common.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737
  1. #include <linux/init.h>
  2. #include <linux/string.h>
  3. #include <linux/delay.h>
  4. #include <linux/smp.h>
  5. #include <linux/module.h>
  6. #include <linux/percpu.h>
  7. #include <linux/bootmem.h>
  8. #include <asm/semaphore.h>
  9. #include <asm/processor.h>
  10. #include <asm/i387.h>
  11. #include <asm/msr.h>
  12. #include <asm/io.h>
  13. #include <asm/mmu_context.h>
  14. #include <asm/mtrr.h>
  15. #include <asm/mce.h>
  16. #ifdef CONFIG_X86_LOCAL_APIC
  17. #include <asm/mpspec.h>
  18. #include <asm/apic.h>
  19. #include <mach_apic.h>
  20. #endif
  21. #include "cpu.h"
  22. DEFINE_PER_CPU(struct gdt_page, gdt_page) = { .gdt = {
  23. [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } },
  24. [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } },
  25. [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } },
  26. [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } },
  27. /*
  28. * Segments used for calling PnP BIOS have byte granularity.
  29. * They code segments and data segments have fixed 64k limits,
  30. * the transfer segment sizes are set at run time.
  31. */
  32. /* 32-bit code */
  33. [GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } },
  34. /* 16-bit code */
  35. [GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } },
  36. /* 16-bit data */
  37. [GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } },
  38. /* 16-bit data */
  39. [GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } },
  40. /* 16-bit data */
  41. [GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } },
  42. /*
  43. * The APM segments have byte granularity and their bases
  44. * are set at run time. All have 64k limits.
  45. */
  46. /* 32-bit code */
  47. [GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } },
  48. /* 16-bit code */
  49. [GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } },
  50. /* data */
  51. [GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } },
  52. [GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } },
  53. [GDT_ENTRY_PERCPU] = { { { 0x00000000, 0x00000000 } } },
  54. } };
  55. EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
  56. __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
  57. static int cachesize_override __cpuinitdata = -1;
  58. static int disable_x86_fxsr __cpuinitdata;
  59. static int disable_x86_serial_nr __cpuinitdata = 1;
  60. static int disable_x86_sep __cpuinitdata;
  61. struct cpu_dev * cpu_devs[X86_VENDOR_NUM] = {};
  62. extern int disable_pse;
  63. static void __cpuinit default_init(struct cpuinfo_x86 * c)
  64. {
  65. /* Not much we can do here... */
  66. /* Check if at least it has cpuid */
  67. if (c->cpuid_level == -1) {
  68. /* No cpuid. It must be an ancient CPU */
  69. if (c->x86 == 4)
  70. strcpy(c->x86_model_id, "486");
  71. else if (c->x86 == 3)
  72. strcpy(c->x86_model_id, "386");
  73. }
  74. }
  75. static struct cpu_dev __cpuinitdata default_cpu = {
  76. .c_init = default_init,
  77. .c_vendor = "Unknown",
  78. };
  79. static struct cpu_dev * this_cpu __cpuinitdata = &default_cpu;
  80. static int __init cachesize_setup(char *str)
  81. {
  82. get_option (&str, &cachesize_override);
  83. return 1;
  84. }
  85. __setup("cachesize=", cachesize_setup);
  86. int __cpuinit get_model_name(struct cpuinfo_x86 *c)
  87. {
  88. unsigned int *v;
  89. char *p, *q;
  90. if (cpuid_eax(0x80000000) < 0x80000004)
  91. return 0;
  92. v = (unsigned int *) c->x86_model_id;
  93. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  94. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  95. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  96. c->x86_model_id[48] = 0;
  97. /* Intel chips right-justify this string for some dumb reason;
  98. undo that brain damage */
  99. p = q = &c->x86_model_id[0];
  100. while ( *p == ' ' )
  101. p++;
  102. if ( p != q ) {
  103. while ( *p )
  104. *q++ = *p++;
  105. while ( q <= &c->x86_model_id[48] )
  106. *q++ = '\0'; /* Zero-pad the rest */
  107. }
  108. return 1;
  109. }
  110. void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
  111. {
  112. unsigned int n, dummy, ecx, edx, l2size;
  113. n = cpuid_eax(0x80000000);
  114. if (n >= 0x80000005) {
  115. cpuid(0x80000005, &dummy, &dummy, &ecx, &edx);
  116. printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
  117. edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
  118. c->x86_cache_size=(ecx>>24)+(edx>>24);
  119. }
  120. if (n < 0x80000006) /* Some chips just has a large L1. */
  121. return;
  122. ecx = cpuid_ecx(0x80000006);
  123. l2size = ecx >> 16;
  124. /* do processor-specific cache resizing */
  125. if (this_cpu->c_size_cache)
  126. l2size = this_cpu->c_size_cache(c,l2size);
  127. /* Allow user to override all this if necessary. */
  128. if (cachesize_override != -1)
  129. l2size = cachesize_override;
  130. if ( l2size == 0 )
  131. return; /* Again, no L2 cache is possible */
  132. c->x86_cache_size = l2size;
  133. printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
  134. l2size, ecx & 0xFF);
  135. }
  136. /* Naming convention should be: <Name> [(<Codename>)] */
  137. /* This table only is used unless init_<vendor>() below doesn't set it; */
  138. /* in particular, if CPUID levels 0x80000002..4 are supported, this isn't used */
  139. /* Look up CPU names by table lookup. */
  140. static char __cpuinit *table_lookup_model(struct cpuinfo_x86 *c)
  141. {
  142. struct cpu_model_info *info;
  143. if ( c->x86_model >= 16 )
  144. return NULL; /* Range check */
  145. if (!this_cpu)
  146. return NULL;
  147. info = this_cpu->c_models;
  148. while (info && info->family) {
  149. if (info->family == c->x86)
  150. return info->model_names[c->x86_model];
  151. info++;
  152. }
  153. return NULL; /* Not found */
  154. }
  155. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c, int early)
  156. {
  157. char *v = c->x86_vendor_id;
  158. int i;
  159. static int printed;
  160. for (i = 0; i < X86_VENDOR_NUM; i++) {
  161. if (cpu_devs[i]) {
  162. if (!strcmp(v,cpu_devs[i]->c_ident[0]) ||
  163. (cpu_devs[i]->c_ident[1] &&
  164. !strcmp(v,cpu_devs[i]->c_ident[1]))) {
  165. c->x86_vendor = i;
  166. if (!early)
  167. this_cpu = cpu_devs[i];
  168. return;
  169. }
  170. }
  171. }
  172. if (!printed) {
  173. printed++;
  174. printk(KERN_ERR "CPU: Vendor unknown, using generic init.\n");
  175. printk(KERN_ERR "CPU: Your system may be unstable.\n");
  176. }
  177. c->x86_vendor = X86_VENDOR_UNKNOWN;
  178. this_cpu = &default_cpu;
  179. }
  180. static int __init x86_fxsr_setup(char * s)
  181. {
  182. /* Tell all the other CPUs to not use it... */
  183. disable_x86_fxsr = 1;
  184. /*
  185. * ... and clear the bits early in the boot_cpu_data
  186. * so that the bootup process doesn't try to do this
  187. * either.
  188. */
  189. clear_bit(X86_FEATURE_FXSR, boot_cpu_data.x86_capability);
  190. clear_bit(X86_FEATURE_XMM, boot_cpu_data.x86_capability);
  191. return 1;
  192. }
  193. __setup("nofxsr", x86_fxsr_setup);
  194. static int __init x86_sep_setup(char * s)
  195. {
  196. disable_x86_sep = 1;
  197. return 1;
  198. }
  199. __setup("nosep", x86_sep_setup);
  200. /* Standard macro to see if a specific flag is changeable */
  201. static inline int flag_is_changeable_p(u32 flag)
  202. {
  203. u32 f1, f2;
  204. asm("pushfl\n\t"
  205. "pushfl\n\t"
  206. "popl %0\n\t"
  207. "movl %0,%1\n\t"
  208. "xorl %2,%0\n\t"
  209. "pushl %0\n\t"
  210. "popfl\n\t"
  211. "pushfl\n\t"
  212. "popl %0\n\t"
  213. "popfl\n\t"
  214. : "=&r" (f1), "=&r" (f2)
  215. : "ir" (flag));
  216. return ((f1^f2) & flag) != 0;
  217. }
  218. /* Probe for the CPUID instruction */
  219. static int __cpuinit have_cpuid_p(void)
  220. {
  221. return flag_is_changeable_p(X86_EFLAGS_ID);
  222. }
  223. void __init cpu_detect(struct cpuinfo_x86 *c)
  224. {
  225. /* Get vendor name */
  226. cpuid(0x00000000, &c->cpuid_level,
  227. (int *)&c->x86_vendor_id[0],
  228. (int *)&c->x86_vendor_id[8],
  229. (int *)&c->x86_vendor_id[4]);
  230. c->x86 = 4;
  231. if (c->cpuid_level >= 0x00000001) {
  232. u32 junk, tfms, cap0, misc;
  233. cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
  234. c->x86 = (tfms >> 8) & 15;
  235. c->x86_model = (tfms >> 4) & 15;
  236. if (c->x86 == 0xf)
  237. c->x86 += (tfms >> 20) & 0xff;
  238. if (c->x86 >= 0x6)
  239. c->x86_model += ((tfms >> 16) & 0xF) << 4;
  240. c->x86_mask = tfms & 15;
  241. if (cap0 & (1<<19))
  242. c->x86_cache_alignment = ((misc >> 8) & 0xff) * 8;
  243. }
  244. }
  245. /* Do minimum CPU detection early.
  246. Fields really needed: vendor, cpuid_level, family, model, mask, cache alignment.
  247. The others are not touched to avoid unwanted side effects.
  248. WARNING: this function is only called on the BP. Don't add code here
  249. that is supposed to run on all CPUs. */
  250. static void __init early_cpu_detect(void)
  251. {
  252. struct cpuinfo_x86 *c = &boot_cpu_data;
  253. c->x86_cache_alignment = 32;
  254. if (!have_cpuid_p())
  255. return;
  256. cpu_detect(c);
  257. get_cpu_vendor(c, 1);
  258. switch (c->x86_vendor) {
  259. case X86_VENDOR_AMD:
  260. early_init_amd(c);
  261. break;
  262. case X86_VENDOR_INTEL:
  263. early_init_intel(c);
  264. break;
  265. }
  266. }
  267. static void __cpuinit generic_identify(struct cpuinfo_x86 * c)
  268. {
  269. u32 tfms, xlvl;
  270. int ebx;
  271. if (have_cpuid_p()) {
  272. /* Get vendor name */
  273. cpuid(0x00000000, &c->cpuid_level,
  274. (int *)&c->x86_vendor_id[0],
  275. (int *)&c->x86_vendor_id[8],
  276. (int *)&c->x86_vendor_id[4]);
  277. get_cpu_vendor(c, 0);
  278. /* Initialize the standard set of capabilities */
  279. /* Note that the vendor-specific code below might override */
  280. /* Intel-defined flags: level 0x00000001 */
  281. if ( c->cpuid_level >= 0x00000001 ) {
  282. u32 capability, excap;
  283. cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
  284. c->x86_capability[0] = capability;
  285. c->x86_capability[4] = excap;
  286. c->x86 = (tfms >> 8) & 15;
  287. c->x86_model = (tfms >> 4) & 15;
  288. if (c->x86 == 0xf)
  289. c->x86 += (tfms >> 20) & 0xff;
  290. if (c->x86 >= 0x6)
  291. c->x86_model += ((tfms >> 16) & 0xF) << 4;
  292. c->x86_mask = tfms & 15;
  293. #ifdef CONFIG_X86_HT
  294. c->apicid = phys_pkg_id((ebx >> 24) & 0xFF, 0);
  295. #else
  296. c->apicid = (ebx >> 24) & 0xFF;
  297. #endif
  298. if (c->x86_capability[0] & (1<<19))
  299. c->x86_clflush_size = ((ebx >> 8) & 0xff) * 8;
  300. } else {
  301. /* Have CPUID level 0 only - unheard of */
  302. c->x86 = 4;
  303. }
  304. /* AMD-defined flags: level 0x80000001 */
  305. xlvl = cpuid_eax(0x80000000);
  306. if ( (xlvl & 0xffff0000) == 0x80000000 ) {
  307. if ( xlvl >= 0x80000001 ) {
  308. c->x86_capability[1] = cpuid_edx(0x80000001);
  309. c->x86_capability[6] = cpuid_ecx(0x80000001);
  310. }
  311. if ( xlvl >= 0x80000004 )
  312. get_model_name(c); /* Default name */
  313. }
  314. init_scattered_cpuid_features(c);
  315. }
  316. #ifdef CONFIG_X86_HT
  317. c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
  318. #endif
  319. }
  320. static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  321. {
  322. if (cpu_has(c, X86_FEATURE_PN) && disable_x86_serial_nr ) {
  323. /* Disable processor serial number */
  324. unsigned long lo,hi;
  325. rdmsr(MSR_IA32_BBL_CR_CTL,lo,hi);
  326. lo |= 0x200000;
  327. wrmsr(MSR_IA32_BBL_CR_CTL,lo,hi);
  328. printk(KERN_NOTICE "CPU serial number disabled.\n");
  329. clear_bit(X86_FEATURE_PN, c->x86_capability);
  330. /* Disabling the serial number may affect the cpuid level */
  331. c->cpuid_level = cpuid_eax(0);
  332. }
  333. }
  334. static int __init x86_serial_nr_setup(char *s)
  335. {
  336. disable_x86_serial_nr = 0;
  337. return 1;
  338. }
  339. __setup("serialnumber", x86_serial_nr_setup);
  340. /*
  341. * This does the hard work of actually picking apart the CPU stuff...
  342. */
  343. void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  344. {
  345. int i;
  346. c->loops_per_jiffy = loops_per_jiffy;
  347. c->x86_cache_size = -1;
  348. c->x86_vendor = X86_VENDOR_UNKNOWN;
  349. c->cpuid_level = -1; /* CPUID not detected */
  350. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  351. c->x86_vendor_id[0] = '\0'; /* Unset */
  352. c->x86_model_id[0] = '\0'; /* Unset */
  353. c->x86_max_cores = 1;
  354. c->x86_clflush_size = 32;
  355. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  356. if (!have_cpuid_p()) {
  357. /* First of all, decide if this is a 486 or higher */
  358. /* It's a 486 if we can modify the AC flag */
  359. if ( flag_is_changeable_p(X86_EFLAGS_AC) )
  360. c->x86 = 4;
  361. else
  362. c->x86 = 3;
  363. }
  364. generic_identify(c);
  365. if (this_cpu->c_identify)
  366. this_cpu->c_identify(c);
  367. /*
  368. * Vendor-specific initialization. In this section we
  369. * canonicalize the feature flags, meaning if there are
  370. * features a certain CPU supports which CPUID doesn't
  371. * tell us, CPUID claiming incorrect flags, or other bugs,
  372. * we handle them here.
  373. *
  374. * At the end of this section, c->x86_capability better
  375. * indicate the features this CPU genuinely supports!
  376. */
  377. if (this_cpu->c_init)
  378. this_cpu->c_init(c);
  379. /* Disable the PN if appropriate */
  380. squash_the_stupid_serial_number(c);
  381. /*
  382. * The vendor-specific functions might have changed features. Now
  383. * we do "generic changes."
  384. */
  385. /* TSC disabled? */
  386. if ( tsc_disable )
  387. clear_bit(X86_FEATURE_TSC, c->x86_capability);
  388. /* FXSR disabled? */
  389. if (disable_x86_fxsr) {
  390. clear_bit(X86_FEATURE_FXSR, c->x86_capability);
  391. clear_bit(X86_FEATURE_XMM, c->x86_capability);
  392. }
  393. /* SEP disabled? */
  394. if (disable_x86_sep)
  395. clear_bit(X86_FEATURE_SEP, c->x86_capability);
  396. if (disable_pse)
  397. clear_bit(X86_FEATURE_PSE, c->x86_capability);
  398. /* If the model name is still unset, do table lookup. */
  399. if ( !c->x86_model_id[0] ) {
  400. char *p;
  401. p = table_lookup_model(c);
  402. if ( p )
  403. strcpy(c->x86_model_id, p);
  404. else
  405. /* Last resort... */
  406. sprintf(c->x86_model_id, "%02x/%02x",
  407. c->x86, c->x86_model);
  408. }
  409. /*
  410. * On SMP, boot_cpu_data holds the common feature set between
  411. * all CPUs; so make sure that we indicate which features are
  412. * common between the CPUs. The first time this routine gets
  413. * executed, c == &boot_cpu_data.
  414. */
  415. if ( c != &boot_cpu_data ) {
  416. /* AND the already accumulated flags with these */
  417. for ( i = 0 ; i < NCAPINTS ; i++ )
  418. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  419. }
  420. /* Clear all flags overriden by options */
  421. for (i = 0; i < NCAPINTS; i++)
  422. c->x86_capability[i] ^= cleared_cpu_caps[i];
  423. /* Init Machine Check Exception if available. */
  424. mcheck_init(c);
  425. select_idle_routine(c);
  426. }
  427. void __init identify_boot_cpu(void)
  428. {
  429. identify_cpu(&boot_cpu_data);
  430. sysenter_setup();
  431. enable_sep_cpu();
  432. mtrr_bp_init();
  433. }
  434. void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
  435. {
  436. BUG_ON(c == &boot_cpu_data);
  437. identify_cpu(c);
  438. enable_sep_cpu();
  439. mtrr_ap_init();
  440. }
  441. #ifdef CONFIG_X86_HT
  442. void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  443. {
  444. u32 eax, ebx, ecx, edx;
  445. int index_msb, core_bits;
  446. cpuid(1, &eax, &ebx, &ecx, &edx);
  447. if (!cpu_has(c, X86_FEATURE_HT) || cpu_has(c, X86_FEATURE_CMP_LEGACY))
  448. return;
  449. smp_num_siblings = (ebx & 0xff0000) >> 16;
  450. if (smp_num_siblings == 1) {
  451. printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
  452. } else if (smp_num_siblings > 1 ) {
  453. if (smp_num_siblings > NR_CPUS) {
  454. printk(KERN_WARNING "CPU: Unsupported number of the "
  455. "siblings %d", smp_num_siblings);
  456. smp_num_siblings = 1;
  457. return;
  458. }
  459. index_msb = get_count_order(smp_num_siblings);
  460. c->phys_proc_id = phys_pkg_id((ebx >> 24) & 0xFF, index_msb);
  461. printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
  462. c->phys_proc_id);
  463. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  464. index_msb = get_count_order(smp_num_siblings) ;
  465. core_bits = get_count_order(c->x86_max_cores);
  466. c->cpu_core_id = phys_pkg_id((ebx >> 24) & 0xFF, index_msb) &
  467. ((1 << core_bits) - 1);
  468. if (c->x86_max_cores > 1)
  469. printk(KERN_INFO "CPU: Processor Core ID: %d\n",
  470. c->cpu_core_id);
  471. }
  472. }
  473. #endif
  474. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  475. {
  476. char *vendor = NULL;
  477. if (c->x86_vendor < X86_VENDOR_NUM)
  478. vendor = this_cpu->c_vendor;
  479. else if (c->cpuid_level >= 0)
  480. vendor = c->x86_vendor_id;
  481. if (vendor && strncmp(c->x86_model_id, vendor, strlen(vendor)))
  482. printk("%s ", vendor);
  483. if (!c->x86_model_id[0])
  484. printk("%d86", c->x86);
  485. else
  486. printk("%s", c->x86_model_id);
  487. if (c->x86_mask || c->cpuid_level >= 0)
  488. printk(" stepping %02x\n", c->x86_mask);
  489. else
  490. printk("\n");
  491. }
  492. cpumask_t cpu_initialized __cpuinitdata = CPU_MASK_NONE;
  493. /* This is hacky. :)
  494. * We're emulating future behavior.
  495. * In the future, the cpu-specific init functions will be called implicitly
  496. * via the magic of initcalls.
  497. * They will insert themselves into the cpu_devs structure.
  498. * Then, when cpu_init() is called, we can just iterate over that array.
  499. */
  500. extern int intel_cpu_init(void);
  501. extern int cyrix_init_cpu(void);
  502. extern int nsc_init_cpu(void);
  503. extern int amd_init_cpu(void);
  504. extern int centaur_init_cpu(void);
  505. extern int transmeta_init_cpu(void);
  506. extern int nexgen_init_cpu(void);
  507. extern int umc_init_cpu(void);
  508. void __init early_cpu_init(void)
  509. {
  510. intel_cpu_init();
  511. cyrix_init_cpu();
  512. nsc_init_cpu();
  513. amd_init_cpu();
  514. centaur_init_cpu();
  515. transmeta_init_cpu();
  516. nexgen_init_cpu();
  517. umc_init_cpu();
  518. early_cpu_detect();
  519. #ifdef CONFIG_DEBUG_PAGEALLOC
  520. /* pse is not compatible with on-the-fly unmapping,
  521. * disable it even if the cpus claim to support it.
  522. */
  523. clear_bit(X86_FEATURE_PSE, boot_cpu_data.x86_capability);
  524. disable_pse = 1;
  525. #endif
  526. }
  527. /* Make sure %fs is initialized properly in idle threads */
  528. struct pt_regs * __devinit idle_regs(struct pt_regs *regs)
  529. {
  530. memset(regs, 0, sizeof(struct pt_regs));
  531. regs->fs = __KERNEL_PERCPU;
  532. return regs;
  533. }
  534. /* Current gdt points %fs at the "master" per-cpu area: after this,
  535. * it's on the real one. */
  536. void switch_to_new_gdt(void)
  537. {
  538. struct desc_ptr gdt_descr;
  539. gdt_descr.address = (long)get_cpu_gdt_table(smp_processor_id());
  540. gdt_descr.size = GDT_SIZE - 1;
  541. load_gdt(&gdt_descr);
  542. asm("mov %0, %%fs" : : "r" (__KERNEL_PERCPU) : "memory");
  543. }
  544. /*
  545. * cpu_init() initializes state that is per-CPU. Some data is already
  546. * initialized (naturally) in the bootstrap process, such as the GDT
  547. * and IDT. We reload them nevertheless, this function acts as a
  548. * 'CPU state barrier', nothing should get across.
  549. */
  550. void __cpuinit cpu_init(void)
  551. {
  552. int cpu = smp_processor_id();
  553. struct task_struct *curr = current;
  554. struct tss_struct * t = &per_cpu(init_tss, cpu);
  555. struct thread_struct *thread = &curr->thread;
  556. if (cpu_test_and_set(cpu, cpu_initialized)) {
  557. printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
  558. for (;;) local_irq_enable();
  559. }
  560. printk(KERN_INFO "Initializing CPU#%d\n", cpu);
  561. if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
  562. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  563. if (tsc_disable && cpu_has_tsc) {
  564. printk(KERN_NOTICE "Disabling TSC...\n");
  565. /**** FIX-HPA: DOES THIS REALLY BELONG HERE? ****/
  566. clear_bit(X86_FEATURE_TSC, boot_cpu_data.x86_capability);
  567. set_in_cr4(X86_CR4_TSD);
  568. }
  569. load_idt(&idt_descr);
  570. switch_to_new_gdt();
  571. /*
  572. * Set up and load the per-CPU TSS and LDT
  573. */
  574. atomic_inc(&init_mm.mm_count);
  575. curr->active_mm = &init_mm;
  576. if (curr->mm)
  577. BUG();
  578. enter_lazy_tlb(&init_mm, curr);
  579. load_sp0(t, thread);
  580. set_tss_desc(cpu,t);
  581. load_TR_desc();
  582. load_LDT(&init_mm.context);
  583. #ifdef CONFIG_DOUBLEFAULT
  584. /* Set up doublefault TSS pointer in the GDT */
  585. __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
  586. #endif
  587. /* Clear %gs. */
  588. asm volatile ("mov %0, %%gs" : : "r" (0));
  589. /* Clear all 6 debug registers: */
  590. set_debugreg(0, 0);
  591. set_debugreg(0, 1);
  592. set_debugreg(0, 2);
  593. set_debugreg(0, 3);
  594. set_debugreg(0, 6);
  595. set_debugreg(0, 7);
  596. /*
  597. * Force FPU initialization:
  598. */
  599. current_thread_info()->status = 0;
  600. clear_used_math();
  601. mxcsr_feature_mask_init();
  602. }
  603. #ifdef CONFIG_HOTPLUG_CPU
  604. void __cpuinit cpu_uninit(void)
  605. {
  606. int cpu = raw_smp_processor_id();
  607. cpu_clear(cpu, cpu_initialized);
  608. /* lazy TLB state */
  609. per_cpu(cpu_tlbstate, cpu).state = 0;
  610. per_cpu(cpu_tlbstate, cpu).active_mm = &init_mm;
  611. }
  612. #endif