intel_dp.c 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include "drmP.h"
  30. #include "drm.h"
  31. #include "drm_crtc.h"
  32. #include "drm_crtc_helper.h"
  33. #include "intel_drv.h"
  34. #include "i915_drm.h"
  35. #include "i915_drv.h"
  36. #include "drm_dp_helper.h"
  37. #define DP_LINK_STATUS_SIZE 6
  38. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  39. #define DP_LINK_CONFIGURATION_SIZE 9
  40. #define IS_eDP(i) ((i)->type == INTEL_OUTPUT_EDP)
  41. #define IS_PCH_eDP(dp_priv) ((dp_priv)->is_pch_edp)
  42. struct intel_dp_priv {
  43. uint32_t output_reg;
  44. uint32_t DP;
  45. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
  46. bool has_audio;
  47. int dpms_mode;
  48. uint8_t link_bw;
  49. uint8_t lane_count;
  50. uint8_t dpcd[4];
  51. struct intel_encoder *intel_encoder;
  52. struct i2c_adapter adapter;
  53. struct i2c_algo_dp_aux_data algo;
  54. bool is_pch_edp;
  55. };
  56. static void
  57. intel_dp_link_train(struct intel_encoder *intel_encoder, uint32_t DP,
  58. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE]);
  59. static void
  60. intel_dp_link_down(struct intel_encoder *intel_encoder, uint32_t DP);
  61. void
  62. intel_edp_link_config (struct intel_encoder *intel_encoder,
  63. int *lane_num, int *link_bw)
  64. {
  65. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  66. *lane_num = dp_priv->lane_count;
  67. if (dp_priv->link_bw == DP_LINK_BW_1_62)
  68. *link_bw = 162000;
  69. else if (dp_priv->link_bw == DP_LINK_BW_2_7)
  70. *link_bw = 270000;
  71. }
  72. static int
  73. intel_dp_max_lane_count(struct intel_encoder *intel_encoder)
  74. {
  75. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  76. int max_lane_count = 4;
  77. if (dp_priv->dpcd[0] >= 0x11) {
  78. max_lane_count = dp_priv->dpcd[2] & 0x1f;
  79. switch (max_lane_count) {
  80. case 1: case 2: case 4:
  81. break;
  82. default:
  83. max_lane_count = 4;
  84. }
  85. }
  86. return max_lane_count;
  87. }
  88. static int
  89. intel_dp_max_link_bw(struct intel_encoder *intel_encoder)
  90. {
  91. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  92. int max_link_bw = dp_priv->dpcd[1];
  93. switch (max_link_bw) {
  94. case DP_LINK_BW_1_62:
  95. case DP_LINK_BW_2_7:
  96. break;
  97. default:
  98. max_link_bw = DP_LINK_BW_1_62;
  99. break;
  100. }
  101. return max_link_bw;
  102. }
  103. static int
  104. intel_dp_link_clock(uint8_t link_bw)
  105. {
  106. if (link_bw == DP_LINK_BW_2_7)
  107. return 270000;
  108. else
  109. return 162000;
  110. }
  111. /* I think this is a fiction */
  112. static int
  113. intel_dp_link_required(struct drm_device *dev,
  114. struct intel_encoder *intel_encoder, int pixel_clock)
  115. {
  116. struct drm_i915_private *dev_priv = dev->dev_private;
  117. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  118. if (IS_eDP(intel_encoder) || IS_PCH_eDP(dp_priv))
  119. return (pixel_clock * dev_priv->edp_bpp) / 8;
  120. else
  121. return pixel_clock * 3;
  122. }
  123. static int
  124. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  125. {
  126. return (max_link_clock * max_lanes * 8) / 10;
  127. }
  128. static int
  129. intel_dp_mode_valid(struct drm_connector *connector,
  130. struct drm_display_mode *mode)
  131. {
  132. struct drm_encoder *encoder = intel_attached_encoder(connector);
  133. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  134. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  135. struct drm_device *dev = connector->dev;
  136. struct drm_i915_private *dev_priv = dev->dev_private;
  137. int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_encoder));
  138. int max_lanes = intel_dp_max_lane_count(intel_encoder);
  139. if ((IS_eDP(intel_encoder) || IS_PCH_eDP(dp_priv)) &&
  140. dev_priv->panel_fixed_mode) {
  141. if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
  142. return MODE_PANEL;
  143. if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
  144. return MODE_PANEL;
  145. }
  146. /* only refuse the mode on non eDP since we have seen some wierd eDP panels
  147. which are outside spec tolerances but somehow work by magic */
  148. if (!IS_eDP(intel_encoder) &&
  149. (intel_dp_link_required(connector->dev, intel_encoder, mode->clock)
  150. > intel_dp_max_data_rate(max_link_clock, max_lanes)))
  151. return MODE_CLOCK_HIGH;
  152. if (mode->clock < 10000)
  153. return MODE_CLOCK_LOW;
  154. return MODE_OK;
  155. }
  156. static uint32_t
  157. pack_aux(uint8_t *src, int src_bytes)
  158. {
  159. int i;
  160. uint32_t v = 0;
  161. if (src_bytes > 4)
  162. src_bytes = 4;
  163. for (i = 0; i < src_bytes; i++)
  164. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  165. return v;
  166. }
  167. static void
  168. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  169. {
  170. int i;
  171. if (dst_bytes > 4)
  172. dst_bytes = 4;
  173. for (i = 0; i < dst_bytes; i++)
  174. dst[i] = src >> ((3-i) * 8);
  175. }
  176. /* hrawclock is 1/4 the FSB frequency */
  177. static int
  178. intel_hrawclk(struct drm_device *dev)
  179. {
  180. struct drm_i915_private *dev_priv = dev->dev_private;
  181. uint32_t clkcfg;
  182. clkcfg = I915_READ(CLKCFG);
  183. switch (clkcfg & CLKCFG_FSB_MASK) {
  184. case CLKCFG_FSB_400:
  185. return 100;
  186. case CLKCFG_FSB_533:
  187. return 133;
  188. case CLKCFG_FSB_667:
  189. return 166;
  190. case CLKCFG_FSB_800:
  191. return 200;
  192. case CLKCFG_FSB_1067:
  193. return 266;
  194. case CLKCFG_FSB_1333:
  195. return 333;
  196. /* these two are just a guess; one of them might be right */
  197. case CLKCFG_FSB_1600:
  198. case CLKCFG_FSB_1600_ALT:
  199. return 400;
  200. default:
  201. return 133;
  202. }
  203. }
  204. static int
  205. intel_dp_aux_ch(struct intel_encoder *intel_encoder,
  206. uint8_t *send, int send_bytes,
  207. uint8_t *recv, int recv_size)
  208. {
  209. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  210. uint32_t output_reg = dp_priv->output_reg;
  211. struct drm_device *dev = intel_encoder->enc.dev;
  212. struct drm_i915_private *dev_priv = dev->dev_private;
  213. uint32_t ch_ctl = output_reg + 0x10;
  214. uint32_t ch_data = ch_ctl + 4;
  215. int i;
  216. int recv_bytes;
  217. uint32_t ctl;
  218. uint32_t status;
  219. uint32_t aux_clock_divider;
  220. int try, precharge;
  221. /* The clock divider is based off the hrawclk,
  222. * and would like to run at 2MHz. So, take the
  223. * hrawclk value and divide by 2 and use that
  224. */
  225. if (IS_eDP(intel_encoder)) {
  226. if (IS_GEN6(dev))
  227. aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
  228. else
  229. aux_clock_divider = 225; /* eDP input clock at 450Mhz */
  230. } else if (HAS_PCH_SPLIT(dev))
  231. aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
  232. else
  233. aux_clock_divider = intel_hrawclk(dev) / 2;
  234. if (IS_GEN6(dev))
  235. precharge = 3;
  236. else
  237. precharge = 5;
  238. /* Must try at least 3 times according to DP spec */
  239. for (try = 0; try < 5; try++) {
  240. /* Load the send data into the aux channel data registers */
  241. for (i = 0; i < send_bytes; i += 4) {
  242. uint32_t d = pack_aux(send + i, send_bytes - i);
  243. I915_WRITE(ch_data + i, d);
  244. }
  245. ctl = (DP_AUX_CH_CTL_SEND_BUSY |
  246. DP_AUX_CH_CTL_TIME_OUT_400us |
  247. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  248. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  249. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  250. DP_AUX_CH_CTL_DONE |
  251. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  252. DP_AUX_CH_CTL_RECEIVE_ERROR);
  253. /* Send the command and wait for it to complete */
  254. I915_WRITE(ch_ctl, ctl);
  255. (void) I915_READ(ch_ctl);
  256. for (;;) {
  257. udelay(100);
  258. status = I915_READ(ch_ctl);
  259. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  260. break;
  261. }
  262. /* Clear done status and any errors */
  263. I915_WRITE(ch_ctl, (status |
  264. DP_AUX_CH_CTL_DONE |
  265. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  266. DP_AUX_CH_CTL_RECEIVE_ERROR));
  267. (void) I915_READ(ch_ctl);
  268. if ((status & DP_AUX_CH_CTL_TIME_OUT_ERROR) == 0)
  269. break;
  270. }
  271. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  272. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  273. return -EBUSY;
  274. }
  275. /* Check for timeout or receive error.
  276. * Timeouts occur when the sink is not connected
  277. */
  278. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  279. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  280. return -EIO;
  281. }
  282. /* Timeouts occur when the device isn't connected, so they're
  283. * "normal" -- don't fill the kernel log with these */
  284. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  285. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  286. return -ETIMEDOUT;
  287. }
  288. /* Unload any bytes sent back from the other side */
  289. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  290. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  291. if (recv_bytes > recv_size)
  292. recv_bytes = recv_size;
  293. for (i = 0; i < recv_bytes; i += 4) {
  294. uint32_t d = I915_READ(ch_data + i);
  295. unpack_aux(d, recv + i, recv_bytes - i);
  296. }
  297. return recv_bytes;
  298. }
  299. /* Write data to the aux channel in native mode */
  300. static int
  301. intel_dp_aux_native_write(struct intel_encoder *intel_encoder,
  302. uint16_t address, uint8_t *send, int send_bytes)
  303. {
  304. int ret;
  305. uint8_t msg[20];
  306. int msg_bytes;
  307. uint8_t ack;
  308. if (send_bytes > 16)
  309. return -1;
  310. msg[0] = AUX_NATIVE_WRITE << 4;
  311. msg[1] = address >> 8;
  312. msg[2] = address & 0xff;
  313. msg[3] = send_bytes - 1;
  314. memcpy(&msg[4], send, send_bytes);
  315. msg_bytes = send_bytes + 4;
  316. for (;;) {
  317. ret = intel_dp_aux_ch(intel_encoder, msg, msg_bytes, &ack, 1);
  318. if (ret < 0)
  319. return ret;
  320. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  321. break;
  322. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  323. udelay(100);
  324. else
  325. return -EIO;
  326. }
  327. return send_bytes;
  328. }
  329. /* Write a single byte to the aux channel in native mode */
  330. static int
  331. intel_dp_aux_native_write_1(struct intel_encoder *intel_encoder,
  332. uint16_t address, uint8_t byte)
  333. {
  334. return intel_dp_aux_native_write(intel_encoder, address, &byte, 1);
  335. }
  336. /* read bytes from a native aux channel */
  337. static int
  338. intel_dp_aux_native_read(struct intel_encoder *intel_encoder,
  339. uint16_t address, uint8_t *recv, int recv_bytes)
  340. {
  341. uint8_t msg[4];
  342. int msg_bytes;
  343. uint8_t reply[20];
  344. int reply_bytes;
  345. uint8_t ack;
  346. int ret;
  347. msg[0] = AUX_NATIVE_READ << 4;
  348. msg[1] = address >> 8;
  349. msg[2] = address & 0xff;
  350. msg[3] = recv_bytes - 1;
  351. msg_bytes = 4;
  352. reply_bytes = recv_bytes + 1;
  353. for (;;) {
  354. ret = intel_dp_aux_ch(intel_encoder, msg, msg_bytes,
  355. reply, reply_bytes);
  356. if (ret == 0)
  357. return -EPROTO;
  358. if (ret < 0)
  359. return ret;
  360. ack = reply[0];
  361. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  362. memcpy(recv, reply + 1, ret - 1);
  363. return ret - 1;
  364. }
  365. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  366. udelay(100);
  367. else
  368. return -EIO;
  369. }
  370. }
  371. static int
  372. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  373. uint8_t write_byte, uint8_t *read_byte)
  374. {
  375. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  376. struct intel_dp_priv *dp_priv = container_of(adapter,
  377. struct intel_dp_priv,
  378. adapter);
  379. struct intel_encoder *intel_encoder = dp_priv->intel_encoder;
  380. uint16_t address = algo_data->address;
  381. uint8_t msg[5];
  382. uint8_t reply[2];
  383. int msg_bytes;
  384. int reply_bytes;
  385. int ret;
  386. /* Set up the command byte */
  387. if (mode & MODE_I2C_READ)
  388. msg[0] = AUX_I2C_READ << 4;
  389. else
  390. msg[0] = AUX_I2C_WRITE << 4;
  391. if (!(mode & MODE_I2C_STOP))
  392. msg[0] |= AUX_I2C_MOT << 4;
  393. msg[1] = address >> 8;
  394. msg[2] = address;
  395. switch (mode) {
  396. case MODE_I2C_WRITE:
  397. msg[3] = 0;
  398. msg[4] = write_byte;
  399. msg_bytes = 5;
  400. reply_bytes = 1;
  401. break;
  402. case MODE_I2C_READ:
  403. msg[3] = 0;
  404. msg_bytes = 4;
  405. reply_bytes = 2;
  406. break;
  407. default:
  408. msg_bytes = 3;
  409. reply_bytes = 1;
  410. break;
  411. }
  412. for (;;) {
  413. ret = intel_dp_aux_ch(intel_encoder,
  414. msg, msg_bytes,
  415. reply, reply_bytes);
  416. if (ret < 0) {
  417. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  418. return ret;
  419. }
  420. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  421. case AUX_I2C_REPLY_ACK:
  422. if (mode == MODE_I2C_READ) {
  423. *read_byte = reply[1];
  424. }
  425. return reply_bytes - 1;
  426. case AUX_I2C_REPLY_NACK:
  427. DRM_DEBUG_KMS("aux_ch nack\n");
  428. return -EREMOTEIO;
  429. case AUX_I2C_REPLY_DEFER:
  430. DRM_DEBUG_KMS("aux_ch defer\n");
  431. udelay(100);
  432. break;
  433. default:
  434. DRM_ERROR("aux_ch invalid reply 0x%02x\n", reply[0]);
  435. return -EREMOTEIO;
  436. }
  437. }
  438. }
  439. static int
  440. intel_dp_i2c_init(struct intel_encoder *intel_encoder,
  441. struct intel_connector *intel_connector, const char *name)
  442. {
  443. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  444. DRM_DEBUG_KMS("i2c_init %s\n", name);
  445. dp_priv->algo.running = false;
  446. dp_priv->algo.address = 0;
  447. dp_priv->algo.aux_ch = intel_dp_i2c_aux_ch;
  448. memset(&dp_priv->adapter, '\0', sizeof (dp_priv->adapter));
  449. dp_priv->adapter.owner = THIS_MODULE;
  450. dp_priv->adapter.class = I2C_CLASS_DDC;
  451. strncpy (dp_priv->adapter.name, name, sizeof(dp_priv->adapter.name) - 1);
  452. dp_priv->adapter.name[sizeof(dp_priv->adapter.name) - 1] = '\0';
  453. dp_priv->adapter.algo_data = &dp_priv->algo;
  454. dp_priv->adapter.dev.parent = &intel_connector->base.kdev;
  455. return i2c_dp_aux_add_bus(&dp_priv->adapter);
  456. }
  457. static bool
  458. intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
  459. struct drm_display_mode *adjusted_mode)
  460. {
  461. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  462. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  463. struct drm_device *dev = encoder->dev;
  464. struct drm_i915_private *dev_priv = dev->dev_private;
  465. int lane_count, clock;
  466. int max_lane_count = intel_dp_max_lane_count(intel_encoder);
  467. int max_clock = intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
  468. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  469. if ((IS_eDP(intel_encoder) || IS_PCH_eDP(dp_priv)) &&
  470. dev_priv->panel_fixed_mode) {
  471. struct drm_display_mode *fixed_mode = dev_priv->panel_fixed_mode;
  472. adjusted_mode->hdisplay = fixed_mode->hdisplay;
  473. adjusted_mode->hsync_start = fixed_mode->hsync_start;
  474. adjusted_mode->hsync_end = fixed_mode->hsync_end;
  475. adjusted_mode->htotal = fixed_mode->htotal;
  476. adjusted_mode->vdisplay = fixed_mode->vdisplay;
  477. adjusted_mode->vsync_start = fixed_mode->vsync_start;
  478. adjusted_mode->vsync_end = fixed_mode->vsync_end;
  479. adjusted_mode->vtotal = fixed_mode->vtotal;
  480. adjusted_mode->clock = fixed_mode->clock;
  481. drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V);
  482. /*
  483. * the mode->clock is used to calculate the Data&Link M/N
  484. * of the pipe. For the eDP the fixed clock should be used.
  485. */
  486. mode->clock = dev_priv->panel_fixed_mode->clock;
  487. }
  488. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  489. for (clock = 0; clock <= max_clock; clock++) {
  490. int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
  491. if (intel_dp_link_required(encoder->dev, intel_encoder, mode->clock)
  492. <= link_avail) {
  493. dp_priv->link_bw = bws[clock];
  494. dp_priv->lane_count = lane_count;
  495. adjusted_mode->clock = intel_dp_link_clock(dp_priv->link_bw);
  496. DRM_DEBUG_KMS("Display port link bw %02x lane "
  497. "count %d clock %d\n",
  498. dp_priv->link_bw, dp_priv->lane_count,
  499. adjusted_mode->clock);
  500. return true;
  501. }
  502. }
  503. }
  504. if (IS_eDP(intel_encoder) || IS_PCH_eDP(dp_priv)) {
  505. /* okay we failed just pick the highest */
  506. dp_priv->lane_count = max_lane_count;
  507. dp_priv->link_bw = bws[max_clock];
  508. adjusted_mode->clock = intel_dp_link_clock(dp_priv->link_bw);
  509. DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
  510. "count %d clock %d\n",
  511. dp_priv->link_bw, dp_priv->lane_count,
  512. adjusted_mode->clock);
  513. return true;
  514. }
  515. return false;
  516. }
  517. struct intel_dp_m_n {
  518. uint32_t tu;
  519. uint32_t gmch_m;
  520. uint32_t gmch_n;
  521. uint32_t link_m;
  522. uint32_t link_n;
  523. };
  524. static void
  525. intel_reduce_ratio(uint32_t *num, uint32_t *den)
  526. {
  527. while (*num > 0xffffff || *den > 0xffffff) {
  528. *num >>= 1;
  529. *den >>= 1;
  530. }
  531. }
  532. static void
  533. intel_dp_compute_m_n(int bpp,
  534. int nlanes,
  535. int pixel_clock,
  536. int link_clock,
  537. struct intel_dp_m_n *m_n)
  538. {
  539. m_n->tu = 64;
  540. m_n->gmch_m = (pixel_clock * bpp) >> 3;
  541. m_n->gmch_n = link_clock * nlanes;
  542. intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  543. m_n->link_m = pixel_clock;
  544. m_n->link_n = link_clock;
  545. intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  546. }
  547. bool intel_pch_has_edp(struct drm_crtc *crtc)
  548. {
  549. struct drm_device *dev = crtc->dev;
  550. struct drm_mode_config *mode_config = &dev->mode_config;
  551. struct drm_encoder *encoder;
  552. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  553. struct intel_encoder *intel_encoder;
  554. struct intel_dp_priv *dp_priv;
  555. if (!encoder || encoder->crtc != crtc)
  556. continue;
  557. intel_encoder = enc_to_intel_encoder(encoder);
  558. dp_priv = intel_encoder->dev_priv;
  559. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT)
  560. return dp_priv->is_pch_edp;
  561. }
  562. return false;
  563. }
  564. void
  565. intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
  566. struct drm_display_mode *adjusted_mode)
  567. {
  568. struct drm_device *dev = crtc->dev;
  569. struct drm_mode_config *mode_config = &dev->mode_config;
  570. struct drm_encoder *encoder;
  571. struct drm_i915_private *dev_priv = dev->dev_private;
  572. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  573. int lane_count = 4, bpp = 24;
  574. struct intel_dp_m_n m_n;
  575. /*
  576. * Find the lane count in the intel_encoder private
  577. */
  578. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  579. struct intel_encoder *intel_encoder;
  580. struct intel_dp_priv *dp_priv;
  581. if (encoder->crtc != crtc)
  582. continue;
  583. intel_encoder = enc_to_intel_encoder(encoder);
  584. dp_priv = intel_encoder->dev_priv;
  585. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
  586. lane_count = dp_priv->lane_count;
  587. if (IS_PCH_eDP(dp_priv))
  588. bpp = dev_priv->edp_bpp;
  589. break;
  590. }
  591. }
  592. /*
  593. * Compute the GMCH and Link ratios. The '3' here is
  594. * the number of bytes_per_pixel post-LUT, which we always
  595. * set up for 8-bits of R/G/B, or 3 bytes total.
  596. */
  597. intel_dp_compute_m_n(bpp, lane_count,
  598. mode->clock, adjusted_mode->clock, &m_n);
  599. if (HAS_PCH_SPLIT(dev)) {
  600. if (intel_crtc->pipe == 0) {
  601. I915_WRITE(TRANSA_DATA_M1,
  602. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  603. m_n.gmch_m);
  604. I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
  605. I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
  606. I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
  607. } else {
  608. I915_WRITE(TRANSB_DATA_M1,
  609. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  610. m_n.gmch_m);
  611. I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
  612. I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
  613. I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
  614. }
  615. } else {
  616. if (intel_crtc->pipe == 0) {
  617. I915_WRITE(PIPEA_GMCH_DATA_M,
  618. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  619. m_n.gmch_m);
  620. I915_WRITE(PIPEA_GMCH_DATA_N,
  621. m_n.gmch_n);
  622. I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
  623. I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
  624. } else {
  625. I915_WRITE(PIPEB_GMCH_DATA_M,
  626. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  627. m_n.gmch_m);
  628. I915_WRITE(PIPEB_GMCH_DATA_N,
  629. m_n.gmch_n);
  630. I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
  631. I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
  632. }
  633. }
  634. }
  635. static void
  636. intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
  637. struct drm_display_mode *adjusted_mode)
  638. {
  639. struct drm_device *dev = encoder->dev;
  640. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  641. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  642. struct drm_crtc *crtc = intel_encoder->enc.crtc;
  643. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  644. dp_priv->DP = (DP_VOLTAGE_0_4 |
  645. DP_PRE_EMPHASIS_0);
  646. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  647. dp_priv->DP |= DP_SYNC_HS_HIGH;
  648. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  649. dp_priv->DP |= DP_SYNC_VS_HIGH;
  650. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
  651. dp_priv->DP |= DP_LINK_TRAIN_OFF_CPT;
  652. else
  653. dp_priv->DP |= DP_LINK_TRAIN_OFF;
  654. switch (dp_priv->lane_count) {
  655. case 1:
  656. dp_priv->DP |= DP_PORT_WIDTH_1;
  657. break;
  658. case 2:
  659. dp_priv->DP |= DP_PORT_WIDTH_2;
  660. break;
  661. case 4:
  662. dp_priv->DP |= DP_PORT_WIDTH_4;
  663. break;
  664. }
  665. if (dp_priv->has_audio)
  666. dp_priv->DP |= DP_AUDIO_OUTPUT_ENABLE;
  667. memset(dp_priv->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  668. dp_priv->link_configuration[0] = dp_priv->link_bw;
  669. dp_priv->link_configuration[1] = dp_priv->lane_count;
  670. /*
  671. * Check for DPCD version > 1.1 and enhanced framing support
  672. */
  673. if (dp_priv->dpcd[0] >= 0x11 && (dp_priv->dpcd[2] & DP_ENHANCED_FRAME_CAP)) {
  674. dp_priv->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  675. dp_priv->DP |= DP_ENHANCED_FRAMING;
  676. }
  677. /* CPT DP's pipe select is decided in TRANS_DP_CTL */
  678. if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
  679. dp_priv->DP |= DP_PIPEB_SELECT;
  680. if (IS_eDP(intel_encoder)) {
  681. /* don't miss out required setting for eDP */
  682. dp_priv->DP |= DP_PLL_ENABLE;
  683. if (adjusted_mode->clock < 200000)
  684. dp_priv->DP |= DP_PLL_FREQ_160MHZ;
  685. else
  686. dp_priv->DP |= DP_PLL_FREQ_270MHZ;
  687. }
  688. }
  689. static void ironlake_edp_panel_on (struct drm_device *dev)
  690. {
  691. struct drm_i915_private *dev_priv = dev->dev_private;
  692. unsigned long timeout = jiffies + msecs_to_jiffies(5000);
  693. u32 pp, pp_status;
  694. pp_status = I915_READ(PCH_PP_STATUS);
  695. if (pp_status & PP_ON)
  696. return;
  697. pp = I915_READ(PCH_PP_CONTROL);
  698. pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
  699. I915_WRITE(PCH_PP_CONTROL, pp);
  700. do {
  701. pp_status = I915_READ(PCH_PP_STATUS);
  702. } while (((pp_status & PP_ON) == 0) && !time_after(jiffies, timeout));
  703. if (time_after(jiffies, timeout))
  704. DRM_DEBUG_KMS("panel on wait timed out: 0x%08x\n", pp_status);
  705. pp &= ~(PANEL_UNLOCK_REGS | EDP_FORCE_VDD);
  706. I915_WRITE(PCH_PP_CONTROL, pp);
  707. }
  708. static void ironlake_edp_panel_off (struct drm_device *dev)
  709. {
  710. struct drm_i915_private *dev_priv = dev->dev_private;
  711. unsigned long timeout = jiffies + msecs_to_jiffies(5000);
  712. u32 pp, pp_status;
  713. pp = I915_READ(PCH_PP_CONTROL);
  714. pp &= ~POWER_TARGET_ON;
  715. I915_WRITE(PCH_PP_CONTROL, pp);
  716. do {
  717. pp_status = I915_READ(PCH_PP_STATUS);
  718. } while ((pp_status & PP_ON) && !time_after(jiffies, timeout));
  719. if (time_after(jiffies, timeout))
  720. DRM_DEBUG_KMS("panel off wait timed out\n");
  721. /* Make sure VDD is enabled so DP AUX will work */
  722. pp |= EDP_FORCE_VDD;
  723. I915_WRITE(PCH_PP_CONTROL, pp);
  724. }
  725. static void ironlake_edp_backlight_on (struct drm_device *dev)
  726. {
  727. struct drm_i915_private *dev_priv = dev->dev_private;
  728. u32 pp;
  729. DRM_DEBUG_KMS("\n");
  730. pp = I915_READ(PCH_PP_CONTROL);
  731. pp |= EDP_BLC_ENABLE;
  732. I915_WRITE(PCH_PP_CONTROL, pp);
  733. }
  734. static void ironlake_edp_backlight_off (struct drm_device *dev)
  735. {
  736. struct drm_i915_private *dev_priv = dev->dev_private;
  737. u32 pp;
  738. DRM_DEBUG_KMS("\n");
  739. pp = I915_READ(PCH_PP_CONTROL);
  740. pp &= ~EDP_BLC_ENABLE;
  741. I915_WRITE(PCH_PP_CONTROL, pp);
  742. }
  743. static void
  744. intel_dp_dpms(struct drm_encoder *encoder, int mode)
  745. {
  746. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  747. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  748. struct drm_device *dev = encoder->dev;
  749. struct drm_i915_private *dev_priv = dev->dev_private;
  750. uint32_t dp_reg = I915_READ(dp_priv->output_reg);
  751. if (mode != DRM_MODE_DPMS_ON) {
  752. if (dp_reg & DP_PORT_EN) {
  753. intel_dp_link_down(intel_encoder, dp_priv->DP);
  754. if (IS_eDP(intel_encoder) || IS_PCH_eDP(dp_priv)) {
  755. ironlake_edp_backlight_off(dev);
  756. ironlake_edp_panel_off(dev);
  757. }
  758. }
  759. } else {
  760. if (!(dp_reg & DP_PORT_EN)) {
  761. intel_dp_link_train(intel_encoder, dp_priv->DP, dp_priv->link_configuration);
  762. if (IS_eDP(intel_encoder) || IS_PCH_eDP(dp_priv)) {
  763. ironlake_edp_panel_on(dev);
  764. ironlake_edp_backlight_on(dev);
  765. }
  766. }
  767. }
  768. dp_priv->dpms_mode = mode;
  769. }
  770. /*
  771. * Fetch AUX CH registers 0x202 - 0x207 which contain
  772. * link status information
  773. */
  774. static bool
  775. intel_dp_get_link_status(struct intel_encoder *intel_encoder,
  776. uint8_t link_status[DP_LINK_STATUS_SIZE])
  777. {
  778. int ret;
  779. ret = intel_dp_aux_native_read(intel_encoder,
  780. DP_LANE0_1_STATUS,
  781. link_status, DP_LINK_STATUS_SIZE);
  782. if (ret != DP_LINK_STATUS_SIZE)
  783. return false;
  784. return true;
  785. }
  786. static uint8_t
  787. intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  788. int r)
  789. {
  790. return link_status[r - DP_LANE0_1_STATUS];
  791. }
  792. static uint8_t
  793. intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
  794. int lane)
  795. {
  796. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  797. int s = ((lane & 1) ?
  798. DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
  799. DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
  800. uint8_t l = intel_dp_link_status(link_status, i);
  801. return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
  802. }
  803. static uint8_t
  804. intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
  805. int lane)
  806. {
  807. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  808. int s = ((lane & 1) ?
  809. DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
  810. DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
  811. uint8_t l = intel_dp_link_status(link_status, i);
  812. return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
  813. }
  814. #if 0
  815. static char *voltage_names[] = {
  816. "0.4V", "0.6V", "0.8V", "1.2V"
  817. };
  818. static char *pre_emph_names[] = {
  819. "0dB", "3.5dB", "6dB", "9.5dB"
  820. };
  821. static char *link_train_names[] = {
  822. "pattern 1", "pattern 2", "idle", "off"
  823. };
  824. #endif
  825. /*
  826. * These are source-specific values; current Intel hardware supports
  827. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  828. */
  829. #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
  830. static uint8_t
  831. intel_dp_pre_emphasis_max(uint8_t voltage_swing)
  832. {
  833. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  834. case DP_TRAIN_VOLTAGE_SWING_400:
  835. return DP_TRAIN_PRE_EMPHASIS_6;
  836. case DP_TRAIN_VOLTAGE_SWING_600:
  837. return DP_TRAIN_PRE_EMPHASIS_6;
  838. case DP_TRAIN_VOLTAGE_SWING_800:
  839. return DP_TRAIN_PRE_EMPHASIS_3_5;
  840. case DP_TRAIN_VOLTAGE_SWING_1200:
  841. default:
  842. return DP_TRAIN_PRE_EMPHASIS_0;
  843. }
  844. }
  845. static void
  846. intel_get_adjust_train(struct intel_encoder *intel_encoder,
  847. uint8_t link_status[DP_LINK_STATUS_SIZE],
  848. int lane_count,
  849. uint8_t train_set[4])
  850. {
  851. uint8_t v = 0;
  852. uint8_t p = 0;
  853. int lane;
  854. for (lane = 0; lane < lane_count; lane++) {
  855. uint8_t this_v = intel_get_adjust_request_voltage(link_status, lane);
  856. uint8_t this_p = intel_get_adjust_request_pre_emphasis(link_status, lane);
  857. if (this_v > v)
  858. v = this_v;
  859. if (this_p > p)
  860. p = this_p;
  861. }
  862. if (v >= I830_DP_VOLTAGE_MAX)
  863. v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
  864. if (p >= intel_dp_pre_emphasis_max(v))
  865. p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  866. for (lane = 0; lane < 4; lane++)
  867. train_set[lane] = v | p;
  868. }
  869. static uint32_t
  870. intel_dp_signal_levels(uint8_t train_set, int lane_count)
  871. {
  872. uint32_t signal_levels = 0;
  873. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  874. case DP_TRAIN_VOLTAGE_SWING_400:
  875. default:
  876. signal_levels |= DP_VOLTAGE_0_4;
  877. break;
  878. case DP_TRAIN_VOLTAGE_SWING_600:
  879. signal_levels |= DP_VOLTAGE_0_6;
  880. break;
  881. case DP_TRAIN_VOLTAGE_SWING_800:
  882. signal_levels |= DP_VOLTAGE_0_8;
  883. break;
  884. case DP_TRAIN_VOLTAGE_SWING_1200:
  885. signal_levels |= DP_VOLTAGE_1_2;
  886. break;
  887. }
  888. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  889. case DP_TRAIN_PRE_EMPHASIS_0:
  890. default:
  891. signal_levels |= DP_PRE_EMPHASIS_0;
  892. break;
  893. case DP_TRAIN_PRE_EMPHASIS_3_5:
  894. signal_levels |= DP_PRE_EMPHASIS_3_5;
  895. break;
  896. case DP_TRAIN_PRE_EMPHASIS_6:
  897. signal_levels |= DP_PRE_EMPHASIS_6;
  898. break;
  899. case DP_TRAIN_PRE_EMPHASIS_9_5:
  900. signal_levels |= DP_PRE_EMPHASIS_9_5;
  901. break;
  902. }
  903. return signal_levels;
  904. }
  905. /* Gen6's DP voltage swing and pre-emphasis control */
  906. static uint32_t
  907. intel_gen6_edp_signal_levels(uint8_t train_set)
  908. {
  909. switch (train_set & (DP_TRAIN_VOLTAGE_SWING_MASK|DP_TRAIN_PRE_EMPHASIS_MASK)) {
  910. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  911. return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
  912. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  913. return EDP_LINK_TRAIN_400MV_6DB_SNB_B;
  914. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  915. return EDP_LINK_TRAIN_600MV_3_5DB_SNB_B;
  916. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  917. return EDP_LINK_TRAIN_800MV_0DB_SNB_B;
  918. default:
  919. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level\n");
  920. return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
  921. }
  922. }
  923. static uint8_t
  924. intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  925. int lane)
  926. {
  927. int i = DP_LANE0_1_STATUS + (lane >> 1);
  928. int s = (lane & 1) * 4;
  929. uint8_t l = intel_dp_link_status(link_status, i);
  930. return (l >> s) & 0xf;
  931. }
  932. /* Check for clock recovery is done on all channels */
  933. static bool
  934. intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  935. {
  936. int lane;
  937. uint8_t lane_status;
  938. for (lane = 0; lane < lane_count; lane++) {
  939. lane_status = intel_get_lane_status(link_status, lane);
  940. if ((lane_status & DP_LANE_CR_DONE) == 0)
  941. return false;
  942. }
  943. return true;
  944. }
  945. /* Check to see if channel eq is done on all channels */
  946. #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
  947. DP_LANE_CHANNEL_EQ_DONE|\
  948. DP_LANE_SYMBOL_LOCKED)
  949. static bool
  950. intel_channel_eq_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  951. {
  952. uint8_t lane_align;
  953. uint8_t lane_status;
  954. int lane;
  955. lane_align = intel_dp_link_status(link_status,
  956. DP_LANE_ALIGN_STATUS_UPDATED);
  957. if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
  958. return false;
  959. for (lane = 0; lane < lane_count; lane++) {
  960. lane_status = intel_get_lane_status(link_status, lane);
  961. if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
  962. return false;
  963. }
  964. return true;
  965. }
  966. static bool
  967. intel_dp_set_link_train(struct intel_encoder *intel_encoder,
  968. uint32_t dp_reg_value,
  969. uint8_t dp_train_pat,
  970. uint8_t train_set[4],
  971. bool first)
  972. {
  973. struct drm_device *dev = intel_encoder->enc.dev;
  974. struct drm_i915_private *dev_priv = dev->dev_private;
  975. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  976. int ret;
  977. I915_WRITE(dp_priv->output_reg, dp_reg_value);
  978. POSTING_READ(dp_priv->output_reg);
  979. if (first)
  980. intel_wait_for_vblank(dev);
  981. intel_dp_aux_native_write_1(intel_encoder,
  982. DP_TRAINING_PATTERN_SET,
  983. dp_train_pat);
  984. ret = intel_dp_aux_native_write(intel_encoder,
  985. DP_TRAINING_LANE0_SET, train_set, 4);
  986. if (ret != 4)
  987. return false;
  988. return true;
  989. }
  990. static void
  991. intel_dp_link_train(struct intel_encoder *intel_encoder, uint32_t DP,
  992. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE])
  993. {
  994. struct drm_device *dev = intel_encoder->enc.dev;
  995. struct drm_i915_private *dev_priv = dev->dev_private;
  996. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  997. uint8_t train_set[4];
  998. uint8_t link_status[DP_LINK_STATUS_SIZE];
  999. int i;
  1000. uint8_t voltage;
  1001. bool clock_recovery = false;
  1002. bool channel_eq = false;
  1003. bool first = true;
  1004. int tries;
  1005. u32 reg;
  1006. /* Write the link configuration data */
  1007. intel_dp_aux_native_write(intel_encoder, DP_LINK_BW_SET,
  1008. link_configuration, DP_LINK_CONFIGURATION_SIZE);
  1009. DP |= DP_PORT_EN;
  1010. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
  1011. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1012. else
  1013. DP &= ~DP_LINK_TRAIN_MASK;
  1014. memset(train_set, 0, 4);
  1015. voltage = 0xff;
  1016. tries = 0;
  1017. clock_recovery = false;
  1018. for (;;) {
  1019. /* Use train_set[0] to set the voltage and pre emphasis values */
  1020. uint32_t signal_levels;
  1021. if (IS_GEN6(dev) && IS_eDP(intel_encoder)) {
  1022. signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
  1023. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1024. } else {
  1025. signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
  1026. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1027. }
  1028. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
  1029. reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
  1030. else
  1031. reg = DP | DP_LINK_TRAIN_PAT_1;
  1032. if (!intel_dp_set_link_train(intel_encoder, reg,
  1033. DP_TRAINING_PATTERN_1, train_set, first))
  1034. break;
  1035. first = false;
  1036. /* Set training pattern 1 */
  1037. udelay(100);
  1038. if (!intel_dp_get_link_status(intel_encoder, link_status))
  1039. break;
  1040. if (intel_clock_recovery_ok(link_status, dp_priv->lane_count)) {
  1041. clock_recovery = true;
  1042. break;
  1043. }
  1044. /* Check to see if we've tried the max voltage */
  1045. for (i = 0; i < dp_priv->lane_count; i++)
  1046. if ((train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  1047. break;
  1048. if (i == dp_priv->lane_count)
  1049. break;
  1050. /* Check to see if we've tried the same voltage 5 times */
  1051. if ((train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  1052. ++tries;
  1053. if (tries == 5)
  1054. break;
  1055. } else
  1056. tries = 0;
  1057. voltage = train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  1058. /* Compute new train_set as requested by target */
  1059. intel_get_adjust_train(intel_encoder, link_status, dp_priv->lane_count, train_set);
  1060. }
  1061. /* channel equalization */
  1062. tries = 0;
  1063. channel_eq = false;
  1064. for (;;) {
  1065. /* Use train_set[0] to set the voltage and pre emphasis values */
  1066. uint32_t signal_levels;
  1067. if (IS_GEN6(dev) && IS_eDP(intel_encoder)) {
  1068. signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
  1069. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1070. } else {
  1071. signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
  1072. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1073. }
  1074. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
  1075. reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
  1076. else
  1077. reg = DP | DP_LINK_TRAIN_PAT_2;
  1078. /* channel eq pattern */
  1079. if (!intel_dp_set_link_train(intel_encoder, reg,
  1080. DP_TRAINING_PATTERN_2, train_set,
  1081. false))
  1082. break;
  1083. udelay(400);
  1084. if (!intel_dp_get_link_status(intel_encoder, link_status))
  1085. break;
  1086. if (intel_channel_eq_ok(link_status, dp_priv->lane_count)) {
  1087. channel_eq = true;
  1088. break;
  1089. }
  1090. /* Try 5 times */
  1091. if (tries > 5)
  1092. break;
  1093. /* Compute new train_set as requested by target */
  1094. intel_get_adjust_train(intel_encoder, link_status, dp_priv->lane_count, train_set);
  1095. ++tries;
  1096. }
  1097. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
  1098. reg = DP | DP_LINK_TRAIN_OFF_CPT;
  1099. else
  1100. reg = DP | DP_LINK_TRAIN_OFF;
  1101. I915_WRITE(dp_priv->output_reg, reg);
  1102. POSTING_READ(dp_priv->output_reg);
  1103. intel_dp_aux_native_write_1(intel_encoder,
  1104. DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
  1105. }
  1106. static void
  1107. intel_dp_link_down(struct intel_encoder *intel_encoder, uint32_t DP)
  1108. {
  1109. struct drm_device *dev = intel_encoder->enc.dev;
  1110. struct drm_i915_private *dev_priv = dev->dev_private;
  1111. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  1112. DRM_DEBUG_KMS("\n");
  1113. if (IS_eDP(intel_encoder)) {
  1114. DP &= ~DP_PLL_ENABLE;
  1115. I915_WRITE(dp_priv->output_reg, DP);
  1116. POSTING_READ(dp_priv->output_reg);
  1117. udelay(100);
  1118. }
  1119. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder)) {
  1120. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1121. I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  1122. POSTING_READ(dp_priv->output_reg);
  1123. } else {
  1124. DP &= ~DP_LINK_TRAIN_MASK;
  1125. I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  1126. POSTING_READ(dp_priv->output_reg);
  1127. }
  1128. udelay(17000);
  1129. if (IS_eDP(intel_encoder))
  1130. DP |= DP_LINK_TRAIN_OFF;
  1131. I915_WRITE(dp_priv->output_reg, DP & ~DP_PORT_EN);
  1132. POSTING_READ(dp_priv->output_reg);
  1133. }
  1134. /*
  1135. * According to DP spec
  1136. * 5.1.2:
  1137. * 1. Read DPCD
  1138. * 2. Configure link according to Receiver Capabilities
  1139. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  1140. * 4. Check link status on receipt of hot-plug interrupt
  1141. */
  1142. static void
  1143. intel_dp_check_link_status(struct intel_encoder *intel_encoder)
  1144. {
  1145. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  1146. uint8_t link_status[DP_LINK_STATUS_SIZE];
  1147. if (!intel_encoder->enc.crtc)
  1148. return;
  1149. if (!intel_dp_get_link_status(intel_encoder, link_status)) {
  1150. intel_dp_link_down(intel_encoder, dp_priv->DP);
  1151. return;
  1152. }
  1153. if (!intel_channel_eq_ok(link_status, dp_priv->lane_count))
  1154. intel_dp_link_train(intel_encoder, dp_priv->DP, dp_priv->link_configuration);
  1155. }
  1156. static enum drm_connector_status
  1157. ironlake_dp_detect(struct drm_connector *connector)
  1158. {
  1159. struct drm_encoder *encoder = intel_attached_encoder(connector);
  1160. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  1161. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  1162. enum drm_connector_status status;
  1163. status = connector_status_disconnected;
  1164. if (intel_dp_aux_native_read(intel_encoder,
  1165. 0x000, dp_priv->dpcd,
  1166. sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
  1167. {
  1168. if (dp_priv->dpcd[0] != 0)
  1169. status = connector_status_connected;
  1170. }
  1171. DRM_DEBUG_KMS("DPCD: %hx%hx%hx%hx\n", dp_priv->dpcd[0],
  1172. dp_priv->dpcd[1], dp_priv->dpcd[2], dp_priv->dpcd[3]);
  1173. return status;
  1174. }
  1175. /**
  1176. * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
  1177. *
  1178. * \return true if DP port is connected.
  1179. * \return false if DP port is disconnected.
  1180. */
  1181. static enum drm_connector_status
  1182. intel_dp_detect(struct drm_connector *connector)
  1183. {
  1184. struct drm_encoder *encoder = intel_attached_encoder(connector);
  1185. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  1186. struct drm_device *dev = intel_encoder->enc.dev;
  1187. struct drm_i915_private *dev_priv = dev->dev_private;
  1188. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  1189. uint32_t temp, bit;
  1190. enum drm_connector_status status;
  1191. dp_priv->has_audio = false;
  1192. if (HAS_PCH_SPLIT(dev))
  1193. return ironlake_dp_detect(connector);
  1194. switch (dp_priv->output_reg) {
  1195. case DP_B:
  1196. bit = DPB_HOTPLUG_INT_STATUS;
  1197. break;
  1198. case DP_C:
  1199. bit = DPC_HOTPLUG_INT_STATUS;
  1200. break;
  1201. case DP_D:
  1202. bit = DPD_HOTPLUG_INT_STATUS;
  1203. break;
  1204. default:
  1205. return connector_status_unknown;
  1206. }
  1207. temp = I915_READ(PORT_HOTPLUG_STAT);
  1208. if ((temp & bit) == 0)
  1209. return connector_status_disconnected;
  1210. status = connector_status_disconnected;
  1211. if (intel_dp_aux_native_read(intel_encoder,
  1212. 0x000, dp_priv->dpcd,
  1213. sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
  1214. {
  1215. if (dp_priv->dpcd[0] != 0)
  1216. status = connector_status_connected;
  1217. }
  1218. return status;
  1219. }
  1220. static int intel_dp_get_modes(struct drm_connector *connector)
  1221. {
  1222. struct drm_encoder *encoder = intel_attached_encoder(connector);
  1223. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  1224. struct drm_device *dev = intel_encoder->enc.dev;
  1225. struct drm_i915_private *dev_priv = dev->dev_private;
  1226. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  1227. int ret;
  1228. /* We should parse the EDID data and find out if it has an audio sink
  1229. */
  1230. ret = intel_ddc_get_modes(connector, intel_encoder->ddc_bus);
  1231. if (ret) {
  1232. if ((IS_eDP(intel_encoder) || IS_PCH_eDP(dp_priv)) &&
  1233. !dev_priv->panel_fixed_mode) {
  1234. struct drm_display_mode *newmode;
  1235. list_for_each_entry(newmode, &connector->probed_modes,
  1236. head) {
  1237. if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
  1238. dev_priv->panel_fixed_mode =
  1239. drm_mode_duplicate(dev, newmode);
  1240. break;
  1241. }
  1242. }
  1243. }
  1244. return ret;
  1245. }
  1246. /* if eDP has no EDID, try to use fixed panel mode from VBT */
  1247. if (IS_eDP(intel_encoder) || IS_PCH_eDP(dp_priv)) {
  1248. if (dev_priv->panel_fixed_mode != NULL) {
  1249. struct drm_display_mode *mode;
  1250. mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
  1251. drm_mode_probed_add(connector, mode);
  1252. return 1;
  1253. }
  1254. }
  1255. return 0;
  1256. }
  1257. static void
  1258. intel_dp_destroy (struct drm_connector *connector)
  1259. {
  1260. drm_sysfs_connector_remove(connector);
  1261. drm_connector_cleanup(connector);
  1262. kfree(connector);
  1263. }
  1264. static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
  1265. .dpms = intel_dp_dpms,
  1266. .mode_fixup = intel_dp_mode_fixup,
  1267. .prepare = intel_encoder_prepare,
  1268. .mode_set = intel_dp_mode_set,
  1269. .commit = intel_encoder_commit,
  1270. };
  1271. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  1272. .dpms = drm_helper_connector_dpms,
  1273. .detect = intel_dp_detect,
  1274. .fill_modes = drm_helper_probe_single_connector_modes,
  1275. .destroy = intel_dp_destroy,
  1276. };
  1277. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  1278. .get_modes = intel_dp_get_modes,
  1279. .mode_valid = intel_dp_mode_valid,
  1280. .best_encoder = intel_attached_encoder,
  1281. };
  1282. static void intel_dp_enc_destroy(struct drm_encoder *encoder)
  1283. {
  1284. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  1285. if (intel_encoder->i2c_bus)
  1286. intel_i2c_destroy(intel_encoder->i2c_bus);
  1287. drm_encoder_cleanup(encoder);
  1288. kfree(intel_encoder);
  1289. }
  1290. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  1291. .destroy = intel_dp_enc_destroy,
  1292. };
  1293. void
  1294. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  1295. {
  1296. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  1297. if (dp_priv->dpms_mode == DRM_MODE_DPMS_ON)
  1298. intel_dp_check_link_status(intel_encoder);
  1299. }
  1300. /* Return which DP Port should be selected for Transcoder DP control */
  1301. int
  1302. intel_trans_dp_port_sel (struct drm_crtc *crtc)
  1303. {
  1304. struct drm_device *dev = crtc->dev;
  1305. struct drm_mode_config *mode_config = &dev->mode_config;
  1306. struct drm_encoder *encoder;
  1307. struct intel_encoder *intel_encoder = NULL;
  1308. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  1309. if (encoder->crtc != crtc)
  1310. continue;
  1311. intel_encoder = enc_to_intel_encoder(encoder);
  1312. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
  1313. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  1314. return dp_priv->output_reg;
  1315. }
  1316. }
  1317. return -1;
  1318. }
  1319. /* check the VBT to see whether the eDP is on DP-D port */
  1320. bool intel_dpd_is_edp(struct drm_device *dev)
  1321. {
  1322. struct drm_i915_private *dev_priv = dev->dev_private;
  1323. struct child_device_config *p_child;
  1324. int i;
  1325. if (!dev_priv->child_dev_num)
  1326. return false;
  1327. for (i = 0; i < dev_priv->child_dev_num; i++) {
  1328. p_child = dev_priv->child_dev + i;
  1329. if (p_child->dvo_port == PORT_IDPD &&
  1330. p_child->device_type == DEVICE_TYPE_eDP)
  1331. return true;
  1332. }
  1333. return false;
  1334. }
  1335. void
  1336. intel_dp_init(struct drm_device *dev, int output_reg)
  1337. {
  1338. struct drm_i915_private *dev_priv = dev->dev_private;
  1339. struct drm_connector *connector;
  1340. struct intel_encoder *intel_encoder;
  1341. struct intel_connector *intel_connector;
  1342. struct intel_dp_priv *dp_priv;
  1343. const char *name = NULL;
  1344. int type;
  1345. intel_encoder = kcalloc(sizeof(struct intel_encoder) +
  1346. sizeof(struct intel_dp_priv), 1, GFP_KERNEL);
  1347. if (!intel_encoder)
  1348. return;
  1349. intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  1350. if (!intel_connector) {
  1351. kfree(intel_encoder);
  1352. return;
  1353. }
  1354. dp_priv = (struct intel_dp_priv *)(intel_encoder + 1);
  1355. if (HAS_PCH_SPLIT(dev) && (output_reg == PCH_DP_D))
  1356. if (intel_dpd_is_edp(dev))
  1357. dp_priv->is_pch_edp = true;
  1358. if (output_reg == DP_A || IS_PCH_eDP(dp_priv)) {
  1359. type = DRM_MODE_CONNECTOR_eDP;
  1360. intel_encoder->type = INTEL_OUTPUT_EDP;
  1361. } else {
  1362. type = DRM_MODE_CONNECTOR_DisplayPort;
  1363. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  1364. }
  1365. connector = &intel_connector->base;
  1366. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  1367. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  1368. connector->polled = DRM_CONNECTOR_POLL_HPD;
  1369. if (output_reg == DP_B || output_reg == PCH_DP_B)
  1370. intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
  1371. else if (output_reg == DP_C || output_reg == PCH_DP_C)
  1372. intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
  1373. else if (output_reg == DP_D || output_reg == PCH_DP_D)
  1374. intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
  1375. if (IS_eDP(intel_encoder))
  1376. intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
  1377. intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
  1378. connector->interlace_allowed = true;
  1379. connector->doublescan_allowed = 0;
  1380. dp_priv->intel_encoder = intel_encoder;
  1381. dp_priv->output_reg = output_reg;
  1382. dp_priv->has_audio = false;
  1383. dp_priv->dpms_mode = DRM_MODE_DPMS_ON;
  1384. intel_encoder->dev_priv = dp_priv;
  1385. drm_encoder_init(dev, &intel_encoder->enc, &intel_dp_enc_funcs,
  1386. DRM_MODE_ENCODER_TMDS);
  1387. drm_encoder_helper_add(&intel_encoder->enc, &intel_dp_helper_funcs);
  1388. drm_mode_connector_attach_encoder(&intel_connector->base,
  1389. &intel_encoder->enc);
  1390. drm_sysfs_connector_add(connector);
  1391. /* Set up the DDC bus. */
  1392. switch (output_reg) {
  1393. case DP_A:
  1394. name = "DPDDC-A";
  1395. break;
  1396. case DP_B:
  1397. case PCH_DP_B:
  1398. dev_priv->hotplug_supported_mask |=
  1399. HDMIB_HOTPLUG_INT_STATUS;
  1400. name = "DPDDC-B";
  1401. break;
  1402. case DP_C:
  1403. case PCH_DP_C:
  1404. dev_priv->hotplug_supported_mask |=
  1405. HDMIC_HOTPLUG_INT_STATUS;
  1406. name = "DPDDC-C";
  1407. break;
  1408. case DP_D:
  1409. case PCH_DP_D:
  1410. dev_priv->hotplug_supported_mask |=
  1411. HDMID_HOTPLUG_INT_STATUS;
  1412. name = "DPDDC-D";
  1413. break;
  1414. }
  1415. intel_dp_i2c_init(intel_encoder, intel_connector, name);
  1416. intel_encoder->ddc_bus = &dp_priv->adapter;
  1417. intel_encoder->hot_plug = intel_dp_hot_plug;
  1418. if (output_reg == DP_A || IS_PCH_eDP(dp_priv)) {
  1419. /* initialize panel mode from VBT if available for eDP */
  1420. if (dev_priv->lfp_lvds_vbt_mode) {
  1421. dev_priv->panel_fixed_mode =
  1422. drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
  1423. if (dev_priv->panel_fixed_mode) {
  1424. dev_priv->panel_fixed_mode->type |=
  1425. DRM_MODE_TYPE_PREFERRED;
  1426. }
  1427. }
  1428. }
  1429. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  1430. * 0xd. Failure to do so will result in spurious interrupts being
  1431. * generated on the port when a cable is not attached.
  1432. */
  1433. if (IS_G4X(dev) && !IS_GM45(dev)) {
  1434. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  1435. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  1436. }
  1437. }