mmu.c 104 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "irq.h"
  21. #include "mmu.h"
  22. #include "x86.h"
  23. #include "kvm_cache_regs.h"
  24. #include <linux/kvm_host.h>
  25. #include <linux/types.h>
  26. #include <linux/string.h>
  27. #include <linux/mm.h>
  28. #include <linux/highmem.h>
  29. #include <linux/module.h>
  30. #include <linux/swap.h>
  31. #include <linux/hugetlb.h>
  32. #include <linux/compiler.h>
  33. #include <linux/srcu.h>
  34. #include <linux/slab.h>
  35. #include <linux/uaccess.h>
  36. #include <asm/page.h>
  37. #include <asm/cmpxchg.h>
  38. #include <asm/io.h>
  39. #include <asm/vmx.h>
  40. /*
  41. * When setting this variable to true it enables Two-Dimensional-Paging
  42. * where the hardware walks 2 page tables:
  43. * 1. the guest-virtual to guest-physical
  44. * 2. while doing 1. it walks guest-physical to host-physical
  45. * If the hardware supports that we don't need to do shadow paging.
  46. */
  47. bool tdp_enabled = false;
  48. enum {
  49. AUDIT_PRE_PAGE_FAULT,
  50. AUDIT_POST_PAGE_FAULT,
  51. AUDIT_PRE_PTE_WRITE,
  52. AUDIT_POST_PTE_WRITE,
  53. AUDIT_PRE_SYNC,
  54. AUDIT_POST_SYNC
  55. };
  56. #undef MMU_DEBUG
  57. #ifdef MMU_DEBUG
  58. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  59. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  60. #else
  61. #define pgprintk(x...) do { } while (0)
  62. #define rmap_printk(x...) do { } while (0)
  63. #endif
  64. #ifdef MMU_DEBUG
  65. static bool dbg = 0;
  66. module_param(dbg, bool, 0644);
  67. #endif
  68. #ifndef MMU_DEBUG
  69. #define ASSERT(x) do { } while (0)
  70. #else
  71. #define ASSERT(x) \
  72. if (!(x)) { \
  73. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  74. __FILE__, __LINE__, #x); \
  75. }
  76. #endif
  77. #define PTE_PREFETCH_NUM 8
  78. #define PT_FIRST_AVAIL_BITS_SHIFT 10
  79. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  80. #define PT64_LEVEL_BITS 9
  81. #define PT64_LEVEL_SHIFT(level) \
  82. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  83. #define PT64_INDEX(address, level)\
  84. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  85. #define PT32_LEVEL_BITS 10
  86. #define PT32_LEVEL_SHIFT(level) \
  87. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  88. #define PT32_LVL_OFFSET_MASK(level) \
  89. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  90. * PT32_LEVEL_BITS))) - 1))
  91. #define PT32_INDEX(address, level)\
  92. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  93. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  94. #define PT64_DIR_BASE_ADDR_MASK \
  95. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  96. #define PT64_LVL_ADDR_MASK(level) \
  97. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  98. * PT64_LEVEL_BITS))) - 1))
  99. #define PT64_LVL_OFFSET_MASK(level) \
  100. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  101. * PT64_LEVEL_BITS))) - 1))
  102. #define PT32_BASE_ADDR_MASK PAGE_MASK
  103. #define PT32_DIR_BASE_ADDR_MASK \
  104. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  105. #define PT32_LVL_ADDR_MASK(level) \
  106. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  107. * PT32_LEVEL_BITS))) - 1))
  108. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  109. | PT64_NX_MASK)
  110. #define ACC_EXEC_MASK 1
  111. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  112. #define ACC_USER_MASK PT_USER_MASK
  113. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  114. #include <trace/events/kvm.h>
  115. #define CREATE_TRACE_POINTS
  116. #include "mmutrace.h"
  117. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  118. #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
  119. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  120. /* make pte_list_desc fit well in cache line */
  121. #define PTE_LIST_EXT 3
  122. struct pte_list_desc {
  123. u64 *sptes[PTE_LIST_EXT];
  124. struct pte_list_desc *more;
  125. };
  126. struct kvm_shadow_walk_iterator {
  127. u64 addr;
  128. hpa_t shadow_addr;
  129. u64 *sptep;
  130. int level;
  131. unsigned index;
  132. };
  133. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  134. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  135. shadow_walk_okay(&(_walker)); \
  136. shadow_walk_next(&(_walker)))
  137. #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
  138. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  139. shadow_walk_okay(&(_walker)) && \
  140. ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
  141. __shadow_walk_next(&(_walker), spte))
  142. static struct kmem_cache *pte_list_desc_cache;
  143. static struct kmem_cache *mmu_page_header_cache;
  144. static struct percpu_counter kvm_total_used_mmu_pages;
  145. static u64 __read_mostly shadow_nx_mask;
  146. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  147. static u64 __read_mostly shadow_user_mask;
  148. static u64 __read_mostly shadow_accessed_mask;
  149. static u64 __read_mostly shadow_dirty_mask;
  150. static u64 __read_mostly shadow_mmio_mask;
  151. static void mmu_spte_set(u64 *sptep, u64 spte);
  152. static void mmu_free_roots(struct kvm_vcpu *vcpu);
  153. void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
  154. {
  155. shadow_mmio_mask = mmio_mask;
  156. }
  157. EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
  158. static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
  159. {
  160. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  161. access &= ACC_WRITE_MASK | ACC_USER_MASK;
  162. sp->mmio_cached = true;
  163. trace_mark_mmio_spte(sptep, gfn, access);
  164. mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
  165. }
  166. static bool is_mmio_spte(u64 spte)
  167. {
  168. return (spte & shadow_mmio_mask) == shadow_mmio_mask;
  169. }
  170. static gfn_t get_mmio_spte_gfn(u64 spte)
  171. {
  172. return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
  173. }
  174. static unsigned get_mmio_spte_access(u64 spte)
  175. {
  176. return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
  177. }
  178. static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
  179. {
  180. if (unlikely(is_noslot_pfn(pfn))) {
  181. mark_mmio_spte(sptep, gfn, access);
  182. return true;
  183. }
  184. return false;
  185. }
  186. static inline u64 rsvd_bits(int s, int e)
  187. {
  188. return ((1ULL << (e - s + 1)) - 1) << s;
  189. }
  190. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  191. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  192. {
  193. shadow_user_mask = user_mask;
  194. shadow_accessed_mask = accessed_mask;
  195. shadow_dirty_mask = dirty_mask;
  196. shadow_nx_mask = nx_mask;
  197. shadow_x_mask = x_mask;
  198. }
  199. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  200. static int is_cpuid_PSE36(void)
  201. {
  202. return 1;
  203. }
  204. static int is_nx(struct kvm_vcpu *vcpu)
  205. {
  206. return vcpu->arch.efer & EFER_NX;
  207. }
  208. static int is_shadow_present_pte(u64 pte)
  209. {
  210. return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
  211. }
  212. static int is_large_pte(u64 pte)
  213. {
  214. return pte & PT_PAGE_SIZE_MASK;
  215. }
  216. static int is_dirty_gpte(unsigned long pte)
  217. {
  218. return pte & PT_DIRTY_MASK;
  219. }
  220. static int is_rmap_spte(u64 pte)
  221. {
  222. return is_shadow_present_pte(pte);
  223. }
  224. static int is_last_spte(u64 pte, int level)
  225. {
  226. if (level == PT_PAGE_TABLE_LEVEL)
  227. return 1;
  228. if (is_large_pte(pte))
  229. return 1;
  230. return 0;
  231. }
  232. static pfn_t spte_to_pfn(u64 pte)
  233. {
  234. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  235. }
  236. static gfn_t pse36_gfn_delta(u32 gpte)
  237. {
  238. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  239. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  240. }
  241. #ifdef CONFIG_X86_64
  242. static void __set_spte(u64 *sptep, u64 spte)
  243. {
  244. *sptep = spte;
  245. }
  246. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  247. {
  248. *sptep = spte;
  249. }
  250. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  251. {
  252. return xchg(sptep, spte);
  253. }
  254. static u64 __get_spte_lockless(u64 *sptep)
  255. {
  256. return ACCESS_ONCE(*sptep);
  257. }
  258. static bool __check_direct_spte_mmio_pf(u64 spte)
  259. {
  260. /* It is valid if the spte is zapped. */
  261. return spte == 0ull;
  262. }
  263. #else
  264. union split_spte {
  265. struct {
  266. u32 spte_low;
  267. u32 spte_high;
  268. };
  269. u64 spte;
  270. };
  271. static void count_spte_clear(u64 *sptep, u64 spte)
  272. {
  273. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  274. if (is_shadow_present_pte(spte))
  275. return;
  276. /* Ensure the spte is completely set before we increase the count */
  277. smp_wmb();
  278. sp->clear_spte_count++;
  279. }
  280. static void __set_spte(u64 *sptep, u64 spte)
  281. {
  282. union split_spte *ssptep, sspte;
  283. ssptep = (union split_spte *)sptep;
  284. sspte = (union split_spte)spte;
  285. ssptep->spte_high = sspte.spte_high;
  286. /*
  287. * If we map the spte from nonpresent to present, We should store
  288. * the high bits firstly, then set present bit, so cpu can not
  289. * fetch this spte while we are setting the spte.
  290. */
  291. smp_wmb();
  292. ssptep->spte_low = sspte.spte_low;
  293. }
  294. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  295. {
  296. union split_spte *ssptep, sspte;
  297. ssptep = (union split_spte *)sptep;
  298. sspte = (union split_spte)spte;
  299. ssptep->spte_low = sspte.spte_low;
  300. /*
  301. * If we map the spte from present to nonpresent, we should clear
  302. * present bit firstly to avoid vcpu fetch the old high bits.
  303. */
  304. smp_wmb();
  305. ssptep->spte_high = sspte.spte_high;
  306. count_spte_clear(sptep, spte);
  307. }
  308. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  309. {
  310. union split_spte *ssptep, sspte, orig;
  311. ssptep = (union split_spte *)sptep;
  312. sspte = (union split_spte)spte;
  313. /* xchg acts as a barrier before the setting of the high bits */
  314. orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
  315. orig.spte_high = ssptep->spte_high;
  316. ssptep->spte_high = sspte.spte_high;
  317. count_spte_clear(sptep, spte);
  318. return orig.spte;
  319. }
  320. /*
  321. * The idea using the light way get the spte on x86_32 guest is from
  322. * gup_get_pte(arch/x86/mm/gup.c).
  323. * The difference is we can not catch the spte tlb flush if we leave
  324. * guest mode, so we emulate it by increase clear_spte_count when spte
  325. * is cleared.
  326. */
  327. static u64 __get_spte_lockless(u64 *sptep)
  328. {
  329. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  330. union split_spte spte, *orig = (union split_spte *)sptep;
  331. int count;
  332. retry:
  333. count = sp->clear_spte_count;
  334. smp_rmb();
  335. spte.spte_low = orig->spte_low;
  336. smp_rmb();
  337. spte.spte_high = orig->spte_high;
  338. smp_rmb();
  339. if (unlikely(spte.spte_low != orig->spte_low ||
  340. count != sp->clear_spte_count))
  341. goto retry;
  342. return spte.spte;
  343. }
  344. static bool __check_direct_spte_mmio_pf(u64 spte)
  345. {
  346. union split_spte sspte = (union split_spte)spte;
  347. u32 high_mmio_mask = shadow_mmio_mask >> 32;
  348. /* It is valid if the spte is zapped. */
  349. if (spte == 0ull)
  350. return true;
  351. /* It is valid if the spte is being zapped. */
  352. if (sspte.spte_low == 0ull &&
  353. (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
  354. return true;
  355. return false;
  356. }
  357. #endif
  358. static bool spte_is_locklessly_modifiable(u64 spte)
  359. {
  360. return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
  361. (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
  362. }
  363. static bool spte_has_volatile_bits(u64 spte)
  364. {
  365. /*
  366. * Always atomicly update spte if it can be updated
  367. * out of mmu-lock, it can ensure dirty bit is not lost,
  368. * also, it can help us to get a stable is_writable_pte()
  369. * to ensure tlb flush is not missed.
  370. */
  371. if (spte_is_locklessly_modifiable(spte))
  372. return true;
  373. if (!shadow_accessed_mask)
  374. return false;
  375. if (!is_shadow_present_pte(spte))
  376. return false;
  377. if ((spte & shadow_accessed_mask) &&
  378. (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
  379. return false;
  380. return true;
  381. }
  382. static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
  383. {
  384. return (old_spte & bit_mask) && !(new_spte & bit_mask);
  385. }
  386. /* Rules for using mmu_spte_set:
  387. * Set the sptep from nonpresent to present.
  388. * Note: the sptep being assigned *must* be either not present
  389. * or in a state where the hardware will not attempt to update
  390. * the spte.
  391. */
  392. static void mmu_spte_set(u64 *sptep, u64 new_spte)
  393. {
  394. WARN_ON(is_shadow_present_pte(*sptep));
  395. __set_spte(sptep, new_spte);
  396. }
  397. /* Rules for using mmu_spte_update:
  398. * Update the state bits, it means the mapped pfn is not changged.
  399. *
  400. * Whenever we overwrite a writable spte with a read-only one we
  401. * should flush remote TLBs. Otherwise rmap_write_protect
  402. * will find a read-only spte, even though the writable spte
  403. * might be cached on a CPU's TLB, the return value indicates this
  404. * case.
  405. */
  406. static bool mmu_spte_update(u64 *sptep, u64 new_spte)
  407. {
  408. u64 old_spte = *sptep;
  409. bool ret = false;
  410. WARN_ON(!is_rmap_spte(new_spte));
  411. if (!is_shadow_present_pte(old_spte)) {
  412. mmu_spte_set(sptep, new_spte);
  413. return ret;
  414. }
  415. if (!spte_has_volatile_bits(old_spte))
  416. __update_clear_spte_fast(sptep, new_spte);
  417. else
  418. old_spte = __update_clear_spte_slow(sptep, new_spte);
  419. /*
  420. * For the spte updated out of mmu-lock is safe, since
  421. * we always atomicly update it, see the comments in
  422. * spte_has_volatile_bits().
  423. */
  424. if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
  425. ret = true;
  426. if (!shadow_accessed_mask)
  427. return ret;
  428. if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
  429. kvm_set_pfn_accessed(spte_to_pfn(old_spte));
  430. if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
  431. kvm_set_pfn_dirty(spte_to_pfn(old_spte));
  432. return ret;
  433. }
  434. /*
  435. * Rules for using mmu_spte_clear_track_bits:
  436. * It sets the sptep from present to nonpresent, and track the
  437. * state bits, it is used to clear the last level sptep.
  438. */
  439. static int mmu_spte_clear_track_bits(u64 *sptep)
  440. {
  441. pfn_t pfn;
  442. u64 old_spte = *sptep;
  443. if (!spte_has_volatile_bits(old_spte))
  444. __update_clear_spte_fast(sptep, 0ull);
  445. else
  446. old_spte = __update_clear_spte_slow(sptep, 0ull);
  447. if (!is_rmap_spte(old_spte))
  448. return 0;
  449. pfn = spte_to_pfn(old_spte);
  450. /*
  451. * KVM does not hold the refcount of the page used by
  452. * kvm mmu, before reclaiming the page, we should
  453. * unmap it from mmu first.
  454. */
  455. WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
  456. if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
  457. kvm_set_pfn_accessed(pfn);
  458. if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
  459. kvm_set_pfn_dirty(pfn);
  460. return 1;
  461. }
  462. /*
  463. * Rules for using mmu_spte_clear_no_track:
  464. * Directly clear spte without caring the state bits of sptep,
  465. * it is used to set the upper level spte.
  466. */
  467. static void mmu_spte_clear_no_track(u64 *sptep)
  468. {
  469. __update_clear_spte_fast(sptep, 0ull);
  470. }
  471. static u64 mmu_spte_get_lockless(u64 *sptep)
  472. {
  473. return __get_spte_lockless(sptep);
  474. }
  475. static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
  476. {
  477. /*
  478. * Prevent page table teardown by making any free-er wait during
  479. * kvm_flush_remote_tlbs() IPI to all active vcpus.
  480. */
  481. local_irq_disable();
  482. vcpu->mode = READING_SHADOW_PAGE_TABLES;
  483. /*
  484. * Make sure a following spte read is not reordered ahead of the write
  485. * to vcpu->mode.
  486. */
  487. smp_mb();
  488. }
  489. static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
  490. {
  491. /*
  492. * Make sure the write to vcpu->mode is not reordered in front of
  493. * reads to sptes. If it does, kvm_commit_zap_page() can see us
  494. * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
  495. */
  496. smp_mb();
  497. vcpu->mode = OUTSIDE_GUEST_MODE;
  498. local_irq_enable();
  499. }
  500. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  501. struct kmem_cache *base_cache, int min)
  502. {
  503. void *obj;
  504. if (cache->nobjs >= min)
  505. return 0;
  506. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  507. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  508. if (!obj)
  509. return -ENOMEM;
  510. cache->objects[cache->nobjs++] = obj;
  511. }
  512. return 0;
  513. }
  514. static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
  515. {
  516. return cache->nobjs;
  517. }
  518. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  519. struct kmem_cache *cache)
  520. {
  521. while (mc->nobjs)
  522. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  523. }
  524. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  525. int min)
  526. {
  527. void *page;
  528. if (cache->nobjs >= min)
  529. return 0;
  530. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  531. page = (void *)__get_free_page(GFP_KERNEL);
  532. if (!page)
  533. return -ENOMEM;
  534. cache->objects[cache->nobjs++] = page;
  535. }
  536. return 0;
  537. }
  538. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  539. {
  540. while (mc->nobjs)
  541. free_page((unsigned long)mc->objects[--mc->nobjs]);
  542. }
  543. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  544. {
  545. int r;
  546. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  547. pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
  548. if (r)
  549. goto out;
  550. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  551. if (r)
  552. goto out;
  553. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  554. mmu_page_header_cache, 4);
  555. out:
  556. return r;
  557. }
  558. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  559. {
  560. mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  561. pte_list_desc_cache);
  562. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  563. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  564. mmu_page_header_cache);
  565. }
  566. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
  567. {
  568. void *p;
  569. BUG_ON(!mc->nobjs);
  570. p = mc->objects[--mc->nobjs];
  571. return p;
  572. }
  573. static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
  574. {
  575. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
  576. }
  577. static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
  578. {
  579. kmem_cache_free(pte_list_desc_cache, pte_list_desc);
  580. }
  581. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  582. {
  583. if (!sp->role.direct)
  584. return sp->gfns[index];
  585. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  586. }
  587. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  588. {
  589. if (sp->role.direct)
  590. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  591. else
  592. sp->gfns[index] = gfn;
  593. }
  594. /*
  595. * Return the pointer to the large page information for a given gfn,
  596. * handling slots that are not large page aligned.
  597. */
  598. static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
  599. struct kvm_memory_slot *slot,
  600. int level)
  601. {
  602. unsigned long idx;
  603. idx = gfn_to_index(gfn, slot->base_gfn, level);
  604. return &slot->arch.lpage_info[level - 2][idx];
  605. }
  606. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  607. {
  608. struct kvm_memory_slot *slot;
  609. struct kvm_lpage_info *linfo;
  610. int i;
  611. slot = gfn_to_memslot(kvm, gfn);
  612. for (i = PT_DIRECTORY_LEVEL;
  613. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  614. linfo = lpage_info_slot(gfn, slot, i);
  615. linfo->write_count += 1;
  616. }
  617. kvm->arch.indirect_shadow_pages++;
  618. }
  619. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  620. {
  621. struct kvm_memory_slot *slot;
  622. struct kvm_lpage_info *linfo;
  623. int i;
  624. slot = gfn_to_memslot(kvm, gfn);
  625. for (i = PT_DIRECTORY_LEVEL;
  626. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  627. linfo = lpage_info_slot(gfn, slot, i);
  628. linfo->write_count -= 1;
  629. WARN_ON(linfo->write_count < 0);
  630. }
  631. kvm->arch.indirect_shadow_pages--;
  632. }
  633. static int has_wrprotected_page(struct kvm *kvm,
  634. gfn_t gfn,
  635. int level)
  636. {
  637. struct kvm_memory_slot *slot;
  638. struct kvm_lpage_info *linfo;
  639. slot = gfn_to_memslot(kvm, gfn);
  640. if (slot) {
  641. linfo = lpage_info_slot(gfn, slot, level);
  642. return linfo->write_count;
  643. }
  644. return 1;
  645. }
  646. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  647. {
  648. unsigned long page_size;
  649. int i, ret = 0;
  650. page_size = kvm_host_page_size(kvm, gfn);
  651. for (i = PT_PAGE_TABLE_LEVEL;
  652. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  653. if (page_size >= KVM_HPAGE_SIZE(i))
  654. ret = i;
  655. else
  656. break;
  657. }
  658. return ret;
  659. }
  660. static struct kvm_memory_slot *
  661. gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
  662. bool no_dirty_log)
  663. {
  664. struct kvm_memory_slot *slot;
  665. slot = gfn_to_memslot(vcpu->kvm, gfn);
  666. if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
  667. (no_dirty_log && slot->dirty_bitmap))
  668. slot = NULL;
  669. return slot;
  670. }
  671. static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  672. {
  673. return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
  674. }
  675. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  676. {
  677. int host_level, level, max_level;
  678. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  679. if (host_level == PT_PAGE_TABLE_LEVEL)
  680. return host_level;
  681. max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
  682. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  683. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  684. break;
  685. return level - 1;
  686. }
  687. /*
  688. * Pte mapping structures:
  689. *
  690. * If pte_list bit zero is zero, then pte_list point to the spte.
  691. *
  692. * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
  693. * pte_list_desc containing more mappings.
  694. *
  695. * Returns the number of pte entries before the spte was added or zero if
  696. * the spte was not added.
  697. *
  698. */
  699. static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
  700. unsigned long *pte_list)
  701. {
  702. struct pte_list_desc *desc;
  703. int i, count = 0;
  704. if (!*pte_list) {
  705. rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
  706. *pte_list = (unsigned long)spte;
  707. } else if (!(*pte_list & 1)) {
  708. rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
  709. desc = mmu_alloc_pte_list_desc(vcpu);
  710. desc->sptes[0] = (u64 *)*pte_list;
  711. desc->sptes[1] = spte;
  712. *pte_list = (unsigned long)desc | 1;
  713. ++count;
  714. } else {
  715. rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
  716. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  717. while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
  718. desc = desc->more;
  719. count += PTE_LIST_EXT;
  720. }
  721. if (desc->sptes[PTE_LIST_EXT-1]) {
  722. desc->more = mmu_alloc_pte_list_desc(vcpu);
  723. desc = desc->more;
  724. }
  725. for (i = 0; desc->sptes[i]; ++i)
  726. ++count;
  727. desc->sptes[i] = spte;
  728. }
  729. return count;
  730. }
  731. static void
  732. pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
  733. int i, struct pte_list_desc *prev_desc)
  734. {
  735. int j;
  736. for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
  737. ;
  738. desc->sptes[i] = desc->sptes[j];
  739. desc->sptes[j] = NULL;
  740. if (j != 0)
  741. return;
  742. if (!prev_desc && !desc->more)
  743. *pte_list = (unsigned long)desc->sptes[0];
  744. else
  745. if (prev_desc)
  746. prev_desc->more = desc->more;
  747. else
  748. *pte_list = (unsigned long)desc->more | 1;
  749. mmu_free_pte_list_desc(desc);
  750. }
  751. static void pte_list_remove(u64 *spte, unsigned long *pte_list)
  752. {
  753. struct pte_list_desc *desc;
  754. struct pte_list_desc *prev_desc;
  755. int i;
  756. if (!*pte_list) {
  757. printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
  758. BUG();
  759. } else if (!(*pte_list & 1)) {
  760. rmap_printk("pte_list_remove: %p 1->0\n", spte);
  761. if ((u64 *)*pte_list != spte) {
  762. printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
  763. BUG();
  764. }
  765. *pte_list = 0;
  766. } else {
  767. rmap_printk("pte_list_remove: %p many->many\n", spte);
  768. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  769. prev_desc = NULL;
  770. while (desc) {
  771. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  772. if (desc->sptes[i] == spte) {
  773. pte_list_desc_remove_entry(pte_list,
  774. desc, i,
  775. prev_desc);
  776. return;
  777. }
  778. prev_desc = desc;
  779. desc = desc->more;
  780. }
  781. pr_err("pte_list_remove: %p many->many\n", spte);
  782. BUG();
  783. }
  784. }
  785. typedef void (*pte_list_walk_fn) (u64 *spte);
  786. static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
  787. {
  788. struct pte_list_desc *desc;
  789. int i;
  790. if (!*pte_list)
  791. return;
  792. if (!(*pte_list & 1))
  793. return fn((u64 *)*pte_list);
  794. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  795. while (desc) {
  796. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  797. fn(desc->sptes[i]);
  798. desc = desc->more;
  799. }
  800. }
  801. static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
  802. struct kvm_memory_slot *slot)
  803. {
  804. unsigned long idx;
  805. idx = gfn_to_index(gfn, slot->base_gfn, level);
  806. return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
  807. }
  808. /*
  809. * Take gfn and return the reverse mapping to it.
  810. */
  811. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  812. {
  813. struct kvm_memory_slot *slot;
  814. slot = gfn_to_memslot(kvm, gfn);
  815. return __gfn_to_rmap(gfn, level, slot);
  816. }
  817. static bool rmap_can_add(struct kvm_vcpu *vcpu)
  818. {
  819. struct kvm_mmu_memory_cache *cache;
  820. cache = &vcpu->arch.mmu_pte_list_desc_cache;
  821. return mmu_memory_cache_free_objects(cache);
  822. }
  823. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  824. {
  825. struct kvm_mmu_page *sp;
  826. unsigned long *rmapp;
  827. sp = page_header(__pa(spte));
  828. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  829. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  830. return pte_list_add(vcpu, spte, rmapp);
  831. }
  832. static void rmap_remove(struct kvm *kvm, u64 *spte)
  833. {
  834. struct kvm_mmu_page *sp;
  835. gfn_t gfn;
  836. unsigned long *rmapp;
  837. sp = page_header(__pa(spte));
  838. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  839. rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
  840. pte_list_remove(spte, rmapp);
  841. }
  842. /*
  843. * Used by the following functions to iterate through the sptes linked by a
  844. * rmap. All fields are private and not assumed to be used outside.
  845. */
  846. struct rmap_iterator {
  847. /* private fields */
  848. struct pte_list_desc *desc; /* holds the sptep if not NULL */
  849. int pos; /* index of the sptep */
  850. };
  851. /*
  852. * Iteration must be started by this function. This should also be used after
  853. * removing/dropping sptes from the rmap link because in such cases the
  854. * information in the itererator may not be valid.
  855. *
  856. * Returns sptep if found, NULL otherwise.
  857. */
  858. static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
  859. {
  860. if (!rmap)
  861. return NULL;
  862. if (!(rmap & 1)) {
  863. iter->desc = NULL;
  864. return (u64 *)rmap;
  865. }
  866. iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
  867. iter->pos = 0;
  868. return iter->desc->sptes[iter->pos];
  869. }
  870. /*
  871. * Must be used with a valid iterator: e.g. after rmap_get_first().
  872. *
  873. * Returns sptep if found, NULL otherwise.
  874. */
  875. static u64 *rmap_get_next(struct rmap_iterator *iter)
  876. {
  877. if (iter->desc) {
  878. if (iter->pos < PTE_LIST_EXT - 1) {
  879. u64 *sptep;
  880. ++iter->pos;
  881. sptep = iter->desc->sptes[iter->pos];
  882. if (sptep)
  883. return sptep;
  884. }
  885. iter->desc = iter->desc->more;
  886. if (iter->desc) {
  887. iter->pos = 0;
  888. /* desc->sptes[0] cannot be NULL */
  889. return iter->desc->sptes[iter->pos];
  890. }
  891. }
  892. return NULL;
  893. }
  894. static void drop_spte(struct kvm *kvm, u64 *sptep)
  895. {
  896. if (mmu_spte_clear_track_bits(sptep))
  897. rmap_remove(kvm, sptep);
  898. }
  899. static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
  900. {
  901. if (is_large_pte(*sptep)) {
  902. WARN_ON(page_header(__pa(sptep))->role.level ==
  903. PT_PAGE_TABLE_LEVEL);
  904. drop_spte(kvm, sptep);
  905. --kvm->stat.lpages;
  906. return true;
  907. }
  908. return false;
  909. }
  910. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  911. {
  912. if (__drop_large_spte(vcpu->kvm, sptep))
  913. kvm_flush_remote_tlbs(vcpu->kvm);
  914. }
  915. /*
  916. * Write-protect on the specified @sptep, @pt_protect indicates whether
  917. * spte writ-protection is caused by protecting shadow page table.
  918. * @flush indicates whether tlb need be flushed.
  919. *
  920. * Note: write protection is difference between drity logging and spte
  921. * protection:
  922. * - for dirty logging, the spte can be set to writable at anytime if
  923. * its dirty bitmap is properly set.
  924. * - for spte protection, the spte can be writable only after unsync-ing
  925. * shadow page.
  926. *
  927. * Return true if the spte is dropped.
  928. */
  929. static bool
  930. spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
  931. {
  932. u64 spte = *sptep;
  933. if (!is_writable_pte(spte) &&
  934. !(pt_protect && spte_is_locklessly_modifiable(spte)))
  935. return false;
  936. rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
  937. if (__drop_large_spte(kvm, sptep)) {
  938. *flush |= true;
  939. return true;
  940. }
  941. if (pt_protect)
  942. spte &= ~SPTE_MMU_WRITEABLE;
  943. spte = spte & ~PT_WRITABLE_MASK;
  944. *flush |= mmu_spte_update(sptep, spte);
  945. return false;
  946. }
  947. static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
  948. bool pt_protect)
  949. {
  950. u64 *sptep;
  951. struct rmap_iterator iter;
  952. bool flush = false;
  953. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  954. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  955. if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
  956. sptep = rmap_get_first(*rmapp, &iter);
  957. continue;
  958. }
  959. sptep = rmap_get_next(&iter);
  960. }
  961. return flush;
  962. }
  963. /**
  964. * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
  965. * @kvm: kvm instance
  966. * @slot: slot to protect
  967. * @gfn_offset: start of the BITS_PER_LONG pages we care about
  968. * @mask: indicates which pages we should protect
  969. *
  970. * Used when we do not need to care about huge page mappings: e.g. during dirty
  971. * logging we do not have any such mappings.
  972. */
  973. void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
  974. struct kvm_memory_slot *slot,
  975. gfn_t gfn_offset, unsigned long mask)
  976. {
  977. unsigned long *rmapp;
  978. while (mask) {
  979. rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
  980. PT_PAGE_TABLE_LEVEL, slot);
  981. __rmap_write_protect(kvm, rmapp, false);
  982. /* clear the first set bit */
  983. mask &= mask - 1;
  984. }
  985. }
  986. static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
  987. {
  988. struct kvm_memory_slot *slot;
  989. unsigned long *rmapp;
  990. int i;
  991. bool write_protected = false;
  992. slot = gfn_to_memslot(kvm, gfn);
  993. for (i = PT_PAGE_TABLE_LEVEL;
  994. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  995. rmapp = __gfn_to_rmap(gfn, i, slot);
  996. write_protected |= __rmap_write_protect(kvm, rmapp, true);
  997. }
  998. return write_protected;
  999. }
  1000. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1001. struct kvm_memory_slot *slot, unsigned long data)
  1002. {
  1003. u64 *sptep;
  1004. struct rmap_iterator iter;
  1005. int need_tlb_flush = 0;
  1006. while ((sptep = rmap_get_first(*rmapp, &iter))) {
  1007. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  1008. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
  1009. drop_spte(kvm, sptep);
  1010. need_tlb_flush = 1;
  1011. }
  1012. return need_tlb_flush;
  1013. }
  1014. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1015. struct kvm_memory_slot *slot, unsigned long data)
  1016. {
  1017. u64 *sptep;
  1018. struct rmap_iterator iter;
  1019. int need_flush = 0;
  1020. u64 new_spte;
  1021. pte_t *ptep = (pte_t *)data;
  1022. pfn_t new_pfn;
  1023. WARN_ON(pte_huge(*ptep));
  1024. new_pfn = pte_pfn(*ptep);
  1025. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  1026. BUG_ON(!is_shadow_present_pte(*sptep));
  1027. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
  1028. need_flush = 1;
  1029. if (pte_write(*ptep)) {
  1030. drop_spte(kvm, sptep);
  1031. sptep = rmap_get_first(*rmapp, &iter);
  1032. } else {
  1033. new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
  1034. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  1035. new_spte &= ~PT_WRITABLE_MASK;
  1036. new_spte &= ~SPTE_HOST_WRITEABLE;
  1037. new_spte &= ~shadow_accessed_mask;
  1038. mmu_spte_clear_track_bits(sptep);
  1039. mmu_spte_set(sptep, new_spte);
  1040. sptep = rmap_get_next(&iter);
  1041. }
  1042. }
  1043. if (need_flush)
  1044. kvm_flush_remote_tlbs(kvm);
  1045. return 0;
  1046. }
  1047. static int kvm_handle_hva_range(struct kvm *kvm,
  1048. unsigned long start,
  1049. unsigned long end,
  1050. unsigned long data,
  1051. int (*handler)(struct kvm *kvm,
  1052. unsigned long *rmapp,
  1053. struct kvm_memory_slot *slot,
  1054. unsigned long data))
  1055. {
  1056. int j;
  1057. int ret = 0;
  1058. struct kvm_memslots *slots;
  1059. struct kvm_memory_slot *memslot;
  1060. slots = kvm_memslots(kvm);
  1061. kvm_for_each_memslot(memslot, slots) {
  1062. unsigned long hva_start, hva_end;
  1063. gfn_t gfn_start, gfn_end;
  1064. hva_start = max(start, memslot->userspace_addr);
  1065. hva_end = min(end, memslot->userspace_addr +
  1066. (memslot->npages << PAGE_SHIFT));
  1067. if (hva_start >= hva_end)
  1068. continue;
  1069. /*
  1070. * {gfn(page) | page intersects with [hva_start, hva_end)} =
  1071. * {gfn_start, gfn_start+1, ..., gfn_end-1}.
  1072. */
  1073. gfn_start = hva_to_gfn_memslot(hva_start, memslot);
  1074. gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
  1075. for (j = PT_PAGE_TABLE_LEVEL;
  1076. j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
  1077. unsigned long idx, idx_end;
  1078. unsigned long *rmapp;
  1079. /*
  1080. * {idx(page_j) | page_j intersects with
  1081. * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
  1082. */
  1083. idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
  1084. idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
  1085. rmapp = __gfn_to_rmap(gfn_start, j, memslot);
  1086. for (; idx <= idx_end; ++idx)
  1087. ret |= handler(kvm, rmapp++, memslot, data);
  1088. }
  1089. }
  1090. return ret;
  1091. }
  1092. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  1093. unsigned long data,
  1094. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  1095. struct kvm_memory_slot *slot,
  1096. unsigned long data))
  1097. {
  1098. return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
  1099. }
  1100. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  1101. {
  1102. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  1103. }
  1104. int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
  1105. {
  1106. return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
  1107. }
  1108. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  1109. {
  1110. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  1111. }
  1112. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1113. struct kvm_memory_slot *slot, unsigned long data)
  1114. {
  1115. u64 *sptep;
  1116. struct rmap_iterator uninitialized_var(iter);
  1117. int young = 0;
  1118. /*
  1119. * In case of absence of EPT Access and Dirty Bits supports,
  1120. * emulate the accessed bit for EPT, by checking if this page has
  1121. * an EPT mapping, and clearing it if it does. On the next access,
  1122. * a new EPT mapping will be established.
  1123. * This has some overhead, but not as much as the cost of swapping
  1124. * out actively used pages or breaking up actively used hugepages.
  1125. */
  1126. if (!shadow_accessed_mask) {
  1127. young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
  1128. goto out;
  1129. }
  1130. for (sptep = rmap_get_first(*rmapp, &iter); sptep;
  1131. sptep = rmap_get_next(&iter)) {
  1132. BUG_ON(!is_shadow_present_pte(*sptep));
  1133. if (*sptep & shadow_accessed_mask) {
  1134. young = 1;
  1135. clear_bit((ffs(shadow_accessed_mask) - 1),
  1136. (unsigned long *)sptep);
  1137. }
  1138. }
  1139. out:
  1140. /* @data has hva passed to kvm_age_hva(). */
  1141. trace_kvm_age_page(data, slot, young);
  1142. return young;
  1143. }
  1144. static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1145. struct kvm_memory_slot *slot, unsigned long data)
  1146. {
  1147. u64 *sptep;
  1148. struct rmap_iterator iter;
  1149. int young = 0;
  1150. /*
  1151. * If there's no access bit in the secondary pte set by the
  1152. * hardware it's up to gup-fast/gup to set the access bit in
  1153. * the primary pte or in the page structure.
  1154. */
  1155. if (!shadow_accessed_mask)
  1156. goto out;
  1157. for (sptep = rmap_get_first(*rmapp, &iter); sptep;
  1158. sptep = rmap_get_next(&iter)) {
  1159. BUG_ON(!is_shadow_present_pte(*sptep));
  1160. if (*sptep & shadow_accessed_mask) {
  1161. young = 1;
  1162. break;
  1163. }
  1164. }
  1165. out:
  1166. return young;
  1167. }
  1168. #define RMAP_RECYCLE_THRESHOLD 1000
  1169. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  1170. {
  1171. unsigned long *rmapp;
  1172. struct kvm_mmu_page *sp;
  1173. sp = page_header(__pa(spte));
  1174. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  1175. kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
  1176. kvm_flush_remote_tlbs(vcpu->kvm);
  1177. }
  1178. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  1179. {
  1180. return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
  1181. }
  1182. int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
  1183. {
  1184. return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
  1185. }
  1186. #ifdef MMU_DEBUG
  1187. static int is_empty_shadow_page(u64 *spt)
  1188. {
  1189. u64 *pos;
  1190. u64 *end;
  1191. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  1192. if (is_shadow_present_pte(*pos)) {
  1193. printk(KERN_ERR "%s: %p %llx\n", __func__,
  1194. pos, *pos);
  1195. return 0;
  1196. }
  1197. return 1;
  1198. }
  1199. #endif
  1200. /*
  1201. * This value is the sum of all of the kvm instances's
  1202. * kvm->arch.n_used_mmu_pages values. We need a global,
  1203. * aggregate version in order to make the slab shrinker
  1204. * faster
  1205. */
  1206. static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
  1207. {
  1208. kvm->arch.n_used_mmu_pages += nr;
  1209. percpu_counter_add(&kvm_total_used_mmu_pages, nr);
  1210. }
  1211. static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
  1212. {
  1213. ASSERT(is_empty_shadow_page(sp->spt));
  1214. hlist_del(&sp->hash_link);
  1215. list_del(&sp->link);
  1216. free_page((unsigned long)sp->spt);
  1217. if (!sp->role.direct)
  1218. free_page((unsigned long)sp->gfns);
  1219. kmem_cache_free(mmu_page_header_cache, sp);
  1220. }
  1221. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  1222. {
  1223. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  1224. }
  1225. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  1226. struct kvm_mmu_page *sp, u64 *parent_pte)
  1227. {
  1228. if (!parent_pte)
  1229. return;
  1230. pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
  1231. }
  1232. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  1233. u64 *parent_pte)
  1234. {
  1235. pte_list_remove(parent_pte, &sp->parent_ptes);
  1236. }
  1237. static void drop_parent_pte(struct kvm_mmu_page *sp,
  1238. u64 *parent_pte)
  1239. {
  1240. mmu_page_remove_parent_pte(sp, parent_pte);
  1241. mmu_spte_clear_no_track(parent_pte);
  1242. }
  1243. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  1244. u64 *parent_pte, int direct)
  1245. {
  1246. struct kvm_mmu_page *sp;
  1247. kvm_mmu_free_some_pages(vcpu);
  1248. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
  1249. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1250. if (!direct)
  1251. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1252. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  1253. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  1254. sp->parent_ptes = 0;
  1255. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1256. kvm_mod_used_mmu_pages(vcpu->kvm, +1);
  1257. return sp;
  1258. }
  1259. static void mark_unsync(u64 *spte);
  1260. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  1261. {
  1262. pte_list_walk(&sp->parent_ptes, mark_unsync);
  1263. }
  1264. static void mark_unsync(u64 *spte)
  1265. {
  1266. struct kvm_mmu_page *sp;
  1267. unsigned int index;
  1268. sp = page_header(__pa(spte));
  1269. index = spte - sp->spt;
  1270. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  1271. return;
  1272. if (sp->unsync_children++)
  1273. return;
  1274. kvm_mmu_mark_parents_unsync(sp);
  1275. }
  1276. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  1277. struct kvm_mmu_page *sp)
  1278. {
  1279. return 1;
  1280. }
  1281. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  1282. {
  1283. }
  1284. static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
  1285. struct kvm_mmu_page *sp, u64 *spte,
  1286. const void *pte)
  1287. {
  1288. WARN_ON(1);
  1289. }
  1290. #define KVM_PAGE_ARRAY_NR 16
  1291. struct kvm_mmu_pages {
  1292. struct mmu_page_and_offset {
  1293. struct kvm_mmu_page *sp;
  1294. unsigned int idx;
  1295. } page[KVM_PAGE_ARRAY_NR];
  1296. unsigned int nr;
  1297. };
  1298. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  1299. int idx)
  1300. {
  1301. int i;
  1302. if (sp->unsync)
  1303. for (i=0; i < pvec->nr; i++)
  1304. if (pvec->page[i].sp == sp)
  1305. return 0;
  1306. pvec->page[pvec->nr].sp = sp;
  1307. pvec->page[pvec->nr].idx = idx;
  1308. pvec->nr++;
  1309. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  1310. }
  1311. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  1312. struct kvm_mmu_pages *pvec)
  1313. {
  1314. int i, ret, nr_unsync_leaf = 0;
  1315. for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
  1316. struct kvm_mmu_page *child;
  1317. u64 ent = sp->spt[i];
  1318. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  1319. goto clear_child_bitmap;
  1320. child = page_header(ent & PT64_BASE_ADDR_MASK);
  1321. if (child->unsync_children) {
  1322. if (mmu_pages_add(pvec, child, i))
  1323. return -ENOSPC;
  1324. ret = __mmu_unsync_walk(child, pvec);
  1325. if (!ret)
  1326. goto clear_child_bitmap;
  1327. else if (ret > 0)
  1328. nr_unsync_leaf += ret;
  1329. else
  1330. return ret;
  1331. } else if (child->unsync) {
  1332. nr_unsync_leaf++;
  1333. if (mmu_pages_add(pvec, child, i))
  1334. return -ENOSPC;
  1335. } else
  1336. goto clear_child_bitmap;
  1337. continue;
  1338. clear_child_bitmap:
  1339. __clear_bit(i, sp->unsync_child_bitmap);
  1340. sp->unsync_children--;
  1341. WARN_ON((int)sp->unsync_children < 0);
  1342. }
  1343. return nr_unsync_leaf;
  1344. }
  1345. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1346. struct kvm_mmu_pages *pvec)
  1347. {
  1348. if (!sp->unsync_children)
  1349. return 0;
  1350. mmu_pages_add(pvec, sp, 0);
  1351. return __mmu_unsync_walk(sp, pvec);
  1352. }
  1353. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1354. {
  1355. WARN_ON(!sp->unsync);
  1356. trace_kvm_mmu_sync_page(sp);
  1357. sp->unsync = 0;
  1358. --kvm->stat.mmu_unsync;
  1359. }
  1360. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1361. struct list_head *invalid_list);
  1362. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1363. struct list_head *invalid_list);
  1364. #define for_each_gfn_sp(_kvm, _sp, _gfn) \
  1365. hlist_for_each_entry(_sp, \
  1366. &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
  1367. if ((_sp)->gfn != (_gfn)) {} else
  1368. #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
  1369. for_each_gfn_sp(_kvm, _sp, _gfn) \
  1370. if ((_sp)->role.direct || (_sp)->role.invalid) {} else
  1371. /* @sp->gfn should be write-protected at the call site */
  1372. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1373. struct list_head *invalid_list, bool clear_unsync)
  1374. {
  1375. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1376. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1377. return 1;
  1378. }
  1379. if (clear_unsync)
  1380. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1381. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1382. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1383. return 1;
  1384. }
  1385. kvm_mmu_flush_tlb(vcpu);
  1386. return 0;
  1387. }
  1388. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1389. struct kvm_mmu_page *sp)
  1390. {
  1391. LIST_HEAD(invalid_list);
  1392. int ret;
  1393. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1394. if (ret)
  1395. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1396. return ret;
  1397. }
  1398. #ifdef CONFIG_KVM_MMU_AUDIT
  1399. #include "mmu_audit.c"
  1400. #else
  1401. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
  1402. static void mmu_audit_disable(void) { }
  1403. #endif
  1404. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1405. struct list_head *invalid_list)
  1406. {
  1407. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1408. }
  1409. /* @gfn should be write-protected at the call site */
  1410. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1411. {
  1412. struct kvm_mmu_page *s;
  1413. LIST_HEAD(invalid_list);
  1414. bool flush = false;
  1415. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  1416. if (!s->unsync)
  1417. continue;
  1418. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1419. kvm_unlink_unsync_page(vcpu->kvm, s);
  1420. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1421. (vcpu->arch.mmu.sync_page(vcpu, s))) {
  1422. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1423. continue;
  1424. }
  1425. flush = true;
  1426. }
  1427. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1428. if (flush)
  1429. kvm_mmu_flush_tlb(vcpu);
  1430. }
  1431. struct mmu_page_path {
  1432. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1433. unsigned int idx[PT64_ROOT_LEVEL-1];
  1434. };
  1435. #define for_each_sp(pvec, sp, parents, i) \
  1436. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1437. sp = pvec.page[i].sp; \
  1438. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1439. i = mmu_pages_next(&pvec, &parents, i))
  1440. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1441. struct mmu_page_path *parents,
  1442. int i)
  1443. {
  1444. int n;
  1445. for (n = i+1; n < pvec->nr; n++) {
  1446. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1447. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1448. parents->idx[0] = pvec->page[n].idx;
  1449. return n;
  1450. }
  1451. parents->parent[sp->role.level-2] = sp;
  1452. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1453. }
  1454. return n;
  1455. }
  1456. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1457. {
  1458. struct kvm_mmu_page *sp;
  1459. unsigned int level = 0;
  1460. do {
  1461. unsigned int idx = parents->idx[level];
  1462. sp = parents->parent[level];
  1463. if (!sp)
  1464. return;
  1465. --sp->unsync_children;
  1466. WARN_ON((int)sp->unsync_children < 0);
  1467. __clear_bit(idx, sp->unsync_child_bitmap);
  1468. level++;
  1469. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1470. }
  1471. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1472. struct mmu_page_path *parents,
  1473. struct kvm_mmu_pages *pvec)
  1474. {
  1475. parents->parent[parent->role.level-1] = NULL;
  1476. pvec->nr = 0;
  1477. }
  1478. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1479. struct kvm_mmu_page *parent)
  1480. {
  1481. int i;
  1482. struct kvm_mmu_page *sp;
  1483. struct mmu_page_path parents;
  1484. struct kvm_mmu_pages pages;
  1485. LIST_HEAD(invalid_list);
  1486. kvm_mmu_pages_init(parent, &parents, &pages);
  1487. while (mmu_unsync_walk(parent, &pages)) {
  1488. bool protected = false;
  1489. for_each_sp(pages, sp, parents, i)
  1490. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1491. if (protected)
  1492. kvm_flush_remote_tlbs(vcpu->kvm);
  1493. for_each_sp(pages, sp, parents, i) {
  1494. kvm_sync_page(vcpu, sp, &invalid_list);
  1495. mmu_pages_clear_parents(&parents);
  1496. }
  1497. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1498. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1499. kvm_mmu_pages_init(parent, &parents, &pages);
  1500. }
  1501. }
  1502. static void init_shadow_page_table(struct kvm_mmu_page *sp)
  1503. {
  1504. int i;
  1505. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1506. sp->spt[i] = 0ull;
  1507. }
  1508. static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
  1509. {
  1510. sp->write_flooding_count = 0;
  1511. }
  1512. static void clear_sp_write_flooding_count(u64 *spte)
  1513. {
  1514. struct kvm_mmu_page *sp = page_header(__pa(spte));
  1515. __clear_sp_write_flooding_count(sp);
  1516. }
  1517. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1518. gfn_t gfn,
  1519. gva_t gaddr,
  1520. unsigned level,
  1521. int direct,
  1522. unsigned access,
  1523. u64 *parent_pte)
  1524. {
  1525. union kvm_mmu_page_role role;
  1526. unsigned quadrant;
  1527. struct kvm_mmu_page *sp;
  1528. bool need_sync = false;
  1529. role = vcpu->arch.mmu.base_role;
  1530. role.level = level;
  1531. role.direct = direct;
  1532. if (role.direct)
  1533. role.cr4_pae = 0;
  1534. role.access = access;
  1535. if (!vcpu->arch.mmu.direct_map
  1536. && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1537. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1538. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1539. role.quadrant = quadrant;
  1540. }
  1541. for_each_gfn_sp(vcpu->kvm, sp, gfn) {
  1542. if (!need_sync && sp->unsync)
  1543. need_sync = true;
  1544. if (sp->role.word != role.word)
  1545. continue;
  1546. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1547. break;
  1548. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1549. if (sp->unsync_children) {
  1550. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1551. kvm_mmu_mark_parents_unsync(sp);
  1552. } else if (sp->unsync)
  1553. kvm_mmu_mark_parents_unsync(sp);
  1554. __clear_sp_write_flooding_count(sp);
  1555. trace_kvm_mmu_get_page(sp, false);
  1556. return sp;
  1557. }
  1558. ++vcpu->kvm->stat.mmu_cache_miss;
  1559. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1560. if (!sp)
  1561. return sp;
  1562. sp->gfn = gfn;
  1563. sp->role = role;
  1564. hlist_add_head(&sp->hash_link,
  1565. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1566. if (!direct) {
  1567. if (rmap_write_protect(vcpu->kvm, gfn))
  1568. kvm_flush_remote_tlbs(vcpu->kvm);
  1569. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1570. kvm_sync_pages(vcpu, gfn);
  1571. account_shadowed(vcpu->kvm, gfn);
  1572. }
  1573. init_shadow_page_table(sp);
  1574. trace_kvm_mmu_get_page(sp, true);
  1575. return sp;
  1576. }
  1577. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1578. struct kvm_vcpu *vcpu, u64 addr)
  1579. {
  1580. iterator->addr = addr;
  1581. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1582. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1583. if (iterator->level == PT64_ROOT_LEVEL &&
  1584. vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
  1585. !vcpu->arch.mmu.direct_map)
  1586. --iterator->level;
  1587. if (iterator->level == PT32E_ROOT_LEVEL) {
  1588. iterator->shadow_addr
  1589. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1590. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1591. --iterator->level;
  1592. if (!iterator->shadow_addr)
  1593. iterator->level = 0;
  1594. }
  1595. }
  1596. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1597. {
  1598. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1599. return false;
  1600. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1601. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1602. return true;
  1603. }
  1604. static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
  1605. u64 spte)
  1606. {
  1607. if (is_last_spte(spte, iterator->level)) {
  1608. iterator->level = 0;
  1609. return;
  1610. }
  1611. iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
  1612. --iterator->level;
  1613. }
  1614. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1615. {
  1616. return __shadow_walk_next(iterator, *iterator->sptep);
  1617. }
  1618. static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
  1619. {
  1620. u64 spte;
  1621. spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
  1622. shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
  1623. mmu_spte_set(sptep, spte);
  1624. }
  1625. static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1626. unsigned direct_access)
  1627. {
  1628. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
  1629. struct kvm_mmu_page *child;
  1630. /*
  1631. * For the direct sp, if the guest pte's dirty bit
  1632. * changed form clean to dirty, it will corrupt the
  1633. * sp's access: allow writable in the read-only sp,
  1634. * so we should update the spte at this point to get
  1635. * a new sp with the correct access.
  1636. */
  1637. child = page_header(*sptep & PT64_BASE_ADDR_MASK);
  1638. if (child->role.access == direct_access)
  1639. return;
  1640. drop_parent_pte(child, sptep);
  1641. kvm_flush_remote_tlbs(vcpu->kvm);
  1642. }
  1643. }
  1644. static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
  1645. u64 *spte)
  1646. {
  1647. u64 pte;
  1648. struct kvm_mmu_page *child;
  1649. pte = *spte;
  1650. if (is_shadow_present_pte(pte)) {
  1651. if (is_last_spte(pte, sp->role.level)) {
  1652. drop_spte(kvm, spte);
  1653. if (is_large_pte(pte))
  1654. --kvm->stat.lpages;
  1655. } else {
  1656. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1657. drop_parent_pte(child, spte);
  1658. }
  1659. return true;
  1660. }
  1661. if (is_mmio_spte(pte))
  1662. mmu_spte_clear_no_track(spte);
  1663. return false;
  1664. }
  1665. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1666. struct kvm_mmu_page *sp)
  1667. {
  1668. unsigned i;
  1669. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1670. mmu_page_zap_pte(kvm, sp, sp->spt + i);
  1671. }
  1672. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1673. {
  1674. mmu_page_remove_parent_pte(sp, parent_pte);
  1675. }
  1676. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1677. {
  1678. u64 *sptep;
  1679. struct rmap_iterator iter;
  1680. while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
  1681. drop_parent_pte(sp, sptep);
  1682. }
  1683. static int mmu_zap_unsync_children(struct kvm *kvm,
  1684. struct kvm_mmu_page *parent,
  1685. struct list_head *invalid_list)
  1686. {
  1687. int i, zapped = 0;
  1688. struct mmu_page_path parents;
  1689. struct kvm_mmu_pages pages;
  1690. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1691. return 0;
  1692. kvm_mmu_pages_init(parent, &parents, &pages);
  1693. while (mmu_unsync_walk(parent, &pages)) {
  1694. struct kvm_mmu_page *sp;
  1695. for_each_sp(pages, sp, parents, i) {
  1696. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1697. mmu_pages_clear_parents(&parents);
  1698. zapped++;
  1699. }
  1700. kvm_mmu_pages_init(parent, &parents, &pages);
  1701. }
  1702. return zapped;
  1703. }
  1704. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1705. struct list_head *invalid_list)
  1706. {
  1707. int ret;
  1708. trace_kvm_mmu_prepare_zap_page(sp);
  1709. ++kvm->stat.mmu_shadow_zapped;
  1710. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1711. kvm_mmu_page_unlink_children(kvm, sp);
  1712. kvm_mmu_unlink_parents(kvm, sp);
  1713. if (!sp->role.invalid && !sp->role.direct)
  1714. unaccount_shadowed(kvm, sp->gfn);
  1715. if (sp->unsync)
  1716. kvm_unlink_unsync_page(kvm, sp);
  1717. if (!sp->root_count) {
  1718. /* Count self */
  1719. ret++;
  1720. list_move(&sp->link, invalid_list);
  1721. kvm_mod_used_mmu_pages(kvm, -1);
  1722. } else {
  1723. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1724. kvm_reload_remote_mmus(kvm);
  1725. }
  1726. sp->role.invalid = 1;
  1727. return ret;
  1728. }
  1729. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1730. struct list_head *invalid_list)
  1731. {
  1732. struct kvm_mmu_page *sp, *nsp;
  1733. if (list_empty(invalid_list))
  1734. return;
  1735. /*
  1736. * wmb: make sure everyone sees our modifications to the page tables
  1737. * rmb: make sure we see changes to vcpu->mode
  1738. */
  1739. smp_mb();
  1740. /*
  1741. * Wait for all vcpus to exit guest mode and/or lockless shadow
  1742. * page table walks.
  1743. */
  1744. kvm_flush_remote_tlbs(kvm);
  1745. list_for_each_entry_safe(sp, nsp, invalid_list, link) {
  1746. WARN_ON(!sp->role.invalid || sp->root_count);
  1747. kvm_mmu_free_page(sp);
  1748. }
  1749. }
  1750. static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
  1751. struct list_head *invalid_list)
  1752. {
  1753. struct kvm_mmu_page *sp;
  1754. if (list_empty(&kvm->arch.active_mmu_pages))
  1755. return false;
  1756. sp = list_entry(kvm->arch.active_mmu_pages.prev,
  1757. struct kvm_mmu_page, link);
  1758. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1759. return true;
  1760. }
  1761. /*
  1762. * Changing the number of mmu pages allocated to the vm
  1763. * Note: if goal_nr_mmu_pages is too small, you will get dead lock
  1764. */
  1765. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
  1766. {
  1767. LIST_HEAD(invalid_list);
  1768. spin_lock(&kvm->mmu_lock);
  1769. if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
  1770. /* Need to free some mmu pages to achieve the goal. */
  1771. while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
  1772. if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
  1773. break;
  1774. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1775. goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
  1776. }
  1777. kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
  1778. spin_unlock(&kvm->mmu_lock);
  1779. }
  1780. int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1781. {
  1782. struct kvm_mmu_page *sp;
  1783. LIST_HEAD(invalid_list);
  1784. int r;
  1785. pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
  1786. r = 0;
  1787. spin_lock(&kvm->mmu_lock);
  1788. for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
  1789. pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
  1790. sp->role.word);
  1791. r = 1;
  1792. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1793. }
  1794. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1795. spin_unlock(&kvm->mmu_lock);
  1796. return r;
  1797. }
  1798. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
  1799. /*
  1800. * The function is based on mtrr_type_lookup() in
  1801. * arch/x86/kernel/cpu/mtrr/generic.c
  1802. */
  1803. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1804. u64 start, u64 end)
  1805. {
  1806. int i;
  1807. u64 base, mask;
  1808. u8 prev_match, curr_match;
  1809. int num_var_ranges = KVM_NR_VAR_MTRR;
  1810. if (!mtrr_state->enabled)
  1811. return 0xFF;
  1812. /* Make end inclusive end, instead of exclusive */
  1813. end--;
  1814. /* Look in fixed ranges. Just return the type as per start */
  1815. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1816. int idx;
  1817. if (start < 0x80000) {
  1818. idx = 0;
  1819. idx += (start >> 16);
  1820. return mtrr_state->fixed_ranges[idx];
  1821. } else if (start < 0xC0000) {
  1822. idx = 1 * 8;
  1823. idx += ((start - 0x80000) >> 14);
  1824. return mtrr_state->fixed_ranges[idx];
  1825. } else if (start < 0x1000000) {
  1826. idx = 3 * 8;
  1827. idx += ((start - 0xC0000) >> 12);
  1828. return mtrr_state->fixed_ranges[idx];
  1829. }
  1830. }
  1831. /*
  1832. * Look in variable ranges
  1833. * Look of multiple ranges matching this address and pick type
  1834. * as per MTRR precedence
  1835. */
  1836. if (!(mtrr_state->enabled & 2))
  1837. return mtrr_state->def_type;
  1838. prev_match = 0xFF;
  1839. for (i = 0; i < num_var_ranges; ++i) {
  1840. unsigned short start_state, end_state;
  1841. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1842. continue;
  1843. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1844. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1845. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1846. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1847. start_state = ((start & mask) == (base & mask));
  1848. end_state = ((end & mask) == (base & mask));
  1849. if (start_state != end_state)
  1850. return 0xFE;
  1851. if ((start & mask) != (base & mask))
  1852. continue;
  1853. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1854. if (prev_match == 0xFF) {
  1855. prev_match = curr_match;
  1856. continue;
  1857. }
  1858. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1859. curr_match == MTRR_TYPE_UNCACHABLE)
  1860. return MTRR_TYPE_UNCACHABLE;
  1861. if ((prev_match == MTRR_TYPE_WRBACK &&
  1862. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1863. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1864. curr_match == MTRR_TYPE_WRBACK)) {
  1865. prev_match = MTRR_TYPE_WRTHROUGH;
  1866. curr_match = MTRR_TYPE_WRTHROUGH;
  1867. }
  1868. if (prev_match != curr_match)
  1869. return MTRR_TYPE_UNCACHABLE;
  1870. }
  1871. if (prev_match != 0xFF)
  1872. return prev_match;
  1873. return mtrr_state->def_type;
  1874. }
  1875. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1876. {
  1877. u8 mtrr;
  1878. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1879. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1880. if (mtrr == 0xfe || mtrr == 0xff)
  1881. mtrr = MTRR_TYPE_WRBACK;
  1882. return mtrr;
  1883. }
  1884. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1885. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1886. {
  1887. trace_kvm_mmu_unsync_page(sp);
  1888. ++vcpu->kvm->stat.mmu_unsync;
  1889. sp->unsync = 1;
  1890. kvm_mmu_mark_parents_unsync(sp);
  1891. }
  1892. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1893. {
  1894. struct kvm_mmu_page *s;
  1895. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  1896. if (s->unsync)
  1897. continue;
  1898. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1899. __kvm_unsync_page(vcpu, s);
  1900. }
  1901. }
  1902. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1903. bool can_unsync)
  1904. {
  1905. struct kvm_mmu_page *s;
  1906. bool need_unsync = false;
  1907. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  1908. if (!can_unsync)
  1909. return 1;
  1910. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  1911. return 1;
  1912. if (!s->unsync)
  1913. need_unsync = true;
  1914. }
  1915. if (need_unsync)
  1916. kvm_unsync_pages(vcpu, gfn);
  1917. return 0;
  1918. }
  1919. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1920. unsigned pte_access, int level,
  1921. gfn_t gfn, pfn_t pfn, bool speculative,
  1922. bool can_unsync, bool host_writable)
  1923. {
  1924. u64 spte;
  1925. int ret = 0;
  1926. if (set_mmio_spte(sptep, gfn, pfn, pte_access))
  1927. return 0;
  1928. spte = PT_PRESENT_MASK;
  1929. if (!speculative)
  1930. spte |= shadow_accessed_mask;
  1931. if (pte_access & ACC_EXEC_MASK)
  1932. spte |= shadow_x_mask;
  1933. else
  1934. spte |= shadow_nx_mask;
  1935. if (pte_access & ACC_USER_MASK)
  1936. spte |= shadow_user_mask;
  1937. if (level > PT_PAGE_TABLE_LEVEL)
  1938. spte |= PT_PAGE_SIZE_MASK;
  1939. if (tdp_enabled)
  1940. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1941. kvm_is_mmio_pfn(pfn));
  1942. if (host_writable)
  1943. spte |= SPTE_HOST_WRITEABLE;
  1944. else
  1945. pte_access &= ~ACC_WRITE_MASK;
  1946. spte |= (u64)pfn << PAGE_SHIFT;
  1947. if (pte_access & ACC_WRITE_MASK) {
  1948. /*
  1949. * Other vcpu creates new sp in the window between
  1950. * mapping_level() and acquiring mmu-lock. We can
  1951. * allow guest to retry the access, the mapping can
  1952. * be fixed if guest refault.
  1953. */
  1954. if (level > PT_PAGE_TABLE_LEVEL &&
  1955. has_wrprotected_page(vcpu->kvm, gfn, level))
  1956. goto done;
  1957. spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
  1958. /*
  1959. * Optimization: for pte sync, if spte was writable the hash
  1960. * lookup is unnecessary (and expensive). Write protection
  1961. * is responsibility of mmu_get_page / kvm_sync_page.
  1962. * Same reasoning can be applied to dirty page accounting.
  1963. */
  1964. if (!can_unsync && is_writable_pte(*sptep))
  1965. goto set_pte;
  1966. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1967. pgprintk("%s: found shadow page for %llx, marking ro\n",
  1968. __func__, gfn);
  1969. ret = 1;
  1970. pte_access &= ~ACC_WRITE_MASK;
  1971. spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
  1972. }
  1973. }
  1974. if (pte_access & ACC_WRITE_MASK)
  1975. mark_page_dirty(vcpu->kvm, gfn);
  1976. set_pte:
  1977. if (mmu_spte_update(sptep, spte))
  1978. kvm_flush_remote_tlbs(vcpu->kvm);
  1979. done:
  1980. return ret;
  1981. }
  1982. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1983. unsigned pte_access, int write_fault, int *emulate,
  1984. int level, gfn_t gfn, pfn_t pfn, bool speculative,
  1985. bool host_writable)
  1986. {
  1987. int was_rmapped = 0;
  1988. int rmap_count;
  1989. pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
  1990. *sptep, write_fault, gfn);
  1991. if (is_rmap_spte(*sptep)) {
  1992. /*
  1993. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1994. * the parent of the now unreachable PTE.
  1995. */
  1996. if (level > PT_PAGE_TABLE_LEVEL &&
  1997. !is_large_pte(*sptep)) {
  1998. struct kvm_mmu_page *child;
  1999. u64 pte = *sptep;
  2000. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2001. drop_parent_pte(child, sptep);
  2002. kvm_flush_remote_tlbs(vcpu->kvm);
  2003. } else if (pfn != spte_to_pfn(*sptep)) {
  2004. pgprintk("hfn old %llx new %llx\n",
  2005. spte_to_pfn(*sptep), pfn);
  2006. drop_spte(vcpu->kvm, sptep);
  2007. kvm_flush_remote_tlbs(vcpu->kvm);
  2008. } else
  2009. was_rmapped = 1;
  2010. }
  2011. if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
  2012. true, host_writable)) {
  2013. if (write_fault)
  2014. *emulate = 1;
  2015. kvm_mmu_flush_tlb(vcpu);
  2016. }
  2017. if (unlikely(is_mmio_spte(*sptep) && emulate))
  2018. *emulate = 1;
  2019. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  2020. pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
  2021. is_large_pte(*sptep)? "2MB" : "4kB",
  2022. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  2023. *sptep, sptep);
  2024. if (!was_rmapped && is_large_pte(*sptep))
  2025. ++vcpu->kvm->stat.lpages;
  2026. if (is_shadow_present_pte(*sptep)) {
  2027. if (!was_rmapped) {
  2028. rmap_count = rmap_add(vcpu, sptep, gfn);
  2029. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  2030. rmap_recycle(vcpu, sptep, gfn);
  2031. }
  2032. }
  2033. kvm_release_pfn_clean(pfn);
  2034. }
  2035. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  2036. {
  2037. mmu_free_roots(vcpu);
  2038. }
  2039. static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
  2040. {
  2041. int bit7;
  2042. bit7 = (gpte >> 7) & 1;
  2043. return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
  2044. }
  2045. static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
  2046. bool no_dirty_log)
  2047. {
  2048. struct kvm_memory_slot *slot;
  2049. slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
  2050. if (!slot)
  2051. return KVM_PFN_ERR_FAULT;
  2052. return gfn_to_pfn_memslot_atomic(slot, gfn);
  2053. }
  2054. static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
  2055. struct kvm_mmu_page *sp, u64 *spte,
  2056. u64 gpte)
  2057. {
  2058. if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
  2059. goto no_present;
  2060. if (!is_present_gpte(gpte))
  2061. goto no_present;
  2062. if (!(gpte & PT_ACCESSED_MASK))
  2063. goto no_present;
  2064. return false;
  2065. no_present:
  2066. drop_spte(vcpu->kvm, spte);
  2067. return true;
  2068. }
  2069. static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
  2070. struct kvm_mmu_page *sp,
  2071. u64 *start, u64 *end)
  2072. {
  2073. struct page *pages[PTE_PREFETCH_NUM];
  2074. unsigned access = sp->role.access;
  2075. int i, ret;
  2076. gfn_t gfn;
  2077. gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
  2078. if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
  2079. return -1;
  2080. ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
  2081. if (ret <= 0)
  2082. return -1;
  2083. for (i = 0; i < ret; i++, gfn++, start++)
  2084. mmu_set_spte(vcpu, start, access, 0, NULL,
  2085. sp->role.level, gfn, page_to_pfn(pages[i]),
  2086. true, true);
  2087. return 0;
  2088. }
  2089. static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
  2090. struct kvm_mmu_page *sp, u64 *sptep)
  2091. {
  2092. u64 *spte, *start = NULL;
  2093. int i;
  2094. WARN_ON(!sp->role.direct);
  2095. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  2096. spte = sp->spt + i;
  2097. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  2098. if (is_shadow_present_pte(*spte) || spte == sptep) {
  2099. if (!start)
  2100. continue;
  2101. if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
  2102. break;
  2103. start = NULL;
  2104. } else if (!start)
  2105. start = spte;
  2106. }
  2107. }
  2108. static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
  2109. {
  2110. struct kvm_mmu_page *sp;
  2111. /*
  2112. * Since it's no accessed bit on EPT, it's no way to
  2113. * distinguish between actually accessed translations
  2114. * and prefetched, so disable pte prefetch if EPT is
  2115. * enabled.
  2116. */
  2117. if (!shadow_accessed_mask)
  2118. return;
  2119. sp = page_header(__pa(sptep));
  2120. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  2121. return;
  2122. __direct_pte_prefetch(vcpu, sp, sptep);
  2123. }
  2124. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  2125. int map_writable, int level, gfn_t gfn, pfn_t pfn,
  2126. bool prefault)
  2127. {
  2128. struct kvm_shadow_walk_iterator iterator;
  2129. struct kvm_mmu_page *sp;
  2130. int emulate = 0;
  2131. gfn_t pseudo_gfn;
  2132. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  2133. if (iterator.level == level) {
  2134. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
  2135. write, &emulate, level, gfn, pfn,
  2136. prefault, map_writable);
  2137. direct_pte_prefetch(vcpu, iterator.sptep);
  2138. ++vcpu->stat.pf_fixed;
  2139. break;
  2140. }
  2141. if (!is_shadow_present_pte(*iterator.sptep)) {
  2142. u64 base_addr = iterator.addr;
  2143. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  2144. pseudo_gfn = base_addr >> PAGE_SHIFT;
  2145. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  2146. iterator.level - 1,
  2147. 1, ACC_ALL, iterator.sptep);
  2148. link_shadow_page(iterator.sptep, sp);
  2149. }
  2150. }
  2151. return emulate;
  2152. }
  2153. static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
  2154. {
  2155. siginfo_t info;
  2156. info.si_signo = SIGBUS;
  2157. info.si_errno = 0;
  2158. info.si_code = BUS_MCEERR_AR;
  2159. info.si_addr = (void __user *)address;
  2160. info.si_addr_lsb = PAGE_SHIFT;
  2161. send_sig_info(SIGBUS, &info, tsk);
  2162. }
  2163. static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
  2164. {
  2165. /*
  2166. * Do not cache the mmio info caused by writing the readonly gfn
  2167. * into the spte otherwise read access on readonly gfn also can
  2168. * caused mmio page fault and treat it as mmio access.
  2169. * Return 1 to tell kvm to emulate it.
  2170. */
  2171. if (pfn == KVM_PFN_ERR_RO_FAULT)
  2172. return 1;
  2173. if (pfn == KVM_PFN_ERR_HWPOISON) {
  2174. kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
  2175. return 0;
  2176. }
  2177. return -EFAULT;
  2178. }
  2179. static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
  2180. gfn_t *gfnp, pfn_t *pfnp, int *levelp)
  2181. {
  2182. pfn_t pfn = *pfnp;
  2183. gfn_t gfn = *gfnp;
  2184. int level = *levelp;
  2185. /*
  2186. * Check if it's a transparent hugepage. If this would be an
  2187. * hugetlbfs page, level wouldn't be set to
  2188. * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
  2189. * here.
  2190. */
  2191. if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
  2192. level == PT_PAGE_TABLE_LEVEL &&
  2193. PageTransCompound(pfn_to_page(pfn)) &&
  2194. !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
  2195. unsigned long mask;
  2196. /*
  2197. * mmu_notifier_retry was successful and we hold the
  2198. * mmu_lock here, so the pmd can't become splitting
  2199. * from under us, and in turn
  2200. * __split_huge_page_refcount() can't run from under
  2201. * us and we can safely transfer the refcount from
  2202. * PG_tail to PG_head as we switch the pfn to tail to
  2203. * head.
  2204. */
  2205. *levelp = level = PT_DIRECTORY_LEVEL;
  2206. mask = KVM_PAGES_PER_HPAGE(level) - 1;
  2207. VM_BUG_ON((gfn & mask) != (pfn & mask));
  2208. if (pfn & mask) {
  2209. gfn &= ~mask;
  2210. *gfnp = gfn;
  2211. kvm_release_pfn_clean(pfn);
  2212. pfn &= ~mask;
  2213. kvm_get_pfn(pfn);
  2214. *pfnp = pfn;
  2215. }
  2216. }
  2217. }
  2218. static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
  2219. pfn_t pfn, unsigned access, int *ret_val)
  2220. {
  2221. bool ret = true;
  2222. /* The pfn is invalid, report the error! */
  2223. if (unlikely(is_error_pfn(pfn))) {
  2224. *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
  2225. goto exit;
  2226. }
  2227. if (unlikely(is_noslot_pfn(pfn)))
  2228. vcpu_cache_mmio_info(vcpu, gva, gfn, access);
  2229. ret = false;
  2230. exit:
  2231. return ret;
  2232. }
  2233. static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
  2234. {
  2235. /*
  2236. * #PF can be fast only if the shadow page table is present and it
  2237. * is caused by write-protect, that means we just need change the
  2238. * W bit of the spte which can be done out of mmu-lock.
  2239. */
  2240. if (!(error_code & PFERR_PRESENT_MASK) ||
  2241. !(error_code & PFERR_WRITE_MASK))
  2242. return false;
  2243. return true;
  2244. }
  2245. static bool
  2246. fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
  2247. {
  2248. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  2249. gfn_t gfn;
  2250. WARN_ON(!sp->role.direct);
  2251. /*
  2252. * The gfn of direct spte is stable since it is calculated
  2253. * by sp->gfn.
  2254. */
  2255. gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
  2256. if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
  2257. mark_page_dirty(vcpu->kvm, gfn);
  2258. return true;
  2259. }
  2260. /*
  2261. * Return value:
  2262. * - true: let the vcpu to access on the same address again.
  2263. * - false: let the real page fault path to fix it.
  2264. */
  2265. static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
  2266. u32 error_code)
  2267. {
  2268. struct kvm_shadow_walk_iterator iterator;
  2269. bool ret = false;
  2270. u64 spte = 0ull;
  2271. if (!page_fault_can_be_fast(vcpu, error_code))
  2272. return false;
  2273. walk_shadow_page_lockless_begin(vcpu);
  2274. for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
  2275. if (!is_shadow_present_pte(spte) || iterator.level < level)
  2276. break;
  2277. /*
  2278. * If the mapping has been changed, let the vcpu fault on the
  2279. * same address again.
  2280. */
  2281. if (!is_rmap_spte(spte)) {
  2282. ret = true;
  2283. goto exit;
  2284. }
  2285. if (!is_last_spte(spte, level))
  2286. goto exit;
  2287. /*
  2288. * Check if it is a spurious fault caused by TLB lazily flushed.
  2289. *
  2290. * Need not check the access of upper level table entries since
  2291. * they are always ACC_ALL.
  2292. */
  2293. if (is_writable_pte(spte)) {
  2294. ret = true;
  2295. goto exit;
  2296. }
  2297. /*
  2298. * Currently, to simplify the code, only the spte write-protected
  2299. * by dirty-log can be fast fixed.
  2300. */
  2301. if (!spte_is_locklessly_modifiable(spte))
  2302. goto exit;
  2303. /*
  2304. * Currently, fast page fault only works for direct mapping since
  2305. * the gfn is not stable for indirect shadow page.
  2306. * See Documentation/virtual/kvm/locking.txt to get more detail.
  2307. */
  2308. ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
  2309. exit:
  2310. trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
  2311. spte, ret);
  2312. walk_shadow_page_lockless_end(vcpu);
  2313. return ret;
  2314. }
  2315. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2316. gva_t gva, pfn_t *pfn, bool write, bool *writable);
  2317. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
  2318. gfn_t gfn, bool prefault)
  2319. {
  2320. int r;
  2321. int level;
  2322. int force_pt_level;
  2323. pfn_t pfn;
  2324. unsigned long mmu_seq;
  2325. bool map_writable, write = error_code & PFERR_WRITE_MASK;
  2326. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2327. if (likely(!force_pt_level)) {
  2328. level = mapping_level(vcpu, gfn);
  2329. /*
  2330. * This path builds a PAE pagetable - so we can map
  2331. * 2mb pages at maximum. Therefore check if the level
  2332. * is larger than that.
  2333. */
  2334. if (level > PT_DIRECTORY_LEVEL)
  2335. level = PT_DIRECTORY_LEVEL;
  2336. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2337. } else
  2338. level = PT_PAGE_TABLE_LEVEL;
  2339. if (fast_page_fault(vcpu, v, level, error_code))
  2340. return 0;
  2341. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2342. smp_rmb();
  2343. if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
  2344. return 0;
  2345. if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
  2346. return r;
  2347. spin_lock(&vcpu->kvm->mmu_lock);
  2348. if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
  2349. goto out_unlock;
  2350. if (likely(!force_pt_level))
  2351. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2352. r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
  2353. prefault);
  2354. spin_unlock(&vcpu->kvm->mmu_lock);
  2355. return r;
  2356. out_unlock:
  2357. spin_unlock(&vcpu->kvm->mmu_lock);
  2358. kvm_release_pfn_clean(pfn);
  2359. return 0;
  2360. }
  2361. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  2362. {
  2363. int i;
  2364. struct kvm_mmu_page *sp;
  2365. LIST_HEAD(invalid_list);
  2366. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2367. return;
  2368. spin_lock(&vcpu->kvm->mmu_lock);
  2369. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
  2370. (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
  2371. vcpu->arch.mmu.direct_map)) {
  2372. hpa_t root = vcpu->arch.mmu.root_hpa;
  2373. sp = page_header(root);
  2374. --sp->root_count;
  2375. if (!sp->root_count && sp->role.invalid) {
  2376. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  2377. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2378. }
  2379. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2380. spin_unlock(&vcpu->kvm->mmu_lock);
  2381. return;
  2382. }
  2383. for (i = 0; i < 4; ++i) {
  2384. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2385. if (root) {
  2386. root &= PT64_BASE_ADDR_MASK;
  2387. sp = page_header(root);
  2388. --sp->root_count;
  2389. if (!sp->root_count && sp->role.invalid)
  2390. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2391. &invalid_list);
  2392. }
  2393. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2394. }
  2395. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2396. spin_unlock(&vcpu->kvm->mmu_lock);
  2397. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2398. }
  2399. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  2400. {
  2401. int ret = 0;
  2402. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  2403. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2404. ret = 1;
  2405. }
  2406. return ret;
  2407. }
  2408. static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
  2409. {
  2410. struct kvm_mmu_page *sp;
  2411. unsigned i;
  2412. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2413. spin_lock(&vcpu->kvm->mmu_lock);
  2414. sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
  2415. 1, ACC_ALL, NULL);
  2416. ++sp->root_count;
  2417. spin_unlock(&vcpu->kvm->mmu_lock);
  2418. vcpu->arch.mmu.root_hpa = __pa(sp->spt);
  2419. } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
  2420. for (i = 0; i < 4; ++i) {
  2421. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2422. ASSERT(!VALID_PAGE(root));
  2423. spin_lock(&vcpu->kvm->mmu_lock);
  2424. sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
  2425. i << 30,
  2426. PT32_ROOT_LEVEL, 1, ACC_ALL,
  2427. NULL);
  2428. root = __pa(sp->spt);
  2429. ++sp->root_count;
  2430. spin_unlock(&vcpu->kvm->mmu_lock);
  2431. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  2432. }
  2433. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2434. } else
  2435. BUG();
  2436. return 0;
  2437. }
  2438. static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
  2439. {
  2440. struct kvm_mmu_page *sp;
  2441. u64 pdptr, pm_mask;
  2442. gfn_t root_gfn;
  2443. int i;
  2444. root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
  2445. if (mmu_check_root(vcpu, root_gfn))
  2446. return 1;
  2447. /*
  2448. * Do we shadow a long mode page table? If so we need to
  2449. * write-protect the guests page table root.
  2450. */
  2451. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2452. hpa_t root = vcpu->arch.mmu.root_hpa;
  2453. ASSERT(!VALID_PAGE(root));
  2454. spin_lock(&vcpu->kvm->mmu_lock);
  2455. sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
  2456. 0, ACC_ALL, NULL);
  2457. root = __pa(sp->spt);
  2458. ++sp->root_count;
  2459. spin_unlock(&vcpu->kvm->mmu_lock);
  2460. vcpu->arch.mmu.root_hpa = root;
  2461. return 0;
  2462. }
  2463. /*
  2464. * We shadow a 32 bit page table. This may be a legacy 2-level
  2465. * or a PAE 3-level page table. In either case we need to be aware that
  2466. * the shadow page table may be a PAE or a long mode page table.
  2467. */
  2468. pm_mask = PT_PRESENT_MASK;
  2469. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
  2470. pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
  2471. for (i = 0; i < 4; ++i) {
  2472. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2473. ASSERT(!VALID_PAGE(root));
  2474. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  2475. pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
  2476. if (!is_present_gpte(pdptr)) {
  2477. vcpu->arch.mmu.pae_root[i] = 0;
  2478. continue;
  2479. }
  2480. root_gfn = pdptr >> PAGE_SHIFT;
  2481. if (mmu_check_root(vcpu, root_gfn))
  2482. return 1;
  2483. }
  2484. spin_lock(&vcpu->kvm->mmu_lock);
  2485. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  2486. PT32_ROOT_LEVEL, 0,
  2487. ACC_ALL, NULL);
  2488. root = __pa(sp->spt);
  2489. ++sp->root_count;
  2490. spin_unlock(&vcpu->kvm->mmu_lock);
  2491. vcpu->arch.mmu.pae_root[i] = root | pm_mask;
  2492. }
  2493. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2494. /*
  2495. * If we shadow a 32 bit page table with a long mode page
  2496. * table we enter this path.
  2497. */
  2498. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2499. if (vcpu->arch.mmu.lm_root == NULL) {
  2500. /*
  2501. * The additional page necessary for this is only
  2502. * allocated on demand.
  2503. */
  2504. u64 *lm_root;
  2505. lm_root = (void*)get_zeroed_page(GFP_KERNEL);
  2506. if (lm_root == NULL)
  2507. return 1;
  2508. lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
  2509. vcpu->arch.mmu.lm_root = lm_root;
  2510. }
  2511. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
  2512. }
  2513. return 0;
  2514. }
  2515. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  2516. {
  2517. if (vcpu->arch.mmu.direct_map)
  2518. return mmu_alloc_direct_roots(vcpu);
  2519. else
  2520. return mmu_alloc_shadow_roots(vcpu);
  2521. }
  2522. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  2523. {
  2524. int i;
  2525. struct kvm_mmu_page *sp;
  2526. if (vcpu->arch.mmu.direct_map)
  2527. return;
  2528. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2529. return;
  2530. vcpu_clear_mmio_info(vcpu, ~0ul);
  2531. kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
  2532. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2533. hpa_t root = vcpu->arch.mmu.root_hpa;
  2534. sp = page_header(root);
  2535. mmu_sync_children(vcpu, sp);
  2536. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2537. return;
  2538. }
  2539. for (i = 0; i < 4; ++i) {
  2540. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2541. if (root && VALID_PAGE(root)) {
  2542. root &= PT64_BASE_ADDR_MASK;
  2543. sp = page_header(root);
  2544. mmu_sync_children(vcpu, sp);
  2545. }
  2546. }
  2547. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2548. }
  2549. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  2550. {
  2551. spin_lock(&vcpu->kvm->mmu_lock);
  2552. mmu_sync_roots(vcpu);
  2553. spin_unlock(&vcpu->kvm->mmu_lock);
  2554. }
  2555. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  2556. u32 access, struct x86_exception *exception)
  2557. {
  2558. if (exception)
  2559. exception->error_code = 0;
  2560. return vaddr;
  2561. }
  2562. static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
  2563. u32 access,
  2564. struct x86_exception *exception)
  2565. {
  2566. if (exception)
  2567. exception->error_code = 0;
  2568. return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
  2569. }
  2570. static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2571. {
  2572. if (direct)
  2573. return vcpu_match_mmio_gpa(vcpu, addr);
  2574. return vcpu_match_mmio_gva(vcpu, addr);
  2575. }
  2576. /*
  2577. * On direct hosts, the last spte is only allows two states
  2578. * for mmio page fault:
  2579. * - It is the mmio spte
  2580. * - It is zapped or it is being zapped.
  2581. *
  2582. * This function completely checks the spte when the last spte
  2583. * is not the mmio spte.
  2584. */
  2585. static bool check_direct_spte_mmio_pf(u64 spte)
  2586. {
  2587. return __check_direct_spte_mmio_pf(spte);
  2588. }
  2589. static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
  2590. {
  2591. struct kvm_shadow_walk_iterator iterator;
  2592. u64 spte = 0ull;
  2593. walk_shadow_page_lockless_begin(vcpu);
  2594. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
  2595. if (!is_shadow_present_pte(spte))
  2596. break;
  2597. walk_shadow_page_lockless_end(vcpu);
  2598. return spte;
  2599. }
  2600. /*
  2601. * If it is a real mmio page fault, return 1 and emulat the instruction
  2602. * directly, return 0 to let CPU fault again on the address, -1 is
  2603. * returned if bug is detected.
  2604. */
  2605. int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2606. {
  2607. u64 spte;
  2608. if (quickly_check_mmio_pf(vcpu, addr, direct))
  2609. return 1;
  2610. spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
  2611. if (is_mmio_spte(spte)) {
  2612. gfn_t gfn = get_mmio_spte_gfn(spte);
  2613. unsigned access = get_mmio_spte_access(spte);
  2614. if (direct)
  2615. addr = 0;
  2616. trace_handle_mmio_page_fault(addr, gfn, access);
  2617. vcpu_cache_mmio_info(vcpu, addr, gfn, access);
  2618. return 1;
  2619. }
  2620. /*
  2621. * It's ok if the gva is remapped by other cpus on shadow guest,
  2622. * it's a BUG if the gfn is not a mmio page.
  2623. */
  2624. if (direct && !check_direct_spte_mmio_pf(spte))
  2625. return -1;
  2626. /*
  2627. * If the page table is zapped by other cpus, let CPU fault again on
  2628. * the address.
  2629. */
  2630. return 0;
  2631. }
  2632. EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
  2633. static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
  2634. u32 error_code, bool direct)
  2635. {
  2636. int ret;
  2637. ret = handle_mmio_page_fault_common(vcpu, addr, direct);
  2638. WARN_ON(ret < 0);
  2639. return ret;
  2640. }
  2641. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  2642. u32 error_code, bool prefault)
  2643. {
  2644. gfn_t gfn;
  2645. int r;
  2646. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  2647. if (unlikely(error_code & PFERR_RSVD_MASK))
  2648. return handle_mmio_page_fault(vcpu, gva, error_code, true);
  2649. r = mmu_topup_memory_caches(vcpu);
  2650. if (r)
  2651. return r;
  2652. ASSERT(vcpu);
  2653. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2654. gfn = gva >> PAGE_SHIFT;
  2655. return nonpaging_map(vcpu, gva & PAGE_MASK,
  2656. error_code, gfn, prefault);
  2657. }
  2658. static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
  2659. {
  2660. struct kvm_arch_async_pf arch;
  2661. arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
  2662. arch.gfn = gfn;
  2663. arch.direct_map = vcpu->arch.mmu.direct_map;
  2664. arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
  2665. return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
  2666. }
  2667. static bool can_do_async_pf(struct kvm_vcpu *vcpu)
  2668. {
  2669. if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
  2670. kvm_event_needs_reinjection(vcpu)))
  2671. return false;
  2672. return kvm_x86_ops->interrupt_allowed(vcpu);
  2673. }
  2674. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2675. gva_t gva, pfn_t *pfn, bool write, bool *writable)
  2676. {
  2677. bool async;
  2678. *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
  2679. if (!async)
  2680. return false; /* *pfn has correct page already */
  2681. if (!prefault && can_do_async_pf(vcpu)) {
  2682. trace_kvm_try_async_get_page(gva, gfn);
  2683. if (kvm_find_async_pf_gfn(vcpu, gfn)) {
  2684. trace_kvm_async_pf_doublefault(gva, gfn);
  2685. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  2686. return true;
  2687. } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
  2688. return true;
  2689. }
  2690. *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
  2691. return false;
  2692. }
  2693. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
  2694. bool prefault)
  2695. {
  2696. pfn_t pfn;
  2697. int r;
  2698. int level;
  2699. int force_pt_level;
  2700. gfn_t gfn = gpa >> PAGE_SHIFT;
  2701. unsigned long mmu_seq;
  2702. int write = error_code & PFERR_WRITE_MASK;
  2703. bool map_writable;
  2704. ASSERT(vcpu);
  2705. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2706. if (unlikely(error_code & PFERR_RSVD_MASK))
  2707. return handle_mmio_page_fault(vcpu, gpa, error_code, true);
  2708. r = mmu_topup_memory_caches(vcpu);
  2709. if (r)
  2710. return r;
  2711. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2712. if (likely(!force_pt_level)) {
  2713. level = mapping_level(vcpu, gfn);
  2714. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2715. } else
  2716. level = PT_PAGE_TABLE_LEVEL;
  2717. if (fast_page_fault(vcpu, gpa, level, error_code))
  2718. return 0;
  2719. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2720. smp_rmb();
  2721. if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
  2722. return 0;
  2723. if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
  2724. return r;
  2725. spin_lock(&vcpu->kvm->mmu_lock);
  2726. if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
  2727. goto out_unlock;
  2728. if (likely(!force_pt_level))
  2729. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2730. r = __direct_map(vcpu, gpa, write, map_writable,
  2731. level, gfn, pfn, prefault);
  2732. spin_unlock(&vcpu->kvm->mmu_lock);
  2733. return r;
  2734. out_unlock:
  2735. spin_unlock(&vcpu->kvm->mmu_lock);
  2736. kvm_release_pfn_clean(pfn);
  2737. return 0;
  2738. }
  2739. static void nonpaging_free(struct kvm_vcpu *vcpu)
  2740. {
  2741. mmu_free_roots(vcpu);
  2742. }
  2743. static int nonpaging_init_context(struct kvm_vcpu *vcpu,
  2744. struct kvm_mmu *context)
  2745. {
  2746. context->new_cr3 = nonpaging_new_cr3;
  2747. context->page_fault = nonpaging_page_fault;
  2748. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2749. context->free = nonpaging_free;
  2750. context->sync_page = nonpaging_sync_page;
  2751. context->invlpg = nonpaging_invlpg;
  2752. context->update_pte = nonpaging_update_pte;
  2753. context->root_level = 0;
  2754. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2755. context->root_hpa = INVALID_PAGE;
  2756. context->direct_map = true;
  2757. context->nx = false;
  2758. return 0;
  2759. }
  2760. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2761. {
  2762. ++vcpu->stat.tlb_flush;
  2763. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2764. }
  2765. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  2766. {
  2767. pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
  2768. mmu_free_roots(vcpu);
  2769. }
  2770. static unsigned long get_cr3(struct kvm_vcpu *vcpu)
  2771. {
  2772. return kvm_read_cr3(vcpu);
  2773. }
  2774. static void inject_page_fault(struct kvm_vcpu *vcpu,
  2775. struct x86_exception *fault)
  2776. {
  2777. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  2778. }
  2779. static void paging_free(struct kvm_vcpu *vcpu)
  2780. {
  2781. nonpaging_free(vcpu);
  2782. }
  2783. static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
  2784. {
  2785. unsigned mask;
  2786. BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
  2787. mask = (unsigned)~ACC_WRITE_MASK;
  2788. /* Allow write access to dirty gptes */
  2789. mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
  2790. *access &= mask;
  2791. }
  2792. static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
  2793. int *nr_present)
  2794. {
  2795. if (unlikely(is_mmio_spte(*sptep))) {
  2796. if (gfn != get_mmio_spte_gfn(*sptep)) {
  2797. mmu_spte_clear_no_track(sptep);
  2798. return true;
  2799. }
  2800. (*nr_present)++;
  2801. mark_mmio_spte(sptep, gfn, access);
  2802. return true;
  2803. }
  2804. return false;
  2805. }
  2806. static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
  2807. {
  2808. unsigned access;
  2809. access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
  2810. access &= ~(gpte >> PT64_NX_SHIFT);
  2811. return access;
  2812. }
  2813. static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
  2814. {
  2815. unsigned index;
  2816. index = level - 1;
  2817. index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
  2818. return mmu->last_pte_bitmap & (1 << index);
  2819. }
  2820. #define PTTYPE 64
  2821. #include "paging_tmpl.h"
  2822. #undef PTTYPE
  2823. #define PTTYPE 32
  2824. #include "paging_tmpl.h"
  2825. #undef PTTYPE
  2826. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
  2827. struct kvm_mmu *context)
  2828. {
  2829. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2830. u64 exb_bit_rsvd = 0;
  2831. if (!context->nx)
  2832. exb_bit_rsvd = rsvd_bits(63, 63);
  2833. switch (context->root_level) {
  2834. case PT32_ROOT_LEVEL:
  2835. /* no rsvd bits for 2 level 4K page table entries */
  2836. context->rsvd_bits_mask[0][1] = 0;
  2837. context->rsvd_bits_mask[0][0] = 0;
  2838. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2839. if (!is_pse(vcpu)) {
  2840. context->rsvd_bits_mask[1][1] = 0;
  2841. break;
  2842. }
  2843. if (is_cpuid_PSE36())
  2844. /* 36bits PSE 4MB page */
  2845. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  2846. else
  2847. /* 32 bits PSE 4MB page */
  2848. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  2849. break;
  2850. case PT32E_ROOT_LEVEL:
  2851. context->rsvd_bits_mask[0][2] =
  2852. rsvd_bits(maxphyaddr, 63) |
  2853. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  2854. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2855. rsvd_bits(maxphyaddr, 62); /* PDE */
  2856. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2857. rsvd_bits(maxphyaddr, 62); /* PTE */
  2858. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2859. rsvd_bits(maxphyaddr, 62) |
  2860. rsvd_bits(13, 20); /* large page */
  2861. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2862. break;
  2863. case PT64_ROOT_LEVEL:
  2864. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2865. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2866. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2867. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2868. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2869. rsvd_bits(maxphyaddr, 51);
  2870. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2871. rsvd_bits(maxphyaddr, 51);
  2872. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2873. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2874. rsvd_bits(maxphyaddr, 51) |
  2875. rsvd_bits(13, 29);
  2876. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2877. rsvd_bits(maxphyaddr, 51) |
  2878. rsvd_bits(13, 20); /* large page */
  2879. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2880. break;
  2881. }
  2882. }
  2883. static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
  2884. {
  2885. unsigned bit, byte, pfec;
  2886. u8 map;
  2887. bool fault, x, w, u, wf, uf, ff, smep;
  2888. smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  2889. for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
  2890. pfec = byte << 1;
  2891. map = 0;
  2892. wf = pfec & PFERR_WRITE_MASK;
  2893. uf = pfec & PFERR_USER_MASK;
  2894. ff = pfec & PFERR_FETCH_MASK;
  2895. for (bit = 0; bit < 8; ++bit) {
  2896. x = bit & ACC_EXEC_MASK;
  2897. w = bit & ACC_WRITE_MASK;
  2898. u = bit & ACC_USER_MASK;
  2899. /* Not really needed: !nx will cause pte.nx to fault */
  2900. x |= !mmu->nx;
  2901. /* Allow supervisor writes if !cr0.wp */
  2902. w |= !is_write_protection(vcpu) && !uf;
  2903. /* Disallow supervisor fetches of user code if cr4.smep */
  2904. x &= !(smep && u && !uf);
  2905. fault = (ff && !x) || (uf && !u) || (wf && !w);
  2906. map |= fault << bit;
  2907. }
  2908. mmu->permissions[byte] = map;
  2909. }
  2910. }
  2911. static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
  2912. {
  2913. u8 map;
  2914. unsigned level, root_level = mmu->root_level;
  2915. const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
  2916. if (root_level == PT32E_ROOT_LEVEL)
  2917. --root_level;
  2918. /* PT_PAGE_TABLE_LEVEL always terminates */
  2919. map = 1 | (1 << ps_set_index);
  2920. for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
  2921. if (level <= PT_PDPE_LEVEL
  2922. && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
  2923. map |= 1 << (ps_set_index | (level - 1));
  2924. }
  2925. mmu->last_pte_bitmap = map;
  2926. }
  2927. static int paging64_init_context_common(struct kvm_vcpu *vcpu,
  2928. struct kvm_mmu *context,
  2929. int level)
  2930. {
  2931. context->nx = is_nx(vcpu);
  2932. context->root_level = level;
  2933. reset_rsvds_bits_mask(vcpu, context);
  2934. update_permission_bitmask(vcpu, context);
  2935. update_last_pte_bitmap(vcpu, context);
  2936. ASSERT(is_pae(vcpu));
  2937. context->new_cr3 = paging_new_cr3;
  2938. context->page_fault = paging64_page_fault;
  2939. context->gva_to_gpa = paging64_gva_to_gpa;
  2940. context->sync_page = paging64_sync_page;
  2941. context->invlpg = paging64_invlpg;
  2942. context->update_pte = paging64_update_pte;
  2943. context->free = paging_free;
  2944. context->shadow_root_level = level;
  2945. context->root_hpa = INVALID_PAGE;
  2946. context->direct_map = false;
  2947. return 0;
  2948. }
  2949. static int paging64_init_context(struct kvm_vcpu *vcpu,
  2950. struct kvm_mmu *context)
  2951. {
  2952. return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
  2953. }
  2954. static int paging32_init_context(struct kvm_vcpu *vcpu,
  2955. struct kvm_mmu *context)
  2956. {
  2957. context->nx = false;
  2958. context->root_level = PT32_ROOT_LEVEL;
  2959. reset_rsvds_bits_mask(vcpu, context);
  2960. update_permission_bitmask(vcpu, context);
  2961. update_last_pte_bitmap(vcpu, context);
  2962. context->new_cr3 = paging_new_cr3;
  2963. context->page_fault = paging32_page_fault;
  2964. context->gva_to_gpa = paging32_gva_to_gpa;
  2965. context->free = paging_free;
  2966. context->sync_page = paging32_sync_page;
  2967. context->invlpg = paging32_invlpg;
  2968. context->update_pte = paging32_update_pte;
  2969. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2970. context->root_hpa = INVALID_PAGE;
  2971. context->direct_map = false;
  2972. return 0;
  2973. }
  2974. static int paging32E_init_context(struct kvm_vcpu *vcpu,
  2975. struct kvm_mmu *context)
  2976. {
  2977. return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
  2978. }
  2979. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2980. {
  2981. struct kvm_mmu *context = vcpu->arch.walk_mmu;
  2982. context->base_role.word = 0;
  2983. context->new_cr3 = nonpaging_new_cr3;
  2984. context->page_fault = tdp_page_fault;
  2985. context->free = nonpaging_free;
  2986. context->sync_page = nonpaging_sync_page;
  2987. context->invlpg = nonpaging_invlpg;
  2988. context->update_pte = nonpaging_update_pte;
  2989. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2990. context->root_hpa = INVALID_PAGE;
  2991. context->direct_map = true;
  2992. context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
  2993. context->get_cr3 = get_cr3;
  2994. context->get_pdptr = kvm_pdptr_read;
  2995. context->inject_page_fault = kvm_inject_page_fault;
  2996. if (!is_paging(vcpu)) {
  2997. context->nx = false;
  2998. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2999. context->root_level = 0;
  3000. } else if (is_long_mode(vcpu)) {
  3001. context->nx = is_nx(vcpu);
  3002. context->root_level = PT64_ROOT_LEVEL;
  3003. reset_rsvds_bits_mask(vcpu, context);
  3004. context->gva_to_gpa = paging64_gva_to_gpa;
  3005. } else if (is_pae(vcpu)) {
  3006. context->nx = is_nx(vcpu);
  3007. context->root_level = PT32E_ROOT_LEVEL;
  3008. reset_rsvds_bits_mask(vcpu, context);
  3009. context->gva_to_gpa = paging64_gva_to_gpa;
  3010. } else {
  3011. context->nx = false;
  3012. context->root_level = PT32_ROOT_LEVEL;
  3013. reset_rsvds_bits_mask(vcpu, context);
  3014. context->gva_to_gpa = paging32_gva_to_gpa;
  3015. }
  3016. update_permission_bitmask(vcpu, context);
  3017. update_last_pte_bitmap(vcpu, context);
  3018. return 0;
  3019. }
  3020. int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
  3021. {
  3022. int r;
  3023. bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  3024. ASSERT(vcpu);
  3025. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3026. if (!is_paging(vcpu))
  3027. r = nonpaging_init_context(vcpu, context);
  3028. else if (is_long_mode(vcpu))
  3029. r = paging64_init_context(vcpu, context);
  3030. else if (is_pae(vcpu))
  3031. r = paging32E_init_context(vcpu, context);
  3032. else
  3033. r = paging32_init_context(vcpu, context);
  3034. vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
  3035. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  3036. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  3037. vcpu->arch.mmu.base_role.smep_andnot_wp
  3038. = smep && !is_write_protection(vcpu);
  3039. return r;
  3040. }
  3041. EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
  3042. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  3043. {
  3044. int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
  3045. vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
  3046. vcpu->arch.walk_mmu->get_cr3 = get_cr3;
  3047. vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
  3048. vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
  3049. return r;
  3050. }
  3051. static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
  3052. {
  3053. struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
  3054. g_context->get_cr3 = get_cr3;
  3055. g_context->get_pdptr = kvm_pdptr_read;
  3056. g_context->inject_page_fault = kvm_inject_page_fault;
  3057. /*
  3058. * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
  3059. * translation of l2_gpa to l1_gpa addresses is done using the
  3060. * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
  3061. * functions between mmu and nested_mmu are swapped.
  3062. */
  3063. if (!is_paging(vcpu)) {
  3064. g_context->nx = false;
  3065. g_context->root_level = 0;
  3066. g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
  3067. } else if (is_long_mode(vcpu)) {
  3068. g_context->nx = is_nx(vcpu);
  3069. g_context->root_level = PT64_ROOT_LEVEL;
  3070. reset_rsvds_bits_mask(vcpu, g_context);
  3071. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3072. } else if (is_pae(vcpu)) {
  3073. g_context->nx = is_nx(vcpu);
  3074. g_context->root_level = PT32E_ROOT_LEVEL;
  3075. reset_rsvds_bits_mask(vcpu, g_context);
  3076. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3077. } else {
  3078. g_context->nx = false;
  3079. g_context->root_level = PT32_ROOT_LEVEL;
  3080. reset_rsvds_bits_mask(vcpu, g_context);
  3081. g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
  3082. }
  3083. update_permission_bitmask(vcpu, g_context);
  3084. update_last_pte_bitmap(vcpu, g_context);
  3085. return 0;
  3086. }
  3087. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  3088. {
  3089. if (mmu_is_nested(vcpu))
  3090. return init_kvm_nested_mmu(vcpu);
  3091. else if (tdp_enabled)
  3092. return init_kvm_tdp_mmu(vcpu);
  3093. else
  3094. return init_kvm_softmmu(vcpu);
  3095. }
  3096. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  3097. {
  3098. ASSERT(vcpu);
  3099. if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
  3100. /* mmu.free() should set root_hpa = INVALID_PAGE */
  3101. vcpu->arch.mmu.free(vcpu);
  3102. }
  3103. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  3104. {
  3105. destroy_kvm_mmu(vcpu);
  3106. return init_kvm_mmu(vcpu);
  3107. }
  3108. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  3109. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  3110. {
  3111. int r;
  3112. r = mmu_topup_memory_caches(vcpu);
  3113. if (r)
  3114. goto out;
  3115. r = mmu_alloc_roots(vcpu);
  3116. spin_lock(&vcpu->kvm->mmu_lock);
  3117. mmu_sync_roots(vcpu);
  3118. spin_unlock(&vcpu->kvm->mmu_lock);
  3119. if (r)
  3120. goto out;
  3121. /* set_cr3() should ensure TLB has been flushed */
  3122. vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  3123. out:
  3124. return r;
  3125. }
  3126. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  3127. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  3128. {
  3129. mmu_free_roots(vcpu);
  3130. }
  3131. EXPORT_SYMBOL_GPL(kvm_mmu_unload);
  3132. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  3133. struct kvm_mmu_page *sp, u64 *spte,
  3134. const void *new)
  3135. {
  3136. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  3137. ++vcpu->kvm->stat.mmu_pde_zapped;
  3138. return;
  3139. }
  3140. ++vcpu->kvm->stat.mmu_pte_updated;
  3141. vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
  3142. }
  3143. static bool need_remote_flush(u64 old, u64 new)
  3144. {
  3145. if (!is_shadow_present_pte(old))
  3146. return false;
  3147. if (!is_shadow_present_pte(new))
  3148. return true;
  3149. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  3150. return true;
  3151. old ^= PT64_NX_MASK;
  3152. new ^= PT64_NX_MASK;
  3153. return (old & ~new & PT64_PERM_MASK) != 0;
  3154. }
  3155. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  3156. bool remote_flush, bool local_flush)
  3157. {
  3158. if (zap_page)
  3159. return;
  3160. if (remote_flush)
  3161. kvm_flush_remote_tlbs(vcpu->kvm);
  3162. else if (local_flush)
  3163. kvm_mmu_flush_tlb(vcpu);
  3164. }
  3165. static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
  3166. const u8 *new, int *bytes)
  3167. {
  3168. u64 gentry;
  3169. int r;
  3170. /*
  3171. * Assume that the pte write on a page table of the same type
  3172. * as the current vcpu paging mode since we update the sptes only
  3173. * when they have the same mode.
  3174. */
  3175. if (is_pae(vcpu) && *bytes == 4) {
  3176. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  3177. *gpa &= ~(gpa_t)7;
  3178. *bytes = 8;
  3179. r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
  3180. if (r)
  3181. gentry = 0;
  3182. new = (const u8 *)&gentry;
  3183. }
  3184. switch (*bytes) {
  3185. case 4:
  3186. gentry = *(const u32 *)new;
  3187. break;
  3188. case 8:
  3189. gentry = *(const u64 *)new;
  3190. break;
  3191. default:
  3192. gentry = 0;
  3193. break;
  3194. }
  3195. return gentry;
  3196. }
  3197. /*
  3198. * If we're seeing too many writes to a page, it may no longer be a page table,
  3199. * or we may be forking, in which case it is better to unmap the page.
  3200. */
  3201. static bool detect_write_flooding(struct kvm_mmu_page *sp)
  3202. {
  3203. /*
  3204. * Skip write-flooding detected for the sp whose level is 1, because
  3205. * it can become unsync, then the guest page is not write-protected.
  3206. */
  3207. if (sp->role.level == PT_PAGE_TABLE_LEVEL)
  3208. return false;
  3209. return ++sp->write_flooding_count >= 3;
  3210. }
  3211. /*
  3212. * Misaligned accesses are too much trouble to fix up; also, they usually
  3213. * indicate a page is not used as a page table.
  3214. */
  3215. static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
  3216. int bytes)
  3217. {
  3218. unsigned offset, pte_size, misaligned;
  3219. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  3220. gpa, bytes, sp->role.word);
  3221. offset = offset_in_page(gpa);
  3222. pte_size = sp->role.cr4_pae ? 8 : 4;
  3223. /*
  3224. * Sometimes, the OS only writes the last one bytes to update status
  3225. * bits, for example, in linux, andb instruction is used in clear_bit().
  3226. */
  3227. if (!(offset & (pte_size - 1)) && bytes == 1)
  3228. return false;
  3229. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  3230. misaligned |= bytes < 4;
  3231. return misaligned;
  3232. }
  3233. static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
  3234. {
  3235. unsigned page_offset, quadrant;
  3236. u64 *spte;
  3237. int level;
  3238. page_offset = offset_in_page(gpa);
  3239. level = sp->role.level;
  3240. *nspte = 1;
  3241. if (!sp->role.cr4_pae) {
  3242. page_offset <<= 1; /* 32->64 */
  3243. /*
  3244. * A 32-bit pde maps 4MB while the shadow pdes map
  3245. * only 2MB. So we need to double the offset again
  3246. * and zap two pdes instead of one.
  3247. */
  3248. if (level == PT32_ROOT_LEVEL) {
  3249. page_offset &= ~7; /* kill rounding error */
  3250. page_offset <<= 1;
  3251. *nspte = 2;
  3252. }
  3253. quadrant = page_offset >> PAGE_SHIFT;
  3254. page_offset &= ~PAGE_MASK;
  3255. if (quadrant != sp->role.quadrant)
  3256. return NULL;
  3257. }
  3258. spte = &sp->spt[page_offset / sizeof(*spte)];
  3259. return spte;
  3260. }
  3261. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  3262. const u8 *new, int bytes)
  3263. {
  3264. gfn_t gfn = gpa >> PAGE_SHIFT;
  3265. union kvm_mmu_page_role mask = { .word = 0 };
  3266. struct kvm_mmu_page *sp;
  3267. LIST_HEAD(invalid_list);
  3268. u64 entry, gentry, *spte;
  3269. int npte;
  3270. bool remote_flush, local_flush, zap_page;
  3271. /*
  3272. * If we don't have indirect shadow pages, it means no page is
  3273. * write-protected, so we can exit simply.
  3274. */
  3275. if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
  3276. return;
  3277. zap_page = remote_flush = local_flush = false;
  3278. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  3279. gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
  3280. /*
  3281. * No need to care whether allocation memory is successful
  3282. * or not since pte prefetch is skiped if it does not have
  3283. * enough objects in the cache.
  3284. */
  3285. mmu_topup_memory_caches(vcpu);
  3286. spin_lock(&vcpu->kvm->mmu_lock);
  3287. ++vcpu->kvm->stat.mmu_pte_write;
  3288. kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
  3289. mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
  3290. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
  3291. if (detect_write_misaligned(sp, gpa, bytes) ||
  3292. detect_write_flooding(sp)) {
  3293. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  3294. &invalid_list);
  3295. ++vcpu->kvm->stat.mmu_flooded;
  3296. continue;
  3297. }
  3298. spte = get_written_sptes(sp, gpa, &npte);
  3299. if (!spte)
  3300. continue;
  3301. local_flush = true;
  3302. while (npte--) {
  3303. entry = *spte;
  3304. mmu_page_zap_pte(vcpu->kvm, sp, spte);
  3305. if (gentry &&
  3306. !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
  3307. & mask.word) && rmap_can_add(vcpu))
  3308. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  3309. if (need_remote_flush(entry, *spte))
  3310. remote_flush = true;
  3311. ++spte;
  3312. }
  3313. }
  3314. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  3315. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3316. kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
  3317. spin_unlock(&vcpu->kvm->mmu_lock);
  3318. }
  3319. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  3320. {
  3321. gpa_t gpa;
  3322. int r;
  3323. if (vcpu->arch.mmu.direct_map)
  3324. return 0;
  3325. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  3326. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3327. return r;
  3328. }
  3329. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  3330. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  3331. {
  3332. LIST_HEAD(invalid_list);
  3333. while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
  3334. if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
  3335. break;
  3336. ++vcpu->kvm->stat.mmu_recycled;
  3337. }
  3338. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3339. }
  3340. static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
  3341. {
  3342. if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
  3343. return vcpu_match_mmio_gpa(vcpu, addr);
  3344. return vcpu_match_mmio_gva(vcpu, addr);
  3345. }
  3346. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
  3347. void *insn, int insn_len)
  3348. {
  3349. int r, emulation_type = EMULTYPE_RETRY;
  3350. enum emulation_result er;
  3351. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
  3352. if (r < 0)
  3353. goto out;
  3354. if (!r) {
  3355. r = 1;
  3356. goto out;
  3357. }
  3358. if (is_mmio_page_fault(vcpu, cr2))
  3359. emulation_type = 0;
  3360. er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
  3361. switch (er) {
  3362. case EMULATE_DONE:
  3363. return 1;
  3364. case EMULATE_DO_MMIO:
  3365. ++vcpu->stat.mmio_exits;
  3366. /* fall through */
  3367. case EMULATE_FAIL:
  3368. return 0;
  3369. default:
  3370. BUG();
  3371. }
  3372. out:
  3373. return r;
  3374. }
  3375. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  3376. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  3377. {
  3378. vcpu->arch.mmu.invlpg(vcpu, gva);
  3379. kvm_mmu_flush_tlb(vcpu);
  3380. ++vcpu->stat.invlpg;
  3381. }
  3382. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  3383. void kvm_enable_tdp(void)
  3384. {
  3385. tdp_enabled = true;
  3386. }
  3387. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  3388. void kvm_disable_tdp(void)
  3389. {
  3390. tdp_enabled = false;
  3391. }
  3392. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  3393. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  3394. {
  3395. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  3396. if (vcpu->arch.mmu.lm_root != NULL)
  3397. free_page((unsigned long)vcpu->arch.mmu.lm_root);
  3398. }
  3399. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  3400. {
  3401. struct page *page;
  3402. int i;
  3403. ASSERT(vcpu);
  3404. /*
  3405. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  3406. * Therefore we need to allocate shadow page tables in the first
  3407. * 4GB of memory, which happens to fit the DMA32 zone.
  3408. */
  3409. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  3410. if (!page)
  3411. return -ENOMEM;
  3412. vcpu->arch.mmu.pae_root = page_address(page);
  3413. for (i = 0; i < 4; ++i)
  3414. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  3415. return 0;
  3416. }
  3417. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  3418. {
  3419. ASSERT(vcpu);
  3420. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  3421. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3422. vcpu->arch.mmu.translate_gpa = translate_gpa;
  3423. vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
  3424. return alloc_mmu_pages(vcpu);
  3425. }
  3426. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  3427. {
  3428. ASSERT(vcpu);
  3429. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3430. return init_kvm_mmu(vcpu);
  3431. }
  3432. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  3433. {
  3434. struct kvm_memory_slot *memslot;
  3435. gfn_t last_gfn;
  3436. int i;
  3437. memslot = id_to_memslot(kvm->memslots, slot);
  3438. last_gfn = memslot->base_gfn + memslot->npages - 1;
  3439. spin_lock(&kvm->mmu_lock);
  3440. for (i = PT_PAGE_TABLE_LEVEL;
  3441. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  3442. unsigned long *rmapp;
  3443. unsigned long last_index, index;
  3444. rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
  3445. last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
  3446. for (index = 0; index <= last_index; ++index, ++rmapp) {
  3447. if (*rmapp)
  3448. __rmap_write_protect(kvm, rmapp, false);
  3449. if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
  3450. kvm_flush_remote_tlbs(kvm);
  3451. cond_resched_lock(&kvm->mmu_lock);
  3452. }
  3453. }
  3454. }
  3455. kvm_flush_remote_tlbs(kvm);
  3456. spin_unlock(&kvm->mmu_lock);
  3457. }
  3458. void kvm_mmu_zap_all(struct kvm *kvm)
  3459. {
  3460. struct kvm_mmu_page *sp, *node;
  3461. LIST_HEAD(invalid_list);
  3462. spin_lock(&kvm->mmu_lock);
  3463. restart:
  3464. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  3465. if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
  3466. goto restart;
  3467. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3468. spin_unlock(&kvm->mmu_lock);
  3469. }
  3470. void kvm_mmu_zap_mmio_sptes(struct kvm *kvm)
  3471. {
  3472. struct kvm_mmu_page *sp, *node;
  3473. LIST_HEAD(invalid_list);
  3474. spin_lock(&kvm->mmu_lock);
  3475. restart:
  3476. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
  3477. if (!sp->mmio_cached)
  3478. continue;
  3479. if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
  3480. goto restart;
  3481. }
  3482. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3483. spin_unlock(&kvm->mmu_lock);
  3484. }
  3485. static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
  3486. {
  3487. struct kvm *kvm;
  3488. int nr_to_scan = sc->nr_to_scan;
  3489. if (nr_to_scan == 0)
  3490. goto out;
  3491. raw_spin_lock(&kvm_lock);
  3492. list_for_each_entry(kvm, &vm_list, vm_list) {
  3493. int idx;
  3494. LIST_HEAD(invalid_list);
  3495. /*
  3496. * Never scan more than sc->nr_to_scan VM instances.
  3497. * Will not hit this condition practically since we do not try
  3498. * to shrink more than one VM and it is very unlikely to see
  3499. * !n_used_mmu_pages so many times.
  3500. */
  3501. if (!nr_to_scan--)
  3502. break;
  3503. /*
  3504. * n_used_mmu_pages is accessed without holding kvm->mmu_lock
  3505. * here. We may skip a VM instance errorneosly, but we do not
  3506. * want to shrink a VM that only started to populate its MMU
  3507. * anyway.
  3508. */
  3509. if (!kvm->arch.n_used_mmu_pages)
  3510. continue;
  3511. idx = srcu_read_lock(&kvm->srcu);
  3512. spin_lock(&kvm->mmu_lock);
  3513. prepare_zap_oldest_mmu_page(kvm, &invalid_list);
  3514. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3515. spin_unlock(&kvm->mmu_lock);
  3516. srcu_read_unlock(&kvm->srcu, idx);
  3517. list_move_tail(&kvm->vm_list, &vm_list);
  3518. break;
  3519. }
  3520. raw_spin_unlock(&kvm_lock);
  3521. out:
  3522. return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
  3523. }
  3524. static struct shrinker mmu_shrinker = {
  3525. .shrink = mmu_shrink,
  3526. .seeks = DEFAULT_SEEKS * 10,
  3527. };
  3528. static void mmu_destroy_caches(void)
  3529. {
  3530. if (pte_list_desc_cache)
  3531. kmem_cache_destroy(pte_list_desc_cache);
  3532. if (mmu_page_header_cache)
  3533. kmem_cache_destroy(mmu_page_header_cache);
  3534. }
  3535. int kvm_mmu_module_init(void)
  3536. {
  3537. pte_list_desc_cache = kmem_cache_create("pte_list_desc",
  3538. sizeof(struct pte_list_desc),
  3539. 0, 0, NULL);
  3540. if (!pte_list_desc_cache)
  3541. goto nomem;
  3542. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  3543. sizeof(struct kvm_mmu_page),
  3544. 0, 0, NULL);
  3545. if (!mmu_page_header_cache)
  3546. goto nomem;
  3547. if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
  3548. goto nomem;
  3549. register_shrinker(&mmu_shrinker);
  3550. return 0;
  3551. nomem:
  3552. mmu_destroy_caches();
  3553. return -ENOMEM;
  3554. }
  3555. /*
  3556. * Caculate mmu pages needed for kvm.
  3557. */
  3558. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  3559. {
  3560. unsigned int nr_mmu_pages;
  3561. unsigned int nr_pages = 0;
  3562. struct kvm_memslots *slots;
  3563. struct kvm_memory_slot *memslot;
  3564. slots = kvm_memslots(kvm);
  3565. kvm_for_each_memslot(memslot, slots)
  3566. nr_pages += memslot->npages;
  3567. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  3568. nr_mmu_pages = max(nr_mmu_pages,
  3569. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  3570. return nr_mmu_pages;
  3571. }
  3572. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  3573. {
  3574. struct kvm_shadow_walk_iterator iterator;
  3575. u64 spte;
  3576. int nr_sptes = 0;
  3577. walk_shadow_page_lockless_begin(vcpu);
  3578. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
  3579. sptes[iterator.level-1] = spte;
  3580. nr_sptes++;
  3581. if (!is_shadow_present_pte(spte))
  3582. break;
  3583. }
  3584. walk_shadow_page_lockless_end(vcpu);
  3585. return nr_sptes;
  3586. }
  3587. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  3588. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  3589. {
  3590. ASSERT(vcpu);
  3591. destroy_kvm_mmu(vcpu);
  3592. free_mmu_pages(vcpu);
  3593. mmu_free_memory_caches(vcpu);
  3594. }
  3595. void kvm_mmu_module_exit(void)
  3596. {
  3597. mmu_destroy_caches();
  3598. percpu_counter_destroy(&kvm_total_used_mmu_pages);
  3599. unregister_shrinker(&mmu_shrinker);
  3600. mmu_audit_disable();
  3601. }