ks8851.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358
  1. /* drivers/net/ks8851.c
  2. *
  3. * Copyright 2009 Simtec Electronics
  4. * http://www.simtec.co.uk/
  5. * Ben Dooks <ben@simtec.co.uk>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12. #define DEBUG
  13. #include <linux/module.h>
  14. #include <linux/kernel.h>
  15. #include <linux/netdevice.h>
  16. #include <linux/etherdevice.h>
  17. #include <linux/ethtool.h>
  18. #include <linux/cache.h>
  19. #include <linux/crc32.h>
  20. #include <linux/mii.h>
  21. #include <linux/spi/spi.h>
  22. #include "ks8851.h"
  23. /**
  24. * struct ks8851_rxctrl - KS8851 driver rx control
  25. * @mchash: Multicast hash-table data.
  26. * @rxcr1: KS_RXCR1 register setting
  27. * @rxcr2: KS_RXCR2 register setting
  28. *
  29. * Representation of the settings needs to control the receive filtering
  30. * such as the multicast hash-filter and the receive register settings. This
  31. * is used to make the job of working out if the receive settings change and
  32. * then issuing the new settings to the worker that will send the necessary
  33. * commands.
  34. */
  35. struct ks8851_rxctrl {
  36. u16 mchash[4];
  37. u16 rxcr1;
  38. u16 rxcr2;
  39. };
  40. /**
  41. * union ks8851_tx_hdr - tx header data
  42. * @txb: The header as bytes
  43. * @txw: The header as 16bit, little-endian words
  44. *
  45. * A dual representation of the tx header data to allow
  46. * access to individual bytes, and to allow 16bit accesses
  47. * with 16bit alignment.
  48. */
  49. union ks8851_tx_hdr {
  50. u8 txb[6];
  51. __le16 txw[3];
  52. };
  53. /**
  54. * struct ks8851_net - KS8851 driver private data
  55. * @netdev: The network device we're bound to
  56. * @spidev: The spi device we're bound to.
  57. * @lock: Lock to ensure that the device is not accessed when busy.
  58. * @statelock: Lock on this structure for tx list.
  59. * @mii: The MII state information for the mii calls.
  60. * @rxctrl: RX settings for @rxctrl_work.
  61. * @tx_work: Work queue for tx packets
  62. * @irq_work: Work queue for servicing interrupts
  63. * @rxctrl_work: Work queue for updating RX mode and multicast lists
  64. * @txq: Queue of packets for transmission.
  65. * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
  66. * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
  67. * @txh: Space for generating packet TX header in DMA-able data
  68. * @rxd: Space for receiving SPI data, in DMA-able space.
  69. * @txd: Space for transmitting SPI data, in DMA-able space.
  70. * @msg_enable: The message flags controlling driver output (see ethtool).
  71. * @fid: Incrementing frame id tag.
  72. * @rc_ier: Cached copy of KS_IER.
  73. * @rc_ccr: Cached copy of KS_CCR.
  74. * @rc_rxqcr: Cached copy of KS_RXQCR.
  75. * @eeprom_size: Companion eeprom size in Bytes, 0 if no eeprom
  76. *
  77. * The @lock ensures that the chip is protected when certain operations are
  78. * in progress. When the read or write packet transfer is in progress, most
  79. * of the chip registers are not ccessible until the transfer is finished and
  80. * the DMA has been de-asserted.
  81. *
  82. * The @statelock is used to protect information in the structure which may
  83. * need to be accessed via several sources, such as the network driver layer
  84. * or one of the work queues.
  85. *
  86. * We align the buffers we may use for rx/tx to ensure that if the SPI driver
  87. * wants to DMA map them, it will not have any problems with data the driver
  88. * modifies.
  89. */
  90. struct ks8851_net {
  91. struct net_device *netdev;
  92. struct spi_device *spidev;
  93. struct mutex lock;
  94. spinlock_t statelock;
  95. union ks8851_tx_hdr txh ____cacheline_aligned;
  96. u8 rxd[8];
  97. u8 txd[8];
  98. u32 msg_enable ____cacheline_aligned;
  99. u16 tx_space;
  100. u8 fid;
  101. u16 rc_ier;
  102. u16 rc_rxqcr;
  103. u16 rc_ccr;
  104. u16 eeprom_size;
  105. struct mii_if_info mii;
  106. struct ks8851_rxctrl rxctrl;
  107. struct work_struct tx_work;
  108. struct work_struct irq_work;
  109. struct work_struct rxctrl_work;
  110. struct sk_buff_head txq;
  111. struct spi_message spi_msg1;
  112. struct spi_message spi_msg2;
  113. struct spi_transfer spi_xfer1;
  114. struct spi_transfer spi_xfer2[2];
  115. };
  116. static int msg_enable;
  117. /* shift for byte-enable data */
  118. #define BYTE_EN(_x) ((_x) << 2)
  119. /* turn register number and byte-enable mask into data for start of packet */
  120. #define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg) << (8+2) | (_reg) >> 6)
  121. /* SPI register read/write calls.
  122. *
  123. * All these calls issue SPI transactions to access the chip's registers. They
  124. * all require that the necessary lock is held to prevent accesses when the
  125. * chip is busy transfering packet data (RX/TX FIFO accesses).
  126. */
  127. /**
  128. * ks8851_wrreg16 - write 16bit register value to chip
  129. * @ks: The chip state
  130. * @reg: The register address
  131. * @val: The value to write
  132. *
  133. * Issue a write to put the value @val into the register specified in @reg.
  134. */
  135. static void ks8851_wrreg16(struct ks8851_net *ks, unsigned reg, unsigned val)
  136. {
  137. struct spi_transfer *xfer = &ks->spi_xfer1;
  138. struct spi_message *msg = &ks->spi_msg1;
  139. __le16 txb[2];
  140. int ret;
  141. txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR);
  142. txb[1] = cpu_to_le16(val);
  143. xfer->tx_buf = txb;
  144. xfer->rx_buf = NULL;
  145. xfer->len = 4;
  146. ret = spi_sync(ks->spidev, msg);
  147. if (ret < 0)
  148. netdev_err(ks->netdev, "spi_sync() failed\n");
  149. }
  150. /**
  151. * ks8851_wrreg8 - write 8bit register value to chip
  152. * @ks: The chip state
  153. * @reg: The register address
  154. * @val: The value to write
  155. *
  156. * Issue a write to put the value @val into the register specified in @reg.
  157. */
  158. static void ks8851_wrreg8(struct ks8851_net *ks, unsigned reg, unsigned val)
  159. {
  160. struct spi_transfer *xfer = &ks->spi_xfer1;
  161. struct spi_message *msg = &ks->spi_msg1;
  162. __le16 txb[2];
  163. int ret;
  164. int bit;
  165. bit = 1 << (reg & 3);
  166. txb[0] = cpu_to_le16(MK_OP(bit, reg) | KS_SPIOP_WR);
  167. txb[1] = val;
  168. xfer->tx_buf = txb;
  169. xfer->rx_buf = NULL;
  170. xfer->len = 3;
  171. ret = spi_sync(ks->spidev, msg);
  172. if (ret < 0)
  173. netdev_err(ks->netdev, "spi_sync() failed\n");
  174. }
  175. /**
  176. * ks8851_rx_1msg - select whether to use one or two messages for spi read
  177. * @ks: The device structure
  178. *
  179. * Return whether to generate a single message with a tx and rx buffer
  180. * supplied to spi_sync(), or alternatively send the tx and rx buffers
  181. * as separate messages.
  182. *
  183. * Depending on the hardware in use, a single message may be more efficient
  184. * on interrupts or work done by the driver.
  185. *
  186. * This currently always returns true until we add some per-device data passed
  187. * from the platform code to specify which mode is better.
  188. */
  189. static inline bool ks8851_rx_1msg(struct ks8851_net *ks)
  190. {
  191. return true;
  192. }
  193. /**
  194. * ks8851_rdreg - issue read register command and return the data
  195. * @ks: The device state
  196. * @op: The register address and byte enables in message format.
  197. * @rxb: The RX buffer to return the result into
  198. * @rxl: The length of data expected.
  199. *
  200. * This is the low level read call that issues the necessary spi message(s)
  201. * to read data from the register specified in @op.
  202. */
  203. static void ks8851_rdreg(struct ks8851_net *ks, unsigned op,
  204. u8 *rxb, unsigned rxl)
  205. {
  206. struct spi_transfer *xfer;
  207. struct spi_message *msg;
  208. __le16 *txb = (__le16 *)ks->txd;
  209. u8 *trx = ks->rxd;
  210. int ret;
  211. txb[0] = cpu_to_le16(op | KS_SPIOP_RD);
  212. if (ks8851_rx_1msg(ks)) {
  213. msg = &ks->spi_msg1;
  214. xfer = &ks->spi_xfer1;
  215. xfer->tx_buf = txb;
  216. xfer->rx_buf = trx;
  217. xfer->len = rxl + 2;
  218. } else {
  219. msg = &ks->spi_msg2;
  220. xfer = ks->spi_xfer2;
  221. xfer->tx_buf = txb;
  222. xfer->rx_buf = NULL;
  223. xfer->len = 2;
  224. xfer++;
  225. xfer->tx_buf = NULL;
  226. xfer->rx_buf = trx;
  227. xfer->len = rxl;
  228. }
  229. ret = spi_sync(ks->spidev, msg);
  230. if (ret < 0)
  231. netdev_err(ks->netdev, "read: spi_sync() failed\n");
  232. else if (ks8851_rx_1msg(ks))
  233. memcpy(rxb, trx + 2, rxl);
  234. else
  235. memcpy(rxb, trx, rxl);
  236. }
  237. /**
  238. * ks8851_rdreg8 - read 8 bit register from device
  239. * @ks: The chip information
  240. * @reg: The register address
  241. *
  242. * Read a 8bit register from the chip, returning the result
  243. */
  244. static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg)
  245. {
  246. u8 rxb[1];
  247. ks8851_rdreg(ks, MK_OP(1 << (reg & 3), reg), rxb, 1);
  248. return rxb[0];
  249. }
  250. /**
  251. * ks8851_rdreg16 - read 16 bit register from device
  252. * @ks: The chip information
  253. * @reg: The register address
  254. *
  255. * Read a 16bit register from the chip, returning the result
  256. */
  257. static unsigned ks8851_rdreg16(struct ks8851_net *ks, unsigned reg)
  258. {
  259. __le16 rx = 0;
  260. ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2);
  261. return le16_to_cpu(rx);
  262. }
  263. /**
  264. * ks8851_rdreg32 - read 32 bit register from device
  265. * @ks: The chip information
  266. * @reg: The register address
  267. *
  268. * Read a 32bit register from the chip.
  269. *
  270. * Note, this read requires the address be aligned to 4 bytes.
  271. */
  272. static unsigned ks8851_rdreg32(struct ks8851_net *ks, unsigned reg)
  273. {
  274. __le32 rx = 0;
  275. WARN_ON(reg & 3);
  276. ks8851_rdreg(ks, MK_OP(0xf, reg), (u8 *)&rx, 4);
  277. return le32_to_cpu(rx);
  278. }
  279. /**
  280. * ks8851_soft_reset - issue one of the soft reset to the device
  281. * @ks: The device state.
  282. * @op: The bit(s) to set in the GRR
  283. *
  284. * Issue the relevant soft-reset command to the device's GRR register
  285. * specified by @op.
  286. *
  287. * Note, the delays are in there as a caution to ensure that the reset
  288. * has time to take effect and then complete. Since the datasheet does
  289. * not currently specify the exact sequence, we have chosen something
  290. * that seems to work with our device.
  291. */
  292. static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
  293. {
  294. ks8851_wrreg16(ks, KS_GRR, op);
  295. mdelay(1); /* wait a short time to effect reset */
  296. ks8851_wrreg16(ks, KS_GRR, 0);
  297. mdelay(1); /* wait for condition to clear */
  298. }
  299. /**
  300. * ks8851_write_mac_addr - write mac address to device registers
  301. * @dev: The network device
  302. *
  303. * Update the KS8851 MAC address registers from the address in @dev.
  304. *
  305. * This call assumes that the chip is not running, so there is no need to
  306. * shutdown the RXQ process whilst setting this.
  307. */
  308. static int ks8851_write_mac_addr(struct net_device *dev)
  309. {
  310. struct ks8851_net *ks = netdev_priv(dev);
  311. int i;
  312. mutex_lock(&ks->lock);
  313. for (i = 0; i < ETH_ALEN; i++)
  314. ks8851_wrreg8(ks, KS_MAR(i), dev->dev_addr[i]);
  315. mutex_unlock(&ks->lock);
  316. return 0;
  317. }
  318. /**
  319. * ks8851_init_mac - initialise the mac address
  320. * @ks: The device structure
  321. *
  322. * Get or create the initial mac address for the device and then set that
  323. * into the station address register. Currently we assume that the device
  324. * does not have a valid mac address in it, and so we use random_ether_addr()
  325. * to create a new one.
  326. *
  327. * In future, the driver should check to see if the device has an EEPROM
  328. * attached and whether that has a valid ethernet address in it.
  329. */
  330. static void ks8851_init_mac(struct ks8851_net *ks)
  331. {
  332. struct net_device *dev = ks->netdev;
  333. random_ether_addr(dev->dev_addr);
  334. ks8851_write_mac_addr(dev);
  335. }
  336. /**
  337. * ks8851_irq - device interrupt handler
  338. * @irq: Interrupt number passed from the IRQ hnalder.
  339. * @pw: The private word passed to register_irq(), our struct ks8851_net.
  340. *
  341. * Disable the interrupt from happening again until we've processed the
  342. * current status by scheduling ks8851_irq_work().
  343. */
  344. static irqreturn_t ks8851_irq(int irq, void *pw)
  345. {
  346. struct ks8851_net *ks = pw;
  347. disable_irq_nosync(irq);
  348. schedule_work(&ks->irq_work);
  349. return IRQ_HANDLED;
  350. }
  351. /**
  352. * ks8851_rdfifo - read data from the receive fifo
  353. * @ks: The device state.
  354. * @buff: The buffer address
  355. * @len: The length of the data to read
  356. *
  357. * Issue an RXQ FIFO read command and read the @len amount of data from
  358. * the FIFO into the buffer specified by @buff.
  359. */
  360. static void ks8851_rdfifo(struct ks8851_net *ks, u8 *buff, unsigned len)
  361. {
  362. struct spi_transfer *xfer = ks->spi_xfer2;
  363. struct spi_message *msg = &ks->spi_msg2;
  364. u8 txb[1];
  365. int ret;
  366. netif_dbg(ks, rx_status, ks->netdev,
  367. "%s: %d@%p\n", __func__, len, buff);
  368. /* set the operation we're issuing */
  369. txb[0] = KS_SPIOP_RXFIFO;
  370. xfer->tx_buf = txb;
  371. xfer->rx_buf = NULL;
  372. xfer->len = 1;
  373. xfer++;
  374. xfer->rx_buf = buff;
  375. xfer->tx_buf = NULL;
  376. xfer->len = len;
  377. ret = spi_sync(ks->spidev, msg);
  378. if (ret < 0)
  379. netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
  380. }
  381. /**
  382. * ks8851_dbg_dumpkkt - dump initial packet contents to debug
  383. * @ks: The device state
  384. * @rxpkt: The data for the received packet
  385. *
  386. * Dump the initial data from the packet to dev_dbg().
  387. */
  388. static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
  389. {
  390. netdev_dbg(ks->netdev,
  391. "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
  392. rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
  393. rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
  394. rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
  395. }
  396. /**
  397. * ks8851_rx_pkts - receive packets from the host
  398. * @ks: The device information.
  399. *
  400. * This is called from the IRQ work queue when the system detects that there
  401. * are packets in the receive queue. Find out how many packets there are and
  402. * read them from the FIFO.
  403. */
  404. static void ks8851_rx_pkts(struct ks8851_net *ks)
  405. {
  406. struct sk_buff *skb;
  407. unsigned rxfc;
  408. unsigned rxlen;
  409. unsigned rxstat;
  410. u32 rxh;
  411. u8 *rxpkt;
  412. rxfc = ks8851_rdreg8(ks, KS_RXFC);
  413. netif_dbg(ks, rx_status, ks->netdev,
  414. "%s: %d packets\n", __func__, rxfc);
  415. /* Currently we're issuing a read per packet, but we could possibly
  416. * improve the code by issuing a single read, getting the receive
  417. * header, allocating the packet and then reading the packet data
  418. * out in one go.
  419. *
  420. * This form of operation would require us to hold the SPI bus'
  421. * chipselect low during the entie transaction to avoid any
  422. * reset to the data stream comming from the chip.
  423. */
  424. for (; rxfc != 0; rxfc--) {
  425. rxh = ks8851_rdreg32(ks, KS_RXFHSR);
  426. rxstat = rxh & 0xffff;
  427. rxlen = rxh >> 16;
  428. netif_dbg(ks, rx_status, ks->netdev,
  429. "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
  430. /* the length of the packet includes the 32bit CRC */
  431. /* set dma read address */
  432. ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
  433. /* start the packet dma process, and set auto-dequeue rx */
  434. ks8851_wrreg16(ks, KS_RXQCR,
  435. ks->rc_rxqcr | RXQCR_SDA | RXQCR_ADRFE);
  436. if (rxlen > 0) {
  437. skb = netdev_alloc_skb(ks->netdev, rxlen + 2 + 8);
  438. if (!skb) {
  439. /* todo - dump frame and move on */
  440. }
  441. /* two bytes to ensure ip is aligned, and four bytes
  442. * for the status header and 4 bytes of garbage */
  443. skb_reserve(skb, 2 + 4 + 4);
  444. rxpkt = skb_put(skb, rxlen - 4) - 8;
  445. /* align the packet length to 4 bytes, and add 4 bytes
  446. * as we're getting the rx status header as well */
  447. ks8851_rdfifo(ks, rxpkt, ALIGN(rxlen, 4) + 8);
  448. if (netif_msg_pktdata(ks))
  449. ks8851_dbg_dumpkkt(ks, rxpkt);
  450. skb->protocol = eth_type_trans(skb, ks->netdev);
  451. netif_rx(skb);
  452. ks->netdev->stats.rx_packets++;
  453. ks->netdev->stats.rx_bytes += rxlen - 4;
  454. }
  455. ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
  456. }
  457. }
  458. /**
  459. * ks8851_irq_work - work queue handler for dealing with interrupt requests
  460. * @work: The work structure that was scheduled by schedule_work()
  461. *
  462. * This is the handler invoked when the ks8851_irq() is called to find out
  463. * what happened, as we cannot allow ourselves to sleep whilst waiting for
  464. * anything other process has the chip's lock.
  465. *
  466. * Read the interrupt status, work out what needs to be done and then clear
  467. * any of the interrupts that are not needed.
  468. */
  469. static void ks8851_irq_work(struct work_struct *work)
  470. {
  471. struct ks8851_net *ks = container_of(work, struct ks8851_net, irq_work);
  472. unsigned status;
  473. unsigned handled = 0;
  474. mutex_lock(&ks->lock);
  475. status = ks8851_rdreg16(ks, KS_ISR);
  476. netif_dbg(ks, intr, ks->netdev,
  477. "%s: status 0x%04x\n", __func__, status);
  478. if (status & IRQ_LCI) {
  479. /* should do something about checking link status */
  480. handled |= IRQ_LCI;
  481. }
  482. if (status & IRQ_LDI) {
  483. u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
  484. pmecr &= ~PMECR_WKEVT_MASK;
  485. ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
  486. handled |= IRQ_LDI;
  487. }
  488. if (status & IRQ_RXPSI)
  489. handled |= IRQ_RXPSI;
  490. if (status & IRQ_TXI) {
  491. handled |= IRQ_TXI;
  492. /* no lock here, tx queue should have been stopped */
  493. /* update our idea of how much tx space is available to the
  494. * system */
  495. ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);
  496. netif_dbg(ks, intr, ks->netdev,
  497. "%s: txspace %d\n", __func__, ks->tx_space);
  498. }
  499. if (status & IRQ_RXI)
  500. handled |= IRQ_RXI;
  501. if (status & IRQ_SPIBEI) {
  502. dev_err(&ks->spidev->dev, "%s: spi bus error\n", __func__);
  503. handled |= IRQ_SPIBEI;
  504. }
  505. ks8851_wrreg16(ks, KS_ISR, handled);
  506. if (status & IRQ_RXI) {
  507. /* the datasheet says to disable the rx interrupt during
  508. * packet read-out, however we're masking the interrupt
  509. * from the device so do not bother masking just the RX
  510. * from the device. */
  511. ks8851_rx_pkts(ks);
  512. }
  513. /* if something stopped the rx process, probably due to wanting
  514. * to change the rx settings, then do something about restarting
  515. * it. */
  516. if (status & IRQ_RXPSI) {
  517. struct ks8851_rxctrl *rxc = &ks->rxctrl;
  518. /* update the multicast hash table */
  519. ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
  520. ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
  521. ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
  522. ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
  523. ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
  524. ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
  525. }
  526. mutex_unlock(&ks->lock);
  527. if (status & IRQ_TXI)
  528. netif_wake_queue(ks->netdev);
  529. enable_irq(ks->netdev->irq);
  530. }
  531. /**
  532. * calc_txlen - calculate size of message to send packet
  533. * @len: Lenght of data
  534. *
  535. * Returns the size of the TXFIFO message needed to send
  536. * this packet.
  537. */
  538. static inline unsigned calc_txlen(unsigned len)
  539. {
  540. return ALIGN(len + 4, 4);
  541. }
  542. /**
  543. * ks8851_wrpkt - write packet to TX FIFO
  544. * @ks: The device state.
  545. * @txp: The sk_buff to transmit.
  546. * @irq: IRQ on completion of the packet.
  547. *
  548. * Send the @txp to the chip. This means creating the relevant packet header
  549. * specifying the length of the packet and the other information the chip
  550. * needs, such as IRQ on completion. Send the header and the packet data to
  551. * the device.
  552. */
  553. static void ks8851_wrpkt(struct ks8851_net *ks, struct sk_buff *txp, bool irq)
  554. {
  555. struct spi_transfer *xfer = ks->spi_xfer2;
  556. struct spi_message *msg = &ks->spi_msg2;
  557. unsigned fid = 0;
  558. int ret;
  559. netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n",
  560. __func__, txp, txp->len, txp->data, irq);
  561. fid = ks->fid++;
  562. fid &= TXFR_TXFID_MASK;
  563. if (irq)
  564. fid |= TXFR_TXIC; /* irq on completion */
  565. /* start header at txb[1] to align txw entries */
  566. ks->txh.txb[1] = KS_SPIOP_TXFIFO;
  567. ks->txh.txw[1] = cpu_to_le16(fid);
  568. ks->txh.txw[2] = cpu_to_le16(txp->len);
  569. xfer->tx_buf = &ks->txh.txb[1];
  570. xfer->rx_buf = NULL;
  571. xfer->len = 5;
  572. xfer++;
  573. xfer->tx_buf = txp->data;
  574. xfer->rx_buf = NULL;
  575. xfer->len = ALIGN(txp->len, 4);
  576. ret = spi_sync(ks->spidev, msg);
  577. if (ret < 0)
  578. netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
  579. }
  580. /**
  581. * ks8851_done_tx - update and then free skbuff after transmitting
  582. * @ks: The device state
  583. * @txb: The buffer transmitted
  584. */
  585. static void ks8851_done_tx(struct ks8851_net *ks, struct sk_buff *txb)
  586. {
  587. struct net_device *dev = ks->netdev;
  588. dev->stats.tx_bytes += txb->len;
  589. dev->stats.tx_packets++;
  590. dev_kfree_skb(txb);
  591. }
  592. /**
  593. * ks8851_tx_work - process tx packet(s)
  594. * @work: The work strucutre what was scheduled.
  595. *
  596. * This is called when a number of packets have been scheduled for
  597. * transmission and need to be sent to the device.
  598. */
  599. static void ks8851_tx_work(struct work_struct *work)
  600. {
  601. struct ks8851_net *ks = container_of(work, struct ks8851_net, tx_work);
  602. struct sk_buff *txb;
  603. bool last = skb_queue_empty(&ks->txq);
  604. mutex_lock(&ks->lock);
  605. while (!last) {
  606. txb = skb_dequeue(&ks->txq);
  607. last = skb_queue_empty(&ks->txq);
  608. if (txb != NULL) {
  609. ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
  610. ks8851_wrpkt(ks, txb, last);
  611. ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
  612. ks8851_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
  613. ks8851_done_tx(ks, txb);
  614. }
  615. }
  616. mutex_unlock(&ks->lock);
  617. }
  618. /**
  619. * ks8851_set_powermode - set power mode of the device
  620. * @ks: The device state
  621. * @pwrmode: The power mode value to write to KS_PMECR.
  622. *
  623. * Change the power mode of the chip.
  624. */
  625. static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
  626. {
  627. unsigned pmecr;
  628. netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
  629. pmecr = ks8851_rdreg16(ks, KS_PMECR);
  630. pmecr &= ~PMECR_PM_MASK;
  631. pmecr |= pwrmode;
  632. ks8851_wrreg16(ks, KS_PMECR, pmecr);
  633. }
  634. /**
  635. * ks8851_net_open - open network device
  636. * @dev: The network device being opened.
  637. *
  638. * Called when the network device is marked active, such as a user executing
  639. * 'ifconfig up' on the device.
  640. */
  641. static int ks8851_net_open(struct net_device *dev)
  642. {
  643. struct ks8851_net *ks = netdev_priv(dev);
  644. /* lock the card, even if we may not actually be doing anything
  645. * else at the moment */
  646. mutex_lock(&ks->lock);
  647. netif_dbg(ks, ifup, ks->netdev, "opening\n");
  648. /* bring chip out of any power saving mode it was in */
  649. ks8851_set_powermode(ks, PMECR_PM_NORMAL);
  650. /* issue a soft reset to the RX/TX QMU to put it into a known
  651. * state. */
  652. ks8851_soft_reset(ks, GRR_QMU);
  653. /* setup transmission parameters */
  654. ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
  655. TXCR_TXPE | /* pad to min length */
  656. TXCR_TXCRC | /* add CRC */
  657. TXCR_TXFCE)); /* enable flow control */
  658. /* auto-increment tx data, reset tx pointer */
  659. ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
  660. /* setup receiver control */
  661. ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /* from mac filter */
  662. RXCR1_RXFCE | /* enable flow control */
  663. RXCR1_RXBE | /* broadcast enable */
  664. RXCR1_RXUE | /* unicast enable */
  665. RXCR1_RXE)); /* enable rx block */
  666. /* transfer entire frames out in one go */
  667. ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
  668. /* set receive counter timeouts */
  669. ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
  670. ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
  671. ks8851_wrreg16(ks, KS_RXFCTR, 10); /* 10 frames to IRQ */
  672. ks->rc_rxqcr = (RXQCR_RXFCTE | /* IRQ on frame count exceeded */
  673. RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
  674. RXQCR_RXDTTE); /* IRQ on time exceeded */
  675. ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
  676. /* clear then enable interrupts */
  677. #define STD_IRQ (IRQ_LCI | /* Link Change */ \
  678. IRQ_TXI | /* TX done */ \
  679. IRQ_RXI | /* RX done */ \
  680. IRQ_SPIBEI | /* SPI bus error */ \
  681. IRQ_TXPSI | /* TX process stop */ \
  682. IRQ_RXPSI) /* RX process stop */
  683. ks->rc_ier = STD_IRQ;
  684. ks8851_wrreg16(ks, KS_ISR, STD_IRQ);
  685. ks8851_wrreg16(ks, KS_IER, STD_IRQ);
  686. netif_start_queue(ks->netdev);
  687. netif_dbg(ks, ifup, ks->netdev, "network device up\n");
  688. mutex_unlock(&ks->lock);
  689. return 0;
  690. }
  691. /**
  692. * ks8851_net_stop - close network device
  693. * @dev: The device being closed.
  694. *
  695. * Called to close down a network device which has been active. Cancell any
  696. * work, shutdown the RX and TX process and then place the chip into a low
  697. * power state whilst it is not being used.
  698. */
  699. static int ks8851_net_stop(struct net_device *dev)
  700. {
  701. struct ks8851_net *ks = netdev_priv(dev);
  702. netif_info(ks, ifdown, dev, "shutting down\n");
  703. netif_stop_queue(dev);
  704. mutex_lock(&ks->lock);
  705. /* stop any outstanding work */
  706. flush_work(&ks->irq_work);
  707. flush_work(&ks->tx_work);
  708. flush_work(&ks->rxctrl_work);
  709. /* turn off the IRQs and ack any outstanding */
  710. ks8851_wrreg16(ks, KS_IER, 0x0000);
  711. ks8851_wrreg16(ks, KS_ISR, 0xffff);
  712. /* shutdown RX process */
  713. ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
  714. /* shutdown TX process */
  715. ks8851_wrreg16(ks, KS_TXCR, 0x0000);
  716. /* set powermode to soft power down to save power */
  717. ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
  718. /* ensure any queued tx buffers are dumped */
  719. while (!skb_queue_empty(&ks->txq)) {
  720. struct sk_buff *txb = skb_dequeue(&ks->txq);
  721. netif_dbg(ks, ifdown, ks->netdev,
  722. "%s: freeing txb %p\n", __func__, txb);
  723. dev_kfree_skb(txb);
  724. }
  725. mutex_unlock(&ks->lock);
  726. return 0;
  727. }
  728. /**
  729. * ks8851_start_xmit - transmit packet
  730. * @skb: The buffer to transmit
  731. * @dev: The device used to transmit the packet.
  732. *
  733. * Called by the network layer to transmit the @skb. Queue the packet for
  734. * the device and schedule the necessary work to transmit the packet when
  735. * it is free.
  736. *
  737. * We do this to firstly avoid sleeping with the network device locked,
  738. * and secondly so we can round up more than one packet to transmit which
  739. * means we can try and avoid generating too many transmit done interrupts.
  740. */
  741. static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
  742. struct net_device *dev)
  743. {
  744. struct ks8851_net *ks = netdev_priv(dev);
  745. unsigned needed = calc_txlen(skb->len);
  746. netdev_tx_t ret = NETDEV_TX_OK;
  747. netif_dbg(ks, tx_queued, ks->netdev,
  748. "%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data);
  749. spin_lock(&ks->statelock);
  750. if (needed > ks->tx_space) {
  751. netif_stop_queue(dev);
  752. ret = NETDEV_TX_BUSY;
  753. } else {
  754. ks->tx_space -= needed;
  755. skb_queue_tail(&ks->txq, skb);
  756. }
  757. spin_unlock(&ks->statelock);
  758. schedule_work(&ks->tx_work);
  759. return ret;
  760. }
  761. /**
  762. * ks8851_rxctrl_work - work handler to change rx mode
  763. * @work: The work structure this belongs to.
  764. *
  765. * Lock the device and issue the necessary changes to the receive mode from
  766. * the network device layer. This is done so that we can do this without
  767. * having to sleep whilst holding the network device lock.
  768. *
  769. * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
  770. * receive parameters are programmed, we issue a write to disable the RXQ and
  771. * then wait for the interrupt handler to be triggered once the RXQ shutdown is
  772. * complete. The interrupt handler then writes the new values into the chip.
  773. */
  774. static void ks8851_rxctrl_work(struct work_struct *work)
  775. {
  776. struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
  777. mutex_lock(&ks->lock);
  778. /* need to shutdown RXQ before modifying filter parameters */
  779. ks8851_wrreg16(ks, KS_RXCR1, 0x00);
  780. mutex_unlock(&ks->lock);
  781. }
  782. static void ks8851_set_rx_mode(struct net_device *dev)
  783. {
  784. struct ks8851_net *ks = netdev_priv(dev);
  785. struct ks8851_rxctrl rxctrl;
  786. memset(&rxctrl, 0, sizeof(rxctrl));
  787. if (dev->flags & IFF_PROMISC) {
  788. /* interface to receive everything */
  789. rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
  790. } else if (dev->flags & IFF_ALLMULTI) {
  791. /* accept all multicast packets */
  792. rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
  793. RXCR1_RXPAFMA | RXCR1_RXMAFMA);
  794. } else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
  795. struct netdev_hw_addr *ha;
  796. u32 crc;
  797. /* accept some multicast */
  798. netdev_for_each_mc_addr(ha, dev) {
  799. crc = ether_crc(ETH_ALEN, ha->addr);
  800. crc >>= (32 - 6); /* get top six bits */
  801. rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
  802. }
  803. rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
  804. } else {
  805. /* just accept broadcast / unicast */
  806. rxctrl.rxcr1 = RXCR1_RXPAFMA;
  807. }
  808. rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
  809. RXCR1_RXBE | /* broadcast enable */
  810. RXCR1_RXE | /* RX process enable */
  811. RXCR1_RXFCE); /* enable flow control */
  812. rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
  813. /* schedule work to do the actual set of the data if needed */
  814. spin_lock(&ks->statelock);
  815. if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
  816. memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
  817. schedule_work(&ks->rxctrl_work);
  818. }
  819. spin_unlock(&ks->statelock);
  820. }
  821. static int ks8851_set_mac_address(struct net_device *dev, void *addr)
  822. {
  823. struct sockaddr *sa = addr;
  824. if (netif_running(dev))
  825. return -EBUSY;
  826. if (!is_valid_ether_addr(sa->sa_data))
  827. return -EADDRNOTAVAIL;
  828. memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
  829. return ks8851_write_mac_addr(dev);
  830. }
  831. static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
  832. {
  833. struct ks8851_net *ks = netdev_priv(dev);
  834. if (!netif_running(dev))
  835. return -EINVAL;
  836. return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
  837. }
  838. static const struct net_device_ops ks8851_netdev_ops = {
  839. .ndo_open = ks8851_net_open,
  840. .ndo_stop = ks8851_net_stop,
  841. .ndo_do_ioctl = ks8851_net_ioctl,
  842. .ndo_start_xmit = ks8851_start_xmit,
  843. .ndo_set_mac_address = ks8851_set_mac_address,
  844. .ndo_set_rx_mode = ks8851_set_rx_mode,
  845. .ndo_change_mtu = eth_change_mtu,
  846. .ndo_validate_addr = eth_validate_addr,
  847. };
  848. /* ethtool support */
  849. static void ks8851_get_drvinfo(struct net_device *dev,
  850. struct ethtool_drvinfo *di)
  851. {
  852. strlcpy(di->driver, "KS8851", sizeof(di->driver));
  853. strlcpy(di->version, "1.00", sizeof(di->version));
  854. strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
  855. }
  856. static u32 ks8851_get_msglevel(struct net_device *dev)
  857. {
  858. struct ks8851_net *ks = netdev_priv(dev);
  859. return ks->msg_enable;
  860. }
  861. static void ks8851_set_msglevel(struct net_device *dev, u32 to)
  862. {
  863. struct ks8851_net *ks = netdev_priv(dev);
  864. ks->msg_enable = to;
  865. }
  866. static int ks8851_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  867. {
  868. struct ks8851_net *ks = netdev_priv(dev);
  869. return mii_ethtool_gset(&ks->mii, cmd);
  870. }
  871. static int ks8851_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  872. {
  873. struct ks8851_net *ks = netdev_priv(dev);
  874. return mii_ethtool_sset(&ks->mii, cmd);
  875. }
  876. static u32 ks8851_get_link(struct net_device *dev)
  877. {
  878. struct ks8851_net *ks = netdev_priv(dev);
  879. return mii_link_ok(&ks->mii);
  880. }
  881. static int ks8851_nway_reset(struct net_device *dev)
  882. {
  883. struct ks8851_net *ks = netdev_priv(dev);
  884. return mii_nway_restart(&ks->mii);
  885. }
  886. static const struct ethtool_ops ks8851_ethtool_ops = {
  887. .get_drvinfo = ks8851_get_drvinfo,
  888. .get_msglevel = ks8851_get_msglevel,
  889. .set_msglevel = ks8851_set_msglevel,
  890. .get_settings = ks8851_get_settings,
  891. .set_settings = ks8851_set_settings,
  892. .get_link = ks8851_get_link,
  893. .nway_reset = ks8851_nway_reset,
  894. };
  895. /* MII interface controls */
  896. /**
  897. * ks8851_phy_reg - convert MII register into a KS8851 register
  898. * @reg: MII register number.
  899. *
  900. * Return the KS8851 register number for the corresponding MII PHY register
  901. * if possible. Return zero if the MII register has no direct mapping to the
  902. * KS8851 register set.
  903. */
  904. static int ks8851_phy_reg(int reg)
  905. {
  906. switch (reg) {
  907. case MII_BMCR:
  908. return KS_P1MBCR;
  909. case MII_BMSR:
  910. return KS_P1MBSR;
  911. case MII_PHYSID1:
  912. return KS_PHY1ILR;
  913. case MII_PHYSID2:
  914. return KS_PHY1IHR;
  915. case MII_ADVERTISE:
  916. return KS_P1ANAR;
  917. case MII_LPA:
  918. return KS_P1ANLPR;
  919. }
  920. return 0x0;
  921. }
  922. /**
  923. * ks8851_phy_read - MII interface PHY register read.
  924. * @dev: The network device the PHY is on.
  925. * @phy_addr: Address of PHY (ignored as we only have one)
  926. * @reg: The register to read.
  927. *
  928. * This call reads data from the PHY register specified in @reg. Since the
  929. * device does not support all the MII registers, the non-existant values
  930. * are always returned as zero.
  931. *
  932. * We return zero for unsupported registers as the MII code does not check
  933. * the value returned for any error status, and simply returns it to the
  934. * caller. The mii-tool that the driver was tested with takes any -ve error
  935. * as real PHY capabilities, thus displaying incorrect data to the user.
  936. */
  937. static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
  938. {
  939. struct ks8851_net *ks = netdev_priv(dev);
  940. int ksreg;
  941. int result;
  942. ksreg = ks8851_phy_reg(reg);
  943. if (!ksreg)
  944. return 0x0; /* no error return allowed, so use zero */
  945. mutex_lock(&ks->lock);
  946. result = ks8851_rdreg16(ks, ksreg);
  947. mutex_unlock(&ks->lock);
  948. return result;
  949. }
  950. static void ks8851_phy_write(struct net_device *dev,
  951. int phy, int reg, int value)
  952. {
  953. struct ks8851_net *ks = netdev_priv(dev);
  954. int ksreg;
  955. ksreg = ks8851_phy_reg(reg);
  956. if (ksreg) {
  957. mutex_lock(&ks->lock);
  958. ks8851_wrreg16(ks, ksreg, value);
  959. mutex_unlock(&ks->lock);
  960. }
  961. }
  962. /**
  963. * ks8851_read_selftest - read the selftest memory info.
  964. * @ks: The device state
  965. *
  966. * Read and check the TX/RX memory selftest information.
  967. */
  968. static int ks8851_read_selftest(struct ks8851_net *ks)
  969. {
  970. unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
  971. int ret = 0;
  972. unsigned rd;
  973. rd = ks8851_rdreg16(ks, KS_MBIR);
  974. if ((rd & both_done) != both_done) {
  975. netdev_warn(ks->netdev, "Memory selftest not finished\n");
  976. return 0;
  977. }
  978. if (rd & MBIR_TXMBFA) {
  979. netdev_err(ks->netdev, "TX memory selftest fail\n");
  980. ret |= 1;
  981. }
  982. if (rd & MBIR_RXMBFA) {
  983. netdev_err(ks->netdev, "RX memory selftest fail\n");
  984. ret |= 2;
  985. }
  986. return 0;
  987. }
  988. /* driver bus management functions */
  989. static int __devinit ks8851_probe(struct spi_device *spi)
  990. {
  991. struct net_device *ndev;
  992. struct ks8851_net *ks;
  993. int ret;
  994. ndev = alloc_etherdev(sizeof(struct ks8851_net));
  995. if (!ndev) {
  996. dev_err(&spi->dev, "failed to alloc ethernet device\n");
  997. return -ENOMEM;
  998. }
  999. spi->bits_per_word = 8;
  1000. ks = netdev_priv(ndev);
  1001. ks->netdev = ndev;
  1002. ks->spidev = spi;
  1003. ks->tx_space = 6144;
  1004. mutex_init(&ks->lock);
  1005. spin_lock_init(&ks->statelock);
  1006. INIT_WORK(&ks->tx_work, ks8851_tx_work);
  1007. INIT_WORK(&ks->irq_work, ks8851_irq_work);
  1008. INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
  1009. /* initialise pre-made spi transfer messages */
  1010. spi_message_init(&ks->spi_msg1);
  1011. spi_message_add_tail(&ks->spi_xfer1, &ks->spi_msg1);
  1012. spi_message_init(&ks->spi_msg2);
  1013. spi_message_add_tail(&ks->spi_xfer2[0], &ks->spi_msg2);
  1014. spi_message_add_tail(&ks->spi_xfer2[1], &ks->spi_msg2);
  1015. /* setup mii state */
  1016. ks->mii.dev = ndev;
  1017. ks->mii.phy_id = 1,
  1018. ks->mii.phy_id_mask = 1;
  1019. ks->mii.reg_num_mask = 0xf;
  1020. ks->mii.mdio_read = ks8851_phy_read;
  1021. ks->mii.mdio_write = ks8851_phy_write;
  1022. dev_info(&spi->dev, "message enable is %d\n", msg_enable);
  1023. /* set the default message enable */
  1024. ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
  1025. NETIF_MSG_PROBE |
  1026. NETIF_MSG_LINK));
  1027. skb_queue_head_init(&ks->txq);
  1028. SET_ETHTOOL_OPS(ndev, &ks8851_ethtool_ops);
  1029. SET_NETDEV_DEV(ndev, &spi->dev);
  1030. dev_set_drvdata(&spi->dev, ks);
  1031. ndev->if_port = IF_PORT_100BASET;
  1032. ndev->netdev_ops = &ks8851_netdev_ops;
  1033. ndev->irq = spi->irq;
  1034. /* issue a global soft reset to reset the device. */
  1035. ks8851_soft_reset(ks, GRR_GSR);
  1036. /* simple check for a valid chip being connected to the bus */
  1037. if ((ks8851_rdreg16(ks, KS_CIDER) & ~CIDER_REV_MASK) != CIDER_ID) {
  1038. dev_err(&spi->dev, "failed to read device ID\n");
  1039. ret = -ENODEV;
  1040. goto err_id;
  1041. }
  1042. /* cache the contents of the CCR register for EEPROM, etc. */
  1043. ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);
  1044. if (ks->rc_ccr & CCR_EEPROM)
  1045. ks->eeprom_size = 128;
  1046. else
  1047. ks->eeprom_size = 0;
  1048. ks8851_read_selftest(ks);
  1049. ks8851_init_mac(ks);
  1050. ret = request_irq(spi->irq, ks8851_irq, IRQF_TRIGGER_LOW,
  1051. ndev->name, ks);
  1052. if (ret < 0) {
  1053. dev_err(&spi->dev, "failed to get irq\n");
  1054. goto err_irq;
  1055. }
  1056. ret = register_netdev(ndev);
  1057. if (ret) {
  1058. dev_err(&spi->dev, "failed to register network device\n");
  1059. goto err_netdev;
  1060. }
  1061. netdev_info(ndev, "revision %d, MAC %pM, IRQ %d\n",
  1062. CIDER_REV_GET(ks8851_rdreg16(ks, KS_CIDER)),
  1063. ndev->dev_addr, ndev->irq);
  1064. return 0;
  1065. err_netdev:
  1066. free_irq(ndev->irq, ndev);
  1067. err_id:
  1068. err_irq:
  1069. free_netdev(ndev);
  1070. return ret;
  1071. }
  1072. static int __devexit ks8851_remove(struct spi_device *spi)
  1073. {
  1074. struct ks8851_net *priv = dev_get_drvdata(&spi->dev);
  1075. if (netif_msg_drv(priv))
  1076. dev_info(&spi->dev, "remove\n");
  1077. unregister_netdev(priv->netdev);
  1078. free_irq(spi->irq, priv);
  1079. free_netdev(priv->netdev);
  1080. return 0;
  1081. }
  1082. static struct spi_driver ks8851_driver = {
  1083. .driver = {
  1084. .name = "ks8851",
  1085. .owner = THIS_MODULE,
  1086. },
  1087. .probe = ks8851_probe,
  1088. .remove = __devexit_p(ks8851_remove),
  1089. };
  1090. static int __init ks8851_init(void)
  1091. {
  1092. return spi_register_driver(&ks8851_driver);
  1093. }
  1094. static void __exit ks8851_exit(void)
  1095. {
  1096. spi_unregister_driver(&ks8851_driver);
  1097. }
  1098. module_init(ks8851_init);
  1099. module_exit(ks8851_exit);
  1100. MODULE_DESCRIPTION("KS8851 Network driver");
  1101. MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
  1102. MODULE_LICENSE("GPL");
  1103. module_param_named(message, msg_enable, int, 0);
  1104. MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
  1105. MODULE_ALIAS("spi:ks8851");