ehci-q.c 30 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091
  1. /*
  2. * Copyright (C) 2001-2004 by David Brownell
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of the GNU General Public License as published by the
  6. * Free Software Foundation; either version 2 of the License, or (at your
  7. * option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful, but
  10. * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  11. * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
  12. * for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software Foundation,
  16. * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17. */
  18. /* this file is part of ehci-hcd.c */
  19. /*-------------------------------------------------------------------------*/
  20. /*
  21. * EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
  22. *
  23. * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
  24. * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
  25. * buffers needed for the larger number). We use one QH per endpoint, queue
  26. * multiple urbs (all three types) per endpoint. URBs may need several qtds.
  27. *
  28. * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
  29. * interrupts) needs careful scheduling. Performance improvements can be
  30. * an ongoing challenge. That's in "ehci-sched.c".
  31. *
  32. * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
  33. * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
  34. * (b) special fields in qh entries or (c) split iso entries. TTs will
  35. * buffer low/full speed data so the host collects it at high speed.
  36. */
  37. /*-------------------------------------------------------------------------*/
  38. /* fill a qtd, returning how much of the buffer we were able to queue up */
  39. static int
  40. qtd_fill (struct ehci_qtd *qtd, dma_addr_t buf, size_t len,
  41. int token, int maxpacket)
  42. {
  43. int i, count;
  44. u64 addr = buf;
  45. /* one buffer entry per 4K ... first might be short or unaligned */
  46. qtd->hw_buf [0] = cpu_to_le32 ((u32)addr);
  47. qtd->hw_buf_hi [0] = cpu_to_le32 ((u32)(addr >> 32));
  48. count = 0x1000 - (buf & 0x0fff); /* rest of that page */
  49. if (likely (len < count)) /* ... iff needed */
  50. count = len;
  51. else {
  52. buf += 0x1000;
  53. buf &= ~0x0fff;
  54. /* per-qtd limit: from 16K to 20K (best alignment) */
  55. for (i = 1; count < len && i < 5; i++) {
  56. addr = buf;
  57. qtd->hw_buf [i] = cpu_to_le32 ((u32)addr);
  58. qtd->hw_buf_hi [i] = cpu_to_le32 ((u32)(addr >> 32));
  59. buf += 0x1000;
  60. if ((count + 0x1000) < len)
  61. count += 0x1000;
  62. else
  63. count = len;
  64. }
  65. /* short packets may only terminate transfers */
  66. if (count != len)
  67. count -= (count % maxpacket);
  68. }
  69. qtd->hw_token = cpu_to_le32 ((count << 16) | token);
  70. qtd->length = count;
  71. return count;
  72. }
  73. /*-------------------------------------------------------------------------*/
  74. static inline void
  75. qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd)
  76. {
  77. /* writes to an active overlay are unsafe */
  78. BUG_ON(qh->qh_state != QH_STATE_IDLE);
  79. qh->hw_qtd_next = QTD_NEXT (qtd->qtd_dma);
  80. qh->hw_alt_next = EHCI_LIST_END;
  81. /* Except for control endpoints, we make hardware maintain data
  82. * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
  83. * and set the pseudo-toggle in udev. Only usb_clear_halt() will
  84. * ever clear it.
  85. */
  86. if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) {
  87. unsigned is_out, epnum;
  88. is_out = !(qtd->hw_token & cpu_to_le32(1 << 8));
  89. epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f;
  90. if (unlikely (!usb_gettoggle (qh->dev, epnum, is_out))) {
  91. qh->hw_token &= ~__constant_cpu_to_le32 (QTD_TOGGLE);
  92. usb_settoggle (qh->dev, epnum, is_out, 1);
  93. }
  94. }
  95. /* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
  96. wmb ();
  97. qh->hw_token &= __constant_cpu_to_le32 (QTD_TOGGLE | QTD_STS_PING);
  98. }
  99. /* if it weren't for a common silicon quirk (writing the dummy into the qh
  100. * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
  101. * recovery (including urb dequeue) would need software changes to a QH...
  102. */
  103. static void
  104. qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh)
  105. {
  106. struct ehci_qtd *qtd;
  107. if (list_empty (&qh->qtd_list))
  108. qtd = qh->dummy;
  109. else {
  110. qtd = list_entry (qh->qtd_list.next,
  111. struct ehci_qtd, qtd_list);
  112. /* first qtd may already be partially processed */
  113. if (cpu_to_le32 (qtd->qtd_dma) == qh->hw_current)
  114. qtd = NULL;
  115. }
  116. if (qtd)
  117. qh_update (ehci, qh, qtd);
  118. }
  119. /*-------------------------------------------------------------------------*/
  120. static void qtd_copy_status (
  121. struct ehci_hcd *ehci,
  122. struct urb *urb,
  123. size_t length,
  124. u32 token
  125. )
  126. {
  127. /* count IN/OUT bytes, not SETUP (even short packets) */
  128. if (likely (QTD_PID (token) != 2))
  129. urb->actual_length += length - QTD_LENGTH (token);
  130. /* don't modify error codes */
  131. if (unlikely (urb->status != -EINPROGRESS))
  132. return;
  133. /* force cleanup after short read; not always an error */
  134. if (unlikely (IS_SHORT_READ (token)))
  135. urb->status = -EREMOTEIO;
  136. /* serious "can't proceed" faults reported by the hardware */
  137. if (token & QTD_STS_HALT) {
  138. if (token & QTD_STS_BABBLE) {
  139. /* FIXME "must" disable babbling device's port too */
  140. urb->status = -EOVERFLOW;
  141. } else if (token & QTD_STS_MMF) {
  142. /* fs/ls interrupt xfer missed the complete-split */
  143. urb->status = -EPROTO;
  144. } else if (token & QTD_STS_DBE) {
  145. urb->status = (QTD_PID (token) == 1) /* IN ? */
  146. ? -ENOSR /* hc couldn't read data */
  147. : -ECOMM; /* hc couldn't write data */
  148. } else if (token & QTD_STS_XACT) {
  149. /* timeout, bad crc, wrong PID, etc; retried */
  150. if (QTD_CERR (token))
  151. urb->status = -EPIPE;
  152. else {
  153. ehci_dbg (ehci, "devpath %s ep%d%s 3strikes\n",
  154. urb->dev->devpath,
  155. usb_pipeendpoint (urb->pipe),
  156. usb_pipein (urb->pipe) ? "in" : "out");
  157. urb->status = -EPROTO;
  158. }
  159. /* CERR nonzero + no errors + halt --> stall */
  160. } else if (QTD_CERR (token))
  161. urb->status = -EPIPE;
  162. else /* unknown */
  163. urb->status = -EPROTO;
  164. ehci_vdbg (ehci,
  165. "dev%d ep%d%s qtd token %08x --> status %d\n",
  166. usb_pipedevice (urb->pipe),
  167. usb_pipeendpoint (urb->pipe),
  168. usb_pipein (urb->pipe) ? "in" : "out",
  169. token, urb->status);
  170. /* if async CSPLIT failed, try cleaning out the TT buffer */
  171. if (urb->status != -EPIPE
  172. && urb->dev->tt && !usb_pipeint (urb->pipe)
  173. && ((token & QTD_STS_MMF) != 0
  174. || QTD_CERR(token) == 0)
  175. && (!ehci_is_TDI(ehci)
  176. || urb->dev->tt->hub !=
  177. ehci_to_hcd(ehci)->self.root_hub)) {
  178. #ifdef DEBUG
  179. struct usb_device *tt = urb->dev->tt->hub;
  180. dev_dbg (&tt->dev,
  181. "clear tt buffer port %d, a%d ep%d t%08x\n",
  182. urb->dev->ttport, urb->dev->devnum,
  183. usb_pipeendpoint (urb->pipe), token);
  184. #endif /* DEBUG */
  185. usb_hub_tt_clear_buffer (urb->dev, urb->pipe);
  186. }
  187. }
  188. }
  189. static void
  190. ehci_urb_done (struct ehci_hcd *ehci, struct urb *urb, struct pt_regs *regs)
  191. __releases(ehci->lock)
  192. __acquires(ehci->lock)
  193. {
  194. if (likely (urb->hcpriv != NULL)) {
  195. struct ehci_qh *qh = (struct ehci_qh *) urb->hcpriv;
  196. /* S-mask in a QH means it's an interrupt urb */
  197. if ((qh->hw_info2 & __constant_cpu_to_le32 (QH_SMASK)) != 0) {
  198. /* ... update hc-wide periodic stats (for usbfs) */
  199. ehci_to_hcd(ehci)->self.bandwidth_int_reqs--;
  200. }
  201. qh_put (qh);
  202. }
  203. spin_lock (&urb->lock);
  204. urb->hcpriv = NULL;
  205. switch (urb->status) {
  206. case -EINPROGRESS: /* success */
  207. urb->status = 0;
  208. default: /* fault */
  209. COUNT (ehci->stats.complete);
  210. break;
  211. case -EREMOTEIO: /* fault or normal */
  212. if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
  213. urb->status = 0;
  214. COUNT (ehci->stats.complete);
  215. break;
  216. case -ECONNRESET: /* canceled */
  217. case -ENOENT:
  218. COUNT (ehci->stats.unlink);
  219. break;
  220. }
  221. spin_unlock (&urb->lock);
  222. #ifdef EHCI_URB_TRACE
  223. ehci_dbg (ehci,
  224. "%s %s urb %p ep%d%s status %d len %d/%d\n",
  225. __FUNCTION__, urb->dev->devpath, urb,
  226. usb_pipeendpoint (urb->pipe),
  227. usb_pipein (urb->pipe) ? "in" : "out",
  228. urb->status,
  229. urb->actual_length, urb->transfer_buffer_length);
  230. #endif
  231. /* complete() can reenter this HCD */
  232. spin_unlock (&ehci->lock);
  233. usb_hcd_giveback_urb (ehci_to_hcd(ehci), urb, regs);
  234. spin_lock (&ehci->lock);
  235. }
  236. static void start_unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh);
  237. static void unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh);
  238. static void intr_deschedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
  239. static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
  240. /*
  241. * Process and free completed qtds for a qh, returning URBs to drivers.
  242. * Chases up to qh->hw_current. Returns number of completions called,
  243. * indicating how much "real" work we did.
  244. */
  245. #define HALT_BIT __constant_cpu_to_le32(QTD_STS_HALT)
  246. static unsigned
  247. qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh, struct pt_regs *regs)
  248. {
  249. struct ehci_qtd *last = NULL, *end = qh->dummy;
  250. struct list_head *entry, *tmp;
  251. int stopped;
  252. unsigned count = 0;
  253. int do_status = 0;
  254. u8 state;
  255. if (unlikely (list_empty (&qh->qtd_list)))
  256. return count;
  257. /* completions (or tasks on other cpus) must never clobber HALT
  258. * till we've gone through and cleaned everything up, even when
  259. * they add urbs to this qh's queue or mark them for unlinking.
  260. *
  261. * NOTE: unlinking expects to be done in queue order.
  262. */
  263. state = qh->qh_state;
  264. qh->qh_state = QH_STATE_COMPLETING;
  265. stopped = (state == QH_STATE_IDLE);
  266. /* remove de-activated QTDs from front of queue.
  267. * after faults (including short reads), cleanup this urb
  268. * then let the queue advance.
  269. * if queue is stopped, handles unlinks.
  270. */
  271. list_for_each_safe (entry, tmp, &qh->qtd_list) {
  272. struct ehci_qtd *qtd;
  273. struct urb *urb;
  274. u32 token = 0;
  275. qtd = list_entry (entry, struct ehci_qtd, qtd_list);
  276. urb = qtd->urb;
  277. /* clean up any state from previous QTD ...*/
  278. if (last) {
  279. if (likely (last->urb != urb)) {
  280. ehci_urb_done (ehci, last->urb, regs);
  281. count++;
  282. }
  283. ehci_qtd_free (ehci, last);
  284. last = NULL;
  285. }
  286. /* ignore urbs submitted during completions we reported */
  287. if (qtd == end)
  288. break;
  289. /* hardware copies qtd out of qh overlay */
  290. rmb ();
  291. token = le32_to_cpu (qtd->hw_token);
  292. /* always clean up qtds the hc de-activated */
  293. if ((token & QTD_STS_ACTIVE) == 0) {
  294. if ((token & QTD_STS_HALT) != 0) {
  295. stopped = 1;
  296. /* magic dummy for some short reads; qh won't advance.
  297. * that silicon quirk can kick in with this dummy too.
  298. */
  299. } else if (IS_SHORT_READ (token)
  300. && !(qtd->hw_alt_next & EHCI_LIST_END)) {
  301. stopped = 1;
  302. goto halt;
  303. }
  304. /* stop scanning when we reach qtds the hc is using */
  305. } else if (likely (!stopped
  306. && HC_IS_RUNNING (ehci_to_hcd(ehci)->state))) {
  307. break;
  308. } else {
  309. stopped = 1;
  310. if (unlikely (!HC_IS_RUNNING (ehci_to_hcd(ehci)->state)))
  311. urb->status = -ESHUTDOWN;
  312. /* ignore active urbs unless some previous qtd
  313. * for the urb faulted (including short read) or
  314. * its urb was canceled. we may patch qh or qtds.
  315. */
  316. if (likely (urb->status == -EINPROGRESS))
  317. continue;
  318. /* issue status after short control reads */
  319. if (unlikely (do_status != 0)
  320. && QTD_PID (token) == 0 /* OUT */) {
  321. do_status = 0;
  322. continue;
  323. }
  324. /* token in overlay may be most current */
  325. if (state == QH_STATE_IDLE
  326. && cpu_to_le32 (qtd->qtd_dma)
  327. == qh->hw_current)
  328. token = le32_to_cpu (qh->hw_token);
  329. /* force halt for unlinked or blocked qh, so we'll
  330. * patch the qh later and so that completions can't
  331. * activate it while we "know" it's stopped.
  332. */
  333. if ((HALT_BIT & qh->hw_token) == 0) {
  334. halt:
  335. qh->hw_token |= HALT_BIT;
  336. wmb ();
  337. }
  338. }
  339. /* remove it from the queue */
  340. spin_lock (&urb->lock);
  341. qtd_copy_status (ehci, urb, qtd->length, token);
  342. do_status = (urb->status == -EREMOTEIO)
  343. && usb_pipecontrol (urb->pipe);
  344. spin_unlock (&urb->lock);
  345. if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
  346. last = list_entry (qtd->qtd_list.prev,
  347. struct ehci_qtd, qtd_list);
  348. last->hw_next = qtd->hw_next;
  349. }
  350. list_del (&qtd->qtd_list);
  351. last = qtd;
  352. }
  353. /* last urb's completion might still need calling */
  354. if (likely (last != NULL)) {
  355. ehci_urb_done (ehci, last->urb, regs);
  356. count++;
  357. ehci_qtd_free (ehci, last);
  358. }
  359. /* restore original state; caller must unlink or relink */
  360. qh->qh_state = state;
  361. /* be sure the hardware's done with the qh before refreshing
  362. * it after fault cleanup, or recovering from silicon wrongly
  363. * overlaying the dummy qtd (which reduces DMA chatter).
  364. */
  365. if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) {
  366. switch (state) {
  367. case QH_STATE_IDLE:
  368. qh_refresh(ehci, qh);
  369. break;
  370. case QH_STATE_LINKED:
  371. /* should be rare for periodic transfers,
  372. * except maybe high bandwidth ...
  373. */
  374. if ((__constant_cpu_to_le32 (QH_SMASK)
  375. & qh->hw_info2) != 0) {
  376. intr_deschedule (ehci, qh);
  377. (void) qh_schedule (ehci, qh);
  378. } else
  379. unlink_async (ehci, qh);
  380. break;
  381. /* otherwise, unlink already started */
  382. }
  383. }
  384. return count;
  385. }
  386. /*-------------------------------------------------------------------------*/
  387. // high bandwidth multiplier, as encoded in highspeed endpoint descriptors
  388. #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
  389. // ... and packet size, for any kind of endpoint descriptor
  390. #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
  391. /*
  392. * reverse of qh_urb_transaction: free a list of TDs.
  393. * used for cleanup after errors, before HC sees an URB's TDs.
  394. */
  395. static void qtd_list_free (
  396. struct ehci_hcd *ehci,
  397. struct urb *urb,
  398. struct list_head *qtd_list
  399. ) {
  400. struct list_head *entry, *temp;
  401. list_for_each_safe (entry, temp, qtd_list) {
  402. struct ehci_qtd *qtd;
  403. qtd = list_entry (entry, struct ehci_qtd, qtd_list);
  404. list_del (&qtd->qtd_list);
  405. ehci_qtd_free (ehci, qtd);
  406. }
  407. }
  408. /*
  409. * create a list of filled qtds for this URB; won't link into qh.
  410. */
  411. static struct list_head *
  412. qh_urb_transaction (
  413. struct ehci_hcd *ehci,
  414. struct urb *urb,
  415. struct list_head *head,
  416. int flags
  417. ) {
  418. struct ehci_qtd *qtd, *qtd_prev;
  419. dma_addr_t buf;
  420. int len, maxpacket;
  421. int is_input;
  422. u32 token;
  423. /*
  424. * URBs map to sequences of QTDs: one logical transaction
  425. */
  426. qtd = ehci_qtd_alloc (ehci, flags);
  427. if (unlikely (!qtd))
  428. return NULL;
  429. list_add_tail (&qtd->qtd_list, head);
  430. qtd->urb = urb;
  431. token = QTD_STS_ACTIVE;
  432. token |= (EHCI_TUNE_CERR << 10);
  433. /* for split transactions, SplitXState initialized to zero */
  434. len = urb->transfer_buffer_length;
  435. is_input = usb_pipein (urb->pipe);
  436. if (usb_pipecontrol (urb->pipe)) {
  437. /* SETUP pid */
  438. qtd_fill (qtd, urb->setup_dma, sizeof (struct usb_ctrlrequest),
  439. token | (2 /* "setup" */ << 8), 8);
  440. /* ... and always at least one more pid */
  441. token ^= QTD_TOGGLE;
  442. qtd_prev = qtd;
  443. qtd = ehci_qtd_alloc (ehci, flags);
  444. if (unlikely (!qtd))
  445. goto cleanup;
  446. qtd->urb = urb;
  447. qtd_prev->hw_next = QTD_NEXT (qtd->qtd_dma);
  448. list_add_tail (&qtd->qtd_list, head);
  449. }
  450. /*
  451. * data transfer stage: buffer setup
  452. */
  453. if (likely (len > 0))
  454. buf = urb->transfer_dma;
  455. else
  456. buf = 0;
  457. /* for zero length DATA stages, STATUS is always IN */
  458. if (!buf || is_input)
  459. token |= (1 /* "in" */ << 8);
  460. /* else it's already initted to "out" pid (0 << 8) */
  461. maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
  462. /*
  463. * buffer gets wrapped in one or more qtds;
  464. * last one may be "short" (including zero len)
  465. * and may serve as a control status ack
  466. */
  467. for (;;) {
  468. int this_qtd_len;
  469. this_qtd_len = qtd_fill (qtd, buf, len, token, maxpacket);
  470. len -= this_qtd_len;
  471. buf += this_qtd_len;
  472. if (is_input)
  473. qtd->hw_alt_next = ehci->async->hw_alt_next;
  474. /* qh makes control packets use qtd toggle; maybe switch it */
  475. if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
  476. token ^= QTD_TOGGLE;
  477. if (likely (len <= 0))
  478. break;
  479. qtd_prev = qtd;
  480. qtd = ehci_qtd_alloc (ehci, flags);
  481. if (unlikely (!qtd))
  482. goto cleanup;
  483. qtd->urb = urb;
  484. qtd_prev->hw_next = QTD_NEXT (qtd->qtd_dma);
  485. list_add_tail (&qtd->qtd_list, head);
  486. }
  487. /* unless the bulk/interrupt caller wants a chance to clean
  488. * up after short reads, hc should advance qh past this urb
  489. */
  490. if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
  491. || usb_pipecontrol (urb->pipe)))
  492. qtd->hw_alt_next = EHCI_LIST_END;
  493. /*
  494. * control requests may need a terminating data "status" ack;
  495. * bulk ones may need a terminating short packet (zero length).
  496. */
  497. if (likely (buf != 0)) {
  498. int one_more = 0;
  499. if (usb_pipecontrol (urb->pipe)) {
  500. one_more = 1;
  501. token ^= 0x0100; /* "in" <--> "out" */
  502. token |= QTD_TOGGLE; /* force DATA1 */
  503. } else if (usb_pipebulk (urb->pipe)
  504. && (urb->transfer_flags & URB_ZERO_PACKET)
  505. && !(urb->transfer_buffer_length % maxpacket)) {
  506. one_more = 1;
  507. }
  508. if (one_more) {
  509. qtd_prev = qtd;
  510. qtd = ehci_qtd_alloc (ehci, flags);
  511. if (unlikely (!qtd))
  512. goto cleanup;
  513. qtd->urb = urb;
  514. qtd_prev->hw_next = QTD_NEXT (qtd->qtd_dma);
  515. list_add_tail (&qtd->qtd_list, head);
  516. /* never any data in such packets */
  517. qtd_fill (qtd, 0, 0, token, 0);
  518. }
  519. }
  520. /* by default, enable interrupt on urb completion */
  521. if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT)))
  522. qtd->hw_token |= __constant_cpu_to_le32 (QTD_IOC);
  523. return head;
  524. cleanup:
  525. qtd_list_free (ehci, urb, head);
  526. return NULL;
  527. }
  528. /*-------------------------------------------------------------------------*/
  529. // Would be best to create all qh's from config descriptors,
  530. // when each interface/altsetting is established. Unlink
  531. // any previous qh and cancel its urbs first; endpoints are
  532. // implicitly reset then (data toggle too).
  533. // That'd mean updating how usbcore talks to HCDs. (2.7?)
  534. /*
  535. * Each QH holds a qtd list; a QH is used for everything except iso.
  536. *
  537. * For interrupt urbs, the scheduler must set the microframe scheduling
  538. * mask(s) each time the QH gets scheduled. For highspeed, that's
  539. * just one microframe in the s-mask. For split interrupt transactions
  540. * there are additional complications: c-mask, maybe FSTNs.
  541. */
  542. static struct ehci_qh *
  543. qh_make (
  544. struct ehci_hcd *ehci,
  545. struct urb *urb,
  546. int flags
  547. ) {
  548. struct ehci_qh *qh = ehci_qh_alloc (ehci, flags);
  549. u32 info1 = 0, info2 = 0;
  550. int is_input, type;
  551. int maxp = 0;
  552. if (!qh)
  553. return qh;
  554. /*
  555. * init endpoint/device data for this QH
  556. */
  557. info1 |= usb_pipeendpoint (urb->pipe) << 8;
  558. info1 |= usb_pipedevice (urb->pipe) << 0;
  559. is_input = usb_pipein (urb->pipe);
  560. type = usb_pipetype (urb->pipe);
  561. maxp = usb_maxpacket (urb->dev, urb->pipe, !is_input);
  562. /* Compute interrupt scheduling parameters just once, and save.
  563. * - allowing for high bandwidth, how many nsec/uframe are used?
  564. * - split transactions need a second CSPLIT uframe; same question
  565. * - splits also need a schedule gap (for full/low speed I/O)
  566. * - qh has a polling interval
  567. *
  568. * For control/bulk requests, the HC or TT handles these.
  569. */
  570. if (type == PIPE_INTERRUPT) {
  571. qh->usecs = NS_TO_US (usb_calc_bus_time (USB_SPEED_HIGH, is_input, 0,
  572. hb_mult (maxp) * max_packet (maxp)));
  573. qh->start = NO_FRAME;
  574. if (urb->dev->speed == USB_SPEED_HIGH) {
  575. qh->c_usecs = 0;
  576. qh->gap_uf = 0;
  577. qh->period = urb->interval >> 3;
  578. if (qh->period == 0 && urb->interval != 1) {
  579. /* NOTE interval 2 or 4 uframes could work.
  580. * But interval 1 scheduling is simpler, and
  581. * includes high bandwidth.
  582. */
  583. dbg ("intr period %d uframes, NYET!",
  584. urb->interval);
  585. goto done;
  586. }
  587. } else {
  588. /* gap is f(FS/LS transfer times) */
  589. qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed,
  590. is_input, 0, maxp) / (125 * 1000);
  591. /* FIXME this just approximates SPLIT/CSPLIT times */
  592. if (is_input) { // SPLIT, gap, CSPLIT+DATA
  593. qh->c_usecs = qh->usecs + HS_USECS (0);
  594. qh->usecs = HS_USECS (1);
  595. } else { // SPLIT+DATA, gap, CSPLIT
  596. qh->usecs += HS_USECS (1);
  597. qh->c_usecs = HS_USECS (0);
  598. }
  599. qh->period = urb->interval;
  600. }
  601. }
  602. /* support for tt scheduling, and access to toggles */
  603. qh->dev = usb_get_dev (urb->dev);
  604. /* using TT? */
  605. switch (urb->dev->speed) {
  606. case USB_SPEED_LOW:
  607. info1 |= (1 << 12); /* EPS "low" */
  608. /* FALL THROUGH */
  609. case USB_SPEED_FULL:
  610. /* EPS 0 means "full" */
  611. if (type != PIPE_INTERRUPT)
  612. info1 |= (EHCI_TUNE_RL_TT << 28);
  613. if (type == PIPE_CONTROL) {
  614. info1 |= (1 << 27); /* for TT */
  615. info1 |= 1 << 14; /* toggle from qtd */
  616. }
  617. info1 |= maxp << 16;
  618. info2 |= (EHCI_TUNE_MULT_TT << 30);
  619. info2 |= urb->dev->ttport << 23;
  620. /* set the address of the TT; for TDI's integrated
  621. * root hub tt, leave it zeroed.
  622. */
  623. if (!ehci_is_TDI(ehci)
  624. || urb->dev->tt->hub !=
  625. ehci_to_hcd(ehci)->self.root_hub)
  626. info2 |= urb->dev->tt->hub->devnum << 16;
  627. /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
  628. break;
  629. case USB_SPEED_HIGH: /* no TT involved */
  630. info1 |= (2 << 12); /* EPS "high" */
  631. if (type == PIPE_CONTROL) {
  632. info1 |= (EHCI_TUNE_RL_HS << 28);
  633. info1 |= 64 << 16; /* usb2 fixed maxpacket */
  634. info1 |= 1 << 14; /* toggle from qtd */
  635. info2 |= (EHCI_TUNE_MULT_HS << 30);
  636. } else if (type == PIPE_BULK) {
  637. info1 |= (EHCI_TUNE_RL_HS << 28);
  638. info1 |= 512 << 16; /* usb2 fixed maxpacket */
  639. info2 |= (EHCI_TUNE_MULT_HS << 30);
  640. } else { /* PIPE_INTERRUPT */
  641. info1 |= max_packet (maxp) << 16;
  642. info2 |= hb_mult (maxp) << 30;
  643. }
  644. break;
  645. default:
  646. dbg ("bogus dev %p speed %d", urb->dev, urb->dev->speed);
  647. done:
  648. qh_put (qh);
  649. return NULL;
  650. }
  651. /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
  652. /* init as live, toggle clear, advance to dummy */
  653. qh->qh_state = QH_STATE_IDLE;
  654. qh->hw_info1 = cpu_to_le32 (info1);
  655. qh->hw_info2 = cpu_to_le32 (info2);
  656. usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1);
  657. qh_refresh (ehci, qh);
  658. return qh;
  659. }
  660. /*-------------------------------------------------------------------------*/
  661. /* move qh (and its qtds) onto async queue; maybe enable queue. */
  662. static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
  663. {
  664. __le32 dma = QH_NEXT (qh->qh_dma);
  665. struct ehci_qh *head;
  666. /* (re)start the async schedule? */
  667. head = ehci->async;
  668. timer_action_done (ehci, TIMER_ASYNC_OFF);
  669. if (!head->qh_next.qh) {
  670. u32 cmd = readl (&ehci->regs->command);
  671. if (!(cmd & CMD_ASE)) {
  672. /* in case a clear of CMD_ASE didn't take yet */
  673. (void) handshake (&ehci->regs->status, STS_ASS, 0, 150);
  674. cmd |= CMD_ASE | CMD_RUN;
  675. writel (cmd, &ehci->regs->command);
  676. ehci_to_hcd(ehci)->state = HC_STATE_RUNNING;
  677. /* posted write need not be known to HC yet ... */
  678. }
  679. }
  680. /* clear halt and/or toggle; and maybe recover from silicon quirk */
  681. if (qh->qh_state == QH_STATE_IDLE)
  682. qh_refresh (ehci, qh);
  683. /* splice right after start */
  684. qh->qh_next = head->qh_next;
  685. qh->hw_next = head->hw_next;
  686. wmb ();
  687. head->qh_next.qh = qh;
  688. head->hw_next = dma;
  689. qh->qh_state = QH_STATE_LINKED;
  690. /* qtd completions reported later by interrupt */
  691. }
  692. /*-------------------------------------------------------------------------*/
  693. #define QH_ADDR_MASK __constant_cpu_to_le32(0x7f)
  694. /*
  695. * For control/bulk/interrupt, return QH with these TDs appended.
  696. * Allocates and initializes the QH if necessary.
  697. * Returns null if it can't allocate a QH it needs to.
  698. * If the QH has TDs (urbs) already, that's great.
  699. */
  700. static struct ehci_qh *qh_append_tds (
  701. struct ehci_hcd *ehci,
  702. struct urb *urb,
  703. struct list_head *qtd_list,
  704. int epnum,
  705. void **ptr
  706. )
  707. {
  708. struct ehci_qh *qh = NULL;
  709. qh = (struct ehci_qh *) *ptr;
  710. if (unlikely (qh == NULL)) {
  711. /* can't sleep here, we have ehci->lock... */
  712. qh = qh_make (ehci, urb, GFP_ATOMIC);
  713. *ptr = qh;
  714. }
  715. if (likely (qh != NULL)) {
  716. struct ehci_qtd *qtd;
  717. if (unlikely (list_empty (qtd_list)))
  718. qtd = NULL;
  719. else
  720. qtd = list_entry (qtd_list->next, struct ehci_qtd,
  721. qtd_list);
  722. /* control qh may need patching ... */
  723. if (unlikely (epnum == 0)) {
  724. /* usb_reset_device() briefly reverts to address 0 */
  725. if (usb_pipedevice (urb->pipe) == 0)
  726. qh->hw_info1 &= ~QH_ADDR_MASK;
  727. }
  728. /* just one way to queue requests: swap with the dummy qtd.
  729. * only hc or qh_refresh() ever modify the overlay.
  730. */
  731. if (likely (qtd != NULL)) {
  732. struct ehci_qtd *dummy;
  733. dma_addr_t dma;
  734. __le32 token;
  735. /* to avoid racing the HC, use the dummy td instead of
  736. * the first td of our list (becomes new dummy). both
  737. * tds stay deactivated until we're done, when the
  738. * HC is allowed to fetch the old dummy (4.10.2).
  739. */
  740. token = qtd->hw_token;
  741. qtd->hw_token = HALT_BIT;
  742. wmb ();
  743. dummy = qh->dummy;
  744. dma = dummy->qtd_dma;
  745. *dummy = *qtd;
  746. dummy->qtd_dma = dma;
  747. list_del (&qtd->qtd_list);
  748. list_add (&dummy->qtd_list, qtd_list);
  749. __list_splice (qtd_list, qh->qtd_list.prev);
  750. ehci_qtd_init (qtd, qtd->qtd_dma);
  751. qh->dummy = qtd;
  752. /* hc must see the new dummy at list end */
  753. dma = qtd->qtd_dma;
  754. qtd = list_entry (qh->qtd_list.prev,
  755. struct ehci_qtd, qtd_list);
  756. qtd->hw_next = QTD_NEXT (dma);
  757. /* let the hc process these next qtds */
  758. wmb ();
  759. dummy->hw_token = token;
  760. urb->hcpriv = qh_get (qh);
  761. }
  762. }
  763. return qh;
  764. }
  765. /*-------------------------------------------------------------------------*/
  766. static int
  767. submit_async (
  768. struct ehci_hcd *ehci,
  769. struct usb_host_endpoint *ep,
  770. struct urb *urb,
  771. struct list_head *qtd_list,
  772. unsigned mem_flags
  773. ) {
  774. struct ehci_qtd *qtd;
  775. int epnum;
  776. unsigned long flags;
  777. struct ehci_qh *qh = NULL;
  778. qtd = list_entry (qtd_list->next, struct ehci_qtd, qtd_list);
  779. epnum = ep->desc.bEndpointAddress;
  780. #ifdef EHCI_URB_TRACE
  781. ehci_dbg (ehci,
  782. "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
  783. __FUNCTION__, urb->dev->devpath, urb,
  784. epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
  785. urb->transfer_buffer_length,
  786. qtd, ep->hcpriv);
  787. #endif
  788. spin_lock_irqsave (&ehci->lock, flags);
  789. qh = qh_append_tds (ehci, urb, qtd_list, epnum, &ep->hcpriv);
  790. /* Control/bulk operations through TTs don't need scheduling,
  791. * the HC and TT handle it when the TT has a buffer ready.
  792. */
  793. if (likely (qh != NULL)) {
  794. if (likely (qh->qh_state == QH_STATE_IDLE))
  795. qh_link_async (ehci, qh_get (qh));
  796. }
  797. spin_unlock_irqrestore (&ehci->lock, flags);
  798. if (unlikely (qh == NULL)) {
  799. qtd_list_free (ehci, urb, qtd_list);
  800. return -ENOMEM;
  801. }
  802. return 0;
  803. }
  804. /*-------------------------------------------------------------------------*/
  805. /* the async qh for the qtds being reclaimed are now unlinked from the HC */
  806. static void end_unlink_async (struct ehci_hcd *ehci, struct pt_regs *regs)
  807. {
  808. struct ehci_qh *qh = ehci->reclaim;
  809. struct ehci_qh *next;
  810. timer_action_done (ehci, TIMER_IAA_WATCHDOG);
  811. // qh->hw_next = cpu_to_le32 (qh->qh_dma);
  812. qh->qh_state = QH_STATE_IDLE;
  813. qh->qh_next.qh = NULL;
  814. qh_put (qh); // refcount from reclaim
  815. /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
  816. next = qh->reclaim;
  817. ehci->reclaim = next;
  818. ehci->reclaim_ready = 0;
  819. qh->reclaim = NULL;
  820. qh_completions (ehci, qh, regs);
  821. if (!list_empty (&qh->qtd_list)
  822. && HC_IS_RUNNING (ehci_to_hcd(ehci)->state))
  823. qh_link_async (ehci, qh);
  824. else {
  825. qh_put (qh); // refcount from async list
  826. /* it's not free to turn the async schedule on/off; leave it
  827. * active but idle for a while once it empties.
  828. */
  829. if (HC_IS_RUNNING (ehci_to_hcd(ehci)->state)
  830. && ehci->async->qh_next.qh == NULL)
  831. timer_action (ehci, TIMER_ASYNC_OFF);
  832. }
  833. if (next) {
  834. ehci->reclaim = NULL;
  835. start_unlink_async (ehci, next);
  836. }
  837. }
  838. /* makes sure the async qh will become idle */
  839. /* caller must own ehci->lock */
  840. static void start_unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
  841. {
  842. int cmd = readl (&ehci->regs->command);
  843. struct ehci_qh *prev;
  844. #ifdef DEBUG
  845. assert_spin_locked(&ehci->lock);
  846. if (ehci->reclaim
  847. || (qh->qh_state != QH_STATE_LINKED
  848. && qh->qh_state != QH_STATE_UNLINK_WAIT)
  849. )
  850. BUG ();
  851. #endif
  852. /* stop async schedule right now? */
  853. if (unlikely (qh == ehci->async)) {
  854. /* can't get here without STS_ASS set */
  855. if (ehci_to_hcd(ehci)->state != HC_STATE_HALT) {
  856. writel (cmd & ~CMD_ASE, &ehci->regs->command);
  857. wmb ();
  858. // handshake later, if we need to
  859. }
  860. timer_action_done (ehci, TIMER_ASYNC_OFF);
  861. return;
  862. }
  863. qh->qh_state = QH_STATE_UNLINK;
  864. ehci->reclaim = qh = qh_get (qh);
  865. prev = ehci->async;
  866. while (prev->qh_next.qh != qh)
  867. prev = prev->qh_next.qh;
  868. prev->hw_next = qh->hw_next;
  869. prev->qh_next = qh->qh_next;
  870. wmb ();
  871. if (unlikely (ehci_to_hcd(ehci)->state == HC_STATE_HALT)) {
  872. /* if (unlikely (qh->reclaim != 0))
  873. * this will recurse, probably not much
  874. */
  875. end_unlink_async (ehci, NULL);
  876. return;
  877. }
  878. ehci->reclaim_ready = 0;
  879. cmd |= CMD_IAAD;
  880. writel (cmd, &ehci->regs->command);
  881. (void) readl (&ehci->regs->command);
  882. timer_action (ehci, TIMER_IAA_WATCHDOG);
  883. }
  884. /*-------------------------------------------------------------------------*/
  885. static void
  886. scan_async (struct ehci_hcd *ehci, struct pt_regs *regs)
  887. {
  888. struct ehci_qh *qh;
  889. enum ehci_timer_action action = TIMER_IO_WATCHDOG;
  890. if (!++(ehci->stamp))
  891. ehci->stamp++;
  892. timer_action_done (ehci, TIMER_ASYNC_SHRINK);
  893. rescan:
  894. qh = ehci->async->qh_next.qh;
  895. if (likely (qh != NULL)) {
  896. do {
  897. /* clean any finished work for this qh */
  898. if (!list_empty (&qh->qtd_list)
  899. && qh->stamp != ehci->stamp) {
  900. int temp;
  901. /* unlinks could happen here; completion
  902. * reporting drops the lock. rescan using
  903. * the latest schedule, but don't rescan
  904. * qhs we already finished (no looping).
  905. */
  906. qh = qh_get (qh);
  907. qh->stamp = ehci->stamp;
  908. temp = qh_completions (ehci, qh, regs);
  909. qh_put (qh);
  910. if (temp != 0) {
  911. goto rescan;
  912. }
  913. }
  914. /* unlink idle entries, reducing HC PCI usage as well
  915. * as HCD schedule-scanning costs. delay for any qh
  916. * we just scanned, there's a not-unusual case that it
  917. * doesn't stay idle for long.
  918. * (plus, avoids some kind of re-activation race.)
  919. */
  920. if (list_empty (&qh->qtd_list)) {
  921. if (qh->stamp == ehci->stamp)
  922. action = TIMER_ASYNC_SHRINK;
  923. else if (!ehci->reclaim
  924. && qh->qh_state == QH_STATE_LINKED)
  925. start_unlink_async (ehci, qh);
  926. }
  927. qh = qh->qh_next.qh;
  928. } while (qh);
  929. }
  930. if (action == TIMER_ASYNC_SHRINK)
  931. timer_action (ehci, TIMER_ASYNC_SHRINK);
  932. }