be caused by a
  791. * Hot-Plug event, or because the driver is going to be removed from
  792. * memory.
  793. **/
  794. static void __devexit
  795. e1000_remove(struct pci_dev *pdev)
  796. {
  797. struct net_device *netdev = pci_get_drvdata(pdev);
  798. struct e1000_adapter *adapter = netdev_priv(netdev);
  799. uint32_t manc;
  800. #ifdef CONFIG_E1000_NAPI
  801. int i;
  802. #endif
  803. flush_scheduled_work();
  804. if (adapter->hw.mac_type >= e1000_82540 &&
  805. adapter->hw.media_type == e1000_media_type_copper) {
  806. manc = E1000_READ_REG(&adapter->hw, MANC);
  807. if (manc & E1000_MANC_SMBUS_EN) {
  808. manc |= E1000_MANC_ARP_EN;
  809. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  810. }
  811. }
  812. /* Release control of h/w to f/w. If f/w is AMT enabled, this
  813. * would have already happened in close and is redundant. */
  814. e1000_release_hw_control(adapter);
  815. unregister_netdev(netdev);
  816. #ifdef CONFIG_E1000_NAPI
  817. for (i = 0; i < adapter->num_rx_queues; i++)
  818. dev_put(&adapter->polling_netdev[i]);
  819. #endif
  820. if (!e1000_check_phy_reset_block(&adapter->hw))
  821. e1000_phy_hw_reset(&adapter->hw);
  822. kfree(adapter->tx_ring);
  823. kfree(adapter->rx_ring);
  824. #ifdef CONFIG_E1000_NAPI
  825. kfree(adapter->polling_netdev);
  826. #endif
  827. iounmap(adapter->hw.hw_addr);
  828. pci_release_regions(pdev);
  829. free_netdev(netdev);
  830. pci_disable_device(pdev);
  831. }
  832. /**
  833. * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
  834. * @adapter: board private structure to initialize
  835. *
  836. * e1000_sw_init initializes the Adapter private data structure.
  837. * Fields are initialized based on PCI device information and
  838. * OS network device settings (MTU size).
  839. **/
  840. static int __devinit
  841. e1000_sw_init(struct e1000_adapter *adapter)
  842. {
  843. struct e1000_hw *hw = &adapter->hw;
  844. struct net_device *netdev = adapter->netdev;
  845. struct pci_dev *pdev = adapter->pdev;
  846. #ifdef CONFIG_E1000_NAPI
  847. int i;
  848. #endif
  849. /* PCI config space info */
  850. hw->vendor_id = pdev->vendor;
  851. hw->device_id = pdev->device;
  852. hw->subsystem_vendor_id = pdev->subsystem_vendor;
  853. hw->subsystem_id = pdev->subsystem_device;
  854. pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
  855. pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
  856. adapter->rx_buffer_len = MAXIMUM_ETHERNET_FRAME_SIZE;
  857. adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
  858. hw->max_frame_size = netdev->mtu +
  859. ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
  860. hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
  861. /* identify the MAC */
  862. if (e1000_set_mac_type(hw)) {
  863. DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
  864. return -EIO;
  865. }
  866. /* initialize eeprom parameters */
  867. if (e1000_init_eeprom_params(hw)) {
  868. E1000_ERR("EEPROM initialization failed\n");
  869. return -EIO;
  870. }
  871. switch (hw->mac_type) {
  872. default:
  873. break;
  874. case e1000_82541:
  875. case e1000_82547:
  876. case e1000_82541_rev_2:
  877. case e1000_82547_rev_2:
  878. hw->phy_init_script = 1;
  879. break;
  880. }
  881. e1000_set_media_type(hw);
  882. hw->wait_autoneg_complete = FALSE;
  883. hw->tbi_compatibility_en = TRUE;
  884. hw->adaptive_ifs = TRUE;
  885. /* Copper options */
  886. if (hw->media_type == e1000_media_type_copper) {
  887. hw->mdix = AUTO_ALL_MODES;
  888. hw->disable_polarity_correction = FALSE;
  889. hw->master_slave = E1000_MASTER_SLAVE;
  890. }
  891. adapter->num_tx_queues = 1;
  892. adapter->num_rx_queues = 1;
  893. if (e1000_alloc_queues(adapter)) {
  894. DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
  895. return -ENOMEM;
  896. }
  897. #ifdef CONFIG_E1000_NAPI
  898. for (i = 0; i < adapter->num_rx_queues; i++) {
  899. adapter->polling_netdev[i].priv = adapter;
  900. adapter->polling_netdev[i].poll = &e1000_clean;
  901. adapter->polling_netdev[i].weight = 64;
  902. dev_hold(&adapter->polling_netdev[i]);
  903. set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
  904. }
  905. spin_lock_init(&adapter->tx_queue_lock);
  906. #endif
  907. atomic_set(&adapter->irq_sem, 1);
  908. spin_lock_init(&adapter->stats_lock);
  909. return 0;
  910. }
  911. /**
  912. * e1000_alloc_queues - Allocate memory for all rings
  913. * @adapter: board private structure to initialize
  914. *
  915. * We allocate one ring per queue at run-time since we don't know the
  916. * number of queues at compile-time. The polling_netdev array is
  917. * intended for Multiqueue, but should work fine with a single queue.
  918. **/
  919. static int __devinit
  920. e1000_alloc_queues(struct e1000_adapter *adapter)
  921. {
  922. int size;
  923. size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
  924. adapter->tx_ring = kmalloc(size, GFP_KERNEL);
  925. if (!adapter->tx_ring)
  926. return -ENOMEM;
  927. memset(adapter->tx_ring, 0, size);
  928. size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
  929. adapter->rx_ring = kmalloc(size, GFP_KERNEL);
  930. if (!adapter->rx_ring) {
  931. kfree(adapter->tx_ring);
  932. return -ENOMEM;
  933. }
  934. memset(adapter->rx_ring, 0, size);
  935. #ifdef CONFIG_E1000_NAPI
  936. size = sizeof(struct net_device) * adapter->num_rx_queues;
  937. adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
  938. if (!adapter->polling_netdev) {
  939. kfree(adapter->tx_ring);
  940. kfree(adapter->rx_ring);
  941. return -ENOMEM;
  942. }
  943. memset(adapter->polling_netdev, 0, size);
  944. #endif
  945. return E1000_SUCCESS;
  946. }
  947. /**
  948. * e1000_open - Called when a network interface is made active
  949. * @netdev: network interface device structure
  950. *
  951. * Returns 0 on success, negative value on failure
  952. *
  953. * The open entry point is called when a network interface is made
  954. * active by the system (IFF_UP). At this point all resources needed
  955. * for transmit and receive operations are allocated, the interrupt
  956. * handler is registered with the OS, the watchdog timer is started,
  957. * and the stack is notified that the interface is ready.
  958. **/
  959. static int
  960. e1000_open(struct net_device *netdev)
  961. {
  962. struct e1000_adapter *adapter = netdev_priv(netdev);
  963. int err;
  964. /* disallow open during test */
  965. if (test_bit(__E1000_DRIVER_TESTING, &adapter->flags))
  966. return -EBUSY;
  967. /* allocate transmit descriptors */
  968. if ((err = e1000_setup_all_tx_resources(adapter)))
  969. goto err_setup_tx;
  970. /* allocate receive descriptors */
  971. if ((err = e1000_setup_all_rx_resources(adapter)))
  972. goto err_setup_rx;
  973. err = e1000_request_irq(adapter);
  974. if (err)
  975. goto err_up;
  976. e1000_power_up_phy(adapter);
  977. if ((err = e1000_up(adapter)))
  978. goto err_up;
  979. adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
  980. if ((adapter->hw.mng_cookie.status &
  981. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
  982. e1000_update_mng_vlan(adapter);
  983. }
  984. /* If AMT is enabled, let the firmware know that the network
  985. * interface is now open */
  986. if (adapter->hw.mac_type == e1000_82573 &&
  987. e1000_check_mng_mode(&adapter->hw))
  988. e1000_get_hw_control(adapter);
  989. return E1000_SUCCESS;
  990. err_up:
  991. e1000_free_all_rx_resources(adapter);
  992. err_setup_rx:
  993. e1000_free_all_tx_resources(adapter);
  994. err_setup_tx:
  995. e1000_reset(adapter);
  996. return err;
  997. }
  998. /**
  999. * e1000_close - Disables a network interface
  1000. * @netdev: network interface device structure
  1001. *
  1002. * Returns 0, this is not allowed to fail
  1003. *
  1004. * The close entry point is called when an interface is de-activated
  1005. * by the OS. The hardware is still under the drivers control, but
  1006. * needs to be disabled. A global MAC reset is issued to stop the
  1007. * hardware, and all transmit and receive resources are freed.
  1008. **/
  1009. static int
  1010. e1000_close(struct net_device *netdev)
  1011. {
  1012. struct e1000_adapter *adapter = netdev_priv(netdev);
  1013. WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
  1014. e1000_down(adapter);
  1015. e1000_power_down_phy(adapter);
  1016. e1000_free_irq(adapter);
  1017. e1000_free_all_tx_resources(adapter);
  1018. e1000_free_all_rx_resources(adapter);
  1019. if ((adapter->hw.mng_cookie.status &
  1020. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
  1021. e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
  1022. }
  1023. /* If AMT is enabled, let the firmware know that the network
  1024. * interface is now closed */
  1025. if (adapter->hw.mac_type == e1000_82573 &&
  1026. e1000_check_mng_mode(&adapter->hw))
  1027. e1000_release_hw_control(adapter);
  1028. return 0;
  1029. }
  1030. /**
  1031. * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
  1032. * @adapter: address of board private structure
  1033. * @start: address of beginning of memory
  1034. * @len: length of memory
  1035. **/
  1036. static boolean_t
  1037. e1000_check_64k_bound(struct e1000_adapter *adapter,
  1038. void *start, unsigned long len)
  1039. {
  1040. unsigned long begin = (unsigned long) start;
  1041. unsigned long end = begin + len;
  1042. /* First rev 82545 and 82546 need to not allow any memory
  1043. * write location to cross 64k boundary due to errata 23 */
  1044. if (adapter->hw.mac_type == e1000_82545 ||
  1045. adapter->hw.mac_type == e1000_82546) {
  1046. return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
  1047. }
  1048. return TRUE;
  1049. }
  1050. /**
  1051. * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
  1052. * @adapter: board private structure
  1053. * @txdr: tx descriptor ring (for a specific queue) to setup
  1054. *
  1055. * Return 0 on success, negative on failure
  1056. **/
  1057. static int
  1058. e1000_setup_tx_resources(struct e1000_adapter *adapter,
  1059. struct e1000_tx_ring *txdr)
  1060. {
  1061. struct pci_dev *pdev = adapter->pdev;
  1062. int size;
  1063. size = sizeof(struct e1000_buffer) * txdr->count;
  1064. txdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
  1065. if (!txdr->buffer_info) {
  1066. DPRINTK(PROBE, ERR,
  1067. "Unable to allocate memory for the transmit descriptor ring\n");
  1068. return -ENOMEM;
  1069. }
  1070. memset(txdr->buffer_info, 0, size);
  1071. /* round up to nearest 4K */
  1072. txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
  1073. E1000_ROUNDUP(txdr->size, 4096);
  1074. txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
  1075. if (!txdr->desc) {
  1076. setup_tx_desc_die:
  1077. vfree(txdr->buffer_info);
  1078. DPRINTK(PROBE, ERR,
  1079. "Unable to allocate memory for the transmit descriptor ring\n");
  1080. return -ENOMEM;
  1081. }
  1082. /* Fix for errata 23, can't cross 64kB boundary */
  1083. if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
  1084. void *olddesc = txdr->desc;
  1085. dma_addr_t olddma = txdr->dma;
  1086. DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
  1087. "at %p\n", txdr->size, txdr->desc);
  1088. /* Try again, without freeing the previous */
  1089. txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
  1090. /* Failed allocation, critical failure */
  1091. if (!txdr->desc) {
  1092. pci_free_consistent(pdev, txdr->size, olddesc, olddma);
  1093. goto setup_tx_desc_die;
  1094. }
  1095. if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
  1096. /* give up */
  1097. pci_free_consistent(pdev, txdr->size, txdr->desc,
  1098. txdr->dma);
  1099. pci_free_consistent(pdev, txdr->size, olddesc, olddma);
  1100. DPRINTK(PROBE, ERR,
  1101. "Unable to allocate aligned memory "
  1102. "for the transmit descriptor ring\n");
  1103. vfree(txdr->buffer_info);
  1104. return -ENOMEM;
  1105. } else {
  1106. /* Free old allocation, new allocation was successful */
  1107. pci_free_consistent(pdev, txdr->size, olddesc, olddma);
  1108. }
  1109. }
  1110. memset(txdr->desc, 0, txdr->size);
  1111. txdr->next_to_use = 0;
  1112. txdr->next_to_clean = 0;
  1113. spin_lock_init(&txdr->tx_lock);
  1114. return 0;
  1115. }
  1116. /**
  1117. * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
  1118. * (Descriptors) for all queues
  1119. * @adapter: board private structure
  1120. *
  1121. * If this function returns with an error, then it's possible one or
  1122. * more of the rings is populated (while the rest are not). It is the
  1123. * callers duty to clean those orphaned rings.
  1124. *
  1125. * Return 0 on success, negative on failure
  1126. **/
  1127. int
  1128. e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
  1129. {
  1130. int i, err = 0;
  1131. for (i = 0; i < adapter->num_tx_queues; i++) {
  1132. err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
  1133. if (err) {
  1134. DPRINTK(PROBE, ERR,
  1135. "Allocation for Tx Queue %u failed\n", i);
  1136. break;
  1137. }
  1138. }
  1139. return err;
  1140. }
  1141. /**
  1142. * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
  1143. * @adapter: board private structure
  1144. *
  1145. * Configure the Tx unit of the MAC after a reset.
  1146. **/
  1147. static void
  1148. e1000_configure_tx(struct e1000_adapter *adapter)
  1149. {
  1150. uint64_t tdba;
  1151. struct e1000_hw *hw = &adapter->hw;
  1152. uint32_t tdlen, tctl, tipg, tarc;
  1153. uint32_t ipgr1, ipgr2;
  1154. /* Setup the HW Tx Head and Tail descriptor pointers */
  1155. switch (adapter->num_tx_queues) {
  1156. case 1:
  1157. default:
  1158. tdba = adapter->tx_ring[0].dma;
  1159. tdlen = adapter->tx_ring[0].count *
  1160. sizeof(struct e1000_tx_desc);
  1161. E1000_WRITE_REG(hw, TDLEN, tdlen);
  1162. E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
  1163. E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
  1164. E1000_WRITE_REG(hw, TDT, 0);
  1165. E1000_WRITE_REG(hw, TDH, 0);
  1166. adapter->tx_ring[0].tdh = E1000_TDH;
  1167. adapter->tx_ring[0].tdt = E1000_TDT;
  1168. break;
  1169. }
  1170. /* Set the default values for the Tx Inter Packet Gap timer */
  1171. if (hw->media_type == e1000_media_type_fiber ||
  1172. hw->media_type == e1000_media_type_internal_serdes)
  1173. tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
  1174. else
  1175. tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
  1176. switch (hw->mac_type) {
  1177. case e1000_82542_rev2_0:
  1178. case e1000_82542_rev2_1:
  1179. tipg = DEFAULT_82542_TIPG_IPGT;
  1180. ipgr1 = DEFAULT_82542_TIPG_IPGR1;
  1181. ipgr2 = DEFAULT_82542_TIPG_IPGR2;
  1182. break;
  1183. case e1000_80003es2lan:
  1184. ipgr1 = DEFAULT_82543_TIPG_IPGR1;
  1185. ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
  1186. break;
  1187. default:
  1188. ipgr1 = DEFAULT_82543_TIPG_IPGR1;
  1189. ipgr2 = DEFAULT_82543_TIPG_IPGR2;
  1190. break;
  1191. }
  1192. tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
  1193. tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
  1194. E1000_WRITE_REG(hw, TIPG, tipg);
  1195. /* Set the Tx Interrupt Delay register */
  1196. E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
  1197. if (hw->mac_type >= e1000_82540)
  1198. E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
  1199. /* Program the Transmit Control Register */
  1200. tctl = E1000_READ_REG(hw, TCTL);
  1201. tctl &= ~E1000_TCTL_CT;
  1202. tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
  1203. (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
  1204. #ifdef DISABLE_MULR
  1205. /* disable Multiple Reads for debugging */
  1206. tctl &= ~E1000_TCTL_MULR;
  1207. #endif
  1208. if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
  1209. tarc = E1000_READ_REG(hw, TARC0);
  1210. tarc |= ((1 << 25) | (1 << 21));
  1211. E1000_WRITE_REG(hw, TARC0, tarc);
  1212. tarc = E1000_READ_REG(hw, TARC1);
  1213. tarc |= (1 << 25);
  1214. if (tctl & E1000_TCTL_MULR)
  1215. tarc &= ~(1 << 28);
  1216. else
  1217. tarc |= (1 << 28);
  1218. E1000_WRITE_REG(hw, TARC1, tarc);
  1219. } else if (hw->mac_type == e1000_80003es2lan) {
  1220. tarc = E1000_READ_REG(hw, TARC0);
  1221. tarc |= 1;
  1222. if (hw->media_type == e1000_media_type_internal_serdes)
  1223. tarc |= (1 << 20);
  1224. E1000_WRITE_REG(hw, TARC0, tarc);
  1225. tarc = E1000_READ_REG(hw, TARC1);
  1226. tarc |= 1;
  1227. E1000_WRITE_REG(hw, TARC1, tarc);
  1228. }
  1229. e1000_config_collision_dist(hw);
  1230. /* Setup Transmit Descriptor Settings for eop descriptor */
  1231. adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
  1232. E1000_TXD_CMD_IFCS;
  1233. if (hw->mac_type < e1000_82543)
  1234. adapter->txd_cmd |= E1000_TXD_CMD_RPS;
  1235. else
  1236. adapter->txd_cmd |= E1000_TXD_CMD_RS;
  1237. /* Cache if we're 82544 running in PCI-X because we'll
  1238. * need this to apply a workaround later in the send path. */
  1239. if (hw->mac_type == e1000_82544 &&
  1240. hw->bus_type == e1000_bus_type_pcix)
  1241. adapter->pcix_82544 = 1;
  1242. E1000_WRITE_REG(hw, TCTL, tctl);
  1243. }
  1244. /**
  1245. * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
  1246. * @adapter: board private structure
  1247. * @rxdr: rx descriptor ring (for a specific queue) to setup
  1248. *
  1249. * Returns 0 on success, negative on failure
  1250. **/
  1251. static int
  1252. e1000_setup_rx_resources(struct e1000_adapter *adapter,
  1253. struct e1000_rx_ring *rxdr)
  1254. {
  1255. struct pci_dev *pdev = adapter->pdev;
  1256. int size, desc_len;
  1257. size = sizeof(struct e1000_buffer) * rxdr->count;
  1258. rxdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
  1259. if (!rxdr->buffer_info) {
  1260. DPRINTK(PROBE, ERR,
  1261. "Unable to allocate memory for the receive descriptor ring\n");
  1262. return -ENOMEM;
  1263. }
  1264. memset(rxdr->buffer_info, 0, size);
  1265. size = sizeof(struct e1000_ps_page) * rxdr->count;
  1266. rxdr->ps_page = kmalloc(size, GFP_KERNEL);
  1267. if (!rxdr->ps_page) {
  1268. vfree(rxdr->buffer_info);
  1269. DPRINTK(PROBE, ERR,
  1270. "Unable to allocate memory for the receive descriptor ring\n");
  1271. return -ENOMEM;
  1272. }
  1273. memset(rxdr->ps_page, 0, size);
  1274. size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
  1275. rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
  1276. if (!rxdr->ps_page_dma) {
  1277. vfree(rxdr->buffer_info);
  1278. kfree(rxdr->ps_page);
  1279. DPRINTK(PROBE, ERR,
  1280. "Unable to allocate memory for the receive descriptor ring\n");
  1281. return -ENOMEM;
  1282. }
  1283. memset(rxdr->ps_page_dma, 0, size);
  1284. if (adapter->hw.mac_type <= e1000_82547_rev_2)
  1285. desc_len = sizeof(struct e1000_rx_desc);
  1286. else
  1287. desc_len = sizeof(union e1000_rx_desc_packet_split);
  1288. /* Round up to nearest 4K */
  1289. rxdr->size = rxdr->count * desc_len;
  1290. E1000_ROUNDUP(rxdr->size, 4096);
  1291. rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
  1292. if (!rxdr->desc) {
  1293. DPRINTK(PROBE, ERR,
  1294. "Unable to allocate memory for the receive descriptor ring\n");
  1295. setup_rx_desc_die:
  1296. vfree(rxdr->buffer_info);
  1297. kfree(rxdr->ps_page);
  1298. kfree(rxdr->ps_page_dma);
  1299. return -ENOMEM;
  1300. }
  1301. /* Fix for errata 23, can't cross 64kB boundary */
  1302. if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
  1303. void *olddesc = rxdr->desc;
  1304. dma_addr_t olddma = rxdr->dma;
  1305. DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
  1306. "at %p\n", rxdr->size, rxdr->desc);
  1307. /* Try again, without freeing the previous */
  1308. rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
  1309. /* Failed allocation, critical failure */
  1310. if (!rxdr->desc) {
  1311. pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
  1312. DPRINTK(PROBE, ERR,
  1313. "Unable to allocate memory "
  1314. "for the receive descriptor ring\n");
  1315. goto setup_rx_desc_die;
  1316. }
  1317. if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
  1318. /* give up */
  1319. pci_free_consistent(pdev, rxdr->size, rxdr->desc,
  1320. rxdr->dma);
  1321. pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
  1322. DPRINTK(PROBE, ERR,
  1323. "Unable to allocate aligned memory "
  1324. "for the receive descriptor ring\n");
  1325. goto setup_rx_desc_die;
  1326. } else {
  1327. /* Free old allocation, new allocation was successful */
  1328. pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
  1329. }
  1330. }
  1331. memset(rxdr->desc, 0, rxdr->size);
  1332. rxdr->next_to_clean = 0;
  1333. rxdr->next_to_use = 0;
  1334. return 0;
  1335. }
  1336. /**
  1337. * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
  1338. * (Descriptors) for all queues
  1339. * @adapter: board private structure
  1340. *
  1341. * If this function returns with an error, then it's possible one or
  1342. * more of the rings is populated (while the rest are not). It is the
  1343. * callers duty to clean those orphaned rings.
  1344. *
  1345. * Return 0 on success, negative on failure
  1346. **/
  1347. int
  1348. e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
  1349. {
  1350. int i, err = 0;
  1351. for (i = 0; i < adapter->num_rx_queues; i++) {
  1352. err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
  1353. if (err) {
  1354. DPRINTK(PROBE, ERR,
  1355. "Allocation for Rx Queue %u failed\n", i);
  1356. break;
  1357. }
  1358. }
  1359. return err;
  1360. }
  1361. /**
  1362. * e1000_setup_rctl - configure the receive control registers
  1363. * @adapter: Board private structure
  1364. **/
  1365. #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
  1366. (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
  1367. static void
  1368. e1000_setup_rctl(struct e1000_adapter *adapter)
  1369. {
  1370. uint32_t rctl, rfctl;
  1371. uint32_t psrctl = 0;
  1372. #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
  1373. uint32_t pages = 0;
  1374. #endif
  1375. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  1376. rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
  1377. rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
  1378. E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
  1379. (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
  1380. if (adapter->hw.tbi_compatibility_on == 1)
  1381. rctl |= E1000_RCTL_SBP;
  1382. else
  1383. rctl &= ~E1000_RCTL_SBP;
  1384. if (adapter->netdev->mtu <= ETH_DATA_LEN)
  1385. rctl &= ~E1000_RCTL_LPE;
  1386. else
  1387. rctl |= E1000_RCTL_LPE;
  1388. /* Setup buffer sizes */
  1389. rctl &= ~E1000_RCTL_SZ_4096;
  1390. rctl |= E1000_RCTL_BSEX;
  1391. switch (adapter->rx_buffer_len) {
  1392. case E1000_RXBUFFER_256:
  1393. rctl |= E1000_RCTL_SZ_256;
  1394. rctl &= ~E1000_RCTL_BSEX;
  1395. break;
  1396. case E1000_RXBUFFER_512:
  1397. rctl |= E1000_RCTL_SZ_512;
  1398. rctl &= ~E1000_RCTL_BSEX;
  1399. break;
  1400. case E1000_RXBUFFER_1024:
  1401. rctl |= E1000_RCTL_SZ_1024;
  1402. rctl &= ~E1000_RCTL_BSEX;
  1403. break;
  1404. case E1000_RXBUFFER_2048:
  1405. default:
  1406. rctl |= E1000_RCTL_SZ_2048;
  1407. rctl &= ~E1000_RCTL_BSEX;
  1408. break;
  1409. case E1000_RXBUFFER_4096:
  1410. rctl |= E1000_RCTL_SZ_4096;
  1411. break;
  1412. case E1000_RXBUFFER_8192:
  1413. rctl |= E1000_RCTL_SZ_8192;
  1414. break;
  1415. case E1000_RXBUFFER_16384:
  1416. rctl |= E1000_RCTL_SZ_16384;
  1417. break;
  1418. }
  1419. #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
  1420. /* 82571 and greater support packet-split where the protocol
  1421. * header is placed in skb->data and the packet data is
  1422. * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
  1423. * In the case of a non-split, skb->data is linearly filled,
  1424. * followed by the page buffers. Therefore, skb->data is
  1425. * sized to hold the largest protocol header.
  1426. */
  1427. pages = PAGE_USE_COUNT(adapter->netdev->mtu);
  1428. if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
  1429. PAGE_SIZE <= 16384)
  1430. adapter->rx_ps_pages = pages;
  1431. else
  1432. adapter->rx_ps_pages = 0;
  1433. #endif
  1434. if (adapter->rx_ps_pages) {
  1435. /* Configure extra packet-split registers */
  1436. rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
  1437. rfctl |= E1000_RFCTL_EXTEN;
  1438. /* disable IPv6 packet split support */
  1439. rfctl |= E1000_RFCTL_IPV6_DIS;
  1440. E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
  1441. rctl |= E1000_RCTL_DTYP_PS;
  1442. psrctl |= adapter->rx_ps_bsize0 >>
  1443. E1000_PSRCTL_BSIZE0_SHIFT;
  1444. switch (adapter->rx_ps_pages) {
  1445. case 3:
  1446. psrctl |= PAGE_SIZE <<
  1447. E1000_PSRCTL_BSIZE3_SHIFT;
  1448. case 2:
  1449. psrctl |= PAGE_SIZE <<
  1450. E1000_PSRCTL_BSIZE2_SHIFT;
  1451. case 1:
  1452. psrctl |= PAGE_SIZE >>
  1453. E1000_PSRCTL_BSIZE1_SHIFT;
  1454. break;
  1455. }
  1456. E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
  1457. }
  1458. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  1459. }
  1460. /**
  1461. * e1000_configure_rx - Configure 8254x Receive Unit after Reset
  1462. * @adapter: board private structure
  1463. *
  1464. * Configure the Rx unit of the MAC after a reset.
  1465. **/
  1466. static void
  1467. e1000_configure_rx(struct e1000_adapter *adapter)
  1468. {
  1469. uint64_t rdba;
  1470. struct e1000_hw *hw = &adapter->hw;
  1471. uint32_t rdlen, rctl, rxcsum, ctrl_ext;
  1472. if (adapter->rx_ps_pages) {
  1473. /* this is a 32 byte descriptor */
  1474. rdlen = adapter->rx_ring[0].count *
  1475. sizeof(union e1000_rx_desc_packet_split);
  1476. adapter->clean_rx = e1000_clean_rx_irq_ps;
  1477. adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
  1478. } else {
  1479. rdlen = adapter->rx_ring[0].count *
  1480. sizeof(struct e1000_rx_desc);
  1481. adapter->clean_rx = e1000_clean_rx_irq;
  1482. adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
  1483. }
  1484. /* disable receives while setting up the descriptors */
  1485. rctl = E1000_READ_REG(hw, RCTL);
  1486. E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
  1487. /* set the Receive Delay Timer Register */
  1488. E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
  1489. if (hw->mac_type >= e1000_82540) {
  1490. E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
  1491. if (adapter->itr > 1)
  1492. E1000_WRITE_REG(hw, ITR,
  1493. 1000000000 / (adapter->itr * 256));
  1494. }
  1495. if (hw->mac_type >= e1000_82571) {
  1496. ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
  1497. /* Reset delay timers after every interrupt */
  1498. ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
  1499. #ifdef CONFIG_E1000_NAPI
  1500. /* Auto-Mask interrupts upon ICR read. */
  1501. ctrl_ext |= E1000_CTRL_EXT_IAME;
  1502. #endif
  1503. E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
  1504. E1000_WRITE_REG(hw, IAM, ~0);
  1505. E1000_WRITE_FLUSH(hw);
  1506. }
  1507. /* Setup the HW Rx Head and Tail Descriptor Pointers and
  1508. * the Base and Length of the Rx Descriptor Ring */
  1509. switch (adapter->num_rx_queues) {
  1510. case 1:
  1511. default:
  1512. rdba = adapter->rx_ring[0].dma;
  1513. E1000_WRITE_REG(hw, RDLEN, rdlen);
  1514. E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
  1515. E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
  1516. E1000_WRITE_REG(hw, RDT, 0);
  1517. E1000_WRITE_REG(hw, RDH, 0);
  1518. adapter->rx_ring[0].rdh = E1000_RDH;
  1519. adapter->rx_ring[0].rdt = E1000_RDT;
  1520. break;
  1521. }
  1522. /* Enable 82543 Receive Checksum Offload for TCP and UDP */
  1523. if (hw->mac_type >= e1000_82543) {
  1524. rxcsum = E1000_READ_REG(hw, RXCSUM);
  1525. if (adapter->rx_csum == TRUE) {
  1526. rxcsum |= E1000_RXCSUM_TUOFL;
  1527. /* Enable 82571 IPv4 payload checksum for UDP fragments
  1528. * Must be used in conjunction with packet-split. */
  1529. if ((hw->mac_type >= e1000_82571) &&
  1530. (adapter->rx_ps_pages)) {
  1531. rxcsum |= E1000_RXCSUM_IPPCSE;
  1532. }
  1533. } else {
  1534. rxcsum &= ~E1000_RXCSUM_TUOFL;
  1535. /* don't need to clear IPPCSE as it defaults to 0 */
  1536. }
  1537. E1000_WRITE_REG(hw, RXCSUM, rxcsum);
  1538. }
  1539. if (hw->mac_type == e1000_82573)
  1540. E1000_WRITE_REG(hw, ERT, 0x0100);
  1541. /* Enable Receives */
  1542. E1000_WRITE_REG(hw, RCTL, rctl);
  1543. }
  1544. /**
  1545. * e1000_free_tx_resources - Free Tx Resources per Queue
  1546. * @adapter: board private structure
  1547. * @tx_ring: Tx descriptor ring for a specific queue
  1548. *
  1549. * Free all transmit software resources
  1550. **/
  1551. static void
  1552. e1000_free_tx_resources(struct e1000_adapter *adapter,
  1553. struct e1000_tx_ring *tx_ring)
  1554. {
  1555. struct pci_dev *pdev = adapter->pdev;
  1556. e1000_clean_tx_ring(adapter, tx_ring);
  1557. vfree(tx_ring->buffer_info);
  1558. tx_ring->buffer_info = NULL;
  1559. pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
  1560. tx_ring->desc = NULL;
  1561. }
  1562. /**
  1563. * e1000_free_all_tx_resources - Free Tx Resources for All Queues
  1564. * @adapter: board private structure
  1565. *
  1566. * Free all transmit software resources
  1567. **/
  1568. void
  1569. e1000_free_all_tx_resources(struct e1000_adapter *adapter)
  1570. {
  1571. int i;
  1572. for (i = 0; i < adapter->num_tx_queues; i++)
  1573. e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
  1574. }
  1575. static void
  1576. e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
  1577. struct e1000_buffer *buffer_info)
  1578. {
  1579. if (buffer_info->dma) {
  1580. pci_unmap_page(adapter->pdev,
  1581. buffer_info->dma,
  1582. buffer_info->length,
  1583. PCI_DMA_TODEVICE);
  1584. }
  1585. if (buffer_info->skb)
  1586. dev_kfree_skb_any(buffer_info->skb);
  1587. memset(buffer_info, 0, sizeof(struct e1000_buffer));
  1588. }
  1589. /**
  1590. * e1000_clean_tx_ring - Free Tx Buffers
  1591. * @adapter: board private structure
  1592. * @tx_ring: ring to be cleaned
  1593. **/
  1594. static void
  1595. e1000_clean_tx_ring(struct e1000_adapter *adapter,
  1596. struct e1000_tx_ring *tx_ring)
  1597. {
  1598. struct e1000_buffer *buffer_info;
  1599. unsigned long size;
  1600. unsigned int i;
  1601. /* Free all the Tx ring sk_buffs */
  1602. for (i = 0; i < tx_ring->count; i++) {
  1603. buffer_info = &tx_ring->buffer_info[i];
  1604. e1000_unmap_and_free_tx_resource(adapter, buffer_info);
  1605. }
  1606. size = sizeof(struct e1000_buffer) * tx_ring->count;
  1607. memset(tx_ring->buffer_info, 0, size);
  1608. /* Zero out the descriptor ring */
  1609. memset(tx_ring->desc, 0, tx_ring->size);
  1610. tx_ring->next_to_use = 0;
  1611. tx_ring->next_to_clean = 0;
  1612. tx_ring->last_tx_tso = 0;
  1613. writel(0, adapter->hw.hw_addr + tx_ring->tdh);
  1614. writel(0, adapter->hw.hw_addr + tx_ring->tdt);
  1615. }
  1616. /**
  1617. * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
  1618. * @adapter: board private structure
  1619. **/
  1620. static void
  1621. e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
  1622. {
  1623. int i;
  1624. for (i = 0; i < adapter->num_tx_queues; i++)
  1625. e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
  1626. }
  1627. /**
  1628. * e1000_free_rx_resources - Free Rx Resources
  1629. * @adapter: board private structure
  1630. * @rx_ring: ring to clean the resources from
  1631. *
  1632. * Free all receive software resources
  1633. **/
  1634. static void
  1635. e1000_free_rx_resources(struct e1000_adapter *adapter,
  1636. struct e1000_rx_ring *rx_ring)
  1637. {
  1638. struct pci_dev *pdev = adapter->pdev;
  1639. e1000_clean_rx_ring(adapter, rx_ring);
  1640. vfree(rx_ring->buffer_info);
  1641. rx_ring->buffer_info = NULL;
  1642. kfree(rx_ring->ps_page);
  1643. rx_ring->ps_page = NULL;
  1644. kfree(rx_ring->ps_page_dma);
  1645. rx_ring->ps_page_dma = NULL;
  1646. pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
  1647. rx_ring->desc = NULL;
  1648. }
  1649. /**
  1650. * e1000_free_all_rx_resources - Free Rx Resources for All Queues
  1651. * @adapter: board private structure
  1652. *
  1653. * Free all receive software resources
  1654. **/
  1655. void
  1656. e1000_free_all_rx_resources(struct e1000_adapter *adapter)
  1657. {
  1658. int i;
  1659. for (i = 0; i < adapter->num_rx_queues; i++)
  1660. e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
  1661. }
  1662. /**
  1663. * e1000_clean_rx_ring - Free Rx Buffers per Queue
  1664. * @adapter: board private structure
  1665. * @rx_ring: ring to free buffers from
  1666. **/
  1667. static void
  1668. e1000_clean_rx_ring(struct e1000_adapter *adapter,
  1669. struct e1000_rx_ring *rx_ring)
  1670. {
  1671. struct e1000_buffer *buffer_info;
  1672. struct e1000_ps_page *ps_page;
  1673. struct e1000_ps_page_dma *ps_page_dma;
  1674. struct pci_dev *pdev = adapter->pdev;
  1675. unsigned long size;
  1676. unsigned int i, j;
  1677. /* Free all the Rx ring sk_buffs */
  1678. for (i = 0; i < rx_ring->count; i++) {
  1679. buffer_info = &rx_ring->buffer_info[i];
  1680. if (buffer_info->skb) {
  1681. pci_unmap_single(pdev,
  1682. buffer_info->dma,
  1683. buffer_info->length,
  1684. PCI_DMA_FROMDEVICE);
  1685. dev_kfree_skb(buffer_info->skb);
  1686. buffer_info->skb = NULL;
  1687. }
  1688. ps_page = &rx_ring->ps_page[i];
  1689. ps_page_dma = &rx_ring->ps_page_dma[i];
  1690. for (j = 0; j < adapter->rx_ps_pages; j++) {
  1691. if (!ps_page->ps_page[j]) break;
  1692. pci_unmap_page(pdev,
  1693. ps_page_dma->ps_page_dma[j],
  1694. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  1695. ps_page_dma->ps_page_dma[j] = 0;
  1696. put_page(ps_page->ps_page[j]);
  1697. ps_page->ps_page[j] = NULL;
  1698. }
  1699. }
  1700. size = sizeof(struct e1000_buffer) * rx_ring->count;
  1701. memset(rx_ring->buffer_info, 0, size);
  1702. size = sizeof(struct e1000_ps_page) * rx_ring->count;
  1703. memset(rx_ring->ps_page, 0, size);
  1704. size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
  1705. memset(rx_ring->ps_page_dma, 0, size);
  1706. /* Zero out the descriptor ring */
  1707. memset(rx_ring->desc, 0, rx_ring->size);
  1708. rx_ring->next_to_clean = 0;
  1709. rx_ring->next_to_use = 0;
  1710. writel(0, adapter->hw.hw_addr + rx_ring->rdh);
  1711. writel(0, adapter->hw.hw_addr + rx_ring->rdt);
  1712. }
  1713. /**
  1714. * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
  1715. * @adapter: board private structure
  1716. **/
  1717. static void
  1718. e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
  1719. {
  1720. int i;
  1721. for (i = 0; i < adapter->num_rx_queues; i++)
  1722. e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
  1723. }
  1724. /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
  1725. * and memory write and invalidate disabled for certain operations
  1726. */
  1727. static void
  1728. e1000_enter_82542_rst(struct e1000_adapter *adapter)
  1729. {
  1730. struct net_device *netdev = adapter->netdev;
  1731. uint32_t rctl;
  1732. e1000_pci_clear_mwi(&adapter->hw);
  1733. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  1734. rctl |= E1000_RCTL_RST;
  1735. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  1736. E1000_WRITE_FLUSH(&adapter->hw);
  1737. mdelay(5);
  1738. if (netif_running(netdev))
  1739. e1000_clean_all_rx_rings(adapter);
  1740. }
  1741. static void
  1742. e1000_leave_82542_rst(struct e1000_adapter *adapter)
  1743. {
  1744. struct net_device *netdev = adapter->netdev;
  1745. uint32_t rctl;
  1746. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  1747. rctl &= ~E1000_RCTL_RST;
  1748. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  1749. E1000_WRITE_FLUSH(&adapter->hw);
  1750. mdelay(5);
  1751. if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
  1752. e1000_pci_set_mwi(&adapter->hw);
  1753. if (netif_running(netdev)) {
  1754. /* No need to loop, because 82542 supports only 1 queue */
  1755. struct e1000_rx_ring *ring = &adapter->rx_ring[0];
  1756. e1000_configure_rx(adapter);
  1757. adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
  1758. }
  1759. }
  1760. /**
  1761. * e1000_set_mac - Change the Ethernet Address of the NIC
  1762. * @netdev: network interface device structure
  1763. * @p: pointer to an address structure
  1764. *
  1765. * Returns 0 on success, negative on failure
  1766. **/
  1767. static int
  1768. e1000_set_mac(struct net_device *netdev, void *p)
  1769. {
  1770. struct e1000_adapter *adapter = netdev_priv(netdev);
  1771. struct sockaddr *addr = p;
  1772. if (!is_valid_ether_addr(addr->sa_data))
  1773. return -EADDRNOTAVAIL;
  1774. /* 82542 2.0 needs to be in reset to write receive address registers */
  1775. if (adapter->hw.mac_type == e1000_82542_rev2_0)
  1776. e1000_enter_82542_rst(adapter);
  1777. memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
  1778. memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
  1779. e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
  1780. /* With 82571 controllers, LAA may be overwritten (with the default)
  1781. * due to controller reset from the other port. */
  1782. if (adapter->hw.mac_type == e1000_82571) {
  1783. /* activate the work around */
  1784. adapter->hw.laa_is_present = 1;
  1785. /* Hold a copy of the LAA in RAR[14] This is done so that
  1786. * between the time RAR[0] gets clobbered and the time it
  1787. * gets fixed (in e1000_watchdog), the actual LAA is in one
  1788. * of the RARs and no incoming packets directed to this port
  1789. * are dropped. Eventaully the LAA will be in RAR[0] and
  1790. * RAR[14] */
  1791. e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
  1792. E1000_RAR_ENTRIES - 1);
  1793. }
  1794. if (adapter->hw.mac_type == e1000_82542_rev2_0)
  1795. e1000_leave_82542_rst(adapter);
  1796. return 0;
  1797. }
  1798. /**
  1799. * e1000_set_multi - Multicast and Promiscuous mode set
  1800. * @netdev: network interface device structure
  1801. *
  1802. * The set_multi entry point is called whenever the multicast address
  1803. * list or the network interface flags are updated. This routine is
  1804. * responsible for configuring the hardware for proper multicast,
  1805. * promiscuous mode, and all-multi behavior.
  1806. **/
  1807. static void
  1808. e1000_set_multi(struct net_device *netdev)
  1809. {
  1810. struct e1000_adapter *adapter = netdev_priv(netdev);
  1811. struct e1000_hw *hw = &adapter->hw;
  1812. struct dev_mc_list *mc_ptr;
  1813. uint32_t rctl;
  1814. uint32_t hash_value;
  1815. int i, rar_entries = E1000_RAR_ENTRIES;
  1816. /* reserve RAR[14] for LAA over-write work-around */
  1817. if (adapter->hw.mac_type == e1000_82571)
  1818. rar_entries--;
  1819. /* Check for Promiscuous and All Multicast modes */
  1820. rctl = E1000_READ_REG(hw, RCTL);
  1821. if (netdev->flags & IFF_PROMISC) {
  1822. rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
  1823. } else if (netdev->flags & IFF_ALLMULTI) {
  1824. rctl |= E1000_RCTL_MPE;
  1825. rctl &= ~E1000_RCTL_UPE;
  1826. } else {
  1827. rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
  1828. }
  1829. E1000_WRITE_REG(hw, RCTL, rctl);
  1830. /* 82542 2.0 needs to be in reset to write receive address registers */
  1831. if (hw->mac_type == e1000_82542_rev2_0)
  1832. e1000_enter_82542_rst(adapter);
  1833. /* load the first 14 multicast address into the exact filters 1-14
  1834. * RAR 0 is used for the station MAC adddress
  1835. * if there are not 14 addresses, go ahead and clear the filters
  1836. * -- with 82571 controllers only 0-13 entries are filled here
  1837. */
  1838. mc_ptr = netdev->mc_list;
  1839. for (i = 1; i < rar_entries; i++) {
  1840. if (mc_ptr) {
  1841. e1000_rar_set(hw, mc_ptr->dmi_addr, i);
  1842. mc_ptr = mc_ptr->next;
  1843. } else {
  1844. E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
  1845. E1000_WRITE_FLUSH(hw);
  1846. E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
  1847. E1000_WRITE_FLUSH(hw);
  1848. }
  1849. }
  1850. /* clear the old settings from the multicast hash table */
  1851. for (i = 0; i < E1000_NUM_MTA_REGISTERS; i++) {
  1852. E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
  1853. E1000_WRITE_FLUSH(hw);
  1854. }
  1855. /* load any remaining addresses into the hash table */
  1856. for (; mc_ptr; mc_ptr = mc_ptr->next) {
  1857. hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
  1858. e1000_mta_set(hw, hash_value);
  1859. }
  1860. if (hw->mac_type == e1000_82542_rev2_0)
  1861. e1000_leave_82542_rst(adapter);
  1862. }
  1863. /* Need to wait a few seconds after link up to get diagnostic information from
  1864. * the phy */
  1865. static void
  1866. e1000_update_phy_info(unsigned long data)
  1867. {
  1868. struct e1000_adapter *adapter = (struct e1000_adapter *) data;
  1869. e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
  1870. }
  1871. /**
  1872. * e1000_82547_tx_fifo_stall - Timer Call-back
  1873. * @data: pointer to adapter cast into an unsigned long
  1874. **/
  1875. static void
  1876. e1000_82547_tx_fifo_stall(unsigned long data)
  1877. {
  1878. struct e1000_adapter *adapter = (struct e1000_adapter *) data;
  1879. struct net_device *netdev = adapter->netdev;
  1880. uint32_t tctl;
  1881. if (atomic_read(&adapter->tx_fifo_stall)) {
  1882. if ((E1000_READ_REG(&adapter->hw, TDT) ==
  1883. E1000_READ_REG(&adapter->hw, TDH)) &&
  1884. (E1000_READ_REG(&adapter->hw, TDFT) ==
  1885. E1000_READ_REG(&adapter->hw, TDFH)) &&
  1886. (E1000_READ_REG(&adapter->hw, TDFTS) ==
  1887. E1000_READ_REG(&adapter->hw, TDFHS))) {
  1888. tctl = E1000_READ_REG(&adapter->hw, TCTL);
  1889. E1000_WRITE_REG(&adapter->hw, TCTL,
  1890. tctl & ~E1000_TCTL_EN);
  1891. E1000_WRITE_REG(&adapter->hw, TDFT,
  1892. adapter->tx_head_addr);
  1893. E1000_WRITE_REG(&adapter->hw, TDFH,
  1894. adapter->tx_head_addr);
  1895. E1000_WRITE_REG(&adapter->hw, TDFTS,
  1896. adapter->tx_head_addr);
  1897. E1000_WRITE_REG(&adapter->hw, TDFHS,
  1898. adapter->tx_head_addr);
  1899. E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
  1900. E1000_WRITE_FLUSH(&adapter->hw);
  1901. adapter->tx_fifo_head = 0;
  1902. atomic_set(&adapter->tx_fifo_stall, 0);
  1903. netif_wake_queue(netdev);
  1904. } else {
  1905. mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
  1906. }
  1907. }
  1908. }
  1909. /**
  1910. * e1000_watchdog - Timer Call-back
  1911. * @data: pointer to adapter cast into an unsigned long
  1912. **/
  1913. static void
  1914. e1000_watchdog(unsigned long data)
  1915. {
  1916. struct e1000_adapter *adapter = (struct e1000_adapter *) data;
  1917. struct net_device *netdev = adapter->netdev;
  1918. struct e1000_tx_ring *txdr = adapter->tx_ring;
  1919. uint32_t link, tctl;
  1920. e1000_check_for_link(&adapter->hw);
  1921. if (adapter->hw.mac_type == e1000_82573) {
  1922. e1000_enable_tx_pkt_filtering(&adapter->hw);
  1923. if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
  1924. e1000_update_mng_vlan(adapter);
  1925. }
  1926. if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
  1927. !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
  1928. link = !adapter->hw.serdes_link_down;
  1929. else
  1930. link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
  1931. if (link) {
  1932. if (!netif_carrier_ok(netdev)) {
  1933. boolean_t txb2b = 1;
  1934. e1000_get_speed_and_duplex(&adapter->hw,
  1935. &adapter->link_speed,
  1936. &adapter->link_duplex);
  1937. DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
  1938. adapter->link_speed,
  1939. adapter->link_duplex == FULL_DUPLEX ?
  1940. "Full Duplex" : "Half Duplex");
  1941. /* tweak tx_queue_len according to speed/duplex
  1942. * and adjust the timeout factor */
  1943. netdev->tx_queue_len = adapter->tx_queue_len;
  1944. adapter->tx_timeout_factor = 1;
  1945. switch (adapter->link_speed) {
  1946. case SPEED_10:
  1947. txb2b = 0;
  1948. netdev->tx_queue_len = 10;
  1949. adapter->tx_timeout_factor = 8;
  1950. break;
  1951. case SPEED_100:
  1952. txb2b = 0;
  1953. netdev->tx_queue_len = 100;
  1954. /* maybe add some timeout factor ? */
  1955. break;
  1956. }
  1957. if ((adapter->hw.mac_type == e1000_82571 ||
  1958. adapter->hw.mac_type == e1000_82572) &&
  1959. txb2b == 0) {
  1960. #define SPEED_MODE_BIT (1 << 21)
  1961. uint32_t tarc0;
  1962. tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
  1963. tarc0 &= ~SPEED_MODE_BIT;
  1964. E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
  1965. }
  1966. #ifdef NETIF_F_TSO
  1967. /* disable TSO for pcie and 10/100 speeds, to avoid
  1968. * some hardware issues */
  1969. if (!adapter->tso_force &&
  1970. adapter->hw.bus_type == e1000_bus_type_pci_express){
  1971. switch (adapter->link_speed) {
  1972. case SPEED_10:
  1973. case SPEED_100:
  1974. DPRINTK(PROBE,INFO,
  1975. "10/100 speed: disabling TSO\n");
  1976. netdev->features &= ~NETIF_F_TSO;
  1977. break;
  1978. case SPEED_1000:
  1979. netdev->features |= NETIF_F_TSO;
  1980. break;
  1981. default:
  1982. /* oops */
  1983. break;
  1984. }
  1985. }
  1986. #endif
  1987. /* enable transmits in the hardware, need to do this
  1988. * after setting TARC0 */
  1989. tctl = E1000_READ_REG(&adapter->hw, TCTL);
  1990. tctl |= E1000_TCTL_EN;
  1991. E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
  1992. netif_carrier_on(netdev);
  1993. netif_wake_queue(netdev);
  1994. mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
  1995. adapter->smartspeed = 0;
  1996. }
  1997. } else {
  1998. if (netif_carrier_ok(netdev)) {
  1999. adapter->link_speed = 0;
  2000. adapter->link_duplex = 0;
  2001. DPRINTK(LINK, INFO, "NIC Link is Down\n");
  2002. netif_carrier_off(netdev);
  2003. netif_stop_queue(netdev);
  2004. mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
  2005. /* 80003ES2LAN workaround--
  2006. * For packet buffer work-around on link down event;
  2007. * disable receives in the ISR and
  2008. * reset device here in the watchdog
  2009. */
  2010. if (adapter->hw.mac_type == e1000_80003es2lan) {
  2011. /* reset device */
  2012. schedule_work(&adapter->reset_task);
  2013. }
  2014. }
  2015. e1000_smartspeed(adapter);
  2016. }
  2017. e1000_update_stats(adapter);
  2018. adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
  2019. adapter->tpt_old = adapter->stats.tpt;
  2020. adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
  2021. adapter->colc_old = adapter->stats.colc;
  2022. adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
  2023. adapter->gorcl_old = adapter->stats.gorcl;
  2024. adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
  2025. adapter->gotcl_old = adapter->stats.gotcl;
  2026. e1000_update_adaptive(&adapter->hw);
  2027. if (!netif_carrier_ok(netdev)) {
  2028. if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
  2029. /* We've lost link, so the controller stops DMA,
  2030. * but we've got queued Tx work that's never going
  2031. * to get done, so reset controller to flush Tx.
  2032. * (Do the reset outside of interrupt context). */
  2033. adapter->tx_timeout_count++;
  2034. schedule_work(&adapter->reset_task);
  2035. }
  2036. }
  2037. /* Dynamic mode for Interrupt Throttle Rate (ITR) */
  2038. if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
  2039. /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
  2040. * asymmetrical Tx or Rx gets ITR=8000; everyone
  2041. * else is between 2000-8000. */
  2042. uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
  2043. uint32_t dif = (adapter->gotcl > adapter->gorcl ?
  2044. adapter->gotcl - adapter->gorcl :
  2045. adapter->gorcl - adapter->gotcl) / 10000;
  2046. uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
  2047. E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
  2048. }
  2049. /* Cause software interrupt to ensure rx ring is cleaned */
  2050. E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
  2051. /* Force detection of hung controller every watchdog period */
  2052. adapter->detect_tx_hung = TRUE;
  2053. /* With 82571 controllers, LAA may be overwritten due to controller
  2054. * reset from the other port. Set the appropriate LAA in RAR[0] */
  2055. if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
  2056. e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
  2057. /* Reset the timer */
  2058. mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
  2059. }
  2060. #define E1000_TX_FLAGS_CSUM 0x00000001
  2061. #define E1000_TX_FLAGS_VLAN 0x00000002
  2062. #define E1000_TX_FLAGS_TSO 0x00000004
  2063. #define E1000_TX_FLAGS_IPV4 0x00000008
  2064. #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
  2065. #define E1000_TX_FLAGS_VLAN_SHIFT 16
  2066. static int
  2067. e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
  2068. struct sk_buff *skb)
  2069. {
  2070. #ifdef NETIF_F_TSO
  2071. struct e1000_context_desc *context_desc;
  2072. struct e1000_buffer *buffer_info;
  2073. unsigned int i;
  2074. uint32_t cmd_length = 0;
  2075. uint16_t ipcse = 0, tucse, mss;
  2076. uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
  2077. int err;
  2078. if (skb_shinfo(skb)->tso_size) {
  2079. if (skb_header_cloned(skb)) {
  2080. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  2081. if (err)
  2082. return err;
  2083. }
  2084. hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
  2085. mss = skb_shinfo(skb)->tso_size;
  2086. if (skb->protocol == htons(ETH_P_IP)) {
  2087. skb->nh.iph->tot_len = 0;
  2088. skb->nh.iph->check = 0;
  2089. skb->h.th->check =
  2090. ~csum_tcpudp_magic(skb->nh.iph->saddr,
  2091. skb->nh.iph->daddr,
  2092. 0,
  2093. IPPROTO_TCP,
  2094. 0);
  2095. cmd_length = E1000_TXD_CMD_IP;
  2096. ipcse = skb->h.raw - skb->data - 1;
  2097. #ifdef NETIF_F_TSO_IPV6
  2098. } else if (skb->protocol == ntohs(ETH_P_IPV6)) {
  2099. skb->nh.ipv6h->payload_len = 0;
  2100. skb->h.th->check =
  2101. ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
  2102. &skb->nh.ipv6h->daddr,
  2103. 0,
  2104. IPPROTO_TCP,
  2105. 0);
  2106. ipcse = 0;
  2107. #endif
  2108. }
  2109. ipcss = skb->nh.raw - skb->data;
  2110. ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
  2111. tucss = skb->h.raw - skb->data;
  2112. tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
  2113. tucse = 0;
  2114. cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
  2115. E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
  2116. i = tx_ring->next_to_use;
  2117. context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
  2118. buffer_info = &tx_ring->buffer_info[i];
  2119. context_desc->lower_setup.ip_fields.ipcss = ipcss;
  2120. context_desc->lower_setup.ip_fields.ipcso = ipcso;
  2121. context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
  2122. context_desc->upper_setup.tcp_fields.tucss = tucss;
  2123. context_desc->upper_setup.tcp_fields.tucso = tucso;
  2124. context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
  2125. context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
  2126. context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
  2127. context_desc->cmd_and_length = cpu_to_le32(cmd_length);
  2128. buffer_info->time_stamp = jiffies;
  2129. if (++i == tx_ring->count) i = 0;
  2130. tx_ring->next_to_use = i;
  2131. return TRUE;
  2132. }
  2133. #endif
  2134. return FALSE;
  2135. }
  2136. static boolean_t
  2137. e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
  2138. struct sk_buff *skb)
  2139. {
  2140. struct e1000_context_desc *context_desc;
  2141. struct e1000_buffer *buffer_info;
  2142. unsigned int i;
  2143. uint8_t css;
  2144. if (likely(skb->ip_summed == CHECKSUM_HW)) {
  2145. css = skb->h.raw - skb->data;
  2146. i = tx_ring->next_to_use;
  2147. buffer_info = &tx_ring->buffer_info[i];
  2148. context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
  2149. context_desc->upper_setup.tcp_fields.tucss = css;
  2150. context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
  2151. context_desc->upper_setup.tcp_fields.tucse = 0;
  2152. context_desc->tcp_seg_setup.data = 0;
  2153. context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
  2154. buffer_info->time_stamp = jiffies;
  2155. if (unlikely(++i == tx_ring->count)) i = 0;
  2156. tx_ring->next_to_use = i;
  2157. return TRUE;
  2158. }
  2159. return FALSE;
  2160. }
  2161. #define E1000_MAX_TXD_PWR 12
  2162. #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
  2163. static int
  2164. e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
  2165. struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
  2166. unsigned int nr_frags, unsigned int mss)
  2167. {
  2168. struct e1000_buffer *buffer_info;
  2169. unsigned int len = skb->len;
  2170. unsigned int offset = 0, size, count = 0, i;
  2171. unsigned int f;
  2172. len -= skb->data_len;
  2173. i = tx_ring->next_to_use;
  2174. while (len) {
  2175. buffer_info = &tx_ring->buffer_info[i];
  2176. size = min(len, max_per_txd);
  2177. #ifdef NETIF_F_TSO
  2178. /* Workaround for Controller erratum --
  2179. * descriptor for non-tso packet in a linear SKB that follows a
  2180. * tso gets written back prematurely before the data is fully
  2181. * DMA'd to the controller */
  2182. if (!skb->data_len && tx_ring->last_tx_tso &&
  2183. !skb_shinfo(skb)->tso_size) {
  2184. tx_ring->last_tx_tso = 0;
  2185. size -= 4;
  2186. }
  2187. /* Workaround for premature desc write-backs
  2188. * in TSO mode. Append 4-byte sentinel desc */
  2189. if (unlikely(mss && !nr_frags && size == len && size > 8))
  2190. size -= 4;
  2191. #endif
  2192. /* work-around for errata 10 and it applies
  2193. * to all controllers in PCI-X mode
  2194. * The fix is to make sure that the first descriptor of a
  2195. * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
  2196. */
  2197. if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
  2198. (size > 2015) && count == 0))
  2199. size = 2015;
  2200. /* Workaround for potential 82544 hang in PCI-X. Avoid
  2201. * terminating buffers within evenly-aligned dwords. */
  2202. if (unlikely(adapter->pcix_82544 &&
  2203. !((unsigned long)(skb->data + offset + size - 1) & 4) &&
  2204. size > 4))
  2205. size -= 4;
  2206. buffer_info->length = size;
  2207. buffer_info->dma =
  2208. pci_map_single(adapter->pdev,
  2209. skb->data + offset,
  2210. size,
  2211. PCI_DMA_TODEVICE);
  2212. buffer_info->time_stamp = jiffies;
  2213. len -= size;
  2214. offset += size;
  2215. count++;
  2216. if (unlikely(++i == tx_ring->count)) i = 0;
  2217. }
  2218. for (f = 0; f < nr_frags; f++) {
  2219. struct skb_frag_struct *frag;
  2220. frag = &skb_shinfo(skb)->frags[f];
  2221. len = frag->size;
  2222. offset = frag->page_offset;
  2223. while (len) {
  2224. buffer_info = &tx_ring->buffer_info[i];
  2225. size = min(len, max_per_txd);
  2226. #ifdef NETIF_F_TSO
  2227. /* Workaround for premature desc write-backs
  2228. * in TSO mode. Append 4-byte sentinel desc */
  2229. if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
  2230. size -= 4;
  2231. #endif
  2232. /* Workaround for potential 82544 hang in PCI-X.
  2233. * Avoid terminating buffers within evenly-aligned
  2234. * dwords. */
  2235. if (unlikely(adapter->pcix_82544 &&
  2236. !((unsigned long)(frag->page+offset+size-1) & 4) &&
  2237. size > 4))
  2238. size -= 4;
  2239. buffer_info->length = size;
  2240. buffer_info->dma =
  2241. pci_map_page(adapter->pdev,
  2242. frag->page,
  2243. offset,
  2244. size,
  2245. PCI_DMA_TODEVICE);
  2246. buffer_info->time_stamp = jiffies;
  2247. len -= size;
  2248. offset += size;
  2249. count++;
  2250. if (unlikely(++i == tx_ring->count)) i = 0;
  2251. }
  2252. }
  2253. i = (i == 0) ? tx_ring->count - 1 : i - 1;
  2254. tx_ring->buffer_info[i].skb = skb;
  2255. tx_ring->buffer_info[first].next_to_watch = i;
  2256. return count;
  2257. }
  2258. static void
  2259. e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
  2260. int tx_flags, int count)
  2261. {
  2262. struct e1000_tx_desc *tx_desc = NULL;
  2263. struct e1000_buffer *buffer_info;
  2264. uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
  2265. unsigned int i;
  2266. if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
  2267. txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
  2268. E1000_TXD_CMD_TSE;
  2269. txd_upper |= E1000_TXD_POPTS_TXSM << 8;
  2270. if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
  2271. txd_upper |= E1000_TXD_POPTS_IXSM << 8;
  2272. }
  2273. if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
  2274. txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
  2275. txd_upper |= E1000_TXD_POPTS_TXSM << 8;
  2276. }
  2277. if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
  2278. txd_lower |= E1000_TXD_CMD_VLE;
  2279. txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
  2280. }
  2281. i = tx_ring->next_to_use;
  2282. while (count--) {
  2283. buffer_info = &tx_ring->buffer_info[i];
  2284. tx_desc = E1000_TX_DESC(*tx_ring, i);
  2285. tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
  2286. tx_desc->lower.data =
  2287. cpu_to_le32(txd_lower | buffer_info->length);
  2288. tx_desc->upper.data = cpu_to_le32(txd_upper);
  2289. if (unlikely(++i == tx_ring->count)) i = 0;
  2290. }
  2291. tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
  2292. /* Force memory writes to complete before letting h/w
  2293. * know there are new descriptors to fetch. (Only
  2294. * applicable for weak-ordered memory model archs,
  2295. * such as IA-64). */
  2296. wmb();
  2297. tx_ring->next_to_use = i;
  2298. writel(i, adapter->hw.hw_addr + tx_ring->tdt);
  2299. }
  2300. /**
  2301. * 82547 workaround to avoid controller hang in half-duplex environment.
  2302. * The workaround is to avoid queuing a large packet that would span
  2303. * the internal Tx FIFO ring boundary by notifying the stack to resend
  2304. * the packet at a later time. This gives the Tx FIFO an opportunity to
  2305. * flush all packets. When that occurs, we reset the Tx FIFO pointers
  2306. * to the beginning of the Tx FIFO.
  2307. **/
  2308. #define E1000_FIFO_HDR 0x10
  2309. #define E1000_82547_PAD_LEN 0x3E0
  2310. static int
  2311. e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
  2312. {
  2313. uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
  2314. uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
  2315. E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
  2316. if (adapter->link_duplex != HALF_DUPLEX)
  2317. goto no_fifo_stall_required;
  2318. if (atomic_read(&adapter->tx_fifo_stall))
  2319. return 1;
  2320. if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
  2321. atomic_set(&adapter->tx_fifo_stall, 1);
  2322. return 1;
  2323. }
  2324. no_fifo_stall_required:
  2325. adapter->tx_fifo_head += skb_fifo_len;
  2326. if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
  2327. adapter->tx_fifo_head -= adapter->tx_fifo_size;
  2328. return 0;
  2329. }
  2330. #define MINIMUM_DHCP_PACKET_SIZE 282
  2331. static int
  2332. e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
  2333. {
  2334. struct e1000_hw *hw = &adapter->hw;
  2335. uint16_t length, offset;
  2336. if (vlan_tx_tag_present(skb)) {
  2337. if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
  2338. ( adapter->hw.mng_cookie.status &
  2339. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
  2340. return 0;
  2341. }
  2342. if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
  2343. struct ethhdr *eth = (struct ethhdr *) skb->data;
  2344. if ((htons(ETH_P_IP) == eth->h_proto)) {
  2345. const struct iphdr *ip =
  2346. (struct iphdr *)((uint8_t *)skb->data+14);
  2347. if (IPPROTO_UDP == ip->protocol) {
  2348. struct udphdr *udp =
  2349. (struct udphdr *)((uint8_t *)ip +
  2350. (ip->ihl << 2));
  2351. if (ntohs(udp->dest) == 67) {
  2352. offset = (uint8_t *)udp + 8 - skb->data;
  2353. length = skb->len - offset;
  2354. return e1000_mng_write_dhcp_info(hw,
  2355. (uint8_t *)udp + 8,
  2356. length);
  2357. }
  2358. }
  2359. }
  2360. }
  2361. return 0;
  2362. }
  2363. #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
  2364. static int
  2365. e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
  2366. {
  2367. struct e1000_adapter *adapter = netdev_priv(netdev);
  2368. struct e1000_tx_ring *tx_ring;
  2369. unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
  2370. unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
  2371. unsigned int tx_flags = 0;
  2372. unsigned int len = skb->len;
  2373. unsigned long flags;
  2374. unsigned int nr_frags = 0;
  2375. unsigned int mss = 0;
  2376. int count = 0;
  2377. int tso;
  2378. unsigned int f;
  2379. len -= skb->data_len;
  2380. tx_ring = adapter->tx_ring;
  2381. if (unlikely(skb->len <= 0)) {
  2382. dev_kfree_skb_any(skb);
  2383. return NETDEV_TX_OK;
  2384. }
  2385. #ifdef NETIF_F_TSO
  2386. mss = skb_shinfo(skb)->tso_size;
  2387. /* The controller does a simple calculation to
  2388. * make sure there is enough room in the FIFO before
  2389. * initiating the DMA for each buffer. The calc is:
  2390. * 4 = ceil(buffer len/mss). To make sure we don't
  2391. * overrun the FIFO, adjust the max buffer len if mss
  2392. * drops. */
  2393. if (mss) {
  2394. uint8_t hdr_len;
  2395. max_per_txd = min(mss << 2, max_per_txd);
  2396. max_txd_pwr = fls(max_per_txd) - 1;
  2397. /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
  2398. * points to just header, pull a few bytes of payload from
  2399. * frags into skb->data */
  2400. hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
  2401. if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
  2402. switch (adapter->hw.mac_type) {
  2403. unsigned int pull_size;
  2404. case e1000_82571:
  2405. case e1000_82572:
  2406. case e1000_82573:
  2407. pull_size = min((unsigned int)4, skb->data_len);
  2408. if (!__pskb_pull_tail(skb, pull_size)) {
  2409. DPRINTK(DRV, ERR,
  2410. "__pskb_pull_tail failed.\n");
  2411. dev_kfree_skb_any(skb);
  2412. return NETDEV_TX_OK;
  2413. }
  2414. len = skb->len - skb->data_len;
  2415. break;
  2416. default:
  2417. /* do nothing */
  2418. break;
  2419. }
  2420. }
  2421. }
  2422. /* reserve a descriptor for the offload context */
  2423. if ((mss) || (skb->ip_summed == CHECKSUM_HW))
  2424. count++;
  2425. count++;
  2426. #else
  2427. if (skb->ip_summed == CHECKSUM_HW)
  2428. count++;
  2429. #endif
  2430. #ifdef NETIF_F_TSO
  2431. /* Controller Erratum workaround */
  2432. if (!skb->data_len && tx_ring->last_tx_tso &&
  2433. !skb_shinfo(skb)->tso_size)
  2434. count++;
  2435. #endif
  2436. count += TXD_USE_COUNT(len, max_txd_pwr);
  2437. if (adapter->pcix_82544)
  2438. count++;
  2439. /* work-around for errata 10 and it applies to all controllers
  2440. * in PCI-X mode, so add one more descriptor to the count
  2441. */
  2442. if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
  2443. (len > 2015)))
  2444. count++;
  2445. nr_frags = skb_shinfo(skb)->nr_frags;
  2446. for (f = 0; f < nr_frags; f++)
  2447. count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
  2448. max_txd_pwr);
  2449. if (adapter->pcix_82544)
  2450. count += nr_frags;
  2451. if (adapter->hw.tx_pkt_filtering &&
  2452. (adapter->hw.mac_type == e1000_82573))
  2453. e1000_transfer_dhcp_info(adapter, skb);
  2454. local_irq_save(flags);
  2455. if (!spin_trylock(&tx_ring->tx_lock)) {
  2456. /* Collision - tell upper layer to requeue */
  2457. local_irq_restore(flags);
  2458. return NETDEV_TX_LOCKED;
  2459. }
  2460. /* need: count + 2 desc gap to keep tail from touching
  2461. * head, otherwise try next time */
  2462. if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
  2463. netif_stop_queue(netdev);
  2464. spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
  2465. return NETDEV_TX_BUSY;
  2466. }
  2467. if (unlikely(adapter->hw.mac_type == e1000_82547)) {
  2468. if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
  2469. netif_stop_queue(netdev);
  2470. mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
  2471. spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
  2472. return NETDEV_TX_BUSY;
  2473. }
  2474. }
  2475. if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
  2476. tx_flags |= E1000_TX_FLAGS_VLAN;
  2477. tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
  2478. }
  2479. first = tx_ring->next_to_use;
  2480. tso = e1000_tso(adapter, tx_ring, skb);
  2481. if (tso < 0) {
  2482. dev_kfree_skb_any(skb);
  2483. spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
  2484. return NETDEV_TX_OK;
  2485. }
  2486. if (likely(tso)) {
  2487. tx_ring->last_tx_tso = 1;
  2488. tx_flags |= E1000_TX_FLAGS_TSO;
  2489. } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
  2490. tx_flags |= E1000_TX_FLAGS_CSUM;
  2491. /* Old method was to assume IPv4 packet by default if TSO was enabled.
  2492. * 82571 hardware supports TSO capabilities for IPv6 as well...
  2493. * no longer assume, we must. */
  2494. if (likely(skb->protocol == htons(ETH_P_IP)))
  2495. tx_flags |= E1000_TX_FLAGS_IPV4;
  2496. e1000_tx_queue(adapter, tx_ring, tx_flags,
  2497. e1000_tx_map(adapter, tx_ring, skb, first,
  2498. max_per_txd, nr_frags, mss));
  2499. netdev->trans_start = jiffies;
  2500. /* Make sure there is space in the ring for the next send. */
  2501. if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2))
  2502. netif_stop_queue(netdev);
  2503. spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
  2504. return NETDEV_TX_OK;
  2505. }
  2506. /**
  2507. * e1000_tx_timeout - Respond to a Tx Hang
  2508. * @netdev: network interface device structure
  2509. **/
  2510. static void
  2511. e1000_tx_timeout(struct net_device *netdev)
  2512. {
  2513. struct e1000_adapter *adapter = netdev_priv(netdev);
  2514. /* Do the reset outside of interrupt context */
  2515. adapter->tx_timeout_count++;
  2516. schedule_work(&adapter->reset_task);
  2517. }
  2518. static void
  2519. e1000_reset_task(struct net_device *netdev)
  2520. {
  2521. struct e1000_adapter *adapter = netdev_priv(netdev);
  2522. e1000_reinit_locked(adapter);
  2523. }
  2524. /**
  2525. * e1000_get_stats - Get System Network Statistics
  2526. * @netdev: network interface device structure
  2527. *
  2528. * Returns the address of the device statistics structure.
  2529. * The statistics are actually updated from the timer callback.
  2530. **/
  2531. static struct net_device_stats *
  2532. e1000_get_stats(struct net_device *netdev)
  2533. {
  2534. struct e1000_adapter *adapter = netdev_priv(netdev);
  2535. /* only return the current stats */
  2536. return &adapter->net_stats;
  2537. }
  2538. /**
  2539. * e1000_change_mtu - Change the Maximum Transfer Unit
  2540. * @netdev: network interface device structure
  2541. * @new_mtu: new value for maximum frame size
  2542. *
  2543. * Returns 0 on success, negative on failure
  2544. **/
  2545. static int
  2546. e1000_change_mtu(struct net_device *netdev, int new_mtu)
  2547. {
  2548. struct e1000_adapter *adapter = netdev_priv(netdev);
  2549. int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
  2550. uint16_t eeprom_data = 0;
  2551. if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
  2552. (max_frame > MAX_JUMBO_FRAME_SIZE)) {
  2553. DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
  2554. return -EINVAL;
  2555. }
  2556. /* Adapter-specific max frame size limits. */
  2557. switch (adapter->hw.mac_type) {
  2558. case e1000_undefined ... e1000_82542_rev2_1:
  2559. if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
  2560. DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
  2561. return -EINVAL;
  2562. }
  2563. break;
  2564. case e1000_82573:
  2565. /* only enable jumbo frames if ASPM is disabled completely
  2566. * this means both bits must be zero in 0x1A bits 3:2 */
  2567. e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
  2568. &eeprom_data);
  2569. if (eeprom_data & EEPROM_WORD1A_ASPM_MASK) {
  2570. if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
  2571. DPRINTK(PROBE, ERR,
  2572. "Jumbo Frames not supported.\n");
  2573. return -EINVAL;
  2574. }
  2575. break;
  2576. }
  2577. /* fall through to get support */
  2578. case e1000_82571:
  2579. case e1000_82572:
  2580. case e1000_80003es2lan:
  2581. #define MAX_STD_JUMBO_FRAME_SIZE 9234
  2582. if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
  2583. DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
  2584. return -EINVAL;
  2585. }
  2586. break;
  2587. default:
  2588. /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
  2589. break;
  2590. }
  2591. /* NOTE: dev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
  2592. * means we reserve 2 more, this pushes us to allocate from the next
  2593. * larger slab size
  2594. * i.e. RXBUFFER_2048 --> size-4096 slab */
  2595. if (max_frame <= E1000_RXBUFFER_256)
  2596. adapter->rx_buffer_len = E1000_RXBUFFER_256;
  2597. else if (max_frame <= E1000_RXBUFFER_512)
  2598. adapter->rx_buffer_len = E1000_RXBUFFER_512;
  2599. else if (max_frame <= E1000_RXBUFFER_1024)
  2600. adapter->rx_buffer_len = E1000_RXBUFFER_1024;
  2601. else if (max_frame <= E1000_RXBUFFER_2048)
  2602. adapter->rx_buffer_len = E1000_RXBUFFER_2048;
  2603. else if (max_frame <= E1000_RXBUFFER_4096)
  2604. adapter->rx_buffer_len = E1000_RXBUFFER_4096;
  2605. else if (max_frame <= E1000_RXBUFFER_8192)
  2606. adapter->rx_buffer_len = E1000_RXBUFFER_8192;
  2607. else if (max_frame <= E1000_RXBUFFER_16384)
  2608. adapter->rx_buffer_len = E1000_RXBUFFER_16384;
  2609. /* adjust allocation if LPE protects us, and we aren't using SBP */
  2610. #define MAXIMUM_ETHERNET_VLAN_SIZE 1522
  2611. if (!adapter->hw.tbi_compatibility_on &&
  2612. ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
  2613. (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
  2614. adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
  2615. netdev->mtu = new_mtu;
  2616. if (netif_running(netdev))
  2617. e1000_reinit_locked(adapter);
  2618. adapter->hw.max_frame_size = max_frame;
  2619. return 0;
  2620. }
  2621. /**
  2622. * e1000_update_stats - Update the board statistics counters
  2623. * @adapter: board private structure
  2624. **/
  2625. void
  2626. e1000_update_stats(struct e1000_adapter *adapter)
  2627. {
  2628. struct e1000_hw *hw = &adapter->hw;
  2629. struct pci_dev *pdev = adapter->pdev;
  2630. unsigned long flags;
  2631. uint16_t phy_tmp;
  2632. #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
  2633. /*
  2634. * Prevent stats update while adapter is being reset, or if the pci
  2635. * connection is down.
  2636. */
  2637. if (adapter->link_speed == 0)
  2638. return;
  2639. if (pdev->error_state && pdev->error_state != pci_channel_io_normal)
  2640. return;
  2641. spin_lock_irqsave(&adapter->stats_lock, flags);
  2642. /* these counters are modified from e1000_adjust_tbi_stats,
  2643. * called from the interrupt context, so they must only
  2644. * be written while holding adapter->stats_lock
  2645. */
  2646. adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
  2647. adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
  2648. adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
  2649. adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
  2650. adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
  2651. adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
  2652. adapter->stats.roc += E1000_READ_REG(hw, ROC);
  2653. adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
  2654. adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
  2655. adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
  2656. adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
  2657. adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
  2658. adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
  2659. adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
  2660. adapter->stats.mpc += E1000_READ_REG(hw, MPC);
  2661. adapter->stats.scc += E1000_READ_REG(hw, SCC);
  2662. adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
  2663. adapter->stats.mcc += E1000_READ_REG(hw, MCC);
  2664. adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
  2665. adapter->stats.dc += E1000_READ_REG(hw, DC);
  2666. adapter->stats.sec += E1000_READ_REG(hw, SEC);
  2667. adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
  2668. adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
  2669. adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
  2670. adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
  2671. adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
  2672. adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
  2673. adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
  2674. adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
  2675. adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
  2676. adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
  2677. adapter->stats.ruc += E1000_READ_REG(hw, RUC);
  2678. adapter->stats.rfc += E1000_READ_REG(hw, RFC);
  2679. adapter->stats.rjc += E1000_READ_REG(hw, RJC);
  2680. adapter->stats.torl += E1000_READ_REG(hw, TORL);
  2681. adapter->stats.torh += E1000_READ_REG(hw, TORH);
  2682. adapter->stats.totl += E1000_READ_REG(hw, TOTL);
  2683. adapter->stats.toth += E1000_READ_REG(hw, TOTH);
  2684. adapter->stats.tpr += E1000_READ_REG(hw, TPR);
  2685. adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
  2686. adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
  2687. adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
  2688. adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
  2689. adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
  2690. adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
  2691. adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
  2692. adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
  2693. /* used for adaptive IFS */
  2694. hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
  2695. adapter->stats.tpt += hw->tx_packet_delta;
  2696. hw->collision_delta = E1000_READ_REG(hw, COLC);
  2697. adapter->stats.colc += hw->collision_delta;
  2698. if (hw->mac_type >= e1000_82543) {
  2699. adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
  2700. adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
  2701. adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
  2702. adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
  2703. adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
  2704. adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
  2705. }
  2706. if (hw->mac_type > e1000_82547_rev_2) {
  2707. adapter->stats.iac += E1000_READ_REG(hw, IAC);
  2708. adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
  2709. adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
  2710. adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
  2711. adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
  2712. adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
  2713. adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
  2714. adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
  2715. adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
  2716. }
  2717. /* Fill out the OS statistics structure */
  2718. adapter->net_stats.rx_packets = adapter->stats.gprc;
  2719. adapter->net_stats.tx_packets = adapter->stats.gptc;
  2720. adapter->net_stats.rx_bytes = adapter->stats.gorcl;
  2721. adapter->net_stats.tx_bytes = adapter->stats.gotcl;
  2722. adapter->net_stats.multicast = adapter->stats.mprc;
  2723. adapter->net_stats.collisions = adapter->stats.colc;
  2724. /* Rx Errors */
  2725. /* RLEC on some newer hardware can be incorrect so build
  2726. * our own version based on RUC and ROC */
  2727. adapter->net_stats.rx_errors = adapter->stats.rxerrc +
  2728. adapter->stats.crcerrs + adapter->stats.algnerrc +
  2729. adapter->stats.ruc + adapter->stats.roc +
  2730. adapter->stats.cexterr;
  2731. adapter->net_stats.rx_length_errors = adapter->stats.ruc +
  2732. adapter->stats.roc;
  2733. adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
  2734. adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
  2735. adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
  2736. /* Tx Errors */
  2737. adapter->net_stats.tx_errors = adapter->stats.ecol +
  2738. adapter->stats.latecol;
  2739. adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
  2740. adapter->net_stats.tx_window_errors = adapter->stats.latecol;
  2741. adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
  2742. /* Tx Dropped needs to be maintained elsewhere */
  2743. /* Phy Stats */
  2744. if (hw->media_type == e1000_media_type_copper) {
  2745. if ((adapter->link_speed == SPEED_1000) &&
  2746. (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
  2747. phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
  2748. adapter->phy_stats.idle_errors += phy_tmp;
  2749. }
  2750. if ((hw->mac_type <= e1000_82546) &&
  2751. (hw->phy_type == e1000_phy_m88) &&
  2752. !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
  2753. adapter->phy_stats.receive_errors += phy_tmp;
  2754. }
  2755. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  2756. }
  2757. /**
  2758. * e1000_intr - Interrupt Handler
  2759. * @irq: interrupt number
  2760. * @data: pointer to a network interface device structure
  2761. * @pt_regs: CPU registers structure
  2762. **/
  2763. static irqreturn_t
  2764. e1000_intr(int irq, void *data, struct pt_regs *regs)
  2765. {
  2766. struct net_device *netdev = data;
  2767. struct e1000_adapter *adapter = netdev_priv(netdev);
  2768. struct e1000_hw *hw = &adapter->hw;
  2769. uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
  2770. #ifndef CONFIG_E1000_NAPI
  2771. int i;
  2772. #else
  2773. /* Interrupt Auto-Mask...upon reading ICR,
  2774. * interrupts are masked. No need for the
  2775. * IMC write, but it does mean we should
  2776. * account for it ASAP. */
  2777. if (likely(hw->mac_type >= e1000_82571))
  2778. atomic_inc(&adapter->irq_sem);
  2779. #endif
  2780. if (unlikely(!icr)) {
  2781. #ifdef CONFIG_E1000_NAPI
  2782. if (hw->mac_type >= e1000_82571)
  2783. e1000_irq_enable(adapter);
  2784. #endif
  2785. return IRQ_NONE; /* Not our interrupt */
  2786. }
  2787. if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
  2788. hw->get_link_status = 1;
  2789. /* 80003ES2LAN workaround--
  2790. * For packet buffer work-around on link down event;
  2791. * disable receives here in the ISR and
  2792. * reset adapter in watchdog
  2793. */
  2794. if (netif_carrier_ok(netdev) &&
  2795. (adapter->hw.mac_type == e1000_80003es2lan)) {
  2796. /* disable receives */
  2797. rctl = E1000_READ_REG(hw, RCTL);
  2798. E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
  2799. }
  2800. mod_timer(&adapter->watchdog_timer, jiffies);
  2801. }
  2802. #ifdef CONFIG_E1000_NAPI
  2803. if (unlikely(hw->mac_type < e1000_82571)) {
  2804. atomic_inc(&adapter->irq_sem);
  2805. E1000_WRITE_REG(hw, IMC, ~0);
  2806. E1000_WRITE_FLUSH(hw);
  2807. }
  2808. if (likely(netif_rx_schedule_prep(&adapter->polling_netdev[0])))
  2809. __netif_rx_schedule(&adapter->polling_netdev[0]);
  2810. else
  2811. e1000_irq_enable(adapter);
  2812. #else
  2813. /* Writing IMC and IMS is needed for 82547.
  2814. * Due to Hub Link bus being occupied, an interrupt
  2815. * de-assertion message is not able to be sent.
  2816. * When an interrupt assertion message is generated later,
  2817. * two messages are re-ordered and sent out.
  2818. * That causes APIC to think 82547 is in de-assertion
  2819. * state, while 82547 is in assertion state, resulting
  2820. * in dead lock. Writing IMC forces 82547 into
  2821. * de-assertion state.
  2822. */
  2823. if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
  2824. atomic_inc(&adapter->irq_sem);
  2825. E1000_WRITE_REG(hw, IMC, ~0);
  2826. }
  2827. for (i = 0; i < E1000_MAX_INTR; i++)
  2828. if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
  2829. !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
  2830. break;
  2831. if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
  2832. e1000_irq_enable(adapter);
  2833. #endif
  2834. return IRQ_HANDLED;
  2835. }
  2836. #ifdef CONFIG_E1000_NAPI
  2837. /**
  2838. * e1000_clean - NAPI Rx polling callback
  2839. * @adapter: board private structure
  2840. **/
  2841. static int
  2842. e1000_clean(struct net_device *poll_dev, int *budget)
  2843. {
  2844. struct e1000_adapter *adapter;
  2845. int work_to_do = min(*budget, poll_dev->quota);
  2846. int tx_cleaned = 0, i = 0, work_done = 0;
  2847. /* Must NOT use netdev_priv macro here. */
  2848. adapter = poll_dev->priv;
  2849. /* Keep link state information with original netdev */
  2850. if (!netif_carrier_ok(adapter->netdev))
  2851. goto quit_polling;
  2852. while (poll_dev != &adapter->polling_netdev[i]) {
  2853. i++;
  2854. BUG_ON(i == adapter->num_rx_queues);
  2855. }
  2856. if (likely(adapter->num_tx_queues == 1)) {
  2857. /* e1000_clean is called per-cpu. This lock protects
  2858. * tx_ring[0] from being cleaned by multiple cpus
  2859. * simultaneously. A failure obtaining the lock means
  2860. * tx_ring[0] is currently being cleaned anyway. */
  2861. if (spin_trylock(&adapter->tx_queue_lock)) {
  2862. tx_cleaned = e1000_clean_tx_irq(adapter,
  2863. &adapter->tx_ring[0]);
  2864. spin_unlock(&adapter->tx_queue_lock);
  2865. }
  2866. } else
  2867. tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[i]);
  2868. adapter->clean_rx(adapter, &adapter->rx_ring[i],
  2869. &work_done, work_to_do);
  2870. *budget -= work_done;
  2871. poll_dev->quota -= work_done;
  2872. /* If no Tx and not enough Rx work done, exit the polling mode */
  2873. if ((!tx_cleaned && (work_done == 0)) ||
  2874. !netif_running(adapter->netdev)) {
  2875. quit_polling:
  2876. netif_rx_complete(poll_dev);
  2877. e1000_irq_enable(adapter);
  2878. return 0;
  2879. }
  2880. return 1;
  2881. }
  2882. #endif
  2883. /**
  2884. * e1000_clean_tx_irq - Reclaim resources after transmit completes
  2885. * @adapter: board private structure
  2886. **/
  2887. static boolean_t
  2888. e1000_clean_tx_irq(struct e1000_adapter *adapter,
  2889. struct e1000_tx_ring *tx_ring)
  2890. {
  2891. struct net_device *netdev = adapter->netdev;
  2892. struct e1000_tx_desc *tx_desc, *eop_desc;
  2893. struct e1000_buffer *buffer_info;
  2894. unsigned int i, eop;
  2895. #ifdef CONFIG_E1000_NAPI
  2896. unsigned int count = 0;
  2897. #endif
  2898. boolean_t cleaned = FALSE;
  2899. i = tx_ring->next_to_clean;
  2900. eop = tx_ring->buffer_info[i].next_to_watch;
  2901. eop_desc = E1000_TX_DESC(*tx_ring, eop);
  2902. while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
  2903. for (cleaned = FALSE; !cleaned; ) {
  2904. tx_desc = E1000_TX_DESC(*tx_ring, i);
  2905. buffer_info = &tx_ring->buffer_info[i];
  2906. cleaned = (i == eop);
  2907. e1000_unmap_and_free_tx_resource(adapter, buffer_info);
  2908. memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
  2909. if (unlikely(++i == tx_ring->count)) i = 0;
  2910. }
  2911. eop = tx_ring->buffer_info[i].next_to_watch;
  2912. eop_desc = E1000_TX_DESC(*tx_ring, eop);
  2913. #ifdef CONFIG_E1000_NAPI
  2914. #define E1000_TX_WEIGHT 64
  2915. /* weight of a sort for tx, to avoid endless transmit cleanup */
  2916. if (count++ == E1000_TX_WEIGHT) break;
  2917. #endif
  2918. }
  2919. tx_ring->next_to_clean = i;
  2920. #define TX_WAKE_THRESHOLD 32
  2921. if (unlikely(cleaned && netif_queue_stopped(netdev) &&
  2922. netif_carrier_ok(netdev))) {
  2923. spin_lock(&tx_ring->tx_lock);
  2924. if (netif_queue_stopped(netdev) &&
  2925. (E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))
  2926. netif_wake_queue(netdev);
  2927. spin_unlock(&tx_ring->tx_lock);
  2928. }
  2929. if (adapter->detect_tx_hung) {
  2930. /* Detect a transmit hang in hardware, this serializes the
  2931. * check with the clearing of time_stamp and movement of i */
  2932. adapter->detect_tx_hung = FALSE;
  2933. if (tx_ring->buffer_info[eop].dma &&
  2934. time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
  2935. (adapter->tx_timeout_factor * HZ))
  2936. && !(E1000_READ_REG(&adapter->hw, STATUS) &
  2937. E1000_STATUS_TXOFF)) {
  2938. /* detected Tx unit hang */
  2939. DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
  2940. " Tx Queue <%lu>\n"
  2941. " TDH <%x>\n"
  2942. " TDT <%x>\n"
  2943. " next_to_use <%x>\n"
  2944. " next_to_clean <%x>\n"
  2945. "buffer_info[next_to_clean]\n"
  2946. " time_stamp <%lx>\n"
  2947. " next_to_watch <%x>\n"
  2948. " jiffies <%lx>\n"
  2949. " next_to_watch.status <%x>\n",
  2950. (unsigned long)((tx_ring - adapter->tx_ring) /
  2951. sizeof(struct e1000_tx_ring)),
  2952. readl(adapter->hw.hw_addr + tx_ring->tdh),
  2953. readl(adapter->hw.hw_addr + tx_ring->tdt),
  2954. tx_ring->next_to_use,
  2955. tx_ring->next_to_clean,
  2956. tx_ring->buffer_info[eop].time_stamp,
  2957. eop,
  2958. jiffies,
  2959. eop_desc->upper.fields.status);
  2960. netif_stop_queue(netdev);
  2961. }
  2962. }
  2963. return cleaned;
  2964. }
  2965. /**
  2966. * e1000_rx_checksum - Receive Checksum Offload for 82543
  2967. * @adapter: board private structure
  2968. * @status_err: receive descriptor status and error fields
  2969. * @csum: receive descriptor csum field
  2970. * @sk_buff: socket buffer with received data
  2971. **/
  2972. static void
  2973. e1000_rx_checksum(struct e1000_adapter *adapter,
  2974. uint32_t status_err, uint32_t csum,
  2975. struct sk_buff *skb)
  2976. {
  2977. uint16_t status = (uint16_t)status_err;
  2978. uint8_t errors = (uint8_t)(status_err >> 24);
  2979. skb->ip_summed = CHECKSUM_NONE;
  2980. /* 82543 or newer only */
  2981. if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
  2982. /* Ignore Checksum bit is set */
  2983. if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
  2984. /* TCP/UDP checksum error bit is set */
  2985. if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
  2986. /* let the stack verify checksum errors */
  2987. adapter->hw_csum_err++;
  2988. return;
  2989. }
  2990. /* TCP/UDP Checksum has not been calculated */
  2991. if (adapter->hw.mac_type <= e1000_82547_rev_2) {
  2992. if (!(status & E1000_RXD_STAT_TCPCS))
  2993. return;
  2994. } else {
  2995. if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
  2996. return;
  2997. }
  2998. /* It must be a TCP or UDP packet with a valid checksum */
  2999. if (likely(status & E1000_RXD_STAT_TCPCS)) {
  3000. /* TCP checksum is good */
  3001. skb->ip_summed = CHECKSUM_UNNECESSARY;
  3002. } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
  3003. /* IP fragment with UDP payload */
  3004. /* Hardware complements the payload checksum, so we undo it
  3005. * and then put the value in host order for further stack use.
  3006. */
  3007. csum = ntohl(csum ^ 0xFFFF);
  3008. skb->csum = csum;
  3009. skb->ip_summed = CHECKSUM_HW;
  3010. }
  3011. adapter->hw_csum_good++;
  3012. }
  3013. /**
  3014. * e1000_clean_rx_irq - Send received data up the network stack; legacy
  3015. * @adapter: board private structure
  3016. **/
  3017. static boolean_t
  3018. #ifdef CONFIG_E1000_NAPI
  3019. e1000_clean_rx_irq(struct e1000_adapter *adapter,
  3020. struct e1000_rx_ring *rx_ring,
  3021. int *work_done, int work_to_do)
  3022. #else
  3023. e1000_clean_rx_irq(struct e1000_adapter *adapter,
  3024. struct e1000_rx_ring *rx_ring)
  3025. #endif
  3026. {
  3027. struct net_device *netdev = adapter->netdev;
  3028. struct pci_dev *pdev = adapter->pdev;
  3029. struct e1000_rx_desc *rx_desc, *next_rxd;
  3030. struct e1000_buffer *buffer_info, *next_buffer;
  3031. unsigned long flags;
  3032. uint32_t length;
  3033. uint8_t last_byte;
  3034. unsigned int i;
  3035. int cleaned_count = 0;
  3036. boolean_t cleaned = FALSE;
  3037. i = rx_ring->next_to_clean;
  3038. rx_desc = E1000_RX_DESC(*rx_ring, i);
  3039. buffer_info = &rx_ring->buffer_info[i];
  3040. while (rx_desc->status & E1000_RXD_STAT_DD) {
  3041. struct sk_buff *skb;
  3042. u8 status;
  3043. #ifdef CONFIG_E1000_NAPI
  3044. if (*work_done >= work_to_do)
  3045. break;
  3046. (*work_done)++;
  3047. #endif
  3048. status = rx_desc->status;
  3049. skb = buffer_info->skb;
  3050. buffer_info->skb = NULL;
  3051. prefetch(skb->data - NET_IP_ALIGN);
  3052. if (++i == rx_ring->count) i = 0;
  3053. next_rxd = E1000_RX_DESC(*rx_ring, i);
  3054. prefetch(next_rxd);
  3055. next_buffer = &rx_ring->buffer_info[i];
  3056. cleaned = TRUE;
  3057. cleaned_count++;
  3058. pci_unmap_single(pdev,
  3059. buffer_info->dma,
  3060. buffer_info->length,
  3061. PCI_DMA_FROMDEVICE);
  3062. length = le16_to_cpu(rx_desc->length);
  3063. if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
  3064. /* All receives must fit into a single buffer */
  3065. E1000_DBG("%s: Receive packet consumed multiple"
  3066. " buffers\n", netdev->name);
  3067. /* recycle */
  3068. buffer_info-> skb = skb;
  3069. goto next_desc;
  3070. }
  3071. if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
  3072. last_byte = *(skb->data + length - 1);
  3073. if (TBI_ACCEPT(&adapter->hw, status,
  3074. rx_desc->errors, length, last_byte)) {
  3075. spin_lock_irqsave(&adapter->stats_lock, flags);
  3076. e1000_tbi_adjust_stats(&adapter->hw,
  3077. &adapter->stats,
  3078. length, skb->data);
  3079. spin_unlock_irqrestore(&adapter->stats_lock,
  3080. flags);
  3081. length--;
  3082. } else {
  3083. /* recycle */
  3084. buffer_info->skb = skb;
  3085. goto next_desc;
  3086. }
  3087. }
  3088. /* code added for copybreak, this should improve
  3089. * performance for small packets with large amounts
  3090. * of reassembly being done in the stack */
  3091. #define E1000_CB_LENGTH 256
  3092. if (length < E1000_CB_LENGTH) {
  3093. struct sk_buff *new_skb =
  3094. dev_alloc_skb(length + NET_IP_ALIGN);
  3095. if (new_skb) {
  3096. skb_reserve(new_skb, NET_IP_ALIGN);
  3097. new_skb->dev = netdev;
  3098. memcpy(new_skb->data - NET_IP_ALIGN,
  3099. skb->data - NET_IP_ALIGN,
  3100. length + NET_IP_ALIGN);
  3101. /* save the skb in buffer_info as good */
  3102. buffer_info->skb = skb;
  3103. skb = new_skb;
  3104. skb_put(skb, length);
  3105. }
  3106. } else
  3107. skb_put(skb, length);
  3108. /* end copybreak code */
  3109. /* Receive Checksum Offload */
  3110. e1000_rx_checksum(adapter,
  3111. (uint32_t)(status) |
  3112. ((uint32_t)(rx_desc->errors) << 24),
  3113. le16_to_cpu(rx_desc->csum), skb);
  3114. skb->protocol = eth_type_trans(skb, netdev);
  3115. #ifdef CONFIG_E1000_NAPI
  3116. if (unlikely(adapter->vlgrp &&
  3117. (status & E1000_RXD_STAT_VP))) {
  3118. vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
  3119. le16_to_cpu(rx_desc->special) &
  3120. E1000_RXD_SPC_VLAN_MASK);
  3121. } else {
  3122. netif_receive_skb(skb);
  3123. }
  3124. #else /* CONFIG_E1000_NAPI */
  3125. if (unlikely(adapter->vlgrp &&
  3126. (status & E1000_RXD_STAT_VP))) {
  3127. vlan_hwaccel_rx(skb, adapter->vlgrp,
  3128. le16_to_cpu(rx_desc->special) &
  3129. E1000_RXD_SPC_VLAN_MASK);
  3130. } else {
  3131. netif_rx(skb);
  3132. }
  3133. #endif /* CONFIG_E1000_NAPI */
  3134. netdev->last_rx = jiffies;
  3135. next_desc:
  3136. rx_desc->status = 0;
  3137. /* return some buffers to hardware, one at a time is too slow */
  3138. if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
  3139. adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
  3140. cleaned_count = 0;
  3141. }
  3142. /* use prefetched values */
  3143. rx_desc = next_rxd;
  3144. buffer_info = next_buffer;
  3145. }
  3146. rx_ring->next_to_clean = i;
  3147. cleaned_count = E1000_DESC_UNUSED(rx_ring);
  3148. if (cleaned_count)
  3149. adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
  3150. return cleaned;
  3151. }
  3152. /**
  3153. * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
  3154. * @adapter: board private structure
  3155. **/
  3156. static boolean_t
  3157. #ifdef CONFIG_E1000_NAPI
  3158. e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
  3159. struct e1000_rx_ring *rx_ring,
  3160. int *work_done, int work_to_do)
  3161. #else
  3162. e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
  3163. struct e1000_rx_ring *rx_ring)
  3164. #endif
  3165. {
  3166. union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
  3167. struct net_device *netdev = adapter->netdev;
  3168. struct pci_dev *pdev = adapter->pdev;
  3169. struct e1000_buffer *buffer_info, *next_buffer;
  3170. struct e1000_ps_page *ps_page;
  3171. struct e1000_ps_page_dma *ps_page_dma;
  3172. struct sk_buff *skb;
  3173. unsigned int i, j;
  3174. uint32_t length, staterr;
  3175. int cleaned_count = 0;
  3176. boolean_t cleaned = FALSE;
  3177. i = rx_ring->next_to_clean;
  3178. rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
  3179. staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
  3180. buffer_info = &rx_ring->buffer_info[i];
  3181. while (staterr & E1000_RXD_STAT_DD) {
  3182. ps_page = &rx_ring->ps_page[i];
  3183. ps_page_dma = &rx_ring->ps_page_dma[i];
  3184. #ifdef CONFIG_E1000_NAPI
  3185. if (unlikely(*work_done >= work_to_do))
  3186. break;
  3187. (*work_done)++;
  3188. #endif
  3189. skb = buffer_info->skb;
  3190. /* in the packet split case this is header only */
  3191. prefetch(skb->data - NET_IP_ALIGN);
  3192. if (++i == rx_ring->count) i = 0;
  3193. next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
  3194. prefetch(next_rxd);
  3195. next_buffer = &rx_ring->buffer_info[i];
  3196. cleaned = TRUE;
  3197. cleaned_count++;
  3198. pci_unmap_single(pdev, buffer_info->dma,
  3199. buffer_info->length,
  3200. PCI_DMA_FROMDEVICE);
  3201. if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
  3202. E1000_DBG("%s: Packet Split buffers didn't pick up"
  3203. " the full packet\n", netdev->name);
  3204. dev_kfree_skb_irq(skb);
  3205. goto next_desc;
  3206. }
  3207. if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
  3208. dev_kfree_skb_irq(skb);
  3209. goto next_desc;
  3210. }
  3211. length = le16_to_cpu(rx_desc->wb.middle.length0);
  3212. if (unlikely(!length)) {
  3213. E1000_DBG("%s: Last part of the packet spanning"
  3214. " multiple descriptors\n", netdev->name);
  3215. dev_kfree_skb_irq(skb);
  3216. goto next_desc;
  3217. }
  3218. /* Good Receive */
  3219. skb_put(skb, length);
  3220. {
  3221. /* this looks ugly, but it seems compiler issues make it
  3222. more efficient than reusing j */
  3223. int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
  3224. /* page alloc/put takes too long and effects small packet
  3225. * throughput, so unsplit small packets and save the alloc/put*/
  3226. if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
  3227. u8 *vaddr;
  3228. /* there is no documentation about how to call
  3229. * kmap_atomic, so we can't hold the mapping
  3230. * very long */
  3231. pci_dma_sync_single_for_cpu(pdev,
  3232. ps_page_dma->ps_page_dma[0],
  3233. PAGE_SIZE,
  3234. PCI_DMA_FROMDEVICE);
  3235. vaddr = kmap_atomic(ps_page->ps_page[0],
  3236. KM_SKB_DATA_SOFTIRQ);
  3237. memcpy(skb->tail, vaddr, l1);
  3238. kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
  3239. pci_dma_sync_single_for_device(pdev,
  3240. ps_page_dma->ps_page_dma[0],
  3241. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  3242. skb_put(skb, l1);
  3243. length += l1;
  3244. goto copydone;
  3245. } /* if */
  3246. }
  3247. for (j = 0; j < adapter->rx_ps_pages; j++) {
  3248. if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
  3249. break;
  3250. pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
  3251. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  3252. ps_page_dma->ps_page_dma[j] = 0;
  3253. skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
  3254. length);
  3255. ps_page->ps_page[j] = NULL;
  3256. skb->len += length;
  3257. skb->data_len += length;
  3258. skb->truesize += length;
  3259. }
  3260. copydone:
  3261. e1000_rx_checksum(adapter, staterr,
  3262. le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
  3263. skb->protocol = eth_type_trans(skb, netdev);
  3264. if (likely(rx_desc->wb.upper.header_status &
  3265. cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
  3266. adapter->rx_hdr_split++;
  3267. #ifdef CONFIG_E1000_NAPI
  3268. if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
  3269. vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
  3270. le16_to_cpu(rx_desc->wb.middle.vlan) &
  3271. E1000_RXD_SPC_VLAN_MASK);
  3272. } else {
  3273. netif_receive_skb(skb);
  3274. }
  3275. #else /* CONFIG_E1000_NAPI */
  3276. if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
  3277. vlan_hwaccel_rx(skb, adapter->vlgrp,
  3278. le16_to_cpu(rx_desc->wb.middle.vlan) &
  3279. E1000_RXD_SPC_VLAN_MASK);
  3280. } else {
  3281. netif_rx(skb);
  3282. }
  3283. #endif /* CONFIG_E1000_NAPI */
  3284. netdev->last_rx = jiffies;
  3285. next_desc:
  3286. rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
  3287. buffer_info->skb = NULL;
  3288. /* return some buffers to hardware, one at a time is too slow */
  3289. if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
  3290. adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
  3291. cleaned_count = 0;
  3292. }
  3293. /* use prefetched values */
  3294. rx_desc = next_rxd;
  3295. buffer_info = next_buffer;
  3296. staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
  3297. }
  3298. rx_ring->next_to_clean = i;
  3299. cleaned_count = E1000_DESC_UNUSED(rx_ring);
  3300. if (cleaned_count)
  3301. adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
  3302. return cleaned;
  3303. }
  3304. /**
  3305. * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
  3306. * @adapter: address of board private structure
  3307. **/
  3308. static void
  3309. e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
  3310. struct e1000_rx_ring *rx_ring,
  3311. int cleaned_count)
  3312. {
  3313. struct net_device *netdev = adapter->netdev;
  3314. struct pci_dev *pdev = adapter->pdev;
  3315. struct e1000_rx_desc *rx_desc;
  3316. struct e1000_buffer *buffer_info;
  3317. struct sk_buff *skb;
  3318. unsigned int i;
  3319. unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
  3320. i = rx_ring->next_to_use;
  3321. buffer_info = &rx_ring->buffer_info[i];
  3322. while (cleaned_count--) {
  3323. if (!(skb = buffer_info->skb))
  3324. skb = dev_alloc_skb(bufsz);
  3325. else {
  3326. skb_trim(skb, 0);
  3327. goto map_skb;
  3328. }
  3329. if (unlikely(!skb)) {
  3330. /* Better luck next round */
  3331. adapter->alloc_rx_buff_failed++;
  3332. break;
  3333. }
  3334. /* Fix for errata 23, can't cross 64kB boundary */
  3335. if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
  3336. struct sk_buff *oldskb = skb;
  3337. DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
  3338. "at %p\n", bufsz, skb->data);
  3339. /* Try again, without freeing the previous */
  3340. skb = dev_alloc_skb(bufsz);
  3341. /* Failed allocation, critical failure */
  3342. if (!skb) {
  3343. dev_kfree_skb(oldskb);
  3344. break;
  3345. }
  3346. if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
  3347. /* give up */
  3348. dev_kfree_skb(skb);
  3349. dev_kfree_skb(oldskb);
  3350. break; /* while !buffer_info->skb */
  3351. } else {
  3352. /* Use new allocation */
  3353. dev_kfree_skb(oldskb);
  3354. }
  3355. }
  3356. /* Make buffer alignment 2 beyond a 16 byte boundary
  3357. * this will result in a 16 byte aligned IP header after
  3358. * the 14 byte MAC header is removed
  3359. */
  3360. skb_reserve(skb, NET_IP_ALIGN);
  3361. skb->dev = netdev;
  3362. buffer_info->skb = skb;
  3363. buffer_info->length = adapter->rx_buffer_len;
  3364. map_skb:
  3365. buffer_info->dma = pci_map_single(pdev,
  3366. skb->data,
  3367. adapter->rx_buffer_len,
  3368. PCI_DMA_FROMDEVICE);
  3369. /* Fix for errata 23, can't cross 64kB boundary */
  3370. if (!e1000_check_64k_bound(adapter,
  3371. (void *)(unsigned long)buffer_info->dma,
  3372. adapter->rx_buffer_len)) {
  3373. DPRINTK(RX_ERR, ERR,
  3374. "dma align check failed: %u bytes at %p\n",
  3375. adapter->rx_buffer_len,
  3376. (void *)(unsigned long)buffer_info->dma);
  3377. dev_kfree_skb(skb);
  3378. buffer_info->skb = NULL;
  3379. pci_unmap_single(pdev, buffer_info->dma,
  3380. adapter->rx_buffer_len,
  3381. PCI_DMA_FROMDEVICE);
  3382. break; /* while !buffer_info->skb */
  3383. }
  3384. rx_desc = E1000_RX_DESC(*rx_ring, i);
  3385. rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
  3386. if (unlikely(++i == rx_ring->count))
  3387. i = 0;
  3388. buffer_info = &rx_ring->buffer_info[i];
  3389. }
  3390. if (likely(rx_ring->next_to_use != i)) {
  3391. rx_ring->next_to_use = i;
  3392. if (unlikely(i-- == 0))
  3393. i = (rx_ring->count - 1);
  3394. /* Force memory writes to complete before letting h/w
  3395. * know there are new descriptors to fetch. (Only
  3396. * applicable for weak-ordered memory model archs,
  3397. * such as IA-64). */
  3398. wmb();
  3399. writel(i, adapter->hw.hw_addr + rx_ring->rdt);
  3400. }
  3401. }
  3402. /**
  3403. * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
  3404. * @adapter: address of board private structure
  3405. **/
  3406. static void
  3407. e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
  3408. struct e1000_rx_ring *rx_ring,
  3409. int cleaned_count)
  3410. {
  3411. struct net_device *netdev = adapter->netdev;
  3412. struct pci_dev *pdev = adapter->pdev;
  3413. union e1000_rx_desc_packet_split *rx_desc;
  3414. struct e1000_buffer *buffer_info;
  3415. struct e1000_ps_page *ps_page;
  3416. struct e1000_ps_page_dma *ps_page_dma;
  3417. struct sk_buff *skb;
  3418. unsigned int i, j;
  3419. i = rx_ring->next_to_use;
  3420. buffer_info = &rx_ring->buffer_info[i];
  3421. ps_page = &rx_ring->ps_page[i];
  3422. ps_page_dma = &rx_ring->ps_page_dma[i];
  3423. while (cleaned_count--) {
  3424. rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
  3425. for (j = 0; j < PS_PAGE_BUFFERS; j++) {
  3426. if (j < adapter->rx_ps_pages) {
  3427. if (likely(!ps_page->ps_page[j])) {
  3428. ps_page->ps_page[j] =
  3429. alloc_page(GFP_ATOMIC);
  3430. if (unlikely(!ps_page->ps_page[j])) {
  3431. adapter->alloc_rx_buff_failed++;
  3432. goto no_buffers;
  3433. }
  3434. ps_page_dma->ps_page_dma[j] =
  3435. pci_map_page(pdev,
  3436. ps_page->ps_page[j],
  3437. 0, PAGE_SIZE,
  3438. PCI_DMA_FROMDEVICE);
  3439. }
  3440. /* Refresh the desc even if buffer_addrs didn't
  3441. * change because each write-back erases
  3442. * this info.
  3443. */
  3444. rx_desc->read.buffer_addr[j+1] =
  3445. cpu_to_le64(ps_page_dma->ps_page_dma[j]);
  3446. } else
  3447. rx_desc->read.buffer_addr[j+1] = ~0;
  3448. }
  3449. skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN);
  3450. if (unlikely(!skb)) {
  3451. adapter->alloc_rx_buff_failed++;
  3452. break;
  3453. }
  3454. /* Make buffer alignment 2 beyond a 16 byte boundary
  3455. * this will result in a 16 byte aligned IP header after
  3456. * the 14 byte MAC header is removed
  3457. */
  3458. skb_reserve(skb, NET_IP_ALIGN);
  3459. skb->dev = netdev;
  3460. buffer_info->skb = skb;
  3461. buffer_info->length = adapter->rx_ps_bsize0;
  3462. buffer_info->dma = pci_map_single(pdev, skb->data,
  3463. adapter->rx_ps_bsize0,
  3464. PCI_DMA_FROMDEVICE);
  3465. rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
  3466. if (unlikely(++i == rx_ring->count)) i = 0;
  3467. buffer_info = &rx_ring->buffer_info[i];
  3468. ps_page = &rx_ring->ps_page[i];
  3469. ps_page_dma = &rx_ring->ps_page_dma[i];
  3470. }
  3471. no_buffers:
  3472. if (likely(rx_ring->next_to_use != i)) {
  3473. rx_ring->next_to_use = i;
  3474. if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
  3475. /* Force memory writes to complete before letting h/w
  3476. * know there are new descriptors to fetch. (Only
  3477. * applicable for weak-ordered memory model archs,
  3478. * such as IA-64). */
  3479. wmb();
  3480. /* Hardware increments by 16 bytes, but packet split
  3481. * descriptors are 32 bytes...so we increment tail
  3482. * twice as much.
  3483. */
  3484. writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
  3485. }
  3486. }
  3487. /**
  3488. * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
  3489. * @adapter:
  3490. **/
  3491. static void
  3492. e1000_smartspeed(struct e1000_adapter *adapter)
  3493. {
  3494. uint16_t phy_status;
  3495. uint16_t phy_ctrl;
  3496. if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
  3497. !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
  3498. return;
  3499. if (adapter->smartspeed == 0) {
  3500. /* If Master/Slave config fault is asserted twice,
  3501. * we assume back-to-back */
  3502. e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
  3503. if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
  3504. e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
  3505. if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
  3506. e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
  3507. if (phy_ctrl & CR_1000T_MS_ENABLE) {
  3508. phy_ctrl &= ~CR_1000T_MS_ENABLE;
  3509. e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
  3510. phy_ctrl);
  3511. adapter->smartspeed++;
  3512. if (!e1000_phy_setup_autoneg(&adapter->hw) &&
  3513. !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
  3514. &phy_ctrl)) {
  3515. phy_ctrl |= (MII_CR_AUTO_NEG_EN |
  3516. MII_CR_RESTART_AUTO_NEG);
  3517. e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
  3518. phy_ctrl);
  3519. }
  3520. }
  3521. return;
  3522. } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
  3523. /* If still no link, perhaps using 2/3 pair cable */
  3524. e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
  3525. phy_ctrl |= CR_1000T_MS_ENABLE;
  3526. e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
  3527. if (!e1000_phy_setup_autoneg(&adapter->hw) &&
  3528. !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
  3529. phy_ctrl |= (MII_CR_AUTO_NEG_EN |
  3530. MII_CR_RESTART_AUTO_NEG);
  3531. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
  3532. }
  3533. }
  3534. /* Restart process after E1000_SMARTSPEED_MAX iterations */
  3535. if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
  3536. adapter->smartspeed = 0;
  3537. }
  3538. /**
  3539. * e1000_ioctl -
  3540. * @netdev:
  3541. * @ifreq:
  3542. * @cmd:
  3543. **/
  3544. static int
  3545. e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
  3546. {
  3547. switch (cmd) {
  3548. case SIOCGMIIPHY:
  3549. case SIOCGMIIREG:
  3550. case SIOCSMIIREG:
  3551. return e1000_mii_ioctl(netdev, ifr, cmd);
  3552. default:
  3553. return -EOPNOTSUPP;
  3554. }
  3555. }
  3556. /**
  3557. * e1000_mii_ioctl -
  3558. * @netdev:
  3559. * @ifreq:
  3560. * @cmd:
  3561. **/
  3562. static int
  3563. e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
  3564. {
  3565. struct e1000_adapter *adapter = netdev_priv(netdev);
  3566. struct mii_ioctl_data *data = if_mii(ifr);
  3567. int retval;
  3568. uint16_t mii_reg;
  3569. uint16_t spddplx;
  3570. unsigned long flags;
  3571. if (adapter->hw.media_type != e1000_media_type_copper)
  3572. return -EOPNOTSUPP;
  3573. switch (cmd) {
  3574. case SIOCGMIIPHY:
  3575. data->phy_id = adapter->hw.phy_addr;
  3576. break;
  3577. case SIOCGMIIREG:
  3578. if (!capable(CAP_NET_ADMIN))
  3579. return -EPERM;
  3580. spin_lock_irqsave(&adapter->stats_lock, flags);
  3581. if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
  3582. &data->val_out)) {
  3583. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  3584. return -EIO;
  3585. }
  3586. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  3587. break;
  3588. case SIOCSMIIREG:
  3589. if (!capable(CAP_NET_ADMIN))
  3590. return -EPERM;
  3591. if (data->reg_num & ~(0x1F))
  3592. return -EFAULT;
  3593. mii_reg = data->val_in;
  3594. spin_lock_irqsave(&adapter->stats_lock, flags);
  3595. if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
  3596. mii_reg)) {
  3597. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  3598. return -EIO;
  3599. }
  3600. if (adapter->hw.media_type == e1000_media_type_copper) {
  3601. switch (data->reg_num) {
  3602. case PHY_CTRL:
  3603. if (mii_reg & MII_CR_POWER_DOWN)
  3604. break;
  3605. if (mii_reg & MII_CR_AUTO_NEG_EN) {
  3606. adapter->hw.autoneg = 1;
  3607. adapter->hw.autoneg_advertised = 0x2F;
  3608. } else {
  3609. if (mii_reg & 0x40)
  3610. spddplx = SPEED_1000;
  3611. else if (mii_reg & 0x2000)
  3612. spddplx = SPEED_100;
  3613. else
  3614. spddplx = SPEED_10;
  3615. spddplx += (mii_reg & 0x100)
  3616. ? DUPLEX_FULL :
  3617. DUPLEX_HALF;
  3618. retval = e1000_set_spd_dplx(adapter,
  3619. spddplx);
  3620. if (retval) {
  3621. spin_unlock_irqrestore(
  3622. &adapter->stats_lock,
  3623. flags);
  3624. return retval;
  3625. }
  3626. }
  3627. if (netif_running(adapter->netdev))
  3628. e1000_reinit_locked(adapter);
  3629. else
  3630. e1000_reset(adapter);
  3631. break;
  3632. case M88E1000_PHY_SPEC_CTRL:
  3633. case M88E1000_EXT_PHY_SPEC_CTRL:
  3634. if (e1000_phy_reset(&adapter->hw)) {
  3635. spin_unlock_irqrestore(
  3636. &adapter->stats_lock, flags);
  3637. return -EIO;
  3638. }
  3639. break;
  3640. }
  3641. } else {
  3642. switch (data->reg_num) {
  3643. case PHY_CTRL:
  3644. if (mii_reg & MII_CR_POWER_DOWN)
  3645. break;
  3646. if (netif_running(adapter->netdev))
  3647. e1000_reinit_locked(adapter);
  3648. else
  3649. e1000_reset(adapter);
  3650. break;
  3651. }
  3652. }
  3653. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  3654. break;
  3655. default:
  3656. return -EOPNOTSUPP;
  3657. }
  3658. return E1000_SUCCESS;
  3659. }
  3660. void
  3661. e1000_pci_set_mwi(struct e1000_hw *hw)
  3662. {
  3663. struct e1000_adapter *adapter = hw->back;
  3664. int ret_val = pci_set_mwi(adapter->pdev);
  3665. if (ret_val)
  3666. DPRINTK(PROBE, ERR, "Error in setting MWI\n");
  3667. }
  3668. void
  3669. e1000_pci_clear_mwi(struct e1000_hw *hw)
  3670. {
  3671. struct e1000_adapter *adapter = hw->back;
  3672. pci_clear_mwi(adapter->pdev);
  3673. }
  3674. void
  3675. e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
  3676. {
  3677. struct e1000_adapter *adapter = hw->back;
  3678. pci_read_config_word(adapter->pdev, reg, value);
  3679. }
  3680. void
  3681. e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
  3682. {
  3683. struct e1000_adapter *adapter = hw->back;
  3684. pci_write_config_word(adapter->pdev, reg, *value);
  3685. }
  3686. uint32_t
  3687. e1000_io_read(struct e1000_hw *hw, unsigned long port)
  3688. {
  3689. return inl(port);
  3690. }
  3691. void
  3692. e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
  3693. {
  3694. outl(value, port);
  3695. }
  3696. static void
  3697. e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
  3698. {
  3699. struct e1000_adapter *adapter = netdev_priv(netdev);
  3700. uint32_t ctrl, rctl;
  3701. e1000_irq_disable(adapter);
  3702. adapter->vlgrp = grp;
  3703. if (grp) {
  3704. /* enable VLAN tag insert/strip */
  3705. ctrl = E1000_READ_REG(&adapter->hw, CTRL);
  3706. ctrl |= E1000_CTRL_VME;
  3707. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
  3708. /* enable VLAN receive filtering */
  3709. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  3710. rctl |= E1000_RCTL_VFE;
  3711. rctl &= ~E1000_RCTL_CFIEN;
  3712. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  3713. e1000_update_mng_vlan(adapter);
  3714. } else {
  3715. /* disable VLAN tag insert/strip */
  3716. ctrl = E1000_READ_REG(&adapter->hw, CTRL);
  3717. ctrl &= ~E1000_CTRL_VME;
  3718. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
  3719. /* disable VLAN filtering */
  3720. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  3721. rctl &= ~E1000_RCTL_VFE;
  3722. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  3723. if (adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
  3724. e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
  3725. adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
  3726. }
  3727. }
  3728. e1000_irq_enable(adapter);
  3729. }
  3730. static void
  3731. e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
  3732. {
  3733. struct e1000_adapter *adapter = netdev_priv(netdev);
  3734. uint32_t vfta, index;
  3735. if ((adapter->hw.mng_cookie.status &
  3736. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
  3737. (vid == adapter->mng_vlan_id))
  3738. return;
  3739. /* add VID to filter table */
  3740. index = (vid >> 5) & 0x7F;
  3741. vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
  3742. vfta |= (1 << (vid & 0x1F));
  3743. e1000_write_vfta(&adapter->hw, index, vfta);
  3744. }
  3745. static void
  3746. e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
  3747. {
  3748. struct e1000_adapter *adapter = netdev_priv(netdev);
  3749. uint32_t vfta, index;
  3750. e1000_irq_disable(adapter);
  3751. if (adapter->vlgrp)
  3752. adapter->vlgrp->vlan_devices[vid] = NULL;
  3753. e1000_irq_enable(adapter);
  3754. if ((adapter->hw.mng_cookie.status &
  3755. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
  3756. (vid == adapter->mng_vlan_id)) {
  3757. /* release control to f/w */
  3758. e1000_release_hw_control(adapter);
  3759. return;
  3760. }
  3761. /* remove VID from filter table */
  3762. index = (vid >> 5) & 0x7F;
  3763. vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
  3764. vfta &= ~(1 << (vid & 0x1F));
  3765. e1000_write_vfta(&adapter->hw, index, vfta);
  3766. }
  3767. static void
  3768. e1000_restore_vlan(struct e1000_adapter *adapter)
  3769. {
  3770. e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
  3771. if (adapter->vlgrp) {
  3772. uint16_t vid;
  3773. for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
  3774. if (!adapter->vlgrp->vlan_devices[vid])
  3775. continue;
  3776. e1000_vlan_rx_add_vid(adapter->netdev, vid);
  3777. }
  3778. }
  3779. }
  3780. int
  3781. e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
  3782. {
  3783. adapter->hw.autoneg = 0;
  3784. /* Fiber NICs only allow 1000 gbps Full duplex */
  3785. if ((adapter->hw.media_type == e1000_media_type_fiber) &&
  3786. spddplx != (SPEED_1000 + DUPLEX_FULL)) {
  3787. DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
  3788. return -EINVAL;
  3789. }
  3790. switch (spddplx) {
  3791. case SPEED_10 + DUPLEX_HALF:
  3792. adapter->hw.forced_speed_duplex = e1000_10_half;
  3793. break;
  3794. case SPEED_10 + DUPLEX_FULL:
  3795. adapter->hw.forced_speed_duplex = e1000_10_full;
  3796. break;
  3797. case SPEED_100 + DUPLEX_HALF:
  3798. adapter->hw.forced_speed_duplex = e1000_100_half;
  3799. break;
  3800. case SPEED_100 + DUPLEX_FULL:
  3801. adapter->hw.forced_speed_duplex = e1000_100_full;
  3802. break;
  3803. case SPEED_1000 + DUPLEX_FULL:
  3804. adapter->hw.autoneg = 1;
  3805. adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
  3806. break;
  3807. case SPEED_1000 + DUPLEX_HALF: /* not supported */
  3808. default:
  3809. DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
  3810. return -EINVAL;
  3811. }
  3812. return 0;
  3813. }
  3814. #ifdef CONFIG_PM
  3815. /* Save/restore 16 or 64 dwords of PCI config space depending on which
  3816. * bus we're on (PCI(X) vs. PCI-E)
  3817. */
  3818. #define PCIE_CONFIG_SPACE_LEN 256
  3819. #define PCI_CONFIG_SPACE_LEN 64
  3820. static int
  3821. e1000_pci_save_state(struct e1000_adapter *adapter)
  3822. {
  3823. struct pci_dev *dev = adapter->pdev;
  3824. int size;
  3825. int i;
  3826. if (adapter->hw.mac_type >= e1000_82571)
  3827. size = PCIE_CONFIG_SPACE_LEN;
  3828. else
  3829. size = PCI_CONFIG_SPACE_LEN;
  3830. WARN_ON(adapter->config_space != NULL);
  3831. adapter->config_space = kmalloc(size, GFP_KERNEL);
  3832. if (!adapter->config_space) {
  3833. DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
  3834. return -ENOMEM;
  3835. }
  3836. for (i = 0; i < (size / 4); i++)
  3837. pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
  3838. return 0;
  3839. }
  3840. static void
  3841. e1000_pci_restore_state(struct e1000_adapter *adapter)
  3842. {
  3843. struct pci_dev *dev = adapter->pdev;
  3844. int size;
  3845. int i;
  3846. if (adapter->config_space == NULL)
  3847. return;
  3848. if (adapter->hw.mac_type >= e1000_82571)
  3849. size = PCIE_CONFIG_SPACE_LEN;
  3850. else
  3851. size = PCI_CONFIG_SPACE_LEN;
  3852. for (i = 0; i < (size / 4); i++)
  3853. pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
  3854. kfree(adapter->config_space);
  3855. adapter->config_space = NULL;
  3856. return;
  3857. }
  3858. #endif /* CONFIG_PM */
  3859. static int
  3860. e1000_suspend(struct pci_dev *pdev, pm_message_t state)
  3861. {
  3862. struct net_device *netdev = pci_get_drvdata(pdev);
  3863. struct e1000_adapter *adapter = netdev_priv(netdev);
  3864. uint32_t ctrl, ctrl_ext, rctl, manc, status;
  3865. uint32_t wufc = adapter->wol;
  3866. #ifdef CONFIG_PM
  3867. int retval = 0;
  3868. #endif
  3869. netif_device_detach(netdev);
  3870. if (netif_running(netdev)) {
  3871. WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
  3872. e1000_down(adapter);
  3873. }
  3874. #ifdef CONFIG_PM
  3875. /* Implement our own version of pci_save_state(pdev) because pci-
  3876. * express adapters have 256-byte config spaces. */
  3877. retval = e1000_pci_save_state(adapter);
  3878. if (retval)
  3879. return retval;
  3880. #endif
  3881. status = E1000_READ_REG(&adapter->hw, STATUS);
  3882. if (status & E1000_STATUS_LU)
  3883. wufc &= ~E1000_WUFC_LNKC;
  3884. if (wufc) {
  3885. e1000_setup_rctl(adapter);
  3886. e1000_set_multi(netdev);
  3887. /* turn on all-multi mode if wake on multicast is enabled */
  3888. if (adapter->wol & E1000_WUFC_MC) {
  3889. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  3890. rctl |= E1000_RCTL_MPE;
  3891. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  3892. }
  3893. if (adapter->hw.mac_type >= e1000_82540) {
  3894. ctrl = E1000_READ_REG(&adapter->hw, CTRL);
  3895. /* advertise wake from D3Cold */
  3896. #define E1000_CTRL_ADVD3WUC 0x00100000
  3897. /* phy power management enable */
  3898. #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
  3899. ctrl |= E1000_CTRL_ADVD3WUC |
  3900. E1000_CTRL_EN_PHY_PWR_MGMT;
  3901. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
  3902. }
  3903. if (adapter->hw.media_type == e1000_media_type_fiber ||
  3904. adapter->hw.media_type == e1000_media_type_internal_serdes) {
  3905. /* keep the laser running in D3 */
  3906. ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
  3907. ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
  3908. E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
  3909. }
  3910. /* Allow time for pending master requests to run */
  3911. e1000_disable_pciex_master(&adapter->hw);
  3912. E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
  3913. E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
  3914. pci_enable_wake(pdev, PCI_D3hot, 1);
  3915. pci_enable_wake(pdev, PCI_D3cold, 1);
  3916. } else {
  3917. E1000_WRITE_REG(&adapter->hw, WUC, 0);
  3918. E1000_WRITE_REG(&adapter->hw, WUFC, 0);
  3919. pci_enable_wake(pdev, PCI_D3hot, 0);
  3920. pci_enable_wake(pdev, PCI_D3cold, 0);
  3921. }
  3922. if (adapter->hw.mac_type >= e1000_82540 &&
  3923. adapter->hw.media_type == e1000_media_type_copper) {
  3924. manc = E1000_READ_REG(&adapter->hw, MANC);
  3925. if (manc & E1000_MANC_SMBUS_EN) {
  3926. manc |= E1000_MANC_ARP_EN;
  3927. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  3928. pci_enable_wake(pdev, PCI_D3hot, 1);
  3929. pci_enable_wake(pdev, PCI_D3cold, 1);
  3930. }
  3931. }
  3932. /* Release control of h/w to f/w. If f/w is AMT enabled, this
  3933. * would have already happened in close and is redundant. */
  3934. e1000_release_hw_control(adapter);
  3935. pci_disable_device(pdev);
  3936. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3937. return 0;
  3938. }
  3939. #ifdef CONFIG_PM
  3940. static int
  3941. e1000_resume(struct pci_dev *pdev)
  3942. {
  3943. struct net_device *netdev = pci_get_drvdata(pdev);
  3944. struct e1000_adapter *adapter = netdev_priv(netdev);
  3945. uint32_t manc, ret_val;
  3946. pci_set_power_state(pdev, PCI_D0);
  3947. e1000_pci_restore_state(adapter);
  3948. ret_val = pci_enable_device(pdev);
  3949. pci_set_master(pdev);
  3950. pci_enable_wake(pdev, PCI_D3hot, 0);
  3951. pci_enable_wake(pdev, PCI_D3cold, 0);
  3952. e1000_reset(adapter);
  3953. E1000_WRITE_REG(&adapter->hw, WUS, ~0);
  3954. if (netif_running(netdev))
  3955. e1000_up(adapter);
  3956. netif_device_attach(netdev);
  3957. if (adapter->hw.mac_type >= e1000_82540 &&
  3958. adapter->hw.media_type == e1000_media_type_copper) {
  3959. manc = E1000_READ_REG(&adapter->hw, MANC);
  3960. manc &= ~(E1000_MANC_ARP_EN);
  3961. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  3962. }
  3963. /* If the controller is 82573 and f/w is AMT, do not set
  3964. * DRV_LOAD until the interface is up. For all other cases,
  3965. * let the f/w know that the h/w is now under the control
  3966. * of the driver. */
  3967. if (adapter->hw.mac_type != e1000_82573 ||
  3968. !e1000_check_mng_mode(&adapter->hw))
  3969. e1000_get_hw_control(adapter);
  3970. return 0;
  3971. }
  3972. #endif
  3973. static void e1000_shutdown(struct pci_dev *pdev)
  3974. {
  3975. e1000_suspend(pdev, PMSG_SUSPEND);
  3976. }
  3977. #ifdef CONFIG_NET_POLL_CONTROLLER
  3978. /*
  3979. * Polling 'interrupt' - used by things like netconsole to send skbs
  3980. * without having to re-enable interrupts. It's not called while
  3981. * the interrupt routine is executing.
  3982. */
  3983. static void
  3984. e1000_netpoll(struct net_device *netdev)
  3985. {
  3986. struct e1000_adapter *adapter = netdev_priv(netdev);
  3987. disable_irq(adapter->pdev->irq);
  3988. e1000_intr(adapter->pdev->irq, netdev, NULL);
  3989. e1000_clean_tx_irq(adapter, adapter->tx_ring);
  3990. #ifndef CONFIG_E1000_NAPI
  3991. adapter->clean_rx(adapter, adapter->rx_ring);
  3992. #endif
  3993. enable_irq(adapter->pdev->irq);
  3994. }
  3995. #endif
  3996. /**
  3997. * e1000_io_error_detected - called when PCI error is detected
  3998. * @pdev: Pointer to PCI device
  3999. * @state: The current pci conneection state
  4000. *
  4001. * This function is called after a PCI bus error affecting
  4002. * this device has been detected.
  4003. */
  4004. static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
  4005. {
  4006. struct net_device *netdev = pci_get_drvdata(pdev);
  4007. struct e1000_adapter *adapter = netdev->priv;
  4008. netif_device_detach(netdev);
  4009. if (netif_running(netdev))
  4010. e1000_down(adapter);
  4011. /* Request a slot slot reset. */
  4012. return PCI_ERS_RESULT_NEED_RESET;
  4013. }
  4014. /**
  4015. * e1000_io_slot_reset - called after the pci bus has been reset.
  4016. * @pdev: Pointer to PCI device
  4017. *
  4018. * Restart the card from scratch, as if from a cold-boot. Implementation
  4019. * resembles the first-half of the e1000_resume routine.
  4020. */
  4021. static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
  4022. {
  4023. struct net_device *netdev = pci_get_drvdata(pdev);
  4024. struct e1000_adapter *adapter = netdev->priv;
  4025. if (pci_enable_device(pdev)) {
  4026. printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
  4027. return PCI_ERS_RESULT_DISCONNECT;
  4028. }
  4029. pci_set_master(pdev);
  4030. pci_enable_wake(pdev, 3, 0);
  4031. pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
  4032. /* Perform card reset only on one instance of the card */
  4033. if (PCI_FUNC (pdev->devfn) != 0)
  4034. return PCI_ERS_RESULT_RECOVERED;
  4035. e1000_reset(adapter);
  4036. E1000_WRITE_REG(&adapter->hw, WUS, ~0);
  4037. return PCI_ERS_RESULT_RECOVERED;
  4038. }
  4039. /**
  4040. * e1000_io_resume - called when traffic can start flowing again.
  4041. * @pdev: Pointer to PCI device
  4042. *
  4043. * This callback is called when the error recovery driver tells us that
  4044. * its OK to resume normal operation. Implementation resembles the
  4045. * second-half of the e1000_resume routine.
  4046. */
  4047. static void e1000_io_resume(struct pci_dev *pdev)
  4048. {
  4049. struct net_device *netdev = pci_get_drvdata(pdev);
  4050. struct e1000_adapter *adapter = netdev->priv;
  4051. uint32_t manc, swsm;
  4052. if (netif_running(netdev)) {
  4053. if (e1000_up(adapter)) {
  4054. printk("e1000: can't bring device back up after reset\n");
  4055. return;
  4056. }
  4057. }
  4058. netif_device_attach(netdev);
  4059. if (adapter->hw.mac_type >= e1000_82540 &&
  4060. adapter->hw.media_type == e1000_media_type_copper) {
  4061. manc = E1000_READ_REG(&adapter->hw, MANC);
  4062. manc &= ~(E1000_MANC_ARP_EN);
  4063. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  4064. }
  4065. switch (adapter->hw.mac_type) {
  4066. case e1000_82573:
  4067. swsm = E1000_READ_REG(&adapter->hw, SWSM);
  4068. E1000_WRITE_REG(&adapter->hw, SWSM,
  4069. swsm | E1000_SWSM_DRV_LOAD);
  4070. break;
  4071. default:
  4072. break;
  4073. }
  4074. if (netif_running(netdev))
  4075. mod_timer(&adapter->watchdog_timer, jiffies);
  4076. }
  4077. /* e1000_main.c */