bcm43xx_main.c 118 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335
  1. /*
  2. Broadcom BCM43xx wireless driver
  3. Copyright (c) 2005 Martin Langer <martin-langer@gmx.de>,
  4. Stefano Brivio <st3@riseup.net>
  5. Michael Buesch <mbuesch@freenet.de>
  6. Danny van Dyk <kugelfang@gentoo.org>
  7. Andreas Jaggi <andreas.jaggi@waterwave.ch>
  8. Some parts of the code in this file are derived from the ipw2200
  9. driver Copyright(c) 2003 - 2004 Intel Corporation.
  10. This program is free software; you can redistribute it and/or modify
  11. it under the terms of the GNU General Public License as published by
  12. the Free Software Foundation; either version 2 of the License, or
  13. (at your option) any later version.
  14. This program is distributed in the hope that it will be useful,
  15. but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. GNU General Public License for more details.
  18. You should have received a copy of the GNU General Public License
  19. along with this program; see the file COPYING. If not, write to
  20. the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor,
  21. Boston, MA 02110-1301, USA.
  22. */
  23. #include <linux/delay.h>
  24. #include <linux/init.h>
  25. #include <linux/moduleparam.h>
  26. #include <linux/if_arp.h>
  27. #include <linux/etherdevice.h>
  28. #include <linux/version.h>
  29. #include <linux/firmware.h>
  30. #include <linux/wireless.h>
  31. #include <linux/workqueue.h>
  32. #include <linux/skbuff.h>
  33. #include <linux/dma-mapping.h>
  34. #include <net/iw_handler.h>
  35. #include "bcm43xx.h"
  36. #include "bcm43xx_main.h"
  37. #include "bcm43xx_debugfs.h"
  38. #include "bcm43xx_radio.h"
  39. #include "bcm43xx_phy.h"
  40. #include "bcm43xx_dma.h"
  41. #include "bcm43xx_pio.h"
  42. #include "bcm43xx_power.h"
  43. #include "bcm43xx_wx.h"
  44. #include "bcm43xx_ethtool.h"
  45. #include "bcm43xx_xmit.h"
  46. #include "bcm43xx_sysfs.h"
  47. MODULE_DESCRIPTION("Broadcom BCM43xx wireless driver");
  48. MODULE_AUTHOR("Martin Langer");
  49. MODULE_AUTHOR("Stefano Brivio");
  50. MODULE_AUTHOR("Michael Buesch");
  51. MODULE_LICENSE("GPL");
  52. #ifdef CONFIG_BCM947XX
  53. extern char *nvram_get(char *name);
  54. #endif
  55. #if defined(CONFIG_BCM43XX_DMA) && defined(CONFIG_BCM43XX_PIO)
  56. static int modparam_pio;
  57. module_param_named(pio, modparam_pio, int, 0444);
  58. MODULE_PARM_DESC(pio, "enable(1) / disable(0) PIO mode");
  59. #elif defined(CONFIG_BCM43XX_DMA)
  60. # define modparam_pio 0
  61. #elif defined(CONFIG_BCM43XX_PIO)
  62. # define modparam_pio 1
  63. #endif
  64. static int modparam_bad_frames_preempt;
  65. module_param_named(bad_frames_preempt, modparam_bad_frames_preempt, int, 0444);
  66. MODULE_PARM_DESC(bad_frames_preempt, "enable(1) / disable(0) Bad Frames Preemption");
  67. static int modparam_short_retry = BCM43xx_DEFAULT_SHORT_RETRY_LIMIT;
  68. module_param_named(short_retry, modparam_short_retry, int, 0444);
  69. MODULE_PARM_DESC(short_retry, "Short-Retry-Limit (0 - 15)");
  70. static int modparam_long_retry = BCM43xx_DEFAULT_LONG_RETRY_LIMIT;
  71. module_param_named(long_retry, modparam_long_retry, int, 0444);
  72. MODULE_PARM_DESC(long_retry, "Long-Retry-Limit (0 - 15)");
  73. static int modparam_locale = -1;
  74. module_param_named(locale, modparam_locale, int, 0444);
  75. MODULE_PARM_DESC(country, "Select LocaleCode 0-11 (For travelers)");
  76. static int modparam_noleds;
  77. module_param_named(noleds, modparam_noleds, int, 0444);
  78. MODULE_PARM_DESC(noleds, "Turn off all LED activity");
  79. static char modparam_fwpostfix[64];
  80. module_param_string(fwpostfix, modparam_fwpostfix, 64, 0444);
  81. MODULE_PARM_DESC(fwpostfix, "Postfix for .fw files. Useful for using multiple firmware image versions.");
  82. /* If you want to debug with just a single device, enable this,
  83. * where the string is the pci device ID (as given by the kernel's
  84. * pci_name function) of the device to be used.
  85. */
  86. //#define DEBUG_SINGLE_DEVICE_ONLY "0001:11:00.0"
  87. /* If you want to enable printing of each MMIO access, enable this. */
  88. //#define DEBUG_ENABLE_MMIO_PRINT
  89. /* If you want to enable printing of MMIO access within
  90. * ucode/pcm upload, initvals write, enable this.
  91. */
  92. //#define DEBUG_ENABLE_UCODE_MMIO_PRINT
  93. /* If you want to enable printing of PCI Config Space access, enable this */
  94. //#define DEBUG_ENABLE_PCILOG
  95. /* Detailed list maintained at:
  96. * http://openfacts.berlios.de/index-en.phtml?title=Bcm43xxDevices
  97. */
  98. static struct pci_device_id bcm43xx_pci_tbl[] = {
  99. /* Broadcom 4303 802.11b */
  100. { PCI_VENDOR_ID_BROADCOM, 0x4301, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  101. /* Broadcom 4307 802.11b */
  102. { PCI_VENDOR_ID_BROADCOM, 0x4307, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  103. /* Broadcom 4311 802.11(a)/b/g */
  104. { PCI_VENDOR_ID_BROADCOM, 0x4311, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  105. /* Broadcom 4312 802.11a/b/g */
  106. { PCI_VENDOR_ID_BROADCOM, 0x4312, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  107. /* Broadcom 4318 802.11b/g */
  108. { PCI_VENDOR_ID_BROADCOM, 0x4318, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  109. /* Broadcom 4319 802.11a/b/g */
  110. { PCI_VENDOR_ID_BROADCOM, 0x4319, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  111. /* Broadcom 4306 802.11b/g */
  112. { PCI_VENDOR_ID_BROADCOM, 0x4320, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  113. /* Broadcom 4306 802.11a */
  114. // { PCI_VENDOR_ID_BROADCOM, 0x4321, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  115. /* Broadcom 4309 802.11a/b/g */
  116. { PCI_VENDOR_ID_BROADCOM, 0x4324, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  117. /* Broadcom 43XG 802.11b/g */
  118. { PCI_VENDOR_ID_BROADCOM, 0x4325, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  119. #ifdef CONFIG_BCM947XX
  120. /* SB bus on BCM947xx */
  121. { PCI_VENDOR_ID_BROADCOM, 0x0800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  122. #endif
  123. { 0 },
  124. };
  125. MODULE_DEVICE_TABLE(pci, bcm43xx_pci_tbl);
  126. static void bcm43xx_ram_write(struct bcm43xx_private *bcm, u16 offset, u32 val)
  127. {
  128. u32 status;
  129. status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  130. if (!(status & BCM43xx_SBF_XFER_REG_BYTESWAP))
  131. val = swab32(val);
  132. bcm43xx_write32(bcm, BCM43xx_MMIO_RAM_CONTROL, offset);
  133. mmiowb();
  134. bcm43xx_write32(bcm, BCM43xx_MMIO_RAM_DATA, val);
  135. }
  136. static inline
  137. void bcm43xx_shm_control_word(struct bcm43xx_private *bcm,
  138. u16 routing, u16 offset)
  139. {
  140. u32 control;
  141. /* "offset" is the WORD offset. */
  142. control = routing;
  143. control <<= 16;
  144. control |= offset;
  145. bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_CONTROL, control);
  146. }
  147. u32 bcm43xx_shm_read32(struct bcm43xx_private *bcm,
  148. u16 routing, u16 offset)
  149. {
  150. u32 ret;
  151. if (routing == BCM43xx_SHM_SHARED) {
  152. if (offset & 0x0003) {
  153. /* Unaligned access */
  154. bcm43xx_shm_control_word(bcm, routing, offset >> 2);
  155. ret = bcm43xx_read16(bcm, BCM43xx_MMIO_SHM_DATA_UNALIGNED);
  156. ret <<= 16;
  157. bcm43xx_shm_control_word(bcm, routing, (offset >> 2) + 1);
  158. ret |= bcm43xx_read16(bcm, BCM43xx_MMIO_SHM_DATA);
  159. return ret;
  160. }
  161. offset >>= 2;
  162. }
  163. bcm43xx_shm_control_word(bcm, routing, offset);
  164. ret = bcm43xx_read32(bcm, BCM43xx_MMIO_SHM_DATA);
  165. return ret;
  166. }
  167. u16 bcm43xx_shm_read16(struct bcm43xx_private *bcm,
  168. u16 routing, u16 offset)
  169. {
  170. u16 ret;
  171. if (routing == BCM43xx_SHM_SHARED) {
  172. if (offset & 0x0003) {
  173. /* Unaligned access */
  174. bcm43xx_shm_control_word(bcm, routing, offset >> 2);
  175. ret = bcm43xx_read16(bcm, BCM43xx_MMIO_SHM_DATA_UNALIGNED);
  176. return ret;
  177. }
  178. offset >>= 2;
  179. }
  180. bcm43xx_shm_control_word(bcm, routing, offset);
  181. ret = bcm43xx_read16(bcm, BCM43xx_MMIO_SHM_DATA);
  182. return ret;
  183. }
  184. void bcm43xx_shm_write32(struct bcm43xx_private *bcm,
  185. u16 routing, u16 offset,
  186. u32 value)
  187. {
  188. if (routing == BCM43xx_SHM_SHARED) {
  189. if (offset & 0x0003) {
  190. /* Unaligned access */
  191. bcm43xx_shm_control_word(bcm, routing, offset >> 2);
  192. mmiowb();
  193. bcm43xx_write16(bcm, BCM43xx_MMIO_SHM_DATA_UNALIGNED,
  194. (value >> 16) & 0xffff);
  195. mmiowb();
  196. bcm43xx_shm_control_word(bcm, routing, (offset >> 2) + 1);
  197. mmiowb();
  198. bcm43xx_write16(bcm, BCM43xx_MMIO_SHM_DATA,
  199. value & 0xffff);
  200. return;
  201. }
  202. offset >>= 2;
  203. }
  204. bcm43xx_shm_control_word(bcm, routing, offset);
  205. mmiowb();
  206. bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_DATA, value);
  207. }
  208. void bcm43xx_shm_write16(struct bcm43xx_private *bcm,
  209. u16 routing, u16 offset,
  210. u16 value)
  211. {
  212. if (routing == BCM43xx_SHM_SHARED) {
  213. if (offset & 0x0003) {
  214. /* Unaligned access */
  215. bcm43xx_shm_control_word(bcm, routing, offset >> 2);
  216. mmiowb();
  217. bcm43xx_write16(bcm, BCM43xx_MMIO_SHM_DATA_UNALIGNED,
  218. value);
  219. return;
  220. }
  221. offset >>= 2;
  222. }
  223. bcm43xx_shm_control_word(bcm, routing, offset);
  224. mmiowb();
  225. bcm43xx_write16(bcm, BCM43xx_MMIO_SHM_DATA, value);
  226. }
  227. void bcm43xx_tsf_read(struct bcm43xx_private *bcm, u64 *tsf)
  228. {
  229. /* We need to be careful. As we read the TSF from multiple
  230. * registers, we should take care of register overflows.
  231. * In theory, the whole tsf read process should be atomic.
  232. * We try to be atomic here, by restaring the read process,
  233. * if any of the high registers changed (overflew).
  234. */
  235. if (bcm->current_core->rev >= 3) {
  236. u32 low, high, high2;
  237. do {
  238. high = bcm43xx_read32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_HIGH);
  239. low = bcm43xx_read32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_LOW);
  240. high2 = bcm43xx_read32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_HIGH);
  241. } while (unlikely(high != high2));
  242. *tsf = high;
  243. *tsf <<= 32;
  244. *tsf |= low;
  245. } else {
  246. u64 tmp;
  247. u16 v0, v1, v2, v3;
  248. u16 test1, test2, test3;
  249. do {
  250. v3 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_3);
  251. v2 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_2);
  252. v1 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_1);
  253. v0 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_0);
  254. test3 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_3);
  255. test2 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_2);
  256. test1 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_1);
  257. } while (v3 != test3 || v2 != test2 || v1 != test1);
  258. *tsf = v3;
  259. *tsf <<= 48;
  260. tmp = v2;
  261. tmp <<= 32;
  262. *tsf |= tmp;
  263. tmp = v1;
  264. tmp <<= 16;
  265. *tsf |= tmp;
  266. *tsf |= v0;
  267. }
  268. }
  269. void bcm43xx_tsf_write(struct bcm43xx_private *bcm, u64 tsf)
  270. {
  271. u32 status;
  272. status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  273. status |= BCM43xx_SBF_TIME_UPDATE;
  274. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, status);
  275. mmiowb();
  276. /* Be careful with the in-progress timer.
  277. * First zero out the low register, so we have a full
  278. * register-overflow duration to complete the operation.
  279. */
  280. if (bcm->current_core->rev >= 3) {
  281. u32 lo = (tsf & 0x00000000FFFFFFFFULL);
  282. u32 hi = (tsf & 0xFFFFFFFF00000000ULL) >> 32;
  283. bcm43xx_write32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_LOW, 0);
  284. mmiowb();
  285. bcm43xx_write32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_HIGH, hi);
  286. mmiowb();
  287. bcm43xx_write32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_LOW, lo);
  288. } else {
  289. u16 v0 = (tsf & 0x000000000000FFFFULL);
  290. u16 v1 = (tsf & 0x00000000FFFF0000ULL) >> 16;
  291. u16 v2 = (tsf & 0x0000FFFF00000000ULL) >> 32;
  292. u16 v3 = (tsf & 0xFFFF000000000000ULL) >> 48;
  293. bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_0, 0);
  294. mmiowb();
  295. bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_3, v3);
  296. mmiowb();
  297. bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_2, v2);
  298. mmiowb();
  299. bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_1, v1);
  300. mmiowb();
  301. bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_0, v0);
  302. }
  303. status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  304. status &= ~BCM43xx_SBF_TIME_UPDATE;
  305. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, status);
  306. }
  307. static
  308. void bcm43xx_macfilter_set(struct bcm43xx_private *bcm,
  309. u16 offset,
  310. const u8 *mac)
  311. {
  312. u16 data;
  313. offset |= 0x0020;
  314. bcm43xx_write16(bcm, BCM43xx_MMIO_MACFILTER_CONTROL, offset);
  315. data = mac[0];
  316. data |= mac[1] << 8;
  317. bcm43xx_write16(bcm, BCM43xx_MMIO_MACFILTER_DATA, data);
  318. data = mac[2];
  319. data |= mac[3] << 8;
  320. bcm43xx_write16(bcm, BCM43xx_MMIO_MACFILTER_DATA, data);
  321. data = mac[4];
  322. data |= mac[5] << 8;
  323. bcm43xx_write16(bcm, BCM43xx_MMIO_MACFILTER_DATA, data);
  324. }
  325. static void bcm43xx_macfilter_clear(struct bcm43xx_private *bcm,
  326. u16 offset)
  327. {
  328. const u8 zero_addr[ETH_ALEN] = { 0 };
  329. bcm43xx_macfilter_set(bcm, offset, zero_addr);
  330. }
  331. static void bcm43xx_write_mac_bssid_templates(struct bcm43xx_private *bcm)
  332. {
  333. const u8 *mac = (const u8 *)(bcm->net_dev->dev_addr);
  334. const u8 *bssid = (const u8 *)(bcm->ieee->bssid);
  335. u8 mac_bssid[ETH_ALEN * 2];
  336. int i;
  337. memcpy(mac_bssid, mac, ETH_ALEN);
  338. memcpy(mac_bssid + ETH_ALEN, bssid, ETH_ALEN);
  339. /* Write our MAC address and BSSID to template ram */
  340. for (i = 0; i < ARRAY_SIZE(mac_bssid); i += sizeof(u32))
  341. bcm43xx_ram_write(bcm, 0x20 + i, *((u32 *)(mac_bssid + i)));
  342. for (i = 0; i < ARRAY_SIZE(mac_bssid); i += sizeof(u32))
  343. bcm43xx_ram_write(bcm, 0x78 + i, *((u32 *)(mac_bssid + i)));
  344. for (i = 0; i < ARRAY_SIZE(mac_bssid); i += sizeof(u32))
  345. bcm43xx_ram_write(bcm, 0x478 + i, *((u32 *)(mac_bssid + i)));
  346. }
  347. //FIXME: Well, we should probably call them from somewhere.
  348. #if 0
  349. static void bcm43xx_set_slot_time(struct bcm43xx_private *bcm, u16 slot_time)
  350. {
  351. /* slot_time is in usec. */
  352. if (bcm43xx_current_phy(bcm)->type != BCM43xx_PHYTYPE_G)
  353. return;
  354. bcm43xx_write16(bcm, 0x684, 510 + slot_time);
  355. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0010, slot_time);
  356. }
  357. static void bcm43xx_short_slot_timing_enable(struct bcm43xx_private *bcm)
  358. {
  359. bcm43xx_set_slot_time(bcm, 9);
  360. }
  361. static void bcm43xx_short_slot_timing_disable(struct bcm43xx_private *bcm)
  362. {
  363. bcm43xx_set_slot_time(bcm, 20);
  364. }
  365. #endif
  366. /* FIXME: To get the MAC-filter working, we need to implement the
  367. * following functions (and rename them :)
  368. */
  369. #if 0
  370. static void bcm43xx_disassociate(struct bcm43xx_private *bcm)
  371. {
  372. bcm43xx_mac_suspend(bcm);
  373. bcm43xx_macfilter_clear(bcm, BCM43xx_MACFILTER_ASSOC);
  374. bcm43xx_ram_write(bcm, 0x0026, 0x0000);
  375. bcm43xx_ram_write(bcm, 0x0028, 0x0000);
  376. bcm43xx_ram_write(bcm, 0x007E, 0x0000);
  377. bcm43xx_ram_write(bcm, 0x0080, 0x0000);
  378. bcm43xx_ram_write(bcm, 0x047E, 0x0000);
  379. bcm43xx_ram_write(bcm, 0x0480, 0x0000);
  380. if (bcm->current_core->rev < 3) {
  381. bcm43xx_write16(bcm, 0x0610, 0x8000);
  382. bcm43xx_write16(bcm, 0x060E, 0x0000);
  383. } else
  384. bcm43xx_write32(bcm, 0x0188, 0x80000000);
  385. bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0004, 0x000003ff);
  386. if (bcm43xx_current_phy(bcm)->type == BCM43xx_PHYTYPE_G &&
  387. ieee80211_is_ofdm_rate(bcm->softmac->txrates.default_rate))
  388. bcm43xx_short_slot_timing_enable(bcm);
  389. bcm43xx_mac_enable(bcm);
  390. }
  391. static void bcm43xx_associate(struct bcm43xx_private *bcm,
  392. const u8 *mac)
  393. {
  394. memcpy(bcm->ieee->bssid, mac, ETH_ALEN);
  395. bcm43xx_mac_suspend(bcm);
  396. bcm43xx_macfilter_set(bcm, BCM43xx_MACFILTER_ASSOC, mac);
  397. bcm43xx_write_mac_bssid_templates(bcm);
  398. bcm43xx_mac_enable(bcm);
  399. }
  400. #endif
  401. /* Enable a Generic IRQ. "mask" is the mask of which IRQs to enable.
  402. * Returns the _previously_ enabled IRQ mask.
  403. */
  404. static inline u32 bcm43xx_interrupt_enable(struct bcm43xx_private *bcm, u32 mask)
  405. {
  406. u32 old_mask;
  407. old_mask = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK);
  408. bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK, old_mask | mask);
  409. return old_mask;
  410. }
  411. /* Disable a Generic IRQ. "mask" is the mask of which IRQs to disable.
  412. * Returns the _previously_ enabled IRQ mask.
  413. */
  414. static inline u32 bcm43xx_interrupt_disable(struct bcm43xx_private *bcm, u32 mask)
  415. {
  416. u32 old_mask;
  417. old_mask = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK);
  418. bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK, old_mask & ~mask);
  419. return old_mask;
  420. }
  421. /* Synchronize IRQ top- and bottom-half.
  422. * IRQs must be masked before calling this.
  423. * This must not be called with the irq_lock held.
  424. */
  425. static void bcm43xx_synchronize_irq(struct bcm43xx_private *bcm)
  426. {
  427. synchronize_irq(bcm->irq);
  428. tasklet_disable(&bcm->isr_tasklet);
  429. }
  430. /* Make sure we don't receive more data from the device. */
  431. static int bcm43xx_disable_interrupts_sync(struct bcm43xx_private *bcm)
  432. {
  433. unsigned long flags;
  434. spin_lock_irqsave(&bcm->irq_lock, flags);
  435. if (unlikely(bcm43xx_status(bcm) != BCM43xx_STAT_INITIALIZED)) {
  436. spin_unlock_irqrestore(&bcm->irq_lock, flags);
  437. return -EBUSY;
  438. }
  439. bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
  440. bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK); /* flush */
  441. spin_unlock_irqrestore(&bcm->irq_lock, flags);
  442. bcm43xx_synchronize_irq(bcm);
  443. return 0;
  444. }
  445. static int bcm43xx_read_radioinfo(struct bcm43xx_private *bcm)
  446. {
  447. struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
  448. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  449. u32 radio_id;
  450. u16 manufact;
  451. u16 version;
  452. u8 revision;
  453. if (bcm->chip_id == 0x4317) {
  454. if (bcm->chip_rev == 0x00)
  455. radio_id = 0x3205017F;
  456. else if (bcm->chip_rev == 0x01)
  457. radio_id = 0x4205017F;
  458. else
  459. radio_id = 0x5205017F;
  460. } else {
  461. bcm43xx_write16(bcm, BCM43xx_MMIO_RADIO_CONTROL, BCM43xx_RADIOCTL_ID);
  462. radio_id = bcm43xx_read16(bcm, BCM43xx_MMIO_RADIO_DATA_HIGH);
  463. radio_id <<= 16;
  464. bcm43xx_write16(bcm, BCM43xx_MMIO_RADIO_CONTROL, BCM43xx_RADIOCTL_ID);
  465. radio_id |= bcm43xx_read16(bcm, BCM43xx_MMIO_RADIO_DATA_LOW);
  466. }
  467. manufact = (radio_id & 0x00000FFF);
  468. version = (radio_id & 0x0FFFF000) >> 12;
  469. revision = (radio_id & 0xF0000000) >> 28;
  470. dprintk(KERN_INFO PFX "Detected Radio: ID: %x (Manuf: %x Ver: %x Rev: %x)\n",
  471. radio_id, manufact, version, revision);
  472. switch (phy->type) {
  473. case BCM43xx_PHYTYPE_A:
  474. if ((version != 0x2060) || (revision != 1) || (manufact != 0x17f))
  475. goto err_unsupported_radio;
  476. break;
  477. case BCM43xx_PHYTYPE_B:
  478. if ((version & 0xFFF0) != 0x2050)
  479. goto err_unsupported_radio;
  480. break;
  481. case BCM43xx_PHYTYPE_G:
  482. if (version != 0x2050)
  483. goto err_unsupported_radio;
  484. break;
  485. }
  486. radio->manufact = manufact;
  487. radio->version = version;
  488. radio->revision = revision;
  489. if (phy->type == BCM43xx_PHYTYPE_A)
  490. radio->txpower_desired = bcm->sprom.maxpower_aphy;
  491. else
  492. radio->txpower_desired = bcm->sprom.maxpower_bgphy;
  493. return 0;
  494. err_unsupported_radio:
  495. printk(KERN_ERR PFX "Unsupported Radio connected to the PHY!\n");
  496. return -ENODEV;
  497. }
  498. static const char * bcm43xx_locale_iso(u8 locale)
  499. {
  500. /* ISO 3166-1 country codes.
  501. * Note that there aren't ISO 3166-1 codes for
  502. * all or locales. (Not all locales are countries)
  503. */
  504. switch (locale) {
  505. case BCM43xx_LOCALE_WORLD:
  506. case BCM43xx_LOCALE_ALL:
  507. return "XX";
  508. case BCM43xx_LOCALE_THAILAND:
  509. return "TH";
  510. case BCM43xx_LOCALE_ISRAEL:
  511. return "IL";
  512. case BCM43xx_LOCALE_JORDAN:
  513. return "JO";
  514. case BCM43xx_LOCALE_CHINA:
  515. return "CN";
  516. case BCM43xx_LOCALE_JAPAN:
  517. case BCM43xx_LOCALE_JAPAN_HIGH:
  518. return "JP";
  519. case BCM43xx_LOCALE_USA_CANADA_ANZ:
  520. case BCM43xx_LOCALE_USA_LOW:
  521. return "US";
  522. case BCM43xx_LOCALE_EUROPE:
  523. return "EU";
  524. case BCM43xx_LOCALE_NONE:
  525. return " ";
  526. }
  527. assert(0);
  528. return " ";
  529. }
  530. static const char * bcm43xx_locale_string(u8 locale)
  531. {
  532. switch (locale) {
  533. case BCM43xx_LOCALE_WORLD:
  534. return "World";
  535. case BCM43xx_LOCALE_THAILAND:
  536. return "Thailand";
  537. case BCM43xx_LOCALE_ISRAEL:
  538. return "Israel";
  539. case BCM43xx_LOCALE_JORDAN:
  540. return "Jordan";
  541. case BCM43xx_LOCALE_CHINA:
  542. return "China";
  543. case BCM43xx_LOCALE_JAPAN:
  544. return "Japan";
  545. case BCM43xx_LOCALE_USA_CANADA_ANZ:
  546. return "USA/Canada/ANZ";
  547. case BCM43xx_LOCALE_EUROPE:
  548. return "Europe";
  549. case BCM43xx_LOCALE_USA_LOW:
  550. return "USAlow";
  551. case BCM43xx_LOCALE_JAPAN_HIGH:
  552. return "JapanHigh";
  553. case BCM43xx_LOCALE_ALL:
  554. return "All";
  555. case BCM43xx_LOCALE_NONE:
  556. return "None";
  557. }
  558. assert(0);
  559. return "";
  560. }
  561. static inline u8 bcm43xx_crc8(u8 crc, u8 data)
  562. {
  563. static const u8 t[] = {
  564. 0x00, 0xF7, 0xB9, 0x4E, 0x25, 0xD2, 0x9C, 0x6B,
  565. 0x4A, 0xBD, 0xF3, 0x04, 0x6F, 0x98, 0xD6, 0x21,
  566. 0x94, 0x63, 0x2D, 0xDA, 0xB1, 0x46, 0x08, 0xFF,
  567. 0xDE, 0x29, 0x67, 0x90, 0xFB, 0x0C, 0x42, 0xB5,
  568. 0x7F, 0x88, 0xC6, 0x31, 0x5A, 0xAD, 0xE3, 0x14,
  569. 0x35, 0xC2, 0x8C, 0x7B, 0x10, 0xE7, 0xA9, 0x5E,
  570. 0xEB, 0x1C, 0x52, 0xA5, 0xCE, 0x39, 0x77, 0x80,
  571. 0xA1, 0x56, 0x18, 0xEF, 0x84, 0x73, 0x3D, 0xCA,
  572. 0xFE, 0x09, 0x47, 0xB0, 0xDB, 0x2C, 0x62, 0x95,
  573. 0xB4, 0x43, 0x0D, 0xFA, 0x91, 0x66, 0x28, 0xDF,
  574. 0x6A, 0x9D, 0xD3, 0x24, 0x4F, 0xB8, 0xF6, 0x01,
  575. 0x20, 0xD7, 0x99, 0x6E, 0x05, 0xF2, 0xBC, 0x4B,
  576. 0x81, 0x76, 0x38, 0xCF, 0xA4, 0x53, 0x1D, 0xEA,
  577. 0xCB, 0x3C, 0x72, 0x85, 0xEE, 0x19, 0x57, 0xA0,
  578. 0x15, 0xE2, 0xAC, 0x5B, 0x30, 0xC7, 0x89, 0x7E,
  579. 0x5F, 0xA8, 0xE6, 0x11, 0x7A, 0x8D, 0xC3, 0x34,
  580. 0xAB, 0x5C, 0x12, 0xE5, 0x8E, 0x79, 0x37, 0xC0,
  581. 0xE1, 0x16, 0x58, 0xAF, 0xC4, 0x33, 0x7D, 0x8A,
  582. 0x3F, 0xC8, 0x86, 0x71, 0x1A, 0xED, 0xA3, 0x54,
  583. 0x75, 0x82, 0xCC, 0x3B, 0x50, 0xA7, 0xE9, 0x1E,
  584. 0xD4, 0x23, 0x6D, 0x9A, 0xF1, 0x06, 0x48, 0xBF,
  585. 0x9E, 0x69, 0x27, 0xD0, 0xBB, 0x4C, 0x02, 0xF5,
  586. 0x40, 0xB7, 0xF9, 0x0E, 0x65, 0x92, 0xDC, 0x2B,
  587. 0x0A, 0xFD, 0xB3, 0x44, 0x2F, 0xD8, 0x96, 0x61,
  588. 0x55, 0xA2, 0xEC, 0x1B, 0x70, 0x87, 0xC9, 0x3E,
  589. 0x1F, 0xE8, 0xA6, 0x51, 0x3A, 0xCD, 0x83, 0x74,
  590. 0xC1, 0x36, 0x78, 0x8F, 0xE4, 0x13, 0x5D, 0xAA,
  591. 0x8B, 0x7C, 0x32, 0xC5, 0xAE, 0x59, 0x17, 0xE0,
  592. 0x2A, 0xDD, 0x93, 0x64, 0x0F, 0xF8, 0xB6, 0x41,
  593. 0x60, 0x97, 0xD9, 0x2E, 0x45, 0xB2, 0xFC, 0x0B,
  594. 0xBE, 0x49, 0x07, 0xF0, 0x9B, 0x6C, 0x22, 0xD5,
  595. 0xF4, 0x03, 0x4D, 0xBA, 0xD1, 0x26, 0x68, 0x9F,
  596. };
  597. return t[crc ^ data];
  598. }
  599. static u8 bcm43xx_sprom_crc(const u16 *sprom)
  600. {
  601. int word;
  602. u8 crc = 0xFF;
  603. for (word = 0; word < BCM43xx_SPROM_SIZE - 1; word++) {
  604. crc = bcm43xx_crc8(crc, sprom[word] & 0x00FF);
  605. crc = bcm43xx_crc8(crc, (sprom[word] & 0xFF00) >> 8);
  606. }
  607. crc = bcm43xx_crc8(crc, sprom[BCM43xx_SPROM_VERSION] & 0x00FF);
  608. crc ^= 0xFF;
  609. return crc;
  610. }
  611. int bcm43xx_sprom_read(struct bcm43xx_private *bcm, u16 *sprom)
  612. {
  613. int i;
  614. u8 crc, expected_crc;
  615. for (i = 0; i < BCM43xx_SPROM_SIZE; i++)
  616. sprom[i] = bcm43xx_read16(bcm, BCM43xx_SPROM_BASE + (i * 2));
  617. /* CRC-8 check. */
  618. crc = bcm43xx_sprom_crc(sprom);
  619. expected_crc = (sprom[BCM43xx_SPROM_VERSION] & 0xFF00) >> 8;
  620. if (crc != expected_crc) {
  621. printk(KERN_WARNING PFX "WARNING: Invalid SPROM checksum "
  622. "(0x%02X, expected: 0x%02X)\n",
  623. crc, expected_crc);
  624. return -EINVAL;
  625. }
  626. return 0;
  627. }
  628. int bcm43xx_sprom_write(struct bcm43xx_private *bcm, const u16 *sprom)
  629. {
  630. int i, err;
  631. u8 crc, expected_crc;
  632. u32 spromctl;
  633. /* CRC-8 validation of the input data. */
  634. crc = bcm43xx_sprom_crc(sprom);
  635. expected_crc = (sprom[BCM43xx_SPROM_VERSION] & 0xFF00) >> 8;
  636. if (crc != expected_crc) {
  637. printk(KERN_ERR PFX "SPROM input data: Invalid CRC\n");
  638. return -EINVAL;
  639. }
  640. printk(KERN_INFO PFX "Writing SPROM. Do NOT turn off the power! Please stand by...\n");
  641. err = bcm43xx_pci_read_config32(bcm, BCM43xx_PCICFG_SPROMCTL, &spromctl);
  642. if (err)
  643. goto err_ctlreg;
  644. spromctl |= 0x10; /* SPROM WRITE enable. */
  645. err = bcm43xx_pci_write_config32(bcm, BCM43xx_PCICFG_SPROMCTL, spromctl);
  646. if (err)
  647. goto err_ctlreg;
  648. /* We must burn lots of CPU cycles here, but that does not
  649. * really matter as one does not write the SPROM every other minute...
  650. */
  651. printk(KERN_INFO PFX "[ 0%%");
  652. mdelay(500);
  653. for (i = 0; i < BCM43xx_SPROM_SIZE; i++) {
  654. if (i == 16)
  655. printk("25%%");
  656. else if (i == 32)
  657. printk("50%%");
  658. else if (i == 48)
  659. printk("75%%");
  660. else if (i % 2)
  661. printk(".");
  662. bcm43xx_write16(bcm, BCM43xx_SPROM_BASE + (i * 2), sprom[i]);
  663. mmiowb();
  664. mdelay(20);
  665. }
  666. spromctl &= ~0x10; /* SPROM WRITE enable. */
  667. err = bcm43xx_pci_write_config32(bcm, BCM43xx_PCICFG_SPROMCTL, spromctl);
  668. if (err)
  669. goto err_ctlreg;
  670. mdelay(500);
  671. printk("100%% ]\n");
  672. printk(KERN_INFO PFX "SPROM written.\n");
  673. bcm43xx_controller_restart(bcm, "SPROM update");
  674. return 0;
  675. err_ctlreg:
  676. printk(KERN_ERR PFX "Could not access SPROM control register.\n");
  677. return -ENODEV;
  678. }
  679. static int bcm43xx_sprom_extract(struct bcm43xx_private *bcm)
  680. {
  681. u16 value;
  682. u16 *sprom;
  683. #ifdef CONFIG_BCM947XX
  684. char *c;
  685. #endif
  686. sprom = kzalloc(BCM43xx_SPROM_SIZE * sizeof(u16),
  687. GFP_KERNEL);
  688. if (!sprom) {
  689. printk(KERN_ERR PFX "sprom_extract OOM\n");
  690. return -ENOMEM;
  691. }
  692. #ifdef CONFIG_BCM947XX
  693. sprom[BCM43xx_SPROM_BOARDFLAGS2] = atoi(nvram_get("boardflags2"));
  694. sprom[BCM43xx_SPROM_BOARDFLAGS] = atoi(nvram_get("boardflags"));
  695. if ((c = nvram_get("il0macaddr")) != NULL)
  696. e_aton(c, (char *) &(sprom[BCM43xx_SPROM_IL0MACADDR]));
  697. if ((c = nvram_get("et1macaddr")) != NULL)
  698. e_aton(c, (char *) &(sprom[BCM43xx_SPROM_ET1MACADDR]));
  699. sprom[BCM43xx_SPROM_PA0B0] = atoi(nvram_get("pa0b0"));
  700. sprom[BCM43xx_SPROM_PA0B1] = atoi(nvram_get("pa0b1"));
  701. sprom[BCM43xx_SPROM_PA0B2] = atoi(nvram_get("pa0b2"));
  702. sprom[BCM43xx_SPROM_PA1B0] = atoi(nvram_get("pa1b0"));
  703. sprom[BCM43xx_SPROM_PA1B1] = atoi(nvram_get("pa1b1"));
  704. sprom[BCM43xx_SPROM_PA1B2] = atoi(nvram_get("pa1b2"));
  705. sprom[BCM43xx_SPROM_BOARDREV] = atoi(nvram_get("boardrev"));
  706. #else
  707. bcm43xx_sprom_read(bcm, sprom);
  708. #endif
  709. /* boardflags2 */
  710. value = sprom[BCM43xx_SPROM_BOARDFLAGS2];
  711. bcm->sprom.boardflags2 = value;
  712. /* il0macaddr */
  713. value = sprom[BCM43xx_SPROM_IL0MACADDR + 0];
  714. *(((u16 *)bcm->sprom.il0macaddr) + 0) = cpu_to_be16(value);
  715. value = sprom[BCM43xx_SPROM_IL0MACADDR + 1];
  716. *(((u16 *)bcm->sprom.il0macaddr) + 1) = cpu_to_be16(value);
  717. value = sprom[BCM43xx_SPROM_IL0MACADDR + 2];
  718. *(((u16 *)bcm->sprom.il0macaddr) + 2) = cpu_to_be16(value);
  719. /* et0macaddr */
  720. value = sprom[BCM43xx_SPROM_ET0MACADDR + 0];
  721. *(((u16 *)bcm->sprom.et0macaddr) + 0) = cpu_to_be16(value);
  722. value = sprom[BCM43xx_SPROM_ET0MACADDR + 1];
  723. *(((u16 *)bcm->sprom.et0macaddr) + 1) = cpu_to_be16(value);
  724. value = sprom[BCM43xx_SPROM_ET0MACADDR + 2];
  725. *(((u16 *)bcm->sprom.et0macaddr) + 2) = cpu_to_be16(value);
  726. /* et1macaddr */
  727. value = sprom[BCM43xx_SPROM_ET1MACADDR + 0];
  728. *(((u16 *)bcm->sprom.et1macaddr) + 0) = cpu_to_be16(value);
  729. value = sprom[BCM43xx_SPROM_ET1MACADDR + 1];
  730. *(((u16 *)bcm->sprom.et1macaddr) + 1) = cpu_to_be16(value);
  731. value = sprom[BCM43xx_SPROM_ET1MACADDR + 2];
  732. *(((u16 *)bcm->sprom.et1macaddr) + 2) = cpu_to_be16(value);
  733. /* ethernet phy settings */
  734. value = sprom[BCM43xx_SPROM_ETHPHY];
  735. bcm->sprom.et0phyaddr = (value & 0x001F);
  736. bcm->sprom.et1phyaddr = (value & 0x03E0) >> 5;
  737. /* boardrev, antennas, locale */
  738. value = sprom[BCM43xx_SPROM_BOARDREV];
  739. bcm->sprom.boardrev = (value & 0x00FF);
  740. bcm->sprom.locale = (value & 0x0F00) >> 8;
  741. bcm->sprom.antennas_aphy = (value & 0x3000) >> 12;
  742. bcm->sprom.antennas_bgphy = (value & 0xC000) >> 14;
  743. if (modparam_locale != -1) {
  744. if (modparam_locale >= 0 && modparam_locale <= 11) {
  745. bcm->sprom.locale = modparam_locale;
  746. printk(KERN_WARNING PFX "Operating with modified "
  747. "LocaleCode %u (%s)\n",
  748. bcm->sprom.locale,
  749. bcm43xx_locale_string(bcm->sprom.locale));
  750. } else {
  751. printk(KERN_WARNING PFX "Module parameter \"locale\" "
  752. "invalid value. (0 - 11)\n");
  753. }
  754. }
  755. /* pa0b* */
  756. value = sprom[BCM43xx_SPROM_PA0B0];
  757. bcm->sprom.pa0b0 = value;
  758. value = sprom[BCM43xx_SPROM_PA0B1];
  759. bcm->sprom.pa0b1 = value;
  760. value = sprom[BCM43xx_SPROM_PA0B2];
  761. bcm->sprom.pa0b2 = value;
  762. /* wl0gpio* */
  763. value = sprom[BCM43xx_SPROM_WL0GPIO0];
  764. if (value == 0x0000)
  765. value = 0xFFFF;
  766. bcm->sprom.wl0gpio0 = value & 0x00FF;
  767. bcm->sprom.wl0gpio1 = (value & 0xFF00) >> 8;
  768. value = sprom[BCM43xx_SPROM_WL0GPIO2];
  769. if (value == 0x0000)
  770. value = 0xFFFF;
  771. bcm->sprom.wl0gpio2 = value & 0x00FF;
  772. bcm->sprom.wl0gpio3 = (value & 0xFF00) >> 8;
  773. /* maxpower */
  774. value = sprom[BCM43xx_SPROM_MAXPWR];
  775. bcm->sprom.maxpower_aphy = (value & 0xFF00) >> 8;
  776. bcm->sprom.maxpower_bgphy = value & 0x00FF;
  777. /* pa1b* */
  778. value = sprom[BCM43xx_SPROM_PA1B0];
  779. bcm->sprom.pa1b0 = value;
  780. value = sprom[BCM43xx_SPROM_PA1B1];
  781. bcm->sprom.pa1b1 = value;
  782. value = sprom[BCM43xx_SPROM_PA1B2];
  783. bcm->sprom.pa1b2 = value;
  784. /* idle tssi target */
  785. value = sprom[BCM43xx_SPROM_IDL_TSSI_TGT];
  786. bcm->sprom.idle_tssi_tgt_aphy = value & 0x00FF;
  787. bcm->sprom.idle_tssi_tgt_bgphy = (value & 0xFF00) >> 8;
  788. /* boardflags */
  789. value = sprom[BCM43xx_SPROM_BOARDFLAGS];
  790. if (value == 0xFFFF)
  791. value = 0x0000;
  792. bcm->sprom.boardflags = value;
  793. /* boardflags workarounds */
  794. if (bcm->board_vendor == PCI_VENDOR_ID_DELL &&
  795. bcm->chip_id == 0x4301 &&
  796. bcm->board_revision == 0x74)
  797. bcm->sprom.boardflags |= BCM43xx_BFL_BTCOEXIST;
  798. if (bcm->board_vendor == PCI_VENDOR_ID_APPLE &&
  799. bcm->board_type == 0x4E &&
  800. bcm->board_revision > 0x40)
  801. bcm->sprom.boardflags |= BCM43xx_BFL_PACTRL;
  802. /* antenna gain */
  803. value = sprom[BCM43xx_SPROM_ANTENNA_GAIN];
  804. if (value == 0x0000 || value == 0xFFFF)
  805. value = 0x0202;
  806. /* convert values to Q5.2 */
  807. bcm->sprom.antennagain_aphy = ((value & 0xFF00) >> 8) * 4;
  808. bcm->sprom.antennagain_bgphy = (value & 0x00FF) * 4;
  809. kfree(sprom);
  810. return 0;
  811. }
  812. static int bcm43xx_geo_init(struct bcm43xx_private *bcm)
  813. {
  814. struct ieee80211_geo *geo;
  815. struct ieee80211_channel *chan;
  816. int have_a = 0, have_bg = 0;
  817. int i;
  818. u8 channel;
  819. struct bcm43xx_phyinfo *phy;
  820. const char *iso_country;
  821. geo = kzalloc(sizeof(*geo), GFP_KERNEL);
  822. if (!geo)
  823. return -ENOMEM;
  824. for (i = 0; i < bcm->nr_80211_available; i++) {
  825. phy = &(bcm->core_80211_ext[i].phy);
  826. switch (phy->type) {
  827. case BCM43xx_PHYTYPE_B:
  828. case BCM43xx_PHYTYPE_G:
  829. have_bg = 1;
  830. break;
  831. case BCM43xx_PHYTYPE_A:
  832. have_a = 1;
  833. break;
  834. default:
  835. assert(0);
  836. }
  837. }
  838. iso_country = bcm43xx_locale_iso(bcm->sprom.locale);
  839. if (have_a) {
  840. for (i = 0, channel = IEEE80211_52GHZ_MIN_CHANNEL;
  841. channel <= IEEE80211_52GHZ_MAX_CHANNEL; channel++) {
  842. chan = &geo->a[i++];
  843. chan->freq = bcm43xx_channel_to_freq_a(channel);
  844. chan->channel = channel;
  845. }
  846. geo->a_channels = i;
  847. }
  848. if (have_bg) {
  849. for (i = 0, channel = IEEE80211_24GHZ_MIN_CHANNEL;
  850. channel <= IEEE80211_24GHZ_MAX_CHANNEL; channel++) {
  851. chan = &geo->bg[i++];
  852. chan->freq = bcm43xx_channel_to_freq_bg(channel);
  853. chan->channel = channel;
  854. }
  855. geo->bg_channels = i;
  856. }
  857. memcpy(geo->name, iso_country, 2);
  858. if (0 /*TODO: Outdoor use only */)
  859. geo->name[2] = 'O';
  860. else if (0 /*TODO: Indoor use only */)
  861. geo->name[2] = 'I';
  862. else
  863. geo->name[2] = ' ';
  864. geo->name[3] = '\0';
  865. ieee80211_set_geo(bcm->ieee, geo);
  866. kfree(geo);
  867. return 0;
  868. }
  869. /* DummyTransmission function, as documented on
  870. * http://bcm-specs.sipsolutions.net/DummyTransmission
  871. */
  872. void bcm43xx_dummy_transmission(struct bcm43xx_private *bcm)
  873. {
  874. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  875. struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
  876. unsigned int i, max_loop;
  877. u16 value = 0;
  878. u32 buffer[5] = {
  879. 0x00000000,
  880. 0x0000D400,
  881. 0x00000000,
  882. 0x00000001,
  883. 0x00000000,
  884. };
  885. switch (phy->type) {
  886. case BCM43xx_PHYTYPE_A:
  887. max_loop = 0x1E;
  888. buffer[0] = 0xCC010200;
  889. break;
  890. case BCM43xx_PHYTYPE_B:
  891. case BCM43xx_PHYTYPE_G:
  892. max_loop = 0xFA;
  893. buffer[0] = 0x6E840B00;
  894. break;
  895. default:
  896. assert(0);
  897. return;
  898. }
  899. for (i = 0; i < 5; i++)
  900. bcm43xx_ram_write(bcm, i * 4, buffer[i]);
  901. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD); /* dummy read */
  902. bcm43xx_write16(bcm, 0x0568, 0x0000);
  903. bcm43xx_write16(bcm, 0x07C0, 0x0000);
  904. bcm43xx_write16(bcm, 0x050C, ((phy->type == BCM43xx_PHYTYPE_A) ? 1 : 0));
  905. bcm43xx_write16(bcm, 0x0508, 0x0000);
  906. bcm43xx_write16(bcm, 0x050A, 0x0000);
  907. bcm43xx_write16(bcm, 0x054C, 0x0000);
  908. bcm43xx_write16(bcm, 0x056A, 0x0014);
  909. bcm43xx_write16(bcm, 0x0568, 0x0826);
  910. bcm43xx_write16(bcm, 0x0500, 0x0000);
  911. bcm43xx_write16(bcm, 0x0502, 0x0030);
  912. if (radio->version == 0x2050 && radio->revision <= 0x5)
  913. bcm43xx_radio_write16(bcm, 0x0051, 0x0017);
  914. for (i = 0x00; i < max_loop; i++) {
  915. value = bcm43xx_read16(bcm, 0x050E);
  916. if (value & 0x0080)
  917. break;
  918. udelay(10);
  919. }
  920. for (i = 0x00; i < 0x0A; i++) {
  921. value = bcm43xx_read16(bcm, 0x050E);
  922. if (value & 0x0400)
  923. break;
  924. udelay(10);
  925. }
  926. for (i = 0x00; i < 0x0A; i++) {
  927. value = bcm43xx_read16(bcm, 0x0690);
  928. if (!(value & 0x0100))
  929. break;
  930. udelay(10);
  931. }
  932. if (radio->version == 0x2050 && radio->revision <= 0x5)
  933. bcm43xx_radio_write16(bcm, 0x0051, 0x0037);
  934. }
  935. static void key_write(struct bcm43xx_private *bcm,
  936. u8 index, u8 algorithm, const u16 *key)
  937. {
  938. unsigned int i, basic_wep = 0;
  939. u32 offset;
  940. u16 value;
  941. /* Write associated key information */
  942. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x100 + (index * 2),
  943. ((index << 4) | (algorithm & 0x0F)));
  944. /* The first 4 WEP keys need extra love */
  945. if (((algorithm == BCM43xx_SEC_ALGO_WEP) ||
  946. (algorithm == BCM43xx_SEC_ALGO_WEP104)) && (index < 4))
  947. basic_wep = 1;
  948. /* Write key payload, 8 little endian words */
  949. offset = bcm->security_offset + (index * BCM43xx_SEC_KEYSIZE);
  950. for (i = 0; i < (BCM43xx_SEC_KEYSIZE / sizeof(u16)); i++) {
  951. value = cpu_to_le16(key[i]);
  952. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED,
  953. offset + (i * 2), value);
  954. if (!basic_wep)
  955. continue;
  956. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED,
  957. offset + (i * 2) + 4 * BCM43xx_SEC_KEYSIZE,
  958. value);
  959. }
  960. }
  961. static void keymac_write(struct bcm43xx_private *bcm,
  962. u8 index, const u32 *addr)
  963. {
  964. /* for keys 0-3 there is no associated mac address */
  965. if (index < 4)
  966. return;
  967. index -= 4;
  968. if (bcm->current_core->rev >= 5) {
  969. bcm43xx_shm_write32(bcm,
  970. BCM43xx_SHM_HWMAC,
  971. index * 2,
  972. cpu_to_be32(*addr));
  973. bcm43xx_shm_write16(bcm,
  974. BCM43xx_SHM_HWMAC,
  975. (index * 2) + 1,
  976. cpu_to_be16(*((u16 *)(addr + 1))));
  977. } else {
  978. if (index < 8) {
  979. TODO(); /* Put them in the macaddress filter */
  980. } else {
  981. TODO();
  982. /* Put them BCM43xx_SHM_SHARED, stating index 0x0120.
  983. Keep in mind to update the count of keymacs in 0x003E as well! */
  984. }
  985. }
  986. }
  987. static int bcm43xx_key_write(struct bcm43xx_private *bcm,
  988. u8 index, u8 algorithm,
  989. const u8 *_key, int key_len,
  990. const u8 *mac_addr)
  991. {
  992. u8 key[BCM43xx_SEC_KEYSIZE] = { 0 };
  993. if (index >= ARRAY_SIZE(bcm->key))
  994. return -EINVAL;
  995. if (key_len > ARRAY_SIZE(key))
  996. return -EINVAL;
  997. if (algorithm < 1 || algorithm > 5)
  998. return -EINVAL;
  999. memcpy(key, _key, key_len);
  1000. key_write(bcm, index, algorithm, (const u16 *)key);
  1001. keymac_write(bcm, index, (const u32 *)mac_addr);
  1002. bcm->key[index].algorithm = algorithm;
  1003. return 0;
  1004. }
  1005. static void bcm43xx_clear_keys(struct bcm43xx_private *bcm)
  1006. {
  1007. static const u32 zero_mac[2] = { 0 };
  1008. unsigned int i,j, nr_keys = 54;
  1009. u16 offset;
  1010. if (bcm->current_core->rev < 5)
  1011. nr_keys = 16;
  1012. assert(nr_keys <= ARRAY_SIZE(bcm->key));
  1013. for (i = 0; i < nr_keys; i++) {
  1014. bcm->key[i].enabled = 0;
  1015. /* returns for i < 4 immediately */
  1016. keymac_write(bcm, i, zero_mac);
  1017. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED,
  1018. 0x100 + (i * 2), 0x0000);
  1019. for (j = 0; j < 8; j++) {
  1020. offset = bcm->security_offset + (j * 4) + (i * BCM43xx_SEC_KEYSIZE);
  1021. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED,
  1022. offset, 0x0000);
  1023. }
  1024. }
  1025. dprintk(KERN_INFO PFX "Keys cleared\n");
  1026. }
  1027. /* Lowlevel core-switch function. This is only to be used in
  1028. * bcm43xx_switch_core() and bcm43xx_probe_cores()
  1029. */
  1030. static int _switch_core(struct bcm43xx_private *bcm, int core)
  1031. {
  1032. int err;
  1033. int attempts = 0;
  1034. u32 current_core;
  1035. assert(core >= 0);
  1036. while (1) {
  1037. err = bcm43xx_pci_write_config32(bcm, BCM43xx_PCICFG_ACTIVE_CORE,
  1038. (core * 0x1000) + 0x18000000);
  1039. if (unlikely(err))
  1040. goto error;
  1041. err = bcm43xx_pci_read_config32(bcm, BCM43xx_PCICFG_ACTIVE_CORE,
  1042. &current_core);
  1043. if (unlikely(err))
  1044. goto error;
  1045. current_core = (current_core - 0x18000000) / 0x1000;
  1046. if (current_core == core)
  1047. break;
  1048. if (unlikely(attempts++ > BCM43xx_SWITCH_CORE_MAX_RETRIES))
  1049. goto error;
  1050. udelay(10);
  1051. }
  1052. #ifdef CONFIG_BCM947XX
  1053. if (bcm->pci_dev->bus->number == 0)
  1054. bcm->current_core_offset = 0x1000 * core;
  1055. else
  1056. bcm->current_core_offset = 0;
  1057. #endif
  1058. return 0;
  1059. error:
  1060. printk(KERN_ERR PFX "Failed to switch to core %d\n", core);
  1061. return -ENODEV;
  1062. }
  1063. int bcm43xx_switch_core(struct bcm43xx_private *bcm, struct bcm43xx_coreinfo *new_core)
  1064. {
  1065. int err;
  1066. if (unlikely(!new_core))
  1067. return 0;
  1068. if (!new_core->available)
  1069. return -ENODEV;
  1070. if (bcm->current_core == new_core)
  1071. return 0;
  1072. err = _switch_core(bcm, new_core->index);
  1073. if (unlikely(err))
  1074. goto out;
  1075. bcm->current_core = new_core;
  1076. out:
  1077. return err;
  1078. }
  1079. static int bcm43xx_core_enabled(struct bcm43xx_private *bcm)
  1080. {
  1081. u32 value;
  1082. value = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
  1083. value &= BCM43xx_SBTMSTATELOW_CLOCK | BCM43xx_SBTMSTATELOW_RESET
  1084. | BCM43xx_SBTMSTATELOW_REJECT;
  1085. return (value == BCM43xx_SBTMSTATELOW_CLOCK);
  1086. }
  1087. /* disable current core */
  1088. static int bcm43xx_core_disable(struct bcm43xx_private *bcm, u32 core_flags)
  1089. {
  1090. u32 sbtmstatelow;
  1091. u32 sbtmstatehigh;
  1092. int i;
  1093. /* fetch sbtmstatelow from core information registers */
  1094. sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
  1095. /* core is already in reset */
  1096. if (sbtmstatelow & BCM43xx_SBTMSTATELOW_RESET)
  1097. goto out;
  1098. if (sbtmstatelow & BCM43xx_SBTMSTATELOW_CLOCK) {
  1099. sbtmstatelow = BCM43xx_SBTMSTATELOW_CLOCK |
  1100. BCM43xx_SBTMSTATELOW_REJECT;
  1101. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1102. for (i = 0; i < 1000; i++) {
  1103. sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
  1104. if (sbtmstatelow & BCM43xx_SBTMSTATELOW_REJECT) {
  1105. i = -1;
  1106. break;
  1107. }
  1108. udelay(10);
  1109. }
  1110. if (i != -1) {
  1111. printk(KERN_ERR PFX "Error: core_disable() REJECT timeout!\n");
  1112. return -EBUSY;
  1113. }
  1114. for (i = 0; i < 1000; i++) {
  1115. sbtmstatehigh = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATEHIGH);
  1116. if (!(sbtmstatehigh & BCM43xx_SBTMSTATEHIGH_BUSY)) {
  1117. i = -1;
  1118. break;
  1119. }
  1120. udelay(10);
  1121. }
  1122. if (i != -1) {
  1123. printk(KERN_ERR PFX "Error: core_disable() BUSY timeout!\n");
  1124. return -EBUSY;
  1125. }
  1126. sbtmstatelow = BCM43xx_SBTMSTATELOW_FORCE_GATE_CLOCK |
  1127. BCM43xx_SBTMSTATELOW_REJECT |
  1128. BCM43xx_SBTMSTATELOW_RESET |
  1129. BCM43xx_SBTMSTATELOW_CLOCK |
  1130. core_flags;
  1131. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1132. udelay(10);
  1133. }
  1134. sbtmstatelow = BCM43xx_SBTMSTATELOW_RESET |
  1135. BCM43xx_SBTMSTATELOW_REJECT |
  1136. core_flags;
  1137. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1138. out:
  1139. bcm->current_core->enabled = 0;
  1140. return 0;
  1141. }
  1142. /* enable (reset) current core */
  1143. static int bcm43xx_core_enable(struct bcm43xx_private *bcm, u32 core_flags)
  1144. {
  1145. u32 sbtmstatelow;
  1146. u32 sbtmstatehigh;
  1147. u32 sbimstate;
  1148. int err;
  1149. err = bcm43xx_core_disable(bcm, core_flags);
  1150. if (err)
  1151. goto out;
  1152. sbtmstatelow = BCM43xx_SBTMSTATELOW_CLOCK |
  1153. BCM43xx_SBTMSTATELOW_RESET |
  1154. BCM43xx_SBTMSTATELOW_FORCE_GATE_CLOCK |
  1155. core_flags;
  1156. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1157. udelay(1);
  1158. sbtmstatehigh = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATEHIGH);
  1159. if (sbtmstatehigh & BCM43xx_SBTMSTATEHIGH_SERROR) {
  1160. sbtmstatehigh = 0x00000000;
  1161. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATEHIGH, sbtmstatehigh);
  1162. }
  1163. sbimstate = bcm43xx_read32(bcm, BCM43xx_CIR_SBIMSTATE);
  1164. if (sbimstate & (BCM43xx_SBIMSTATE_IB_ERROR | BCM43xx_SBIMSTATE_TIMEOUT)) {
  1165. sbimstate &= ~(BCM43xx_SBIMSTATE_IB_ERROR | BCM43xx_SBIMSTATE_TIMEOUT);
  1166. bcm43xx_write32(bcm, BCM43xx_CIR_SBIMSTATE, sbimstate);
  1167. }
  1168. sbtmstatelow = BCM43xx_SBTMSTATELOW_CLOCK |
  1169. BCM43xx_SBTMSTATELOW_FORCE_GATE_CLOCK |
  1170. core_flags;
  1171. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1172. udelay(1);
  1173. sbtmstatelow = BCM43xx_SBTMSTATELOW_CLOCK | core_flags;
  1174. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1175. udelay(1);
  1176. bcm->current_core->enabled = 1;
  1177. assert(err == 0);
  1178. out:
  1179. return err;
  1180. }
  1181. /* http://bcm-specs.sipsolutions.net/80211CoreReset */
  1182. void bcm43xx_wireless_core_reset(struct bcm43xx_private *bcm, int connect_phy)
  1183. {
  1184. u32 flags = 0x00040000;
  1185. if ((bcm43xx_core_enabled(bcm)) &&
  1186. !bcm43xx_using_pio(bcm)) {
  1187. //FIXME: Do we _really_ want #ifndef CONFIG_BCM947XX here?
  1188. #if 0
  1189. #ifndef CONFIG_BCM947XX
  1190. /* reset all used DMA controllers. */
  1191. bcm43xx_dmacontroller_tx_reset(bcm, BCM43xx_MMIO_DMA1_BASE);
  1192. bcm43xx_dmacontroller_tx_reset(bcm, BCM43xx_MMIO_DMA2_BASE);
  1193. bcm43xx_dmacontroller_tx_reset(bcm, BCM43xx_MMIO_DMA3_BASE);
  1194. bcm43xx_dmacontroller_tx_reset(bcm, BCM43xx_MMIO_DMA4_BASE);
  1195. bcm43xx_dmacontroller_rx_reset(bcm, BCM43xx_MMIO_DMA1_BASE);
  1196. if (bcm->current_core->rev < 5)
  1197. bcm43xx_dmacontroller_rx_reset(bcm, BCM43xx_MMIO_DMA4_BASE);
  1198. #endif
  1199. #endif
  1200. }
  1201. if (bcm43xx_status(bcm) == BCM43xx_STAT_SHUTTINGDOWN) {
  1202. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
  1203. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD)
  1204. & ~(BCM43xx_SBF_MAC_ENABLED | 0x00000002));
  1205. } else {
  1206. if (connect_phy)
  1207. flags |= 0x20000000;
  1208. bcm43xx_phy_connect(bcm, connect_phy);
  1209. bcm43xx_core_enable(bcm, flags);
  1210. bcm43xx_write16(bcm, 0x03E6, 0x0000);
  1211. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
  1212. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD)
  1213. | BCM43xx_SBF_400);
  1214. }
  1215. }
  1216. static void bcm43xx_wireless_core_disable(struct bcm43xx_private *bcm)
  1217. {
  1218. bcm43xx_radio_turn_off(bcm);
  1219. bcm43xx_write16(bcm, 0x03E6, 0x00F4);
  1220. bcm43xx_core_disable(bcm, 0);
  1221. }
  1222. /* Mark the current 80211 core inactive. */
  1223. static void bcm43xx_wireless_core_mark_inactive(struct bcm43xx_private *bcm)
  1224. {
  1225. u32 sbtmstatelow;
  1226. bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
  1227. bcm43xx_radio_turn_off(bcm);
  1228. sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
  1229. sbtmstatelow &= 0xDFF5FFFF;
  1230. sbtmstatelow |= 0x000A0000;
  1231. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1232. udelay(1);
  1233. sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
  1234. sbtmstatelow &= 0xFFF5FFFF;
  1235. sbtmstatelow |= 0x00080000;
  1236. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1237. udelay(1);
  1238. }
  1239. static void handle_irq_transmit_status(struct bcm43xx_private *bcm)
  1240. {
  1241. u32 v0, v1;
  1242. u16 tmp;
  1243. struct bcm43xx_xmitstatus stat;
  1244. while (1) {
  1245. v0 = bcm43xx_read32(bcm, BCM43xx_MMIO_XMITSTAT_0);
  1246. if (!v0)
  1247. break;
  1248. v1 = bcm43xx_read32(bcm, BCM43xx_MMIO_XMITSTAT_1);
  1249. stat.cookie = (v0 >> 16) & 0x0000FFFF;
  1250. tmp = (u16)((v0 & 0xFFF0) | ((v0 & 0xF) >> 1));
  1251. stat.flags = tmp & 0xFF;
  1252. stat.cnt1 = (tmp & 0x0F00) >> 8;
  1253. stat.cnt2 = (tmp & 0xF000) >> 12;
  1254. stat.seq = (u16)(v1 & 0xFFFF);
  1255. stat.unknown = (u16)((v1 >> 16) & 0xFF);
  1256. bcm43xx_debugfs_log_txstat(bcm, &stat);
  1257. if (stat.flags & BCM43xx_TXSTAT_FLAG_AMPDU)
  1258. continue;
  1259. if (stat.flags & BCM43xx_TXSTAT_FLAG_INTER)
  1260. continue;
  1261. if (bcm43xx_using_pio(bcm))
  1262. bcm43xx_pio_handle_xmitstatus(bcm, &stat);
  1263. else
  1264. bcm43xx_dma_handle_xmitstatus(bcm, &stat);
  1265. }
  1266. }
  1267. static void drain_txstatus_queue(struct bcm43xx_private *bcm)
  1268. {
  1269. u32 dummy;
  1270. if (bcm->current_core->rev < 5)
  1271. return;
  1272. /* Read all entries from the microcode TXstatus FIFO
  1273. * and throw them away.
  1274. */
  1275. while (1) {
  1276. dummy = bcm43xx_read32(bcm, BCM43xx_MMIO_XMITSTAT_0);
  1277. if (!dummy)
  1278. break;
  1279. dummy = bcm43xx_read32(bcm, BCM43xx_MMIO_XMITSTAT_1);
  1280. }
  1281. }
  1282. static void bcm43xx_generate_noise_sample(struct bcm43xx_private *bcm)
  1283. {
  1284. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x408, 0x7F7F);
  1285. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x40A, 0x7F7F);
  1286. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD,
  1287. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD) | (1 << 4));
  1288. assert(bcm->noisecalc.core_at_start == bcm->current_core);
  1289. assert(bcm->noisecalc.channel_at_start == bcm43xx_current_radio(bcm)->channel);
  1290. }
  1291. static void bcm43xx_calculate_link_quality(struct bcm43xx_private *bcm)
  1292. {
  1293. /* Top half of Link Quality calculation. */
  1294. if (bcm->noisecalc.calculation_running)
  1295. return;
  1296. bcm->noisecalc.core_at_start = bcm->current_core;
  1297. bcm->noisecalc.channel_at_start = bcm43xx_current_radio(bcm)->channel;
  1298. bcm->noisecalc.calculation_running = 1;
  1299. bcm->noisecalc.nr_samples = 0;
  1300. bcm43xx_generate_noise_sample(bcm);
  1301. }
  1302. static void handle_irq_noise(struct bcm43xx_private *bcm)
  1303. {
  1304. struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
  1305. u16 tmp;
  1306. u8 noise[4];
  1307. u8 i, j;
  1308. s32 average;
  1309. /* Bottom half of Link Quality calculation. */
  1310. assert(bcm->noisecalc.calculation_running);
  1311. if (bcm->noisecalc.core_at_start != bcm->current_core ||
  1312. bcm->noisecalc.channel_at_start != radio->channel)
  1313. goto drop_calculation;
  1314. tmp = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x408);
  1315. noise[0] = (tmp & 0x00FF);
  1316. noise[1] = (tmp & 0xFF00) >> 8;
  1317. tmp = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x40A);
  1318. noise[2] = (tmp & 0x00FF);
  1319. noise[3] = (tmp & 0xFF00) >> 8;
  1320. if (noise[0] == 0x7F || noise[1] == 0x7F ||
  1321. noise[2] == 0x7F || noise[3] == 0x7F)
  1322. goto generate_new;
  1323. /* Get the noise samples. */
  1324. assert(bcm->noisecalc.nr_samples < 8);
  1325. i = bcm->noisecalc.nr_samples;
  1326. noise[0] = limit_value(noise[0], 0, ARRAY_SIZE(radio->nrssi_lt) - 1);
  1327. noise[1] = limit_value(noise[1], 0, ARRAY_SIZE(radio->nrssi_lt) - 1);
  1328. noise[2] = limit_value(noise[2], 0, ARRAY_SIZE(radio->nrssi_lt) - 1);
  1329. noise[3] = limit_value(noise[3], 0, ARRAY_SIZE(radio->nrssi_lt) - 1);
  1330. bcm->noisecalc.samples[i][0] = radio->nrssi_lt[noise[0]];
  1331. bcm->noisecalc.samples[i][1] = radio->nrssi_lt[noise[1]];
  1332. bcm->noisecalc.samples[i][2] = radio->nrssi_lt[noise[2]];
  1333. bcm->noisecalc.samples[i][3] = radio->nrssi_lt[noise[3]];
  1334. bcm->noisecalc.nr_samples++;
  1335. if (bcm->noisecalc.nr_samples == 8) {
  1336. /* Calculate the Link Quality by the noise samples. */
  1337. average = 0;
  1338. for (i = 0; i < 8; i++) {
  1339. for (j = 0; j < 4; j++)
  1340. average += bcm->noisecalc.samples[i][j];
  1341. }
  1342. average /= (8 * 4);
  1343. average *= 125;
  1344. average += 64;
  1345. average /= 128;
  1346. tmp = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x40C);
  1347. tmp = (tmp / 128) & 0x1F;
  1348. if (tmp >= 8)
  1349. average += 2;
  1350. else
  1351. average -= 25;
  1352. if (tmp == 8)
  1353. average -= 72;
  1354. else
  1355. average -= 48;
  1356. bcm->stats.noise = average;
  1357. drop_calculation:
  1358. bcm->noisecalc.calculation_running = 0;
  1359. return;
  1360. }
  1361. generate_new:
  1362. bcm43xx_generate_noise_sample(bcm);
  1363. }
  1364. static void handle_irq_ps(struct bcm43xx_private *bcm)
  1365. {
  1366. if (bcm->ieee->iw_mode == IW_MODE_MASTER) {
  1367. ///TODO: PS TBTT
  1368. } else {
  1369. if (1/*FIXME: the last PSpoll frame was sent successfully */)
  1370. bcm43xx_power_saving_ctl_bits(bcm, -1, -1);
  1371. }
  1372. if (bcm->ieee->iw_mode == IW_MODE_ADHOC)
  1373. bcm->reg124_set_0x4 = 1;
  1374. //FIXME else set to false?
  1375. }
  1376. static void handle_irq_reg124(struct bcm43xx_private *bcm)
  1377. {
  1378. if (!bcm->reg124_set_0x4)
  1379. return;
  1380. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD,
  1381. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD)
  1382. | 0x4);
  1383. //FIXME: reset reg124_set_0x4 to false?
  1384. }
  1385. static void handle_irq_pmq(struct bcm43xx_private *bcm)
  1386. {
  1387. u32 tmp;
  1388. //TODO: AP mode.
  1389. while (1) {
  1390. tmp = bcm43xx_read32(bcm, BCM43xx_MMIO_PS_STATUS);
  1391. if (!(tmp & 0x00000008))
  1392. break;
  1393. }
  1394. /* 16bit write is odd, but correct. */
  1395. bcm43xx_write16(bcm, BCM43xx_MMIO_PS_STATUS, 0x0002);
  1396. }
  1397. static void bcm43xx_generate_beacon_template(struct bcm43xx_private *bcm,
  1398. u16 ram_offset, u16 shm_size_offset)
  1399. {
  1400. u32 value;
  1401. u16 size = 0;
  1402. /* Timestamp. */
  1403. //FIXME: assumption: The chip sets the timestamp
  1404. value = 0;
  1405. bcm43xx_ram_write(bcm, ram_offset++, value);
  1406. bcm43xx_ram_write(bcm, ram_offset++, value);
  1407. size += 8;
  1408. /* Beacon Interval / Capability Information */
  1409. value = 0x0000;//FIXME: Which interval?
  1410. value |= (1 << 0) << 16; /* ESS */
  1411. value |= (1 << 2) << 16; /* CF Pollable */ //FIXME?
  1412. value |= (1 << 3) << 16; /* CF Poll Request */ //FIXME?
  1413. if (!bcm->ieee->open_wep)
  1414. value |= (1 << 4) << 16; /* Privacy */
  1415. bcm43xx_ram_write(bcm, ram_offset++, value);
  1416. size += 4;
  1417. /* SSID */
  1418. //TODO
  1419. /* FH Parameter Set */
  1420. //TODO
  1421. /* DS Parameter Set */
  1422. //TODO
  1423. /* CF Parameter Set */
  1424. //TODO
  1425. /* TIM */
  1426. //TODO
  1427. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, shm_size_offset, size);
  1428. }
  1429. static void handle_irq_beacon(struct bcm43xx_private *bcm)
  1430. {
  1431. u32 status;
  1432. bcm->irq_savedstate &= ~BCM43xx_IRQ_BEACON;
  1433. status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD);
  1434. if ((status & 0x1) && (status & 0x2)) {
  1435. /* ACK beacon IRQ. */
  1436. bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON,
  1437. BCM43xx_IRQ_BEACON);
  1438. bcm->irq_savedstate |= BCM43xx_IRQ_BEACON;
  1439. return;
  1440. }
  1441. if (!(status & 0x1)) {
  1442. bcm43xx_generate_beacon_template(bcm, 0x68, 0x18);
  1443. status |= 0x1;
  1444. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD, status);
  1445. }
  1446. if (!(status & 0x2)) {
  1447. bcm43xx_generate_beacon_template(bcm, 0x468, 0x1A);
  1448. status |= 0x2;
  1449. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD, status);
  1450. }
  1451. }
  1452. /* Interrupt handler bottom-half */
  1453. static void bcm43xx_interrupt_tasklet(struct bcm43xx_private *bcm)
  1454. {
  1455. u32 reason;
  1456. u32 dma_reason[6];
  1457. u32 merged_dma_reason = 0;
  1458. int i, activity = 0;
  1459. unsigned long flags;
  1460. #ifdef CONFIG_BCM43XX_DEBUG
  1461. u32 _handled = 0x00000000;
  1462. # define bcmirq_handled(irq) do { _handled |= (irq); } while (0)
  1463. #else
  1464. # define bcmirq_handled(irq) do { /* nothing */ } while (0)
  1465. #endif /* CONFIG_BCM43XX_DEBUG*/
  1466. spin_lock_irqsave(&bcm->irq_lock, flags);
  1467. reason = bcm->irq_reason;
  1468. for (i = 5; i >= 0; i--) {
  1469. dma_reason[i] = bcm->dma_reason[i];
  1470. merged_dma_reason |= dma_reason[i];
  1471. }
  1472. if (unlikely(reason & BCM43xx_IRQ_XMIT_ERROR)) {
  1473. /* TX error. We get this when Template Ram is written in wrong endianess
  1474. * in dummy_tx(). We also get this if something is wrong with the TX header
  1475. * on DMA or PIO queues.
  1476. * Maybe we get this in other error conditions, too.
  1477. */
  1478. printkl(KERN_ERR PFX "FATAL ERROR: BCM43xx_IRQ_XMIT_ERROR\n");
  1479. bcmirq_handled(BCM43xx_IRQ_XMIT_ERROR);
  1480. }
  1481. if (unlikely(merged_dma_reason & BCM43xx_DMAIRQ_FATALMASK)) {
  1482. printkl(KERN_ERR PFX "FATAL ERROR: Fatal DMA error: "
  1483. "0x%08X, 0x%08X, 0x%08X, "
  1484. "0x%08X, 0x%08X, 0x%08X\n",
  1485. dma_reason[0], dma_reason[1],
  1486. dma_reason[2], dma_reason[3],
  1487. dma_reason[4], dma_reason[5]);
  1488. bcm43xx_controller_restart(bcm, "DMA error");
  1489. mmiowb();
  1490. spin_unlock_irqrestore(&bcm->irq_lock, flags);
  1491. return;
  1492. }
  1493. if (unlikely(merged_dma_reason & BCM43xx_DMAIRQ_NONFATALMASK)) {
  1494. printkl(KERN_ERR PFX "DMA error: "
  1495. "0x%08X, 0x%08X, 0x%08X, "
  1496. "0x%08X, 0x%08X, 0x%08X\n",
  1497. dma_reason[0], dma_reason[1],
  1498. dma_reason[2], dma_reason[3],
  1499. dma_reason[4], dma_reason[5]);
  1500. }
  1501. if (reason & BCM43xx_IRQ_PS) {
  1502. handle_irq_ps(bcm);
  1503. bcmirq_handled(BCM43xx_IRQ_PS);
  1504. }
  1505. if (reason & BCM43xx_IRQ_REG124) {
  1506. handle_irq_reg124(bcm);
  1507. bcmirq_handled(BCM43xx_IRQ_REG124);
  1508. }
  1509. if (reason & BCM43xx_IRQ_BEACON) {
  1510. if (bcm->ieee->iw_mode == IW_MODE_MASTER)
  1511. handle_irq_beacon(bcm);
  1512. bcmirq_handled(BCM43xx_IRQ_BEACON);
  1513. }
  1514. if (reason & BCM43xx_IRQ_PMQ) {
  1515. handle_irq_pmq(bcm);
  1516. bcmirq_handled(BCM43xx_IRQ_PMQ);
  1517. }
  1518. if (reason & BCM43xx_IRQ_SCAN) {
  1519. /*TODO*/
  1520. //bcmirq_handled(BCM43xx_IRQ_SCAN);
  1521. }
  1522. if (reason & BCM43xx_IRQ_NOISE) {
  1523. handle_irq_noise(bcm);
  1524. bcmirq_handled(BCM43xx_IRQ_NOISE);
  1525. }
  1526. /* Check the DMA reason registers for received data. */
  1527. if (dma_reason[0] & BCM43xx_DMAIRQ_RX_DONE) {
  1528. if (bcm43xx_using_pio(bcm))
  1529. bcm43xx_pio_rx(bcm43xx_current_pio(bcm)->queue0);
  1530. else
  1531. bcm43xx_dma_rx(bcm43xx_current_dma(bcm)->rx_ring0);
  1532. /* We intentionally don't set "activity" to 1, here. */
  1533. }
  1534. assert(!(dma_reason[1] & BCM43xx_DMAIRQ_RX_DONE));
  1535. assert(!(dma_reason[2] & BCM43xx_DMAIRQ_RX_DONE));
  1536. if (dma_reason[3] & BCM43xx_DMAIRQ_RX_DONE) {
  1537. if (bcm43xx_using_pio(bcm))
  1538. bcm43xx_pio_rx(bcm43xx_current_pio(bcm)->queue3);
  1539. else
  1540. bcm43xx_dma_rx(bcm43xx_current_dma(bcm)->rx_ring3);
  1541. activity = 1;
  1542. }
  1543. assert(!(dma_reason[4] & BCM43xx_DMAIRQ_RX_DONE));
  1544. assert(!(dma_reason[5] & BCM43xx_DMAIRQ_RX_DONE));
  1545. bcmirq_handled(BCM43xx_IRQ_RX);
  1546. if (reason & BCM43xx_IRQ_XMIT_STATUS) {
  1547. handle_irq_transmit_status(bcm);
  1548. activity = 1;
  1549. //TODO: In AP mode, this also causes sending of powersave responses.
  1550. bcmirq_handled(BCM43xx_IRQ_XMIT_STATUS);
  1551. }
  1552. /* IRQ_PIO_WORKAROUND is handled in the top-half. */
  1553. bcmirq_handled(BCM43xx_IRQ_PIO_WORKAROUND);
  1554. #ifdef CONFIG_BCM43XX_DEBUG
  1555. if (unlikely(reason & ~_handled)) {
  1556. printkl(KERN_WARNING PFX
  1557. "Unhandled IRQ! Reason: 0x%08x, Unhandled: 0x%08x, "
  1558. "DMA: 0x%08x, 0x%08x, 0x%08x, 0x%08x\n",
  1559. reason, (reason & ~_handled),
  1560. dma_reason[0], dma_reason[1],
  1561. dma_reason[2], dma_reason[3]);
  1562. }
  1563. #endif
  1564. #undef bcmirq_handled
  1565. if (!modparam_noleds)
  1566. bcm43xx_leds_update(bcm, activity);
  1567. bcm43xx_interrupt_enable(bcm, bcm->irq_savedstate);
  1568. mmiowb();
  1569. spin_unlock_irqrestore(&bcm->irq_lock, flags);
  1570. }
  1571. static void pio_irq_workaround(struct bcm43xx_private *bcm,
  1572. u16 base, int queueidx)
  1573. {
  1574. u16 rxctl;
  1575. rxctl = bcm43xx_read16(bcm, base + BCM43xx_PIO_RXCTL);
  1576. if (rxctl & BCM43xx_PIO_RXCTL_DATAAVAILABLE)
  1577. bcm->dma_reason[queueidx] |= BCM43xx_DMAIRQ_RX_DONE;
  1578. else
  1579. bcm->dma_reason[queueidx] &= ~BCM43xx_DMAIRQ_RX_DONE;
  1580. }
  1581. static void bcm43xx_interrupt_ack(struct bcm43xx_private *bcm, u32 reason)
  1582. {
  1583. if (bcm43xx_using_pio(bcm) &&
  1584. (bcm->current_core->rev < 3) &&
  1585. (!(reason & BCM43xx_IRQ_PIO_WORKAROUND))) {
  1586. /* Apply a PIO specific workaround to the dma_reasons */
  1587. pio_irq_workaround(bcm, BCM43xx_MMIO_PIO1_BASE, 0);
  1588. pio_irq_workaround(bcm, BCM43xx_MMIO_PIO2_BASE, 1);
  1589. pio_irq_workaround(bcm, BCM43xx_MMIO_PIO3_BASE, 2);
  1590. pio_irq_workaround(bcm, BCM43xx_MMIO_PIO4_BASE, 3);
  1591. }
  1592. bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON, reason);
  1593. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA0_REASON,
  1594. bcm->dma_reason[0]);
  1595. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA1_REASON,
  1596. bcm->dma_reason[1]);
  1597. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA2_REASON,
  1598. bcm->dma_reason[2]);
  1599. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA3_REASON,
  1600. bcm->dma_reason[3]);
  1601. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA4_REASON,
  1602. bcm->dma_reason[4]);
  1603. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA5_REASON,
  1604. bcm->dma_reason[5]);
  1605. }
  1606. /* Interrupt handler top-half */
  1607. static irqreturn_t bcm43xx_interrupt_handler(int irq, void *dev_id)
  1608. {
  1609. irqreturn_t ret = IRQ_HANDLED;
  1610. struct bcm43xx_private *bcm = dev_id;
  1611. u32 reason;
  1612. if (!bcm)
  1613. return IRQ_NONE;
  1614. spin_lock(&bcm->irq_lock);
  1615. reason = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON);
  1616. if (reason == 0xffffffff) {
  1617. /* irq not for us (shared irq) */
  1618. ret = IRQ_NONE;
  1619. goto out;
  1620. }
  1621. reason &= bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK);
  1622. if (!reason)
  1623. goto out;
  1624. assert(bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED);
  1625. assert(bcm->current_core->id == BCM43xx_COREID_80211);
  1626. bcm->dma_reason[0] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA0_REASON)
  1627. & 0x0001DC00;
  1628. bcm->dma_reason[1] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA1_REASON)
  1629. & 0x0000DC00;
  1630. bcm->dma_reason[2] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA2_REASON)
  1631. & 0x0000DC00;
  1632. bcm->dma_reason[3] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA3_REASON)
  1633. & 0x0001DC00;
  1634. bcm->dma_reason[4] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA4_REASON)
  1635. & 0x0000DC00;
  1636. bcm->dma_reason[5] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA5_REASON)
  1637. & 0x0000DC00;
  1638. bcm43xx_interrupt_ack(bcm, reason);
  1639. /* disable all IRQs. They are enabled again in the bottom half. */
  1640. bcm->irq_savedstate = bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
  1641. /* save the reason code and call our bottom half. */
  1642. bcm->irq_reason = reason;
  1643. tasklet_schedule(&bcm->isr_tasklet);
  1644. out:
  1645. mmiowb();
  1646. spin_unlock(&bcm->irq_lock);
  1647. return ret;
  1648. }
  1649. static void bcm43xx_release_firmware(struct bcm43xx_private *bcm, int force)
  1650. {
  1651. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  1652. if (bcm->firmware_norelease && !force)
  1653. return; /* Suspending or controller reset. */
  1654. release_firmware(phy->ucode);
  1655. phy->ucode = NULL;
  1656. release_firmware(phy->pcm);
  1657. phy->pcm = NULL;
  1658. release_firmware(phy->initvals0);
  1659. phy->initvals0 = NULL;
  1660. release_firmware(phy->initvals1);
  1661. phy->initvals1 = NULL;
  1662. }
  1663. static int bcm43xx_request_firmware(struct bcm43xx_private *bcm)
  1664. {
  1665. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  1666. u8 rev = bcm->current_core->rev;
  1667. int err = 0;
  1668. int nr;
  1669. char buf[22 + sizeof(modparam_fwpostfix) - 1] = { 0 };
  1670. if (!phy->ucode) {
  1671. snprintf(buf, ARRAY_SIZE(buf), "bcm43xx_microcode%d%s.fw",
  1672. (rev >= 5 ? 5 : rev),
  1673. modparam_fwpostfix);
  1674. err = request_firmware(&phy->ucode, buf, &bcm->pci_dev->dev);
  1675. if (err) {
  1676. printk(KERN_ERR PFX
  1677. "Error: Microcode \"%s\" not available or load failed.\n",
  1678. buf);
  1679. goto error;
  1680. }
  1681. }
  1682. if (!phy->pcm) {
  1683. snprintf(buf, ARRAY_SIZE(buf),
  1684. "bcm43xx_pcm%d%s.fw",
  1685. (rev < 5 ? 4 : 5),
  1686. modparam_fwpostfix);
  1687. err = request_firmware(&phy->pcm, buf, &bcm->pci_dev->dev);
  1688. if (err) {
  1689. printk(KERN_ERR PFX
  1690. "Error: PCM \"%s\" not available or load failed.\n",
  1691. buf);
  1692. goto error;
  1693. }
  1694. }
  1695. if (!phy->initvals0) {
  1696. if (rev == 2 || rev == 4) {
  1697. switch (phy->type) {
  1698. case BCM43xx_PHYTYPE_A:
  1699. nr = 3;
  1700. break;
  1701. case BCM43xx_PHYTYPE_B:
  1702. case BCM43xx_PHYTYPE_G:
  1703. nr = 1;
  1704. break;
  1705. default:
  1706. goto err_noinitval;
  1707. }
  1708. } else if (rev >= 5) {
  1709. switch (phy->type) {
  1710. case BCM43xx_PHYTYPE_A:
  1711. nr = 7;
  1712. break;
  1713. case BCM43xx_PHYTYPE_B:
  1714. case BCM43xx_PHYTYPE_G:
  1715. nr = 5;
  1716. break;
  1717. default:
  1718. goto err_noinitval;
  1719. }
  1720. } else
  1721. goto err_noinitval;
  1722. snprintf(buf, ARRAY_SIZE(buf), "bcm43xx_initval%02d%s.fw",
  1723. nr, modparam_fwpostfix);
  1724. err = request_firmware(&phy->initvals0, buf, &bcm->pci_dev->dev);
  1725. if (err) {
  1726. printk(KERN_ERR PFX
  1727. "Error: InitVals \"%s\" not available or load failed.\n",
  1728. buf);
  1729. goto error;
  1730. }
  1731. if (phy->initvals0->size % sizeof(struct bcm43xx_initval)) {
  1732. printk(KERN_ERR PFX "InitVals fileformat error.\n");
  1733. goto error;
  1734. }
  1735. }
  1736. if (!phy->initvals1) {
  1737. if (rev >= 5) {
  1738. u32 sbtmstatehigh;
  1739. switch (phy->type) {
  1740. case BCM43xx_PHYTYPE_A:
  1741. sbtmstatehigh = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATEHIGH);
  1742. if (sbtmstatehigh & 0x00010000)
  1743. nr = 9;
  1744. else
  1745. nr = 10;
  1746. break;
  1747. case BCM43xx_PHYTYPE_B:
  1748. case BCM43xx_PHYTYPE_G:
  1749. nr = 6;
  1750. break;
  1751. default:
  1752. goto err_noinitval;
  1753. }
  1754. snprintf(buf, ARRAY_SIZE(buf), "bcm43xx_initval%02d%s.fw",
  1755. nr, modparam_fwpostfix);
  1756. err = request_firmware(&phy->initvals1, buf, &bcm->pci_dev->dev);
  1757. if (err) {
  1758. printk(KERN_ERR PFX
  1759. "Error: InitVals \"%s\" not available or load failed.\n",
  1760. buf);
  1761. goto error;
  1762. }
  1763. if (phy->initvals1->size % sizeof(struct bcm43xx_initval)) {
  1764. printk(KERN_ERR PFX "InitVals fileformat error.\n");
  1765. goto error;
  1766. }
  1767. }
  1768. }
  1769. out:
  1770. return err;
  1771. error:
  1772. bcm43xx_release_firmware(bcm, 1);
  1773. goto out;
  1774. err_noinitval:
  1775. printk(KERN_ERR PFX "Error: No InitVals available!\n");
  1776. err = -ENOENT;
  1777. goto error;
  1778. }
  1779. static void bcm43xx_upload_microcode(struct bcm43xx_private *bcm)
  1780. {
  1781. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  1782. const u32 *data;
  1783. unsigned int i, len;
  1784. /* Upload Microcode. */
  1785. data = (u32 *)(phy->ucode->data);
  1786. len = phy->ucode->size / sizeof(u32);
  1787. bcm43xx_shm_control_word(bcm, BCM43xx_SHM_UCODE, 0x0000);
  1788. for (i = 0; i < len; i++) {
  1789. bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_DATA,
  1790. be32_to_cpu(data[i]));
  1791. udelay(10);
  1792. }
  1793. /* Upload PCM data. */
  1794. data = (u32 *)(phy->pcm->data);
  1795. len = phy->pcm->size / sizeof(u32);
  1796. bcm43xx_shm_control_word(bcm, BCM43xx_SHM_PCM, 0x01ea);
  1797. bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_DATA, 0x00004000);
  1798. bcm43xx_shm_control_word(bcm, BCM43xx_SHM_PCM, 0x01eb);
  1799. for (i = 0; i < len; i++) {
  1800. bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_DATA,
  1801. be32_to_cpu(data[i]));
  1802. udelay(10);
  1803. }
  1804. }
  1805. static int bcm43xx_write_initvals(struct bcm43xx_private *bcm,
  1806. const struct bcm43xx_initval *data,
  1807. const unsigned int len)
  1808. {
  1809. u16 offset, size;
  1810. u32 value;
  1811. unsigned int i;
  1812. for (i = 0; i < len; i++) {
  1813. offset = be16_to_cpu(data[i].offset);
  1814. size = be16_to_cpu(data[i].size);
  1815. value = be32_to_cpu(data[i].value);
  1816. if (unlikely(offset >= 0x1000))
  1817. goto err_format;
  1818. if (size == 2) {
  1819. if (unlikely(value & 0xFFFF0000))
  1820. goto err_format;
  1821. bcm43xx_write16(bcm, offset, (u16)value);
  1822. } else if (size == 4) {
  1823. bcm43xx_write32(bcm, offset, value);
  1824. } else
  1825. goto err_format;
  1826. }
  1827. return 0;
  1828. err_format:
  1829. printk(KERN_ERR PFX "InitVals (bcm43xx_initvalXX.fw) file-format error. "
  1830. "Please fix your bcm43xx firmware files.\n");
  1831. return -EPROTO;
  1832. }
  1833. static int bcm43xx_upload_initvals(struct bcm43xx_private *bcm)
  1834. {
  1835. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  1836. int err;
  1837. err = bcm43xx_write_initvals(bcm, (struct bcm43xx_initval *)phy->initvals0->data,
  1838. phy->initvals0->size / sizeof(struct bcm43xx_initval));
  1839. if (err)
  1840. goto out;
  1841. if (phy->initvals1) {
  1842. err = bcm43xx_write_initvals(bcm, (struct bcm43xx_initval *)phy->initvals1->data,
  1843. phy->initvals1->size / sizeof(struct bcm43xx_initval));
  1844. if (err)
  1845. goto out;
  1846. }
  1847. out:
  1848. return err;
  1849. }
  1850. #ifdef CONFIG_BCM947XX
  1851. static struct pci_device_id bcm43xx_47xx_ids[] = {
  1852. { PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, 0x4324) },
  1853. { 0 }
  1854. };
  1855. #endif
  1856. static int bcm43xx_initialize_irq(struct bcm43xx_private *bcm)
  1857. {
  1858. int err;
  1859. bcm->irq = bcm->pci_dev->irq;
  1860. #ifdef CONFIG_BCM947XX
  1861. if (bcm->pci_dev->bus->number == 0) {
  1862. struct pci_dev *d;
  1863. struct pci_device_id *id;
  1864. for (id = bcm43xx_47xx_ids; id->vendor; id++) {
  1865. d = pci_get_device(id->vendor, id->device, NULL);
  1866. if (d != NULL) {
  1867. bcm->irq = d->irq;
  1868. pci_dev_put(d);
  1869. break;
  1870. }
  1871. }
  1872. }
  1873. #endif
  1874. err = request_irq(bcm->irq, bcm43xx_interrupt_handler,
  1875. IRQF_SHARED, KBUILD_MODNAME, bcm);
  1876. if (err)
  1877. printk(KERN_ERR PFX "Cannot register IRQ%d\n", bcm->irq);
  1878. return err;
  1879. }
  1880. /* Switch to the core used to write the GPIO register.
  1881. * This is either the ChipCommon, or the PCI core.
  1882. */
  1883. static int switch_to_gpio_core(struct bcm43xx_private *bcm)
  1884. {
  1885. int err;
  1886. /* Where to find the GPIO register depends on the chipset.
  1887. * If it has a ChipCommon, its register at offset 0x6c is the GPIO
  1888. * control register. Otherwise the register at offset 0x6c in the
  1889. * PCI core is the GPIO control register.
  1890. */
  1891. err = bcm43xx_switch_core(bcm, &bcm->core_chipcommon);
  1892. if (err == -ENODEV) {
  1893. err = bcm43xx_switch_core(bcm, &bcm->core_pci);
  1894. if (unlikely(err == -ENODEV)) {
  1895. printk(KERN_ERR PFX "gpio error: "
  1896. "Neither ChipCommon nor PCI core available!\n");
  1897. }
  1898. }
  1899. return err;
  1900. }
  1901. /* Initialize the GPIOs
  1902. * http://bcm-specs.sipsolutions.net/GPIO
  1903. */
  1904. static int bcm43xx_gpio_init(struct bcm43xx_private *bcm)
  1905. {
  1906. struct bcm43xx_coreinfo *old_core;
  1907. int err;
  1908. u32 mask, set;
  1909. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
  1910. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD)
  1911. & 0xFFFF3FFF);
  1912. bcm43xx_leds_switch_all(bcm, 0);
  1913. bcm43xx_write16(bcm, BCM43xx_MMIO_GPIO_MASK,
  1914. bcm43xx_read16(bcm, BCM43xx_MMIO_GPIO_MASK) | 0x000F);
  1915. mask = 0x0000001F;
  1916. set = 0x0000000F;
  1917. if (bcm->chip_id == 0x4301) {
  1918. mask |= 0x0060;
  1919. set |= 0x0060;
  1920. }
  1921. if (0 /* FIXME: conditional unknown */) {
  1922. bcm43xx_write16(bcm, BCM43xx_MMIO_GPIO_MASK,
  1923. bcm43xx_read16(bcm, BCM43xx_MMIO_GPIO_MASK)
  1924. | 0x0100);
  1925. mask |= 0x0180;
  1926. set |= 0x0180;
  1927. }
  1928. if (bcm->sprom.boardflags & BCM43xx_BFL_PACTRL) {
  1929. bcm43xx_write16(bcm, BCM43xx_MMIO_GPIO_MASK,
  1930. bcm43xx_read16(bcm, BCM43xx_MMIO_GPIO_MASK)
  1931. | 0x0200);
  1932. mask |= 0x0200;
  1933. set |= 0x0200;
  1934. }
  1935. if (bcm->current_core->rev >= 2)
  1936. mask |= 0x0010; /* FIXME: This is redundant. */
  1937. old_core = bcm->current_core;
  1938. err = switch_to_gpio_core(bcm);
  1939. if (err)
  1940. goto out;
  1941. bcm43xx_write32(bcm, BCM43xx_GPIO_CONTROL,
  1942. (bcm43xx_read32(bcm, BCM43xx_GPIO_CONTROL) & mask) | set);
  1943. err = bcm43xx_switch_core(bcm, old_core);
  1944. out:
  1945. return err;
  1946. }
  1947. /* Turn off all GPIO stuff. Call this on module unload, for example. */
  1948. static int bcm43xx_gpio_cleanup(struct bcm43xx_private *bcm)
  1949. {
  1950. struct bcm43xx_coreinfo *old_core;
  1951. int err;
  1952. old_core = bcm->current_core;
  1953. err = switch_to_gpio_core(bcm);
  1954. if (err)
  1955. return err;
  1956. bcm43xx_write32(bcm, BCM43xx_GPIO_CONTROL, 0x00000000);
  1957. err = bcm43xx_switch_core(bcm, old_core);
  1958. assert(err == 0);
  1959. return 0;
  1960. }
  1961. /* http://bcm-specs.sipsolutions.net/EnableMac */
  1962. void bcm43xx_mac_enable(struct bcm43xx_private *bcm)
  1963. {
  1964. bcm->mac_suspended--;
  1965. assert(bcm->mac_suspended >= 0);
  1966. if (bcm->mac_suspended == 0) {
  1967. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
  1968. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD)
  1969. | BCM43xx_SBF_MAC_ENABLED);
  1970. bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON, BCM43xx_IRQ_READY);
  1971. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD); /* dummy read */
  1972. bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON); /* dummy read */
  1973. bcm43xx_power_saving_ctl_bits(bcm, -1, -1);
  1974. }
  1975. }
  1976. /* http://bcm-specs.sipsolutions.net/SuspendMAC */
  1977. void bcm43xx_mac_suspend(struct bcm43xx_private *bcm)
  1978. {
  1979. int i;
  1980. u32 tmp;
  1981. assert(bcm->mac_suspended >= 0);
  1982. if (bcm->mac_suspended == 0) {
  1983. bcm43xx_power_saving_ctl_bits(bcm, -1, 1);
  1984. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
  1985. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD)
  1986. & ~BCM43xx_SBF_MAC_ENABLED);
  1987. bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON); /* dummy read */
  1988. for (i = 10000; i; i--) {
  1989. tmp = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON);
  1990. if (tmp & BCM43xx_IRQ_READY)
  1991. goto out;
  1992. udelay(1);
  1993. }
  1994. printkl(KERN_ERR PFX "MAC suspend failed\n");
  1995. }
  1996. out:
  1997. bcm->mac_suspended++;
  1998. }
  1999. void bcm43xx_set_iwmode(struct bcm43xx_private *bcm,
  2000. int iw_mode)
  2001. {
  2002. unsigned long flags;
  2003. struct net_device *net_dev = bcm->net_dev;
  2004. u32 status;
  2005. u16 value;
  2006. spin_lock_irqsave(&bcm->ieee->lock, flags);
  2007. bcm->ieee->iw_mode = iw_mode;
  2008. spin_unlock_irqrestore(&bcm->ieee->lock, flags);
  2009. if (iw_mode == IW_MODE_MONITOR)
  2010. net_dev->type = ARPHRD_IEEE80211;
  2011. else
  2012. net_dev->type = ARPHRD_ETHER;
  2013. status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  2014. /* Reset status to infrastructured mode */
  2015. status &= ~(BCM43xx_SBF_MODE_AP | BCM43xx_SBF_MODE_MONITOR);
  2016. status &= ~BCM43xx_SBF_MODE_PROMISC;
  2017. status |= BCM43xx_SBF_MODE_NOTADHOC;
  2018. /* FIXME: Always enable promisc mode, until we get the MAC filters working correctly. */
  2019. status |= BCM43xx_SBF_MODE_PROMISC;
  2020. switch (iw_mode) {
  2021. case IW_MODE_MONITOR:
  2022. status |= BCM43xx_SBF_MODE_MONITOR;
  2023. status |= BCM43xx_SBF_MODE_PROMISC;
  2024. break;
  2025. case IW_MODE_ADHOC:
  2026. status &= ~BCM43xx_SBF_MODE_NOTADHOC;
  2027. break;
  2028. case IW_MODE_MASTER:
  2029. status |= BCM43xx_SBF_MODE_AP;
  2030. break;
  2031. case IW_MODE_SECOND:
  2032. case IW_MODE_REPEAT:
  2033. TODO(); /* TODO */
  2034. break;
  2035. case IW_MODE_INFRA:
  2036. /* nothing to be done here... */
  2037. break;
  2038. default:
  2039. dprintk(KERN_ERR PFX "Unknown mode in set_iwmode: %d\n", iw_mode);
  2040. }
  2041. if (net_dev->flags & IFF_PROMISC)
  2042. status |= BCM43xx_SBF_MODE_PROMISC;
  2043. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, status);
  2044. value = 0x0002;
  2045. if (iw_mode != IW_MODE_ADHOC && iw_mode != IW_MODE_MASTER) {
  2046. if (bcm->chip_id == 0x4306 && bcm->chip_rev == 3)
  2047. value = 0x0064;
  2048. else
  2049. value = 0x0032;
  2050. }
  2051. bcm43xx_write16(bcm, 0x0612, value);
  2052. }
  2053. /* This is the opposite of bcm43xx_chip_init() */
  2054. static void bcm43xx_chip_cleanup(struct bcm43xx_private *bcm)
  2055. {
  2056. bcm43xx_radio_turn_off(bcm);
  2057. if (!modparam_noleds)
  2058. bcm43xx_leds_exit(bcm);
  2059. bcm43xx_gpio_cleanup(bcm);
  2060. bcm43xx_release_firmware(bcm, 0);
  2061. }
  2062. /* Initialize the chip
  2063. * http://bcm-specs.sipsolutions.net/ChipInit
  2064. */
  2065. static int bcm43xx_chip_init(struct bcm43xx_private *bcm)
  2066. {
  2067. struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
  2068. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  2069. int err;
  2070. int i, tmp;
  2071. u32 value32;
  2072. u16 value16;
  2073. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
  2074. BCM43xx_SBF_CORE_READY
  2075. | BCM43xx_SBF_400);
  2076. err = bcm43xx_request_firmware(bcm);
  2077. if (err)
  2078. goto out;
  2079. bcm43xx_upload_microcode(bcm);
  2080. bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON, 0xFFFFFFFF);
  2081. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, 0x00020402);
  2082. i = 0;
  2083. while (1) {
  2084. value32 = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON);
  2085. if (value32 == BCM43xx_IRQ_READY)
  2086. break;
  2087. i++;
  2088. if (i >= BCM43xx_IRQWAIT_MAX_RETRIES) {
  2089. printk(KERN_ERR PFX "IRQ_READY timeout\n");
  2090. err = -ENODEV;
  2091. goto err_release_fw;
  2092. }
  2093. udelay(10);
  2094. }
  2095. bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON); /* dummy read */
  2096. value16 = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED,
  2097. BCM43xx_UCODE_REVISION);
  2098. dprintk(KERN_INFO PFX "Microcode rev 0x%x, pl 0x%x "
  2099. "(20%.2i-%.2i-%.2i %.2i:%.2i:%.2i)\n", value16,
  2100. bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED,
  2101. BCM43xx_UCODE_PATCHLEVEL),
  2102. (bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED,
  2103. BCM43xx_UCODE_DATE) >> 12) & 0xf,
  2104. (bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED,
  2105. BCM43xx_UCODE_DATE) >> 8) & 0xf,
  2106. bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED,
  2107. BCM43xx_UCODE_DATE) & 0xff,
  2108. (bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED,
  2109. BCM43xx_UCODE_TIME) >> 11) & 0x1f,
  2110. (bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED,
  2111. BCM43xx_UCODE_TIME) >> 5) & 0x3f,
  2112. bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED,
  2113. BCM43xx_UCODE_TIME) & 0x1f);
  2114. if ( value16 > 0x128 ) {
  2115. printk(KERN_ERR PFX
  2116. "Firmware: no support for microcode extracted "
  2117. "from version 4.x binary drivers.\n");
  2118. err = -EOPNOTSUPP;
  2119. goto err_release_fw;
  2120. }
  2121. err = bcm43xx_gpio_init(bcm);
  2122. if (err)
  2123. goto err_release_fw;
  2124. err = bcm43xx_upload_initvals(bcm);
  2125. if (err)
  2126. goto err_gpio_cleanup;
  2127. bcm43xx_radio_turn_on(bcm);
  2128. bcm->radio_hw_enable = bcm43xx_is_hw_radio_enabled(bcm);
  2129. dprintk(KERN_INFO PFX "Radio %s by hardware\n",
  2130. (bcm->radio_hw_enable == 0) ? "disabled" : "enabled");
  2131. bcm43xx_write16(bcm, 0x03E6, 0x0000);
  2132. err = bcm43xx_phy_init(bcm);
  2133. if (err)
  2134. goto err_radio_off;
  2135. /* Select initial Interference Mitigation. */
  2136. tmp = radio->interfmode;
  2137. radio->interfmode = BCM43xx_RADIO_INTERFMODE_NONE;
  2138. bcm43xx_radio_set_interference_mitigation(bcm, tmp);
  2139. bcm43xx_phy_set_antenna_diversity(bcm);
  2140. bcm43xx_radio_set_txantenna(bcm, BCM43xx_RADIO_TXANTENNA_DEFAULT);
  2141. if (phy->type == BCM43xx_PHYTYPE_B) {
  2142. value16 = bcm43xx_read16(bcm, 0x005E);
  2143. value16 |= 0x0004;
  2144. bcm43xx_write16(bcm, 0x005E, value16);
  2145. }
  2146. bcm43xx_write32(bcm, 0x0100, 0x01000000);
  2147. if (bcm->current_core->rev < 5)
  2148. bcm43xx_write32(bcm, 0x010C, 0x01000000);
  2149. value32 = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  2150. value32 &= ~ BCM43xx_SBF_MODE_NOTADHOC;
  2151. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, value32);
  2152. value32 = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  2153. value32 |= BCM43xx_SBF_MODE_NOTADHOC;
  2154. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, value32);
  2155. value32 = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  2156. value32 |= 0x100000;
  2157. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, value32);
  2158. if (bcm43xx_using_pio(bcm)) {
  2159. bcm43xx_write32(bcm, 0x0210, 0x00000100);
  2160. bcm43xx_write32(bcm, 0x0230, 0x00000100);
  2161. bcm43xx_write32(bcm, 0x0250, 0x00000100);
  2162. bcm43xx_write32(bcm, 0x0270, 0x00000100);
  2163. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0034, 0x0000);
  2164. }
  2165. /* Probe Response Timeout value */
  2166. /* FIXME: Default to 0, has to be set by ioctl probably... :-/ */
  2167. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0074, 0x0000);
  2168. /* Initially set the wireless operation mode. */
  2169. bcm43xx_set_iwmode(bcm, bcm->ieee->iw_mode);
  2170. if (bcm->current_core->rev < 3) {
  2171. bcm43xx_write16(bcm, 0x060E, 0x0000);
  2172. bcm43xx_write16(bcm, 0x0610, 0x8000);
  2173. bcm43xx_write16(bcm, 0x0604, 0x0000);
  2174. bcm43xx_write16(bcm, 0x0606, 0x0200);
  2175. } else {
  2176. bcm43xx_write32(bcm, 0x0188, 0x80000000);
  2177. bcm43xx_write32(bcm, 0x018C, 0x02000000);
  2178. }
  2179. bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON, 0x00004000);
  2180. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA0_IRQ_MASK, 0x0001DC00);
  2181. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA1_IRQ_MASK, 0x0000DC00);
  2182. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA2_IRQ_MASK, 0x0000DC00);
  2183. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA3_IRQ_MASK, 0x0001DC00);
  2184. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA4_IRQ_MASK, 0x0000DC00);
  2185. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA5_IRQ_MASK, 0x0000DC00);
  2186. value32 = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
  2187. value32 |= 0x00100000;
  2188. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, value32);
  2189. bcm43xx_write16(bcm, BCM43xx_MMIO_POWERUP_DELAY, bcm43xx_pctl_powerup_delay(bcm));
  2190. assert(err == 0);
  2191. dprintk(KERN_INFO PFX "Chip initialized\n");
  2192. out:
  2193. return err;
  2194. err_radio_off:
  2195. bcm43xx_radio_turn_off(bcm);
  2196. err_gpio_cleanup:
  2197. bcm43xx_gpio_cleanup(bcm);
  2198. err_release_fw:
  2199. bcm43xx_release_firmware(bcm, 1);
  2200. goto out;
  2201. }
  2202. /* Validate chip access
  2203. * http://bcm-specs.sipsolutions.net/ValidateChipAccess */
  2204. static int bcm43xx_validate_chip(struct bcm43xx_private *bcm)
  2205. {
  2206. u32 value;
  2207. u32 shm_backup;
  2208. shm_backup = bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED, 0x0000);
  2209. bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED, 0x0000, 0xAA5555AA);
  2210. if (bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED, 0x0000) != 0xAA5555AA)
  2211. goto error;
  2212. bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED, 0x0000, 0x55AAAA55);
  2213. if (bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED, 0x0000) != 0x55AAAA55)
  2214. goto error;
  2215. bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED, 0x0000, shm_backup);
  2216. value = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  2217. if ((value | 0x80000000) != 0x80000400)
  2218. goto error;
  2219. value = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON);
  2220. if (value != 0x00000000)
  2221. goto error;
  2222. return 0;
  2223. error:
  2224. printk(KERN_ERR PFX "Failed to validate the chipaccess\n");
  2225. return -ENODEV;
  2226. }
  2227. static void bcm43xx_init_struct_phyinfo(struct bcm43xx_phyinfo *phy)
  2228. {
  2229. /* Initialize a "phyinfo" structure. The structure is already
  2230. * zeroed out.
  2231. * This is called on insmod time to initialize members.
  2232. */
  2233. phy->savedpctlreg = 0xFFFF;
  2234. spin_lock_init(&phy->lock);
  2235. }
  2236. static void bcm43xx_init_struct_radioinfo(struct bcm43xx_radioinfo *radio)
  2237. {
  2238. /* Initialize a "radioinfo" structure. The structure is already
  2239. * zeroed out.
  2240. * This is called on insmod time to initialize members.
  2241. */
  2242. radio->interfmode = BCM43xx_RADIO_INTERFMODE_NONE;
  2243. radio->channel = 0xFF;
  2244. radio->initial_channel = 0xFF;
  2245. }
  2246. static int bcm43xx_probe_cores(struct bcm43xx_private *bcm)
  2247. {
  2248. int err, i;
  2249. int current_core;
  2250. u32 core_vendor, core_id, core_rev;
  2251. u32 sb_id_hi, chip_id_32 = 0;
  2252. u16 pci_device, chip_id_16;
  2253. u8 core_count;
  2254. memset(&bcm->core_chipcommon, 0, sizeof(struct bcm43xx_coreinfo));
  2255. memset(&bcm->core_pci, 0, sizeof(struct bcm43xx_coreinfo));
  2256. memset(&bcm->core_80211, 0, sizeof(struct bcm43xx_coreinfo)
  2257. * BCM43xx_MAX_80211_CORES);
  2258. memset(&bcm->core_80211_ext, 0, sizeof(struct bcm43xx_coreinfo_80211)
  2259. * BCM43xx_MAX_80211_CORES);
  2260. bcm->nr_80211_available = 0;
  2261. bcm->current_core = NULL;
  2262. bcm->active_80211_core = NULL;
  2263. /* map core 0 */
  2264. err = _switch_core(bcm, 0);
  2265. if (err)
  2266. goto out;
  2267. /* fetch sb_id_hi from core information registers */
  2268. sb_id_hi = bcm43xx_read32(bcm, BCM43xx_CIR_SB_ID_HI);
  2269. core_id = (sb_id_hi & 0x8FF0) >> 4;
  2270. core_rev = (sb_id_hi & 0x7000) >> 8;
  2271. core_rev |= (sb_id_hi & 0xF);
  2272. core_vendor = (sb_id_hi & 0xFFFF0000) >> 16;
  2273. /* if present, chipcommon is always core 0; read the chipid from it */
  2274. if (core_id == BCM43xx_COREID_CHIPCOMMON) {
  2275. chip_id_32 = bcm43xx_read32(bcm, 0);
  2276. chip_id_16 = chip_id_32 & 0xFFFF;
  2277. bcm->core_chipcommon.available = 1;
  2278. bcm->core_chipcommon.id = core_id;
  2279. bcm->core_chipcommon.rev = core_rev;
  2280. bcm->core_chipcommon.index = 0;
  2281. /* While we are at it, also read the capabilities. */
  2282. bcm->chipcommon_capabilities = bcm43xx_read32(bcm, BCM43xx_CHIPCOMMON_CAPABILITIES);
  2283. } else {
  2284. /* without a chipCommon, use a hard coded table. */
  2285. pci_device = bcm->pci_dev->device;
  2286. if (pci_device == 0x4301)
  2287. chip_id_16 = 0x4301;
  2288. else if ((pci_device >= 0x4305) && (pci_device <= 0x4307))
  2289. chip_id_16 = 0x4307;
  2290. else if ((pci_device >= 0x4402) && (pci_device <= 0x4403))
  2291. chip_id_16 = 0x4402;
  2292. else if ((pci_device >= 0x4610) && (pci_device <= 0x4615))
  2293. chip_id_16 = 0x4610;
  2294. else if ((pci_device >= 0x4710) && (pci_device <= 0x4715))
  2295. chip_id_16 = 0x4710;
  2296. #ifdef CONFIG_BCM947XX
  2297. else if ((pci_device >= 0x4320) && (pci_device <= 0x4325))
  2298. chip_id_16 = 0x4309;
  2299. #endif
  2300. else {
  2301. printk(KERN_ERR PFX "Could not determine Chip ID\n");
  2302. return -ENODEV;
  2303. }
  2304. }
  2305. /* ChipCommon with Core Rev >=4 encodes number of cores,
  2306. * otherwise consult hardcoded table */
  2307. if ((core_id == BCM43xx_COREID_CHIPCOMMON) && (core_rev >= 4)) {
  2308. core_count = (chip_id_32 & 0x0F000000) >> 24;
  2309. } else {
  2310. switch (chip_id_16) {
  2311. case 0x4610:
  2312. case 0x4704:
  2313. case 0x4710:
  2314. core_count = 9;
  2315. break;
  2316. case 0x4310:
  2317. core_count = 8;
  2318. break;
  2319. case 0x5365:
  2320. core_count = 7;
  2321. break;
  2322. case 0x4306:
  2323. core_count = 6;
  2324. break;
  2325. case 0x4301:
  2326. case 0x4307:
  2327. core_count = 5;
  2328. break;
  2329. case 0x4402:
  2330. core_count = 3;
  2331. break;
  2332. default:
  2333. /* SOL if we get here */
  2334. assert(0);
  2335. core_count = 1;
  2336. }
  2337. }
  2338. bcm->chip_id = chip_id_16;
  2339. bcm->chip_rev = (chip_id_32 & 0x000F0000) >> 16;
  2340. bcm->chip_package = (chip_id_32 & 0x00F00000) >> 20;
  2341. dprintk(KERN_INFO PFX "Chip ID 0x%x, rev 0x%x\n",
  2342. bcm->chip_id, bcm->chip_rev);
  2343. dprintk(KERN_INFO PFX "Number of cores: %d\n", core_count);
  2344. if (bcm->core_chipcommon.available) {
  2345. dprintk(KERN_INFO PFX "Core 0: ID 0x%x, rev 0x%x, vendor 0x%x\n",
  2346. core_id, core_rev, core_vendor);
  2347. current_core = 1;
  2348. } else
  2349. current_core = 0;
  2350. for ( ; current_core < core_count; current_core++) {
  2351. struct bcm43xx_coreinfo *core;
  2352. struct bcm43xx_coreinfo_80211 *ext_80211;
  2353. err = _switch_core(bcm, current_core);
  2354. if (err)
  2355. goto out;
  2356. /* Gather information */
  2357. /* fetch sb_id_hi from core information registers */
  2358. sb_id_hi = bcm43xx_read32(bcm, BCM43xx_CIR_SB_ID_HI);
  2359. /* extract core_id, core_rev, core_vendor */
  2360. core_id = (sb_id_hi & 0x8FF0) >> 4;
  2361. core_rev = ((sb_id_hi & 0xF) | ((sb_id_hi & 0x7000) >> 8));
  2362. core_vendor = (sb_id_hi & 0xFFFF0000) >> 16;
  2363. dprintk(KERN_INFO PFX "Core %d: ID 0x%x, rev 0x%x, vendor 0x%x\n",
  2364. current_core, core_id, core_rev, core_vendor);
  2365. core = NULL;
  2366. switch (core_id) {
  2367. case BCM43xx_COREID_PCI:
  2368. case BCM43xx_COREID_PCIE:
  2369. core = &bcm->core_pci;
  2370. if (core->available) {
  2371. printk(KERN_WARNING PFX "Multiple PCI cores found.\n");
  2372. continue;
  2373. }
  2374. break;
  2375. case BCM43xx_COREID_80211:
  2376. for (i = 0; i < BCM43xx_MAX_80211_CORES; i++) {
  2377. core = &(bcm->core_80211[i]);
  2378. ext_80211 = &(bcm->core_80211_ext[i]);
  2379. if (!core->available)
  2380. break;
  2381. core = NULL;
  2382. }
  2383. if (!core) {
  2384. printk(KERN_WARNING PFX "More than %d cores of type 802.11 found.\n",
  2385. BCM43xx_MAX_80211_CORES);
  2386. continue;
  2387. }
  2388. if (i != 0) {
  2389. /* More than one 80211 core is only supported
  2390. * by special chips.
  2391. * There are chips with two 80211 cores, but with
  2392. * dangling pins on the second core. Be careful
  2393. * and ignore these cores here.
  2394. */
  2395. if (1 /*bcm->pci_dev->device != 0x4324*/ ) {
  2396. /* TODO: A PHY */
  2397. dprintk(KERN_INFO PFX "Ignoring additional 802.11a core.\n");
  2398. continue;
  2399. }
  2400. }
  2401. switch (core_rev) {
  2402. case 2:
  2403. case 4:
  2404. case 5:
  2405. case 6:
  2406. case 7:
  2407. case 9:
  2408. case 10:
  2409. break;
  2410. default:
  2411. printk(KERN_WARNING PFX
  2412. "Unsupported 80211 core revision %u\n",
  2413. core_rev);
  2414. }
  2415. bcm->nr_80211_available++;
  2416. core->priv = ext_80211;
  2417. bcm43xx_init_struct_phyinfo(&ext_80211->phy);
  2418. bcm43xx_init_struct_radioinfo(&ext_80211->radio);
  2419. break;
  2420. case BCM43xx_COREID_CHIPCOMMON:
  2421. printk(KERN_WARNING PFX "Multiple CHIPCOMMON cores found.\n");
  2422. break;
  2423. }
  2424. if (core) {
  2425. core->available = 1;
  2426. core->id = core_id;
  2427. core->rev = core_rev;
  2428. core->index = current_core;
  2429. }
  2430. }
  2431. if (!bcm->core_80211[0].available) {
  2432. printk(KERN_ERR PFX "Error: No 80211 core found!\n");
  2433. err = -ENODEV;
  2434. goto out;
  2435. }
  2436. err = bcm43xx_switch_core(bcm, &bcm->core_80211[0]);
  2437. assert(err == 0);
  2438. out:
  2439. return err;
  2440. }
  2441. static void bcm43xx_gen_bssid(struct bcm43xx_private *bcm)
  2442. {
  2443. const u8 *mac = (const u8*)(bcm->net_dev->dev_addr);
  2444. u8 *bssid = bcm->ieee->bssid;
  2445. switch (bcm->ieee->iw_mode) {
  2446. case IW_MODE_ADHOC:
  2447. random_ether_addr(bssid);
  2448. break;
  2449. case IW_MODE_MASTER:
  2450. case IW_MODE_INFRA:
  2451. case IW_MODE_REPEAT:
  2452. case IW_MODE_SECOND:
  2453. case IW_MODE_MONITOR:
  2454. memcpy(bssid, mac, ETH_ALEN);
  2455. break;
  2456. default:
  2457. assert(0);
  2458. }
  2459. }
  2460. static void bcm43xx_rate_memory_write(struct bcm43xx_private *bcm,
  2461. u16 rate,
  2462. int is_ofdm)
  2463. {
  2464. u16 offset;
  2465. if (is_ofdm) {
  2466. offset = 0x480;
  2467. offset += (bcm43xx_plcp_get_ratecode_ofdm(rate) & 0x000F) * 2;
  2468. }
  2469. else {
  2470. offset = 0x4C0;
  2471. offset += (bcm43xx_plcp_get_ratecode_cck(rate) & 0x000F) * 2;
  2472. }
  2473. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, offset + 0x20,
  2474. bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, offset));
  2475. }
  2476. static void bcm43xx_rate_memory_init(struct bcm43xx_private *bcm)
  2477. {
  2478. switch (bcm43xx_current_phy(bcm)->type) {
  2479. case BCM43xx_PHYTYPE_A:
  2480. case BCM43xx_PHYTYPE_G:
  2481. bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_6MB, 1);
  2482. bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_12MB, 1);
  2483. bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_18MB, 1);
  2484. bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_24MB, 1);
  2485. bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_36MB, 1);
  2486. bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_48MB, 1);
  2487. bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_54MB, 1);
  2488. case BCM43xx_PHYTYPE_B:
  2489. bcm43xx_rate_memory_write(bcm, IEEE80211_CCK_RATE_1MB, 0);
  2490. bcm43xx_rate_memory_write(bcm, IEEE80211_CCK_RATE_2MB, 0);
  2491. bcm43xx_rate_memory_write(bcm, IEEE80211_CCK_RATE_5MB, 0);
  2492. bcm43xx_rate_memory_write(bcm, IEEE80211_CCK_RATE_11MB, 0);
  2493. break;
  2494. default:
  2495. assert(0);
  2496. }
  2497. }
  2498. static void bcm43xx_wireless_core_cleanup(struct bcm43xx_private *bcm)
  2499. {
  2500. bcm43xx_chip_cleanup(bcm);
  2501. bcm43xx_pio_free(bcm);
  2502. bcm43xx_dma_free(bcm);
  2503. bcm->current_core->initialized = 0;
  2504. }
  2505. /* http://bcm-specs.sipsolutions.net/80211Init */
  2506. static int bcm43xx_wireless_core_init(struct bcm43xx_private *bcm,
  2507. int active_wlcore)
  2508. {
  2509. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  2510. struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
  2511. u32 ucodeflags;
  2512. int err;
  2513. u32 sbimconfiglow;
  2514. u8 limit;
  2515. if (bcm->core_pci.rev <= 5 && bcm->core_pci.id != BCM43xx_COREID_PCIE) {
  2516. sbimconfiglow = bcm43xx_read32(bcm, BCM43xx_CIR_SBIMCONFIGLOW);
  2517. sbimconfiglow &= ~ BCM43xx_SBIMCONFIGLOW_REQUEST_TOUT_MASK;
  2518. sbimconfiglow &= ~ BCM43xx_SBIMCONFIGLOW_SERVICE_TOUT_MASK;
  2519. if (bcm->bustype == BCM43xx_BUSTYPE_PCI)
  2520. sbimconfiglow |= 0x32;
  2521. else
  2522. sbimconfiglow |= 0x53;
  2523. bcm43xx_write32(bcm, BCM43xx_CIR_SBIMCONFIGLOW, sbimconfiglow);
  2524. }
  2525. bcm43xx_phy_calibrate(bcm);
  2526. err = bcm43xx_chip_init(bcm);
  2527. if (err)
  2528. goto out;
  2529. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0016, bcm->current_core->rev);
  2530. ucodeflags = bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED, BCM43xx_UCODEFLAGS_OFFSET);
  2531. if (0 /*FIXME: which condition has to be used here? */)
  2532. ucodeflags |= 0x00000010;
  2533. /* HW decryption needs to be set now */
  2534. ucodeflags |= 0x40000000;
  2535. if (phy->type == BCM43xx_PHYTYPE_G) {
  2536. ucodeflags |= BCM43xx_UCODEFLAG_UNKBGPHY;
  2537. if (phy->rev == 1)
  2538. ucodeflags |= BCM43xx_UCODEFLAG_UNKGPHY;
  2539. if (bcm->sprom.boardflags & BCM43xx_BFL_PACTRL)
  2540. ucodeflags |= BCM43xx_UCODEFLAG_UNKPACTRL;
  2541. } else if (phy->type == BCM43xx_PHYTYPE_B) {
  2542. ucodeflags |= BCM43xx_UCODEFLAG_UNKBGPHY;
  2543. if (phy->rev >= 2 && radio->version == 0x2050)
  2544. ucodeflags &= ~BCM43xx_UCODEFLAG_UNKGPHY;
  2545. }
  2546. if (ucodeflags != bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED,
  2547. BCM43xx_UCODEFLAGS_OFFSET)) {
  2548. bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED,
  2549. BCM43xx_UCODEFLAGS_OFFSET, ucodeflags);
  2550. }
  2551. /* Short/Long Retry Limit.
  2552. * The retry-limit is a 4-bit counter. Enforce this to avoid overflowing
  2553. * the chip-internal counter.
  2554. */
  2555. limit = limit_value(modparam_short_retry, 0, 0xF);
  2556. bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0006, limit);
  2557. limit = limit_value(modparam_long_retry, 0, 0xF);
  2558. bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0007, limit);
  2559. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0044, 3);
  2560. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0046, 2);
  2561. bcm43xx_rate_memory_init(bcm);
  2562. /* Minimum Contention Window */
  2563. if (phy->type == BCM43xx_PHYTYPE_B)
  2564. bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0003, 0x0000001f);
  2565. else
  2566. bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0003, 0x0000000f);
  2567. /* Maximum Contention Window */
  2568. bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0004, 0x000003ff);
  2569. bcm43xx_gen_bssid(bcm);
  2570. bcm43xx_write_mac_bssid_templates(bcm);
  2571. if (bcm->current_core->rev >= 5)
  2572. bcm43xx_write16(bcm, 0x043C, 0x000C);
  2573. if (active_wlcore) {
  2574. if (bcm43xx_using_pio(bcm)) {
  2575. err = bcm43xx_pio_init(bcm);
  2576. } else {
  2577. err = bcm43xx_dma_init(bcm);
  2578. if (err == -ENOSYS)
  2579. err = bcm43xx_pio_init(bcm);
  2580. }
  2581. if (err)
  2582. goto err_chip_cleanup;
  2583. }
  2584. bcm43xx_write16(bcm, 0x0612, 0x0050);
  2585. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0416, 0x0050);
  2586. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0414, 0x01F4);
  2587. if (active_wlcore) {
  2588. if (radio->initial_channel != 0xFF)
  2589. bcm43xx_radio_selectchannel(bcm, radio->initial_channel, 0);
  2590. }
  2591. /* Don't enable MAC/IRQ here, as it will race with the IRQ handler.
  2592. * We enable it later.
  2593. */
  2594. bcm->current_core->initialized = 1;
  2595. out:
  2596. return err;
  2597. err_chip_cleanup:
  2598. bcm43xx_chip_cleanup(bcm);
  2599. goto out;
  2600. }
  2601. static int bcm43xx_chipset_attach(struct bcm43xx_private *bcm)
  2602. {
  2603. int err;
  2604. u16 pci_status;
  2605. err = bcm43xx_pctl_set_crystal(bcm, 1);
  2606. if (err)
  2607. goto out;
  2608. err = bcm43xx_pci_read_config16(bcm, PCI_STATUS, &pci_status);
  2609. if (err)
  2610. goto out;
  2611. err = bcm43xx_pci_write_config16(bcm, PCI_STATUS, pci_status & ~PCI_STATUS_SIG_TARGET_ABORT);
  2612. out:
  2613. return err;
  2614. }
  2615. static void bcm43xx_chipset_detach(struct bcm43xx_private *bcm)
  2616. {
  2617. bcm43xx_pctl_set_clock(bcm, BCM43xx_PCTL_CLK_SLOW);
  2618. bcm43xx_pctl_set_crystal(bcm, 0);
  2619. }
  2620. static void bcm43xx_pcicore_broadcast_value(struct bcm43xx_private *bcm,
  2621. u32 address,
  2622. u32 data)
  2623. {
  2624. bcm43xx_write32(bcm, BCM43xx_PCICORE_BCAST_ADDR, address);
  2625. bcm43xx_write32(bcm, BCM43xx_PCICORE_BCAST_DATA, data);
  2626. }
  2627. static int bcm43xx_pcicore_commit_settings(struct bcm43xx_private *bcm)
  2628. {
  2629. int err = 0;
  2630. bcm->irq_savedstate = bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
  2631. if (bcm->core_chipcommon.available) {
  2632. err = bcm43xx_switch_core(bcm, &bcm->core_chipcommon);
  2633. if (err)
  2634. goto out;
  2635. bcm43xx_pcicore_broadcast_value(bcm, 0xfd8, 0x00000000);
  2636. /* this function is always called when a PCI core is mapped */
  2637. err = bcm43xx_switch_core(bcm, &bcm->core_pci);
  2638. if (err)
  2639. goto out;
  2640. } else
  2641. bcm43xx_pcicore_broadcast_value(bcm, 0xfd8, 0x00000000);
  2642. bcm43xx_interrupt_enable(bcm, bcm->irq_savedstate);
  2643. out:
  2644. return err;
  2645. }
  2646. static u32 bcm43xx_pcie_reg_read(struct bcm43xx_private *bcm, u32 address)
  2647. {
  2648. bcm43xx_write32(bcm, BCM43xx_PCIECORE_REG_ADDR, address);
  2649. return bcm43xx_read32(bcm, BCM43xx_PCIECORE_REG_DATA);
  2650. }
  2651. static void bcm43xx_pcie_reg_write(struct bcm43xx_private *bcm, u32 address,
  2652. u32 data)
  2653. {
  2654. bcm43xx_write32(bcm, BCM43xx_PCIECORE_REG_ADDR, address);
  2655. bcm43xx_write32(bcm, BCM43xx_PCIECORE_REG_DATA, data);
  2656. }
  2657. static void bcm43xx_pcie_mdio_write(struct bcm43xx_private *bcm, u8 dev, u8 reg,
  2658. u16 data)
  2659. {
  2660. int i;
  2661. bcm43xx_write32(bcm, BCM43xx_PCIECORE_MDIO_CTL, 0x0082);
  2662. bcm43xx_write32(bcm, BCM43xx_PCIECORE_MDIO_DATA, BCM43xx_PCIE_MDIO_ST |
  2663. BCM43xx_PCIE_MDIO_WT | (dev << BCM43xx_PCIE_MDIO_DEV) |
  2664. (reg << BCM43xx_PCIE_MDIO_REG) | BCM43xx_PCIE_MDIO_TA |
  2665. data);
  2666. udelay(10);
  2667. for (i = 0; i < 10; i++) {
  2668. if (bcm43xx_read32(bcm, BCM43xx_PCIECORE_MDIO_CTL) &
  2669. BCM43xx_PCIE_MDIO_TC)
  2670. break;
  2671. msleep(1);
  2672. }
  2673. bcm43xx_write32(bcm, BCM43xx_PCIECORE_MDIO_CTL, 0);
  2674. }
  2675. /* Make an I/O Core usable. "core_mask" is the bitmask of the cores to enable.
  2676. * To enable core 0, pass a core_mask of 1<<0
  2677. */
  2678. static int bcm43xx_setup_backplane_pci_connection(struct bcm43xx_private *bcm,
  2679. u32 core_mask)
  2680. {
  2681. u32 backplane_flag_nr;
  2682. u32 value;
  2683. struct bcm43xx_coreinfo *old_core;
  2684. int err = 0;
  2685. value = bcm43xx_read32(bcm, BCM43xx_CIR_SBTPSFLAG);
  2686. backplane_flag_nr = value & BCM43xx_BACKPLANE_FLAG_NR_MASK;
  2687. old_core = bcm->current_core;
  2688. err = bcm43xx_switch_core(bcm, &bcm->core_pci);
  2689. if (err)
  2690. goto out;
  2691. if (bcm->current_core->rev < 6 &&
  2692. bcm->current_core->id == BCM43xx_COREID_PCI) {
  2693. value = bcm43xx_read32(bcm, BCM43xx_CIR_SBINTVEC);
  2694. value |= (1 << backplane_flag_nr);
  2695. bcm43xx_write32(bcm, BCM43xx_CIR_SBINTVEC, value);
  2696. } else {
  2697. err = bcm43xx_pci_read_config32(bcm, BCM43xx_PCICFG_ICR, &value);
  2698. if (err) {
  2699. printk(KERN_ERR PFX "Error: ICR setup failure!\n");
  2700. goto out_switch_back;
  2701. }
  2702. value |= core_mask << 8;
  2703. err = bcm43xx_pci_write_config32(bcm, BCM43xx_PCICFG_ICR, value);
  2704. if (err) {
  2705. printk(KERN_ERR PFX "Error: ICR setup failure!\n");
  2706. goto out_switch_back;
  2707. }
  2708. }
  2709. if (bcm->current_core->id == BCM43xx_COREID_PCI) {
  2710. value = bcm43xx_read32(bcm, BCM43xx_PCICORE_SBTOPCI2);
  2711. value |= BCM43xx_SBTOPCI2_PREFETCH | BCM43xx_SBTOPCI2_BURST;
  2712. bcm43xx_write32(bcm, BCM43xx_PCICORE_SBTOPCI2, value);
  2713. if (bcm->current_core->rev < 5) {
  2714. value = bcm43xx_read32(bcm, BCM43xx_CIR_SBIMCONFIGLOW);
  2715. value |= (2 << BCM43xx_SBIMCONFIGLOW_SERVICE_TOUT_SHIFT)
  2716. & BCM43xx_SBIMCONFIGLOW_SERVICE_TOUT_MASK;
  2717. value |= (3 << BCM43xx_SBIMCONFIGLOW_REQUEST_TOUT_SHIFT)
  2718. & BCM43xx_SBIMCONFIGLOW_REQUEST_TOUT_MASK;
  2719. bcm43xx_write32(bcm, BCM43xx_CIR_SBIMCONFIGLOW, value);
  2720. err = bcm43xx_pcicore_commit_settings(bcm);
  2721. assert(err == 0);
  2722. } else if (bcm->current_core->rev >= 11) {
  2723. value = bcm43xx_read32(bcm, BCM43xx_PCICORE_SBTOPCI2);
  2724. value |= BCM43xx_SBTOPCI2_MEMREAD_MULTI;
  2725. bcm43xx_write32(bcm, BCM43xx_PCICORE_SBTOPCI2, value);
  2726. }
  2727. } else {
  2728. if (bcm->current_core->rev == 0 || bcm->current_core->rev == 1) {
  2729. value = bcm43xx_pcie_reg_read(bcm, BCM43xx_PCIE_TLP_WORKAROUND);
  2730. value |= 0x8;
  2731. bcm43xx_pcie_reg_write(bcm, BCM43xx_PCIE_TLP_WORKAROUND,
  2732. value);
  2733. }
  2734. if (bcm->current_core->rev == 0) {
  2735. bcm43xx_pcie_mdio_write(bcm, BCM43xx_MDIO_SERDES_RX,
  2736. BCM43xx_SERDES_RXTIMER, 0x8128);
  2737. bcm43xx_pcie_mdio_write(bcm, BCM43xx_MDIO_SERDES_RX,
  2738. BCM43xx_SERDES_CDR, 0x0100);
  2739. bcm43xx_pcie_mdio_write(bcm, BCM43xx_MDIO_SERDES_RX,
  2740. BCM43xx_SERDES_CDR_BW, 0x1466);
  2741. } else if (bcm->current_core->rev == 1) {
  2742. value = bcm43xx_pcie_reg_read(bcm, BCM43xx_PCIE_DLLP_LINKCTL);
  2743. value |= 0x40;
  2744. bcm43xx_pcie_reg_write(bcm, BCM43xx_PCIE_DLLP_LINKCTL,
  2745. value);
  2746. }
  2747. }
  2748. out_switch_back:
  2749. err = bcm43xx_switch_core(bcm, old_core);
  2750. out:
  2751. return err;
  2752. }
  2753. static void bcm43xx_periodic_every120sec(struct bcm43xx_private *bcm)
  2754. {
  2755. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  2756. if (phy->type != BCM43xx_PHYTYPE_G || phy->rev < 2)
  2757. return;
  2758. bcm43xx_mac_suspend(bcm);
  2759. bcm43xx_phy_lo_g_measure(bcm);
  2760. bcm43xx_mac_enable(bcm);
  2761. }
  2762. static void bcm43xx_periodic_every60sec(struct bcm43xx_private *bcm)
  2763. {
  2764. bcm43xx_phy_lo_mark_all_unused(bcm);
  2765. if (bcm->sprom.boardflags & BCM43xx_BFL_RSSI) {
  2766. bcm43xx_mac_suspend(bcm);
  2767. bcm43xx_calc_nrssi_slope(bcm);
  2768. bcm43xx_mac_enable(bcm);
  2769. }
  2770. }
  2771. static void bcm43xx_periodic_every30sec(struct bcm43xx_private *bcm)
  2772. {
  2773. /* Update device statistics. */
  2774. bcm43xx_calculate_link_quality(bcm);
  2775. }
  2776. static void bcm43xx_periodic_every15sec(struct bcm43xx_private *bcm)
  2777. {
  2778. bcm43xx_phy_xmitpower(bcm); //FIXME: unless scanning?
  2779. //TODO for APHY (temperature?)
  2780. }
  2781. static void bcm43xx_periodic_every1sec(struct bcm43xx_private *bcm)
  2782. {
  2783. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  2784. struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
  2785. int radio_hw_enable;
  2786. /* check if radio hardware enabled status changed */
  2787. radio_hw_enable = bcm43xx_is_hw_radio_enabled(bcm);
  2788. if (unlikely(bcm->radio_hw_enable != radio_hw_enable)) {
  2789. bcm->radio_hw_enable = radio_hw_enable;
  2790. dprintk(KERN_INFO PFX "Radio hardware status changed to %s\n",
  2791. (radio_hw_enable == 0) ? "disabled" : "enabled");
  2792. bcm43xx_leds_update(bcm, 0);
  2793. }
  2794. if (phy->type == BCM43xx_PHYTYPE_G) {
  2795. //TODO: update_aci_moving_average
  2796. if (radio->aci_enable && radio->aci_wlan_automatic) {
  2797. bcm43xx_mac_suspend(bcm);
  2798. if (!radio->aci_enable && 1 /*TODO: not scanning? */) {
  2799. if (0 /*TODO: bunch of conditions*/) {
  2800. bcm43xx_radio_set_interference_mitigation(bcm,
  2801. BCM43xx_RADIO_INTERFMODE_MANUALWLAN);
  2802. }
  2803. } else if (1/*TODO*/) {
  2804. /*
  2805. if ((aci_average > 1000) && !(bcm43xx_radio_aci_scan(bcm))) {
  2806. bcm43xx_radio_set_interference_mitigation(bcm,
  2807. BCM43xx_RADIO_INTERFMODE_NONE);
  2808. }
  2809. */
  2810. }
  2811. bcm43xx_mac_enable(bcm);
  2812. } else if (radio->interfmode == BCM43xx_RADIO_INTERFMODE_NONWLAN &&
  2813. phy->rev == 1) {
  2814. //TODO: implement rev1 workaround
  2815. }
  2816. }
  2817. }
  2818. static void do_periodic_work(struct bcm43xx_private *bcm)
  2819. {
  2820. if (bcm->periodic_state % 120 == 0)
  2821. bcm43xx_periodic_every120sec(bcm);
  2822. if (bcm->periodic_state % 60 == 0)
  2823. bcm43xx_periodic_every60sec(bcm);
  2824. if (bcm->periodic_state % 30 == 0)
  2825. bcm43xx_periodic_every30sec(bcm);
  2826. if (bcm->periodic_state % 15 == 0)
  2827. bcm43xx_periodic_every15sec(bcm);
  2828. bcm43xx_periodic_every1sec(bcm);
  2829. schedule_delayed_work(&bcm->periodic_work, HZ);
  2830. }
  2831. static void bcm43xx_periodic_work_handler(struct work_struct *work)
  2832. {
  2833. struct bcm43xx_private *bcm =
  2834. container_of(work, struct bcm43xx_private, periodic_work.work);
  2835. struct net_device *net_dev = bcm->net_dev;
  2836. unsigned long flags;
  2837. u32 savedirqs = 0;
  2838. unsigned long orig_trans_start = 0;
  2839. mutex_lock(&bcm->mutex);
  2840. if (unlikely(bcm->periodic_state % 60 == 0)) {
  2841. /* Periodic work will take a long time, so we want it to
  2842. * be preemtible.
  2843. */
  2844. netif_tx_lock_bh(net_dev);
  2845. /* We must fake a started transmission here, as we are going to
  2846. * disable TX. If we wouldn't fake a TX, it would be possible to
  2847. * trigger the netdev watchdog, if the last real TX is already
  2848. * some time on the past (slightly less than 5secs)
  2849. */
  2850. orig_trans_start = net_dev->trans_start;
  2851. net_dev->trans_start = jiffies;
  2852. netif_stop_queue(net_dev);
  2853. netif_tx_unlock_bh(net_dev);
  2854. spin_lock_irqsave(&bcm->irq_lock, flags);
  2855. bcm43xx_mac_suspend(bcm);
  2856. if (bcm43xx_using_pio(bcm))
  2857. bcm43xx_pio_freeze_txqueues(bcm);
  2858. savedirqs = bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
  2859. spin_unlock_irqrestore(&bcm->irq_lock, flags);
  2860. bcm43xx_synchronize_irq(bcm);
  2861. } else {
  2862. /* Periodic work should take short time, so we want low
  2863. * locking overhead.
  2864. */
  2865. spin_lock_irqsave(&bcm->irq_lock, flags);
  2866. }
  2867. do_periodic_work(bcm);
  2868. if (unlikely(bcm->periodic_state % 60 == 0)) {
  2869. spin_lock_irqsave(&bcm->irq_lock, flags);
  2870. tasklet_enable(&bcm->isr_tasklet);
  2871. bcm43xx_interrupt_enable(bcm, savedirqs);
  2872. if (bcm43xx_using_pio(bcm))
  2873. bcm43xx_pio_thaw_txqueues(bcm);
  2874. bcm43xx_mac_enable(bcm);
  2875. netif_wake_queue(bcm->net_dev);
  2876. net_dev->trans_start = orig_trans_start;
  2877. }
  2878. mmiowb();
  2879. bcm->periodic_state++;
  2880. spin_unlock_irqrestore(&bcm->irq_lock, flags);
  2881. mutex_unlock(&bcm->mutex);
  2882. }
  2883. void bcm43xx_periodic_tasks_delete(struct bcm43xx_private *bcm)
  2884. {
  2885. cancel_rearming_delayed_work(&bcm->periodic_work);
  2886. }
  2887. void bcm43xx_periodic_tasks_setup(struct bcm43xx_private *bcm)
  2888. {
  2889. struct delayed_work *work = &bcm->periodic_work;
  2890. assert(bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED);
  2891. INIT_DELAYED_WORK(work, bcm43xx_periodic_work_handler);
  2892. schedule_delayed_work(work, 0);
  2893. }
  2894. static void bcm43xx_security_init(struct bcm43xx_private *bcm)
  2895. {
  2896. bcm->security_offset = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED,
  2897. 0x0056) * 2;
  2898. bcm43xx_clear_keys(bcm);
  2899. }
  2900. static int bcm43xx_rng_read(struct hwrng *rng, u32 *data)
  2901. {
  2902. struct bcm43xx_private *bcm = (struct bcm43xx_private *)rng->priv;
  2903. unsigned long flags;
  2904. spin_lock_irqsave(&(bcm)->irq_lock, flags);
  2905. *data = bcm43xx_read16(bcm, BCM43xx_MMIO_RNG);
  2906. spin_unlock_irqrestore(&(bcm)->irq_lock, flags);
  2907. return (sizeof(u16));
  2908. }
  2909. static void bcm43xx_rng_exit(struct bcm43xx_private *bcm)
  2910. {
  2911. hwrng_unregister(&bcm->rng);
  2912. }
  2913. static int bcm43xx_rng_init(struct bcm43xx_private *bcm)
  2914. {
  2915. int err;
  2916. snprintf(bcm->rng_name, ARRAY_SIZE(bcm->rng_name),
  2917. "%s_%s", KBUILD_MODNAME, bcm->net_dev->name);
  2918. bcm->rng.name = bcm->rng_name;
  2919. bcm->rng.data_read = bcm43xx_rng_read;
  2920. bcm->rng.priv = (unsigned long)bcm;
  2921. err = hwrng_register(&bcm->rng);
  2922. if (err)
  2923. printk(KERN_ERR PFX "RNG init failed (%d)\n", err);
  2924. return err;
  2925. }
  2926. static int bcm43xx_shutdown_all_wireless_cores(struct bcm43xx_private *bcm)
  2927. {
  2928. int ret = 0;
  2929. int i, err;
  2930. struct bcm43xx_coreinfo *core;
  2931. bcm43xx_set_status(bcm, BCM43xx_STAT_SHUTTINGDOWN);
  2932. for (i = 0; i < bcm->nr_80211_available; i++) {
  2933. core = &(bcm->core_80211[i]);
  2934. assert(core->available);
  2935. if (!core->initialized)
  2936. continue;
  2937. err = bcm43xx_switch_core(bcm, core);
  2938. if (err) {
  2939. dprintk(KERN_ERR PFX "shutdown_all_wireless_cores "
  2940. "switch_core failed (%d)\n", err);
  2941. ret = err;
  2942. continue;
  2943. }
  2944. bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
  2945. bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON); /* dummy read */
  2946. bcm43xx_wireless_core_cleanup(bcm);
  2947. if (core == bcm->active_80211_core)
  2948. bcm->active_80211_core = NULL;
  2949. }
  2950. free_irq(bcm->irq, bcm);
  2951. bcm43xx_set_status(bcm, BCM43xx_STAT_UNINIT);
  2952. return ret;
  2953. }
  2954. /* This is the opposite of bcm43xx_init_board() */
  2955. static void bcm43xx_free_board(struct bcm43xx_private *bcm)
  2956. {
  2957. bcm43xx_rng_exit(bcm);
  2958. bcm43xx_sysfs_unregister(bcm);
  2959. bcm43xx_periodic_tasks_delete(bcm);
  2960. mutex_lock(&(bcm)->mutex);
  2961. bcm43xx_shutdown_all_wireless_cores(bcm);
  2962. bcm43xx_pctl_set_crystal(bcm, 0);
  2963. mutex_unlock(&(bcm)->mutex);
  2964. }
  2965. static void prepare_phydata_for_init(struct bcm43xx_phyinfo *phy)
  2966. {
  2967. phy->antenna_diversity = 0xFFFF;
  2968. memset(phy->minlowsig, 0xFF, sizeof(phy->minlowsig));
  2969. memset(phy->minlowsigpos, 0, sizeof(phy->minlowsigpos));
  2970. /* Flags */
  2971. phy->calibrated = 0;
  2972. phy->is_locked = 0;
  2973. if (phy->_lo_pairs) {
  2974. memset(phy->_lo_pairs, 0,
  2975. sizeof(struct bcm43xx_lopair) * BCM43xx_LO_COUNT);
  2976. }
  2977. memset(phy->loopback_gain, 0, sizeof(phy->loopback_gain));
  2978. }
  2979. static void prepare_radiodata_for_init(struct bcm43xx_private *bcm,
  2980. struct bcm43xx_radioinfo *radio)
  2981. {
  2982. int i;
  2983. /* Set default attenuation values. */
  2984. radio->baseband_atten = bcm43xx_default_baseband_attenuation(bcm);
  2985. radio->radio_atten = bcm43xx_default_radio_attenuation(bcm);
  2986. radio->txctl1 = bcm43xx_default_txctl1(bcm);
  2987. radio->txctl2 = 0xFFFF;
  2988. radio->txpwr_offset = 0;
  2989. /* NRSSI */
  2990. radio->nrssislope = 0;
  2991. for (i = 0; i < ARRAY_SIZE(radio->nrssi); i++)
  2992. radio->nrssi[i] = -1000;
  2993. for (i = 0; i < ARRAY_SIZE(radio->nrssi_lt); i++)
  2994. radio->nrssi_lt[i] = i;
  2995. radio->lofcal = 0xFFFF;
  2996. radio->initval = 0xFFFF;
  2997. radio->aci_enable = 0;
  2998. radio->aci_wlan_automatic = 0;
  2999. radio->aci_hw_rssi = 0;
  3000. }
  3001. static void prepare_priv_for_init(struct bcm43xx_private *bcm)
  3002. {
  3003. int i;
  3004. struct bcm43xx_coreinfo *core;
  3005. struct bcm43xx_coreinfo_80211 *wlext;
  3006. assert(!bcm->active_80211_core);
  3007. bcm43xx_set_status(bcm, BCM43xx_STAT_INITIALIZING);
  3008. /* Flags */
  3009. bcm->was_initialized = 0;
  3010. bcm->reg124_set_0x4 = 0;
  3011. /* Stats */
  3012. memset(&bcm->stats, 0, sizeof(bcm->stats));
  3013. /* Wireless core data */
  3014. for (i = 0; i < BCM43xx_MAX_80211_CORES; i++) {
  3015. core = &(bcm->core_80211[i]);
  3016. wlext = core->priv;
  3017. if (!core->available)
  3018. continue;
  3019. assert(wlext == &(bcm->core_80211_ext[i]));
  3020. prepare_phydata_for_init(&wlext->phy);
  3021. prepare_radiodata_for_init(bcm, &wlext->radio);
  3022. }
  3023. /* IRQ related flags */
  3024. bcm->irq_reason = 0;
  3025. memset(bcm->dma_reason, 0, sizeof(bcm->dma_reason));
  3026. bcm->irq_savedstate = BCM43xx_IRQ_INITIAL;
  3027. bcm->mac_suspended = 1;
  3028. /* Noise calculation context */
  3029. memset(&bcm->noisecalc, 0, sizeof(bcm->noisecalc));
  3030. /* Periodic work context */
  3031. bcm->periodic_state = 0;
  3032. }
  3033. static int wireless_core_up(struct bcm43xx_private *bcm,
  3034. int active_wlcore)
  3035. {
  3036. int err;
  3037. if (!bcm43xx_core_enabled(bcm))
  3038. bcm43xx_wireless_core_reset(bcm, 1);
  3039. if (!active_wlcore)
  3040. bcm43xx_wireless_core_mark_inactive(bcm);
  3041. err = bcm43xx_wireless_core_init(bcm, active_wlcore);
  3042. if (err)
  3043. goto out;
  3044. if (!active_wlcore)
  3045. bcm43xx_radio_turn_off(bcm);
  3046. out:
  3047. return err;
  3048. }
  3049. /* Select and enable the "to be used" wireless core.
  3050. * Locking: bcm->mutex must be aquired before calling this.
  3051. * bcm->irq_lock must not be aquired.
  3052. */
  3053. int bcm43xx_select_wireless_core(struct bcm43xx_private *bcm,
  3054. int phytype)
  3055. {
  3056. int i, err;
  3057. struct bcm43xx_coreinfo *active_core = NULL;
  3058. struct bcm43xx_coreinfo_80211 *active_wlext = NULL;
  3059. struct bcm43xx_coreinfo *core;
  3060. struct bcm43xx_coreinfo_80211 *wlext;
  3061. int adjust_active_sbtmstatelow = 0;
  3062. might_sleep();
  3063. if (phytype < 0) {
  3064. /* If no phytype is requested, select the first core. */
  3065. assert(bcm->core_80211[0].available);
  3066. wlext = bcm->core_80211[0].priv;
  3067. phytype = wlext->phy.type;
  3068. }
  3069. /* Find the requested core. */
  3070. for (i = 0; i < bcm->nr_80211_available; i++) {
  3071. core = &(bcm->core_80211[i]);
  3072. wlext = core->priv;
  3073. if (wlext->phy.type == phytype) {
  3074. active_core = core;
  3075. active_wlext = wlext;
  3076. break;
  3077. }
  3078. }
  3079. if (!active_core)
  3080. return -ESRCH; /* No such PHYTYPE on this board. */
  3081. if (bcm->active_80211_core) {
  3082. /* We already selected a wl core in the past.
  3083. * So first clean up everything.
  3084. */
  3085. dprintk(KERN_INFO PFX "select_wireless_core: cleanup\n");
  3086. ieee80211softmac_stop(bcm->net_dev);
  3087. bcm43xx_set_status(bcm, BCM43xx_STAT_INITIALIZED);
  3088. err = bcm43xx_disable_interrupts_sync(bcm);
  3089. assert(!err);
  3090. tasklet_enable(&bcm->isr_tasklet);
  3091. err = bcm43xx_shutdown_all_wireless_cores(bcm);
  3092. if (err)
  3093. goto error;
  3094. /* Ok, everything down, continue to re-initialize. */
  3095. bcm43xx_set_status(bcm, BCM43xx_STAT_INITIALIZING);
  3096. }
  3097. /* Reset all data structures. */
  3098. prepare_priv_for_init(bcm);
  3099. err = bcm43xx_pctl_set_clock(bcm, BCM43xx_PCTL_CLK_FAST);
  3100. if (err)
  3101. goto error;
  3102. /* Mark all unused cores "inactive". */
  3103. for (i = 0; i < bcm->nr_80211_available; i++) {
  3104. core = &(bcm->core_80211[i]);
  3105. wlext = core->priv;
  3106. if (core == active_core)
  3107. continue;
  3108. err = bcm43xx_switch_core(bcm, core);
  3109. if (err) {
  3110. dprintk(KERN_ERR PFX "Could not switch to inactive "
  3111. "802.11 core (%d)\n", err);
  3112. goto error;
  3113. }
  3114. err = wireless_core_up(bcm, 0);
  3115. if (err) {
  3116. dprintk(KERN_ERR PFX "core_up for inactive 802.11 core "
  3117. "failed (%d)\n", err);
  3118. goto error;
  3119. }
  3120. adjust_active_sbtmstatelow = 1;
  3121. }
  3122. /* Now initialize the active 802.11 core. */
  3123. err = bcm43xx_switch_core(bcm, active_core);
  3124. if (err) {
  3125. dprintk(KERN_ERR PFX "Could not switch to active "
  3126. "802.11 core (%d)\n", err);
  3127. goto error;
  3128. }
  3129. if (adjust_active_sbtmstatelow &&
  3130. active_wlext->phy.type == BCM43xx_PHYTYPE_G) {
  3131. u32 sbtmstatelow;
  3132. sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
  3133. sbtmstatelow |= 0x20000000;
  3134. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  3135. }
  3136. err = wireless_core_up(bcm, 1);
  3137. if (err) {
  3138. dprintk(KERN_ERR PFX "core_up for active 802.11 core "
  3139. "failed (%d)\n", err);
  3140. goto error;
  3141. }
  3142. err = bcm43xx_pctl_set_clock(bcm, BCM43xx_PCTL_CLK_DYNAMIC);
  3143. if (err)
  3144. goto error;
  3145. bcm->active_80211_core = active_core;
  3146. bcm43xx_macfilter_clear(bcm, BCM43xx_MACFILTER_ASSOC);
  3147. bcm43xx_macfilter_set(bcm, BCM43xx_MACFILTER_SELF, (u8 *)(bcm->net_dev->dev_addr));
  3148. bcm43xx_security_init(bcm);
  3149. drain_txstatus_queue(bcm);
  3150. ieee80211softmac_start(bcm->net_dev);
  3151. /* Let's go! Be careful after enabling the IRQs.
  3152. * Don't switch cores, for example.
  3153. */
  3154. bcm43xx_mac_enable(bcm);
  3155. bcm43xx_set_status(bcm, BCM43xx_STAT_INITIALIZED);
  3156. err = bcm43xx_initialize_irq(bcm);
  3157. if (err)
  3158. goto error;
  3159. bcm43xx_interrupt_enable(bcm, bcm->irq_savedstate);
  3160. dprintk(KERN_INFO PFX "Selected 802.11 core (phytype %d)\n",
  3161. active_wlext->phy.type);
  3162. return 0;
  3163. error:
  3164. bcm43xx_set_status(bcm, BCM43xx_STAT_UNINIT);
  3165. bcm43xx_pctl_set_clock(bcm, BCM43xx_PCTL_CLK_SLOW);
  3166. return err;
  3167. }
  3168. static int bcm43xx_init_board(struct bcm43xx_private *bcm)
  3169. {
  3170. int err;
  3171. mutex_lock(&(bcm)->mutex);
  3172. tasklet_enable(&bcm->isr_tasklet);
  3173. err = bcm43xx_pctl_set_crystal(bcm, 1);
  3174. if (err)
  3175. goto err_tasklet;
  3176. err = bcm43xx_pctl_init(bcm);
  3177. if (err)
  3178. goto err_crystal_off;
  3179. err = bcm43xx_select_wireless_core(bcm, -1);
  3180. if (err)
  3181. goto err_crystal_off;
  3182. err = bcm43xx_sysfs_register(bcm);
  3183. if (err)
  3184. goto err_wlshutdown;
  3185. err = bcm43xx_rng_init(bcm);
  3186. if (err)
  3187. goto err_sysfs_unreg;
  3188. bcm43xx_periodic_tasks_setup(bcm);
  3189. /*FIXME: This should be handled by softmac instead. */
  3190. schedule_delayed_work(&bcm->softmac->associnfo.work, 0);
  3191. out:
  3192. mutex_unlock(&(bcm)->mutex);
  3193. return err;
  3194. err_sysfs_unreg:
  3195. bcm43xx_sysfs_unregister(bcm);
  3196. err_wlshutdown:
  3197. bcm43xx_shutdown_all_wireless_cores(bcm);
  3198. err_crystal_off:
  3199. bcm43xx_pctl_set_crystal(bcm, 0);
  3200. err_tasklet:
  3201. tasklet_disable(&bcm->isr_tasklet);
  3202. goto out;
  3203. }
  3204. static void bcm43xx_detach_board(struct bcm43xx_private *bcm)
  3205. {
  3206. struct pci_dev *pci_dev = bcm->pci_dev;
  3207. int i;
  3208. bcm43xx_chipset_detach(bcm);
  3209. /* Do _not_ access the chip, after it is detached. */
  3210. pci_iounmap(pci_dev, bcm->mmio_addr);
  3211. pci_release_regions(pci_dev);
  3212. pci_disable_device(pci_dev);
  3213. /* Free allocated structures/fields */
  3214. for (i = 0; i < BCM43xx_MAX_80211_CORES; i++) {
  3215. kfree(bcm->core_80211_ext[i].phy._lo_pairs);
  3216. if (bcm->core_80211_ext[i].phy.dyn_tssi_tbl)
  3217. kfree(bcm->core_80211_ext[i].phy.tssi2dbm);
  3218. }
  3219. }
  3220. static int bcm43xx_read_phyinfo(struct bcm43xx_private *bcm)
  3221. {
  3222. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  3223. u16 value;
  3224. u8 phy_analog;
  3225. u8 phy_type;
  3226. u8 phy_rev;
  3227. int phy_rev_ok = 1;
  3228. void *p;
  3229. value = bcm43xx_read16(bcm, BCM43xx_MMIO_PHY_VER);
  3230. phy_analog = (value & 0xF000) >> 12;
  3231. phy_type = (value & 0x0F00) >> 8;
  3232. phy_rev = (value & 0x000F);
  3233. dprintk(KERN_INFO PFX "Detected PHY: Analog: %x, Type %x, Revision %x\n",
  3234. phy_analog, phy_type, phy_rev);
  3235. switch (phy_type) {
  3236. case BCM43xx_PHYTYPE_A:
  3237. if (phy_rev >= 4)
  3238. phy_rev_ok = 0;
  3239. /*FIXME: We need to switch the ieee->modulation, etc.. flags,
  3240. * if we switch 80211 cores after init is done.
  3241. * As we do not implement on the fly switching between
  3242. * wireless cores, I will leave this as a future task.
  3243. */
  3244. bcm->ieee->modulation = IEEE80211_OFDM_MODULATION;
  3245. bcm->ieee->mode = IEEE_A;
  3246. bcm->ieee->freq_band = IEEE80211_52GHZ_BAND |
  3247. IEEE80211_24GHZ_BAND;
  3248. break;
  3249. case BCM43xx_PHYTYPE_B:
  3250. if (phy_rev != 2 && phy_rev != 4 && phy_rev != 6 && phy_rev != 7)
  3251. phy_rev_ok = 0;
  3252. bcm->ieee->modulation = IEEE80211_CCK_MODULATION;
  3253. bcm->ieee->mode = IEEE_B;
  3254. bcm->ieee->freq_band = IEEE80211_24GHZ_BAND;
  3255. break;
  3256. case BCM43xx_PHYTYPE_G:
  3257. if (phy_rev > 8)
  3258. phy_rev_ok = 0;
  3259. bcm->ieee->modulation = IEEE80211_OFDM_MODULATION |
  3260. IEEE80211_CCK_MODULATION;
  3261. bcm->ieee->mode = IEEE_G;
  3262. bcm->ieee->freq_band = IEEE80211_24GHZ_BAND;
  3263. break;
  3264. default:
  3265. printk(KERN_ERR PFX "Error: Unknown PHY Type %x\n",
  3266. phy_type);
  3267. return -ENODEV;
  3268. };
  3269. bcm->ieee->perfect_rssi = RX_RSSI_MAX;
  3270. bcm->ieee->worst_rssi = 0;
  3271. if (!phy_rev_ok) {
  3272. printk(KERN_WARNING PFX "Invalid PHY Revision %x\n",
  3273. phy_rev);
  3274. }
  3275. phy->analog = phy_analog;
  3276. phy->type = phy_type;
  3277. phy->rev = phy_rev;
  3278. if ((phy_type == BCM43xx_PHYTYPE_B) || (phy_type == BCM43xx_PHYTYPE_G)) {
  3279. p = kzalloc(sizeof(struct bcm43xx_lopair) * BCM43xx_LO_COUNT,
  3280. GFP_KERNEL);
  3281. if (!p)
  3282. return -ENOMEM;
  3283. phy->_lo_pairs = p;
  3284. }
  3285. return 0;
  3286. }
  3287. static int bcm43xx_attach_board(struct bcm43xx_private *bcm)
  3288. {
  3289. struct pci_dev *pci_dev = bcm->pci_dev;
  3290. struct net_device *net_dev = bcm->net_dev;
  3291. int err;
  3292. int i;
  3293. u32 coremask;
  3294. err = pci_enable_device(pci_dev);
  3295. if (err) {
  3296. printk(KERN_ERR PFX "pci_enable_device() failed\n");
  3297. goto out;
  3298. }
  3299. err = pci_request_regions(pci_dev, KBUILD_MODNAME);
  3300. if (err) {
  3301. printk(KERN_ERR PFX "pci_request_regions() failed\n");
  3302. goto err_pci_disable;
  3303. }
  3304. /* enable PCI bus-mastering */
  3305. pci_set_master(pci_dev);
  3306. bcm->mmio_addr = pci_iomap(pci_dev, 0, ~0UL);
  3307. if (!bcm->mmio_addr) {
  3308. printk(KERN_ERR PFX "pci_iomap() failed\n");
  3309. err = -EIO;
  3310. goto err_pci_release;
  3311. }
  3312. net_dev->base_addr = (unsigned long)bcm->mmio_addr;
  3313. err = bcm43xx_pci_read_config16(bcm, PCI_SUBSYSTEM_VENDOR_ID,
  3314. &bcm->board_vendor);
  3315. if (err)
  3316. goto err_iounmap;
  3317. err = bcm43xx_pci_read_config16(bcm, PCI_SUBSYSTEM_ID,
  3318. &bcm->board_type);
  3319. if (err)
  3320. goto err_iounmap;
  3321. err = bcm43xx_pci_read_config16(bcm, PCI_REVISION_ID,
  3322. &bcm->board_revision);
  3323. if (err)
  3324. goto err_iounmap;
  3325. err = bcm43xx_chipset_attach(bcm);
  3326. if (err)
  3327. goto err_iounmap;
  3328. err = bcm43xx_pctl_init(bcm);
  3329. if (err)
  3330. goto err_chipset_detach;
  3331. err = bcm43xx_probe_cores(bcm);
  3332. if (err)
  3333. goto err_chipset_detach;
  3334. /* Attach all IO cores to the backplane. */
  3335. coremask = 0;
  3336. for (i = 0; i < bcm->nr_80211_available; i++)
  3337. coremask |= (1 << bcm->core_80211[i].index);
  3338. //FIXME: Also attach some non80211 cores?
  3339. err = bcm43xx_setup_backplane_pci_connection(bcm, coremask);
  3340. if (err) {
  3341. printk(KERN_ERR PFX "Backplane->PCI connection failed!\n");
  3342. goto err_chipset_detach;
  3343. }
  3344. err = bcm43xx_sprom_extract(bcm);
  3345. if (err)
  3346. goto err_chipset_detach;
  3347. err = bcm43xx_leds_init(bcm);
  3348. if (err)
  3349. goto err_chipset_detach;
  3350. for (i = 0; i < bcm->nr_80211_available; i++) {
  3351. err = bcm43xx_switch_core(bcm, &bcm->core_80211[i]);
  3352. assert(err != -ENODEV);
  3353. if (err)
  3354. goto err_80211_unwind;
  3355. /* Enable the selected wireless core.
  3356. * Connect PHY only on the first core.
  3357. */
  3358. bcm43xx_wireless_core_reset(bcm, (i == 0));
  3359. err = bcm43xx_read_phyinfo(bcm);
  3360. if (err && (i == 0))
  3361. goto err_80211_unwind;
  3362. err = bcm43xx_read_radioinfo(bcm);
  3363. if (err && (i == 0))
  3364. goto err_80211_unwind;
  3365. err = bcm43xx_validate_chip(bcm);
  3366. if (err && (i == 0))
  3367. goto err_80211_unwind;
  3368. bcm43xx_radio_turn_off(bcm);
  3369. err = bcm43xx_phy_init_tssi2dbm_table(bcm);
  3370. if (err)
  3371. goto err_80211_unwind;
  3372. bcm43xx_wireless_core_disable(bcm);
  3373. }
  3374. err = bcm43xx_geo_init(bcm);
  3375. if (err)
  3376. goto err_80211_unwind;
  3377. bcm43xx_pctl_set_crystal(bcm, 0);
  3378. /* Set the MAC address in the networking subsystem */
  3379. if (is_valid_ether_addr(bcm->sprom.et1macaddr))
  3380. memcpy(bcm->net_dev->dev_addr, bcm->sprom.et1macaddr, 6);
  3381. else
  3382. memcpy(bcm->net_dev->dev_addr, bcm->sprom.il0macaddr, 6);
  3383. snprintf(bcm->nick, IW_ESSID_MAX_SIZE,
  3384. "Broadcom %04X", bcm->chip_id);
  3385. assert(err == 0);
  3386. out:
  3387. return err;
  3388. err_80211_unwind:
  3389. for (i = 0; i < BCM43xx_MAX_80211_CORES; i++) {
  3390. kfree(bcm->core_80211_ext[i].phy._lo_pairs);
  3391. if (bcm->core_80211_ext[i].phy.dyn_tssi_tbl)
  3392. kfree(bcm->core_80211_ext[i].phy.tssi2dbm);
  3393. }
  3394. err_chipset_detach:
  3395. bcm43xx_chipset_detach(bcm);
  3396. err_iounmap:
  3397. pci_iounmap(pci_dev, bcm->mmio_addr);
  3398. err_pci_release:
  3399. pci_release_regions(pci_dev);
  3400. err_pci_disable:
  3401. pci_disable_device(pci_dev);
  3402. printk(KERN_ERR PFX "Unable to attach board\n");
  3403. goto out;
  3404. }
  3405. /* Do the Hardware IO operations to send the txb */
  3406. static inline int bcm43xx_tx(struct bcm43xx_private *bcm,
  3407. struct ieee80211_txb *txb)
  3408. {
  3409. int err = -ENODEV;
  3410. if (bcm43xx_using_pio(bcm))
  3411. err = bcm43xx_pio_tx(bcm, txb);
  3412. else
  3413. err = bcm43xx_dma_tx(bcm, txb);
  3414. bcm->net_dev->trans_start = jiffies;
  3415. return err;
  3416. }
  3417. static void bcm43xx_ieee80211_set_chan(struct net_device *net_dev,
  3418. u8 channel)
  3419. {
  3420. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3421. struct bcm43xx_radioinfo *radio;
  3422. unsigned long flags;
  3423. mutex_lock(&bcm->mutex);
  3424. spin_lock_irqsave(&bcm->irq_lock, flags);
  3425. if (bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED) {
  3426. bcm43xx_mac_suspend(bcm);
  3427. bcm43xx_radio_selectchannel(bcm, channel, 0);
  3428. bcm43xx_mac_enable(bcm);
  3429. } else {
  3430. radio = bcm43xx_current_radio(bcm);
  3431. radio->initial_channel = channel;
  3432. }
  3433. spin_unlock_irqrestore(&bcm->irq_lock, flags);
  3434. mutex_unlock(&bcm->mutex);
  3435. }
  3436. /* set_security() callback in struct ieee80211_device */
  3437. static void bcm43xx_ieee80211_set_security(struct net_device *net_dev,
  3438. struct ieee80211_security *sec)
  3439. {
  3440. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3441. struct ieee80211_security *secinfo = &bcm->ieee->sec;
  3442. unsigned long flags;
  3443. int keyidx;
  3444. dprintk(KERN_INFO PFX "set security called");
  3445. mutex_lock(&bcm->mutex);
  3446. spin_lock_irqsave(&bcm->irq_lock, flags);
  3447. for (keyidx = 0; keyidx<WEP_KEYS; keyidx++)
  3448. if (sec->flags & (1<<keyidx)) {
  3449. secinfo->encode_alg[keyidx] = sec->encode_alg[keyidx];
  3450. secinfo->key_sizes[keyidx] = sec->key_sizes[keyidx];
  3451. memcpy(secinfo->keys[keyidx], sec->keys[keyidx], SCM_KEY_LEN);
  3452. }
  3453. if (sec->flags & SEC_ACTIVE_KEY) {
  3454. secinfo->active_key = sec->active_key;
  3455. dprintk(", .active_key = %d", sec->active_key);
  3456. }
  3457. if (sec->flags & SEC_UNICAST_GROUP) {
  3458. secinfo->unicast_uses_group = sec->unicast_uses_group;
  3459. dprintk(", .unicast_uses_group = %d", sec->unicast_uses_group);
  3460. }
  3461. if (sec->flags & SEC_LEVEL) {
  3462. secinfo->level = sec->level;
  3463. dprintk(", .level = %d", sec->level);
  3464. }
  3465. if (sec->flags & SEC_ENABLED) {
  3466. secinfo->enabled = sec->enabled;
  3467. dprintk(", .enabled = %d", sec->enabled);
  3468. }
  3469. if (sec->flags & SEC_ENCRYPT) {
  3470. secinfo->encrypt = sec->encrypt;
  3471. dprintk(", .encrypt = %d", sec->encrypt);
  3472. }
  3473. if (sec->flags & SEC_AUTH_MODE) {
  3474. secinfo->auth_mode = sec->auth_mode;
  3475. dprintk(", .auth_mode = %d", sec->auth_mode);
  3476. }
  3477. dprintk("\n");
  3478. if (bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED &&
  3479. !bcm->ieee->host_encrypt) {
  3480. if (secinfo->enabled) {
  3481. /* upload WEP keys to hardware */
  3482. char null_address[6] = { 0 };
  3483. u8 algorithm = 0;
  3484. for (keyidx = 0; keyidx<WEP_KEYS; keyidx++) {
  3485. if (!(sec->flags & (1<<keyidx)))
  3486. continue;
  3487. switch (sec->encode_alg[keyidx]) {
  3488. case SEC_ALG_NONE: algorithm = BCM43xx_SEC_ALGO_NONE; break;
  3489. case SEC_ALG_WEP:
  3490. algorithm = BCM43xx_SEC_ALGO_WEP;
  3491. if (secinfo->key_sizes[keyidx] == 13)
  3492. algorithm = BCM43xx_SEC_ALGO_WEP104;
  3493. break;
  3494. case SEC_ALG_TKIP:
  3495. FIXME();
  3496. algorithm = BCM43xx_SEC_ALGO_TKIP;
  3497. break;
  3498. case SEC_ALG_CCMP:
  3499. FIXME();
  3500. algorithm = BCM43xx_SEC_ALGO_AES;
  3501. break;
  3502. default:
  3503. assert(0);
  3504. break;
  3505. }
  3506. bcm43xx_key_write(bcm, keyidx, algorithm, sec->keys[keyidx], secinfo->key_sizes[keyidx], &null_address[0]);
  3507. bcm->key[keyidx].enabled = 1;
  3508. bcm->key[keyidx].algorithm = algorithm;
  3509. }
  3510. } else
  3511. bcm43xx_clear_keys(bcm);
  3512. }
  3513. spin_unlock_irqrestore(&bcm->irq_lock, flags);
  3514. mutex_unlock(&bcm->mutex);
  3515. }
  3516. /* hard_start_xmit() callback in struct ieee80211_device */
  3517. static int bcm43xx_ieee80211_hard_start_xmit(struct ieee80211_txb *txb,
  3518. struct net_device *net_dev,
  3519. int pri)
  3520. {
  3521. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3522. int err = -ENODEV;
  3523. unsigned long flags;
  3524. spin_lock_irqsave(&bcm->irq_lock, flags);
  3525. if (likely(bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED))
  3526. err = bcm43xx_tx(bcm, txb);
  3527. spin_unlock_irqrestore(&bcm->irq_lock, flags);
  3528. if (unlikely(err))
  3529. return NETDEV_TX_BUSY;
  3530. return NETDEV_TX_OK;
  3531. }
  3532. static void bcm43xx_net_tx_timeout(struct net_device *net_dev)
  3533. {
  3534. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3535. unsigned long flags;
  3536. spin_lock_irqsave(&bcm->irq_lock, flags);
  3537. bcm43xx_controller_restart(bcm, "TX timeout");
  3538. spin_unlock_irqrestore(&bcm->irq_lock, flags);
  3539. }
  3540. #ifdef CONFIG_NET_POLL_CONTROLLER
  3541. static void bcm43xx_net_poll_controller(struct net_device *net_dev)
  3542. {
  3543. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3544. unsigned long flags;
  3545. local_irq_save(flags);
  3546. if (bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED)
  3547. bcm43xx_interrupt_handler(bcm->irq, bcm);
  3548. local_irq_restore(flags);
  3549. }
  3550. #endif /* CONFIG_NET_POLL_CONTROLLER */
  3551. static int bcm43xx_net_open(struct net_device *net_dev)
  3552. {
  3553. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3554. return bcm43xx_init_board(bcm);
  3555. }
  3556. static int bcm43xx_net_stop(struct net_device *net_dev)
  3557. {
  3558. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3559. int err;
  3560. ieee80211softmac_stop(net_dev);
  3561. err = bcm43xx_disable_interrupts_sync(bcm);
  3562. assert(!err);
  3563. bcm43xx_free_board(bcm);
  3564. flush_scheduled_work();
  3565. return 0;
  3566. }
  3567. static int bcm43xx_init_private(struct bcm43xx_private *bcm,
  3568. struct net_device *net_dev,
  3569. struct pci_dev *pci_dev)
  3570. {
  3571. bcm43xx_set_status(bcm, BCM43xx_STAT_UNINIT);
  3572. bcm->ieee = netdev_priv(net_dev);
  3573. bcm->softmac = ieee80211_priv(net_dev);
  3574. bcm->softmac->set_channel = bcm43xx_ieee80211_set_chan;
  3575. bcm->irq_savedstate = BCM43xx_IRQ_INITIAL;
  3576. bcm->mac_suspended = 1;
  3577. bcm->pci_dev = pci_dev;
  3578. bcm->net_dev = net_dev;
  3579. bcm->bad_frames_preempt = modparam_bad_frames_preempt;
  3580. spin_lock_init(&bcm->irq_lock);
  3581. spin_lock_init(&bcm->leds_lock);
  3582. mutex_init(&bcm->mutex);
  3583. tasklet_init(&bcm->isr_tasklet,
  3584. (void (*)(unsigned long))bcm43xx_interrupt_tasklet,
  3585. (unsigned long)bcm);
  3586. tasklet_disable_nosync(&bcm->isr_tasklet);
  3587. if (modparam_pio)
  3588. bcm->__using_pio = 1;
  3589. bcm->rts_threshold = BCM43xx_DEFAULT_RTS_THRESHOLD;
  3590. /* default to sw encryption for now */
  3591. bcm->ieee->host_build_iv = 0;
  3592. bcm->ieee->host_encrypt = 1;
  3593. bcm->ieee->host_decrypt = 1;
  3594. bcm->ieee->iw_mode = BCM43xx_INITIAL_IWMODE;
  3595. bcm->ieee->tx_headroom = sizeof(struct bcm43xx_txhdr);
  3596. bcm->ieee->set_security = bcm43xx_ieee80211_set_security;
  3597. bcm->ieee->hard_start_xmit = bcm43xx_ieee80211_hard_start_xmit;
  3598. return 0;
  3599. }
  3600. static int __devinit bcm43xx_init_one(struct pci_dev *pdev,
  3601. const struct pci_device_id *ent)
  3602. {
  3603. struct net_device *net_dev;
  3604. struct bcm43xx_private *bcm;
  3605. int err;
  3606. #ifdef CONFIG_BCM947XX
  3607. if ((pdev->bus->number == 0) && (pdev->device != 0x0800))
  3608. return -ENODEV;
  3609. #endif
  3610. #ifdef DEBUG_SINGLE_DEVICE_ONLY
  3611. if (strcmp(pci_name(pdev), DEBUG_SINGLE_DEVICE_ONLY))
  3612. return -ENODEV;
  3613. #endif
  3614. net_dev = alloc_ieee80211softmac(sizeof(*bcm));
  3615. if (!net_dev) {
  3616. printk(KERN_ERR PFX
  3617. "could not allocate ieee80211 device %s\n",
  3618. pci_name(pdev));
  3619. err = -ENOMEM;
  3620. goto out;
  3621. }
  3622. /* initialize the net_device struct */
  3623. SET_MODULE_OWNER(net_dev);
  3624. SET_NETDEV_DEV(net_dev, &pdev->dev);
  3625. net_dev->open = bcm43xx_net_open;
  3626. net_dev->stop = bcm43xx_net_stop;
  3627. net_dev->tx_timeout = bcm43xx_net_tx_timeout;
  3628. #ifdef CONFIG_NET_POLL_CONTROLLER
  3629. net_dev->poll_controller = bcm43xx_net_poll_controller;
  3630. #endif
  3631. net_dev->wireless_handlers = &bcm43xx_wx_handlers_def;
  3632. net_dev->irq = pdev->irq;
  3633. SET_ETHTOOL_OPS(net_dev, &bcm43xx_ethtool_ops);
  3634. /* initialize the bcm43xx_private struct */
  3635. bcm = bcm43xx_priv(net_dev);
  3636. memset(bcm, 0, sizeof(*bcm));
  3637. err = bcm43xx_init_private(bcm, net_dev, pdev);
  3638. if (err)
  3639. goto err_free_netdev;
  3640. pci_set_drvdata(pdev, net_dev);
  3641. err = bcm43xx_attach_board(bcm);
  3642. if (err)
  3643. goto err_free_netdev;
  3644. err = register_netdev(net_dev);
  3645. if (err) {
  3646. printk(KERN_ERR PFX "Cannot register net device, "
  3647. "aborting.\n");
  3648. err = -ENOMEM;
  3649. goto err_detach_board;
  3650. }
  3651. bcm43xx_debugfs_add_device(bcm);
  3652. assert(err == 0);
  3653. out:
  3654. return err;
  3655. err_detach_board:
  3656. bcm43xx_detach_board(bcm);
  3657. err_free_netdev:
  3658. free_ieee80211softmac(net_dev);
  3659. goto out;
  3660. }
  3661. static void __devexit bcm43xx_remove_one(struct pci_dev *pdev)
  3662. {
  3663. struct net_device *net_dev = pci_get_drvdata(pdev);
  3664. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3665. bcm43xx_debugfs_remove_device(bcm);
  3666. unregister_netdev(net_dev);
  3667. bcm43xx_detach_board(bcm);
  3668. free_ieee80211softmac(net_dev);
  3669. }
  3670. /* Hard-reset the chip. Do not call this directly.
  3671. * Use bcm43xx_controller_restart()
  3672. */
  3673. static void bcm43xx_chip_reset(struct work_struct *work)
  3674. {
  3675. struct bcm43xx_private *bcm =
  3676. container_of(work, struct bcm43xx_private, restart_work);
  3677. struct bcm43xx_phyinfo *phy;
  3678. int err = -ENODEV;
  3679. mutex_lock(&(bcm)->mutex);
  3680. if (bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED) {
  3681. bcm43xx_periodic_tasks_delete(bcm);
  3682. phy = bcm43xx_current_phy(bcm);
  3683. err = bcm43xx_select_wireless_core(bcm, phy->type);
  3684. if (!err)
  3685. bcm43xx_periodic_tasks_setup(bcm);
  3686. }
  3687. mutex_unlock(&(bcm)->mutex);
  3688. printk(KERN_ERR PFX "Controller restart%s\n",
  3689. (err == 0) ? "ed" : " failed");
  3690. }
  3691. /* Hard-reset the chip.
  3692. * This can be called from interrupt or process context.
  3693. * bcm->irq_lock must be locked.
  3694. */
  3695. void bcm43xx_controller_restart(struct bcm43xx_private *bcm, const char *reason)
  3696. {
  3697. if (bcm43xx_status(bcm) != BCM43xx_STAT_INITIALIZED)
  3698. return;
  3699. printk(KERN_ERR PFX "Controller RESET (%s) ...\n", reason);
  3700. INIT_WORK(&bcm->restart_work, bcm43xx_chip_reset);
  3701. schedule_work(&bcm->restart_work);
  3702. }
  3703. #ifdef CONFIG_PM
  3704. static int bcm43xx_suspend(struct pci_dev *pdev, pm_message_t state)
  3705. {
  3706. struct net_device *net_dev = pci_get_drvdata(pdev);
  3707. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3708. int err;
  3709. dprintk(KERN_INFO PFX "Suspending...\n");
  3710. netif_device_detach(net_dev);
  3711. bcm->was_initialized = 0;
  3712. if (bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED) {
  3713. bcm->was_initialized = 1;
  3714. ieee80211softmac_stop(net_dev);
  3715. err = bcm43xx_disable_interrupts_sync(bcm);
  3716. if (unlikely(err)) {
  3717. dprintk(KERN_ERR PFX "Suspend failed.\n");
  3718. return -EAGAIN;
  3719. }
  3720. bcm->firmware_norelease = 1;
  3721. bcm43xx_free_board(bcm);
  3722. bcm->firmware_norelease = 0;
  3723. }
  3724. bcm43xx_chipset_detach(bcm);
  3725. pci_save_state(pdev);
  3726. pci_disable_device(pdev);
  3727. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3728. dprintk(KERN_INFO PFX "Device suspended.\n");
  3729. return 0;
  3730. }
  3731. static int bcm43xx_resume(struct pci_dev *pdev)
  3732. {
  3733. struct net_device *net_dev = pci_get_drvdata(pdev);
  3734. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3735. int err = 0;
  3736. dprintk(KERN_INFO PFX "Resuming...\n");
  3737. pci_set_power_state(pdev, 0);
  3738. err = pci_enable_device(pdev);
  3739. if (err) {
  3740. printk(KERN_ERR PFX "Failure with pci_enable_device!\n");
  3741. return err;
  3742. }
  3743. pci_restore_state(pdev);
  3744. bcm43xx_chipset_attach(bcm);
  3745. if (bcm->was_initialized)
  3746. err = bcm43xx_init_board(bcm);
  3747. if (err) {
  3748. printk(KERN_ERR PFX "Resume failed!\n");
  3749. return err;
  3750. }
  3751. netif_device_attach(net_dev);
  3752. dprintk(KERN_INFO PFX "Device resumed.\n");
  3753. return 0;
  3754. }
  3755. #endif /* CONFIG_PM */
  3756. static struct pci_driver bcm43xx_pci_driver = {
  3757. .name = KBUILD_MODNAME,
  3758. .id_table = bcm43xx_pci_tbl,
  3759. .probe = bcm43xx_init_one,
  3760. .remove = __devexit_p(bcm43xx_remove_one),
  3761. #ifdef CONFIG_PM
  3762. .suspend = bcm43xx_suspend,
  3763. .resume = bcm43xx_resume,
  3764. #endif /* CONFIG_PM */
  3765. };
  3766. static int __init bcm43xx_init(void)
  3767. {
  3768. printk(KERN_INFO KBUILD_MODNAME " driver\n");
  3769. bcm43xx_debugfs_init();
  3770. return pci_register_driver(&bcm43xx_pci_driver);
  3771. }
  3772. static void __exit bcm43xx_exit(void)
  3773. {
  3774. pci_unregister_driver(&bcm43xx_pci_driver);
  3775. bcm43xx_debugfs_exit();
  3776. }
  3777. module_init(bcm43xx_init)
  3778. module_exit(bcm43xx_exit)