namespace.c 57 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/slab.h>
  12. #include <linux/sched.h>
  13. #include <linux/smp_lock.h>
  14. #include <linux/init.h>
  15. #include <linux/kernel.h>
  16. #include <linux/acct.h>
  17. #include <linux/capability.h>
  18. #include <linux/cpumask.h>
  19. #include <linux/module.h>
  20. #include <linux/sysfs.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/mnt_namespace.h>
  23. #include <linux/namei.h>
  24. #include <linux/nsproxy.h>
  25. #include <linux/security.h>
  26. #include <linux/mount.h>
  27. #include <linux/ramfs.h>
  28. #include <linux/log2.h>
  29. #include <linux/idr.h>
  30. #include <linux/fs_struct.h>
  31. #include <asm/uaccess.h>
  32. #include <asm/unistd.h>
  33. #include "pnode.h"
  34. #include "internal.h"
  35. #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
  36. #define HASH_SIZE (1UL << HASH_SHIFT)
  37. /* spinlock for vfsmount related operations, inplace of dcache_lock */
  38. __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
  39. static int event;
  40. static DEFINE_IDA(mnt_id_ida);
  41. static DEFINE_IDA(mnt_group_ida);
  42. static int mnt_id_start = 0;
  43. static int mnt_group_start = 1;
  44. static struct list_head *mount_hashtable __read_mostly;
  45. static struct kmem_cache *mnt_cache __read_mostly;
  46. static struct rw_semaphore namespace_sem;
  47. /* /sys/fs */
  48. struct kobject *fs_kobj;
  49. EXPORT_SYMBOL_GPL(fs_kobj);
  50. static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
  51. {
  52. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  53. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  54. tmp = tmp + (tmp >> HASH_SHIFT);
  55. return tmp & (HASH_SIZE - 1);
  56. }
  57. #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
  58. /* allocation is serialized by namespace_sem */
  59. static int mnt_alloc_id(struct vfsmount *mnt)
  60. {
  61. int res;
  62. retry:
  63. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  64. spin_lock(&vfsmount_lock);
  65. res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
  66. if (!res)
  67. mnt_id_start = mnt->mnt_id + 1;
  68. spin_unlock(&vfsmount_lock);
  69. if (res == -EAGAIN)
  70. goto retry;
  71. return res;
  72. }
  73. static void mnt_free_id(struct vfsmount *mnt)
  74. {
  75. int id = mnt->mnt_id;
  76. spin_lock(&vfsmount_lock);
  77. ida_remove(&mnt_id_ida, id);
  78. if (mnt_id_start > id)
  79. mnt_id_start = id;
  80. spin_unlock(&vfsmount_lock);
  81. }
  82. /*
  83. * Allocate a new peer group ID
  84. *
  85. * mnt_group_ida is protected by namespace_sem
  86. */
  87. static int mnt_alloc_group_id(struct vfsmount *mnt)
  88. {
  89. int res;
  90. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  91. return -ENOMEM;
  92. res = ida_get_new_above(&mnt_group_ida,
  93. mnt_group_start,
  94. &mnt->mnt_group_id);
  95. if (!res)
  96. mnt_group_start = mnt->mnt_group_id + 1;
  97. return res;
  98. }
  99. /*
  100. * Release a peer group ID
  101. */
  102. void mnt_release_group_id(struct vfsmount *mnt)
  103. {
  104. int id = mnt->mnt_group_id;
  105. ida_remove(&mnt_group_ida, id);
  106. if (mnt_group_start > id)
  107. mnt_group_start = id;
  108. mnt->mnt_group_id = 0;
  109. }
  110. struct vfsmount *alloc_vfsmnt(const char *name)
  111. {
  112. struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  113. if (mnt) {
  114. int err;
  115. err = mnt_alloc_id(mnt);
  116. if (err)
  117. goto out_free_cache;
  118. if (name) {
  119. mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
  120. if (!mnt->mnt_devname)
  121. goto out_free_id;
  122. }
  123. atomic_set(&mnt->mnt_count, 1);
  124. INIT_LIST_HEAD(&mnt->mnt_hash);
  125. INIT_LIST_HEAD(&mnt->mnt_child);
  126. INIT_LIST_HEAD(&mnt->mnt_mounts);
  127. INIT_LIST_HEAD(&mnt->mnt_list);
  128. INIT_LIST_HEAD(&mnt->mnt_expire);
  129. INIT_LIST_HEAD(&mnt->mnt_share);
  130. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  131. INIT_LIST_HEAD(&mnt->mnt_slave);
  132. #ifdef CONFIG_SMP
  133. mnt->mnt_writers = alloc_percpu(int);
  134. if (!mnt->mnt_writers)
  135. goto out_free_devname;
  136. #else
  137. mnt->mnt_writers = 0;
  138. #endif
  139. }
  140. return mnt;
  141. #ifdef CONFIG_SMP
  142. out_free_devname:
  143. kfree(mnt->mnt_devname);
  144. #endif
  145. out_free_id:
  146. mnt_free_id(mnt);
  147. out_free_cache:
  148. kmem_cache_free(mnt_cache, mnt);
  149. return NULL;
  150. }
  151. /*
  152. * Most r/o checks on a fs are for operations that take
  153. * discrete amounts of time, like a write() or unlink().
  154. * We must keep track of when those operations start
  155. * (for permission checks) and when they end, so that
  156. * we can determine when writes are able to occur to
  157. * a filesystem.
  158. */
  159. /*
  160. * __mnt_is_readonly: check whether a mount is read-only
  161. * @mnt: the mount to check for its write status
  162. *
  163. * This shouldn't be used directly ouside of the VFS.
  164. * It does not guarantee that the filesystem will stay
  165. * r/w, just that it is right *now*. This can not and
  166. * should not be used in place of IS_RDONLY(inode).
  167. * mnt_want/drop_write() will _keep_ the filesystem
  168. * r/w.
  169. */
  170. int __mnt_is_readonly(struct vfsmount *mnt)
  171. {
  172. if (mnt->mnt_flags & MNT_READONLY)
  173. return 1;
  174. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  175. return 1;
  176. return 0;
  177. }
  178. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  179. static inline void inc_mnt_writers(struct vfsmount *mnt)
  180. {
  181. #ifdef CONFIG_SMP
  182. (*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))++;
  183. #else
  184. mnt->mnt_writers++;
  185. #endif
  186. }
  187. static inline void dec_mnt_writers(struct vfsmount *mnt)
  188. {
  189. #ifdef CONFIG_SMP
  190. (*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))--;
  191. #else
  192. mnt->mnt_writers--;
  193. #endif
  194. }
  195. static unsigned int count_mnt_writers(struct vfsmount *mnt)
  196. {
  197. #ifdef CONFIG_SMP
  198. unsigned int count = 0;
  199. int cpu;
  200. for_each_possible_cpu(cpu) {
  201. count += *per_cpu_ptr(mnt->mnt_writers, cpu);
  202. }
  203. return count;
  204. #else
  205. return mnt->mnt_writers;
  206. #endif
  207. }
  208. /*
  209. * Most r/o checks on a fs are for operations that take
  210. * discrete amounts of time, like a write() or unlink().
  211. * We must keep track of when those operations start
  212. * (for permission checks) and when they end, so that
  213. * we can determine when writes are able to occur to
  214. * a filesystem.
  215. */
  216. /**
  217. * mnt_want_write - get write access to a mount
  218. * @mnt: the mount on which to take a write
  219. *
  220. * This tells the low-level filesystem that a write is
  221. * about to be performed to it, and makes sure that
  222. * writes are allowed before returning success. When
  223. * the write operation is finished, mnt_drop_write()
  224. * must be called. This is effectively a refcount.
  225. */
  226. int mnt_want_write(struct vfsmount *mnt)
  227. {
  228. int ret = 0;
  229. preempt_disable();
  230. inc_mnt_writers(mnt);
  231. /*
  232. * The store to inc_mnt_writers must be visible before we pass
  233. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  234. * incremented count after it has set MNT_WRITE_HOLD.
  235. */
  236. smp_mb();
  237. while (mnt->mnt_flags & MNT_WRITE_HOLD)
  238. cpu_relax();
  239. /*
  240. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  241. * be set to match its requirements. So we must not load that until
  242. * MNT_WRITE_HOLD is cleared.
  243. */
  244. smp_rmb();
  245. if (__mnt_is_readonly(mnt)) {
  246. dec_mnt_writers(mnt);
  247. ret = -EROFS;
  248. goto out;
  249. }
  250. out:
  251. preempt_enable();
  252. return ret;
  253. }
  254. EXPORT_SYMBOL_GPL(mnt_want_write);
  255. /**
  256. * mnt_clone_write - get write access to a mount
  257. * @mnt: the mount on which to take a write
  258. *
  259. * This is effectively like mnt_want_write, except
  260. * it must only be used to take an extra write reference
  261. * on a mountpoint that we already know has a write reference
  262. * on it. This allows some optimisation.
  263. *
  264. * After finished, mnt_drop_write must be called as usual to
  265. * drop the reference.
  266. */
  267. int mnt_clone_write(struct vfsmount *mnt)
  268. {
  269. /* superblock may be r/o */
  270. if (__mnt_is_readonly(mnt))
  271. return -EROFS;
  272. preempt_disable();
  273. inc_mnt_writers(mnt);
  274. preempt_enable();
  275. return 0;
  276. }
  277. EXPORT_SYMBOL_GPL(mnt_clone_write);
  278. /**
  279. * mnt_want_write_file - get write access to a file's mount
  280. * @file: the file who's mount on which to take a write
  281. *
  282. * This is like mnt_want_write, but it takes a file and can
  283. * do some optimisations if the file is open for write already
  284. */
  285. int mnt_want_write_file(struct file *file)
  286. {
  287. struct inode *inode = file->f_dentry->d_inode;
  288. if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
  289. return mnt_want_write(file->f_path.mnt);
  290. else
  291. return mnt_clone_write(file->f_path.mnt);
  292. }
  293. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  294. /**
  295. * mnt_drop_write - give up write access to a mount
  296. * @mnt: the mount on which to give up write access
  297. *
  298. * Tells the low-level filesystem that we are done
  299. * performing writes to it. Must be matched with
  300. * mnt_want_write() call above.
  301. */
  302. void mnt_drop_write(struct vfsmount *mnt)
  303. {
  304. preempt_disable();
  305. dec_mnt_writers(mnt);
  306. preempt_enable();
  307. }
  308. EXPORT_SYMBOL_GPL(mnt_drop_write);
  309. static int mnt_make_readonly(struct vfsmount *mnt)
  310. {
  311. int ret = 0;
  312. spin_lock(&vfsmount_lock);
  313. mnt->mnt_flags |= MNT_WRITE_HOLD;
  314. /*
  315. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  316. * should be visible before we do.
  317. */
  318. smp_mb();
  319. /*
  320. * With writers on hold, if this value is zero, then there are
  321. * definitely no active writers (although held writers may subsequently
  322. * increment the count, they'll have to wait, and decrement it after
  323. * seeing MNT_READONLY).
  324. *
  325. * It is OK to have counter incremented on one CPU and decremented on
  326. * another: the sum will add up correctly. The danger would be when we
  327. * sum up each counter, if we read a counter before it is incremented,
  328. * but then read another CPU's count which it has been subsequently
  329. * decremented from -- we would see more decrements than we should.
  330. * MNT_WRITE_HOLD protects against this scenario, because
  331. * mnt_want_write first increments count, then smp_mb, then spins on
  332. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  333. * we're counting up here.
  334. */
  335. if (count_mnt_writers(mnt) > 0)
  336. ret = -EBUSY;
  337. else
  338. mnt->mnt_flags |= MNT_READONLY;
  339. /*
  340. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  341. * that become unheld will see MNT_READONLY.
  342. */
  343. smp_wmb();
  344. mnt->mnt_flags &= ~MNT_WRITE_HOLD;
  345. spin_unlock(&vfsmount_lock);
  346. return ret;
  347. }
  348. static void __mnt_unmake_readonly(struct vfsmount *mnt)
  349. {
  350. spin_lock(&vfsmount_lock);
  351. mnt->mnt_flags &= ~MNT_READONLY;
  352. spin_unlock(&vfsmount_lock);
  353. }
  354. void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
  355. {
  356. mnt->mnt_sb = sb;
  357. mnt->mnt_root = dget(sb->s_root);
  358. }
  359. EXPORT_SYMBOL(simple_set_mnt);
  360. void free_vfsmnt(struct vfsmount *mnt)
  361. {
  362. kfree(mnt->mnt_devname);
  363. mnt_free_id(mnt);
  364. #ifdef CONFIG_SMP
  365. free_percpu(mnt->mnt_writers);
  366. #endif
  367. kmem_cache_free(mnt_cache, mnt);
  368. }
  369. /*
  370. * find the first or last mount at @dentry on vfsmount @mnt depending on
  371. * @dir. If @dir is set return the first mount else return the last mount.
  372. */
  373. struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
  374. int dir)
  375. {
  376. struct list_head *head = mount_hashtable + hash(mnt, dentry);
  377. struct list_head *tmp = head;
  378. struct vfsmount *p, *found = NULL;
  379. for (;;) {
  380. tmp = dir ? tmp->next : tmp->prev;
  381. p = NULL;
  382. if (tmp == head)
  383. break;
  384. p = list_entry(tmp, struct vfsmount, mnt_hash);
  385. if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
  386. found = p;
  387. break;
  388. }
  389. }
  390. return found;
  391. }
  392. /*
  393. * lookup_mnt increments the ref count before returning
  394. * the vfsmount struct.
  395. */
  396. struct vfsmount *lookup_mnt(struct path *path)
  397. {
  398. struct vfsmount *child_mnt;
  399. spin_lock(&vfsmount_lock);
  400. if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
  401. mntget(child_mnt);
  402. spin_unlock(&vfsmount_lock);
  403. return child_mnt;
  404. }
  405. static inline int check_mnt(struct vfsmount *mnt)
  406. {
  407. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  408. }
  409. static void touch_mnt_namespace(struct mnt_namespace *ns)
  410. {
  411. if (ns) {
  412. ns->event = ++event;
  413. wake_up_interruptible(&ns->poll);
  414. }
  415. }
  416. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  417. {
  418. if (ns && ns->event != event) {
  419. ns->event = event;
  420. wake_up_interruptible(&ns->poll);
  421. }
  422. }
  423. static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
  424. {
  425. old_path->dentry = mnt->mnt_mountpoint;
  426. old_path->mnt = mnt->mnt_parent;
  427. mnt->mnt_parent = mnt;
  428. mnt->mnt_mountpoint = mnt->mnt_root;
  429. list_del_init(&mnt->mnt_child);
  430. list_del_init(&mnt->mnt_hash);
  431. old_path->dentry->d_mounted--;
  432. }
  433. void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
  434. struct vfsmount *child_mnt)
  435. {
  436. child_mnt->mnt_parent = mntget(mnt);
  437. child_mnt->mnt_mountpoint = dget(dentry);
  438. dentry->d_mounted++;
  439. }
  440. static void attach_mnt(struct vfsmount *mnt, struct path *path)
  441. {
  442. mnt_set_mountpoint(path->mnt, path->dentry, mnt);
  443. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  444. hash(path->mnt, path->dentry));
  445. list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
  446. }
  447. /*
  448. * the caller must hold vfsmount_lock
  449. */
  450. static void commit_tree(struct vfsmount *mnt)
  451. {
  452. struct vfsmount *parent = mnt->mnt_parent;
  453. struct vfsmount *m;
  454. LIST_HEAD(head);
  455. struct mnt_namespace *n = parent->mnt_ns;
  456. BUG_ON(parent == mnt);
  457. list_add_tail(&head, &mnt->mnt_list);
  458. list_for_each_entry(m, &head, mnt_list)
  459. m->mnt_ns = n;
  460. list_splice(&head, n->list.prev);
  461. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  462. hash(parent, mnt->mnt_mountpoint));
  463. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  464. touch_mnt_namespace(n);
  465. }
  466. static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
  467. {
  468. struct list_head *next = p->mnt_mounts.next;
  469. if (next == &p->mnt_mounts) {
  470. while (1) {
  471. if (p == root)
  472. return NULL;
  473. next = p->mnt_child.next;
  474. if (next != &p->mnt_parent->mnt_mounts)
  475. break;
  476. p = p->mnt_parent;
  477. }
  478. }
  479. return list_entry(next, struct vfsmount, mnt_child);
  480. }
  481. static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
  482. {
  483. struct list_head *prev = p->mnt_mounts.prev;
  484. while (prev != &p->mnt_mounts) {
  485. p = list_entry(prev, struct vfsmount, mnt_child);
  486. prev = p->mnt_mounts.prev;
  487. }
  488. return p;
  489. }
  490. static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
  491. int flag)
  492. {
  493. struct super_block *sb = old->mnt_sb;
  494. struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
  495. if (mnt) {
  496. if (flag & (CL_SLAVE | CL_PRIVATE))
  497. mnt->mnt_group_id = 0; /* not a peer of original */
  498. else
  499. mnt->mnt_group_id = old->mnt_group_id;
  500. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  501. int err = mnt_alloc_group_id(mnt);
  502. if (err)
  503. goto out_free;
  504. }
  505. mnt->mnt_flags = old->mnt_flags;
  506. atomic_inc(&sb->s_active);
  507. mnt->mnt_sb = sb;
  508. mnt->mnt_root = dget(root);
  509. mnt->mnt_mountpoint = mnt->mnt_root;
  510. mnt->mnt_parent = mnt;
  511. if (flag & CL_SLAVE) {
  512. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  513. mnt->mnt_master = old;
  514. CLEAR_MNT_SHARED(mnt);
  515. } else if (!(flag & CL_PRIVATE)) {
  516. if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
  517. list_add(&mnt->mnt_share, &old->mnt_share);
  518. if (IS_MNT_SLAVE(old))
  519. list_add(&mnt->mnt_slave, &old->mnt_slave);
  520. mnt->mnt_master = old->mnt_master;
  521. }
  522. if (flag & CL_MAKE_SHARED)
  523. set_mnt_shared(mnt);
  524. /* stick the duplicate mount on the same expiry list
  525. * as the original if that was on one */
  526. if (flag & CL_EXPIRE) {
  527. if (!list_empty(&old->mnt_expire))
  528. list_add(&mnt->mnt_expire, &old->mnt_expire);
  529. }
  530. }
  531. return mnt;
  532. out_free:
  533. free_vfsmnt(mnt);
  534. return NULL;
  535. }
  536. static inline void __mntput(struct vfsmount *mnt)
  537. {
  538. struct super_block *sb = mnt->mnt_sb;
  539. /*
  540. * This probably indicates that somebody messed
  541. * up a mnt_want/drop_write() pair. If this
  542. * happens, the filesystem was probably unable
  543. * to make r/w->r/o transitions.
  544. */
  545. /*
  546. * atomic_dec_and_lock() used to deal with ->mnt_count decrements
  547. * provides barriers, so count_mnt_writers() below is safe. AV
  548. */
  549. WARN_ON(count_mnt_writers(mnt));
  550. dput(mnt->mnt_root);
  551. free_vfsmnt(mnt);
  552. deactivate_super(sb);
  553. }
  554. void mntput_no_expire(struct vfsmount *mnt)
  555. {
  556. repeat:
  557. if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
  558. if (likely(!mnt->mnt_pinned)) {
  559. spin_unlock(&vfsmount_lock);
  560. __mntput(mnt);
  561. return;
  562. }
  563. atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
  564. mnt->mnt_pinned = 0;
  565. spin_unlock(&vfsmount_lock);
  566. acct_auto_close_mnt(mnt);
  567. security_sb_umount_close(mnt);
  568. goto repeat;
  569. }
  570. }
  571. EXPORT_SYMBOL(mntput_no_expire);
  572. void mnt_pin(struct vfsmount *mnt)
  573. {
  574. spin_lock(&vfsmount_lock);
  575. mnt->mnt_pinned++;
  576. spin_unlock(&vfsmount_lock);
  577. }
  578. EXPORT_SYMBOL(mnt_pin);
  579. void mnt_unpin(struct vfsmount *mnt)
  580. {
  581. spin_lock(&vfsmount_lock);
  582. if (mnt->mnt_pinned) {
  583. atomic_inc(&mnt->mnt_count);
  584. mnt->mnt_pinned--;
  585. }
  586. spin_unlock(&vfsmount_lock);
  587. }
  588. EXPORT_SYMBOL(mnt_unpin);
  589. static inline void mangle(struct seq_file *m, const char *s)
  590. {
  591. seq_escape(m, s, " \t\n\\");
  592. }
  593. /*
  594. * Simple .show_options callback for filesystems which don't want to
  595. * implement more complex mount option showing.
  596. *
  597. * See also save_mount_options().
  598. */
  599. int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
  600. {
  601. const char *options;
  602. rcu_read_lock();
  603. options = rcu_dereference(mnt->mnt_sb->s_options);
  604. if (options != NULL && options[0]) {
  605. seq_putc(m, ',');
  606. mangle(m, options);
  607. }
  608. rcu_read_unlock();
  609. return 0;
  610. }
  611. EXPORT_SYMBOL(generic_show_options);
  612. /*
  613. * If filesystem uses generic_show_options(), this function should be
  614. * called from the fill_super() callback.
  615. *
  616. * The .remount_fs callback usually needs to be handled in a special
  617. * way, to make sure, that previous options are not overwritten if the
  618. * remount fails.
  619. *
  620. * Also note, that if the filesystem's .remount_fs function doesn't
  621. * reset all options to their default value, but changes only newly
  622. * given options, then the displayed options will not reflect reality
  623. * any more.
  624. */
  625. void save_mount_options(struct super_block *sb, char *options)
  626. {
  627. BUG_ON(sb->s_options);
  628. rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
  629. }
  630. EXPORT_SYMBOL(save_mount_options);
  631. void replace_mount_options(struct super_block *sb, char *options)
  632. {
  633. char *old = sb->s_options;
  634. rcu_assign_pointer(sb->s_options, options);
  635. if (old) {
  636. synchronize_rcu();
  637. kfree(old);
  638. }
  639. }
  640. EXPORT_SYMBOL(replace_mount_options);
  641. #ifdef CONFIG_PROC_FS
  642. /* iterator */
  643. static void *m_start(struct seq_file *m, loff_t *pos)
  644. {
  645. struct proc_mounts *p = m->private;
  646. down_read(&namespace_sem);
  647. return seq_list_start(&p->ns->list, *pos);
  648. }
  649. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  650. {
  651. struct proc_mounts *p = m->private;
  652. return seq_list_next(v, &p->ns->list, pos);
  653. }
  654. static void m_stop(struct seq_file *m, void *v)
  655. {
  656. up_read(&namespace_sem);
  657. }
  658. struct proc_fs_info {
  659. int flag;
  660. const char *str;
  661. };
  662. static int show_sb_opts(struct seq_file *m, struct super_block *sb)
  663. {
  664. static const struct proc_fs_info fs_info[] = {
  665. { MS_SYNCHRONOUS, ",sync" },
  666. { MS_DIRSYNC, ",dirsync" },
  667. { MS_MANDLOCK, ",mand" },
  668. { 0, NULL }
  669. };
  670. const struct proc_fs_info *fs_infop;
  671. for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
  672. if (sb->s_flags & fs_infop->flag)
  673. seq_puts(m, fs_infop->str);
  674. }
  675. return security_sb_show_options(m, sb);
  676. }
  677. static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
  678. {
  679. static const struct proc_fs_info mnt_info[] = {
  680. { MNT_NOSUID, ",nosuid" },
  681. { MNT_NODEV, ",nodev" },
  682. { MNT_NOEXEC, ",noexec" },
  683. { MNT_NOATIME, ",noatime" },
  684. { MNT_NODIRATIME, ",nodiratime" },
  685. { MNT_RELATIME, ",relatime" },
  686. { MNT_STRICTATIME, ",strictatime" },
  687. { 0, NULL }
  688. };
  689. const struct proc_fs_info *fs_infop;
  690. for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
  691. if (mnt->mnt_flags & fs_infop->flag)
  692. seq_puts(m, fs_infop->str);
  693. }
  694. }
  695. static void show_type(struct seq_file *m, struct super_block *sb)
  696. {
  697. mangle(m, sb->s_type->name);
  698. if (sb->s_subtype && sb->s_subtype[0]) {
  699. seq_putc(m, '.');
  700. mangle(m, sb->s_subtype);
  701. }
  702. }
  703. static int show_vfsmnt(struct seq_file *m, void *v)
  704. {
  705. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  706. int err = 0;
  707. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  708. mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
  709. seq_putc(m, ' ');
  710. seq_path(m, &mnt_path, " \t\n\\");
  711. seq_putc(m, ' ');
  712. show_type(m, mnt->mnt_sb);
  713. seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
  714. err = show_sb_opts(m, mnt->mnt_sb);
  715. if (err)
  716. goto out;
  717. show_mnt_opts(m, mnt);
  718. if (mnt->mnt_sb->s_op->show_options)
  719. err = mnt->mnt_sb->s_op->show_options(m, mnt);
  720. seq_puts(m, " 0 0\n");
  721. out:
  722. return err;
  723. }
  724. const struct seq_operations mounts_op = {
  725. .start = m_start,
  726. .next = m_next,
  727. .stop = m_stop,
  728. .show = show_vfsmnt
  729. };
  730. static int show_mountinfo(struct seq_file *m, void *v)
  731. {
  732. struct proc_mounts *p = m->private;
  733. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  734. struct super_block *sb = mnt->mnt_sb;
  735. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  736. struct path root = p->root;
  737. int err = 0;
  738. seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
  739. MAJOR(sb->s_dev), MINOR(sb->s_dev));
  740. seq_dentry(m, mnt->mnt_root, " \t\n\\");
  741. seq_putc(m, ' ');
  742. seq_path_root(m, &mnt_path, &root, " \t\n\\");
  743. if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
  744. /*
  745. * Mountpoint is outside root, discard that one. Ugly,
  746. * but less so than trying to do that in iterator in a
  747. * race-free way (due to renames).
  748. */
  749. return SEQ_SKIP;
  750. }
  751. seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
  752. show_mnt_opts(m, mnt);
  753. /* Tagged fields ("foo:X" or "bar") */
  754. if (IS_MNT_SHARED(mnt))
  755. seq_printf(m, " shared:%i", mnt->mnt_group_id);
  756. if (IS_MNT_SLAVE(mnt)) {
  757. int master = mnt->mnt_master->mnt_group_id;
  758. int dom = get_dominating_id(mnt, &p->root);
  759. seq_printf(m, " master:%i", master);
  760. if (dom && dom != master)
  761. seq_printf(m, " propagate_from:%i", dom);
  762. }
  763. if (IS_MNT_UNBINDABLE(mnt))
  764. seq_puts(m, " unbindable");
  765. /* Filesystem specific data */
  766. seq_puts(m, " - ");
  767. show_type(m, sb);
  768. seq_putc(m, ' ');
  769. mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
  770. seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
  771. err = show_sb_opts(m, sb);
  772. if (err)
  773. goto out;
  774. if (sb->s_op->show_options)
  775. err = sb->s_op->show_options(m, mnt);
  776. seq_putc(m, '\n');
  777. out:
  778. return err;
  779. }
  780. const struct seq_operations mountinfo_op = {
  781. .start = m_start,
  782. .next = m_next,
  783. .stop = m_stop,
  784. .show = show_mountinfo,
  785. };
  786. static int show_vfsstat(struct seq_file *m, void *v)
  787. {
  788. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  789. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  790. int err = 0;
  791. /* device */
  792. if (mnt->mnt_devname) {
  793. seq_puts(m, "device ");
  794. mangle(m, mnt->mnt_devname);
  795. } else
  796. seq_puts(m, "no device");
  797. /* mount point */
  798. seq_puts(m, " mounted on ");
  799. seq_path(m, &mnt_path, " \t\n\\");
  800. seq_putc(m, ' ');
  801. /* file system type */
  802. seq_puts(m, "with fstype ");
  803. show_type(m, mnt->mnt_sb);
  804. /* optional statistics */
  805. if (mnt->mnt_sb->s_op->show_stats) {
  806. seq_putc(m, ' ');
  807. err = mnt->mnt_sb->s_op->show_stats(m, mnt);
  808. }
  809. seq_putc(m, '\n');
  810. return err;
  811. }
  812. const struct seq_operations mountstats_op = {
  813. .start = m_start,
  814. .next = m_next,
  815. .stop = m_stop,
  816. .show = show_vfsstat,
  817. };
  818. #endif /* CONFIG_PROC_FS */
  819. /**
  820. * may_umount_tree - check if a mount tree is busy
  821. * @mnt: root of mount tree
  822. *
  823. * This is called to check if a tree of mounts has any
  824. * open files, pwds, chroots or sub mounts that are
  825. * busy.
  826. */
  827. int may_umount_tree(struct vfsmount *mnt)
  828. {
  829. int actual_refs = 0;
  830. int minimum_refs = 0;
  831. struct vfsmount *p;
  832. spin_lock(&vfsmount_lock);
  833. for (p = mnt; p; p = next_mnt(p, mnt)) {
  834. actual_refs += atomic_read(&p->mnt_count);
  835. minimum_refs += 2;
  836. }
  837. spin_unlock(&vfsmount_lock);
  838. if (actual_refs > minimum_refs)
  839. return 0;
  840. return 1;
  841. }
  842. EXPORT_SYMBOL(may_umount_tree);
  843. /**
  844. * may_umount - check if a mount point is busy
  845. * @mnt: root of mount
  846. *
  847. * This is called to check if a mount point has any
  848. * open files, pwds, chroots or sub mounts. If the
  849. * mount has sub mounts this will return busy
  850. * regardless of whether the sub mounts are busy.
  851. *
  852. * Doesn't take quota and stuff into account. IOW, in some cases it will
  853. * give false negatives. The main reason why it's here is that we need
  854. * a non-destructive way to look for easily umountable filesystems.
  855. */
  856. int may_umount(struct vfsmount *mnt)
  857. {
  858. int ret = 1;
  859. down_read(&namespace_sem);
  860. spin_lock(&vfsmount_lock);
  861. if (propagate_mount_busy(mnt, 2))
  862. ret = 0;
  863. spin_unlock(&vfsmount_lock);
  864. up_read(&namespace_sem);
  865. return ret;
  866. }
  867. EXPORT_SYMBOL(may_umount);
  868. void release_mounts(struct list_head *head)
  869. {
  870. struct vfsmount *mnt;
  871. while (!list_empty(head)) {
  872. mnt = list_first_entry(head, struct vfsmount, mnt_hash);
  873. list_del_init(&mnt->mnt_hash);
  874. if (mnt->mnt_parent != mnt) {
  875. struct dentry *dentry;
  876. struct vfsmount *m;
  877. spin_lock(&vfsmount_lock);
  878. dentry = mnt->mnt_mountpoint;
  879. m = mnt->mnt_parent;
  880. mnt->mnt_mountpoint = mnt->mnt_root;
  881. mnt->mnt_parent = mnt;
  882. m->mnt_ghosts--;
  883. spin_unlock(&vfsmount_lock);
  884. dput(dentry);
  885. mntput(m);
  886. }
  887. mntput(mnt);
  888. }
  889. }
  890. void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
  891. {
  892. struct vfsmount *p;
  893. for (p = mnt; p; p = next_mnt(p, mnt))
  894. list_move(&p->mnt_hash, kill);
  895. if (propagate)
  896. propagate_umount(kill);
  897. list_for_each_entry(p, kill, mnt_hash) {
  898. list_del_init(&p->mnt_expire);
  899. list_del_init(&p->mnt_list);
  900. __touch_mnt_namespace(p->mnt_ns);
  901. p->mnt_ns = NULL;
  902. list_del_init(&p->mnt_child);
  903. if (p->mnt_parent != p) {
  904. p->mnt_parent->mnt_ghosts++;
  905. p->mnt_mountpoint->d_mounted--;
  906. }
  907. change_mnt_propagation(p, MS_PRIVATE);
  908. }
  909. }
  910. static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
  911. static int do_umount(struct vfsmount *mnt, int flags)
  912. {
  913. struct super_block *sb = mnt->mnt_sb;
  914. int retval;
  915. LIST_HEAD(umount_list);
  916. retval = security_sb_umount(mnt, flags);
  917. if (retval)
  918. return retval;
  919. /*
  920. * Allow userspace to request a mountpoint be expired rather than
  921. * unmounting unconditionally. Unmount only happens if:
  922. * (1) the mark is already set (the mark is cleared by mntput())
  923. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  924. */
  925. if (flags & MNT_EXPIRE) {
  926. if (mnt == current->fs->root.mnt ||
  927. flags & (MNT_FORCE | MNT_DETACH))
  928. return -EINVAL;
  929. if (atomic_read(&mnt->mnt_count) != 2)
  930. return -EBUSY;
  931. if (!xchg(&mnt->mnt_expiry_mark, 1))
  932. return -EAGAIN;
  933. }
  934. /*
  935. * If we may have to abort operations to get out of this
  936. * mount, and they will themselves hold resources we must
  937. * allow the fs to do things. In the Unix tradition of
  938. * 'Gee thats tricky lets do it in userspace' the umount_begin
  939. * might fail to complete on the first run through as other tasks
  940. * must return, and the like. Thats for the mount program to worry
  941. * about for the moment.
  942. */
  943. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  944. sb->s_op->umount_begin(sb);
  945. }
  946. /*
  947. * No sense to grab the lock for this test, but test itself looks
  948. * somewhat bogus. Suggestions for better replacement?
  949. * Ho-hum... In principle, we might treat that as umount + switch
  950. * to rootfs. GC would eventually take care of the old vfsmount.
  951. * Actually it makes sense, especially if rootfs would contain a
  952. * /reboot - static binary that would close all descriptors and
  953. * call reboot(9). Then init(8) could umount root and exec /reboot.
  954. */
  955. if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  956. /*
  957. * Special case for "unmounting" root ...
  958. * we just try to remount it readonly.
  959. */
  960. down_write(&sb->s_umount);
  961. if (!(sb->s_flags & MS_RDONLY))
  962. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  963. up_write(&sb->s_umount);
  964. return retval;
  965. }
  966. down_write(&namespace_sem);
  967. spin_lock(&vfsmount_lock);
  968. event++;
  969. if (!(flags & MNT_DETACH))
  970. shrink_submounts(mnt, &umount_list);
  971. retval = -EBUSY;
  972. if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
  973. if (!list_empty(&mnt->mnt_list))
  974. umount_tree(mnt, 1, &umount_list);
  975. retval = 0;
  976. }
  977. spin_unlock(&vfsmount_lock);
  978. if (retval)
  979. security_sb_umount_busy(mnt);
  980. up_write(&namespace_sem);
  981. release_mounts(&umount_list);
  982. return retval;
  983. }
  984. /*
  985. * Now umount can handle mount points as well as block devices.
  986. * This is important for filesystems which use unnamed block devices.
  987. *
  988. * We now support a flag for forced unmount like the other 'big iron'
  989. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  990. */
  991. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  992. {
  993. struct path path;
  994. int retval;
  995. retval = user_path(name, &path);
  996. if (retval)
  997. goto out;
  998. retval = -EINVAL;
  999. if (path.dentry != path.mnt->mnt_root)
  1000. goto dput_and_out;
  1001. if (!check_mnt(path.mnt))
  1002. goto dput_and_out;
  1003. retval = -EPERM;
  1004. if (!capable(CAP_SYS_ADMIN))
  1005. goto dput_and_out;
  1006. retval = do_umount(path.mnt, flags);
  1007. dput_and_out:
  1008. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1009. dput(path.dentry);
  1010. mntput_no_expire(path.mnt);
  1011. out:
  1012. return retval;
  1013. }
  1014. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1015. /*
  1016. * The 2.0 compatible umount. No flags.
  1017. */
  1018. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1019. {
  1020. return sys_umount(name, 0);
  1021. }
  1022. #endif
  1023. static int mount_is_safe(struct path *path)
  1024. {
  1025. if (capable(CAP_SYS_ADMIN))
  1026. return 0;
  1027. return -EPERM;
  1028. #ifdef notyet
  1029. if (S_ISLNK(path->dentry->d_inode->i_mode))
  1030. return -EPERM;
  1031. if (path->dentry->d_inode->i_mode & S_ISVTX) {
  1032. if (current_uid() != path->dentry->d_inode->i_uid)
  1033. return -EPERM;
  1034. }
  1035. if (inode_permission(path->dentry->d_inode, MAY_WRITE))
  1036. return -EPERM;
  1037. return 0;
  1038. #endif
  1039. }
  1040. struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
  1041. int flag)
  1042. {
  1043. struct vfsmount *res, *p, *q, *r, *s;
  1044. struct path path;
  1045. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
  1046. return NULL;
  1047. res = q = clone_mnt(mnt, dentry, flag);
  1048. if (!q)
  1049. goto Enomem;
  1050. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1051. p = mnt;
  1052. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1053. if (!is_subdir(r->mnt_mountpoint, dentry))
  1054. continue;
  1055. for (s = r; s; s = next_mnt(s, r)) {
  1056. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
  1057. s = skip_mnt_tree(s);
  1058. continue;
  1059. }
  1060. while (p != s->mnt_parent) {
  1061. p = p->mnt_parent;
  1062. q = q->mnt_parent;
  1063. }
  1064. p = s;
  1065. path.mnt = q;
  1066. path.dentry = p->mnt_mountpoint;
  1067. q = clone_mnt(p, p->mnt_root, flag);
  1068. if (!q)
  1069. goto Enomem;
  1070. spin_lock(&vfsmount_lock);
  1071. list_add_tail(&q->mnt_list, &res->mnt_list);
  1072. attach_mnt(q, &path);
  1073. spin_unlock(&vfsmount_lock);
  1074. }
  1075. }
  1076. return res;
  1077. Enomem:
  1078. if (res) {
  1079. LIST_HEAD(umount_list);
  1080. spin_lock(&vfsmount_lock);
  1081. umount_tree(res, 0, &umount_list);
  1082. spin_unlock(&vfsmount_lock);
  1083. release_mounts(&umount_list);
  1084. }
  1085. return NULL;
  1086. }
  1087. struct vfsmount *collect_mounts(struct path *path)
  1088. {
  1089. struct vfsmount *tree;
  1090. down_write(&namespace_sem);
  1091. tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
  1092. up_write(&namespace_sem);
  1093. return tree;
  1094. }
  1095. void drop_collected_mounts(struct vfsmount *mnt)
  1096. {
  1097. LIST_HEAD(umount_list);
  1098. down_write(&namespace_sem);
  1099. spin_lock(&vfsmount_lock);
  1100. umount_tree(mnt, 0, &umount_list);
  1101. spin_unlock(&vfsmount_lock);
  1102. up_write(&namespace_sem);
  1103. release_mounts(&umount_list);
  1104. }
  1105. static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
  1106. {
  1107. struct vfsmount *p;
  1108. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1109. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1110. mnt_release_group_id(p);
  1111. }
  1112. }
  1113. static int invent_group_ids(struct vfsmount *mnt, bool recurse)
  1114. {
  1115. struct vfsmount *p;
  1116. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1117. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1118. int err = mnt_alloc_group_id(p);
  1119. if (err) {
  1120. cleanup_group_ids(mnt, p);
  1121. return err;
  1122. }
  1123. }
  1124. }
  1125. return 0;
  1126. }
  1127. /*
  1128. * @source_mnt : mount tree to be attached
  1129. * @nd : place the mount tree @source_mnt is attached
  1130. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1131. * store the parent mount and mountpoint dentry.
  1132. * (done when source_mnt is moved)
  1133. *
  1134. * NOTE: in the table below explains the semantics when a source mount
  1135. * of a given type is attached to a destination mount of a given type.
  1136. * ---------------------------------------------------------------------------
  1137. * | BIND MOUNT OPERATION |
  1138. * |**************************************************************************
  1139. * | source-->| shared | private | slave | unbindable |
  1140. * | dest | | | | |
  1141. * | | | | | | |
  1142. * | v | | | | |
  1143. * |**************************************************************************
  1144. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1145. * | | | | | |
  1146. * |non-shared| shared (+) | private | slave (*) | invalid |
  1147. * ***************************************************************************
  1148. * A bind operation clones the source mount and mounts the clone on the
  1149. * destination mount.
  1150. *
  1151. * (++) the cloned mount is propagated to all the mounts in the propagation
  1152. * tree of the destination mount and the cloned mount is added to
  1153. * the peer group of the source mount.
  1154. * (+) the cloned mount is created under the destination mount and is marked
  1155. * as shared. The cloned mount is added to the peer group of the source
  1156. * mount.
  1157. * (+++) the mount is propagated to all the mounts in the propagation tree
  1158. * of the destination mount and the cloned mount is made slave
  1159. * of the same master as that of the source mount. The cloned mount
  1160. * is marked as 'shared and slave'.
  1161. * (*) the cloned mount is made a slave of the same master as that of the
  1162. * source mount.
  1163. *
  1164. * ---------------------------------------------------------------------------
  1165. * | MOVE MOUNT OPERATION |
  1166. * |**************************************************************************
  1167. * | source-->| shared | private | slave | unbindable |
  1168. * | dest | | | | |
  1169. * | | | | | | |
  1170. * | v | | | | |
  1171. * |**************************************************************************
  1172. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1173. * | | | | | |
  1174. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1175. * ***************************************************************************
  1176. *
  1177. * (+) the mount is moved to the destination. And is then propagated to
  1178. * all the mounts in the propagation tree of the destination mount.
  1179. * (+*) the mount is moved to the destination.
  1180. * (+++) the mount is moved to the destination and is then propagated to
  1181. * all the mounts belonging to the destination mount's propagation tree.
  1182. * the mount is marked as 'shared and slave'.
  1183. * (*) the mount continues to be a slave at the new location.
  1184. *
  1185. * if the source mount is a tree, the operations explained above is
  1186. * applied to each mount in the tree.
  1187. * Must be called without spinlocks held, since this function can sleep
  1188. * in allocations.
  1189. */
  1190. static int attach_recursive_mnt(struct vfsmount *source_mnt,
  1191. struct path *path, struct path *parent_path)
  1192. {
  1193. LIST_HEAD(tree_list);
  1194. struct vfsmount *dest_mnt = path->mnt;
  1195. struct dentry *dest_dentry = path->dentry;
  1196. struct vfsmount *child, *p;
  1197. int err;
  1198. if (IS_MNT_SHARED(dest_mnt)) {
  1199. err = invent_group_ids(source_mnt, true);
  1200. if (err)
  1201. goto out;
  1202. }
  1203. err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
  1204. if (err)
  1205. goto out_cleanup_ids;
  1206. spin_lock(&vfsmount_lock);
  1207. if (IS_MNT_SHARED(dest_mnt)) {
  1208. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1209. set_mnt_shared(p);
  1210. }
  1211. if (parent_path) {
  1212. detach_mnt(source_mnt, parent_path);
  1213. attach_mnt(source_mnt, path);
  1214. touch_mnt_namespace(parent_path->mnt->mnt_ns);
  1215. } else {
  1216. mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
  1217. commit_tree(source_mnt);
  1218. }
  1219. list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
  1220. list_del_init(&child->mnt_hash);
  1221. commit_tree(child);
  1222. }
  1223. spin_unlock(&vfsmount_lock);
  1224. return 0;
  1225. out_cleanup_ids:
  1226. if (IS_MNT_SHARED(dest_mnt))
  1227. cleanup_group_ids(source_mnt, NULL);
  1228. out:
  1229. return err;
  1230. }
  1231. static int graft_tree(struct vfsmount *mnt, struct path *path)
  1232. {
  1233. int err;
  1234. if (mnt->mnt_sb->s_flags & MS_NOUSER)
  1235. return -EINVAL;
  1236. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1237. S_ISDIR(mnt->mnt_root->d_inode->i_mode))
  1238. return -ENOTDIR;
  1239. err = -ENOENT;
  1240. mutex_lock(&path->dentry->d_inode->i_mutex);
  1241. if (IS_DEADDIR(path->dentry->d_inode))
  1242. goto out_unlock;
  1243. err = security_sb_check_sb(mnt, path);
  1244. if (err)
  1245. goto out_unlock;
  1246. err = -ENOENT;
  1247. if (!d_unlinked(path->dentry))
  1248. err = attach_recursive_mnt(mnt, path, NULL);
  1249. out_unlock:
  1250. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1251. if (!err)
  1252. security_sb_post_addmount(mnt, path);
  1253. return err;
  1254. }
  1255. /*
  1256. * recursively change the type of the mountpoint.
  1257. */
  1258. static int do_change_type(struct path *path, int flag)
  1259. {
  1260. struct vfsmount *m, *mnt = path->mnt;
  1261. int recurse = flag & MS_REC;
  1262. int type = flag & ~MS_REC;
  1263. int err = 0;
  1264. if (!capable(CAP_SYS_ADMIN))
  1265. return -EPERM;
  1266. if (path->dentry != path->mnt->mnt_root)
  1267. return -EINVAL;
  1268. down_write(&namespace_sem);
  1269. if (type == MS_SHARED) {
  1270. err = invent_group_ids(mnt, recurse);
  1271. if (err)
  1272. goto out_unlock;
  1273. }
  1274. spin_lock(&vfsmount_lock);
  1275. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1276. change_mnt_propagation(m, type);
  1277. spin_unlock(&vfsmount_lock);
  1278. out_unlock:
  1279. up_write(&namespace_sem);
  1280. return err;
  1281. }
  1282. /*
  1283. * do loopback mount.
  1284. */
  1285. static int do_loopback(struct path *path, char *old_name,
  1286. int recurse)
  1287. {
  1288. struct path old_path;
  1289. struct vfsmount *mnt = NULL;
  1290. int err = mount_is_safe(path);
  1291. if (err)
  1292. return err;
  1293. if (!old_name || !*old_name)
  1294. return -EINVAL;
  1295. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  1296. if (err)
  1297. return err;
  1298. down_write(&namespace_sem);
  1299. err = -EINVAL;
  1300. if (IS_MNT_UNBINDABLE(old_path.mnt))
  1301. goto out;
  1302. if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
  1303. goto out;
  1304. err = -ENOMEM;
  1305. if (recurse)
  1306. mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
  1307. else
  1308. mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
  1309. if (!mnt)
  1310. goto out;
  1311. err = graft_tree(mnt, path);
  1312. if (err) {
  1313. LIST_HEAD(umount_list);
  1314. spin_lock(&vfsmount_lock);
  1315. umount_tree(mnt, 0, &umount_list);
  1316. spin_unlock(&vfsmount_lock);
  1317. release_mounts(&umount_list);
  1318. }
  1319. out:
  1320. up_write(&namespace_sem);
  1321. path_put(&old_path);
  1322. return err;
  1323. }
  1324. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1325. {
  1326. int error = 0;
  1327. int readonly_request = 0;
  1328. if (ms_flags & MS_RDONLY)
  1329. readonly_request = 1;
  1330. if (readonly_request == __mnt_is_readonly(mnt))
  1331. return 0;
  1332. if (readonly_request)
  1333. error = mnt_make_readonly(mnt);
  1334. else
  1335. __mnt_unmake_readonly(mnt);
  1336. return error;
  1337. }
  1338. /*
  1339. * change filesystem flags. dir should be a physical root of filesystem.
  1340. * If you've mounted a non-root directory somewhere and want to do remount
  1341. * on it - tough luck.
  1342. */
  1343. static int do_remount(struct path *path, int flags, int mnt_flags,
  1344. void *data)
  1345. {
  1346. int err;
  1347. struct super_block *sb = path->mnt->mnt_sb;
  1348. if (!capable(CAP_SYS_ADMIN))
  1349. return -EPERM;
  1350. if (!check_mnt(path->mnt))
  1351. return -EINVAL;
  1352. if (path->dentry != path->mnt->mnt_root)
  1353. return -EINVAL;
  1354. down_write(&sb->s_umount);
  1355. if (flags & MS_BIND)
  1356. err = change_mount_flags(path->mnt, flags);
  1357. else
  1358. err = do_remount_sb(sb, flags, data, 0);
  1359. if (!err) {
  1360. spin_lock(&vfsmount_lock);
  1361. mnt_flags |= path->mnt->mnt_flags & MNT_PNODE_MASK;
  1362. path->mnt->mnt_flags = mnt_flags;
  1363. spin_unlock(&vfsmount_lock);
  1364. }
  1365. up_write(&sb->s_umount);
  1366. if (!err) {
  1367. security_sb_post_remount(path->mnt, flags, data);
  1368. spin_lock(&vfsmount_lock);
  1369. touch_mnt_namespace(path->mnt->mnt_ns);
  1370. spin_unlock(&vfsmount_lock);
  1371. }
  1372. return err;
  1373. }
  1374. static inline int tree_contains_unbindable(struct vfsmount *mnt)
  1375. {
  1376. struct vfsmount *p;
  1377. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1378. if (IS_MNT_UNBINDABLE(p))
  1379. return 1;
  1380. }
  1381. return 0;
  1382. }
  1383. static int do_move_mount(struct path *path, char *old_name)
  1384. {
  1385. struct path old_path, parent_path;
  1386. struct vfsmount *p;
  1387. int err = 0;
  1388. if (!capable(CAP_SYS_ADMIN))
  1389. return -EPERM;
  1390. if (!old_name || !*old_name)
  1391. return -EINVAL;
  1392. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  1393. if (err)
  1394. return err;
  1395. down_write(&namespace_sem);
  1396. while (d_mountpoint(path->dentry) &&
  1397. follow_down(path))
  1398. ;
  1399. err = -EINVAL;
  1400. if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
  1401. goto out;
  1402. err = -ENOENT;
  1403. mutex_lock(&path->dentry->d_inode->i_mutex);
  1404. if (IS_DEADDIR(path->dentry->d_inode))
  1405. goto out1;
  1406. if (d_unlinked(path->dentry))
  1407. goto out1;
  1408. err = -EINVAL;
  1409. if (old_path.dentry != old_path.mnt->mnt_root)
  1410. goto out1;
  1411. if (old_path.mnt == old_path.mnt->mnt_parent)
  1412. goto out1;
  1413. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1414. S_ISDIR(old_path.dentry->d_inode->i_mode))
  1415. goto out1;
  1416. /*
  1417. * Don't move a mount residing in a shared parent.
  1418. */
  1419. if (old_path.mnt->mnt_parent &&
  1420. IS_MNT_SHARED(old_path.mnt->mnt_parent))
  1421. goto out1;
  1422. /*
  1423. * Don't move a mount tree containing unbindable mounts to a destination
  1424. * mount which is shared.
  1425. */
  1426. if (IS_MNT_SHARED(path->mnt) &&
  1427. tree_contains_unbindable(old_path.mnt))
  1428. goto out1;
  1429. err = -ELOOP;
  1430. for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
  1431. if (p == old_path.mnt)
  1432. goto out1;
  1433. err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
  1434. if (err)
  1435. goto out1;
  1436. /* if the mount is moved, it should no longer be expire
  1437. * automatically */
  1438. list_del_init(&old_path.mnt->mnt_expire);
  1439. out1:
  1440. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1441. out:
  1442. up_write(&namespace_sem);
  1443. if (!err)
  1444. path_put(&parent_path);
  1445. path_put(&old_path);
  1446. return err;
  1447. }
  1448. /*
  1449. * create a new mount for userspace and request it to be added into the
  1450. * namespace's tree
  1451. */
  1452. static int do_new_mount(struct path *path, char *type, int flags,
  1453. int mnt_flags, char *name, void *data)
  1454. {
  1455. struct vfsmount *mnt;
  1456. if (!type)
  1457. return -EINVAL;
  1458. /* we need capabilities... */
  1459. if (!capable(CAP_SYS_ADMIN))
  1460. return -EPERM;
  1461. lock_kernel();
  1462. mnt = do_kern_mount(type, flags, name, data);
  1463. unlock_kernel();
  1464. if (IS_ERR(mnt))
  1465. return PTR_ERR(mnt);
  1466. return do_add_mount(mnt, path, mnt_flags, NULL);
  1467. }
  1468. /*
  1469. * add a mount into a namespace's mount tree
  1470. * - provide the option of adding the new mount to an expiration list
  1471. */
  1472. int do_add_mount(struct vfsmount *newmnt, struct path *path,
  1473. int mnt_flags, struct list_head *fslist)
  1474. {
  1475. int err;
  1476. mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD);
  1477. down_write(&namespace_sem);
  1478. /* Something was mounted here while we slept */
  1479. while (d_mountpoint(path->dentry) &&
  1480. follow_down(path))
  1481. ;
  1482. err = -EINVAL;
  1483. if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
  1484. goto unlock;
  1485. /* Refuse the same filesystem on the same mount point */
  1486. err = -EBUSY;
  1487. if (path->mnt->mnt_sb == newmnt->mnt_sb &&
  1488. path->mnt->mnt_root == path->dentry)
  1489. goto unlock;
  1490. err = -EINVAL;
  1491. if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
  1492. goto unlock;
  1493. newmnt->mnt_flags = mnt_flags;
  1494. if ((err = graft_tree(newmnt, path)))
  1495. goto unlock;
  1496. if (fslist) /* add to the specified expiration list */
  1497. list_add_tail(&newmnt->mnt_expire, fslist);
  1498. up_write(&namespace_sem);
  1499. return 0;
  1500. unlock:
  1501. up_write(&namespace_sem);
  1502. mntput(newmnt);
  1503. return err;
  1504. }
  1505. EXPORT_SYMBOL_GPL(do_add_mount);
  1506. /*
  1507. * process a list of expirable mountpoints with the intent of discarding any
  1508. * mountpoints that aren't in use and haven't been touched since last we came
  1509. * here
  1510. */
  1511. void mark_mounts_for_expiry(struct list_head *mounts)
  1512. {
  1513. struct vfsmount *mnt, *next;
  1514. LIST_HEAD(graveyard);
  1515. LIST_HEAD(umounts);
  1516. if (list_empty(mounts))
  1517. return;
  1518. down_write(&namespace_sem);
  1519. spin_lock(&vfsmount_lock);
  1520. /* extract from the expiration list every vfsmount that matches the
  1521. * following criteria:
  1522. * - only referenced by its parent vfsmount
  1523. * - still marked for expiry (marked on the last call here; marks are
  1524. * cleared by mntput())
  1525. */
  1526. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  1527. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  1528. propagate_mount_busy(mnt, 1))
  1529. continue;
  1530. list_move(&mnt->mnt_expire, &graveyard);
  1531. }
  1532. while (!list_empty(&graveyard)) {
  1533. mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
  1534. touch_mnt_namespace(mnt->mnt_ns);
  1535. umount_tree(mnt, 1, &umounts);
  1536. }
  1537. spin_unlock(&vfsmount_lock);
  1538. up_write(&namespace_sem);
  1539. release_mounts(&umounts);
  1540. }
  1541. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  1542. /*
  1543. * Ripoff of 'select_parent()'
  1544. *
  1545. * search the list of submounts for a given mountpoint, and move any
  1546. * shrinkable submounts to the 'graveyard' list.
  1547. */
  1548. static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
  1549. {
  1550. struct vfsmount *this_parent = parent;
  1551. struct list_head *next;
  1552. int found = 0;
  1553. repeat:
  1554. next = this_parent->mnt_mounts.next;
  1555. resume:
  1556. while (next != &this_parent->mnt_mounts) {
  1557. struct list_head *tmp = next;
  1558. struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
  1559. next = tmp->next;
  1560. if (!(mnt->mnt_flags & MNT_SHRINKABLE))
  1561. continue;
  1562. /*
  1563. * Descend a level if the d_mounts list is non-empty.
  1564. */
  1565. if (!list_empty(&mnt->mnt_mounts)) {
  1566. this_parent = mnt;
  1567. goto repeat;
  1568. }
  1569. if (!propagate_mount_busy(mnt, 1)) {
  1570. list_move_tail(&mnt->mnt_expire, graveyard);
  1571. found++;
  1572. }
  1573. }
  1574. /*
  1575. * All done at this level ... ascend and resume the search
  1576. */
  1577. if (this_parent != parent) {
  1578. next = this_parent->mnt_child.next;
  1579. this_parent = this_parent->mnt_parent;
  1580. goto resume;
  1581. }
  1582. return found;
  1583. }
  1584. /*
  1585. * process a list of expirable mountpoints with the intent of discarding any
  1586. * submounts of a specific parent mountpoint
  1587. */
  1588. static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
  1589. {
  1590. LIST_HEAD(graveyard);
  1591. struct vfsmount *m;
  1592. /* extract submounts of 'mountpoint' from the expiration list */
  1593. while (select_submounts(mnt, &graveyard)) {
  1594. while (!list_empty(&graveyard)) {
  1595. m = list_first_entry(&graveyard, struct vfsmount,
  1596. mnt_expire);
  1597. touch_mnt_namespace(m->mnt_ns);
  1598. umount_tree(m, 1, umounts);
  1599. }
  1600. }
  1601. }
  1602. /*
  1603. * Some copy_from_user() implementations do not return the exact number of
  1604. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  1605. * Note that this function differs from copy_from_user() in that it will oops
  1606. * on bad values of `to', rather than returning a short copy.
  1607. */
  1608. static long exact_copy_from_user(void *to, const void __user * from,
  1609. unsigned long n)
  1610. {
  1611. char *t = to;
  1612. const char __user *f = from;
  1613. char c;
  1614. if (!access_ok(VERIFY_READ, from, n))
  1615. return n;
  1616. while (n) {
  1617. if (__get_user(c, f)) {
  1618. memset(t, 0, n);
  1619. break;
  1620. }
  1621. *t++ = c;
  1622. f++;
  1623. n--;
  1624. }
  1625. return n;
  1626. }
  1627. int copy_mount_options(const void __user * data, unsigned long *where)
  1628. {
  1629. int i;
  1630. unsigned long page;
  1631. unsigned long size;
  1632. *where = 0;
  1633. if (!data)
  1634. return 0;
  1635. if (!(page = __get_free_page(GFP_KERNEL)))
  1636. return -ENOMEM;
  1637. /* We only care that *some* data at the address the user
  1638. * gave us is valid. Just in case, we'll zero
  1639. * the remainder of the page.
  1640. */
  1641. /* copy_from_user cannot cross TASK_SIZE ! */
  1642. size = TASK_SIZE - (unsigned long)data;
  1643. if (size > PAGE_SIZE)
  1644. size = PAGE_SIZE;
  1645. i = size - exact_copy_from_user((void *)page, data, size);
  1646. if (!i) {
  1647. free_page(page);
  1648. return -EFAULT;
  1649. }
  1650. if (i != PAGE_SIZE)
  1651. memset((char *)page + i, 0, PAGE_SIZE - i);
  1652. *where = page;
  1653. return 0;
  1654. }
  1655. int copy_mount_string(const void __user *data, char **where)
  1656. {
  1657. char *tmp;
  1658. if (!data) {
  1659. *where = NULL;
  1660. return 0;
  1661. }
  1662. tmp = strndup_user(data, PAGE_SIZE);
  1663. if (IS_ERR(tmp))
  1664. return PTR_ERR(tmp);
  1665. *where = tmp;
  1666. return 0;
  1667. }
  1668. /*
  1669. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  1670. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  1671. *
  1672. * data is a (void *) that can point to any structure up to
  1673. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  1674. * information (or be NULL).
  1675. *
  1676. * Pre-0.97 versions of mount() didn't have a flags word.
  1677. * When the flags word was introduced its top half was required
  1678. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  1679. * Therefore, if this magic number is present, it carries no information
  1680. * and must be discarded.
  1681. */
  1682. long do_mount(char *dev_name, char *dir_name, char *type_page,
  1683. unsigned long flags, void *data_page)
  1684. {
  1685. struct path path;
  1686. int retval = 0;
  1687. int mnt_flags = 0;
  1688. /* Discard magic */
  1689. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  1690. flags &= ~MS_MGC_MSK;
  1691. /* Basic sanity checks */
  1692. if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
  1693. return -EINVAL;
  1694. if (data_page)
  1695. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  1696. /* ... and get the mountpoint */
  1697. retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
  1698. if (retval)
  1699. return retval;
  1700. retval = security_sb_mount(dev_name, &path,
  1701. type_page, flags, data_page);
  1702. if (retval)
  1703. goto dput_out;
  1704. /* Default to relatime unless overriden */
  1705. if (!(flags & MS_NOATIME))
  1706. mnt_flags |= MNT_RELATIME;
  1707. /* Separate the per-mountpoint flags */
  1708. if (flags & MS_NOSUID)
  1709. mnt_flags |= MNT_NOSUID;
  1710. if (flags & MS_NODEV)
  1711. mnt_flags |= MNT_NODEV;
  1712. if (flags & MS_NOEXEC)
  1713. mnt_flags |= MNT_NOEXEC;
  1714. if (flags & MS_NOATIME)
  1715. mnt_flags |= MNT_NOATIME;
  1716. if (flags & MS_NODIRATIME)
  1717. mnt_flags |= MNT_NODIRATIME;
  1718. if (flags & MS_STRICTATIME)
  1719. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  1720. if (flags & MS_RDONLY)
  1721. mnt_flags |= MNT_READONLY;
  1722. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
  1723. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
  1724. MS_STRICTATIME);
  1725. if (flags & MS_REMOUNT)
  1726. retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
  1727. data_page);
  1728. else if (flags & MS_BIND)
  1729. retval = do_loopback(&path, dev_name, flags & MS_REC);
  1730. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1731. retval = do_change_type(&path, flags);
  1732. else if (flags & MS_MOVE)
  1733. retval = do_move_mount(&path, dev_name);
  1734. else
  1735. retval = do_new_mount(&path, type_page, flags, mnt_flags,
  1736. dev_name, data_page);
  1737. dput_out:
  1738. path_put(&path);
  1739. return retval;
  1740. }
  1741. static struct mnt_namespace *alloc_mnt_ns(void)
  1742. {
  1743. struct mnt_namespace *new_ns;
  1744. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  1745. if (!new_ns)
  1746. return ERR_PTR(-ENOMEM);
  1747. atomic_set(&new_ns->count, 1);
  1748. new_ns->root = NULL;
  1749. INIT_LIST_HEAD(&new_ns->list);
  1750. init_waitqueue_head(&new_ns->poll);
  1751. new_ns->event = 0;
  1752. return new_ns;
  1753. }
  1754. /*
  1755. * Allocate a new namespace structure and populate it with contents
  1756. * copied from the namespace of the passed in task structure.
  1757. */
  1758. static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
  1759. struct fs_struct *fs)
  1760. {
  1761. struct mnt_namespace *new_ns;
  1762. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  1763. struct vfsmount *p, *q;
  1764. new_ns = alloc_mnt_ns();
  1765. if (IS_ERR(new_ns))
  1766. return new_ns;
  1767. down_write(&namespace_sem);
  1768. /* First pass: copy the tree topology */
  1769. new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
  1770. CL_COPY_ALL | CL_EXPIRE);
  1771. if (!new_ns->root) {
  1772. up_write(&namespace_sem);
  1773. kfree(new_ns);
  1774. return ERR_PTR(-ENOMEM);
  1775. }
  1776. spin_lock(&vfsmount_lock);
  1777. list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
  1778. spin_unlock(&vfsmount_lock);
  1779. /*
  1780. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  1781. * as belonging to new namespace. We have already acquired a private
  1782. * fs_struct, so tsk->fs->lock is not needed.
  1783. */
  1784. p = mnt_ns->root;
  1785. q = new_ns->root;
  1786. while (p) {
  1787. q->mnt_ns = new_ns;
  1788. if (fs) {
  1789. if (p == fs->root.mnt) {
  1790. rootmnt = p;
  1791. fs->root.mnt = mntget(q);
  1792. }
  1793. if (p == fs->pwd.mnt) {
  1794. pwdmnt = p;
  1795. fs->pwd.mnt = mntget(q);
  1796. }
  1797. }
  1798. p = next_mnt(p, mnt_ns->root);
  1799. q = next_mnt(q, new_ns->root);
  1800. }
  1801. up_write(&namespace_sem);
  1802. if (rootmnt)
  1803. mntput(rootmnt);
  1804. if (pwdmnt)
  1805. mntput(pwdmnt);
  1806. return new_ns;
  1807. }
  1808. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  1809. struct fs_struct *new_fs)
  1810. {
  1811. struct mnt_namespace *new_ns;
  1812. BUG_ON(!ns);
  1813. get_mnt_ns(ns);
  1814. if (!(flags & CLONE_NEWNS))
  1815. return ns;
  1816. new_ns = dup_mnt_ns(ns, new_fs);
  1817. put_mnt_ns(ns);
  1818. return new_ns;
  1819. }
  1820. /**
  1821. * create_mnt_ns - creates a private namespace and adds a root filesystem
  1822. * @mnt: pointer to the new root filesystem mountpoint
  1823. */
  1824. struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
  1825. {
  1826. struct mnt_namespace *new_ns;
  1827. new_ns = alloc_mnt_ns();
  1828. if (!IS_ERR(new_ns)) {
  1829. mnt->mnt_ns = new_ns;
  1830. new_ns->root = mnt;
  1831. list_add(&new_ns->list, &new_ns->root->mnt_list);
  1832. }
  1833. return new_ns;
  1834. }
  1835. EXPORT_SYMBOL(create_mnt_ns);
  1836. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  1837. char __user *, type, unsigned long, flags, void __user *, data)
  1838. {
  1839. int ret;
  1840. char *kernel_type;
  1841. char *kernel_dir;
  1842. char *kernel_dev;
  1843. unsigned long data_page;
  1844. ret = copy_mount_string(type, &kernel_type);
  1845. if (ret < 0)
  1846. goto out_type;
  1847. kernel_dir = getname(dir_name);
  1848. if (IS_ERR(kernel_dir)) {
  1849. ret = PTR_ERR(kernel_dir);
  1850. goto out_dir;
  1851. }
  1852. ret = copy_mount_string(dev_name, &kernel_dev);
  1853. if (ret < 0)
  1854. goto out_dev;
  1855. ret = copy_mount_options(data, &data_page);
  1856. if (ret < 0)
  1857. goto out_data;
  1858. ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
  1859. (void *) data_page);
  1860. free_page(data_page);
  1861. out_data:
  1862. kfree(kernel_dev);
  1863. out_dev:
  1864. putname(kernel_dir);
  1865. out_dir:
  1866. kfree(kernel_type);
  1867. out_type:
  1868. return ret;
  1869. }
  1870. /*
  1871. * pivot_root Semantics:
  1872. * Moves the root file system of the current process to the directory put_old,
  1873. * makes new_root as the new root file system of the current process, and sets
  1874. * root/cwd of all processes which had them on the current root to new_root.
  1875. *
  1876. * Restrictions:
  1877. * The new_root and put_old must be directories, and must not be on the
  1878. * same file system as the current process root. The put_old must be
  1879. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  1880. * pointed to by put_old must yield the same directory as new_root. No other
  1881. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  1882. *
  1883. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  1884. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  1885. * in this situation.
  1886. *
  1887. * Notes:
  1888. * - we don't move root/cwd if they are not at the root (reason: if something
  1889. * cared enough to change them, it's probably wrong to force them elsewhere)
  1890. * - it's okay to pick a root that isn't the root of a file system, e.g.
  1891. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  1892. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  1893. * first.
  1894. */
  1895. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  1896. const char __user *, put_old)
  1897. {
  1898. struct vfsmount *tmp;
  1899. struct path new, old, parent_path, root_parent, root;
  1900. int error;
  1901. if (!capable(CAP_SYS_ADMIN))
  1902. return -EPERM;
  1903. error = user_path_dir(new_root, &new);
  1904. if (error)
  1905. goto out0;
  1906. error = -EINVAL;
  1907. if (!check_mnt(new.mnt))
  1908. goto out1;
  1909. error = user_path_dir(put_old, &old);
  1910. if (error)
  1911. goto out1;
  1912. error = security_sb_pivotroot(&old, &new);
  1913. if (error) {
  1914. path_put(&old);
  1915. goto out1;
  1916. }
  1917. read_lock(&current->fs->lock);
  1918. root = current->fs->root;
  1919. path_get(&current->fs->root);
  1920. read_unlock(&current->fs->lock);
  1921. down_write(&namespace_sem);
  1922. mutex_lock(&old.dentry->d_inode->i_mutex);
  1923. error = -EINVAL;
  1924. if (IS_MNT_SHARED(old.mnt) ||
  1925. IS_MNT_SHARED(new.mnt->mnt_parent) ||
  1926. IS_MNT_SHARED(root.mnt->mnt_parent))
  1927. goto out2;
  1928. if (!check_mnt(root.mnt))
  1929. goto out2;
  1930. error = -ENOENT;
  1931. if (IS_DEADDIR(new.dentry->d_inode))
  1932. goto out2;
  1933. if (d_unlinked(new.dentry))
  1934. goto out2;
  1935. if (d_unlinked(old.dentry))
  1936. goto out2;
  1937. error = -EBUSY;
  1938. if (new.mnt == root.mnt ||
  1939. old.mnt == root.mnt)
  1940. goto out2; /* loop, on the same file system */
  1941. error = -EINVAL;
  1942. if (root.mnt->mnt_root != root.dentry)
  1943. goto out2; /* not a mountpoint */
  1944. if (root.mnt->mnt_parent == root.mnt)
  1945. goto out2; /* not attached */
  1946. if (new.mnt->mnt_root != new.dentry)
  1947. goto out2; /* not a mountpoint */
  1948. if (new.mnt->mnt_parent == new.mnt)
  1949. goto out2; /* not attached */
  1950. /* make sure we can reach put_old from new_root */
  1951. tmp = old.mnt;
  1952. spin_lock(&vfsmount_lock);
  1953. if (tmp != new.mnt) {
  1954. for (;;) {
  1955. if (tmp->mnt_parent == tmp)
  1956. goto out3; /* already mounted on put_old */
  1957. if (tmp->mnt_parent == new.mnt)
  1958. break;
  1959. tmp = tmp->mnt_parent;
  1960. }
  1961. if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
  1962. goto out3;
  1963. } else if (!is_subdir(old.dentry, new.dentry))
  1964. goto out3;
  1965. detach_mnt(new.mnt, &parent_path);
  1966. detach_mnt(root.mnt, &root_parent);
  1967. /* mount old root on put_old */
  1968. attach_mnt(root.mnt, &old);
  1969. /* mount new_root on / */
  1970. attach_mnt(new.mnt, &root_parent);
  1971. touch_mnt_namespace(current->nsproxy->mnt_ns);
  1972. spin_unlock(&vfsmount_lock);
  1973. chroot_fs_refs(&root, &new);
  1974. security_sb_post_pivotroot(&root, &new);
  1975. error = 0;
  1976. path_put(&root_parent);
  1977. path_put(&parent_path);
  1978. out2:
  1979. mutex_unlock(&old.dentry->d_inode->i_mutex);
  1980. up_write(&namespace_sem);
  1981. path_put(&root);
  1982. path_put(&old);
  1983. out1:
  1984. path_put(&new);
  1985. out0:
  1986. return error;
  1987. out3:
  1988. spin_unlock(&vfsmount_lock);
  1989. goto out2;
  1990. }
  1991. static void __init init_mount_tree(void)
  1992. {
  1993. struct vfsmount *mnt;
  1994. struct mnt_namespace *ns;
  1995. struct path root;
  1996. mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
  1997. if (IS_ERR(mnt))
  1998. panic("Can't create rootfs");
  1999. ns = create_mnt_ns(mnt);
  2000. if (IS_ERR(ns))
  2001. panic("Can't allocate initial namespace");
  2002. init_task.nsproxy->mnt_ns = ns;
  2003. get_mnt_ns(ns);
  2004. root.mnt = ns->root;
  2005. root.dentry = ns->root->mnt_root;
  2006. set_fs_pwd(current->fs, &root);
  2007. set_fs_root(current->fs, &root);
  2008. }
  2009. void __init mnt_init(void)
  2010. {
  2011. unsigned u;
  2012. int err;
  2013. init_rwsem(&namespace_sem);
  2014. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
  2015. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2016. mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
  2017. if (!mount_hashtable)
  2018. panic("Failed to allocate mount hash table\n");
  2019. printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
  2020. for (u = 0; u < HASH_SIZE; u++)
  2021. INIT_LIST_HEAD(&mount_hashtable[u]);
  2022. err = sysfs_init();
  2023. if (err)
  2024. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2025. __func__, err);
  2026. fs_kobj = kobject_create_and_add("fs", NULL);
  2027. if (!fs_kobj)
  2028. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2029. init_rootfs();
  2030. init_mount_tree();
  2031. }
  2032. void put_mnt_ns(struct mnt_namespace *ns)
  2033. {
  2034. struct vfsmount *root;
  2035. LIST_HEAD(umount_list);
  2036. if (!atomic_dec_and_lock(&ns->count, &vfsmount_lock))
  2037. return;
  2038. root = ns->root;
  2039. ns->root = NULL;
  2040. spin_unlock(&vfsmount_lock);
  2041. down_write(&namespace_sem);
  2042. spin_lock(&vfsmount_lock);
  2043. umount_tree(root, 0, &umount_list);
  2044. spin_unlock(&vfsmount_lock);
  2045. up_write(&namespace_sem);
  2046. release_mounts(&umount_list);
  2047. kfree(ns);
  2048. }
  2049. EXPORT_SYMBOL(put_mnt_ns);