skbuff.h 47 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713
  1. /*
  2. * Definitions for the 'struct sk_buff' memory handlers.
  3. *
  4. * Authors:
  5. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  6. * Florian La Roche, <rzsfl@rz.uni-sb.de>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License
  10. * as published by the Free Software Foundation; either version
  11. * 2 of the License, or (at your option) any later version.
  12. */
  13. #ifndef _LINUX_SKBUFF_H
  14. #define _LINUX_SKBUFF_H
  15. #include <linux/kernel.h>
  16. #include <linux/compiler.h>
  17. #include <linux/time.h>
  18. #include <linux/cache.h>
  19. #include <asm/atomic.h>
  20. #include <asm/types.h>
  21. #include <linux/spinlock.h>
  22. #include <linux/net.h>
  23. #include <linux/textsearch.h>
  24. #include <net/checksum.h>
  25. #include <linux/rcupdate.h>
  26. #include <linux/dmaengine.h>
  27. #include <linux/hrtimer.h>
  28. #define HAVE_ALLOC_SKB /* For the drivers to know */
  29. #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
  30. /* Don't change this without changing skb_csum_unnecessary! */
  31. #define CHECKSUM_NONE 0
  32. #define CHECKSUM_UNNECESSARY 1
  33. #define CHECKSUM_COMPLETE 2
  34. #define CHECKSUM_PARTIAL 3
  35. #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
  36. ~(SMP_CACHE_BYTES - 1))
  37. #define SKB_WITH_OVERHEAD(X) \
  38. ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  39. #define SKB_MAX_ORDER(X, ORDER) \
  40. SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
  41. #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
  42. #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
  43. /* A. Checksumming of received packets by device.
  44. *
  45. * NONE: device failed to checksum this packet.
  46. * skb->csum is undefined.
  47. *
  48. * UNNECESSARY: device parsed packet and wouldbe verified checksum.
  49. * skb->csum is undefined.
  50. * It is bad option, but, unfortunately, many of vendors do this.
  51. * Apparently with secret goal to sell you new device, when you
  52. * will add new protocol to your host. F.e. IPv6. 8)
  53. *
  54. * COMPLETE: the most generic way. Device supplied checksum of _all_
  55. * the packet as seen by netif_rx in skb->csum.
  56. * NOTE: Even if device supports only some protocols, but
  57. * is able to produce some skb->csum, it MUST use COMPLETE,
  58. * not UNNECESSARY.
  59. *
  60. * PARTIAL: identical to the case for output below. This may occur
  61. * on a packet received directly from another Linux OS, e.g.,
  62. * a virtualised Linux kernel on the same host. The packet can
  63. * be treated in the same way as UNNECESSARY except that on
  64. * output (i.e., forwarding) the checksum must be filled in
  65. * by the OS or the hardware.
  66. *
  67. * B. Checksumming on output.
  68. *
  69. * NONE: skb is checksummed by protocol or csum is not required.
  70. *
  71. * PARTIAL: device is required to csum packet as seen by hard_start_xmit
  72. * from skb->csum_start to the end and to record the checksum
  73. * at skb->csum_start + skb->csum_offset.
  74. *
  75. * Device must show its capabilities in dev->features, set
  76. * at device setup time.
  77. * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
  78. * everything.
  79. * NETIF_F_NO_CSUM - loopback or reliable single hop media.
  80. * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
  81. * TCP/UDP over IPv4. Sigh. Vendors like this
  82. * way by an unknown reason. Though, see comment above
  83. * about CHECKSUM_UNNECESSARY. 8)
  84. * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
  85. *
  86. * Any questions? No questions, good. --ANK
  87. */
  88. struct net_device;
  89. struct scatterlist;
  90. struct pipe_inode_info;
  91. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  92. struct nf_conntrack {
  93. atomic_t use;
  94. };
  95. #endif
  96. #ifdef CONFIG_BRIDGE_NETFILTER
  97. struct nf_bridge_info {
  98. atomic_t use;
  99. struct net_device *physindev;
  100. struct net_device *physoutdev;
  101. unsigned int mask;
  102. unsigned long data[32 / sizeof(unsigned long)];
  103. };
  104. #endif
  105. struct sk_buff_head {
  106. /* These two members must be first. */
  107. struct sk_buff *next;
  108. struct sk_buff *prev;
  109. __u32 qlen;
  110. spinlock_t lock;
  111. };
  112. struct sk_buff;
  113. /* To allow 64K frame to be packed as single skb without frag_list */
  114. #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
  115. typedef struct skb_frag_struct skb_frag_t;
  116. struct skb_frag_struct {
  117. struct page *page;
  118. __u32 page_offset;
  119. __u32 size;
  120. };
  121. /* This data is invariant across clones and lives at
  122. * the end of the header data, ie. at skb->end.
  123. */
  124. struct skb_shared_info {
  125. atomic_t dataref;
  126. unsigned short nr_frags;
  127. unsigned short gso_size;
  128. /* Warning: this field is not always filled in (UFO)! */
  129. unsigned short gso_segs;
  130. unsigned short gso_type;
  131. __be32 ip6_frag_id;
  132. struct sk_buff *frag_list;
  133. skb_frag_t frags[MAX_SKB_FRAGS];
  134. };
  135. /* We divide dataref into two halves. The higher 16 bits hold references
  136. * to the payload part of skb->data. The lower 16 bits hold references to
  137. * the entire skb->data. A clone of a headerless skb holds the length of
  138. * the header in skb->hdr_len.
  139. *
  140. * All users must obey the rule that the skb->data reference count must be
  141. * greater than or equal to the payload reference count.
  142. *
  143. * Holding a reference to the payload part means that the user does not
  144. * care about modifications to the header part of skb->data.
  145. */
  146. #define SKB_DATAREF_SHIFT 16
  147. #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
  148. enum {
  149. SKB_FCLONE_UNAVAILABLE,
  150. SKB_FCLONE_ORIG,
  151. SKB_FCLONE_CLONE,
  152. };
  153. enum {
  154. SKB_GSO_TCPV4 = 1 << 0,
  155. SKB_GSO_UDP = 1 << 1,
  156. /* This indicates the skb is from an untrusted source. */
  157. SKB_GSO_DODGY = 1 << 2,
  158. /* This indicates the tcp segment has CWR set. */
  159. SKB_GSO_TCP_ECN = 1 << 3,
  160. SKB_GSO_TCPV6 = 1 << 4,
  161. };
  162. #if BITS_PER_LONG > 32
  163. #define NET_SKBUFF_DATA_USES_OFFSET 1
  164. #endif
  165. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  166. typedef unsigned int sk_buff_data_t;
  167. #else
  168. typedef unsigned char *sk_buff_data_t;
  169. #endif
  170. /**
  171. * struct sk_buff - socket buffer
  172. * @next: Next buffer in list
  173. * @prev: Previous buffer in list
  174. * @sk: Socket we are owned by
  175. * @tstamp: Time we arrived
  176. * @dev: Device we arrived on/are leaving by
  177. * @transport_header: Transport layer header
  178. * @network_header: Network layer header
  179. * @mac_header: Link layer header
  180. * @dst: destination entry
  181. * @sp: the security path, used for xfrm
  182. * @cb: Control buffer. Free for use by every layer. Put private vars here
  183. * @len: Length of actual data
  184. * @data_len: Data length
  185. * @mac_len: Length of link layer header
  186. * @hdr_len: writable header length of cloned skb
  187. * @csum: Checksum (must include start/offset pair)
  188. * @csum_start: Offset from skb->head where checksumming should start
  189. * @csum_offset: Offset from csum_start where checksum should be stored
  190. * @local_df: allow local fragmentation
  191. * @cloned: Head may be cloned (check refcnt to be sure)
  192. * @nohdr: Payload reference only, must not modify header
  193. * @pkt_type: Packet class
  194. * @fclone: skbuff clone status
  195. * @ip_summed: Driver fed us an IP checksum
  196. * @priority: Packet queueing priority
  197. * @users: User count - see {datagram,tcp}.c
  198. * @protocol: Packet protocol from driver
  199. * @truesize: Buffer size
  200. * @head: Head of buffer
  201. * @data: Data head pointer
  202. * @tail: Tail pointer
  203. * @end: End pointer
  204. * @destructor: Destruct function
  205. * @mark: Generic packet mark
  206. * @nfct: Associated connection, if any
  207. * @ipvs_property: skbuff is owned by ipvs
  208. * @peeked: this packet has been seen already, so stats have been
  209. * done for it, don't do them again
  210. * @nf_trace: netfilter packet trace flag
  211. * @nfctinfo: Relationship of this skb to the connection
  212. * @nfct_reasm: netfilter conntrack re-assembly pointer
  213. * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
  214. * @iif: ifindex of device we arrived on
  215. * @queue_mapping: Queue mapping for multiqueue devices
  216. * @tc_index: Traffic control index
  217. * @tc_verd: traffic control verdict
  218. * @dma_cookie: a cookie to one of several possible DMA operations
  219. * done by skb DMA functions
  220. * @secmark: security marking
  221. */
  222. struct sk_buff {
  223. /* These two members must be first. */
  224. struct sk_buff *next;
  225. struct sk_buff *prev;
  226. struct sock *sk;
  227. ktime_t tstamp;
  228. struct net_device *dev;
  229. union {
  230. struct dst_entry *dst;
  231. struct rtable *rtable;
  232. };
  233. struct sec_path *sp;
  234. /*
  235. * This is the control buffer. It is free to use for every
  236. * layer. Please put your private variables there. If you
  237. * want to keep them across layers you have to do a skb_clone()
  238. * first. This is owned by whoever has the skb queued ATM.
  239. */
  240. char cb[48];
  241. unsigned int len,
  242. data_len;
  243. __u16 mac_len,
  244. hdr_len;
  245. union {
  246. __wsum csum;
  247. struct {
  248. __u16 csum_start;
  249. __u16 csum_offset;
  250. };
  251. };
  252. __u32 priority;
  253. __u8 local_df:1,
  254. cloned:1,
  255. ip_summed:2,
  256. nohdr:1,
  257. nfctinfo:3;
  258. __u8 pkt_type:3,
  259. fclone:2,
  260. ipvs_property:1,
  261. peeked:1,
  262. nf_trace:1;
  263. __be16 protocol;
  264. void (*destructor)(struct sk_buff *skb);
  265. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  266. struct nf_conntrack *nfct;
  267. struct sk_buff *nfct_reasm;
  268. #endif
  269. #ifdef CONFIG_BRIDGE_NETFILTER
  270. struct nf_bridge_info *nf_bridge;
  271. #endif
  272. int iif;
  273. #ifdef CONFIG_NETDEVICES_MULTIQUEUE
  274. __u16 queue_mapping;
  275. #endif
  276. #ifdef CONFIG_NET_SCHED
  277. __u16 tc_index; /* traffic control index */
  278. #ifdef CONFIG_NET_CLS_ACT
  279. __u16 tc_verd; /* traffic control verdict */
  280. #endif
  281. #endif
  282. #ifdef CONFIG_IPV6_NDISC_NODETYPE
  283. __u8 ndisc_nodetype:2;
  284. #endif
  285. /* 14 bit hole */
  286. #ifdef CONFIG_NET_DMA
  287. dma_cookie_t dma_cookie;
  288. #endif
  289. #ifdef CONFIG_NETWORK_SECMARK
  290. __u32 secmark;
  291. #endif
  292. __u32 mark;
  293. sk_buff_data_t transport_header;
  294. sk_buff_data_t network_header;
  295. sk_buff_data_t mac_header;
  296. /* These elements must be at the end, see alloc_skb() for details. */
  297. sk_buff_data_t tail;
  298. sk_buff_data_t end;
  299. unsigned char *head,
  300. *data;
  301. unsigned int truesize;
  302. atomic_t users;
  303. };
  304. #ifdef __KERNEL__
  305. /*
  306. * Handling routines are only of interest to the kernel
  307. */
  308. #include <linux/slab.h>
  309. #include <asm/system.h>
  310. extern void kfree_skb(struct sk_buff *skb);
  311. extern void __kfree_skb(struct sk_buff *skb);
  312. extern struct sk_buff *__alloc_skb(unsigned int size,
  313. gfp_t priority, int fclone, int node);
  314. static inline struct sk_buff *alloc_skb(unsigned int size,
  315. gfp_t priority)
  316. {
  317. return __alloc_skb(size, priority, 0, -1);
  318. }
  319. static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
  320. gfp_t priority)
  321. {
  322. return __alloc_skb(size, priority, 1, -1);
  323. }
  324. extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
  325. extern struct sk_buff *skb_clone(struct sk_buff *skb,
  326. gfp_t priority);
  327. extern struct sk_buff *skb_copy(const struct sk_buff *skb,
  328. gfp_t priority);
  329. extern struct sk_buff *pskb_copy(struct sk_buff *skb,
  330. gfp_t gfp_mask);
  331. extern int pskb_expand_head(struct sk_buff *skb,
  332. int nhead, int ntail,
  333. gfp_t gfp_mask);
  334. extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
  335. unsigned int headroom);
  336. extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
  337. int newheadroom, int newtailroom,
  338. gfp_t priority);
  339. extern int skb_to_sgvec(struct sk_buff *skb,
  340. struct scatterlist *sg, int offset,
  341. int len);
  342. extern int skb_cow_data(struct sk_buff *skb, int tailbits,
  343. struct sk_buff **trailer);
  344. extern int skb_pad(struct sk_buff *skb, int pad);
  345. #define dev_kfree_skb(a) kfree_skb(a)
  346. extern void skb_over_panic(struct sk_buff *skb, int len,
  347. void *here);
  348. extern void skb_under_panic(struct sk_buff *skb, int len,
  349. void *here);
  350. extern void skb_truesize_bug(struct sk_buff *skb);
  351. static inline void skb_truesize_check(struct sk_buff *skb)
  352. {
  353. int len = sizeof(struct sk_buff) + skb->len;
  354. if (unlikely((int)skb->truesize < len))
  355. skb_truesize_bug(skb);
  356. }
  357. extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
  358. int getfrag(void *from, char *to, int offset,
  359. int len,int odd, struct sk_buff *skb),
  360. void *from, int length);
  361. struct skb_seq_state
  362. {
  363. __u32 lower_offset;
  364. __u32 upper_offset;
  365. __u32 frag_idx;
  366. __u32 stepped_offset;
  367. struct sk_buff *root_skb;
  368. struct sk_buff *cur_skb;
  369. __u8 *frag_data;
  370. };
  371. extern void skb_prepare_seq_read(struct sk_buff *skb,
  372. unsigned int from, unsigned int to,
  373. struct skb_seq_state *st);
  374. extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
  375. struct skb_seq_state *st);
  376. extern void skb_abort_seq_read(struct skb_seq_state *st);
  377. extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
  378. unsigned int to, struct ts_config *config,
  379. struct ts_state *state);
  380. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  381. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  382. {
  383. return skb->head + skb->end;
  384. }
  385. #else
  386. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  387. {
  388. return skb->end;
  389. }
  390. #endif
  391. /* Internal */
  392. #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
  393. /**
  394. * skb_queue_empty - check if a queue is empty
  395. * @list: queue head
  396. *
  397. * Returns true if the queue is empty, false otherwise.
  398. */
  399. static inline int skb_queue_empty(const struct sk_buff_head *list)
  400. {
  401. return list->next == (struct sk_buff *)list;
  402. }
  403. /**
  404. * skb_get - reference buffer
  405. * @skb: buffer to reference
  406. *
  407. * Makes another reference to a socket buffer and returns a pointer
  408. * to the buffer.
  409. */
  410. static inline struct sk_buff *skb_get(struct sk_buff *skb)
  411. {
  412. atomic_inc(&skb->users);
  413. return skb;
  414. }
  415. /*
  416. * If users == 1, we are the only owner and are can avoid redundant
  417. * atomic change.
  418. */
  419. /**
  420. * skb_cloned - is the buffer a clone
  421. * @skb: buffer to check
  422. *
  423. * Returns true if the buffer was generated with skb_clone() and is
  424. * one of multiple shared copies of the buffer. Cloned buffers are
  425. * shared data so must not be written to under normal circumstances.
  426. */
  427. static inline int skb_cloned(const struct sk_buff *skb)
  428. {
  429. return skb->cloned &&
  430. (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
  431. }
  432. /**
  433. * skb_header_cloned - is the header a clone
  434. * @skb: buffer to check
  435. *
  436. * Returns true if modifying the header part of the buffer requires
  437. * the data to be copied.
  438. */
  439. static inline int skb_header_cloned(const struct sk_buff *skb)
  440. {
  441. int dataref;
  442. if (!skb->cloned)
  443. return 0;
  444. dataref = atomic_read(&skb_shinfo(skb)->dataref);
  445. dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
  446. return dataref != 1;
  447. }
  448. /**
  449. * skb_header_release - release reference to header
  450. * @skb: buffer to operate on
  451. *
  452. * Drop a reference to the header part of the buffer. This is done
  453. * by acquiring a payload reference. You must not read from the header
  454. * part of skb->data after this.
  455. */
  456. static inline void skb_header_release(struct sk_buff *skb)
  457. {
  458. BUG_ON(skb->nohdr);
  459. skb->nohdr = 1;
  460. atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
  461. }
  462. /**
  463. * skb_shared - is the buffer shared
  464. * @skb: buffer to check
  465. *
  466. * Returns true if more than one person has a reference to this
  467. * buffer.
  468. */
  469. static inline int skb_shared(const struct sk_buff *skb)
  470. {
  471. return atomic_read(&skb->users) != 1;
  472. }
  473. /**
  474. * skb_share_check - check if buffer is shared and if so clone it
  475. * @skb: buffer to check
  476. * @pri: priority for memory allocation
  477. *
  478. * If the buffer is shared the buffer is cloned and the old copy
  479. * drops a reference. A new clone with a single reference is returned.
  480. * If the buffer is not shared the original buffer is returned. When
  481. * being called from interrupt status or with spinlocks held pri must
  482. * be GFP_ATOMIC.
  483. *
  484. * NULL is returned on a memory allocation failure.
  485. */
  486. static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
  487. gfp_t pri)
  488. {
  489. might_sleep_if(pri & __GFP_WAIT);
  490. if (skb_shared(skb)) {
  491. struct sk_buff *nskb = skb_clone(skb, pri);
  492. kfree_skb(skb);
  493. skb = nskb;
  494. }
  495. return skb;
  496. }
  497. /*
  498. * Copy shared buffers into a new sk_buff. We effectively do COW on
  499. * packets to handle cases where we have a local reader and forward
  500. * and a couple of other messy ones. The normal one is tcpdumping
  501. * a packet thats being forwarded.
  502. */
  503. /**
  504. * skb_unshare - make a copy of a shared buffer
  505. * @skb: buffer to check
  506. * @pri: priority for memory allocation
  507. *
  508. * If the socket buffer is a clone then this function creates a new
  509. * copy of the data, drops a reference count on the old copy and returns
  510. * the new copy with the reference count at 1. If the buffer is not a clone
  511. * the original buffer is returned. When called with a spinlock held or
  512. * from interrupt state @pri must be %GFP_ATOMIC
  513. *
  514. * %NULL is returned on a memory allocation failure.
  515. */
  516. static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
  517. gfp_t pri)
  518. {
  519. might_sleep_if(pri & __GFP_WAIT);
  520. if (skb_cloned(skb)) {
  521. struct sk_buff *nskb = skb_copy(skb, pri);
  522. kfree_skb(skb); /* Free our shared copy */
  523. skb = nskb;
  524. }
  525. return skb;
  526. }
  527. /**
  528. * skb_peek
  529. * @list_: list to peek at
  530. *
  531. * Peek an &sk_buff. Unlike most other operations you _MUST_
  532. * be careful with this one. A peek leaves the buffer on the
  533. * list and someone else may run off with it. You must hold
  534. * the appropriate locks or have a private queue to do this.
  535. *
  536. * Returns %NULL for an empty list or a pointer to the head element.
  537. * The reference count is not incremented and the reference is therefore
  538. * volatile. Use with caution.
  539. */
  540. static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
  541. {
  542. struct sk_buff *list = ((struct sk_buff *)list_)->next;
  543. if (list == (struct sk_buff *)list_)
  544. list = NULL;
  545. return list;
  546. }
  547. /**
  548. * skb_peek_tail
  549. * @list_: list to peek at
  550. *
  551. * Peek an &sk_buff. Unlike most other operations you _MUST_
  552. * be careful with this one. A peek leaves the buffer on the
  553. * list and someone else may run off with it. You must hold
  554. * the appropriate locks or have a private queue to do this.
  555. *
  556. * Returns %NULL for an empty list or a pointer to the tail element.
  557. * The reference count is not incremented and the reference is therefore
  558. * volatile. Use with caution.
  559. */
  560. static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
  561. {
  562. struct sk_buff *list = ((struct sk_buff *)list_)->prev;
  563. if (list == (struct sk_buff *)list_)
  564. list = NULL;
  565. return list;
  566. }
  567. /**
  568. * skb_queue_len - get queue length
  569. * @list_: list to measure
  570. *
  571. * Return the length of an &sk_buff queue.
  572. */
  573. static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
  574. {
  575. return list_->qlen;
  576. }
  577. /*
  578. * This function creates a split out lock class for each invocation;
  579. * this is needed for now since a whole lot of users of the skb-queue
  580. * infrastructure in drivers have different locking usage (in hardirq)
  581. * than the networking core (in softirq only). In the long run either the
  582. * network layer or drivers should need annotation to consolidate the
  583. * main types of usage into 3 classes.
  584. */
  585. static inline void skb_queue_head_init(struct sk_buff_head *list)
  586. {
  587. spin_lock_init(&list->lock);
  588. list->prev = list->next = (struct sk_buff *)list;
  589. list->qlen = 0;
  590. }
  591. static inline void skb_queue_head_init_class(struct sk_buff_head *list,
  592. struct lock_class_key *class)
  593. {
  594. skb_queue_head_init(list);
  595. lockdep_set_class(&list->lock, class);
  596. }
  597. /*
  598. * Insert an sk_buff on a list.
  599. *
  600. * The "__skb_xxxx()" functions are the non-atomic ones that
  601. * can only be called with interrupts disabled.
  602. */
  603. extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
  604. static inline void __skb_insert(struct sk_buff *newsk,
  605. struct sk_buff *prev, struct sk_buff *next,
  606. struct sk_buff_head *list)
  607. {
  608. newsk->next = next;
  609. newsk->prev = prev;
  610. next->prev = prev->next = newsk;
  611. list->qlen++;
  612. }
  613. /**
  614. * __skb_queue_after - queue a buffer at the list head
  615. * @list: list to use
  616. * @prev: place after this buffer
  617. * @newsk: buffer to queue
  618. *
  619. * Queue a buffer int the middle of a list. This function takes no locks
  620. * and you must therefore hold required locks before calling it.
  621. *
  622. * A buffer cannot be placed on two lists at the same time.
  623. */
  624. static inline void __skb_queue_after(struct sk_buff_head *list,
  625. struct sk_buff *prev,
  626. struct sk_buff *newsk)
  627. {
  628. __skb_insert(newsk, prev, prev->next, list);
  629. }
  630. extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
  631. struct sk_buff_head *list);
  632. /**
  633. * __skb_queue_head - queue a buffer at the list head
  634. * @list: list to use
  635. * @newsk: buffer to queue
  636. *
  637. * Queue a buffer at the start of a list. This function takes no locks
  638. * and you must therefore hold required locks before calling it.
  639. *
  640. * A buffer cannot be placed on two lists at the same time.
  641. */
  642. extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
  643. static inline void __skb_queue_head(struct sk_buff_head *list,
  644. struct sk_buff *newsk)
  645. {
  646. __skb_queue_after(list, (struct sk_buff *)list, newsk);
  647. }
  648. /**
  649. * __skb_queue_tail - queue a buffer at the list tail
  650. * @list: list to use
  651. * @newsk: buffer to queue
  652. *
  653. * Queue a buffer at the end of a list. This function takes no locks
  654. * and you must therefore hold required locks before calling it.
  655. *
  656. * A buffer cannot be placed on two lists at the same time.
  657. */
  658. extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
  659. static inline void __skb_queue_tail(struct sk_buff_head *list,
  660. struct sk_buff *newsk)
  661. {
  662. struct sk_buff *prev, *next;
  663. list->qlen++;
  664. next = (struct sk_buff *)list;
  665. prev = next->prev;
  666. newsk->next = next;
  667. newsk->prev = prev;
  668. next->prev = prev->next = newsk;
  669. }
  670. /*
  671. * remove sk_buff from list. _Must_ be called atomically, and with
  672. * the list known..
  673. */
  674. extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
  675. static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
  676. {
  677. struct sk_buff *next, *prev;
  678. list->qlen--;
  679. next = skb->next;
  680. prev = skb->prev;
  681. skb->next = skb->prev = NULL;
  682. next->prev = prev;
  683. prev->next = next;
  684. }
  685. /**
  686. * __skb_dequeue - remove from the head of the queue
  687. * @list: list to dequeue from
  688. *
  689. * Remove the head of the list. This function does not take any locks
  690. * so must be used with appropriate locks held only. The head item is
  691. * returned or %NULL if the list is empty.
  692. */
  693. extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
  694. static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
  695. {
  696. struct sk_buff *skb = skb_peek(list);
  697. if (skb)
  698. __skb_unlink(skb, list);
  699. return skb;
  700. }
  701. /**
  702. * __skb_dequeue_tail - remove from the tail of the queue
  703. * @list: list to dequeue from
  704. *
  705. * Remove the tail of the list. This function does not take any locks
  706. * so must be used with appropriate locks held only. The tail item is
  707. * returned or %NULL if the list is empty.
  708. */
  709. extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
  710. static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
  711. {
  712. struct sk_buff *skb = skb_peek_tail(list);
  713. if (skb)
  714. __skb_unlink(skb, list);
  715. return skb;
  716. }
  717. static inline int skb_is_nonlinear(const struct sk_buff *skb)
  718. {
  719. return skb->data_len;
  720. }
  721. static inline unsigned int skb_headlen(const struct sk_buff *skb)
  722. {
  723. return skb->len - skb->data_len;
  724. }
  725. static inline int skb_pagelen(const struct sk_buff *skb)
  726. {
  727. int i, len = 0;
  728. for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
  729. len += skb_shinfo(skb)->frags[i].size;
  730. return len + skb_headlen(skb);
  731. }
  732. static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
  733. struct page *page, int off, int size)
  734. {
  735. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  736. frag->page = page;
  737. frag->page_offset = off;
  738. frag->size = size;
  739. skb_shinfo(skb)->nr_frags = i + 1;
  740. }
  741. #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
  742. #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
  743. #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
  744. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  745. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  746. {
  747. return skb->head + skb->tail;
  748. }
  749. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  750. {
  751. skb->tail = skb->data - skb->head;
  752. }
  753. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  754. {
  755. skb_reset_tail_pointer(skb);
  756. skb->tail += offset;
  757. }
  758. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  759. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  760. {
  761. return skb->tail;
  762. }
  763. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  764. {
  765. skb->tail = skb->data;
  766. }
  767. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  768. {
  769. skb->tail = skb->data + offset;
  770. }
  771. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  772. /*
  773. * Add data to an sk_buff
  774. */
  775. extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
  776. static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
  777. {
  778. unsigned char *tmp = skb_tail_pointer(skb);
  779. SKB_LINEAR_ASSERT(skb);
  780. skb->tail += len;
  781. skb->len += len;
  782. return tmp;
  783. }
  784. extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
  785. static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
  786. {
  787. skb->data -= len;
  788. skb->len += len;
  789. return skb->data;
  790. }
  791. extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
  792. static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
  793. {
  794. skb->len -= len;
  795. BUG_ON(skb->len < skb->data_len);
  796. return skb->data += len;
  797. }
  798. extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
  799. static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
  800. {
  801. if (len > skb_headlen(skb) &&
  802. !__pskb_pull_tail(skb, len-skb_headlen(skb)))
  803. return NULL;
  804. skb->len -= len;
  805. return skb->data += len;
  806. }
  807. static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
  808. {
  809. return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
  810. }
  811. static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
  812. {
  813. if (likely(len <= skb_headlen(skb)))
  814. return 1;
  815. if (unlikely(len > skb->len))
  816. return 0;
  817. return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
  818. }
  819. /**
  820. * skb_headroom - bytes at buffer head
  821. * @skb: buffer to check
  822. *
  823. * Return the number of bytes of free space at the head of an &sk_buff.
  824. */
  825. static inline unsigned int skb_headroom(const struct sk_buff *skb)
  826. {
  827. return skb->data - skb->head;
  828. }
  829. /**
  830. * skb_tailroom - bytes at buffer end
  831. * @skb: buffer to check
  832. *
  833. * Return the number of bytes of free space at the tail of an sk_buff
  834. */
  835. static inline int skb_tailroom(const struct sk_buff *skb)
  836. {
  837. return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
  838. }
  839. /**
  840. * skb_reserve - adjust headroom
  841. * @skb: buffer to alter
  842. * @len: bytes to move
  843. *
  844. * Increase the headroom of an empty &sk_buff by reducing the tail
  845. * room. This is only allowed for an empty buffer.
  846. */
  847. static inline void skb_reserve(struct sk_buff *skb, int len)
  848. {
  849. skb->data += len;
  850. skb->tail += len;
  851. }
  852. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  853. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  854. {
  855. return skb->head + skb->transport_header;
  856. }
  857. static inline void skb_reset_transport_header(struct sk_buff *skb)
  858. {
  859. skb->transport_header = skb->data - skb->head;
  860. }
  861. static inline void skb_set_transport_header(struct sk_buff *skb,
  862. const int offset)
  863. {
  864. skb_reset_transport_header(skb);
  865. skb->transport_header += offset;
  866. }
  867. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  868. {
  869. return skb->head + skb->network_header;
  870. }
  871. static inline void skb_reset_network_header(struct sk_buff *skb)
  872. {
  873. skb->network_header = skb->data - skb->head;
  874. }
  875. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  876. {
  877. skb_reset_network_header(skb);
  878. skb->network_header += offset;
  879. }
  880. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  881. {
  882. return skb->head + skb->mac_header;
  883. }
  884. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  885. {
  886. return skb->mac_header != ~0U;
  887. }
  888. static inline void skb_reset_mac_header(struct sk_buff *skb)
  889. {
  890. skb->mac_header = skb->data - skb->head;
  891. }
  892. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  893. {
  894. skb_reset_mac_header(skb);
  895. skb->mac_header += offset;
  896. }
  897. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  898. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  899. {
  900. return skb->transport_header;
  901. }
  902. static inline void skb_reset_transport_header(struct sk_buff *skb)
  903. {
  904. skb->transport_header = skb->data;
  905. }
  906. static inline void skb_set_transport_header(struct sk_buff *skb,
  907. const int offset)
  908. {
  909. skb->transport_header = skb->data + offset;
  910. }
  911. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  912. {
  913. return skb->network_header;
  914. }
  915. static inline void skb_reset_network_header(struct sk_buff *skb)
  916. {
  917. skb->network_header = skb->data;
  918. }
  919. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  920. {
  921. skb->network_header = skb->data + offset;
  922. }
  923. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  924. {
  925. return skb->mac_header;
  926. }
  927. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  928. {
  929. return skb->mac_header != NULL;
  930. }
  931. static inline void skb_reset_mac_header(struct sk_buff *skb)
  932. {
  933. skb->mac_header = skb->data;
  934. }
  935. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  936. {
  937. skb->mac_header = skb->data + offset;
  938. }
  939. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  940. static inline int skb_transport_offset(const struct sk_buff *skb)
  941. {
  942. return skb_transport_header(skb) - skb->data;
  943. }
  944. static inline u32 skb_network_header_len(const struct sk_buff *skb)
  945. {
  946. return skb->transport_header - skb->network_header;
  947. }
  948. static inline int skb_network_offset(const struct sk_buff *skb)
  949. {
  950. return skb_network_header(skb) - skb->data;
  951. }
  952. /*
  953. * CPUs often take a performance hit when accessing unaligned memory
  954. * locations. The actual performance hit varies, it can be small if the
  955. * hardware handles it or large if we have to take an exception and fix it
  956. * in software.
  957. *
  958. * Since an ethernet header is 14 bytes network drivers often end up with
  959. * the IP header at an unaligned offset. The IP header can be aligned by
  960. * shifting the start of the packet by 2 bytes. Drivers should do this
  961. * with:
  962. *
  963. * skb_reserve(NET_IP_ALIGN);
  964. *
  965. * The downside to this alignment of the IP header is that the DMA is now
  966. * unaligned. On some architectures the cost of an unaligned DMA is high
  967. * and this cost outweighs the gains made by aligning the IP header.
  968. *
  969. * Since this trade off varies between architectures, we allow NET_IP_ALIGN
  970. * to be overridden.
  971. */
  972. #ifndef NET_IP_ALIGN
  973. #define NET_IP_ALIGN 2
  974. #endif
  975. /*
  976. * The networking layer reserves some headroom in skb data (via
  977. * dev_alloc_skb). This is used to avoid having to reallocate skb data when
  978. * the header has to grow. In the default case, if the header has to grow
  979. * 16 bytes or less we avoid the reallocation.
  980. *
  981. * Unfortunately this headroom changes the DMA alignment of the resulting
  982. * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
  983. * on some architectures. An architecture can override this value,
  984. * perhaps setting it to a cacheline in size (since that will maintain
  985. * cacheline alignment of the DMA). It must be a power of 2.
  986. *
  987. * Various parts of the networking layer expect at least 16 bytes of
  988. * headroom, you should not reduce this.
  989. */
  990. #ifndef NET_SKB_PAD
  991. #define NET_SKB_PAD 16
  992. #endif
  993. extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
  994. static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
  995. {
  996. if (unlikely(skb->data_len)) {
  997. WARN_ON(1);
  998. return;
  999. }
  1000. skb->len = len;
  1001. skb_set_tail_pointer(skb, len);
  1002. }
  1003. extern void skb_trim(struct sk_buff *skb, unsigned int len);
  1004. static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
  1005. {
  1006. if (skb->data_len)
  1007. return ___pskb_trim(skb, len);
  1008. __skb_trim(skb, len);
  1009. return 0;
  1010. }
  1011. static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
  1012. {
  1013. return (len < skb->len) ? __pskb_trim(skb, len) : 0;
  1014. }
  1015. /**
  1016. * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
  1017. * @skb: buffer to alter
  1018. * @len: new length
  1019. *
  1020. * This is identical to pskb_trim except that the caller knows that
  1021. * the skb is not cloned so we should never get an error due to out-
  1022. * of-memory.
  1023. */
  1024. static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
  1025. {
  1026. int err = pskb_trim(skb, len);
  1027. BUG_ON(err);
  1028. }
  1029. /**
  1030. * skb_orphan - orphan a buffer
  1031. * @skb: buffer to orphan
  1032. *
  1033. * If a buffer currently has an owner then we call the owner's
  1034. * destructor function and make the @skb unowned. The buffer continues
  1035. * to exist but is no longer charged to its former owner.
  1036. */
  1037. static inline void skb_orphan(struct sk_buff *skb)
  1038. {
  1039. if (skb->destructor)
  1040. skb->destructor(skb);
  1041. skb->destructor = NULL;
  1042. skb->sk = NULL;
  1043. }
  1044. /**
  1045. * __skb_queue_purge - empty a list
  1046. * @list: list to empty
  1047. *
  1048. * Delete all buffers on an &sk_buff list. Each buffer is removed from
  1049. * the list and one reference dropped. This function does not take the
  1050. * list lock and the caller must hold the relevant locks to use it.
  1051. */
  1052. extern void skb_queue_purge(struct sk_buff_head *list);
  1053. static inline void __skb_queue_purge(struct sk_buff_head *list)
  1054. {
  1055. struct sk_buff *skb;
  1056. while ((skb = __skb_dequeue(list)) != NULL)
  1057. kfree_skb(skb);
  1058. }
  1059. /**
  1060. * __dev_alloc_skb - allocate an skbuff for receiving
  1061. * @length: length to allocate
  1062. * @gfp_mask: get_free_pages mask, passed to alloc_skb
  1063. *
  1064. * Allocate a new &sk_buff and assign it a usage count of one. The
  1065. * buffer has unspecified headroom built in. Users should allocate
  1066. * the headroom they think they need without accounting for the
  1067. * built in space. The built in space is used for optimisations.
  1068. *
  1069. * %NULL is returned if there is no free memory.
  1070. */
  1071. static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
  1072. gfp_t gfp_mask)
  1073. {
  1074. struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
  1075. if (likely(skb))
  1076. skb_reserve(skb, NET_SKB_PAD);
  1077. return skb;
  1078. }
  1079. extern struct sk_buff *dev_alloc_skb(unsigned int length);
  1080. extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
  1081. unsigned int length, gfp_t gfp_mask);
  1082. /**
  1083. * netdev_alloc_skb - allocate an skbuff for rx on a specific device
  1084. * @dev: network device to receive on
  1085. * @length: length to allocate
  1086. *
  1087. * Allocate a new &sk_buff and assign it a usage count of one. The
  1088. * buffer has unspecified headroom built in. Users should allocate
  1089. * the headroom they think they need without accounting for the
  1090. * built in space. The built in space is used for optimisations.
  1091. *
  1092. * %NULL is returned if there is no free memory. Although this function
  1093. * allocates memory it can be called from an interrupt.
  1094. */
  1095. static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
  1096. unsigned int length)
  1097. {
  1098. return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
  1099. }
  1100. /**
  1101. * skb_clone_writable - is the header of a clone writable
  1102. * @skb: buffer to check
  1103. * @len: length up to which to write
  1104. *
  1105. * Returns true if modifying the header part of the cloned buffer
  1106. * does not requires the data to be copied.
  1107. */
  1108. static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
  1109. {
  1110. return !skb_header_cloned(skb) &&
  1111. skb_headroom(skb) + len <= skb->hdr_len;
  1112. }
  1113. static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
  1114. int cloned)
  1115. {
  1116. int delta = 0;
  1117. if (headroom < NET_SKB_PAD)
  1118. headroom = NET_SKB_PAD;
  1119. if (headroom > skb_headroom(skb))
  1120. delta = headroom - skb_headroom(skb);
  1121. if (delta || cloned)
  1122. return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
  1123. GFP_ATOMIC);
  1124. return 0;
  1125. }
  1126. /**
  1127. * skb_cow - copy header of skb when it is required
  1128. * @skb: buffer to cow
  1129. * @headroom: needed headroom
  1130. *
  1131. * If the skb passed lacks sufficient headroom or its data part
  1132. * is shared, data is reallocated. If reallocation fails, an error
  1133. * is returned and original skb is not changed.
  1134. *
  1135. * The result is skb with writable area skb->head...skb->tail
  1136. * and at least @headroom of space at head.
  1137. */
  1138. static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
  1139. {
  1140. return __skb_cow(skb, headroom, skb_cloned(skb));
  1141. }
  1142. /**
  1143. * skb_cow_head - skb_cow but only making the head writable
  1144. * @skb: buffer to cow
  1145. * @headroom: needed headroom
  1146. *
  1147. * This function is identical to skb_cow except that we replace the
  1148. * skb_cloned check by skb_header_cloned. It should be used when
  1149. * you only need to push on some header and do not need to modify
  1150. * the data.
  1151. */
  1152. static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
  1153. {
  1154. return __skb_cow(skb, headroom, skb_header_cloned(skb));
  1155. }
  1156. /**
  1157. * skb_padto - pad an skbuff up to a minimal size
  1158. * @skb: buffer to pad
  1159. * @len: minimal length
  1160. *
  1161. * Pads up a buffer to ensure the trailing bytes exist and are
  1162. * blanked. If the buffer already contains sufficient data it
  1163. * is untouched. Otherwise it is extended. Returns zero on
  1164. * success. The skb is freed on error.
  1165. */
  1166. static inline int skb_padto(struct sk_buff *skb, unsigned int len)
  1167. {
  1168. unsigned int size = skb->len;
  1169. if (likely(size >= len))
  1170. return 0;
  1171. return skb_pad(skb, len-size);
  1172. }
  1173. static inline int skb_add_data(struct sk_buff *skb,
  1174. char __user *from, int copy)
  1175. {
  1176. const int off = skb->len;
  1177. if (skb->ip_summed == CHECKSUM_NONE) {
  1178. int err = 0;
  1179. __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
  1180. copy, 0, &err);
  1181. if (!err) {
  1182. skb->csum = csum_block_add(skb->csum, csum, off);
  1183. return 0;
  1184. }
  1185. } else if (!copy_from_user(skb_put(skb, copy), from, copy))
  1186. return 0;
  1187. __skb_trim(skb, off);
  1188. return -EFAULT;
  1189. }
  1190. static inline int skb_can_coalesce(struct sk_buff *skb, int i,
  1191. struct page *page, int off)
  1192. {
  1193. if (i) {
  1194. struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
  1195. return page == frag->page &&
  1196. off == frag->page_offset + frag->size;
  1197. }
  1198. return 0;
  1199. }
  1200. static inline int __skb_linearize(struct sk_buff *skb)
  1201. {
  1202. return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
  1203. }
  1204. /**
  1205. * skb_linearize - convert paged skb to linear one
  1206. * @skb: buffer to linarize
  1207. *
  1208. * If there is no free memory -ENOMEM is returned, otherwise zero
  1209. * is returned and the old skb data released.
  1210. */
  1211. static inline int skb_linearize(struct sk_buff *skb)
  1212. {
  1213. return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
  1214. }
  1215. /**
  1216. * skb_linearize_cow - make sure skb is linear and writable
  1217. * @skb: buffer to process
  1218. *
  1219. * If there is no free memory -ENOMEM is returned, otherwise zero
  1220. * is returned and the old skb data released.
  1221. */
  1222. static inline int skb_linearize_cow(struct sk_buff *skb)
  1223. {
  1224. return skb_is_nonlinear(skb) || skb_cloned(skb) ?
  1225. __skb_linearize(skb) : 0;
  1226. }
  1227. /**
  1228. * skb_postpull_rcsum - update checksum for received skb after pull
  1229. * @skb: buffer to update
  1230. * @start: start of data before pull
  1231. * @len: length of data pulled
  1232. *
  1233. * After doing a pull on a received packet, you need to call this to
  1234. * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
  1235. * CHECKSUM_NONE so that it can be recomputed from scratch.
  1236. */
  1237. static inline void skb_postpull_rcsum(struct sk_buff *skb,
  1238. const void *start, unsigned int len)
  1239. {
  1240. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1241. skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
  1242. }
  1243. unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
  1244. /**
  1245. * pskb_trim_rcsum - trim received skb and update checksum
  1246. * @skb: buffer to trim
  1247. * @len: new length
  1248. *
  1249. * This is exactly the same as pskb_trim except that it ensures the
  1250. * checksum of received packets are still valid after the operation.
  1251. */
  1252. static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
  1253. {
  1254. if (likely(len >= skb->len))
  1255. return 0;
  1256. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1257. skb->ip_summed = CHECKSUM_NONE;
  1258. return __pskb_trim(skb, len);
  1259. }
  1260. #define skb_queue_walk(queue, skb) \
  1261. for (skb = (queue)->next; \
  1262. prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
  1263. skb = skb->next)
  1264. #define skb_queue_walk_safe(queue, skb, tmp) \
  1265. for (skb = (queue)->next, tmp = skb->next; \
  1266. skb != (struct sk_buff *)(queue); \
  1267. skb = tmp, tmp = skb->next)
  1268. #define skb_queue_reverse_walk(queue, skb) \
  1269. for (skb = (queue)->prev; \
  1270. prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
  1271. skb = skb->prev)
  1272. extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
  1273. int *peeked, int *err);
  1274. extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
  1275. int noblock, int *err);
  1276. extern unsigned int datagram_poll(struct file *file, struct socket *sock,
  1277. struct poll_table_struct *wait);
  1278. extern int skb_copy_datagram_iovec(const struct sk_buff *from,
  1279. int offset, struct iovec *to,
  1280. int size);
  1281. extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
  1282. int hlen,
  1283. struct iovec *iov);
  1284. extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
  1285. extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
  1286. unsigned int flags);
  1287. extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
  1288. int len, __wsum csum);
  1289. extern int skb_copy_bits(const struct sk_buff *skb, int offset,
  1290. void *to, int len);
  1291. extern int skb_store_bits(struct sk_buff *skb, int offset,
  1292. const void *from, int len);
  1293. extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
  1294. int offset, u8 *to, int len,
  1295. __wsum csum);
  1296. extern int skb_splice_bits(struct sk_buff *skb,
  1297. unsigned int offset,
  1298. struct pipe_inode_info *pipe,
  1299. unsigned int len,
  1300. unsigned int flags);
  1301. extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
  1302. extern void skb_split(struct sk_buff *skb,
  1303. struct sk_buff *skb1, const u32 len);
  1304. extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
  1305. static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
  1306. int len, void *buffer)
  1307. {
  1308. int hlen = skb_headlen(skb);
  1309. if (hlen - offset >= len)
  1310. return skb->data + offset;
  1311. if (skb_copy_bits(skb, offset, buffer, len) < 0)
  1312. return NULL;
  1313. return buffer;
  1314. }
  1315. static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
  1316. void *to,
  1317. const unsigned int len)
  1318. {
  1319. memcpy(to, skb->data, len);
  1320. }
  1321. static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
  1322. const int offset, void *to,
  1323. const unsigned int len)
  1324. {
  1325. memcpy(to, skb->data + offset, len);
  1326. }
  1327. static inline void skb_copy_to_linear_data(struct sk_buff *skb,
  1328. const void *from,
  1329. const unsigned int len)
  1330. {
  1331. memcpy(skb->data, from, len);
  1332. }
  1333. static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
  1334. const int offset,
  1335. const void *from,
  1336. const unsigned int len)
  1337. {
  1338. memcpy(skb->data + offset, from, len);
  1339. }
  1340. extern void skb_init(void);
  1341. /**
  1342. * skb_get_timestamp - get timestamp from a skb
  1343. * @skb: skb to get stamp from
  1344. * @stamp: pointer to struct timeval to store stamp in
  1345. *
  1346. * Timestamps are stored in the skb as offsets to a base timestamp.
  1347. * This function converts the offset back to a struct timeval and stores
  1348. * it in stamp.
  1349. */
  1350. static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
  1351. {
  1352. *stamp = ktime_to_timeval(skb->tstamp);
  1353. }
  1354. static inline void __net_timestamp(struct sk_buff *skb)
  1355. {
  1356. skb->tstamp = ktime_get_real();
  1357. }
  1358. static inline ktime_t net_timedelta(ktime_t t)
  1359. {
  1360. return ktime_sub(ktime_get_real(), t);
  1361. }
  1362. static inline ktime_t net_invalid_timestamp(void)
  1363. {
  1364. return ktime_set(0, 0);
  1365. }
  1366. extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
  1367. extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
  1368. static inline int skb_csum_unnecessary(const struct sk_buff *skb)
  1369. {
  1370. return skb->ip_summed & CHECKSUM_UNNECESSARY;
  1371. }
  1372. /**
  1373. * skb_checksum_complete - Calculate checksum of an entire packet
  1374. * @skb: packet to process
  1375. *
  1376. * This function calculates the checksum over the entire packet plus
  1377. * the value of skb->csum. The latter can be used to supply the
  1378. * checksum of a pseudo header as used by TCP/UDP. It returns the
  1379. * checksum.
  1380. *
  1381. * For protocols that contain complete checksums such as ICMP/TCP/UDP,
  1382. * this function can be used to verify that checksum on received
  1383. * packets. In that case the function should return zero if the
  1384. * checksum is correct. In particular, this function will return zero
  1385. * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
  1386. * hardware has already verified the correctness of the checksum.
  1387. */
  1388. static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
  1389. {
  1390. return skb_csum_unnecessary(skb) ?
  1391. 0 : __skb_checksum_complete(skb);
  1392. }
  1393. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1394. extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
  1395. static inline void nf_conntrack_put(struct nf_conntrack *nfct)
  1396. {
  1397. if (nfct && atomic_dec_and_test(&nfct->use))
  1398. nf_conntrack_destroy(nfct);
  1399. }
  1400. static inline void nf_conntrack_get(struct nf_conntrack *nfct)
  1401. {
  1402. if (nfct)
  1403. atomic_inc(&nfct->use);
  1404. }
  1405. static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
  1406. {
  1407. if (skb)
  1408. atomic_inc(&skb->users);
  1409. }
  1410. static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
  1411. {
  1412. if (skb)
  1413. kfree_skb(skb);
  1414. }
  1415. #endif
  1416. #ifdef CONFIG_BRIDGE_NETFILTER
  1417. static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
  1418. {
  1419. if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
  1420. kfree(nf_bridge);
  1421. }
  1422. static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
  1423. {
  1424. if (nf_bridge)
  1425. atomic_inc(&nf_bridge->use);
  1426. }
  1427. #endif /* CONFIG_BRIDGE_NETFILTER */
  1428. static inline void nf_reset(struct sk_buff *skb)
  1429. {
  1430. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1431. nf_conntrack_put(skb->nfct);
  1432. skb->nfct = NULL;
  1433. nf_conntrack_put_reasm(skb->nfct_reasm);
  1434. skb->nfct_reasm = NULL;
  1435. #endif
  1436. #ifdef CONFIG_BRIDGE_NETFILTER
  1437. nf_bridge_put(skb->nf_bridge);
  1438. skb->nf_bridge = NULL;
  1439. #endif
  1440. }
  1441. /* Note: This doesn't put any conntrack and bridge info in dst. */
  1442. static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  1443. {
  1444. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1445. dst->nfct = src->nfct;
  1446. nf_conntrack_get(src->nfct);
  1447. dst->nfctinfo = src->nfctinfo;
  1448. dst->nfct_reasm = src->nfct_reasm;
  1449. nf_conntrack_get_reasm(src->nfct_reasm);
  1450. #endif
  1451. #ifdef CONFIG_BRIDGE_NETFILTER
  1452. dst->nf_bridge = src->nf_bridge;
  1453. nf_bridge_get(src->nf_bridge);
  1454. #endif
  1455. }
  1456. static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  1457. {
  1458. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1459. nf_conntrack_put(dst->nfct);
  1460. nf_conntrack_put_reasm(dst->nfct_reasm);
  1461. #endif
  1462. #ifdef CONFIG_BRIDGE_NETFILTER
  1463. nf_bridge_put(dst->nf_bridge);
  1464. #endif
  1465. __nf_copy(dst, src);
  1466. }
  1467. #ifdef CONFIG_NETWORK_SECMARK
  1468. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  1469. {
  1470. to->secmark = from->secmark;
  1471. }
  1472. static inline void skb_init_secmark(struct sk_buff *skb)
  1473. {
  1474. skb->secmark = 0;
  1475. }
  1476. #else
  1477. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  1478. { }
  1479. static inline void skb_init_secmark(struct sk_buff *skb)
  1480. { }
  1481. #endif
  1482. static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
  1483. {
  1484. #ifdef CONFIG_NETDEVICES_MULTIQUEUE
  1485. skb->queue_mapping = queue_mapping;
  1486. #endif
  1487. }
  1488. static inline u16 skb_get_queue_mapping(struct sk_buff *skb)
  1489. {
  1490. #ifdef CONFIG_NETDEVICES_MULTIQUEUE
  1491. return skb->queue_mapping;
  1492. #else
  1493. return 0;
  1494. #endif
  1495. }
  1496. static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
  1497. {
  1498. #ifdef CONFIG_NETDEVICES_MULTIQUEUE
  1499. to->queue_mapping = from->queue_mapping;
  1500. #endif
  1501. }
  1502. static inline int skb_is_gso(const struct sk_buff *skb)
  1503. {
  1504. return skb_shinfo(skb)->gso_size;
  1505. }
  1506. static inline int skb_is_gso_v6(const struct sk_buff *skb)
  1507. {
  1508. return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
  1509. }
  1510. static inline void skb_forward_csum(struct sk_buff *skb)
  1511. {
  1512. /* Unfortunately we don't support this one. Any brave souls? */
  1513. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1514. skb->ip_summed = CHECKSUM_NONE;
  1515. }
  1516. bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
  1517. #endif /* __KERNEL__ */
  1518. #endif /* _LINUX_SKBUFF_H */