hw.c 69 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/io.h>
  17. #include <linux/slab.h>
  18. #include <asm/unaligned.h>
  19. #include "hw.h"
  20. #include "hw-ops.h"
  21. #include "rc.h"
  22. #include "ar9003_mac.h"
  23. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  24. MODULE_AUTHOR("Atheros Communications");
  25. MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  26. MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  27. MODULE_LICENSE("Dual BSD/GPL");
  28. static int __init ath9k_init(void)
  29. {
  30. return 0;
  31. }
  32. module_init(ath9k_init);
  33. static void __exit ath9k_exit(void)
  34. {
  35. return;
  36. }
  37. module_exit(ath9k_exit);
  38. /* Private hardware callbacks */
  39. static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
  40. {
  41. ath9k_hw_private_ops(ah)->init_cal_settings(ah);
  42. }
  43. static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
  44. {
  45. ath9k_hw_private_ops(ah)->init_mode_regs(ah);
  46. }
  47. static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
  48. struct ath9k_channel *chan)
  49. {
  50. return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
  51. }
  52. static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
  53. {
  54. if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
  55. return;
  56. ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
  57. }
  58. static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
  59. {
  60. /* You will not have this callback if using the old ANI */
  61. if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
  62. return;
  63. ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
  64. }
  65. /********************/
  66. /* Helper Functions */
  67. /********************/
  68. static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  69. {
  70. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  71. struct ath_common *common = ath9k_hw_common(ah);
  72. unsigned int clockrate;
  73. if (!ah->curchan) /* should really check for CCK instead */
  74. clockrate = ATH9K_CLOCK_RATE_CCK;
  75. else if (conf->channel->band == IEEE80211_BAND_2GHZ)
  76. clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  77. else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  78. clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  79. else
  80. clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
  81. if (conf_is_ht40(conf))
  82. clockrate *= 2;
  83. common->clockrate = clockrate;
  84. }
  85. static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  86. {
  87. struct ath_common *common = ath9k_hw_common(ah);
  88. return usecs * common->clockrate;
  89. }
  90. bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  91. {
  92. int i;
  93. BUG_ON(timeout < AH_TIME_QUANTUM);
  94. for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  95. if ((REG_READ(ah, reg) & mask) == val)
  96. return true;
  97. udelay(AH_TIME_QUANTUM);
  98. }
  99. ath_dbg(ath9k_hw_common(ah), ATH_DBG_ANY,
  100. "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  101. timeout, reg, REG_READ(ah, reg), mask, val);
  102. return false;
  103. }
  104. EXPORT_SYMBOL(ath9k_hw_wait);
  105. void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
  106. int column, unsigned int *writecnt)
  107. {
  108. int r;
  109. ENABLE_REGWRITE_BUFFER(ah);
  110. for (r = 0; r < array->ia_rows; r++) {
  111. REG_WRITE(ah, INI_RA(array, r, 0),
  112. INI_RA(array, r, column));
  113. DO_DELAY(*writecnt);
  114. }
  115. REGWRITE_BUFFER_FLUSH(ah);
  116. }
  117. u32 ath9k_hw_reverse_bits(u32 val, u32 n)
  118. {
  119. u32 retval;
  120. int i;
  121. for (i = 0, retval = 0; i < n; i++) {
  122. retval = (retval << 1) | (val & 1);
  123. val >>= 1;
  124. }
  125. return retval;
  126. }
  127. u16 ath9k_hw_computetxtime(struct ath_hw *ah,
  128. u8 phy, int kbps,
  129. u32 frameLen, u16 rateix,
  130. bool shortPreamble)
  131. {
  132. u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
  133. if (kbps == 0)
  134. return 0;
  135. switch (phy) {
  136. case WLAN_RC_PHY_CCK:
  137. phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
  138. if (shortPreamble)
  139. phyTime >>= 1;
  140. numBits = frameLen << 3;
  141. txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
  142. break;
  143. case WLAN_RC_PHY_OFDM:
  144. if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
  145. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
  146. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  147. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  148. txTime = OFDM_SIFS_TIME_QUARTER
  149. + OFDM_PREAMBLE_TIME_QUARTER
  150. + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
  151. } else if (ah->curchan &&
  152. IS_CHAN_HALF_RATE(ah->curchan)) {
  153. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
  154. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  155. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  156. txTime = OFDM_SIFS_TIME_HALF +
  157. OFDM_PREAMBLE_TIME_HALF
  158. + (numSymbols * OFDM_SYMBOL_TIME_HALF);
  159. } else {
  160. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
  161. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  162. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  163. txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
  164. + (numSymbols * OFDM_SYMBOL_TIME);
  165. }
  166. break;
  167. default:
  168. ath_err(ath9k_hw_common(ah),
  169. "Unknown phy %u (rate ix %u)\n", phy, rateix);
  170. txTime = 0;
  171. break;
  172. }
  173. return txTime;
  174. }
  175. EXPORT_SYMBOL(ath9k_hw_computetxtime);
  176. void ath9k_hw_get_channel_centers(struct ath_hw *ah,
  177. struct ath9k_channel *chan,
  178. struct chan_centers *centers)
  179. {
  180. int8_t extoff;
  181. if (!IS_CHAN_HT40(chan)) {
  182. centers->ctl_center = centers->ext_center =
  183. centers->synth_center = chan->channel;
  184. return;
  185. }
  186. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  187. (chan->chanmode == CHANNEL_G_HT40PLUS)) {
  188. centers->synth_center =
  189. chan->channel + HT40_CHANNEL_CENTER_SHIFT;
  190. extoff = 1;
  191. } else {
  192. centers->synth_center =
  193. chan->channel - HT40_CHANNEL_CENTER_SHIFT;
  194. extoff = -1;
  195. }
  196. centers->ctl_center =
  197. centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
  198. /* 25 MHz spacing is supported by hw but not on upper layers */
  199. centers->ext_center =
  200. centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
  201. }
  202. /******************/
  203. /* Chip Revisions */
  204. /******************/
  205. static void ath9k_hw_read_revisions(struct ath_hw *ah)
  206. {
  207. u32 val;
  208. switch (ah->hw_version.devid) {
  209. case AR5416_AR9100_DEVID:
  210. ah->hw_version.macVersion = AR_SREV_VERSION_9100;
  211. break;
  212. case AR9300_DEVID_AR9330:
  213. ah->hw_version.macVersion = AR_SREV_VERSION_9330;
  214. if (ah->get_mac_revision) {
  215. ah->hw_version.macRev = ah->get_mac_revision();
  216. } else {
  217. val = REG_READ(ah, AR_SREV);
  218. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  219. }
  220. return;
  221. case AR9300_DEVID_AR9340:
  222. ah->hw_version.macVersion = AR_SREV_VERSION_9340;
  223. val = REG_READ(ah, AR_SREV);
  224. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  225. return;
  226. }
  227. val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
  228. if (val == 0xFF) {
  229. val = REG_READ(ah, AR_SREV);
  230. ah->hw_version.macVersion =
  231. (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
  232. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  233. ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
  234. } else {
  235. if (!AR_SREV_9100(ah))
  236. ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
  237. ah->hw_version.macRev = val & AR_SREV_REVISION;
  238. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
  239. ah->is_pciexpress = true;
  240. }
  241. }
  242. /************************************/
  243. /* HW Attach, Detach, Init Routines */
  244. /************************************/
  245. static void ath9k_hw_disablepcie(struct ath_hw *ah)
  246. {
  247. if (!AR_SREV_5416(ah))
  248. return;
  249. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  250. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  251. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
  252. REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
  253. REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
  254. REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
  255. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  256. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  257. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
  258. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  259. }
  260. /* This should work for all families including legacy */
  261. static bool ath9k_hw_chip_test(struct ath_hw *ah)
  262. {
  263. struct ath_common *common = ath9k_hw_common(ah);
  264. u32 regAddr[2] = { AR_STA_ID0 };
  265. u32 regHold[2];
  266. static const u32 patternData[4] = {
  267. 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
  268. };
  269. int i, j, loop_max;
  270. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  271. loop_max = 2;
  272. regAddr[1] = AR_PHY_BASE + (8 << 2);
  273. } else
  274. loop_max = 1;
  275. for (i = 0; i < loop_max; i++) {
  276. u32 addr = regAddr[i];
  277. u32 wrData, rdData;
  278. regHold[i] = REG_READ(ah, addr);
  279. for (j = 0; j < 0x100; j++) {
  280. wrData = (j << 16) | j;
  281. REG_WRITE(ah, addr, wrData);
  282. rdData = REG_READ(ah, addr);
  283. if (rdData != wrData) {
  284. ath_err(common,
  285. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  286. addr, wrData, rdData);
  287. return false;
  288. }
  289. }
  290. for (j = 0; j < 4; j++) {
  291. wrData = patternData[j];
  292. REG_WRITE(ah, addr, wrData);
  293. rdData = REG_READ(ah, addr);
  294. if (wrData != rdData) {
  295. ath_err(common,
  296. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  297. addr, wrData, rdData);
  298. return false;
  299. }
  300. }
  301. REG_WRITE(ah, regAddr[i], regHold[i]);
  302. }
  303. udelay(100);
  304. return true;
  305. }
  306. static void ath9k_hw_init_config(struct ath_hw *ah)
  307. {
  308. int i;
  309. ah->config.dma_beacon_response_time = 2;
  310. ah->config.sw_beacon_response_time = 10;
  311. ah->config.additional_swba_backoff = 0;
  312. ah->config.ack_6mb = 0x0;
  313. ah->config.cwm_ignore_extcca = 0;
  314. ah->config.pcie_powersave_enable = 0;
  315. ah->config.pcie_clock_req = 0;
  316. ah->config.pcie_waen = 0;
  317. ah->config.analog_shiftreg = 1;
  318. ah->config.enable_ani = true;
  319. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  320. ah->config.spurchans[i][0] = AR_NO_SPUR;
  321. ah->config.spurchans[i][1] = AR_NO_SPUR;
  322. }
  323. /* PAPRD needs some more work to be enabled */
  324. ah->config.paprd_disable = 1;
  325. ah->config.rx_intr_mitigation = true;
  326. ah->config.pcieSerDesWrite = true;
  327. /*
  328. * We need this for PCI devices only (Cardbus, PCI, miniPCI)
  329. * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
  330. * This means we use it for all AR5416 devices, and the few
  331. * minor PCI AR9280 devices out there.
  332. *
  333. * Serialization is required because these devices do not handle
  334. * well the case of two concurrent reads/writes due to the latency
  335. * involved. During one read/write another read/write can be issued
  336. * on another CPU while the previous read/write may still be working
  337. * on our hardware, if we hit this case the hardware poops in a loop.
  338. * We prevent this by serializing reads and writes.
  339. *
  340. * This issue is not present on PCI-Express devices or pre-AR5416
  341. * devices (legacy, 802.11abg).
  342. */
  343. if (num_possible_cpus() > 1)
  344. ah->config.serialize_regmode = SER_REG_MODE_AUTO;
  345. }
  346. static void ath9k_hw_init_defaults(struct ath_hw *ah)
  347. {
  348. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  349. regulatory->country_code = CTRY_DEFAULT;
  350. regulatory->power_limit = MAX_RATE_POWER;
  351. regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
  352. ah->hw_version.magic = AR5416_MAGIC;
  353. ah->hw_version.subvendorid = 0;
  354. ah->atim_window = 0;
  355. ah->sta_id1_defaults =
  356. AR_STA_ID1_CRPT_MIC_ENABLE |
  357. AR_STA_ID1_MCAST_KSRCH;
  358. if (AR_SREV_9100(ah))
  359. ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
  360. ah->enable_32kHz_clock = DONT_USE_32KHZ;
  361. ah->slottime = 20;
  362. ah->globaltxtimeout = (u32) -1;
  363. ah->power_mode = ATH9K_PM_UNDEFINED;
  364. }
  365. static int ath9k_hw_init_macaddr(struct ath_hw *ah)
  366. {
  367. struct ath_common *common = ath9k_hw_common(ah);
  368. u32 sum;
  369. int i;
  370. u16 eeval;
  371. static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
  372. sum = 0;
  373. for (i = 0; i < 3; i++) {
  374. eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
  375. sum += eeval;
  376. common->macaddr[2 * i] = eeval >> 8;
  377. common->macaddr[2 * i + 1] = eeval & 0xff;
  378. }
  379. if (sum == 0 || sum == 0xffff * 3)
  380. return -EADDRNOTAVAIL;
  381. return 0;
  382. }
  383. static int ath9k_hw_post_init(struct ath_hw *ah)
  384. {
  385. struct ath_common *common = ath9k_hw_common(ah);
  386. int ecode;
  387. if (common->bus_ops->ath_bus_type != ATH_USB) {
  388. if (!ath9k_hw_chip_test(ah))
  389. return -ENODEV;
  390. }
  391. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  392. ecode = ar9002_hw_rf_claim(ah);
  393. if (ecode != 0)
  394. return ecode;
  395. }
  396. ecode = ath9k_hw_eeprom_init(ah);
  397. if (ecode != 0)
  398. return ecode;
  399. ath_dbg(ath9k_hw_common(ah), ATH_DBG_CONFIG,
  400. "Eeprom VER: %d, REV: %d\n",
  401. ah->eep_ops->get_eeprom_ver(ah),
  402. ah->eep_ops->get_eeprom_rev(ah));
  403. ecode = ath9k_hw_rf_alloc_ext_banks(ah);
  404. if (ecode) {
  405. ath_err(ath9k_hw_common(ah),
  406. "Failed allocating banks for external radio\n");
  407. ath9k_hw_rf_free_ext_banks(ah);
  408. return ecode;
  409. }
  410. if (!AR_SREV_9100(ah) && !AR_SREV_9340(ah)) {
  411. ath9k_hw_ani_setup(ah);
  412. ath9k_hw_ani_init(ah);
  413. }
  414. return 0;
  415. }
  416. static void ath9k_hw_attach_ops(struct ath_hw *ah)
  417. {
  418. if (AR_SREV_9300_20_OR_LATER(ah))
  419. ar9003_hw_attach_ops(ah);
  420. else
  421. ar9002_hw_attach_ops(ah);
  422. }
  423. /* Called for all hardware families */
  424. static int __ath9k_hw_init(struct ath_hw *ah)
  425. {
  426. struct ath_common *common = ath9k_hw_common(ah);
  427. int r = 0;
  428. ath9k_hw_read_revisions(ah);
  429. /*
  430. * Read back AR_WA into a permanent copy and set bits 14 and 17.
  431. * We need to do this to avoid RMW of this register. We cannot
  432. * read the reg when chip is asleep.
  433. */
  434. ah->WARegVal = REG_READ(ah, AR_WA);
  435. ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
  436. AR_WA_ASPM_TIMER_BASED_DISABLE);
  437. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  438. ath_err(common, "Couldn't reset chip\n");
  439. return -EIO;
  440. }
  441. ath9k_hw_init_defaults(ah);
  442. ath9k_hw_init_config(ah);
  443. ath9k_hw_attach_ops(ah);
  444. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
  445. ath_err(common, "Couldn't wakeup chip\n");
  446. return -EIO;
  447. }
  448. if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
  449. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
  450. ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
  451. !ah->is_pciexpress)) {
  452. ah->config.serialize_regmode =
  453. SER_REG_MODE_ON;
  454. } else {
  455. ah->config.serialize_regmode =
  456. SER_REG_MODE_OFF;
  457. }
  458. }
  459. ath_dbg(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
  460. ah->config.serialize_regmode);
  461. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  462. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
  463. else
  464. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
  465. switch (ah->hw_version.macVersion) {
  466. case AR_SREV_VERSION_5416_PCI:
  467. case AR_SREV_VERSION_5416_PCIE:
  468. case AR_SREV_VERSION_9160:
  469. case AR_SREV_VERSION_9100:
  470. case AR_SREV_VERSION_9280:
  471. case AR_SREV_VERSION_9285:
  472. case AR_SREV_VERSION_9287:
  473. case AR_SREV_VERSION_9271:
  474. case AR_SREV_VERSION_9300:
  475. case AR_SREV_VERSION_9330:
  476. case AR_SREV_VERSION_9485:
  477. case AR_SREV_VERSION_9340:
  478. break;
  479. default:
  480. ath_err(common,
  481. "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
  482. ah->hw_version.macVersion, ah->hw_version.macRev);
  483. return -EOPNOTSUPP;
  484. }
  485. if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
  486. AR_SREV_9330(ah))
  487. ah->is_pciexpress = false;
  488. ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
  489. ath9k_hw_init_cal_settings(ah);
  490. ah->ani_function = ATH9K_ANI_ALL;
  491. if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  492. ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
  493. if (!AR_SREV_9300_20_OR_LATER(ah))
  494. ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
  495. ath9k_hw_init_mode_regs(ah);
  496. if (ah->is_pciexpress)
  497. ath9k_hw_configpcipowersave(ah, 0, 0);
  498. else
  499. ath9k_hw_disablepcie(ah);
  500. if (!AR_SREV_9300_20_OR_LATER(ah))
  501. ar9002_hw_cck_chan14_spread(ah);
  502. r = ath9k_hw_post_init(ah);
  503. if (r)
  504. return r;
  505. ath9k_hw_init_mode_gain_regs(ah);
  506. r = ath9k_hw_fill_cap_info(ah);
  507. if (r)
  508. return r;
  509. r = ath9k_hw_init_macaddr(ah);
  510. if (r) {
  511. ath_err(common, "Failed to initialize MAC address\n");
  512. return r;
  513. }
  514. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  515. ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
  516. else
  517. ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
  518. if (AR_SREV_9330(ah))
  519. ah->bb_watchdog_timeout_ms = 85;
  520. else
  521. ah->bb_watchdog_timeout_ms = 25;
  522. common->state = ATH_HW_INITIALIZED;
  523. return 0;
  524. }
  525. int ath9k_hw_init(struct ath_hw *ah)
  526. {
  527. int ret;
  528. struct ath_common *common = ath9k_hw_common(ah);
  529. /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
  530. switch (ah->hw_version.devid) {
  531. case AR5416_DEVID_PCI:
  532. case AR5416_DEVID_PCIE:
  533. case AR5416_AR9100_DEVID:
  534. case AR9160_DEVID_PCI:
  535. case AR9280_DEVID_PCI:
  536. case AR9280_DEVID_PCIE:
  537. case AR9285_DEVID_PCIE:
  538. case AR9287_DEVID_PCI:
  539. case AR9287_DEVID_PCIE:
  540. case AR2427_DEVID_PCIE:
  541. case AR9300_DEVID_PCIE:
  542. case AR9300_DEVID_AR9485_PCIE:
  543. case AR9300_DEVID_AR9340:
  544. break;
  545. default:
  546. if (common->bus_ops->ath_bus_type == ATH_USB)
  547. break;
  548. ath_err(common, "Hardware device ID 0x%04x not supported\n",
  549. ah->hw_version.devid);
  550. return -EOPNOTSUPP;
  551. }
  552. ret = __ath9k_hw_init(ah);
  553. if (ret) {
  554. ath_err(common,
  555. "Unable to initialize hardware; initialization status: %d\n",
  556. ret);
  557. return ret;
  558. }
  559. return 0;
  560. }
  561. EXPORT_SYMBOL(ath9k_hw_init);
  562. static void ath9k_hw_init_qos(struct ath_hw *ah)
  563. {
  564. ENABLE_REGWRITE_BUFFER(ah);
  565. REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
  566. REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
  567. REG_WRITE(ah, AR_QOS_NO_ACK,
  568. SM(2, AR_QOS_NO_ACK_TWO_BIT) |
  569. SM(5, AR_QOS_NO_ACK_BIT_OFF) |
  570. SM(0, AR_QOS_NO_ACK_BYTE_OFF));
  571. REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
  572. REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
  573. REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
  574. REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
  575. REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
  576. REGWRITE_BUFFER_FLUSH(ah);
  577. }
  578. u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
  579. {
  580. REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  581. udelay(100);
  582. REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  583. while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0)
  584. udelay(100);
  585. return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
  586. }
  587. EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
  588. static void ath9k_hw_init_pll(struct ath_hw *ah,
  589. struct ath9k_channel *chan)
  590. {
  591. u32 pll;
  592. if (AR_SREV_9485(ah)) {
  593. /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
  594. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  595. AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
  596. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  597. AR_CH0_DPLL2_KD, 0x40);
  598. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  599. AR_CH0_DPLL2_KI, 0x4);
  600. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  601. AR_CH0_BB_DPLL1_REFDIV, 0x5);
  602. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  603. AR_CH0_BB_DPLL1_NINI, 0x58);
  604. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  605. AR_CH0_BB_DPLL1_NFRAC, 0x0);
  606. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  607. AR_CH0_BB_DPLL2_OUTDIV, 0x1);
  608. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  609. AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
  610. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  611. AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
  612. /* program BB PLL phase_shift to 0x6 */
  613. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  614. AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
  615. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  616. AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
  617. udelay(1000);
  618. } else if (AR_SREV_9330(ah)) {
  619. u32 ddr_dpll2, pll_control2, kd;
  620. if (ah->is_clk_25mhz) {
  621. ddr_dpll2 = 0x18e82f01;
  622. pll_control2 = 0xe04a3d;
  623. kd = 0x1d;
  624. } else {
  625. ddr_dpll2 = 0x19e82f01;
  626. pll_control2 = 0x886666;
  627. kd = 0x3d;
  628. }
  629. /* program DDR PLL ki and kd value */
  630. REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
  631. /* program DDR PLL phase_shift */
  632. REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
  633. AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
  634. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  635. udelay(1000);
  636. /* program refdiv, nint, frac to RTC register */
  637. REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
  638. /* program BB PLL kd and ki value */
  639. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
  640. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
  641. /* program BB PLL phase_shift */
  642. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  643. AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
  644. } else if (AR_SREV_9340(ah)) {
  645. u32 regval, pll2_divint, pll2_divfrac, refdiv;
  646. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  647. udelay(1000);
  648. REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
  649. udelay(100);
  650. if (ah->is_clk_25mhz) {
  651. pll2_divint = 0x54;
  652. pll2_divfrac = 0x1eb85;
  653. refdiv = 3;
  654. } else {
  655. pll2_divint = 88;
  656. pll2_divfrac = 0;
  657. refdiv = 5;
  658. }
  659. regval = REG_READ(ah, AR_PHY_PLL_MODE);
  660. regval |= (0x1 << 16);
  661. REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
  662. udelay(100);
  663. REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
  664. (pll2_divint << 18) | pll2_divfrac);
  665. udelay(100);
  666. regval = REG_READ(ah, AR_PHY_PLL_MODE);
  667. regval = (regval & 0x80071fff) | (0x1 << 30) | (0x1 << 13) |
  668. (0x4 << 26) | (0x18 << 19);
  669. REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
  670. REG_WRITE(ah, AR_PHY_PLL_MODE,
  671. REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
  672. udelay(1000);
  673. }
  674. pll = ath9k_hw_compute_pll_control(ah, chan);
  675. REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
  676. if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah))
  677. udelay(1000);
  678. /* Switch the core clock for ar9271 to 117Mhz */
  679. if (AR_SREV_9271(ah)) {
  680. udelay(500);
  681. REG_WRITE(ah, 0x50040, 0x304);
  682. }
  683. udelay(RTC_PLL_SETTLE_DELAY);
  684. REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
  685. if (AR_SREV_9340(ah)) {
  686. if (ah->is_clk_25mhz) {
  687. REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
  688. REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
  689. REG_WRITE(ah, AR_SLP32_INC, 0x0001e7ae);
  690. } else {
  691. REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
  692. REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
  693. REG_WRITE(ah, AR_SLP32_INC, 0x0001e800);
  694. }
  695. udelay(100);
  696. }
  697. }
  698. static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
  699. enum nl80211_iftype opmode)
  700. {
  701. u32 sync_default = AR_INTR_SYNC_DEFAULT;
  702. u32 imr_reg = AR_IMR_TXERR |
  703. AR_IMR_TXURN |
  704. AR_IMR_RXERR |
  705. AR_IMR_RXORN |
  706. AR_IMR_BCNMISC;
  707. if (AR_SREV_9340(ah))
  708. sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
  709. if (AR_SREV_9300_20_OR_LATER(ah)) {
  710. imr_reg |= AR_IMR_RXOK_HP;
  711. if (ah->config.rx_intr_mitigation)
  712. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  713. else
  714. imr_reg |= AR_IMR_RXOK_LP;
  715. } else {
  716. if (ah->config.rx_intr_mitigation)
  717. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  718. else
  719. imr_reg |= AR_IMR_RXOK;
  720. }
  721. if (ah->config.tx_intr_mitigation)
  722. imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
  723. else
  724. imr_reg |= AR_IMR_TXOK;
  725. if (opmode == NL80211_IFTYPE_AP)
  726. imr_reg |= AR_IMR_MIB;
  727. ENABLE_REGWRITE_BUFFER(ah);
  728. REG_WRITE(ah, AR_IMR, imr_reg);
  729. ah->imrs2_reg |= AR_IMR_S2_GTT;
  730. REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
  731. if (!AR_SREV_9100(ah)) {
  732. REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
  733. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
  734. REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
  735. }
  736. REGWRITE_BUFFER_FLUSH(ah);
  737. if (AR_SREV_9300_20_OR_LATER(ah)) {
  738. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
  739. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
  740. REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
  741. REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
  742. }
  743. }
  744. static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
  745. {
  746. u32 val = ath9k_hw_mac_to_clks(ah, us);
  747. val = min(val, (u32) 0xFFFF);
  748. REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
  749. }
  750. static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
  751. {
  752. u32 val = ath9k_hw_mac_to_clks(ah, us);
  753. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
  754. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
  755. }
  756. static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
  757. {
  758. u32 val = ath9k_hw_mac_to_clks(ah, us);
  759. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
  760. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
  761. }
  762. static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
  763. {
  764. if (tu > 0xFFFF) {
  765. ath_dbg(ath9k_hw_common(ah), ATH_DBG_XMIT,
  766. "bad global tx timeout %u\n", tu);
  767. ah->globaltxtimeout = (u32) -1;
  768. return false;
  769. } else {
  770. REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
  771. ah->globaltxtimeout = tu;
  772. return true;
  773. }
  774. }
  775. void ath9k_hw_init_global_settings(struct ath_hw *ah)
  776. {
  777. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  778. int acktimeout;
  779. int slottime;
  780. int sifstime;
  781. ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
  782. ah->misc_mode);
  783. if (ah->misc_mode != 0)
  784. REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
  785. if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
  786. sifstime = 16;
  787. else
  788. sifstime = 10;
  789. /* As defined by IEEE 802.11-2007 17.3.8.6 */
  790. slottime = ah->slottime + 3 * ah->coverage_class;
  791. acktimeout = slottime + sifstime;
  792. /*
  793. * Workaround for early ACK timeouts, add an offset to match the
  794. * initval's 64us ack timeout value.
  795. * This was initially only meant to work around an issue with delayed
  796. * BA frames in some implementations, but it has been found to fix ACK
  797. * timeout issues in other cases as well.
  798. */
  799. if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
  800. acktimeout += 64 - sifstime - ah->slottime;
  801. ath9k_hw_setslottime(ah, ah->slottime);
  802. ath9k_hw_set_ack_timeout(ah, acktimeout);
  803. ath9k_hw_set_cts_timeout(ah, acktimeout);
  804. if (ah->globaltxtimeout != (u32) -1)
  805. ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
  806. }
  807. EXPORT_SYMBOL(ath9k_hw_init_global_settings);
  808. void ath9k_hw_deinit(struct ath_hw *ah)
  809. {
  810. struct ath_common *common = ath9k_hw_common(ah);
  811. if (common->state < ATH_HW_INITIALIZED)
  812. goto free_hw;
  813. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  814. free_hw:
  815. ath9k_hw_rf_free_ext_banks(ah);
  816. }
  817. EXPORT_SYMBOL(ath9k_hw_deinit);
  818. /*******/
  819. /* INI */
  820. /*******/
  821. u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
  822. {
  823. u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
  824. if (IS_CHAN_B(chan))
  825. ctl |= CTL_11B;
  826. else if (IS_CHAN_G(chan))
  827. ctl |= CTL_11G;
  828. else
  829. ctl |= CTL_11A;
  830. return ctl;
  831. }
  832. /****************************************/
  833. /* Reset and Channel Switching Routines */
  834. /****************************************/
  835. static inline void ath9k_hw_set_dma(struct ath_hw *ah)
  836. {
  837. struct ath_common *common = ath9k_hw_common(ah);
  838. ENABLE_REGWRITE_BUFFER(ah);
  839. /*
  840. * set AHB_MODE not to do cacheline prefetches
  841. */
  842. if (!AR_SREV_9300_20_OR_LATER(ah))
  843. REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
  844. /*
  845. * let mac dma reads be in 128 byte chunks
  846. */
  847. REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
  848. REGWRITE_BUFFER_FLUSH(ah);
  849. /*
  850. * Restore TX Trigger Level to its pre-reset value.
  851. * The initial value depends on whether aggregation is enabled, and is
  852. * adjusted whenever underruns are detected.
  853. */
  854. if (!AR_SREV_9300_20_OR_LATER(ah))
  855. REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
  856. ENABLE_REGWRITE_BUFFER(ah);
  857. /*
  858. * let mac dma writes be in 128 byte chunks
  859. */
  860. REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
  861. /*
  862. * Setup receive FIFO threshold to hold off TX activities
  863. */
  864. REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
  865. if (AR_SREV_9300_20_OR_LATER(ah)) {
  866. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
  867. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
  868. ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
  869. ah->caps.rx_status_len);
  870. }
  871. /*
  872. * reduce the number of usable entries in PCU TXBUF to avoid
  873. * wrap around issues.
  874. */
  875. if (AR_SREV_9285(ah)) {
  876. /* For AR9285 the number of Fifos are reduced to half.
  877. * So set the usable tx buf size also to half to
  878. * avoid data/delimiter underruns
  879. */
  880. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  881. AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
  882. } else if (!AR_SREV_9271(ah)) {
  883. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  884. AR_PCU_TXBUF_CTRL_USABLE_SIZE);
  885. }
  886. REGWRITE_BUFFER_FLUSH(ah);
  887. if (AR_SREV_9300_20_OR_LATER(ah))
  888. ath9k_hw_reset_txstatus_ring(ah);
  889. }
  890. static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
  891. {
  892. u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
  893. u32 set = AR_STA_ID1_KSRCH_MODE;
  894. switch (opmode) {
  895. case NL80211_IFTYPE_ADHOC:
  896. case NL80211_IFTYPE_MESH_POINT:
  897. set |= AR_STA_ID1_ADHOC;
  898. REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  899. break;
  900. case NL80211_IFTYPE_AP:
  901. set |= AR_STA_ID1_STA_AP;
  902. /* fall through */
  903. case NL80211_IFTYPE_STATION:
  904. REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  905. break;
  906. default:
  907. if (!ah->is_monitoring)
  908. set = 0;
  909. break;
  910. }
  911. REG_RMW(ah, AR_STA_ID1, set, mask);
  912. }
  913. void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
  914. u32 *coef_mantissa, u32 *coef_exponent)
  915. {
  916. u32 coef_exp, coef_man;
  917. for (coef_exp = 31; coef_exp > 0; coef_exp--)
  918. if ((coef_scaled >> coef_exp) & 0x1)
  919. break;
  920. coef_exp = 14 - (coef_exp - COEF_SCALE_S);
  921. coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
  922. *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
  923. *coef_exponent = coef_exp - 16;
  924. }
  925. static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
  926. {
  927. u32 rst_flags;
  928. u32 tmpReg;
  929. if (AR_SREV_9100(ah)) {
  930. REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
  931. AR_RTC_DERIVED_CLK_PERIOD, 1);
  932. (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
  933. }
  934. ENABLE_REGWRITE_BUFFER(ah);
  935. if (AR_SREV_9300_20_OR_LATER(ah)) {
  936. REG_WRITE(ah, AR_WA, ah->WARegVal);
  937. udelay(10);
  938. }
  939. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  940. AR_RTC_FORCE_WAKE_ON_INT);
  941. if (AR_SREV_9100(ah)) {
  942. rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
  943. AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
  944. } else {
  945. tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  946. if (tmpReg &
  947. (AR_INTR_SYNC_LOCAL_TIMEOUT |
  948. AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
  949. u32 val;
  950. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  951. val = AR_RC_HOSTIF;
  952. if (!AR_SREV_9300_20_OR_LATER(ah))
  953. val |= AR_RC_AHB;
  954. REG_WRITE(ah, AR_RC, val);
  955. } else if (!AR_SREV_9300_20_OR_LATER(ah))
  956. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  957. rst_flags = AR_RTC_RC_MAC_WARM;
  958. if (type == ATH9K_RESET_COLD)
  959. rst_flags |= AR_RTC_RC_MAC_COLD;
  960. }
  961. if (AR_SREV_9330(ah)) {
  962. int npend = 0;
  963. int i;
  964. /* AR9330 WAR:
  965. * call external reset function to reset WMAC if:
  966. * - doing a cold reset
  967. * - we have pending frames in the TX queues
  968. */
  969. for (i = 0; i < AR_NUM_QCU; i++) {
  970. npend = ath9k_hw_numtxpending(ah, i);
  971. if (npend)
  972. break;
  973. }
  974. if (ah->external_reset &&
  975. (npend || type == ATH9K_RESET_COLD)) {
  976. int reset_err = 0;
  977. ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
  978. "reset MAC via external reset\n");
  979. reset_err = ah->external_reset();
  980. if (reset_err) {
  981. ath_err(ath9k_hw_common(ah),
  982. "External reset failed, err=%d\n",
  983. reset_err);
  984. return false;
  985. }
  986. REG_WRITE(ah, AR_RTC_RESET, 1);
  987. }
  988. }
  989. REG_WRITE(ah, AR_RTC_RC, rst_flags);
  990. REGWRITE_BUFFER_FLUSH(ah);
  991. udelay(50);
  992. REG_WRITE(ah, AR_RTC_RC, 0);
  993. if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
  994. ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
  995. "RTC stuck in MAC reset\n");
  996. return false;
  997. }
  998. if (!AR_SREV_9100(ah))
  999. REG_WRITE(ah, AR_RC, 0);
  1000. if (AR_SREV_9100(ah))
  1001. udelay(50);
  1002. return true;
  1003. }
  1004. static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
  1005. {
  1006. ENABLE_REGWRITE_BUFFER(ah);
  1007. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1008. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1009. udelay(10);
  1010. }
  1011. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1012. AR_RTC_FORCE_WAKE_ON_INT);
  1013. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1014. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1015. REG_WRITE(ah, AR_RTC_RESET, 0);
  1016. REGWRITE_BUFFER_FLUSH(ah);
  1017. if (!AR_SREV_9300_20_OR_LATER(ah))
  1018. udelay(2);
  1019. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1020. REG_WRITE(ah, AR_RC, 0);
  1021. REG_WRITE(ah, AR_RTC_RESET, 1);
  1022. if (!ath9k_hw_wait(ah,
  1023. AR_RTC_STATUS,
  1024. AR_RTC_STATUS_M,
  1025. AR_RTC_STATUS_ON,
  1026. AH_WAIT_TIMEOUT)) {
  1027. ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
  1028. "RTC not waking up\n");
  1029. return false;
  1030. }
  1031. return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
  1032. }
  1033. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
  1034. {
  1035. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1036. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1037. udelay(10);
  1038. }
  1039. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1040. AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
  1041. switch (type) {
  1042. case ATH9K_RESET_POWER_ON:
  1043. return ath9k_hw_set_reset_power_on(ah);
  1044. case ATH9K_RESET_WARM:
  1045. case ATH9K_RESET_COLD:
  1046. return ath9k_hw_set_reset(ah, type);
  1047. default:
  1048. return false;
  1049. }
  1050. }
  1051. static bool ath9k_hw_chip_reset(struct ath_hw *ah,
  1052. struct ath9k_channel *chan)
  1053. {
  1054. if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
  1055. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
  1056. return false;
  1057. } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  1058. return false;
  1059. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1060. return false;
  1061. ah->chip_fullsleep = false;
  1062. ath9k_hw_init_pll(ah, chan);
  1063. ath9k_hw_set_rfmode(ah, chan);
  1064. return true;
  1065. }
  1066. static bool ath9k_hw_channel_change(struct ath_hw *ah,
  1067. struct ath9k_channel *chan)
  1068. {
  1069. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1070. struct ath_common *common = ath9k_hw_common(ah);
  1071. struct ieee80211_channel *channel = chan->chan;
  1072. u32 qnum;
  1073. int r;
  1074. for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
  1075. if (ath9k_hw_numtxpending(ah, qnum)) {
  1076. ath_dbg(common, ATH_DBG_QUEUE,
  1077. "Transmit frames pending on queue %d\n", qnum);
  1078. return false;
  1079. }
  1080. }
  1081. if (!ath9k_hw_rfbus_req(ah)) {
  1082. ath_err(common, "Could not kill baseband RX\n");
  1083. return false;
  1084. }
  1085. ath9k_hw_set_channel_regs(ah, chan);
  1086. r = ath9k_hw_rf_set_freq(ah, chan);
  1087. if (r) {
  1088. ath_err(common, "Failed to set channel\n");
  1089. return false;
  1090. }
  1091. ath9k_hw_set_clockrate(ah);
  1092. ah->eep_ops->set_txpower(ah, chan,
  1093. ath9k_regd_get_ctl(regulatory, chan),
  1094. channel->max_antenna_gain * 2,
  1095. channel->max_power * 2,
  1096. min((u32) MAX_RATE_POWER,
  1097. (u32) regulatory->power_limit), false);
  1098. ath9k_hw_rfbus_done(ah);
  1099. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1100. ath9k_hw_set_delta_slope(ah, chan);
  1101. ath9k_hw_spur_mitigate_freq(ah, chan);
  1102. return true;
  1103. }
  1104. static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
  1105. {
  1106. u32 gpio_mask = ah->gpio_mask;
  1107. int i;
  1108. for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
  1109. if (!(gpio_mask & 1))
  1110. continue;
  1111. ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
  1112. ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
  1113. }
  1114. }
  1115. bool ath9k_hw_check_alive(struct ath_hw *ah)
  1116. {
  1117. int count = 50;
  1118. u32 reg;
  1119. if (AR_SREV_9285_12_OR_LATER(ah))
  1120. return true;
  1121. do {
  1122. reg = REG_READ(ah, AR_OBS_BUS_1);
  1123. if ((reg & 0x7E7FFFEF) == 0x00702400)
  1124. continue;
  1125. switch (reg & 0x7E000B00) {
  1126. case 0x1E000000:
  1127. case 0x52000B00:
  1128. case 0x18000B00:
  1129. continue;
  1130. default:
  1131. return true;
  1132. }
  1133. } while (count-- > 0);
  1134. return false;
  1135. }
  1136. EXPORT_SYMBOL(ath9k_hw_check_alive);
  1137. int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
  1138. struct ath9k_hw_cal_data *caldata, bool bChannelChange)
  1139. {
  1140. struct ath_common *common = ath9k_hw_common(ah);
  1141. u32 saveLedState;
  1142. struct ath9k_channel *curchan = ah->curchan;
  1143. u32 saveDefAntenna;
  1144. u32 macStaId1;
  1145. u64 tsf = 0;
  1146. int i, r;
  1147. ah->txchainmask = common->tx_chainmask;
  1148. ah->rxchainmask = common->rx_chainmask;
  1149. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1150. return -EIO;
  1151. if (curchan && !ah->chip_fullsleep)
  1152. ath9k_hw_getnf(ah, curchan);
  1153. ah->caldata = caldata;
  1154. if (caldata &&
  1155. (chan->channel != caldata->channel ||
  1156. (chan->channelFlags & ~CHANNEL_CW_INT) !=
  1157. (caldata->channelFlags & ~CHANNEL_CW_INT))) {
  1158. /* Operating channel changed, reset channel calibration data */
  1159. memset(caldata, 0, sizeof(*caldata));
  1160. ath9k_init_nfcal_hist_buffer(ah, chan);
  1161. }
  1162. if (bChannelChange &&
  1163. (ah->chip_fullsleep != true) &&
  1164. (ah->curchan != NULL) &&
  1165. (chan->channel != ah->curchan->channel) &&
  1166. ((chan->channelFlags & CHANNEL_ALL) ==
  1167. (ah->curchan->channelFlags & CHANNEL_ALL)) &&
  1168. (!AR_SREV_9280(ah) || AR_DEVID_7010(ah))) {
  1169. if (ath9k_hw_channel_change(ah, chan)) {
  1170. ath9k_hw_loadnf(ah, ah->curchan);
  1171. ath9k_hw_start_nfcal(ah, true);
  1172. if (AR_SREV_9271(ah))
  1173. ar9002_hw_load_ani_reg(ah, chan);
  1174. return 0;
  1175. }
  1176. }
  1177. saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
  1178. if (saveDefAntenna == 0)
  1179. saveDefAntenna = 1;
  1180. macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
  1181. /* For chips on which RTC reset is done, save TSF before it gets cleared */
  1182. if (AR_SREV_9100(ah) ||
  1183. (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
  1184. tsf = ath9k_hw_gettsf64(ah);
  1185. saveLedState = REG_READ(ah, AR_CFG_LED) &
  1186. (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
  1187. AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
  1188. ath9k_hw_mark_phy_inactive(ah);
  1189. ah->paprd_table_write_done = false;
  1190. /* Only required on the first reset */
  1191. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1192. REG_WRITE(ah,
  1193. AR9271_RESET_POWER_DOWN_CONTROL,
  1194. AR9271_RADIO_RF_RST);
  1195. udelay(50);
  1196. }
  1197. if (!ath9k_hw_chip_reset(ah, chan)) {
  1198. ath_err(common, "Chip reset failed\n");
  1199. return -EINVAL;
  1200. }
  1201. /* Only required on the first reset */
  1202. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1203. ah->htc_reset_init = false;
  1204. REG_WRITE(ah,
  1205. AR9271_RESET_POWER_DOWN_CONTROL,
  1206. AR9271_GATE_MAC_CTL);
  1207. udelay(50);
  1208. }
  1209. /* Restore TSF */
  1210. if (tsf)
  1211. ath9k_hw_settsf64(ah, tsf);
  1212. if (AR_SREV_9280_20_OR_LATER(ah))
  1213. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
  1214. if (!AR_SREV_9300_20_OR_LATER(ah))
  1215. ar9002_hw_enable_async_fifo(ah);
  1216. r = ath9k_hw_process_ini(ah, chan);
  1217. if (r)
  1218. return r;
  1219. /*
  1220. * Some AR91xx SoC devices frequently fail to accept TSF writes
  1221. * right after the chip reset. When that happens, write a new
  1222. * value after the initvals have been applied, with an offset
  1223. * based on measured time difference
  1224. */
  1225. if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
  1226. tsf += 1500;
  1227. ath9k_hw_settsf64(ah, tsf);
  1228. }
  1229. /* Setup MFP options for CCMP */
  1230. if (AR_SREV_9280_20_OR_LATER(ah)) {
  1231. /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
  1232. * frames when constructing CCMP AAD. */
  1233. REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
  1234. 0xc7ff);
  1235. ah->sw_mgmt_crypto = false;
  1236. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  1237. /* Disable hardware crypto for management frames */
  1238. REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
  1239. AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
  1240. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1241. AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
  1242. ah->sw_mgmt_crypto = true;
  1243. } else
  1244. ah->sw_mgmt_crypto = true;
  1245. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1246. ath9k_hw_set_delta_slope(ah, chan);
  1247. ath9k_hw_spur_mitigate_freq(ah, chan);
  1248. ah->eep_ops->set_board_values(ah, chan);
  1249. ENABLE_REGWRITE_BUFFER(ah);
  1250. REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
  1251. REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
  1252. | macStaId1
  1253. | AR_STA_ID1_RTS_USE_DEF
  1254. | (ah->config.
  1255. ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
  1256. | ah->sta_id1_defaults);
  1257. ath_hw_setbssidmask(common);
  1258. REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
  1259. ath9k_hw_write_associd(ah);
  1260. REG_WRITE(ah, AR_ISR, ~0);
  1261. REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
  1262. REGWRITE_BUFFER_FLUSH(ah);
  1263. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1264. r = ath9k_hw_rf_set_freq(ah, chan);
  1265. if (r)
  1266. return r;
  1267. ath9k_hw_set_clockrate(ah);
  1268. ENABLE_REGWRITE_BUFFER(ah);
  1269. for (i = 0; i < AR_NUM_DCU; i++)
  1270. REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
  1271. REGWRITE_BUFFER_FLUSH(ah);
  1272. ah->intr_txqs = 0;
  1273. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1274. ath9k_hw_resettxqueue(ah, i);
  1275. ath9k_hw_init_interrupt_masks(ah, ah->opmode);
  1276. ath9k_hw_ani_cache_ini_regs(ah);
  1277. ath9k_hw_init_qos(ah);
  1278. if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1279. ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
  1280. ath9k_hw_init_global_settings(ah);
  1281. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  1282. ar9002_hw_update_async_fifo(ah);
  1283. ar9002_hw_enable_wep_aggregation(ah);
  1284. }
  1285. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
  1286. ath9k_hw_set_dma(ah);
  1287. REG_WRITE(ah, AR_OBS, 8);
  1288. if (ah->config.rx_intr_mitigation) {
  1289. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
  1290. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
  1291. }
  1292. if (ah->config.tx_intr_mitigation) {
  1293. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
  1294. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
  1295. }
  1296. ath9k_hw_init_bb(ah, chan);
  1297. if (!ath9k_hw_init_cal(ah, chan))
  1298. return -EIO;
  1299. ENABLE_REGWRITE_BUFFER(ah);
  1300. ath9k_hw_restore_chainmask(ah);
  1301. REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
  1302. REGWRITE_BUFFER_FLUSH(ah);
  1303. /*
  1304. * For big endian systems turn on swapping for descriptors
  1305. */
  1306. if (AR_SREV_9100(ah)) {
  1307. u32 mask;
  1308. mask = REG_READ(ah, AR_CFG);
  1309. if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
  1310. ath_dbg(common, ATH_DBG_RESET,
  1311. "CFG Byte Swap Set 0x%x\n", mask);
  1312. } else {
  1313. mask =
  1314. INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
  1315. REG_WRITE(ah, AR_CFG, mask);
  1316. ath_dbg(common, ATH_DBG_RESET,
  1317. "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
  1318. }
  1319. } else {
  1320. if (common->bus_ops->ath_bus_type == ATH_USB) {
  1321. /* Configure AR9271 target WLAN */
  1322. if (AR_SREV_9271(ah))
  1323. REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
  1324. else
  1325. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1326. }
  1327. #ifdef __BIG_ENDIAN
  1328. else if (AR_SREV_9330(ah) || AR_SREV_9340(ah))
  1329. REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
  1330. else
  1331. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1332. #endif
  1333. }
  1334. if (ah->btcoex_hw.enabled)
  1335. ath9k_hw_btcoex_enable(ah);
  1336. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1337. ar9003_hw_bb_watchdog_config(ah);
  1338. ar9003_hw_disable_phy_restart(ah);
  1339. }
  1340. ath9k_hw_apply_gpio_override(ah);
  1341. return 0;
  1342. }
  1343. EXPORT_SYMBOL(ath9k_hw_reset);
  1344. /******************************/
  1345. /* Power Management (Chipset) */
  1346. /******************************/
  1347. /*
  1348. * Notify Power Mgt is disabled in self-generated frames.
  1349. * If requested, force chip to sleep.
  1350. */
  1351. static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
  1352. {
  1353. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1354. if (setChip) {
  1355. /*
  1356. * Clear the RTC force wake bit to allow the
  1357. * mac to go to sleep.
  1358. */
  1359. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  1360. AR_RTC_FORCE_WAKE_EN);
  1361. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1362. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  1363. /* Shutdown chip. Active low */
  1364. if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
  1365. REG_CLR_BIT(ah, (AR_RTC_RESET),
  1366. AR_RTC_RESET_EN);
  1367. }
  1368. /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
  1369. if (AR_SREV_9300_20_OR_LATER(ah))
  1370. REG_WRITE(ah, AR_WA,
  1371. ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1372. }
  1373. /*
  1374. * Notify Power Management is enabled in self-generating
  1375. * frames. If request, set power mode of chip to
  1376. * auto/normal. Duration in units of 128us (1/8 TU).
  1377. */
  1378. static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
  1379. {
  1380. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1381. if (setChip) {
  1382. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1383. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  1384. /* Set WakeOnInterrupt bit; clear ForceWake bit */
  1385. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1386. AR_RTC_FORCE_WAKE_ON_INT);
  1387. } else {
  1388. /*
  1389. * Clear the RTC force wake bit to allow the
  1390. * mac to go to sleep.
  1391. */
  1392. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  1393. AR_RTC_FORCE_WAKE_EN);
  1394. }
  1395. }
  1396. /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
  1397. if (AR_SREV_9300_20_OR_LATER(ah))
  1398. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1399. }
  1400. static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
  1401. {
  1402. u32 val;
  1403. int i;
  1404. /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
  1405. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1406. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1407. udelay(10);
  1408. }
  1409. if (setChip) {
  1410. if ((REG_READ(ah, AR_RTC_STATUS) &
  1411. AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
  1412. if (ath9k_hw_set_reset_reg(ah,
  1413. ATH9K_RESET_POWER_ON) != true) {
  1414. return false;
  1415. }
  1416. if (!AR_SREV_9300_20_OR_LATER(ah))
  1417. ath9k_hw_init_pll(ah, NULL);
  1418. }
  1419. if (AR_SREV_9100(ah))
  1420. REG_SET_BIT(ah, AR_RTC_RESET,
  1421. AR_RTC_RESET_EN);
  1422. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1423. AR_RTC_FORCE_WAKE_EN);
  1424. udelay(50);
  1425. for (i = POWER_UP_TIME / 50; i > 0; i--) {
  1426. val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
  1427. if (val == AR_RTC_STATUS_ON)
  1428. break;
  1429. udelay(50);
  1430. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1431. AR_RTC_FORCE_WAKE_EN);
  1432. }
  1433. if (i == 0) {
  1434. ath_err(ath9k_hw_common(ah),
  1435. "Failed to wakeup in %uus\n",
  1436. POWER_UP_TIME / 20);
  1437. return false;
  1438. }
  1439. }
  1440. REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1441. return true;
  1442. }
  1443. bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
  1444. {
  1445. struct ath_common *common = ath9k_hw_common(ah);
  1446. int status = true, setChip = true;
  1447. static const char *modes[] = {
  1448. "AWAKE",
  1449. "FULL-SLEEP",
  1450. "NETWORK SLEEP",
  1451. "UNDEFINED"
  1452. };
  1453. if (ah->power_mode == mode)
  1454. return status;
  1455. ath_dbg(common, ATH_DBG_RESET, "%s -> %s\n",
  1456. modes[ah->power_mode], modes[mode]);
  1457. switch (mode) {
  1458. case ATH9K_PM_AWAKE:
  1459. status = ath9k_hw_set_power_awake(ah, setChip);
  1460. break;
  1461. case ATH9K_PM_FULL_SLEEP:
  1462. ath9k_set_power_sleep(ah, setChip);
  1463. ah->chip_fullsleep = true;
  1464. break;
  1465. case ATH9K_PM_NETWORK_SLEEP:
  1466. ath9k_set_power_network_sleep(ah, setChip);
  1467. break;
  1468. default:
  1469. ath_err(common, "Unknown power mode %u\n", mode);
  1470. return false;
  1471. }
  1472. ah->power_mode = mode;
  1473. /*
  1474. * XXX: If this warning never comes up after a while then
  1475. * simply keep the ATH_DBG_WARN_ON_ONCE() but make
  1476. * ath9k_hw_setpower() return type void.
  1477. */
  1478. if (!(ah->ah_flags & AH_UNPLUGGED))
  1479. ATH_DBG_WARN_ON_ONCE(!status);
  1480. return status;
  1481. }
  1482. EXPORT_SYMBOL(ath9k_hw_setpower);
  1483. /*******************/
  1484. /* Beacon Handling */
  1485. /*******************/
  1486. void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
  1487. {
  1488. int flags = 0;
  1489. ENABLE_REGWRITE_BUFFER(ah);
  1490. switch (ah->opmode) {
  1491. case NL80211_IFTYPE_ADHOC:
  1492. case NL80211_IFTYPE_MESH_POINT:
  1493. REG_SET_BIT(ah, AR_TXCFG,
  1494. AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
  1495. REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
  1496. TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
  1497. flags |= AR_NDP_TIMER_EN;
  1498. case NL80211_IFTYPE_AP:
  1499. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
  1500. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
  1501. TU_TO_USEC(ah->config.dma_beacon_response_time));
  1502. REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
  1503. TU_TO_USEC(ah->config.sw_beacon_response_time));
  1504. flags |=
  1505. AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
  1506. break;
  1507. default:
  1508. ath_dbg(ath9k_hw_common(ah), ATH_DBG_BEACON,
  1509. "%s: unsupported opmode: %d\n",
  1510. __func__, ah->opmode);
  1511. return;
  1512. break;
  1513. }
  1514. REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
  1515. REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
  1516. REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
  1517. REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
  1518. REGWRITE_BUFFER_FLUSH(ah);
  1519. REG_SET_BIT(ah, AR_TIMER_MODE, flags);
  1520. }
  1521. EXPORT_SYMBOL(ath9k_hw_beaconinit);
  1522. void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
  1523. const struct ath9k_beacon_state *bs)
  1524. {
  1525. u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
  1526. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1527. struct ath_common *common = ath9k_hw_common(ah);
  1528. ENABLE_REGWRITE_BUFFER(ah);
  1529. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
  1530. REG_WRITE(ah, AR_BEACON_PERIOD,
  1531. TU_TO_USEC(bs->bs_intval));
  1532. REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
  1533. TU_TO_USEC(bs->bs_intval));
  1534. REGWRITE_BUFFER_FLUSH(ah);
  1535. REG_RMW_FIELD(ah, AR_RSSI_THR,
  1536. AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
  1537. beaconintval = bs->bs_intval;
  1538. if (bs->bs_sleepduration > beaconintval)
  1539. beaconintval = bs->bs_sleepduration;
  1540. dtimperiod = bs->bs_dtimperiod;
  1541. if (bs->bs_sleepduration > dtimperiod)
  1542. dtimperiod = bs->bs_sleepduration;
  1543. if (beaconintval == dtimperiod)
  1544. nextTbtt = bs->bs_nextdtim;
  1545. else
  1546. nextTbtt = bs->bs_nexttbtt;
  1547. ath_dbg(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
  1548. ath_dbg(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
  1549. ath_dbg(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
  1550. ath_dbg(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
  1551. ENABLE_REGWRITE_BUFFER(ah);
  1552. REG_WRITE(ah, AR_NEXT_DTIM,
  1553. TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
  1554. REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
  1555. REG_WRITE(ah, AR_SLEEP1,
  1556. SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
  1557. | AR_SLEEP1_ASSUME_DTIM);
  1558. if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
  1559. beacontimeout = (BEACON_TIMEOUT_VAL << 3);
  1560. else
  1561. beacontimeout = MIN_BEACON_TIMEOUT_VAL;
  1562. REG_WRITE(ah, AR_SLEEP2,
  1563. SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
  1564. REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
  1565. REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
  1566. REGWRITE_BUFFER_FLUSH(ah);
  1567. REG_SET_BIT(ah, AR_TIMER_MODE,
  1568. AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
  1569. AR_DTIM_TIMER_EN);
  1570. /* TSF Out of Range Threshold */
  1571. REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
  1572. }
  1573. EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
  1574. /*******************/
  1575. /* HW Capabilities */
  1576. /*******************/
  1577. int ath9k_hw_fill_cap_info(struct ath_hw *ah)
  1578. {
  1579. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1580. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1581. struct ath_common *common = ath9k_hw_common(ah);
  1582. struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
  1583. u16 eeval;
  1584. u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
  1585. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
  1586. regulatory->current_rd = eeval;
  1587. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
  1588. if (AR_SREV_9285_12_OR_LATER(ah))
  1589. eeval |= AR9285_RDEXT_DEFAULT;
  1590. regulatory->current_rd_ext = eeval;
  1591. if (ah->opmode != NL80211_IFTYPE_AP &&
  1592. ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
  1593. if (regulatory->current_rd == 0x64 ||
  1594. regulatory->current_rd == 0x65)
  1595. regulatory->current_rd += 5;
  1596. else if (regulatory->current_rd == 0x41)
  1597. regulatory->current_rd = 0x43;
  1598. ath_dbg(common, ATH_DBG_REGULATORY,
  1599. "regdomain mapped to 0x%x\n", regulatory->current_rd);
  1600. }
  1601. eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
  1602. if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
  1603. ath_err(common,
  1604. "no band has been marked as supported in EEPROM\n");
  1605. return -EINVAL;
  1606. }
  1607. if (eeval & AR5416_OPFLAGS_11A)
  1608. pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
  1609. if (eeval & AR5416_OPFLAGS_11G)
  1610. pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
  1611. pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
  1612. /*
  1613. * For AR9271 we will temporarilly uses the rx chainmax as read from
  1614. * the EEPROM.
  1615. */
  1616. if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
  1617. !(eeval & AR5416_OPFLAGS_11A) &&
  1618. !(AR_SREV_9271(ah)))
  1619. /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
  1620. pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
  1621. else if (AR_SREV_9100(ah))
  1622. pCap->rx_chainmask = 0x7;
  1623. else
  1624. /* Use rx_chainmask from EEPROM. */
  1625. pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
  1626. ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
  1627. /* enable key search for every frame in an aggregate */
  1628. if (AR_SREV_9300_20_OR_LATER(ah))
  1629. ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
  1630. common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
  1631. if (ah->hw_version.devid != AR2427_DEVID_PCIE)
  1632. pCap->hw_caps |= ATH9K_HW_CAP_HT;
  1633. else
  1634. pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
  1635. if (AR_SREV_9271(ah))
  1636. pCap->num_gpio_pins = AR9271_NUM_GPIO;
  1637. else if (AR_DEVID_7010(ah))
  1638. pCap->num_gpio_pins = AR7010_NUM_GPIO;
  1639. else if (AR_SREV_9285_12_OR_LATER(ah))
  1640. pCap->num_gpio_pins = AR9285_NUM_GPIO;
  1641. else if (AR_SREV_9280_20_OR_LATER(ah))
  1642. pCap->num_gpio_pins = AR928X_NUM_GPIO;
  1643. else
  1644. pCap->num_gpio_pins = AR_NUM_GPIO;
  1645. if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
  1646. pCap->hw_caps |= ATH9K_HW_CAP_CST;
  1647. pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
  1648. } else {
  1649. pCap->rts_aggr_limit = (8 * 1024);
  1650. }
  1651. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  1652. ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
  1653. if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
  1654. ah->rfkill_gpio =
  1655. MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
  1656. ah->rfkill_polarity =
  1657. MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
  1658. pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
  1659. }
  1660. #endif
  1661. if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
  1662. pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
  1663. else
  1664. pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
  1665. if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
  1666. pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
  1667. else
  1668. pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
  1669. if (common->btcoex_enabled) {
  1670. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1671. btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
  1672. btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9300;
  1673. btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9300;
  1674. btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO_9300;
  1675. } else if (AR_SREV_9280_20_OR_LATER(ah)) {
  1676. btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9280;
  1677. btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9280;
  1678. if (AR_SREV_9285(ah)) {
  1679. btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
  1680. btcoex_hw->btpriority_gpio =
  1681. ATH_BTPRIORITY_GPIO_9285;
  1682. } else {
  1683. btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
  1684. }
  1685. }
  1686. } else {
  1687. btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
  1688. }
  1689. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1690. pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
  1691. if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah))
  1692. pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
  1693. pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
  1694. pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
  1695. pCap->rx_status_len = sizeof(struct ar9003_rxs);
  1696. pCap->tx_desc_len = sizeof(struct ar9003_txc);
  1697. pCap->txs_len = sizeof(struct ar9003_txs);
  1698. if (!ah->config.paprd_disable &&
  1699. ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
  1700. pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
  1701. } else {
  1702. pCap->tx_desc_len = sizeof(struct ath_desc);
  1703. if (AR_SREV_9280_20(ah) &&
  1704. ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <=
  1705. AR5416_EEP_MINOR_VER_16) ||
  1706. ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G)))
  1707. pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
  1708. }
  1709. if (AR_SREV_9300_20_OR_LATER(ah))
  1710. pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
  1711. if (AR_SREV_9300_20_OR_LATER(ah))
  1712. ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
  1713. if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
  1714. pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
  1715. if (AR_SREV_9285(ah))
  1716. if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
  1717. ant_div_ctl1 =
  1718. ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  1719. if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
  1720. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  1721. }
  1722. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1723. if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
  1724. pCap->hw_caps |= ATH9K_HW_CAP_APM;
  1725. }
  1726. if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
  1727. ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  1728. /*
  1729. * enable the diversity-combining algorithm only when
  1730. * both enable_lna_div and enable_fast_div are set
  1731. * Table for Diversity
  1732. * ant_div_alt_lnaconf bit 0-1
  1733. * ant_div_main_lnaconf bit 2-3
  1734. * ant_div_alt_gaintb bit 4
  1735. * ant_div_main_gaintb bit 5
  1736. * enable_ant_div_lnadiv bit 6
  1737. * enable_ant_fast_div bit 7
  1738. */
  1739. if ((ant_div_ctl1 >> 0x6) == 0x3)
  1740. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  1741. }
  1742. if (AR_SREV_9485_10(ah)) {
  1743. pCap->pcie_lcr_extsync_en = true;
  1744. pCap->pcie_lcr_offset = 0x80;
  1745. }
  1746. tx_chainmask = pCap->tx_chainmask;
  1747. rx_chainmask = pCap->rx_chainmask;
  1748. while (tx_chainmask || rx_chainmask) {
  1749. if (tx_chainmask & BIT(0))
  1750. pCap->max_txchains++;
  1751. if (rx_chainmask & BIT(0))
  1752. pCap->max_rxchains++;
  1753. tx_chainmask >>= 1;
  1754. rx_chainmask >>= 1;
  1755. }
  1756. return 0;
  1757. }
  1758. /****************************/
  1759. /* GPIO / RFKILL / Antennae */
  1760. /****************************/
  1761. static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
  1762. u32 gpio, u32 type)
  1763. {
  1764. int addr;
  1765. u32 gpio_shift, tmp;
  1766. if (gpio > 11)
  1767. addr = AR_GPIO_OUTPUT_MUX3;
  1768. else if (gpio > 5)
  1769. addr = AR_GPIO_OUTPUT_MUX2;
  1770. else
  1771. addr = AR_GPIO_OUTPUT_MUX1;
  1772. gpio_shift = (gpio % 6) * 5;
  1773. if (AR_SREV_9280_20_OR_LATER(ah)
  1774. || (addr != AR_GPIO_OUTPUT_MUX1)) {
  1775. REG_RMW(ah, addr, (type << gpio_shift),
  1776. (0x1f << gpio_shift));
  1777. } else {
  1778. tmp = REG_READ(ah, addr);
  1779. tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
  1780. tmp &= ~(0x1f << gpio_shift);
  1781. tmp |= (type << gpio_shift);
  1782. REG_WRITE(ah, addr, tmp);
  1783. }
  1784. }
  1785. void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
  1786. {
  1787. u32 gpio_shift;
  1788. BUG_ON(gpio >= ah->caps.num_gpio_pins);
  1789. if (AR_DEVID_7010(ah)) {
  1790. gpio_shift = gpio;
  1791. REG_RMW(ah, AR7010_GPIO_OE,
  1792. (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
  1793. (AR7010_GPIO_OE_MASK << gpio_shift));
  1794. return;
  1795. }
  1796. gpio_shift = gpio << 1;
  1797. REG_RMW(ah,
  1798. AR_GPIO_OE_OUT,
  1799. (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
  1800. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  1801. }
  1802. EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
  1803. u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
  1804. {
  1805. #define MS_REG_READ(x, y) \
  1806. (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
  1807. if (gpio >= ah->caps.num_gpio_pins)
  1808. return 0xffffffff;
  1809. if (AR_DEVID_7010(ah)) {
  1810. u32 val;
  1811. val = REG_READ(ah, AR7010_GPIO_IN);
  1812. return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
  1813. } else if (AR_SREV_9300_20_OR_LATER(ah))
  1814. return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
  1815. AR_GPIO_BIT(gpio)) != 0;
  1816. else if (AR_SREV_9271(ah))
  1817. return MS_REG_READ(AR9271, gpio) != 0;
  1818. else if (AR_SREV_9287_11_OR_LATER(ah))
  1819. return MS_REG_READ(AR9287, gpio) != 0;
  1820. else if (AR_SREV_9285_12_OR_LATER(ah))
  1821. return MS_REG_READ(AR9285, gpio) != 0;
  1822. else if (AR_SREV_9280_20_OR_LATER(ah))
  1823. return MS_REG_READ(AR928X, gpio) != 0;
  1824. else
  1825. return MS_REG_READ(AR, gpio) != 0;
  1826. }
  1827. EXPORT_SYMBOL(ath9k_hw_gpio_get);
  1828. void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
  1829. u32 ah_signal_type)
  1830. {
  1831. u32 gpio_shift;
  1832. if (AR_DEVID_7010(ah)) {
  1833. gpio_shift = gpio;
  1834. REG_RMW(ah, AR7010_GPIO_OE,
  1835. (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
  1836. (AR7010_GPIO_OE_MASK << gpio_shift));
  1837. return;
  1838. }
  1839. ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
  1840. gpio_shift = 2 * gpio;
  1841. REG_RMW(ah,
  1842. AR_GPIO_OE_OUT,
  1843. (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
  1844. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  1845. }
  1846. EXPORT_SYMBOL(ath9k_hw_cfg_output);
  1847. void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
  1848. {
  1849. if (AR_DEVID_7010(ah)) {
  1850. val = val ? 0 : 1;
  1851. REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
  1852. AR_GPIO_BIT(gpio));
  1853. return;
  1854. }
  1855. if (AR_SREV_9271(ah))
  1856. val = ~val;
  1857. REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
  1858. AR_GPIO_BIT(gpio));
  1859. }
  1860. EXPORT_SYMBOL(ath9k_hw_set_gpio);
  1861. u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
  1862. {
  1863. return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
  1864. }
  1865. EXPORT_SYMBOL(ath9k_hw_getdefantenna);
  1866. void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
  1867. {
  1868. REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
  1869. }
  1870. EXPORT_SYMBOL(ath9k_hw_setantenna);
  1871. /*********************/
  1872. /* General Operation */
  1873. /*********************/
  1874. u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
  1875. {
  1876. u32 bits = REG_READ(ah, AR_RX_FILTER);
  1877. u32 phybits = REG_READ(ah, AR_PHY_ERR);
  1878. if (phybits & AR_PHY_ERR_RADAR)
  1879. bits |= ATH9K_RX_FILTER_PHYRADAR;
  1880. if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
  1881. bits |= ATH9K_RX_FILTER_PHYERR;
  1882. return bits;
  1883. }
  1884. EXPORT_SYMBOL(ath9k_hw_getrxfilter);
  1885. void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
  1886. {
  1887. u32 phybits;
  1888. ENABLE_REGWRITE_BUFFER(ah);
  1889. REG_WRITE(ah, AR_RX_FILTER, bits);
  1890. phybits = 0;
  1891. if (bits & ATH9K_RX_FILTER_PHYRADAR)
  1892. phybits |= AR_PHY_ERR_RADAR;
  1893. if (bits & ATH9K_RX_FILTER_PHYERR)
  1894. phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
  1895. REG_WRITE(ah, AR_PHY_ERR, phybits);
  1896. if (phybits)
  1897. REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  1898. else
  1899. REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  1900. REGWRITE_BUFFER_FLUSH(ah);
  1901. }
  1902. EXPORT_SYMBOL(ath9k_hw_setrxfilter);
  1903. bool ath9k_hw_phy_disable(struct ath_hw *ah)
  1904. {
  1905. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  1906. return false;
  1907. ath9k_hw_init_pll(ah, NULL);
  1908. return true;
  1909. }
  1910. EXPORT_SYMBOL(ath9k_hw_phy_disable);
  1911. bool ath9k_hw_disable(struct ath_hw *ah)
  1912. {
  1913. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1914. return false;
  1915. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
  1916. return false;
  1917. ath9k_hw_init_pll(ah, NULL);
  1918. return true;
  1919. }
  1920. EXPORT_SYMBOL(ath9k_hw_disable);
  1921. void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
  1922. {
  1923. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1924. struct ath9k_channel *chan = ah->curchan;
  1925. struct ieee80211_channel *channel = chan->chan;
  1926. regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
  1927. ah->eep_ops->set_txpower(ah, chan,
  1928. ath9k_regd_get_ctl(regulatory, chan),
  1929. channel->max_antenna_gain * 2,
  1930. channel->max_power * 2,
  1931. min((u32) MAX_RATE_POWER,
  1932. (u32) regulatory->power_limit), test);
  1933. }
  1934. EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
  1935. void ath9k_hw_setopmode(struct ath_hw *ah)
  1936. {
  1937. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1938. }
  1939. EXPORT_SYMBOL(ath9k_hw_setopmode);
  1940. void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
  1941. {
  1942. REG_WRITE(ah, AR_MCAST_FIL0, filter0);
  1943. REG_WRITE(ah, AR_MCAST_FIL1, filter1);
  1944. }
  1945. EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
  1946. void ath9k_hw_write_associd(struct ath_hw *ah)
  1947. {
  1948. struct ath_common *common = ath9k_hw_common(ah);
  1949. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
  1950. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
  1951. ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
  1952. }
  1953. EXPORT_SYMBOL(ath9k_hw_write_associd);
  1954. #define ATH9K_MAX_TSF_READ 10
  1955. u64 ath9k_hw_gettsf64(struct ath_hw *ah)
  1956. {
  1957. u32 tsf_lower, tsf_upper1, tsf_upper2;
  1958. int i;
  1959. tsf_upper1 = REG_READ(ah, AR_TSF_U32);
  1960. for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
  1961. tsf_lower = REG_READ(ah, AR_TSF_L32);
  1962. tsf_upper2 = REG_READ(ah, AR_TSF_U32);
  1963. if (tsf_upper2 == tsf_upper1)
  1964. break;
  1965. tsf_upper1 = tsf_upper2;
  1966. }
  1967. WARN_ON( i == ATH9K_MAX_TSF_READ );
  1968. return (((u64)tsf_upper1 << 32) | tsf_lower);
  1969. }
  1970. EXPORT_SYMBOL(ath9k_hw_gettsf64);
  1971. void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
  1972. {
  1973. REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
  1974. REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
  1975. }
  1976. EXPORT_SYMBOL(ath9k_hw_settsf64);
  1977. void ath9k_hw_reset_tsf(struct ath_hw *ah)
  1978. {
  1979. if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
  1980. AH_TSF_WRITE_TIMEOUT))
  1981. ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
  1982. "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
  1983. REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
  1984. }
  1985. EXPORT_SYMBOL(ath9k_hw_reset_tsf);
  1986. void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
  1987. {
  1988. if (setting)
  1989. ah->misc_mode |= AR_PCU_TX_ADD_TSF;
  1990. else
  1991. ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
  1992. }
  1993. EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
  1994. void ath9k_hw_set11nmac2040(struct ath_hw *ah)
  1995. {
  1996. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  1997. u32 macmode;
  1998. if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
  1999. macmode = AR_2040_JOINED_RX_CLEAR;
  2000. else
  2001. macmode = 0;
  2002. REG_WRITE(ah, AR_2040_MODE, macmode);
  2003. }
  2004. /* HW Generic timers configuration */
  2005. static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
  2006. {
  2007. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2008. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2009. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2010. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2011. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2012. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2013. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2014. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2015. {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
  2016. {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
  2017. AR_NDP2_TIMER_MODE, 0x0002},
  2018. {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
  2019. AR_NDP2_TIMER_MODE, 0x0004},
  2020. {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
  2021. AR_NDP2_TIMER_MODE, 0x0008},
  2022. {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
  2023. AR_NDP2_TIMER_MODE, 0x0010},
  2024. {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
  2025. AR_NDP2_TIMER_MODE, 0x0020},
  2026. {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
  2027. AR_NDP2_TIMER_MODE, 0x0040},
  2028. {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
  2029. AR_NDP2_TIMER_MODE, 0x0080}
  2030. };
  2031. /* HW generic timer primitives */
  2032. /* compute and clear index of rightmost 1 */
  2033. static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
  2034. {
  2035. u32 b;
  2036. b = *mask;
  2037. b &= (0-b);
  2038. *mask &= ~b;
  2039. b *= debruijn32;
  2040. b >>= 27;
  2041. return timer_table->gen_timer_index[b];
  2042. }
  2043. u32 ath9k_hw_gettsf32(struct ath_hw *ah)
  2044. {
  2045. return REG_READ(ah, AR_TSF_L32);
  2046. }
  2047. EXPORT_SYMBOL(ath9k_hw_gettsf32);
  2048. struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
  2049. void (*trigger)(void *),
  2050. void (*overflow)(void *),
  2051. void *arg,
  2052. u8 timer_index)
  2053. {
  2054. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2055. struct ath_gen_timer *timer;
  2056. timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
  2057. if (timer == NULL) {
  2058. ath_err(ath9k_hw_common(ah),
  2059. "Failed to allocate memory for hw timer[%d]\n",
  2060. timer_index);
  2061. return NULL;
  2062. }
  2063. /* allocate a hardware generic timer slot */
  2064. timer_table->timers[timer_index] = timer;
  2065. timer->index = timer_index;
  2066. timer->trigger = trigger;
  2067. timer->overflow = overflow;
  2068. timer->arg = arg;
  2069. return timer;
  2070. }
  2071. EXPORT_SYMBOL(ath_gen_timer_alloc);
  2072. void ath9k_hw_gen_timer_start(struct ath_hw *ah,
  2073. struct ath_gen_timer *timer,
  2074. u32 trig_timeout,
  2075. u32 timer_period)
  2076. {
  2077. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2078. u32 tsf, timer_next;
  2079. BUG_ON(!timer_period);
  2080. set_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2081. tsf = ath9k_hw_gettsf32(ah);
  2082. timer_next = tsf + trig_timeout;
  2083. ath_dbg(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
  2084. "current tsf %x period %x timer_next %x\n",
  2085. tsf, timer_period, timer_next);
  2086. /*
  2087. * Program generic timer registers
  2088. */
  2089. REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
  2090. timer_next);
  2091. REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
  2092. timer_period);
  2093. REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2094. gen_tmr_configuration[timer->index].mode_mask);
  2095. /* Enable both trigger and thresh interrupt masks */
  2096. REG_SET_BIT(ah, AR_IMR_S5,
  2097. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2098. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2099. }
  2100. EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
  2101. void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
  2102. {
  2103. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2104. if ((timer->index < AR_FIRST_NDP_TIMER) ||
  2105. (timer->index >= ATH_MAX_GEN_TIMER)) {
  2106. return;
  2107. }
  2108. /* Clear generic timer enable bits. */
  2109. REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2110. gen_tmr_configuration[timer->index].mode_mask);
  2111. /* Disable both trigger and thresh interrupt masks */
  2112. REG_CLR_BIT(ah, AR_IMR_S5,
  2113. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2114. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2115. clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2116. }
  2117. EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
  2118. void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
  2119. {
  2120. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2121. /* free the hardware generic timer slot */
  2122. timer_table->timers[timer->index] = NULL;
  2123. kfree(timer);
  2124. }
  2125. EXPORT_SYMBOL(ath_gen_timer_free);
  2126. /*
  2127. * Generic Timer Interrupts handling
  2128. */
  2129. void ath_gen_timer_isr(struct ath_hw *ah)
  2130. {
  2131. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2132. struct ath_gen_timer *timer;
  2133. struct ath_common *common = ath9k_hw_common(ah);
  2134. u32 trigger_mask, thresh_mask, index;
  2135. /* get hardware generic timer interrupt status */
  2136. trigger_mask = ah->intr_gen_timer_trigger;
  2137. thresh_mask = ah->intr_gen_timer_thresh;
  2138. trigger_mask &= timer_table->timer_mask.val;
  2139. thresh_mask &= timer_table->timer_mask.val;
  2140. trigger_mask &= ~thresh_mask;
  2141. while (thresh_mask) {
  2142. index = rightmost_index(timer_table, &thresh_mask);
  2143. timer = timer_table->timers[index];
  2144. BUG_ON(!timer);
  2145. ath_dbg(common, ATH_DBG_HWTIMER,
  2146. "TSF overflow for Gen timer %d\n", index);
  2147. timer->overflow(timer->arg);
  2148. }
  2149. while (trigger_mask) {
  2150. index = rightmost_index(timer_table, &trigger_mask);
  2151. timer = timer_table->timers[index];
  2152. BUG_ON(!timer);
  2153. ath_dbg(common, ATH_DBG_HWTIMER,
  2154. "Gen timer[%d] trigger\n", index);
  2155. timer->trigger(timer->arg);
  2156. }
  2157. }
  2158. EXPORT_SYMBOL(ath_gen_timer_isr);
  2159. /********/
  2160. /* HTC */
  2161. /********/
  2162. void ath9k_hw_htc_resetinit(struct ath_hw *ah)
  2163. {
  2164. ah->htc_reset_init = true;
  2165. }
  2166. EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
  2167. static struct {
  2168. u32 version;
  2169. const char * name;
  2170. } ath_mac_bb_names[] = {
  2171. /* Devices with external radios */
  2172. { AR_SREV_VERSION_5416_PCI, "5416" },
  2173. { AR_SREV_VERSION_5416_PCIE, "5418" },
  2174. { AR_SREV_VERSION_9100, "9100" },
  2175. { AR_SREV_VERSION_9160, "9160" },
  2176. /* Single-chip solutions */
  2177. { AR_SREV_VERSION_9280, "9280" },
  2178. { AR_SREV_VERSION_9285, "9285" },
  2179. { AR_SREV_VERSION_9287, "9287" },
  2180. { AR_SREV_VERSION_9271, "9271" },
  2181. { AR_SREV_VERSION_9300, "9300" },
  2182. { AR_SREV_VERSION_9330, "9330" },
  2183. { AR_SREV_VERSION_9485, "9485" },
  2184. };
  2185. /* For devices with external radios */
  2186. static struct {
  2187. u16 version;
  2188. const char * name;
  2189. } ath_rf_names[] = {
  2190. { 0, "5133" },
  2191. { AR_RAD5133_SREV_MAJOR, "5133" },
  2192. { AR_RAD5122_SREV_MAJOR, "5122" },
  2193. { AR_RAD2133_SREV_MAJOR, "2133" },
  2194. { AR_RAD2122_SREV_MAJOR, "2122" }
  2195. };
  2196. /*
  2197. * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
  2198. */
  2199. static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
  2200. {
  2201. int i;
  2202. for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
  2203. if (ath_mac_bb_names[i].version == mac_bb_version) {
  2204. return ath_mac_bb_names[i].name;
  2205. }
  2206. }
  2207. return "????";
  2208. }
  2209. /*
  2210. * Return the RF name. "????" is returned if the RF is unknown.
  2211. * Used for devices with external radios.
  2212. */
  2213. static const char *ath9k_hw_rf_name(u16 rf_version)
  2214. {
  2215. int i;
  2216. for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
  2217. if (ath_rf_names[i].version == rf_version) {
  2218. return ath_rf_names[i].name;
  2219. }
  2220. }
  2221. return "????";
  2222. }
  2223. void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
  2224. {
  2225. int used;
  2226. /* chipsets >= AR9280 are single-chip */
  2227. if (AR_SREV_9280_20_OR_LATER(ah)) {
  2228. used = snprintf(hw_name, len,
  2229. "Atheros AR%s Rev:%x",
  2230. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2231. ah->hw_version.macRev);
  2232. }
  2233. else {
  2234. used = snprintf(hw_name, len,
  2235. "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
  2236. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2237. ah->hw_version.macRev,
  2238. ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
  2239. AR_RADIO_SREV_MAJOR)),
  2240. ah->hw_version.phyRev);
  2241. }
  2242. hw_name[used] = '\0';
  2243. }
  2244. EXPORT_SYMBOL(ath9k_hw_name);