process.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805
  1. /*
  2. * Architecture-specific setup.
  3. *
  4. * Copyright (C) 1998-2003 Hewlett-Packard Co
  5. * David Mosberger-Tang <davidm@hpl.hp.com>
  6. * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
  7. */
  8. #define __KERNEL_SYSCALLS__ /* see <asm/unistd.h> */
  9. #include <linux/config.h>
  10. #include <linux/cpu.h>
  11. #include <linux/pm.h>
  12. #include <linux/elf.h>
  13. #include <linux/errno.h>
  14. #include <linux/kallsyms.h>
  15. #include <linux/kernel.h>
  16. #include <linux/mm.h>
  17. #include <linux/module.h>
  18. #include <linux/notifier.h>
  19. #include <linux/personality.h>
  20. #include <linux/sched.h>
  21. #include <linux/slab.h>
  22. #include <linux/smp_lock.h>
  23. #include <linux/stddef.h>
  24. #include <linux/thread_info.h>
  25. #include <linux/unistd.h>
  26. #include <linux/efi.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/delay.h>
  29. #include <asm/cpu.h>
  30. #include <asm/delay.h>
  31. #include <asm/elf.h>
  32. #include <asm/ia32.h>
  33. #include <asm/irq.h>
  34. #include <asm/pgalloc.h>
  35. #include <asm/processor.h>
  36. #include <asm/sal.h>
  37. #include <asm/tlbflush.h>
  38. #include <asm/uaccess.h>
  39. #include <asm/unwind.h>
  40. #include <asm/user.h>
  41. #include "entry.h"
  42. #ifdef CONFIG_PERFMON
  43. # include <asm/perfmon.h>
  44. #endif
  45. #include "sigframe.h"
  46. void (*ia64_mark_idle)(int);
  47. static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
  48. unsigned long boot_option_idle_override = 0;
  49. EXPORT_SYMBOL(boot_option_idle_override);
  50. void
  51. ia64_do_show_stack (struct unw_frame_info *info, void *arg)
  52. {
  53. unsigned long ip, sp, bsp;
  54. char buf[128]; /* don't make it so big that it overflows the stack! */
  55. printk("\nCall Trace:\n");
  56. do {
  57. unw_get_ip(info, &ip);
  58. if (ip == 0)
  59. break;
  60. unw_get_sp(info, &sp);
  61. unw_get_bsp(info, &bsp);
  62. snprintf(buf, sizeof(buf),
  63. " [<%016lx>] %%s\n"
  64. " sp=%016lx bsp=%016lx\n",
  65. ip, sp, bsp);
  66. print_symbol(buf, ip);
  67. } while (unw_unwind(info) >= 0);
  68. }
  69. void
  70. show_stack (struct task_struct *task, unsigned long *sp)
  71. {
  72. if (!task)
  73. unw_init_running(ia64_do_show_stack, NULL);
  74. else {
  75. struct unw_frame_info info;
  76. unw_init_from_blocked_task(&info, task);
  77. ia64_do_show_stack(&info, NULL);
  78. }
  79. }
  80. void
  81. dump_stack (void)
  82. {
  83. show_stack(NULL, NULL);
  84. }
  85. EXPORT_SYMBOL(dump_stack);
  86. void
  87. show_regs (struct pt_regs *regs)
  88. {
  89. unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
  90. print_modules();
  91. printk("\nPid: %d, CPU %d, comm: %20s\n", current->pid, smp_processor_id(), current->comm);
  92. printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s\n",
  93. regs->cr_ipsr, regs->cr_ifs, ip, print_tainted());
  94. print_symbol("ip is at %s\n", ip);
  95. printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
  96. regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
  97. printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
  98. regs->ar_rnat, regs->ar_bspstore, regs->pr);
  99. printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
  100. regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
  101. printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
  102. printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
  103. printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
  104. regs->f6.u.bits[1], regs->f6.u.bits[0],
  105. regs->f7.u.bits[1], regs->f7.u.bits[0]);
  106. printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
  107. regs->f8.u.bits[1], regs->f8.u.bits[0],
  108. regs->f9.u.bits[1], regs->f9.u.bits[0]);
  109. printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
  110. regs->f10.u.bits[1], regs->f10.u.bits[0],
  111. regs->f11.u.bits[1], regs->f11.u.bits[0]);
  112. printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
  113. printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
  114. printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
  115. printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
  116. printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
  117. printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
  118. printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
  119. printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
  120. printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
  121. if (user_mode(regs)) {
  122. /* print the stacked registers */
  123. unsigned long val, *bsp, ndirty;
  124. int i, sof, is_nat = 0;
  125. sof = regs->cr_ifs & 0x7f; /* size of frame */
  126. ndirty = (regs->loadrs >> 19);
  127. bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
  128. for (i = 0; i < sof; ++i) {
  129. get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
  130. printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
  131. ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
  132. }
  133. } else
  134. show_stack(NULL, NULL);
  135. }
  136. void
  137. do_notify_resume_user (sigset_t *oldset, struct sigscratch *scr, long in_syscall)
  138. {
  139. if (fsys_mode(current, &scr->pt)) {
  140. /* defer signal-handling etc. until we return to privilege-level 0. */
  141. if (!ia64_psr(&scr->pt)->lp)
  142. ia64_psr(&scr->pt)->lp = 1;
  143. return;
  144. }
  145. #ifdef CONFIG_PERFMON
  146. if (current->thread.pfm_needs_checking)
  147. pfm_handle_work();
  148. #endif
  149. /* deal with pending signal delivery */
  150. if (test_thread_flag(TIF_SIGPENDING))
  151. ia64_do_signal(oldset, scr, in_syscall);
  152. }
  153. static int pal_halt = 1;
  154. static int __init nohalt_setup(char * str)
  155. {
  156. pal_halt = 0;
  157. return 1;
  158. }
  159. __setup("nohalt", nohalt_setup);
  160. /*
  161. * We use this if we don't have any better idle routine..
  162. */
  163. void
  164. default_idle (void)
  165. {
  166. unsigned long pmu_active = ia64_getreg(_IA64_REG_PSR) & (IA64_PSR_PP | IA64_PSR_UP);
  167. while (!need_resched())
  168. if (pal_halt && !pmu_active)
  169. safe_halt();
  170. else
  171. cpu_relax();
  172. }
  173. #ifdef CONFIG_HOTPLUG_CPU
  174. /* We don't actually take CPU down, just spin without interrupts. */
  175. static inline void play_dead(void)
  176. {
  177. extern void ia64_cpu_local_tick (void);
  178. unsigned int this_cpu = smp_processor_id();
  179. /* Ack it */
  180. __get_cpu_var(cpu_state) = CPU_DEAD;
  181. max_xtp();
  182. local_irq_disable();
  183. idle_task_exit();
  184. ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
  185. /*
  186. * The above is a point of no-return, the processor is
  187. * expected to be in SAL loop now.
  188. */
  189. BUG();
  190. }
  191. #else
  192. static inline void play_dead(void)
  193. {
  194. BUG();
  195. }
  196. #endif /* CONFIG_HOTPLUG_CPU */
  197. void cpu_idle_wait(void)
  198. {
  199. unsigned int cpu, this_cpu = get_cpu();
  200. cpumask_t map;
  201. set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
  202. put_cpu();
  203. cpus_clear(map);
  204. for_each_online_cpu(cpu) {
  205. per_cpu(cpu_idle_state, cpu) = 1;
  206. cpu_set(cpu, map);
  207. }
  208. __get_cpu_var(cpu_idle_state) = 0;
  209. wmb();
  210. do {
  211. ssleep(1);
  212. for_each_online_cpu(cpu) {
  213. if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
  214. cpu_clear(cpu, map);
  215. }
  216. cpus_and(map, map, cpu_online_map);
  217. } while (!cpus_empty(map));
  218. }
  219. EXPORT_SYMBOL_GPL(cpu_idle_wait);
  220. void __attribute__((noreturn))
  221. cpu_idle (void)
  222. {
  223. void (*mark_idle)(int) = ia64_mark_idle;
  224. /* endless idle loop with no priority at all */
  225. while (1) {
  226. #ifdef CONFIG_SMP
  227. if (!need_resched())
  228. min_xtp();
  229. #endif
  230. while (!need_resched()) {
  231. void (*idle)(void);
  232. if (__get_cpu_var(cpu_idle_state))
  233. __get_cpu_var(cpu_idle_state) = 0;
  234. rmb();
  235. if (mark_idle)
  236. (*mark_idle)(1);
  237. idle = pm_idle;
  238. if (!idle)
  239. idle = default_idle;
  240. (*idle)();
  241. }
  242. if (mark_idle)
  243. (*mark_idle)(0);
  244. #ifdef CONFIG_SMP
  245. normal_xtp();
  246. #endif
  247. schedule();
  248. check_pgt_cache();
  249. if (cpu_is_offline(smp_processor_id()))
  250. play_dead();
  251. }
  252. }
  253. void
  254. ia64_save_extra (struct task_struct *task)
  255. {
  256. #ifdef CONFIG_PERFMON
  257. unsigned long info;
  258. #endif
  259. if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
  260. ia64_save_debug_regs(&task->thread.dbr[0]);
  261. #ifdef CONFIG_PERFMON
  262. if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
  263. pfm_save_regs(task);
  264. info = __get_cpu_var(pfm_syst_info);
  265. if (info & PFM_CPUINFO_SYST_WIDE)
  266. pfm_syst_wide_update_task(task, info, 0);
  267. #endif
  268. #ifdef CONFIG_IA32_SUPPORT
  269. if (IS_IA32_PROCESS(ia64_task_regs(task)))
  270. ia32_save_state(task);
  271. #endif
  272. }
  273. void
  274. ia64_load_extra (struct task_struct *task)
  275. {
  276. #ifdef CONFIG_PERFMON
  277. unsigned long info;
  278. #endif
  279. if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
  280. ia64_load_debug_regs(&task->thread.dbr[0]);
  281. #ifdef CONFIG_PERFMON
  282. if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
  283. pfm_load_regs(task);
  284. info = __get_cpu_var(pfm_syst_info);
  285. if (info & PFM_CPUINFO_SYST_WIDE)
  286. pfm_syst_wide_update_task(task, info, 1);
  287. #endif
  288. #ifdef CONFIG_IA32_SUPPORT
  289. if (IS_IA32_PROCESS(ia64_task_regs(task)))
  290. ia32_load_state(task);
  291. #endif
  292. }
  293. /*
  294. * Copy the state of an ia-64 thread.
  295. *
  296. * We get here through the following call chain:
  297. *
  298. * from user-level: from kernel:
  299. *
  300. * <clone syscall> <some kernel call frames>
  301. * sys_clone :
  302. * do_fork do_fork
  303. * copy_thread copy_thread
  304. *
  305. * This means that the stack layout is as follows:
  306. *
  307. * +---------------------+ (highest addr)
  308. * | struct pt_regs |
  309. * +---------------------+
  310. * | struct switch_stack |
  311. * +---------------------+
  312. * | |
  313. * | memory stack |
  314. * | | <-- sp (lowest addr)
  315. * +---------------------+
  316. *
  317. * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
  318. * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
  319. * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
  320. * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
  321. * the stack is page aligned and the page size is at least 4KB, this is always the case,
  322. * so there is nothing to worry about.
  323. */
  324. int
  325. copy_thread (int nr, unsigned long clone_flags,
  326. unsigned long user_stack_base, unsigned long user_stack_size,
  327. struct task_struct *p, struct pt_regs *regs)
  328. {
  329. extern char ia64_ret_from_clone, ia32_ret_from_clone;
  330. struct switch_stack *child_stack, *stack;
  331. unsigned long rbs, child_rbs, rbs_size;
  332. struct pt_regs *child_ptregs;
  333. int retval = 0;
  334. #ifdef CONFIG_SMP
  335. /*
  336. * For SMP idle threads, fork_by_hand() calls do_fork with
  337. * NULL regs.
  338. */
  339. if (!regs)
  340. return 0;
  341. #endif
  342. stack = ((struct switch_stack *) regs) - 1;
  343. child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
  344. child_stack = (struct switch_stack *) child_ptregs - 1;
  345. /* copy parent's switch_stack & pt_regs to child: */
  346. memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
  347. rbs = (unsigned long) current + IA64_RBS_OFFSET;
  348. child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
  349. rbs_size = stack->ar_bspstore - rbs;
  350. /* copy the parent's register backing store to the child: */
  351. memcpy((void *) child_rbs, (void *) rbs, rbs_size);
  352. if (likely(user_mode(child_ptregs))) {
  353. if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs))
  354. child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */
  355. if (user_stack_base) {
  356. child_ptregs->r12 = user_stack_base + user_stack_size - 16;
  357. child_ptregs->ar_bspstore = user_stack_base;
  358. child_ptregs->ar_rnat = 0;
  359. child_ptregs->loadrs = 0;
  360. }
  361. } else {
  362. /*
  363. * Note: we simply preserve the relative position of
  364. * the stack pointer here. There is no need to
  365. * allocate a scratch area here, since that will have
  366. * been taken care of by the caller of sys_clone()
  367. * already.
  368. */
  369. child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
  370. child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */
  371. }
  372. child_stack->ar_bspstore = child_rbs + rbs_size;
  373. if (IS_IA32_PROCESS(regs))
  374. child_stack->b0 = (unsigned long) &ia32_ret_from_clone;
  375. else
  376. child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
  377. /* copy parts of thread_struct: */
  378. p->thread.ksp = (unsigned long) child_stack - 16;
  379. /* stop some PSR bits from being inherited.
  380. * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
  381. * therefore we must specify them explicitly here and not include them in
  382. * IA64_PSR_BITS_TO_CLEAR.
  383. */
  384. child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
  385. & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
  386. /*
  387. * NOTE: The calling convention considers all floating point
  388. * registers in the high partition (fph) to be scratch. Since
  389. * the only way to get to this point is through a system call,
  390. * we know that the values in fph are all dead. Hence, there
  391. * is no need to inherit the fph state from the parent to the
  392. * child and all we have to do is to make sure that
  393. * IA64_THREAD_FPH_VALID is cleared in the child.
  394. *
  395. * XXX We could push this optimization a bit further by
  396. * clearing IA64_THREAD_FPH_VALID on ANY system call.
  397. * However, it's not clear this is worth doing. Also, it
  398. * would be a slight deviation from the normal Linux system
  399. * call behavior where scratch registers are preserved across
  400. * system calls (unless used by the system call itself).
  401. */
  402. # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
  403. | IA64_THREAD_PM_VALID)
  404. # define THREAD_FLAGS_TO_SET 0
  405. p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
  406. | THREAD_FLAGS_TO_SET);
  407. ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
  408. #ifdef CONFIG_IA32_SUPPORT
  409. /*
  410. * If we're cloning an IA32 task then save the IA32 extra
  411. * state from the current task to the new task
  412. */
  413. if (IS_IA32_PROCESS(ia64_task_regs(current))) {
  414. ia32_save_state(p);
  415. if (clone_flags & CLONE_SETTLS)
  416. retval = ia32_clone_tls(p, child_ptregs);
  417. /* Copy partially mapped page list */
  418. if (!retval)
  419. retval = ia32_copy_partial_page_list(p, clone_flags);
  420. }
  421. #endif
  422. #ifdef CONFIG_PERFMON
  423. if (current->thread.pfm_context)
  424. pfm_inherit(p, child_ptregs);
  425. #endif
  426. return retval;
  427. }
  428. static void
  429. do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
  430. {
  431. unsigned long mask, sp, nat_bits = 0, ip, ar_rnat, urbs_end, cfm;
  432. elf_greg_t *dst = arg;
  433. struct pt_regs *pt;
  434. char nat;
  435. int i;
  436. memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
  437. if (unw_unwind_to_user(info) < 0)
  438. return;
  439. unw_get_sp(info, &sp);
  440. pt = (struct pt_regs *) (sp + 16);
  441. urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
  442. if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
  443. return;
  444. ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
  445. &ar_rnat);
  446. /*
  447. * coredump format:
  448. * r0-r31
  449. * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
  450. * predicate registers (p0-p63)
  451. * b0-b7
  452. * ip cfm user-mask
  453. * ar.rsc ar.bsp ar.bspstore ar.rnat
  454. * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
  455. */
  456. /* r0 is zero */
  457. for (i = 1, mask = (1UL << i); i < 32; ++i) {
  458. unw_get_gr(info, i, &dst[i], &nat);
  459. if (nat)
  460. nat_bits |= mask;
  461. mask <<= 1;
  462. }
  463. dst[32] = nat_bits;
  464. unw_get_pr(info, &dst[33]);
  465. for (i = 0; i < 8; ++i)
  466. unw_get_br(info, i, &dst[34 + i]);
  467. unw_get_rp(info, &ip);
  468. dst[42] = ip + ia64_psr(pt)->ri;
  469. dst[43] = cfm;
  470. dst[44] = pt->cr_ipsr & IA64_PSR_UM;
  471. unw_get_ar(info, UNW_AR_RSC, &dst[45]);
  472. /*
  473. * For bsp and bspstore, unw_get_ar() would return the kernel
  474. * addresses, but we need the user-level addresses instead:
  475. */
  476. dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
  477. dst[47] = pt->ar_bspstore;
  478. dst[48] = ar_rnat;
  479. unw_get_ar(info, UNW_AR_CCV, &dst[49]);
  480. unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
  481. unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
  482. dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
  483. unw_get_ar(info, UNW_AR_LC, &dst[53]);
  484. unw_get_ar(info, UNW_AR_EC, &dst[54]);
  485. unw_get_ar(info, UNW_AR_CSD, &dst[55]);
  486. unw_get_ar(info, UNW_AR_SSD, &dst[56]);
  487. }
  488. void
  489. do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
  490. {
  491. elf_fpreg_t *dst = arg;
  492. int i;
  493. memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
  494. if (unw_unwind_to_user(info) < 0)
  495. return;
  496. /* f0 is 0.0, f1 is 1.0 */
  497. for (i = 2; i < 32; ++i)
  498. unw_get_fr(info, i, dst + i);
  499. ia64_flush_fph(task);
  500. if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
  501. memcpy(dst + 32, task->thread.fph, 96*16);
  502. }
  503. void
  504. do_copy_regs (struct unw_frame_info *info, void *arg)
  505. {
  506. do_copy_task_regs(current, info, arg);
  507. }
  508. void
  509. do_dump_fpu (struct unw_frame_info *info, void *arg)
  510. {
  511. do_dump_task_fpu(current, info, arg);
  512. }
  513. int
  514. dump_task_regs(struct task_struct *task, elf_gregset_t *regs)
  515. {
  516. struct unw_frame_info tcore_info;
  517. if (current == task) {
  518. unw_init_running(do_copy_regs, regs);
  519. } else {
  520. memset(&tcore_info, 0, sizeof(tcore_info));
  521. unw_init_from_blocked_task(&tcore_info, task);
  522. do_copy_task_regs(task, &tcore_info, regs);
  523. }
  524. return 1;
  525. }
  526. void
  527. ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
  528. {
  529. unw_init_running(do_copy_regs, dst);
  530. }
  531. int
  532. dump_task_fpu (struct task_struct *task, elf_fpregset_t *dst)
  533. {
  534. struct unw_frame_info tcore_info;
  535. if (current == task) {
  536. unw_init_running(do_dump_fpu, dst);
  537. } else {
  538. memset(&tcore_info, 0, sizeof(tcore_info));
  539. unw_init_from_blocked_task(&tcore_info, task);
  540. do_dump_task_fpu(task, &tcore_info, dst);
  541. }
  542. return 1;
  543. }
  544. int
  545. dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
  546. {
  547. unw_init_running(do_dump_fpu, dst);
  548. return 1; /* f0-f31 are always valid so we always return 1 */
  549. }
  550. long
  551. sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp,
  552. struct pt_regs *regs)
  553. {
  554. char *fname;
  555. int error;
  556. fname = getname(filename);
  557. error = PTR_ERR(fname);
  558. if (IS_ERR(fname))
  559. goto out;
  560. error = do_execve(fname, argv, envp, regs);
  561. putname(fname);
  562. out:
  563. return error;
  564. }
  565. pid_t
  566. kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
  567. {
  568. extern void start_kernel_thread (void);
  569. unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
  570. struct {
  571. struct switch_stack sw;
  572. struct pt_regs pt;
  573. } regs;
  574. memset(&regs, 0, sizeof(regs));
  575. regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */
  576. regs.pt.r1 = helper_fptr[1]; /* set GP */
  577. regs.pt.r9 = (unsigned long) fn; /* 1st argument */
  578. regs.pt.r11 = (unsigned long) arg; /* 2nd argument */
  579. /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */
  580. regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
  581. regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */
  582. regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
  583. regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
  584. regs.sw.pr = (1 << PRED_KERNEL_STACK);
  585. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs.pt, 0, NULL, NULL);
  586. }
  587. EXPORT_SYMBOL(kernel_thread);
  588. /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */
  589. int
  590. kernel_thread_helper (int (*fn)(void *), void *arg)
  591. {
  592. #ifdef CONFIG_IA32_SUPPORT
  593. if (IS_IA32_PROCESS(ia64_task_regs(current))) {
  594. /* A kernel thread is always a 64-bit process. */
  595. current->thread.map_base = DEFAULT_MAP_BASE;
  596. current->thread.task_size = DEFAULT_TASK_SIZE;
  597. ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
  598. ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
  599. }
  600. #endif
  601. return (*fn)(arg);
  602. }
  603. /*
  604. * Flush thread state. This is called when a thread does an execve().
  605. */
  606. void
  607. flush_thread (void)
  608. {
  609. /* drop floating-point and debug-register state if it exists: */
  610. current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
  611. ia64_drop_fpu(current);
  612. if (IS_IA32_PROCESS(ia64_task_regs(current)))
  613. ia32_drop_partial_page_list(current);
  614. }
  615. /*
  616. * Clean up state associated with current thread. This is called when
  617. * the thread calls exit().
  618. */
  619. void
  620. exit_thread (void)
  621. {
  622. ia64_drop_fpu(current);
  623. #ifdef CONFIG_PERFMON
  624. /* if needed, stop monitoring and flush state to perfmon context */
  625. if (current->thread.pfm_context)
  626. pfm_exit_thread(current);
  627. /* free debug register resources */
  628. if (current->thread.flags & IA64_THREAD_DBG_VALID)
  629. pfm_release_debug_registers(current);
  630. #endif
  631. if (IS_IA32_PROCESS(ia64_task_regs(current)))
  632. ia32_drop_partial_page_list(current);
  633. }
  634. unsigned long
  635. get_wchan (struct task_struct *p)
  636. {
  637. struct unw_frame_info info;
  638. unsigned long ip;
  639. int count = 0;
  640. /*
  641. * Note: p may not be a blocked task (it could be current or
  642. * another process running on some other CPU. Rather than
  643. * trying to determine if p is really blocked, we just assume
  644. * it's blocked and rely on the unwind routines to fail
  645. * gracefully if the process wasn't really blocked after all.
  646. * --davidm 99/12/15
  647. */
  648. unw_init_from_blocked_task(&info, p);
  649. do {
  650. if (unw_unwind(&info) < 0)
  651. return 0;
  652. unw_get_ip(&info, &ip);
  653. if (!in_sched_functions(ip))
  654. return ip;
  655. } while (count++ < 16);
  656. return 0;
  657. }
  658. void
  659. cpu_halt (void)
  660. {
  661. pal_power_mgmt_info_u_t power_info[8];
  662. unsigned long min_power;
  663. int i, min_power_state;
  664. if (ia64_pal_halt_info(power_info) != 0)
  665. return;
  666. min_power_state = 0;
  667. min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
  668. for (i = 1; i < 8; ++i)
  669. if (power_info[i].pal_power_mgmt_info_s.im
  670. && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
  671. min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
  672. min_power_state = i;
  673. }
  674. while (1)
  675. ia64_pal_halt(min_power_state);
  676. }
  677. void
  678. machine_restart (char *restart_cmd)
  679. {
  680. (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
  681. }
  682. EXPORT_SYMBOL(machine_restart);
  683. void
  684. machine_halt (void)
  685. {
  686. cpu_halt();
  687. }
  688. EXPORT_SYMBOL(machine_halt);
  689. void
  690. machine_power_off (void)
  691. {
  692. if (pm_power_off)
  693. pm_power_off();
  694. machine_halt();
  695. }
  696. EXPORT_SYMBOL(machine_power_off);