mmzone.h 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227
  1. #ifndef _LINUX_MMZONE_H
  2. #define _LINUX_MMZONE_H
  3. #ifndef __ASSEMBLY__
  4. #ifndef __GENERATING_BOUNDS_H
  5. #include <linux/spinlock.h>
  6. #include <linux/list.h>
  7. #include <linux/wait.h>
  8. #include <linux/bitops.h>
  9. #include <linux/cache.h>
  10. #include <linux/threads.h>
  11. #include <linux/numa.h>
  12. #include <linux/init.h>
  13. #include <linux/seqlock.h>
  14. #include <linux/nodemask.h>
  15. #include <linux/pageblock-flags.h>
  16. #include <generated/bounds.h>
  17. #include <linux/atomic.h>
  18. #include <asm/page.h>
  19. /* Free memory management - zoned buddy allocator. */
  20. #ifndef CONFIG_FORCE_MAX_ZONEORDER
  21. #define MAX_ORDER 11
  22. #else
  23. #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  24. #endif
  25. #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  26. /*
  27. * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
  28. * costly to service. That is between allocation orders which should
  29. * coalesce naturally under reasonable reclaim pressure and those which
  30. * will not.
  31. */
  32. #define PAGE_ALLOC_COSTLY_ORDER 3
  33. enum {
  34. MIGRATE_UNMOVABLE,
  35. MIGRATE_RECLAIMABLE,
  36. MIGRATE_MOVABLE,
  37. MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
  38. MIGRATE_RESERVE = MIGRATE_PCPTYPES,
  39. #ifdef CONFIG_CMA
  40. /*
  41. * MIGRATE_CMA migration type is designed to mimic the way
  42. * ZONE_MOVABLE works. Only movable pages can be allocated
  43. * from MIGRATE_CMA pageblocks and page allocator never
  44. * implicitly change migration type of MIGRATE_CMA pageblock.
  45. *
  46. * The way to use it is to change migratetype of a range of
  47. * pageblocks to MIGRATE_CMA which can be done by
  48. * __free_pageblock_cma() function. What is important though
  49. * is that a range of pageblocks must be aligned to
  50. * MAX_ORDER_NR_PAGES should biggest page be bigger then
  51. * a single pageblock.
  52. */
  53. MIGRATE_CMA,
  54. #endif
  55. MIGRATE_ISOLATE, /* can't allocate from here */
  56. MIGRATE_TYPES
  57. };
  58. #ifdef CONFIG_CMA
  59. # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
  60. # define cma_wmark_pages(zone) zone->min_cma_pages
  61. #else
  62. # define is_migrate_cma(migratetype) false
  63. # define cma_wmark_pages(zone) 0
  64. #endif
  65. #define for_each_migratetype_order(order, type) \
  66. for (order = 0; order < MAX_ORDER; order++) \
  67. for (type = 0; type < MIGRATE_TYPES; type++)
  68. extern int page_group_by_mobility_disabled;
  69. static inline int get_pageblock_migratetype(struct page *page)
  70. {
  71. return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
  72. }
  73. struct free_area {
  74. struct list_head free_list[MIGRATE_TYPES];
  75. unsigned long nr_free;
  76. };
  77. struct pglist_data;
  78. /*
  79. * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
  80. * So add a wild amount of padding here to ensure that they fall into separate
  81. * cachelines. There are very few zone structures in the machine, so space
  82. * consumption is not a concern here.
  83. */
  84. #if defined(CONFIG_SMP)
  85. struct zone_padding {
  86. char x[0];
  87. } ____cacheline_internodealigned_in_smp;
  88. #define ZONE_PADDING(name) struct zone_padding name;
  89. #else
  90. #define ZONE_PADDING(name)
  91. #endif
  92. enum zone_stat_item {
  93. /* First 128 byte cacheline (assuming 64 bit words) */
  94. NR_FREE_PAGES,
  95. NR_LRU_BASE,
  96. NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
  97. NR_ACTIVE_ANON, /* " " " " " */
  98. NR_INACTIVE_FILE, /* " " " " " */
  99. NR_ACTIVE_FILE, /* " " " " " */
  100. NR_UNEVICTABLE, /* " " " " " */
  101. NR_MLOCK, /* mlock()ed pages found and moved off LRU */
  102. NR_ANON_PAGES, /* Mapped anonymous pages */
  103. NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
  104. only modified from process context */
  105. NR_FILE_PAGES,
  106. NR_FILE_DIRTY,
  107. NR_WRITEBACK,
  108. NR_SLAB_RECLAIMABLE,
  109. NR_SLAB_UNRECLAIMABLE,
  110. NR_PAGETABLE, /* used for pagetables */
  111. NR_KERNEL_STACK,
  112. /* Second 128 byte cacheline */
  113. NR_UNSTABLE_NFS, /* NFS unstable pages */
  114. NR_BOUNCE,
  115. NR_VMSCAN_WRITE,
  116. NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
  117. NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
  118. NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
  119. NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
  120. NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
  121. NR_DIRTIED, /* page dirtyings since bootup */
  122. NR_WRITTEN, /* page writings since bootup */
  123. #ifdef CONFIG_NUMA
  124. NUMA_HIT, /* allocated in intended node */
  125. NUMA_MISS, /* allocated in non intended node */
  126. NUMA_FOREIGN, /* was intended here, hit elsewhere */
  127. NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
  128. NUMA_LOCAL, /* allocation from local node */
  129. NUMA_OTHER, /* allocation from other node */
  130. #endif
  131. NR_ANON_TRANSPARENT_HUGEPAGES,
  132. NR_VM_ZONE_STAT_ITEMS };
  133. /*
  134. * We do arithmetic on the LRU lists in various places in the code,
  135. * so it is important to keep the active lists LRU_ACTIVE higher in
  136. * the array than the corresponding inactive lists, and to keep
  137. * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
  138. *
  139. * This has to be kept in sync with the statistics in zone_stat_item
  140. * above and the descriptions in vmstat_text in mm/vmstat.c
  141. */
  142. #define LRU_BASE 0
  143. #define LRU_ACTIVE 1
  144. #define LRU_FILE 2
  145. enum lru_list {
  146. LRU_INACTIVE_ANON = LRU_BASE,
  147. LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
  148. LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
  149. LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
  150. LRU_UNEVICTABLE,
  151. NR_LRU_LISTS
  152. };
  153. #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
  154. #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
  155. static inline int is_file_lru(enum lru_list lru)
  156. {
  157. return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
  158. }
  159. static inline int is_active_lru(enum lru_list lru)
  160. {
  161. return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
  162. }
  163. static inline int is_unevictable_lru(enum lru_list lru)
  164. {
  165. return (lru == LRU_UNEVICTABLE);
  166. }
  167. struct zone_reclaim_stat {
  168. /*
  169. * The pageout code in vmscan.c keeps track of how many of the
  170. * mem/swap backed and file backed pages are referenced.
  171. * The higher the rotated/scanned ratio, the more valuable
  172. * that cache is.
  173. *
  174. * The anon LRU stats live in [0], file LRU stats in [1]
  175. */
  176. unsigned long recent_rotated[2];
  177. unsigned long recent_scanned[2];
  178. };
  179. struct lruvec {
  180. struct list_head lists[NR_LRU_LISTS];
  181. struct zone_reclaim_stat reclaim_stat;
  182. #ifdef CONFIG_MEMCG
  183. struct zone *zone;
  184. #endif
  185. };
  186. /* Mask used at gathering information at once (see memcontrol.c) */
  187. #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
  188. #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
  189. #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
  190. /* Isolate clean file */
  191. #define ISOLATE_CLEAN ((__force isolate_mode_t)0x1)
  192. /* Isolate unmapped file */
  193. #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
  194. /* Isolate for asynchronous migration */
  195. #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
  196. /* LRU Isolation modes. */
  197. typedef unsigned __bitwise__ isolate_mode_t;
  198. enum zone_watermarks {
  199. WMARK_MIN,
  200. WMARK_LOW,
  201. WMARK_HIGH,
  202. NR_WMARK
  203. };
  204. #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
  205. #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
  206. #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
  207. struct per_cpu_pages {
  208. int count; /* number of pages in the list */
  209. int high; /* high watermark, emptying needed */
  210. int batch; /* chunk size for buddy add/remove */
  211. /* Lists of pages, one per migrate type stored on the pcp-lists */
  212. struct list_head lists[MIGRATE_PCPTYPES];
  213. };
  214. struct per_cpu_pageset {
  215. struct per_cpu_pages pcp;
  216. #ifdef CONFIG_NUMA
  217. s8 expire;
  218. #endif
  219. #ifdef CONFIG_SMP
  220. s8 stat_threshold;
  221. s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
  222. #endif
  223. };
  224. #endif /* !__GENERATING_BOUNDS.H */
  225. enum zone_type {
  226. #ifdef CONFIG_ZONE_DMA
  227. /*
  228. * ZONE_DMA is used when there are devices that are not able
  229. * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
  230. * carve out the portion of memory that is needed for these devices.
  231. * The range is arch specific.
  232. *
  233. * Some examples
  234. *
  235. * Architecture Limit
  236. * ---------------------------
  237. * parisc, ia64, sparc <4G
  238. * s390 <2G
  239. * arm Various
  240. * alpha Unlimited or 0-16MB.
  241. *
  242. * i386, x86_64 and multiple other arches
  243. * <16M.
  244. */
  245. ZONE_DMA,
  246. #endif
  247. #ifdef CONFIG_ZONE_DMA32
  248. /*
  249. * x86_64 needs two ZONE_DMAs because it supports devices that are
  250. * only able to do DMA to the lower 16M but also 32 bit devices that
  251. * can only do DMA areas below 4G.
  252. */
  253. ZONE_DMA32,
  254. #endif
  255. /*
  256. * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
  257. * performed on pages in ZONE_NORMAL if the DMA devices support
  258. * transfers to all addressable memory.
  259. */
  260. ZONE_NORMAL,
  261. #ifdef CONFIG_HIGHMEM
  262. /*
  263. * A memory area that is only addressable by the kernel through
  264. * mapping portions into its own address space. This is for example
  265. * used by i386 to allow the kernel to address the memory beyond
  266. * 900MB. The kernel will set up special mappings (page
  267. * table entries on i386) for each page that the kernel needs to
  268. * access.
  269. */
  270. ZONE_HIGHMEM,
  271. #endif
  272. ZONE_MOVABLE,
  273. __MAX_NR_ZONES
  274. };
  275. #ifndef __GENERATING_BOUNDS_H
  276. /*
  277. * When a memory allocation must conform to specific limitations (such
  278. * as being suitable for DMA) the caller will pass in hints to the
  279. * allocator in the gfp_mask, in the zone modifier bits. These bits
  280. * are used to select a priority ordered list of memory zones which
  281. * match the requested limits. See gfp_zone() in include/linux/gfp.h
  282. */
  283. #if MAX_NR_ZONES < 2
  284. #define ZONES_SHIFT 0
  285. #elif MAX_NR_ZONES <= 2
  286. #define ZONES_SHIFT 1
  287. #elif MAX_NR_ZONES <= 4
  288. #define ZONES_SHIFT 2
  289. #else
  290. #error ZONES_SHIFT -- too many zones configured adjust calculation
  291. #endif
  292. struct zone {
  293. /* Fields commonly accessed by the page allocator */
  294. /* zone watermarks, access with *_wmark_pages(zone) macros */
  295. unsigned long watermark[NR_WMARK];
  296. /*
  297. * When free pages are below this point, additional steps are taken
  298. * when reading the number of free pages to avoid per-cpu counter
  299. * drift allowing watermarks to be breached
  300. */
  301. unsigned long percpu_drift_mark;
  302. /*
  303. * We don't know if the memory that we're going to allocate will be freeable
  304. * or/and it will be released eventually, so to avoid totally wasting several
  305. * GB of ram we must reserve some of the lower zone memory (otherwise we risk
  306. * to run OOM on the lower zones despite there's tons of freeable ram
  307. * on the higher zones). This array is recalculated at runtime if the
  308. * sysctl_lowmem_reserve_ratio sysctl changes.
  309. */
  310. unsigned long lowmem_reserve[MAX_NR_ZONES];
  311. /*
  312. * This is a per-zone reserve of pages that should not be
  313. * considered dirtyable memory.
  314. */
  315. unsigned long dirty_balance_reserve;
  316. #ifdef CONFIG_NUMA
  317. int node;
  318. /*
  319. * zone reclaim becomes active if more unmapped pages exist.
  320. */
  321. unsigned long min_unmapped_pages;
  322. unsigned long min_slab_pages;
  323. #endif
  324. struct per_cpu_pageset __percpu *pageset;
  325. /*
  326. * free areas of different sizes
  327. */
  328. spinlock_t lock;
  329. int all_unreclaimable; /* All pages pinned */
  330. #if defined CONFIG_COMPACTION || defined CONFIG_CMA
  331. /* pfn where the last incremental compaction isolated free pages */
  332. unsigned long compact_cached_free_pfn;
  333. #endif
  334. #ifdef CONFIG_MEMORY_HOTPLUG
  335. /* see spanned/present_pages for more description */
  336. seqlock_t span_seqlock;
  337. #endif
  338. #ifdef CONFIG_CMA
  339. /*
  340. * CMA needs to increase watermark levels during the allocation
  341. * process to make sure that the system is not starved.
  342. */
  343. unsigned long min_cma_pages;
  344. #endif
  345. struct free_area free_area[MAX_ORDER];
  346. #ifndef CONFIG_SPARSEMEM
  347. /*
  348. * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
  349. * In SPARSEMEM, this map is stored in struct mem_section
  350. */
  351. unsigned long *pageblock_flags;
  352. #endif /* CONFIG_SPARSEMEM */
  353. #ifdef CONFIG_COMPACTION
  354. /*
  355. * On compaction failure, 1<<compact_defer_shift compactions
  356. * are skipped before trying again. The number attempted since
  357. * last failure is tracked with compact_considered.
  358. */
  359. unsigned int compact_considered;
  360. unsigned int compact_defer_shift;
  361. int compact_order_failed;
  362. #endif
  363. ZONE_PADDING(_pad1_)
  364. /* Fields commonly accessed by the page reclaim scanner */
  365. spinlock_t lru_lock;
  366. struct lruvec lruvec;
  367. unsigned long pages_scanned; /* since last reclaim */
  368. unsigned long flags; /* zone flags, see below */
  369. /* Zone statistics */
  370. atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
  371. /*
  372. * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
  373. * this zone's LRU. Maintained by the pageout code.
  374. */
  375. unsigned int inactive_ratio;
  376. ZONE_PADDING(_pad2_)
  377. /* Rarely used or read-mostly fields */
  378. /*
  379. * wait_table -- the array holding the hash table
  380. * wait_table_hash_nr_entries -- the size of the hash table array
  381. * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
  382. *
  383. * The purpose of all these is to keep track of the people
  384. * waiting for a page to become available and make them
  385. * runnable again when possible. The trouble is that this
  386. * consumes a lot of space, especially when so few things
  387. * wait on pages at a given time. So instead of using
  388. * per-page waitqueues, we use a waitqueue hash table.
  389. *
  390. * The bucket discipline is to sleep on the same queue when
  391. * colliding and wake all in that wait queue when removing.
  392. * When something wakes, it must check to be sure its page is
  393. * truly available, a la thundering herd. The cost of a
  394. * collision is great, but given the expected load of the
  395. * table, they should be so rare as to be outweighed by the
  396. * benefits from the saved space.
  397. *
  398. * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
  399. * primary users of these fields, and in mm/page_alloc.c
  400. * free_area_init_core() performs the initialization of them.
  401. */
  402. wait_queue_head_t * wait_table;
  403. unsigned long wait_table_hash_nr_entries;
  404. unsigned long wait_table_bits;
  405. /*
  406. * Discontig memory support fields.
  407. */
  408. struct pglist_data *zone_pgdat;
  409. /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
  410. unsigned long zone_start_pfn;
  411. /*
  412. * zone_start_pfn, spanned_pages and present_pages are all
  413. * protected by span_seqlock. It is a seqlock because it has
  414. * to be read outside of zone->lock, and it is done in the main
  415. * allocator path. But, it is written quite infrequently.
  416. *
  417. * The lock is declared along with zone->lock because it is
  418. * frequently read in proximity to zone->lock. It's good to
  419. * give them a chance of being in the same cacheline.
  420. */
  421. unsigned long spanned_pages; /* total size, including holes */
  422. unsigned long present_pages; /* amount of memory (excluding holes) */
  423. /*
  424. * rarely used fields:
  425. */
  426. const char *name;
  427. } ____cacheline_internodealigned_in_smp;
  428. typedef enum {
  429. ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
  430. ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
  431. ZONE_CONGESTED, /* zone has many dirty pages backed by
  432. * a congested BDI
  433. */
  434. } zone_flags_t;
  435. static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
  436. {
  437. set_bit(flag, &zone->flags);
  438. }
  439. static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
  440. {
  441. return test_and_set_bit(flag, &zone->flags);
  442. }
  443. static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
  444. {
  445. clear_bit(flag, &zone->flags);
  446. }
  447. static inline int zone_is_reclaim_congested(const struct zone *zone)
  448. {
  449. return test_bit(ZONE_CONGESTED, &zone->flags);
  450. }
  451. static inline int zone_is_reclaim_locked(const struct zone *zone)
  452. {
  453. return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
  454. }
  455. static inline int zone_is_oom_locked(const struct zone *zone)
  456. {
  457. return test_bit(ZONE_OOM_LOCKED, &zone->flags);
  458. }
  459. /*
  460. * The "priority" of VM scanning is how much of the queues we will scan in one
  461. * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
  462. * queues ("queue_length >> 12") during an aging round.
  463. */
  464. #define DEF_PRIORITY 12
  465. /* Maximum number of zones on a zonelist */
  466. #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
  467. #ifdef CONFIG_NUMA
  468. /*
  469. * The NUMA zonelists are doubled because we need zonelists that restrict the
  470. * allocations to a single node for GFP_THISNODE.
  471. *
  472. * [0] : Zonelist with fallback
  473. * [1] : No fallback (GFP_THISNODE)
  474. */
  475. #define MAX_ZONELISTS 2
  476. /*
  477. * We cache key information from each zonelist for smaller cache
  478. * footprint when scanning for free pages in get_page_from_freelist().
  479. *
  480. * 1) The BITMAP fullzones tracks which zones in a zonelist have come
  481. * up short of free memory since the last time (last_fullzone_zap)
  482. * we zero'd fullzones.
  483. * 2) The array z_to_n[] maps each zone in the zonelist to its node
  484. * id, so that we can efficiently evaluate whether that node is
  485. * set in the current tasks mems_allowed.
  486. *
  487. * Both fullzones and z_to_n[] are one-to-one with the zonelist,
  488. * indexed by a zones offset in the zonelist zones[] array.
  489. *
  490. * The get_page_from_freelist() routine does two scans. During the
  491. * first scan, we skip zones whose corresponding bit in 'fullzones'
  492. * is set or whose corresponding node in current->mems_allowed (which
  493. * comes from cpusets) is not set. During the second scan, we bypass
  494. * this zonelist_cache, to ensure we look methodically at each zone.
  495. *
  496. * Once per second, we zero out (zap) fullzones, forcing us to
  497. * reconsider nodes that might have regained more free memory.
  498. * The field last_full_zap is the time we last zapped fullzones.
  499. *
  500. * This mechanism reduces the amount of time we waste repeatedly
  501. * reexaming zones for free memory when they just came up low on
  502. * memory momentarilly ago.
  503. *
  504. * The zonelist_cache struct members logically belong in struct
  505. * zonelist. However, the mempolicy zonelists constructed for
  506. * MPOL_BIND are intentionally variable length (and usually much
  507. * shorter). A general purpose mechanism for handling structs with
  508. * multiple variable length members is more mechanism than we want
  509. * here. We resort to some special case hackery instead.
  510. *
  511. * The MPOL_BIND zonelists don't need this zonelist_cache (in good
  512. * part because they are shorter), so we put the fixed length stuff
  513. * at the front of the zonelist struct, ending in a variable length
  514. * zones[], as is needed by MPOL_BIND.
  515. *
  516. * Then we put the optional zonelist cache on the end of the zonelist
  517. * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
  518. * the fixed length portion at the front of the struct. This pointer
  519. * both enables us to find the zonelist cache, and in the case of
  520. * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
  521. * to know that the zonelist cache is not there.
  522. *
  523. * The end result is that struct zonelists come in two flavors:
  524. * 1) The full, fixed length version, shown below, and
  525. * 2) The custom zonelists for MPOL_BIND.
  526. * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
  527. *
  528. * Even though there may be multiple CPU cores on a node modifying
  529. * fullzones or last_full_zap in the same zonelist_cache at the same
  530. * time, we don't lock it. This is just hint data - if it is wrong now
  531. * and then, the allocator will still function, perhaps a bit slower.
  532. */
  533. struct zonelist_cache {
  534. unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
  535. DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
  536. unsigned long last_full_zap; /* when last zap'd (jiffies) */
  537. };
  538. #else
  539. #define MAX_ZONELISTS 1
  540. struct zonelist_cache;
  541. #endif
  542. /*
  543. * This struct contains information about a zone in a zonelist. It is stored
  544. * here to avoid dereferences into large structures and lookups of tables
  545. */
  546. struct zoneref {
  547. struct zone *zone; /* Pointer to actual zone */
  548. int zone_idx; /* zone_idx(zoneref->zone) */
  549. };
  550. /*
  551. * One allocation request operates on a zonelist. A zonelist
  552. * is a list of zones, the first one is the 'goal' of the
  553. * allocation, the other zones are fallback zones, in decreasing
  554. * priority.
  555. *
  556. * If zlcache_ptr is not NULL, then it is just the address of zlcache,
  557. * as explained above. If zlcache_ptr is NULL, there is no zlcache.
  558. * *
  559. * To speed the reading of the zonelist, the zonerefs contain the zone index
  560. * of the entry being read. Helper functions to access information given
  561. * a struct zoneref are
  562. *
  563. * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
  564. * zonelist_zone_idx() - Return the index of the zone for an entry
  565. * zonelist_node_idx() - Return the index of the node for an entry
  566. */
  567. struct zonelist {
  568. struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
  569. struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
  570. #ifdef CONFIG_NUMA
  571. struct zonelist_cache zlcache; // optional ...
  572. #endif
  573. };
  574. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  575. struct node_active_region {
  576. unsigned long start_pfn;
  577. unsigned long end_pfn;
  578. int nid;
  579. };
  580. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  581. #ifndef CONFIG_DISCONTIGMEM
  582. /* The array of struct pages - for discontigmem use pgdat->lmem_map */
  583. extern struct page *mem_map;
  584. #endif
  585. /*
  586. * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
  587. * (mostly NUMA machines?) to denote a higher-level memory zone than the
  588. * zone denotes.
  589. *
  590. * On NUMA machines, each NUMA node would have a pg_data_t to describe
  591. * it's memory layout.
  592. *
  593. * Memory statistics and page replacement data structures are maintained on a
  594. * per-zone basis.
  595. */
  596. struct bootmem_data;
  597. typedef struct pglist_data {
  598. struct zone node_zones[MAX_NR_ZONES];
  599. struct zonelist node_zonelists[MAX_ZONELISTS];
  600. int nr_zones;
  601. #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
  602. struct page *node_mem_map;
  603. #ifdef CONFIG_MEMCG
  604. struct page_cgroup *node_page_cgroup;
  605. #endif
  606. #endif
  607. #ifndef CONFIG_NO_BOOTMEM
  608. struct bootmem_data *bdata;
  609. #endif
  610. #ifdef CONFIG_MEMORY_HOTPLUG
  611. /*
  612. * Must be held any time you expect node_start_pfn, node_present_pages
  613. * or node_spanned_pages stay constant. Holding this will also
  614. * guarantee that any pfn_valid() stays that way.
  615. *
  616. * Nests above zone->lock and zone->size_seqlock.
  617. */
  618. spinlock_t node_size_lock;
  619. #endif
  620. unsigned long node_start_pfn;
  621. unsigned long node_present_pages; /* total number of physical pages */
  622. unsigned long node_spanned_pages; /* total size of physical page
  623. range, including holes */
  624. int node_id;
  625. wait_queue_head_t kswapd_wait;
  626. struct task_struct *kswapd; /* Protected by lock_memory_hotplug() */
  627. int kswapd_max_order;
  628. enum zone_type classzone_idx;
  629. } pg_data_t;
  630. #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
  631. #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
  632. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  633. #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
  634. #else
  635. #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
  636. #endif
  637. #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
  638. #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
  639. #define node_end_pfn(nid) ({\
  640. pg_data_t *__pgdat = NODE_DATA(nid);\
  641. __pgdat->node_start_pfn + __pgdat->node_spanned_pages;\
  642. })
  643. #include <linux/memory_hotplug.h>
  644. extern struct mutex zonelists_mutex;
  645. void build_all_zonelists(void *data);
  646. void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
  647. bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  648. int classzone_idx, int alloc_flags);
  649. bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
  650. int classzone_idx, int alloc_flags);
  651. enum memmap_context {
  652. MEMMAP_EARLY,
  653. MEMMAP_HOTPLUG,
  654. };
  655. extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
  656. unsigned long size,
  657. enum memmap_context context);
  658. extern void lruvec_init(struct lruvec *lruvec, struct zone *zone);
  659. static inline struct zone *lruvec_zone(struct lruvec *lruvec)
  660. {
  661. #ifdef CONFIG_MEMCG
  662. return lruvec->zone;
  663. #else
  664. return container_of(lruvec, struct zone, lruvec);
  665. #endif
  666. }
  667. #ifdef CONFIG_HAVE_MEMORY_PRESENT
  668. void memory_present(int nid, unsigned long start, unsigned long end);
  669. #else
  670. static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
  671. #endif
  672. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  673. int local_memory_node(int node_id);
  674. #else
  675. static inline int local_memory_node(int node_id) { return node_id; };
  676. #endif
  677. #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
  678. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  679. #endif
  680. /*
  681. * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
  682. */
  683. #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
  684. static inline int populated_zone(struct zone *zone)
  685. {
  686. return (!!zone->present_pages);
  687. }
  688. extern int movable_zone;
  689. static inline int zone_movable_is_highmem(void)
  690. {
  691. #if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE)
  692. return movable_zone == ZONE_HIGHMEM;
  693. #else
  694. return 0;
  695. #endif
  696. }
  697. static inline int is_highmem_idx(enum zone_type idx)
  698. {
  699. #ifdef CONFIG_HIGHMEM
  700. return (idx == ZONE_HIGHMEM ||
  701. (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
  702. #else
  703. return 0;
  704. #endif
  705. }
  706. static inline int is_normal_idx(enum zone_type idx)
  707. {
  708. return (idx == ZONE_NORMAL);
  709. }
  710. /**
  711. * is_highmem - helper function to quickly check if a struct zone is a
  712. * highmem zone or not. This is an attempt to keep references
  713. * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
  714. * @zone - pointer to struct zone variable
  715. */
  716. static inline int is_highmem(struct zone *zone)
  717. {
  718. #ifdef CONFIG_HIGHMEM
  719. int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
  720. return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
  721. (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
  722. zone_movable_is_highmem());
  723. #else
  724. return 0;
  725. #endif
  726. }
  727. static inline int is_normal(struct zone *zone)
  728. {
  729. return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
  730. }
  731. static inline int is_dma32(struct zone *zone)
  732. {
  733. #ifdef CONFIG_ZONE_DMA32
  734. return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
  735. #else
  736. return 0;
  737. #endif
  738. }
  739. static inline int is_dma(struct zone *zone)
  740. {
  741. #ifdef CONFIG_ZONE_DMA
  742. return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
  743. #else
  744. return 0;
  745. #endif
  746. }
  747. /* These two functions are used to setup the per zone pages min values */
  748. struct ctl_table;
  749. int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
  750. void __user *, size_t *, loff_t *);
  751. extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
  752. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
  753. void __user *, size_t *, loff_t *);
  754. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
  755. void __user *, size_t *, loff_t *);
  756. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
  757. void __user *, size_t *, loff_t *);
  758. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
  759. void __user *, size_t *, loff_t *);
  760. extern int numa_zonelist_order_handler(struct ctl_table *, int,
  761. void __user *, size_t *, loff_t *);
  762. extern char numa_zonelist_order[];
  763. #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
  764. #ifndef CONFIG_NEED_MULTIPLE_NODES
  765. extern struct pglist_data contig_page_data;
  766. #define NODE_DATA(nid) (&contig_page_data)
  767. #define NODE_MEM_MAP(nid) mem_map
  768. #else /* CONFIG_NEED_MULTIPLE_NODES */
  769. #include <asm/mmzone.h>
  770. #endif /* !CONFIG_NEED_MULTIPLE_NODES */
  771. extern struct pglist_data *first_online_pgdat(void);
  772. extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
  773. extern struct zone *next_zone(struct zone *zone);
  774. /**
  775. * for_each_online_pgdat - helper macro to iterate over all online nodes
  776. * @pgdat - pointer to a pg_data_t variable
  777. */
  778. #define for_each_online_pgdat(pgdat) \
  779. for (pgdat = first_online_pgdat(); \
  780. pgdat; \
  781. pgdat = next_online_pgdat(pgdat))
  782. /**
  783. * for_each_zone - helper macro to iterate over all memory zones
  784. * @zone - pointer to struct zone variable
  785. *
  786. * The user only needs to declare the zone variable, for_each_zone
  787. * fills it in.
  788. */
  789. #define for_each_zone(zone) \
  790. for (zone = (first_online_pgdat())->node_zones; \
  791. zone; \
  792. zone = next_zone(zone))
  793. #define for_each_populated_zone(zone) \
  794. for (zone = (first_online_pgdat())->node_zones; \
  795. zone; \
  796. zone = next_zone(zone)) \
  797. if (!populated_zone(zone)) \
  798. ; /* do nothing */ \
  799. else
  800. static inline struct zone *zonelist_zone(struct zoneref *zoneref)
  801. {
  802. return zoneref->zone;
  803. }
  804. static inline int zonelist_zone_idx(struct zoneref *zoneref)
  805. {
  806. return zoneref->zone_idx;
  807. }
  808. static inline int zonelist_node_idx(struct zoneref *zoneref)
  809. {
  810. #ifdef CONFIG_NUMA
  811. /* zone_to_nid not available in this context */
  812. return zoneref->zone->node;
  813. #else
  814. return 0;
  815. #endif /* CONFIG_NUMA */
  816. }
  817. /**
  818. * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
  819. * @z - The cursor used as a starting point for the search
  820. * @highest_zoneidx - The zone index of the highest zone to return
  821. * @nodes - An optional nodemask to filter the zonelist with
  822. * @zone - The first suitable zone found is returned via this parameter
  823. *
  824. * This function returns the next zone at or below a given zone index that is
  825. * within the allowed nodemask using a cursor as the starting point for the
  826. * search. The zoneref returned is a cursor that represents the current zone
  827. * being examined. It should be advanced by one before calling
  828. * next_zones_zonelist again.
  829. */
  830. struct zoneref *next_zones_zonelist(struct zoneref *z,
  831. enum zone_type highest_zoneidx,
  832. nodemask_t *nodes,
  833. struct zone **zone);
  834. /**
  835. * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
  836. * @zonelist - The zonelist to search for a suitable zone
  837. * @highest_zoneidx - The zone index of the highest zone to return
  838. * @nodes - An optional nodemask to filter the zonelist with
  839. * @zone - The first suitable zone found is returned via this parameter
  840. *
  841. * This function returns the first zone at or below a given zone index that is
  842. * within the allowed nodemask. The zoneref returned is a cursor that can be
  843. * used to iterate the zonelist with next_zones_zonelist by advancing it by
  844. * one before calling.
  845. */
  846. static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
  847. enum zone_type highest_zoneidx,
  848. nodemask_t *nodes,
  849. struct zone **zone)
  850. {
  851. return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
  852. zone);
  853. }
  854. /**
  855. * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
  856. * @zone - The current zone in the iterator
  857. * @z - The current pointer within zonelist->zones being iterated
  858. * @zlist - The zonelist being iterated
  859. * @highidx - The zone index of the highest zone to return
  860. * @nodemask - Nodemask allowed by the allocator
  861. *
  862. * This iterator iterates though all zones at or below a given zone index and
  863. * within a given nodemask
  864. */
  865. #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
  866. for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
  867. zone; \
  868. z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
  869. /**
  870. * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
  871. * @zone - The current zone in the iterator
  872. * @z - The current pointer within zonelist->zones being iterated
  873. * @zlist - The zonelist being iterated
  874. * @highidx - The zone index of the highest zone to return
  875. *
  876. * This iterator iterates though all zones at or below a given zone index.
  877. */
  878. #define for_each_zone_zonelist(zone, z, zlist, highidx) \
  879. for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
  880. #ifdef CONFIG_SPARSEMEM
  881. #include <asm/sparsemem.h>
  882. #endif
  883. #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
  884. !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
  885. static inline unsigned long early_pfn_to_nid(unsigned long pfn)
  886. {
  887. return 0;
  888. }
  889. #endif
  890. #ifdef CONFIG_FLATMEM
  891. #define pfn_to_nid(pfn) (0)
  892. #endif
  893. #ifdef CONFIG_SPARSEMEM
  894. /*
  895. * SECTION_SHIFT #bits space required to store a section #
  896. *
  897. * PA_SECTION_SHIFT physical address to/from section number
  898. * PFN_SECTION_SHIFT pfn to/from section number
  899. */
  900. #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
  901. #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
  902. #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
  903. #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
  904. #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
  905. #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
  906. #define SECTION_BLOCKFLAGS_BITS \
  907. ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
  908. #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
  909. #error Allocator MAX_ORDER exceeds SECTION_SIZE
  910. #endif
  911. #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
  912. #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
  913. #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
  914. #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
  915. struct page;
  916. struct page_cgroup;
  917. struct mem_section {
  918. /*
  919. * This is, logically, a pointer to an array of struct
  920. * pages. However, it is stored with some other magic.
  921. * (see sparse.c::sparse_init_one_section())
  922. *
  923. * Additionally during early boot we encode node id of
  924. * the location of the section here to guide allocation.
  925. * (see sparse.c::memory_present())
  926. *
  927. * Making it a UL at least makes someone do a cast
  928. * before using it wrong.
  929. */
  930. unsigned long section_mem_map;
  931. /* See declaration of similar field in struct zone */
  932. unsigned long *pageblock_flags;
  933. #ifdef CONFIG_MEMCG
  934. /*
  935. * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
  936. * section. (see memcontrol.h/page_cgroup.h about this.)
  937. */
  938. struct page_cgroup *page_cgroup;
  939. unsigned long pad;
  940. #endif
  941. };
  942. #ifdef CONFIG_SPARSEMEM_EXTREME
  943. #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
  944. #else
  945. #define SECTIONS_PER_ROOT 1
  946. #endif
  947. #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
  948. #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
  949. #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
  950. #ifdef CONFIG_SPARSEMEM_EXTREME
  951. extern struct mem_section *mem_section[NR_SECTION_ROOTS];
  952. #else
  953. extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
  954. #endif
  955. static inline struct mem_section *__nr_to_section(unsigned long nr)
  956. {
  957. if (!mem_section[SECTION_NR_TO_ROOT(nr)])
  958. return NULL;
  959. return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
  960. }
  961. extern int __section_nr(struct mem_section* ms);
  962. extern unsigned long usemap_size(void);
  963. /*
  964. * We use the lower bits of the mem_map pointer to store
  965. * a little bit of information. There should be at least
  966. * 3 bits here due to 32-bit alignment.
  967. */
  968. #define SECTION_MARKED_PRESENT (1UL<<0)
  969. #define SECTION_HAS_MEM_MAP (1UL<<1)
  970. #define SECTION_MAP_LAST_BIT (1UL<<2)
  971. #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
  972. #define SECTION_NID_SHIFT 2
  973. static inline struct page *__section_mem_map_addr(struct mem_section *section)
  974. {
  975. unsigned long map = section->section_mem_map;
  976. map &= SECTION_MAP_MASK;
  977. return (struct page *)map;
  978. }
  979. static inline int present_section(struct mem_section *section)
  980. {
  981. return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
  982. }
  983. static inline int present_section_nr(unsigned long nr)
  984. {
  985. return present_section(__nr_to_section(nr));
  986. }
  987. static inline int valid_section(struct mem_section *section)
  988. {
  989. return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
  990. }
  991. static inline int valid_section_nr(unsigned long nr)
  992. {
  993. return valid_section(__nr_to_section(nr));
  994. }
  995. static inline struct mem_section *__pfn_to_section(unsigned long pfn)
  996. {
  997. return __nr_to_section(pfn_to_section_nr(pfn));
  998. }
  999. #ifndef CONFIG_HAVE_ARCH_PFN_VALID
  1000. static inline int pfn_valid(unsigned long pfn)
  1001. {
  1002. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  1003. return 0;
  1004. return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
  1005. }
  1006. #endif
  1007. static inline int pfn_present(unsigned long pfn)
  1008. {
  1009. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  1010. return 0;
  1011. return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
  1012. }
  1013. /*
  1014. * These are _only_ used during initialisation, therefore they
  1015. * can use __initdata ... They could have names to indicate
  1016. * this restriction.
  1017. */
  1018. #ifdef CONFIG_NUMA
  1019. #define pfn_to_nid(pfn) \
  1020. ({ \
  1021. unsigned long __pfn_to_nid_pfn = (pfn); \
  1022. page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
  1023. })
  1024. #else
  1025. #define pfn_to_nid(pfn) (0)
  1026. #endif
  1027. #define early_pfn_valid(pfn) pfn_valid(pfn)
  1028. void sparse_init(void);
  1029. #else
  1030. #define sparse_init() do {} while (0)
  1031. #define sparse_index_init(_sec, _nid) do {} while (0)
  1032. #endif /* CONFIG_SPARSEMEM */
  1033. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  1034. bool early_pfn_in_nid(unsigned long pfn, int nid);
  1035. #else
  1036. #define early_pfn_in_nid(pfn, nid) (1)
  1037. #endif
  1038. #ifndef early_pfn_valid
  1039. #define early_pfn_valid(pfn) (1)
  1040. #endif
  1041. void memory_present(int nid, unsigned long start, unsigned long end);
  1042. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  1043. /*
  1044. * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
  1045. * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
  1046. * pfn_valid_within() should be used in this case; we optimise this away
  1047. * when we have no holes within a MAX_ORDER_NR_PAGES block.
  1048. */
  1049. #ifdef CONFIG_HOLES_IN_ZONE
  1050. #define pfn_valid_within(pfn) pfn_valid(pfn)
  1051. #else
  1052. #define pfn_valid_within(pfn) (1)
  1053. #endif
  1054. #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
  1055. /*
  1056. * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
  1057. * associated with it or not. In FLATMEM, it is expected that holes always
  1058. * have valid memmap as long as there is valid PFNs either side of the hole.
  1059. * In SPARSEMEM, it is assumed that a valid section has a memmap for the
  1060. * entire section.
  1061. *
  1062. * However, an ARM, and maybe other embedded architectures in the future
  1063. * free memmap backing holes to save memory on the assumption the memmap is
  1064. * never used. The page_zone linkages are then broken even though pfn_valid()
  1065. * returns true. A walker of the full memmap must then do this additional
  1066. * check to ensure the memmap they are looking at is sane by making sure
  1067. * the zone and PFN linkages are still valid. This is expensive, but walkers
  1068. * of the full memmap are extremely rare.
  1069. */
  1070. int memmap_valid_within(unsigned long pfn,
  1071. struct page *page, struct zone *zone);
  1072. #else
  1073. static inline int memmap_valid_within(unsigned long pfn,
  1074. struct page *page, struct zone *zone)
  1075. {
  1076. return 1;
  1077. }
  1078. #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
  1079. #endif /* !__GENERATING_BOUNDS.H */
  1080. #endif /* !__ASSEMBLY__ */
  1081. #endif /* _LINUX_MMZONE_H */