slub_def.h 6.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234
  1. #ifndef _LINUX_SLUB_DEF_H
  2. #define _LINUX_SLUB_DEF_H
  3. /*
  4. * SLUB : A Slab allocator without object queues.
  5. *
  6. * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
  7. */
  8. #include <linux/types.h>
  9. #include <linux/gfp.h>
  10. #include <linux/workqueue.h>
  11. #include <linux/kobject.h>
  12. enum stat_item {
  13. ALLOC_FASTPATH, /* Allocation from cpu slab */
  14. ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
  15. FREE_FASTPATH, /* Free to cpu slub */
  16. FREE_SLOWPATH, /* Freeing not to cpu slab */
  17. FREE_FROZEN, /* Freeing to frozen slab */
  18. FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
  19. FREE_REMOVE_PARTIAL, /* Freeing removes last object */
  20. ALLOC_FROM_PARTIAL, /* Cpu slab acquired from partial list */
  21. ALLOC_SLAB, /* Cpu slab acquired from page allocator */
  22. ALLOC_REFILL, /* Refill cpu slab from slab freelist */
  23. FREE_SLAB, /* Slab freed to the page allocator */
  24. CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
  25. DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
  26. DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
  27. DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
  28. DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
  29. DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
  30. NR_SLUB_STAT_ITEMS };
  31. struct kmem_cache_cpu {
  32. void **freelist; /* Pointer to first free per cpu object */
  33. struct page *page; /* The slab from which we are allocating */
  34. int node; /* The node of the page (or -1 for debug) */
  35. unsigned int offset; /* Freepointer offset (in word units) */
  36. unsigned int objsize; /* Size of an object (from kmem_cache) */
  37. #ifdef CONFIG_SLUB_STATS
  38. unsigned stat[NR_SLUB_STAT_ITEMS];
  39. #endif
  40. };
  41. struct kmem_cache_node {
  42. spinlock_t list_lock; /* Protect partial list and nr_partial */
  43. unsigned long nr_partial;
  44. struct list_head partial;
  45. #ifdef CONFIG_SLUB_DEBUG
  46. atomic_long_t nr_slabs;
  47. struct list_head full;
  48. #endif
  49. };
  50. /*
  51. * Slab cache management.
  52. */
  53. struct kmem_cache {
  54. /* Used for retriving partial slabs etc */
  55. unsigned long flags;
  56. int size; /* The size of an object including meta data */
  57. int objsize; /* The size of an object without meta data */
  58. int offset; /* Free pointer offset. */
  59. int order; /* Current preferred allocation order */
  60. /*
  61. * Avoid an extra cache line for UP, SMP and for the node local to
  62. * struct kmem_cache.
  63. */
  64. struct kmem_cache_node local_node;
  65. /* Allocation and freeing of slabs */
  66. int objects; /* Number of objects in slab */
  67. gfp_t allocflags; /* gfp flags to use on each alloc */
  68. int refcount; /* Refcount for slab cache destroy */
  69. void (*ctor)(struct kmem_cache *, void *);
  70. int inuse; /* Offset to metadata */
  71. int align; /* Alignment */
  72. const char *name; /* Name (only for display!) */
  73. struct list_head list; /* List of slab caches */
  74. #ifdef CONFIG_SLUB_DEBUG
  75. struct kobject kobj; /* For sysfs */
  76. #endif
  77. #ifdef CONFIG_NUMA
  78. /*
  79. * Defragmentation by allocating from a remote node.
  80. */
  81. int remote_node_defrag_ratio;
  82. struct kmem_cache_node *node[MAX_NUMNODES];
  83. #endif
  84. #ifdef CONFIG_SMP
  85. struct kmem_cache_cpu *cpu_slab[NR_CPUS];
  86. #else
  87. struct kmem_cache_cpu cpu_slab;
  88. #endif
  89. };
  90. /*
  91. * Kmalloc subsystem.
  92. */
  93. #if defined(ARCH_KMALLOC_MINALIGN) && ARCH_KMALLOC_MINALIGN > 8
  94. #define KMALLOC_MIN_SIZE ARCH_KMALLOC_MINALIGN
  95. #else
  96. #define KMALLOC_MIN_SIZE 8
  97. #endif
  98. #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
  99. /*
  100. * We keep the general caches in an array of slab caches that are used for
  101. * 2^x bytes of allocations.
  102. */
  103. extern struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1];
  104. /*
  105. * Sorry that the following has to be that ugly but some versions of GCC
  106. * have trouble with constant propagation and loops.
  107. */
  108. static __always_inline int kmalloc_index(size_t size)
  109. {
  110. if (!size)
  111. return 0;
  112. if (size <= KMALLOC_MIN_SIZE)
  113. return KMALLOC_SHIFT_LOW;
  114. if (size > 64 && size <= 96)
  115. return 1;
  116. if (size > 128 && size <= 192)
  117. return 2;
  118. if (size <= 8) return 3;
  119. if (size <= 16) return 4;
  120. if (size <= 32) return 5;
  121. if (size <= 64) return 6;
  122. if (size <= 128) return 7;
  123. if (size <= 256) return 8;
  124. if (size <= 512) return 9;
  125. if (size <= 1024) return 10;
  126. if (size <= 2 * 1024) return 11;
  127. if (size <= 4 * 1024) return 12;
  128. /*
  129. * The following is only needed to support architectures with a larger page
  130. * size than 4k.
  131. */
  132. if (size <= 8 * 1024) return 13;
  133. if (size <= 16 * 1024) return 14;
  134. if (size <= 32 * 1024) return 15;
  135. if (size <= 64 * 1024) return 16;
  136. if (size <= 128 * 1024) return 17;
  137. if (size <= 256 * 1024) return 18;
  138. if (size <= 512 * 1024) return 19;
  139. if (size <= 1024 * 1024) return 20;
  140. if (size <= 2 * 1024 * 1024) return 21;
  141. return -1;
  142. /*
  143. * What we really wanted to do and cannot do because of compiler issues is:
  144. * int i;
  145. * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
  146. * if (size <= (1 << i))
  147. * return i;
  148. */
  149. }
  150. /*
  151. * Find the slab cache for a given combination of allocation flags and size.
  152. *
  153. * This ought to end up with a global pointer to the right cache
  154. * in kmalloc_caches.
  155. */
  156. static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
  157. {
  158. int index = kmalloc_index(size);
  159. if (index == 0)
  160. return NULL;
  161. return &kmalloc_caches[index];
  162. }
  163. #ifdef CONFIG_ZONE_DMA
  164. #define SLUB_DMA __GFP_DMA
  165. #else
  166. /* Disable DMA functionality */
  167. #define SLUB_DMA (__force gfp_t)0
  168. #endif
  169. void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
  170. void *__kmalloc(size_t size, gfp_t flags);
  171. static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
  172. {
  173. return (void *)__get_free_pages(flags | __GFP_COMP, get_order(size));
  174. }
  175. static __always_inline void *kmalloc(size_t size, gfp_t flags)
  176. {
  177. if (__builtin_constant_p(size)) {
  178. if (size > PAGE_SIZE)
  179. return kmalloc_large(size, flags);
  180. if (!(flags & SLUB_DMA)) {
  181. struct kmem_cache *s = kmalloc_slab(size);
  182. if (!s)
  183. return ZERO_SIZE_PTR;
  184. return kmem_cache_alloc(s, flags);
  185. }
  186. }
  187. return __kmalloc(size, flags);
  188. }
  189. #ifdef CONFIG_NUMA
  190. void *__kmalloc_node(size_t size, gfp_t flags, int node);
  191. void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
  192. static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
  193. {
  194. if (__builtin_constant_p(size) &&
  195. size <= PAGE_SIZE && !(flags & SLUB_DMA)) {
  196. struct kmem_cache *s = kmalloc_slab(size);
  197. if (!s)
  198. return ZERO_SIZE_PTR;
  199. return kmem_cache_alloc_node(s, flags, node);
  200. }
  201. return __kmalloc_node(size, flags, node);
  202. }
  203. #endif
  204. #endif /* _LINUX_SLUB_DEF_H */