slub.c 111 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks and only
  6. * uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. */
  10. #include <linux/mm.h>
  11. #include <linux/swap.h> /* struct reclaim_state */
  12. #include <linux/module.h>
  13. #include <linux/bit_spinlock.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/bitops.h>
  16. #include <linux/slab.h>
  17. #include <linux/proc_fs.h>
  18. #include <linux/seq_file.h>
  19. #include <linux/kmemcheck.h>
  20. #include <linux/cpu.h>
  21. #include <linux/cpuset.h>
  22. #include <linux/mempolicy.h>
  23. #include <linux/ctype.h>
  24. #include <linux/debugobjects.h>
  25. #include <linux/kallsyms.h>
  26. #include <linux/memory.h>
  27. #include <linux/math64.h>
  28. #include <linux/fault-inject.h>
  29. /*
  30. * Lock order:
  31. * 1. slab_lock(page)
  32. * 2. slab->list_lock
  33. *
  34. * The slab_lock protects operations on the object of a particular
  35. * slab and its metadata in the page struct. If the slab lock
  36. * has been taken then no allocations nor frees can be performed
  37. * on the objects in the slab nor can the slab be added or removed
  38. * from the partial or full lists since this would mean modifying
  39. * the page_struct of the slab.
  40. *
  41. * The list_lock protects the partial and full list on each node and
  42. * the partial slab counter. If taken then no new slabs may be added or
  43. * removed from the lists nor make the number of partial slabs be modified.
  44. * (Note that the total number of slabs is an atomic value that may be
  45. * modified without taking the list lock).
  46. *
  47. * The list_lock is a centralized lock and thus we avoid taking it as
  48. * much as possible. As long as SLUB does not have to handle partial
  49. * slabs, operations can continue without any centralized lock. F.e.
  50. * allocating a long series of objects that fill up slabs does not require
  51. * the list lock.
  52. *
  53. * The lock order is sometimes inverted when we are trying to get a slab
  54. * off a list. We take the list_lock and then look for a page on the list
  55. * to use. While we do that objects in the slabs may be freed. We can
  56. * only operate on the slab if we have also taken the slab_lock. So we use
  57. * a slab_trylock() on the slab. If trylock was successful then no frees
  58. * can occur anymore and we can use the slab for allocations etc. If the
  59. * slab_trylock() does not succeed then frees are in progress in the slab and
  60. * we must stay away from it for a while since we may cause a bouncing
  61. * cacheline if we try to acquire the lock. So go onto the next slab.
  62. * If all pages are busy then we may allocate a new slab instead of reusing
  63. * a partial slab. A new slab has noone operating on it and thus there is
  64. * no danger of cacheline contention.
  65. *
  66. * Interrupts are disabled during allocation and deallocation in order to
  67. * make the slab allocator safe to use in the context of an irq. In addition
  68. * interrupts are disabled to ensure that the processor does not change
  69. * while handling per_cpu slabs, due to kernel preemption.
  70. *
  71. * SLUB assigns one slab for allocation to each processor.
  72. * Allocations only occur from these slabs called cpu slabs.
  73. *
  74. * Slabs with free elements are kept on a partial list and during regular
  75. * operations no list for full slabs is used. If an object in a full slab is
  76. * freed then the slab will show up again on the partial lists.
  77. * We track full slabs for debugging purposes though because otherwise we
  78. * cannot scan all objects.
  79. *
  80. * Slabs are freed when they become empty. Teardown and setup is
  81. * minimal so we rely on the page allocators per cpu caches for
  82. * fast frees and allocs.
  83. *
  84. * Overloading of page flags that are otherwise used for LRU management.
  85. *
  86. * PageActive The slab is frozen and exempt from list processing.
  87. * This means that the slab is dedicated to a purpose
  88. * such as satisfying allocations for a specific
  89. * processor. Objects may be freed in the slab while
  90. * it is frozen but slab_free will then skip the usual
  91. * list operations. It is up to the processor holding
  92. * the slab to integrate the slab into the slab lists
  93. * when the slab is no longer needed.
  94. *
  95. * One use of this flag is to mark slabs that are
  96. * used for allocations. Then such a slab becomes a cpu
  97. * slab. The cpu slab may be equipped with an additional
  98. * freelist that allows lockless access to
  99. * free objects in addition to the regular freelist
  100. * that requires the slab lock.
  101. *
  102. * PageError Slab requires special handling due to debug
  103. * options set. This moves slab handling out of
  104. * the fast path and disables lockless freelists.
  105. */
  106. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  107. SLAB_TRACE | SLAB_DEBUG_FREE)
  108. static inline int kmem_cache_debug(struct kmem_cache *s)
  109. {
  110. #ifdef CONFIG_SLUB_DEBUG
  111. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  112. #else
  113. return 0;
  114. #endif
  115. }
  116. /*
  117. * Issues still to be resolved:
  118. *
  119. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  120. *
  121. * - Variable sizing of the per node arrays
  122. */
  123. /* Enable to test recovery from slab corruption on boot */
  124. #undef SLUB_RESILIENCY_TEST
  125. /*
  126. * Mininum number of partial slabs. These will be left on the partial
  127. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  128. */
  129. #define MIN_PARTIAL 5
  130. /*
  131. * Maximum number of desirable partial slabs.
  132. * The existence of more partial slabs makes kmem_cache_shrink
  133. * sort the partial list by the number of objects in the.
  134. */
  135. #define MAX_PARTIAL 10
  136. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  137. SLAB_POISON | SLAB_STORE_USER)
  138. /*
  139. * Debugging flags that require metadata to be stored in the slab. These get
  140. * disabled when slub_debug=O is used and a cache's min order increases with
  141. * metadata.
  142. */
  143. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  144. /*
  145. * Set of flags that will prevent slab merging
  146. */
  147. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  148. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  149. SLAB_FAILSLAB)
  150. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  151. SLAB_CACHE_DMA | SLAB_NOTRACK)
  152. #define OO_SHIFT 16
  153. #define OO_MASK ((1 << OO_SHIFT) - 1)
  154. #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
  155. /* Internal SLUB flags */
  156. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  157. static int kmem_size = sizeof(struct kmem_cache);
  158. #ifdef CONFIG_SMP
  159. static struct notifier_block slab_notifier;
  160. #endif
  161. static enum {
  162. DOWN, /* No slab functionality available */
  163. PARTIAL, /* Kmem_cache_node works */
  164. UP, /* Everything works but does not show up in sysfs */
  165. SYSFS /* Sysfs up */
  166. } slab_state = DOWN;
  167. /* A list of all slab caches on the system */
  168. static DECLARE_RWSEM(slub_lock);
  169. static LIST_HEAD(slab_caches);
  170. /*
  171. * Tracking user of a slab.
  172. */
  173. struct track {
  174. unsigned long addr; /* Called from address */
  175. int cpu; /* Was running on cpu */
  176. int pid; /* Pid context */
  177. unsigned long when; /* When did the operation occur */
  178. };
  179. enum track_item { TRACK_ALLOC, TRACK_FREE };
  180. #ifdef CONFIG_SLUB_DEBUG
  181. static int sysfs_slab_add(struct kmem_cache *);
  182. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  183. static void sysfs_slab_remove(struct kmem_cache *);
  184. #else
  185. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  186. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  187. { return 0; }
  188. static inline void sysfs_slab_remove(struct kmem_cache *s)
  189. {
  190. kfree(s);
  191. }
  192. #endif
  193. static inline void stat(struct kmem_cache *s, enum stat_item si)
  194. {
  195. #ifdef CONFIG_SLUB_STATS
  196. __this_cpu_inc(s->cpu_slab->stat[si]);
  197. #endif
  198. }
  199. /********************************************************************
  200. * Core slab cache functions
  201. *******************************************************************/
  202. int slab_is_available(void)
  203. {
  204. return slab_state >= UP;
  205. }
  206. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  207. {
  208. #ifdef CONFIG_NUMA
  209. return s->node[node];
  210. #else
  211. return &s->local_node;
  212. #endif
  213. }
  214. /* Verify that a pointer has an address that is valid within a slab page */
  215. static inline int check_valid_pointer(struct kmem_cache *s,
  216. struct page *page, const void *object)
  217. {
  218. void *base;
  219. if (!object)
  220. return 1;
  221. base = page_address(page);
  222. if (object < base || object >= base + page->objects * s->size ||
  223. (object - base) % s->size) {
  224. return 0;
  225. }
  226. return 1;
  227. }
  228. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  229. {
  230. return *(void **)(object + s->offset);
  231. }
  232. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  233. {
  234. *(void **)(object + s->offset) = fp;
  235. }
  236. /* Loop over all objects in a slab */
  237. #define for_each_object(__p, __s, __addr, __objects) \
  238. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  239. __p += (__s)->size)
  240. /* Scan freelist */
  241. #define for_each_free_object(__p, __s, __free) \
  242. for (__p = (__free); __p; __p = get_freepointer((__s), __p))
  243. /* Determine object index from a given position */
  244. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  245. {
  246. return (p - addr) / s->size;
  247. }
  248. static inline struct kmem_cache_order_objects oo_make(int order,
  249. unsigned long size)
  250. {
  251. struct kmem_cache_order_objects x = {
  252. (order << OO_SHIFT) + (PAGE_SIZE << order) / size
  253. };
  254. return x;
  255. }
  256. static inline int oo_order(struct kmem_cache_order_objects x)
  257. {
  258. return x.x >> OO_SHIFT;
  259. }
  260. static inline int oo_objects(struct kmem_cache_order_objects x)
  261. {
  262. return x.x & OO_MASK;
  263. }
  264. #ifdef CONFIG_SLUB_DEBUG
  265. /*
  266. * Debug settings:
  267. */
  268. #ifdef CONFIG_SLUB_DEBUG_ON
  269. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  270. #else
  271. static int slub_debug;
  272. #endif
  273. static char *slub_debug_slabs;
  274. static int disable_higher_order_debug;
  275. /*
  276. * Object debugging
  277. */
  278. static void print_section(char *text, u8 *addr, unsigned int length)
  279. {
  280. int i, offset;
  281. int newline = 1;
  282. char ascii[17];
  283. ascii[16] = 0;
  284. for (i = 0; i < length; i++) {
  285. if (newline) {
  286. printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
  287. newline = 0;
  288. }
  289. printk(KERN_CONT " %02x", addr[i]);
  290. offset = i % 16;
  291. ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
  292. if (offset == 15) {
  293. printk(KERN_CONT " %s\n", ascii);
  294. newline = 1;
  295. }
  296. }
  297. if (!newline) {
  298. i %= 16;
  299. while (i < 16) {
  300. printk(KERN_CONT " ");
  301. ascii[i] = ' ';
  302. i++;
  303. }
  304. printk(KERN_CONT " %s\n", ascii);
  305. }
  306. }
  307. static struct track *get_track(struct kmem_cache *s, void *object,
  308. enum track_item alloc)
  309. {
  310. struct track *p;
  311. if (s->offset)
  312. p = object + s->offset + sizeof(void *);
  313. else
  314. p = object + s->inuse;
  315. return p + alloc;
  316. }
  317. static void set_track(struct kmem_cache *s, void *object,
  318. enum track_item alloc, unsigned long addr)
  319. {
  320. struct track *p = get_track(s, object, alloc);
  321. if (addr) {
  322. p->addr = addr;
  323. p->cpu = smp_processor_id();
  324. p->pid = current->pid;
  325. p->when = jiffies;
  326. } else
  327. memset(p, 0, sizeof(struct track));
  328. }
  329. static void init_tracking(struct kmem_cache *s, void *object)
  330. {
  331. if (!(s->flags & SLAB_STORE_USER))
  332. return;
  333. set_track(s, object, TRACK_FREE, 0UL);
  334. set_track(s, object, TRACK_ALLOC, 0UL);
  335. }
  336. static void print_track(const char *s, struct track *t)
  337. {
  338. if (!t->addr)
  339. return;
  340. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  341. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  342. }
  343. static void print_tracking(struct kmem_cache *s, void *object)
  344. {
  345. if (!(s->flags & SLAB_STORE_USER))
  346. return;
  347. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  348. print_track("Freed", get_track(s, object, TRACK_FREE));
  349. }
  350. static void print_page_info(struct page *page)
  351. {
  352. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  353. page, page->objects, page->inuse, page->freelist, page->flags);
  354. }
  355. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  356. {
  357. va_list args;
  358. char buf[100];
  359. va_start(args, fmt);
  360. vsnprintf(buf, sizeof(buf), fmt, args);
  361. va_end(args);
  362. printk(KERN_ERR "========================================"
  363. "=====================================\n");
  364. printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
  365. printk(KERN_ERR "----------------------------------------"
  366. "-------------------------------------\n\n");
  367. }
  368. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  369. {
  370. va_list args;
  371. char buf[100];
  372. va_start(args, fmt);
  373. vsnprintf(buf, sizeof(buf), fmt, args);
  374. va_end(args);
  375. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  376. }
  377. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  378. {
  379. unsigned int off; /* Offset of last byte */
  380. u8 *addr = page_address(page);
  381. print_tracking(s, p);
  382. print_page_info(page);
  383. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  384. p, p - addr, get_freepointer(s, p));
  385. if (p > addr + 16)
  386. print_section("Bytes b4", p - 16, 16);
  387. print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
  388. if (s->flags & SLAB_RED_ZONE)
  389. print_section("Redzone", p + s->objsize,
  390. s->inuse - s->objsize);
  391. if (s->offset)
  392. off = s->offset + sizeof(void *);
  393. else
  394. off = s->inuse;
  395. if (s->flags & SLAB_STORE_USER)
  396. off += 2 * sizeof(struct track);
  397. if (off != s->size)
  398. /* Beginning of the filler is the free pointer */
  399. print_section("Padding", p + off, s->size - off);
  400. dump_stack();
  401. }
  402. static void object_err(struct kmem_cache *s, struct page *page,
  403. u8 *object, char *reason)
  404. {
  405. slab_bug(s, "%s", reason);
  406. print_trailer(s, page, object);
  407. }
  408. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  409. {
  410. va_list args;
  411. char buf[100];
  412. va_start(args, fmt);
  413. vsnprintf(buf, sizeof(buf), fmt, args);
  414. va_end(args);
  415. slab_bug(s, "%s", buf);
  416. print_page_info(page);
  417. dump_stack();
  418. }
  419. static void init_object(struct kmem_cache *s, void *object, int active)
  420. {
  421. u8 *p = object;
  422. if (s->flags & __OBJECT_POISON) {
  423. memset(p, POISON_FREE, s->objsize - 1);
  424. p[s->objsize - 1] = POISON_END;
  425. }
  426. if (s->flags & SLAB_RED_ZONE)
  427. memset(p + s->objsize,
  428. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
  429. s->inuse - s->objsize);
  430. }
  431. static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
  432. {
  433. while (bytes) {
  434. if (*start != (u8)value)
  435. return start;
  436. start++;
  437. bytes--;
  438. }
  439. return NULL;
  440. }
  441. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  442. void *from, void *to)
  443. {
  444. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  445. memset(from, data, to - from);
  446. }
  447. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  448. u8 *object, char *what,
  449. u8 *start, unsigned int value, unsigned int bytes)
  450. {
  451. u8 *fault;
  452. u8 *end;
  453. fault = check_bytes(start, value, bytes);
  454. if (!fault)
  455. return 1;
  456. end = start + bytes;
  457. while (end > fault && end[-1] == value)
  458. end--;
  459. slab_bug(s, "%s overwritten", what);
  460. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  461. fault, end - 1, fault[0], value);
  462. print_trailer(s, page, object);
  463. restore_bytes(s, what, value, fault, end);
  464. return 0;
  465. }
  466. /*
  467. * Object layout:
  468. *
  469. * object address
  470. * Bytes of the object to be managed.
  471. * If the freepointer may overlay the object then the free
  472. * pointer is the first word of the object.
  473. *
  474. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  475. * 0xa5 (POISON_END)
  476. *
  477. * object + s->objsize
  478. * Padding to reach word boundary. This is also used for Redzoning.
  479. * Padding is extended by another word if Redzoning is enabled and
  480. * objsize == inuse.
  481. *
  482. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  483. * 0xcc (RED_ACTIVE) for objects in use.
  484. *
  485. * object + s->inuse
  486. * Meta data starts here.
  487. *
  488. * A. Free pointer (if we cannot overwrite object on free)
  489. * B. Tracking data for SLAB_STORE_USER
  490. * C. Padding to reach required alignment boundary or at mininum
  491. * one word if debugging is on to be able to detect writes
  492. * before the word boundary.
  493. *
  494. * Padding is done using 0x5a (POISON_INUSE)
  495. *
  496. * object + s->size
  497. * Nothing is used beyond s->size.
  498. *
  499. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  500. * ignored. And therefore no slab options that rely on these boundaries
  501. * may be used with merged slabcaches.
  502. */
  503. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  504. {
  505. unsigned long off = s->inuse; /* The end of info */
  506. if (s->offset)
  507. /* Freepointer is placed after the object. */
  508. off += sizeof(void *);
  509. if (s->flags & SLAB_STORE_USER)
  510. /* We also have user information there */
  511. off += 2 * sizeof(struct track);
  512. if (s->size == off)
  513. return 1;
  514. return check_bytes_and_report(s, page, p, "Object padding",
  515. p + off, POISON_INUSE, s->size - off);
  516. }
  517. /* Check the pad bytes at the end of a slab page */
  518. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  519. {
  520. u8 *start;
  521. u8 *fault;
  522. u8 *end;
  523. int length;
  524. int remainder;
  525. if (!(s->flags & SLAB_POISON))
  526. return 1;
  527. start = page_address(page);
  528. length = (PAGE_SIZE << compound_order(page));
  529. end = start + length;
  530. remainder = length % s->size;
  531. if (!remainder)
  532. return 1;
  533. fault = check_bytes(end - remainder, POISON_INUSE, remainder);
  534. if (!fault)
  535. return 1;
  536. while (end > fault && end[-1] == POISON_INUSE)
  537. end--;
  538. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  539. print_section("Padding", end - remainder, remainder);
  540. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  541. return 0;
  542. }
  543. static int check_object(struct kmem_cache *s, struct page *page,
  544. void *object, int active)
  545. {
  546. u8 *p = object;
  547. u8 *endobject = object + s->objsize;
  548. if (s->flags & SLAB_RED_ZONE) {
  549. unsigned int red =
  550. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
  551. if (!check_bytes_and_report(s, page, object, "Redzone",
  552. endobject, red, s->inuse - s->objsize))
  553. return 0;
  554. } else {
  555. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
  556. check_bytes_and_report(s, page, p, "Alignment padding",
  557. endobject, POISON_INUSE, s->inuse - s->objsize);
  558. }
  559. }
  560. if (s->flags & SLAB_POISON) {
  561. if (!active && (s->flags & __OBJECT_POISON) &&
  562. (!check_bytes_and_report(s, page, p, "Poison", p,
  563. POISON_FREE, s->objsize - 1) ||
  564. !check_bytes_and_report(s, page, p, "Poison",
  565. p + s->objsize - 1, POISON_END, 1)))
  566. return 0;
  567. /*
  568. * check_pad_bytes cleans up on its own.
  569. */
  570. check_pad_bytes(s, page, p);
  571. }
  572. if (!s->offset && active)
  573. /*
  574. * Object and freepointer overlap. Cannot check
  575. * freepointer while object is allocated.
  576. */
  577. return 1;
  578. /* Check free pointer validity */
  579. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  580. object_err(s, page, p, "Freepointer corrupt");
  581. /*
  582. * No choice but to zap it and thus lose the remainder
  583. * of the free objects in this slab. May cause
  584. * another error because the object count is now wrong.
  585. */
  586. set_freepointer(s, p, NULL);
  587. return 0;
  588. }
  589. return 1;
  590. }
  591. static int check_slab(struct kmem_cache *s, struct page *page)
  592. {
  593. int maxobj;
  594. VM_BUG_ON(!irqs_disabled());
  595. if (!PageSlab(page)) {
  596. slab_err(s, page, "Not a valid slab page");
  597. return 0;
  598. }
  599. maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
  600. if (page->objects > maxobj) {
  601. slab_err(s, page, "objects %u > max %u",
  602. s->name, page->objects, maxobj);
  603. return 0;
  604. }
  605. if (page->inuse > page->objects) {
  606. slab_err(s, page, "inuse %u > max %u",
  607. s->name, page->inuse, page->objects);
  608. return 0;
  609. }
  610. /* Slab_pad_check fixes things up after itself */
  611. slab_pad_check(s, page);
  612. return 1;
  613. }
  614. /*
  615. * Determine if a certain object on a page is on the freelist. Must hold the
  616. * slab lock to guarantee that the chains are in a consistent state.
  617. */
  618. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  619. {
  620. int nr = 0;
  621. void *fp = page->freelist;
  622. void *object = NULL;
  623. unsigned long max_objects;
  624. while (fp && nr <= page->objects) {
  625. if (fp == search)
  626. return 1;
  627. if (!check_valid_pointer(s, page, fp)) {
  628. if (object) {
  629. object_err(s, page, object,
  630. "Freechain corrupt");
  631. set_freepointer(s, object, NULL);
  632. break;
  633. } else {
  634. slab_err(s, page, "Freepointer corrupt");
  635. page->freelist = NULL;
  636. page->inuse = page->objects;
  637. slab_fix(s, "Freelist cleared");
  638. return 0;
  639. }
  640. break;
  641. }
  642. object = fp;
  643. fp = get_freepointer(s, object);
  644. nr++;
  645. }
  646. max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
  647. if (max_objects > MAX_OBJS_PER_PAGE)
  648. max_objects = MAX_OBJS_PER_PAGE;
  649. if (page->objects != max_objects) {
  650. slab_err(s, page, "Wrong number of objects. Found %d but "
  651. "should be %d", page->objects, max_objects);
  652. page->objects = max_objects;
  653. slab_fix(s, "Number of objects adjusted.");
  654. }
  655. if (page->inuse != page->objects - nr) {
  656. slab_err(s, page, "Wrong object count. Counter is %d but "
  657. "counted were %d", page->inuse, page->objects - nr);
  658. page->inuse = page->objects - nr;
  659. slab_fix(s, "Object count adjusted.");
  660. }
  661. return search == NULL;
  662. }
  663. static void trace(struct kmem_cache *s, struct page *page, void *object,
  664. int alloc)
  665. {
  666. if (s->flags & SLAB_TRACE) {
  667. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  668. s->name,
  669. alloc ? "alloc" : "free",
  670. object, page->inuse,
  671. page->freelist);
  672. if (!alloc)
  673. print_section("Object", (void *)object, s->objsize);
  674. dump_stack();
  675. }
  676. }
  677. /*
  678. * Hooks for other subsystems that check memory allocations. In a typical
  679. * production configuration these hooks all should produce no code at all.
  680. */
  681. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  682. {
  683. flags &= gfp_allowed_mask;
  684. lockdep_trace_alloc(flags);
  685. might_sleep_if(flags & __GFP_WAIT);
  686. return should_failslab(s->objsize, flags, s->flags);
  687. }
  688. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
  689. {
  690. flags &= gfp_allowed_mask;
  691. kmemcheck_slab_alloc(s, flags, object, s->objsize);
  692. kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
  693. }
  694. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  695. {
  696. kmemleak_free_recursive(x, s->flags);
  697. }
  698. static inline void slab_free_hook_irq(struct kmem_cache *s, void *object)
  699. {
  700. kmemcheck_slab_free(s, object, s->objsize);
  701. debug_check_no_locks_freed(object, s->objsize);
  702. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  703. debug_check_no_obj_freed(object, s->objsize);
  704. }
  705. /*
  706. * Tracking of fully allocated slabs for debugging purposes.
  707. */
  708. static void add_full(struct kmem_cache_node *n, struct page *page)
  709. {
  710. spin_lock(&n->list_lock);
  711. list_add(&page->lru, &n->full);
  712. spin_unlock(&n->list_lock);
  713. }
  714. static void remove_full(struct kmem_cache *s, struct page *page)
  715. {
  716. struct kmem_cache_node *n;
  717. if (!(s->flags & SLAB_STORE_USER))
  718. return;
  719. n = get_node(s, page_to_nid(page));
  720. spin_lock(&n->list_lock);
  721. list_del(&page->lru);
  722. spin_unlock(&n->list_lock);
  723. }
  724. /* Tracking of the number of slabs for debugging purposes */
  725. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  726. {
  727. struct kmem_cache_node *n = get_node(s, node);
  728. return atomic_long_read(&n->nr_slabs);
  729. }
  730. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  731. {
  732. return atomic_long_read(&n->nr_slabs);
  733. }
  734. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  735. {
  736. struct kmem_cache_node *n = get_node(s, node);
  737. /*
  738. * May be called early in order to allocate a slab for the
  739. * kmem_cache_node structure. Solve the chicken-egg
  740. * dilemma by deferring the increment of the count during
  741. * bootstrap (see early_kmem_cache_node_alloc).
  742. */
  743. if (!NUMA_BUILD || n) {
  744. atomic_long_inc(&n->nr_slabs);
  745. atomic_long_add(objects, &n->total_objects);
  746. }
  747. }
  748. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  749. {
  750. struct kmem_cache_node *n = get_node(s, node);
  751. atomic_long_dec(&n->nr_slabs);
  752. atomic_long_sub(objects, &n->total_objects);
  753. }
  754. /* Object debug checks for alloc/free paths */
  755. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  756. void *object)
  757. {
  758. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  759. return;
  760. init_object(s, object, 0);
  761. init_tracking(s, object);
  762. }
  763. static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  764. void *object, unsigned long addr)
  765. {
  766. if (!check_slab(s, page))
  767. goto bad;
  768. if (!on_freelist(s, page, object)) {
  769. object_err(s, page, object, "Object already allocated");
  770. goto bad;
  771. }
  772. if (!check_valid_pointer(s, page, object)) {
  773. object_err(s, page, object, "Freelist Pointer check fails");
  774. goto bad;
  775. }
  776. if (!check_object(s, page, object, 0))
  777. goto bad;
  778. /* Success perform special debug activities for allocs */
  779. if (s->flags & SLAB_STORE_USER)
  780. set_track(s, object, TRACK_ALLOC, addr);
  781. trace(s, page, object, 1);
  782. init_object(s, object, 1);
  783. return 1;
  784. bad:
  785. if (PageSlab(page)) {
  786. /*
  787. * If this is a slab page then lets do the best we can
  788. * to avoid issues in the future. Marking all objects
  789. * as used avoids touching the remaining objects.
  790. */
  791. slab_fix(s, "Marking all objects used");
  792. page->inuse = page->objects;
  793. page->freelist = NULL;
  794. }
  795. return 0;
  796. }
  797. static noinline int free_debug_processing(struct kmem_cache *s,
  798. struct page *page, void *object, unsigned long addr)
  799. {
  800. if (!check_slab(s, page))
  801. goto fail;
  802. if (!check_valid_pointer(s, page, object)) {
  803. slab_err(s, page, "Invalid object pointer 0x%p", object);
  804. goto fail;
  805. }
  806. if (on_freelist(s, page, object)) {
  807. object_err(s, page, object, "Object already free");
  808. goto fail;
  809. }
  810. if (!check_object(s, page, object, 1))
  811. return 0;
  812. if (unlikely(s != page->slab)) {
  813. if (!PageSlab(page)) {
  814. slab_err(s, page, "Attempt to free object(0x%p) "
  815. "outside of slab", object);
  816. } else if (!page->slab) {
  817. printk(KERN_ERR
  818. "SLUB <none>: no slab for object 0x%p.\n",
  819. object);
  820. dump_stack();
  821. } else
  822. object_err(s, page, object,
  823. "page slab pointer corrupt.");
  824. goto fail;
  825. }
  826. /* Special debug activities for freeing objects */
  827. if (!PageSlubFrozen(page) && !page->freelist)
  828. remove_full(s, page);
  829. if (s->flags & SLAB_STORE_USER)
  830. set_track(s, object, TRACK_FREE, addr);
  831. trace(s, page, object, 0);
  832. init_object(s, object, 0);
  833. return 1;
  834. fail:
  835. slab_fix(s, "Object at 0x%p not freed", object);
  836. return 0;
  837. }
  838. static int __init setup_slub_debug(char *str)
  839. {
  840. slub_debug = DEBUG_DEFAULT_FLAGS;
  841. if (*str++ != '=' || !*str)
  842. /*
  843. * No options specified. Switch on full debugging.
  844. */
  845. goto out;
  846. if (*str == ',')
  847. /*
  848. * No options but restriction on slabs. This means full
  849. * debugging for slabs matching a pattern.
  850. */
  851. goto check_slabs;
  852. if (tolower(*str) == 'o') {
  853. /*
  854. * Avoid enabling debugging on caches if its minimum order
  855. * would increase as a result.
  856. */
  857. disable_higher_order_debug = 1;
  858. goto out;
  859. }
  860. slub_debug = 0;
  861. if (*str == '-')
  862. /*
  863. * Switch off all debugging measures.
  864. */
  865. goto out;
  866. /*
  867. * Determine which debug features should be switched on
  868. */
  869. for (; *str && *str != ','; str++) {
  870. switch (tolower(*str)) {
  871. case 'f':
  872. slub_debug |= SLAB_DEBUG_FREE;
  873. break;
  874. case 'z':
  875. slub_debug |= SLAB_RED_ZONE;
  876. break;
  877. case 'p':
  878. slub_debug |= SLAB_POISON;
  879. break;
  880. case 'u':
  881. slub_debug |= SLAB_STORE_USER;
  882. break;
  883. case 't':
  884. slub_debug |= SLAB_TRACE;
  885. break;
  886. case 'a':
  887. slub_debug |= SLAB_FAILSLAB;
  888. break;
  889. default:
  890. printk(KERN_ERR "slub_debug option '%c' "
  891. "unknown. skipped\n", *str);
  892. }
  893. }
  894. check_slabs:
  895. if (*str == ',')
  896. slub_debug_slabs = str + 1;
  897. out:
  898. return 1;
  899. }
  900. __setup("slub_debug", setup_slub_debug);
  901. static unsigned long kmem_cache_flags(unsigned long objsize,
  902. unsigned long flags, const char *name,
  903. void (*ctor)(void *))
  904. {
  905. /*
  906. * Enable debugging if selected on the kernel commandline.
  907. */
  908. if (slub_debug && (!slub_debug_slabs ||
  909. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
  910. flags |= slub_debug;
  911. return flags;
  912. }
  913. #else
  914. static inline void setup_object_debug(struct kmem_cache *s,
  915. struct page *page, void *object) {}
  916. static inline int alloc_debug_processing(struct kmem_cache *s,
  917. struct page *page, void *object, unsigned long addr) { return 0; }
  918. static inline int free_debug_processing(struct kmem_cache *s,
  919. struct page *page, void *object, unsigned long addr) { return 0; }
  920. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  921. { return 1; }
  922. static inline int check_object(struct kmem_cache *s, struct page *page,
  923. void *object, int active) { return 1; }
  924. static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
  925. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  926. unsigned long flags, const char *name,
  927. void (*ctor)(void *))
  928. {
  929. return flags;
  930. }
  931. #define slub_debug 0
  932. #define disable_higher_order_debug 0
  933. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  934. { return 0; }
  935. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  936. { return 0; }
  937. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  938. int objects) {}
  939. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  940. int objects) {}
  941. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  942. { return 0; }
  943. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
  944. void *object) {}
  945. static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
  946. static inline void slab_free_hook_irq(struct kmem_cache *s,
  947. void *object) {}
  948. #endif
  949. /*
  950. * Slab allocation and freeing
  951. */
  952. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  953. struct kmem_cache_order_objects oo)
  954. {
  955. int order = oo_order(oo);
  956. flags |= __GFP_NOTRACK;
  957. if (node == NUMA_NO_NODE)
  958. return alloc_pages(flags, order);
  959. else
  960. return alloc_pages_exact_node(node, flags, order);
  961. }
  962. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  963. {
  964. struct page *page;
  965. struct kmem_cache_order_objects oo = s->oo;
  966. gfp_t alloc_gfp;
  967. flags |= s->allocflags;
  968. /*
  969. * Let the initial higher-order allocation fail under memory pressure
  970. * so we fall-back to the minimum order allocation.
  971. */
  972. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  973. page = alloc_slab_page(alloc_gfp, node, oo);
  974. if (unlikely(!page)) {
  975. oo = s->min;
  976. /*
  977. * Allocation may have failed due to fragmentation.
  978. * Try a lower order alloc if possible
  979. */
  980. page = alloc_slab_page(flags, node, oo);
  981. if (!page)
  982. return NULL;
  983. stat(s, ORDER_FALLBACK);
  984. }
  985. if (kmemcheck_enabled
  986. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  987. int pages = 1 << oo_order(oo);
  988. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  989. /*
  990. * Objects from caches that have a constructor don't get
  991. * cleared when they're allocated, so we need to do it here.
  992. */
  993. if (s->ctor)
  994. kmemcheck_mark_uninitialized_pages(page, pages);
  995. else
  996. kmemcheck_mark_unallocated_pages(page, pages);
  997. }
  998. page->objects = oo_objects(oo);
  999. mod_zone_page_state(page_zone(page),
  1000. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1001. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1002. 1 << oo_order(oo));
  1003. return page;
  1004. }
  1005. static void setup_object(struct kmem_cache *s, struct page *page,
  1006. void *object)
  1007. {
  1008. setup_object_debug(s, page, object);
  1009. if (unlikely(s->ctor))
  1010. s->ctor(object);
  1011. }
  1012. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1013. {
  1014. struct page *page;
  1015. void *start;
  1016. void *last;
  1017. void *p;
  1018. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  1019. page = allocate_slab(s,
  1020. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1021. if (!page)
  1022. goto out;
  1023. inc_slabs_node(s, page_to_nid(page), page->objects);
  1024. page->slab = s;
  1025. page->flags |= 1 << PG_slab;
  1026. start = page_address(page);
  1027. if (unlikely(s->flags & SLAB_POISON))
  1028. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  1029. last = start;
  1030. for_each_object(p, s, start, page->objects) {
  1031. setup_object(s, page, last);
  1032. set_freepointer(s, last, p);
  1033. last = p;
  1034. }
  1035. setup_object(s, page, last);
  1036. set_freepointer(s, last, NULL);
  1037. page->freelist = start;
  1038. page->inuse = 0;
  1039. out:
  1040. return page;
  1041. }
  1042. static void __free_slab(struct kmem_cache *s, struct page *page)
  1043. {
  1044. int order = compound_order(page);
  1045. int pages = 1 << order;
  1046. if (kmem_cache_debug(s)) {
  1047. void *p;
  1048. slab_pad_check(s, page);
  1049. for_each_object(p, s, page_address(page),
  1050. page->objects)
  1051. check_object(s, page, p, 0);
  1052. }
  1053. kmemcheck_free_shadow(page, compound_order(page));
  1054. mod_zone_page_state(page_zone(page),
  1055. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1056. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1057. -pages);
  1058. __ClearPageSlab(page);
  1059. reset_page_mapcount(page);
  1060. if (current->reclaim_state)
  1061. current->reclaim_state->reclaimed_slab += pages;
  1062. __free_pages(page, order);
  1063. }
  1064. static void rcu_free_slab(struct rcu_head *h)
  1065. {
  1066. struct page *page;
  1067. page = container_of((struct list_head *)h, struct page, lru);
  1068. __free_slab(page->slab, page);
  1069. }
  1070. static void free_slab(struct kmem_cache *s, struct page *page)
  1071. {
  1072. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1073. /*
  1074. * RCU free overloads the RCU head over the LRU
  1075. */
  1076. struct rcu_head *head = (void *)&page->lru;
  1077. call_rcu(head, rcu_free_slab);
  1078. } else
  1079. __free_slab(s, page);
  1080. }
  1081. static void discard_slab(struct kmem_cache *s, struct page *page)
  1082. {
  1083. dec_slabs_node(s, page_to_nid(page), page->objects);
  1084. free_slab(s, page);
  1085. }
  1086. /*
  1087. * Per slab locking using the pagelock
  1088. */
  1089. static __always_inline void slab_lock(struct page *page)
  1090. {
  1091. bit_spin_lock(PG_locked, &page->flags);
  1092. }
  1093. static __always_inline void slab_unlock(struct page *page)
  1094. {
  1095. __bit_spin_unlock(PG_locked, &page->flags);
  1096. }
  1097. static __always_inline int slab_trylock(struct page *page)
  1098. {
  1099. int rc = 1;
  1100. rc = bit_spin_trylock(PG_locked, &page->flags);
  1101. return rc;
  1102. }
  1103. /*
  1104. * Management of partially allocated slabs
  1105. */
  1106. static void add_partial(struct kmem_cache_node *n,
  1107. struct page *page, int tail)
  1108. {
  1109. spin_lock(&n->list_lock);
  1110. n->nr_partial++;
  1111. if (tail)
  1112. list_add_tail(&page->lru, &n->partial);
  1113. else
  1114. list_add(&page->lru, &n->partial);
  1115. spin_unlock(&n->list_lock);
  1116. }
  1117. static void remove_partial(struct kmem_cache *s, struct page *page)
  1118. {
  1119. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1120. spin_lock(&n->list_lock);
  1121. list_del(&page->lru);
  1122. n->nr_partial--;
  1123. spin_unlock(&n->list_lock);
  1124. }
  1125. /*
  1126. * Lock slab and remove from the partial list.
  1127. *
  1128. * Must hold list_lock.
  1129. */
  1130. static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
  1131. struct page *page)
  1132. {
  1133. if (slab_trylock(page)) {
  1134. list_del(&page->lru);
  1135. n->nr_partial--;
  1136. __SetPageSlubFrozen(page);
  1137. return 1;
  1138. }
  1139. return 0;
  1140. }
  1141. /*
  1142. * Try to allocate a partial slab from a specific node.
  1143. */
  1144. static struct page *get_partial_node(struct kmem_cache_node *n)
  1145. {
  1146. struct page *page;
  1147. /*
  1148. * Racy check. If we mistakenly see no partial slabs then we
  1149. * just allocate an empty slab. If we mistakenly try to get a
  1150. * partial slab and there is none available then get_partials()
  1151. * will return NULL.
  1152. */
  1153. if (!n || !n->nr_partial)
  1154. return NULL;
  1155. spin_lock(&n->list_lock);
  1156. list_for_each_entry(page, &n->partial, lru)
  1157. if (lock_and_freeze_slab(n, page))
  1158. goto out;
  1159. page = NULL;
  1160. out:
  1161. spin_unlock(&n->list_lock);
  1162. return page;
  1163. }
  1164. /*
  1165. * Get a page from somewhere. Search in increasing NUMA distances.
  1166. */
  1167. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
  1168. {
  1169. #ifdef CONFIG_NUMA
  1170. struct zonelist *zonelist;
  1171. struct zoneref *z;
  1172. struct zone *zone;
  1173. enum zone_type high_zoneidx = gfp_zone(flags);
  1174. struct page *page;
  1175. /*
  1176. * The defrag ratio allows a configuration of the tradeoffs between
  1177. * inter node defragmentation and node local allocations. A lower
  1178. * defrag_ratio increases the tendency to do local allocations
  1179. * instead of attempting to obtain partial slabs from other nodes.
  1180. *
  1181. * If the defrag_ratio is set to 0 then kmalloc() always
  1182. * returns node local objects. If the ratio is higher then kmalloc()
  1183. * may return off node objects because partial slabs are obtained
  1184. * from other nodes and filled up.
  1185. *
  1186. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1187. * defrag_ratio = 1000) then every (well almost) allocation will
  1188. * first attempt to defrag slab caches on other nodes. This means
  1189. * scanning over all nodes to look for partial slabs which may be
  1190. * expensive if we do it every time we are trying to find a slab
  1191. * with available objects.
  1192. */
  1193. if (!s->remote_node_defrag_ratio ||
  1194. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1195. return NULL;
  1196. get_mems_allowed();
  1197. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  1198. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1199. struct kmem_cache_node *n;
  1200. n = get_node(s, zone_to_nid(zone));
  1201. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1202. n->nr_partial > s->min_partial) {
  1203. page = get_partial_node(n);
  1204. if (page) {
  1205. put_mems_allowed();
  1206. return page;
  1207. }
  1208. }
  1209. }
  1210. put_mems_allowed();
  1211. #endif
  1212. return NULL;
  1213. }
  1214. /*
  1215. * Get a partial page, lock it and return it.
  1216. */
  1217. static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
  1218. {
  1219. struct page *page;
  1220. int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
  1221. page = get_partial_node(get_node(s, searchnode));
  1222. if (page || node != -1)
  1223. return page;
  1224. return get_any_partial(s, flags);
  1225. }
  1226. /*
  1227. * Move a page back to the lists.
  1228. *
  1229. * Must be called with the slab lock held.
  1230. *
  1231. * On exit the slab lock will have been dropped.
  1232. */
  1233. static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
  1234. {
  1235. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1236. __ClearPageSlubFrozen(page);
  1237. if (page->inuse) {
  1238. if (page->freelist) {
  1239. add_partial(n, page, tail);
  1240. stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
  1241. } else {
  1242. stat(s, DEACTIVATE_FULL);
  1243. if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
  1244. add_full(n, page);
  1245. }
  1246. slab_unlock(page);
  1247. } else {
  1248. stat(s, DEACTIVATE_EMPTY);
  1249. if (n->nr_partial < s->min_partial) {
  1250. /*
  1251. * Adding an empty slab to the partial slabs in order
  1252. * to avoid page allocator overhead. This slab needs
  1253. * to come after the other slabs with objects in
  1254. * so that the others get filled first. That way the
  1255. * size of the partial list stays small.
  1256. *
  1257. * kmem_cache_shrink can reclaim any empty slabs from
  1258. * the partial list.
  1259. */
  1260. add_partial(n, page, 1);
  1261. slab_unlock(page);
  1262. } else {
  1263. slab_unlock(page);
  1264. stat(s, FREE_SLAB);
  1265. discard_slab(s, page);
  1266. }
  1267. }
  1268. }
  1269. /*
  1270. * Remove the cpu slab
  1271. */
  1272. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1273. {
  1274. struct page *page = c->page;
  1275. int tail = 1;
  1276. if (page->freelist)
  1277. stat(s, DEACTIVATE_REMOTE_FREES);
  1278. /*
  1279. * Merge cpu freelist into slab freelist. Typically we get here
  1280. * because both freelists are empty. So this is unlikely
  1281. * to occur.
  1282. */
  1283. while (unlikely(c->freelist)) {
  1284. void **object;
  1285. tail = 0; /* Hot objects. Put the slab first */
  1286. /* Retrieve object from cpu_freelist */
  1287. object = c->freelist;
  1288. c->freelist = get_freepointer(s, c->freelist);
  1289. /* And put onto the regular freelist */
  1290. set_freepointer(s, object, page->freelist);
  1291. page->freelist = object;
  1292. page->inuse--;
  1293. }
  1294. c->page = NULL;
  1295. unfreeze_slab(s, page, tail);
  1296. }
  1297. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1298. {
  1299. stat(s, CPUSLAB_FLUSH);
  1300. slab_lock(c->page);
  1301. deactivate_slab(s, c);
  1302. }
  1303. /*
  1304. * Flush cpu slab.
  1305. *
  1306. * Called from IPI handler with interrupts disabled.
  1307. */
  1308. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1309. {
  1310. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1311. if (likely(c && c->page))
  1312. flush_slab(s, c);
  1313. }
  1314. static void flush_cpu_slab(void *d)
  1315. {
  1316. struct kmem_cache *s = d;
  1317. __flush_cpu_slab(s, smp_processor_id());
  1318. }
  1319. static void flush_all(struct kmem_cache *s)
  1320. {
  1321. on_each_cpu(flush_cpu_slab, s, 1);
  1322. }
  1323. /*
  1324. * Check if the objects in a per cpu structure fit numa
  1325. * locality expectations.
  1326. */
  1327. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1328. {
  1329. #ifdef CONFIG_NUMA
  1330. if (node != NUMA_NO_NODE && c->node != node)
  1331. return 0;
  1332. #endif
  1333. return 1;
  1334. }
  1335. static int count_free(struct page *page)
  1336. {
  1337. return page->objects - page->inuse;
  1338. }
  1339. static unsigned long count_partial(struct kmem_cache_node *n,
  1340. int (*get_count)(struct page *))
  1341. {
  1342. unsigned long flags;
  1343. unsigned long x = 0;
  1344. struct page *page;
  1345. spin_lock_irqsave(&n->list_lock, flags);
  1346. list_for_each_entry(page, &n->partial, lru)
  1347. x += get_count(page);
  1348. spin_unlock_irqrestore(&n->list_lock, flags);
  1349. return x;
  1350. }
  1351. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1352. {
  1353. #ifdef CONFIG_SLUB_DEBUG
  1354. return atomic_long_read(&n->total_objects);
  1355. #else
  1356. return 0;
  1357. #endif
  1358. }
  1359. static noinline void
  1360. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1361. {
  1362. int node;
  1363. printk(KERN_WARNING
  1364. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1365. nid, gfpflags);
  1366. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1367. "default order: %d, min order: %d\n", s->name, s->objsize,
  1368. s->size, oo_order(s->oo), oo_order(s->min));
  1369. if (oo_order(s->min) > get_order(s->objsize))
  1370. printk(KERN_WARNING " %s debugging increased min order, use "
  1371. "slub_debug=O to disable.\n", s->name);
  1372. for_each_online_node(node) {
  1373. struct kmem_cache_node *n = get_node(s, node);
  1374. unsigned long nr_slabs;
  1375. unsigned long nr_objs;
  1376. unsigned long nr_free;
  1377. if (!n)
  1378. continue;
  1379. nr_free = count_partial(n, count_free);
  1380. nr_slabs = node_nr_slabs(n);
  1381. nr_objs = node_nr_objs(n);
  1382. printk(KERN_WARNING
  1383. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1384. node, nr_slabs, nr_objs, nr_free);
  1385. }
  1386. }
  1387. /*
  1388. * Slow path. The lockless freelist is empty or we need to perform
  1389. * debugging duties.
  1390. *
  1391. * Interrupts are disabled.
  1392. *
  1393. * Processing is still very fast if new objects have been freed to the
  1394. * regular freelist. In that case we simply take over the regular freelist
  1395. * as the lockless freelist and zap the regular freelist.
  1396. *
  1397. * If that is not working then we fall back to the partial lists. We take the
  1398. * first element of the freelist as the object to allocate now and move the
  1399. * rest of the freelist to the lockless freelist.
  1400. *
  1401. * And if we were unable to get a new slab from the partial slab lists then
  1402. * we need to allocate a new slab. This is the slowest path since it involves
  1403. * a call to the page allocator and the setup of a new slab.
  1404. */
  1405. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1406. unsigned long addr, struct kmem_cache_cpu *c)
  1407. {
  1408. void **object;
  1409. struct page *new;
  1410. /* We handle __GFP_ZERO in the caller */
  1411. gfpflags &= ~__GFP_ZERO;
  1412. if (!c->page)
  1413. goto new_slab;
  1414. slab_lock(c->page);
  1415. if (unlikely(!node_match(c, node)))
  1416. goto another_slab;
  1417. stat(s, ALLOC_REFILL);
  1418. load_freelist:
  1419. object = c->page->freelist;
  1420. if (unlikely(!object))
  1421. goto another_slab;
  1422. if (kmem_cache_debug(s))
  1423. goto debug;
  1424. c->freelist = get_freepointer(s, object);
  1425. c->page->inuse = c->page->objects;
  1426. c->page->freelist = NULL;
  1427. c->node = page_to_nid(c->page);
  1428. unlock_out:
  1429. slab_unlock(c->page);
  1430. stat(s, ALLOC_SLOWPATH);
  1431. return object;
  1432. another_slab:
  1433. deactivate_slab(s, c);
  1434. new_slab:
  1435. new = get_partial(s, gfpflags, node);
  1436. if (new) {
  1437. c->page = new;
  1438. stat(s, ALLOC_FROM_PARTIAL);
  1439. goto load_freelist;
  1440. }
  1441. gfpflags &= gfp_allowed_mask;
  1442. if (gfpflags & __GFP_WAIT)
  1443. local_irq_enable();
  1444. new = new_slab(s, gfpflags, node);
  1445. if (gfpflags & __GFP_WAIT)
  1446. local_irq_disable();
  1447. if (new) {
  1448. c = __this_cpu_ptr(s->cpu_slab);
  1449. stat(s, ALLOC_SLAB);
  1450. if (c->page)
  1451. flush_slab(s, c);
  1452. slab_lock(new);
  1453. __SetPageSlubFrozen(new);
  1454. c->page = new;
  1455. goto load_freelist;
  1456. }
  1457. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1458. slab_out_of_memory(s, gfpflags, node);
  1459. return NULL;
  1460. debug:
  1461. if (!alloc_debug_processing(s, c->page, object, addr))
  1462. goto another_slab;
  1463. c->page->inuse++;
  1464. c->page->freelist = get_freepointer(s, object);
  1465. c->node = -1;
  1466. goto unlock_out;
  1467. }
  1468. /*
  1469. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1470. * have the fastpath folded into their functions. So no function call
  1471. * overhead for requests that can be satisfied on the fastpath.
  1472. *
  1473. * The fastpath works by first checking if the lockless freelist can be used.
  1474. * If not then __slab_alloc is called for slow processing.
  1475. *
  1476. * Otherwise we can simply pick the next object from the lockless free list.
  1477. */
  1478. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1479. gfp_t gfpflags, int node, unsigned long addr)
  1480. {
  1481. void **object;
  1482. struct kmem_cache_cpu *c;
  1483. unsigned long flags;
  1484. if (slab_pre_alloc_hook(s, gfpflags))
  1485. return NULL;
  1486. local_irq_save(flags);
  1487. c = __this_cpu_ptr(s->cpu_slab);
  1488. object = c->freelist;
  1489. if (unlikely(!object || !node_match(c, node)))
  1490. object = __slab_alloc(s, gfpflags, node, addr, c);
  1491. else {
  1492. c->freelist = get_freepointer(s, object);
  1493. stat(s, ALLOC_FASTPATH);
  1494. }
  1495. local_irq_restore(flags);
  1496. if (unlikely(gfpflags & __GFP_ZERO) && object)
  1497. memset(object, 0, s->objsize);
  1498. slab_post_alloc_hook(s, gfpflags, object);
  1499. return object;
  1500. }
  1501. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1502. {
  1503. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  1504. trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
  1505. return ret;
  1506. }
  1507. EXPORT_SYMBOL(kmem_cache_alloc);
  1508. #ifdef CONFIG_TRACING
  1509. void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
  1510. {
  1511. return slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  1512. }
  1513. EXPORT_SYMBOL(kmem_cache_alloc_notrace);
  1514. #endif
  1515. #ifdef CONFIG_NUMA
  1516. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  1517. {
  1518. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  1519. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  1520. s->objsize, s->size, gfpflags, node);
  1521. return ret;
  1522. }
  1523. EXPORT_SYMBOL(kmem_cache_alloc_node);
  1524. #endif
  1525. #ifdef CONFIG_TRACING
  1526. void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
  1527. gfp_t gfpflags,
  1528. int node)
  1529. {
  1530. return slab_alloc(s, gfpflags, node, _RET_IP_);
  1531. }
  1532. EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
  1533. #endif
  1534. /*
  1535. * Slow patch handling. This may still be called frequently since objects
  1536. * have a longer lifetime than the cpu slabs in most processing loads.
  1537. *
  1538. * So we still attempt to reduce cache line usage. Just take the slab
  1539. * lock and free the item. If there is no additional partial page
  1540. * handling required then we can return immediately.
  1541. */
  1542. static void __slab_free(struct kmem_cache *s, struct page *page,
  1543. void *x, unsigned long addr)
  1544. {
  1545. void *prior;
  1546. void **object = (void *)x;
  1547. stat(s, FREE_SLOWPATH);
  1548. slab_lock(page);
  1549. if (kmem_cache_debug(s))
  1550. goto debug;
  1551. checks_ok:
  1552. prior = page->freelist;
  1553. set_freepointer(s, object, prior);
  1554. page->freelist = object;
  1555. page->inuse--;
  1556. if (unlikely(PageSlubFrozen(page))) {
  1557. stat(s, FREE_FROZEN);
  1558. goto out_unlock;
  1559. }
  1560. if (unlikely(!page->inuse))
  1561. goto slab_empty;
  1562. /*
  1563. * Objects left in the slab. If it was not on the partial list before
  1564. * then add it.
  1565. */
  1566. if (unlikely(!prior)) {
  1567. add_partial(get_node(s, page_to_nid(page)), page, 1);
  1568. stat(s, FREE_ADD_PARTIAL);
  1569. }
  1570. out_unlock:
  1571. slab_unlock(page);
  1572. return;
  1573. slab_empty:
  1574. if (prior) {
  1575. /*
  1576. * Slab still on the partial list.
  1577. */
  1578. remove_partial(s, page);
  1579. stat(s, FREE_REMOVE_PARTIAL);
  1580. }
  1581. slab_unlock(page);
  1582. stat(s, FREE_SLAB);
  1583. discard_slab(s, page);
  1584. return;
  1585. debug:
  1586. if (!free_debug_processing(s, page, x, addr))
  1587. goto out_unlock;
  1588. goto checks_ok;
  1589. }
  1590. /*
  1591. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  1592. * can perform fastpath freeing without additional function calls.
  1593. *
  1594. * The fastpath is only possible if we are freeing to the current cpu slab
  1595. * of this processor. This typically the case if we have just allocated
  1596. * the item before.
  1597. *
  1598. * If fastpath is not possible then fall back to __slab_free where we deal
  1599. * with all sorts of special processing.
  1600. */
  1601. static __always_inline void slab_free(struct kmem_cache *s,
  1602. struct page *page, void *x, unsigned long addr)
  1603. {
  1604. void **object = (void *)x;
  1605. struct kmem_cache_cpu *c;
  1606. unsigned long flags;
  1607. slab_free_hook(s, x);
  1608. local_irq_save(flags);
  1609. c = __this_cpu_ptr(s->cpu_slab);
  1610. slab_free_hook_irq(s, x);
  1611. if (likely(page == c->page && c->node >= 0)) {
  1612. set_freepointer(s, object, c->freelist);
  1613. c->freelist = object;
  1614. stat(s, FREE_FASTPATH);
  1615. } else
  1616. __slab_free(s, page, x, addr);
  1617. local_irq_restore(flags);
  1618. }
  1619. void kmem_cache_free(struct kmem_cache *s, void *x)
  1620. {
  1621. struct page *page;
  1622. page = virt_to_head_page(x);
  1623. slab_free(s, page, x, _RET_IP_);
  1624. trace_kmem_cache_free(_RET_IP_, x);
  1625. }
  1626. EXPORT_SYMBOL(kmem_cache_free);
  1627. /* Figure out on which slab page the object resides */
  1628. static struct page *get_object_page(const void *x)
  1629. {
  1630. struct page *page = virt_to_head_page(x);
  1631. if (!PageSlab(page))
  1632. return NULL;
  1633. return page;
  1634. }
  1635. /*
  1636. * Object placement in a slab is made very easy because we always start at
  1637. * offset 0. If we tune the size of the object to the alignment then we can
  1638. * get the required alignment by putting one properly sized object after
  1639. * another.
  1640. *
  1641. * Notice that the allocation order determines the sizes of the per cpu
  1642. * caches. Each processor has always one slab available for allocations.
  1643. * Increasing the allocation order reduces the number of times that slabs
  1644. * must be moved on and off the partial lists and is therefore a factor in
  1645. * locking overhead.
  1646. */
  1647. /*
  1648. * Mininum / Maximum order of slab pages. This influences locking overhead
  1649. * and slab fragmentation. A higher order reduces the number of partial slabs
  1650. * and increases the number of allocations possible without having to
  1651. * take the list_lock.
  1652. */
  1653. static int slub_min_order;
  1654. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  1655. static int slub_min_objects;
  1656. /*
  1657. * Merge control. If this is set then no merging of slab caches will occur.
  1658. * (Could be removed. This was introduced to pacify the merge skeptics.)
  1659. */
  1660. static int slub_nomerge;
  1661. /*
  1662. * Calculate the order of allocation given an slab object size.
  1663. *
  1664. * The order of allocation has significant impact on performance and other
  1665. * system components. Generally order 0 allocations should be preferred since
  1666. * order 0 does not cause fragmentation in the page allocator. Larger objects
  1667. * be problematic to put into order 0 slabs because there may be too much
  1668. * unused space left. We go to a higher order if more than 1/16th of the slab
  1669. * would be wasted.
  1670. *
  1671. * In order to reach satisfactory performance we must ensure that a minimum
  1672. * number of objects is in one slab. Otherwise we may generate too much
  1673. * activity on the partial lists which requires taking the list_lock. This is
  1674. * less a concern for large slabs though which are rarely used.
  1675. *
  1676. * slub_max_order specifies the order where we begin to stop considering the
  1677. * number of objects in a slab as critical. If we reach slub_max_order then
  1678. * we try to keep the page order as low as possible. So we accept more waste
  1679. * of space in favor of a small page order.
  1680. *
  1681. * Higher order allocations also allow the placement of more objects in a
  1682. * slab and thereby reduce object handling overhead. If the user has
  1683. * requested a higher mininum order then we start with that one instead of
  1684. * the smallest order which will fit the object.
  1685. */
  1686. static inline int slab_order(int size, int min_objects,
  1687. int max_order, int fract_leftover)
  1688. {
  1689. int order;
  1690. int rem;
  1691. int min_order = slub_min_order;
  1692. if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
  1693. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  1694. for (order = max(min_order,
  1695. fls(min_objects * size - 1) - PAGE_SHIFT);
  1696. order <= max_order; order++) {
  1697. unsigned long slab_size = PAGE_SIZE << order;
  1698. if (slab_size < min_objects * size)
  1699. continue;
  1700. rem = slab_size % size;
  1701. if (rem <= slab_size / fract_leftover)
  1702. break;
  1703. }
  1704. return order;
  1705. }
  1706. static inline int calculate_order(int size)
  1707. {
  1708. int order;
  1709. int min_objects;
  1710. int fraction;
  1711. int max_objects;
  1712. /*
  1713. * Attempt to find best configuration for a slab. This
  1714. * works by first attempting to generate a layout with
  1715. * the best configuration and backing off gradually.
  1716. *
  1717. * First we reduce the acceptable waste in a slab. Then
  1718. * we reduce the minimum objects required in a slab.
  1719. */
  1720. min_objects = slub_min_objects;
  1721. if (!min_objects)
  1722. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  1723. max_objects = (PAGE_SIZE << slub_max_order)/size;
  1724. min_objects = min(min_objects, max_objects);
  1725. while (min_objects > 1) {
  1726. fraction = 16;
  1727. while (fraction >= 4) {
  1728. order = slab_order(size, min_objects,
  1729. slub_max_order, fraction);
  1730. if (order <= slub_max_order)
  1731. return order;
  1732. fraction /= 2;
  1733. }
  1734. min_objects--;
  1735. }
  1736. /*
  1737. * We were unable to place multiple objects in a slab. Now
  1738. * lets see if we can place a single object there.
  1739. */
  1740. order = slab_order(size, 1, slub_max_order, 1);
  1741. if (order <= slub_max_order)
  1742. return order;
  1743. /*
  1744. * Doh this slab cannot be placed using slub_max_order.
  1745. */
  1746. order = slab_order(size, 1, MAX_ORDER, 1);
  1747. if (order < MAX_ORDER)
  1748. return order;
  1749. return -ENOSYS;
  1750. }
  1751. /*
  1752. * Figure out what the alignment of the objects will be.
  1753. */
  1754. static unsigned long calculate_alignment(unsigned long flags,
  1755. unsigned long align, unsigned long size)
  1756. {
  1757. /*
  1758. * If the user wants hardware cache aligned objects then follow that
  1759. * suggestion if the object is sufficiently large.
  1760. *
  1761. * The hardware cache alignment cannot override the specified
  1762. * alignment though. If that is greater then use it.
  1763. */
  1764. if (flags & SLAB_HWCACHE_ALIGN) {
  1765. unsigned long ralign = cache_line_size();
  1766. while (size <= ralign / 2)
  1767. ralign /= 2;
  1768. align = max(align, ralign);
  1769. }
  1770. if (align < ARCH_SLAB_MINALIGN)
  1771. align = ARCH_SLAB_MINALIGN;
  1772. return ALIGN(align, sizeof(void *));
  1773. }
  1774. static void
  1775. init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
  1776. {
  1777. n->nr_partial = 0;
  1778. spin_lock_init(&n->list_lock);
  1779. INIT_LIST_HEAD(&n->partial);
  1780. #ifdef CONFIG_SLUB_DEBUG
  1781. atomic_long_set(&n->nr_slabs, 0);
  1782. atomic_long_set(&n->total_objects, 0);
  1783. INIT_LIST_HEAD(&n->full);
  1784. #endif
  1785. }
  1786. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  1787. {
  1788. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  1789. SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
  1790. s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
  1791. return s->cpu_slab != NULL;
  1792. }
  1793. #ifdef CONFIG_NUMA
  1794. static struct kmem_cache *kmem_cache_node;
  1795. /*
  1796. * No kmalloc_node yet so do it by hand. We know that this is the first
  1797. * slab on the node for this slabcache. There are no concurrent accesses
  1798. * possible.
  1799. *
  1800. * Note that this function only works on the kmalloc_node_cache
  1801. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  1802. * memory on a fresh node that has no slab structures yet.
  1803. */
  1804. static void early_kmem_cache_node_alloc(int node)
  1805. {
  1806. struct page *page;
  1807. struct kmem_cache_node *n;
  1808. unsigned long flags;
  1809. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  1810. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  1811. BUG_ON(!page);
  1812. if (page_to_nid(page) != node) {
  1813. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  1814. "node %d\n", node);
  1815. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  1816. "in order to be able to continue\n");
  1817. }
  1818. n = page->freelist;
  1819. BUG_ON(!n);
  1820. page->freelist = get_freepointer(kmem_cache_node, n);
  1821. page->inuse++;
  1822. kmem_cache_node->node[node] = n;
  1823. #ifdef CONFIG_SLUB_DEBUG
  1824. init_object(kmem_cache_node, n, 1);
  1825. init_tracking(kmem_cache_node, n);
  1826. #endif
  1827. init_kmem_cache_node(n, kmem_cache_node);
  1828. inc_slabs_node(kmem_cache_node, node, page->objects);
  1829. /*
  1830. * lockdep requires consistent irq usage for each lock
  1831. * so even though there cannot be a race this early in
  1832. * the boot sequence, we still disable irqs.
  1833. */
  1834. local_irq_save(flags);
  1835. add_partial(n, page, 0);
  1836. local_irq_restore(flags);
  1837. }
  1838. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1839. {
  1840. int node;
  1841. for_each_node_state(node, N_NORMAL_MEMORY) {
  1842. struct kmem_cache_node *n = s->node[node];
  1843. if (n)
  1844. kmem_cache_free(kmem_cache_node, n);
  1845. s->node[node] = NULL;
  1846. }
  1847. }
  1848. static int init_kmem_cache_nodes(struct kmem_cache *s)
  1849. {
  1850. int node;
  1851. for_each_node_state(node, N_NORMAL_MEMORY) {
  1852. struct kmem_cache_node *n;
  1853. if (slab_state == DOWN) {
  1854. early_kmem_cache_node_alloc(node);
  1855. continue;
  1856. }
  1857. n = kmem_cache_alloc_node(kmem_cache_node,
  1858. GFP_KERNEL, node);
  1859. if (!n) {
  1860. free_kmem_cache_nodes(s);
  1861. return 0;
  1862. }
  1863. s->node[node] = n;
  1864. init_kmem_cache_node(n, s);
  1865. }
  1866. return 1;
  1867. }
  1868. #else
  1869. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1870. {
  1871. }
  1872. static int init_kmem_cache_nodes(struct kmem_cache *s)
  1873. {
  1874. init_kmem_cache_node(&s->local_node, s);
  1875. return 1;
  1876. }
  1877. #endif
  1878. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  1879. {
  1880. if (min < MIN_PARTIAL)
  1881. min = MIN_PARTIAL;
  1882. else if (min > MAX_PARTIAL)
  1883. min = MAX_PARTIAL;
  1884. s->min_partial = min;
  1885. }
  1886. /*
  1887. * calculate_sizes() determines the order and the distribution of data within
  1888. * a slab object.
  1889. */
  1890. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  1891. {
  1892. unsigned long flags = s->flags;
  1893. unsigned long size = s->objsize;
  1894. unsigned long align = s->align;
  1895. int order;
  1896. /*
  1897. * Round up object size to the next word boundary. We can only
  1898. * place the free pointer at word boundaries and this determines
  1899. * the possible location of the free pointer.
  1900. */
  1901. size = ALIGN(size, sizeof(void *));
  1902. #ifdef CONFIG_SLUB_DEBUG
  1903. /*
  1904. * Determine if we can poison the object itself. If the user of
  1905. * the slab may touch the object after free or before allocation
  1906. * then we should never poison the object itself.
  1907. */
  1908. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  1909. !s->ctor)
  1910. s->flags |= __OBJECT_POISON;
  1911. else
  1912. s->flags &= ~__OBJECT_POISON;
  1913. /*
  1914. * If we are Redzoning then check if there is some space between the
  1915. * end of the object and the free pointer. If not then add an
  1916. * additional word to have some bytes to store Redzone information.
  1917. */
  1918. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  1919. size += sizeof(void *);
  1920. #endif
  1921. /*
  1922. * With that we have determined the number of bytes in actual use
  1923. * by the object. This is the potential offset to the free pointer.
  1924. */
  1925. s->inuse = size;
  1926. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  1927. s->ctor)) {
  1928. /*
  1929. * Relocate free pointer after the object if it is not
  1930. * permitted to overwrite the first word of the object on
  1931. * kmem_cache_free.
  1932. *
  1933. * This is the case if we do RCU, have a constructor or
  1934. * destructor or are poisoning the objects.
  1935. */
  1936. s->offset = size;
  1937. size += sizeof(void *);
  1938. }
  1939. #ifdef CONFIG_SLUB_DEBUG
  1940. if (flags & SLAB_STORE_USER)
  1941. /*
  1942. * Need to store information about allocs and frees after
  1943. * the object.
  1944. */
  1945. size += 2 * sizeof(struct track);
  1946. if (flags & SLAB_RED_ZONE)
  1947. /*
  1948. * Add some empty padding so that we can catch
  1949. * overwrites from earlier objects rather than let
  1950. * tracking information or the free pointer be
  1951. * corrupted if a user writes before the start
  1952. * of the object.
  1953. */
  1954. size += sizeof(void *);
  1955. #endif
  1956. /*
  1957. * Determine the alignment based on various parameters that the
  1958. * user specified and the dynamic determination of cache line size
  1959. * on bootup.
  1960. */
  1961. align = calculate_alignment(flags, align, s->objsize);
  1962. s->align = align;
  1963. /*
  1964. * SLUB stores one object immediately after another beginning from
  1965. * offset 0. In order to align the objects we have to simply size
  1966. * each object to conform to the alignment.
  1967. */
  1968. size = ALIGN(size, align);
  1969. s->size = size;
  1970. if (forced_order >= 0)
  1971. order = forced_order;
  1972. else
  1973. order = calculate_order(size);
  1974. if (order < 0)
  1975. return 0;
  1976. s->allocflags = 0;
  1977. if (order)
  1978. s->allocflags |= __GFP_COMP;
  1979. if (s->flags & SLAB_CACHE_DMA)
  1980. s->allocflags |= SLUB_DMA;
  1981. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  1982. s->allocflags |= __GFP_RECLAIMABLE;
  1983. /*
  1984. * Determine the number of objects per slab
  1985. */
  1986. s->oo = oo_make(order, size);
  1987. s->min = oo_make(get_order(size), size);
  1988. if (oo_objects(s->oo) > oo_objects(s->max))
  1989. s->max = s->oo;
  1990. return !!oo_objects(s->oo);
  1991. }
  1992. static int kmem_cache_open(struct kmem_cache *s,
  1993. const char *name, size_t size,
  1994. size_t align, unsigned long flags,
  1995. void (*ctor)(void *))
  1996. {
  1997. memset(s, 0, kmem_size);
  1998. s->name = name;
  1999. s->ctor = ctor;
  2000. s->objsize = size;
  2001. s->align = align;
  2002. s->flags = kmem_cache_flags(size, flags, name, ctor);
  2003. if (!calculate_sizes(s, -1))
  2004. goto error;
  2005. if (disable_higher_order_debug) {
  2006. /*
  2007. * Disable debugging flags that store metadata if the min slab
  2008. * order increased.
  2009. */
  2010. if (get_order(s->size) > get_order(s->objsize)) {
  2011. s->flags &= ~DEBUG_METADATA_FLAGS;
  2012. s->offset = 0;
  2013. if (!calculate_sizes(s, -1))
  2014. goto error;
  2015. }
  2016. }
  2017. /*
  2018. * The larger the object size is, the more pages we want on the partial
  2019. * list to avoid pounding the page allocator excessively.
  2020. */
  2021. set_min_partial(s, ilog2(s->size));
  2022. s->refcount = 1;
  2023. #ifdef CONFIG_NUMA
  2024. s->remote_node_defrag_ratio = 1000;
  2025. #endif
  2026. if (!init_kmem_cache_nodes(s))
  2027. goto error;
  2028. if (alloc_kmem_cache_cpus(s))
  2029. return 1;
  2030. free_kmem_cache_nodes(s);
  2031. error:
  2032. if (flags & SLAB_PANIC)
  2033. panic("Cannot create slab %s size=%lu realsize=%u "
  2034. "order=%u offset=%u flags=%lx\n",
  2035. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  2036. s->offset, flags);
  2037. return 0;
  2038. }
  2039. /*
  2040. * Check if a given pointer is valid
  2041. */
  2042. int kmem_ptr_validate(struct kmem_cache *s, const void *object)
  2043. {
  2044. struct page *page;
  2045. if (!kern_ptr_validate(object, s->size))
  2046. return 0;
  2047. page = get_object_page(object);
  2048. if (!page || s != page->slab)
  2049. /* No slab or wrong slab */
  2050. return 0;
  2051. if (!check_valid_pointer(s, page, object))
  2052. return 0;
  2053. /*
  2054. * We could also check if the object is on the slabs freelist.
  2055. * But this would be too expensive and it seems that the main
  2056. * purpose of kmem_ptr_valid() is to check if the object belongs
  2057. * to a certain slab.
  2058. */
  2059. return 1;
  2060. }
  2061. EXPORT_SYMBOL(kmem_ptr_validate);
  2062. /*
  2063. * Determine the size of a slab object
  2064. */
  2065. unsigned int kmem_cache_size(struct kmem_cache *s)
  2066. {
  2067. return s->objsize;
  2068. }
  2069. EXPORT_SYMBOL(kmem_cache_size);
  2070. const char *kmem_cache_name(struct kmem_cache *s)
  2071. {
  2072. return s->name;
  2073. }
  2074. EXPORT_SYMBOL(kmem_cache_name);
  2075. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2076. const char *text)
  2077. {
  2078. #ifdef CONFIG_SLUB_DEBUG
  2079. void *addr = page_address(page);
  2080. void *p;
  2081. long *map = kzalloc(BITS_TO_LONGS(page->objects) * sizeof(long),
  2082. GFP_ATOMIC);
  2083. if (!map)
  2084. return;
  2085. slab_err(s, page, "%s", text);
  2086. slab_lock(page);
  2087. for_each_free_object(p, s, page->freelist)
  2088. set_bit(slab_index(p, s, addr), map);
  2089. for_each_object(p, s, addr, page->objects) {
  2090. if (!test_bit(slab_index(p, s, addr), map)) {
  2091. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2092. p, p - addr);
  2093. print_tracking(s, p);
  2094. }
  2095. }
  2096. slab_unlock(page);
  2097. kfree(map);
  2098. #endif
  2099. }
  2100. /*
  2101. * Attempt to free all partial slabs on a node.
  2102. */
  2103. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2104. {
  2105. unsigned long flags;
  2106. struct page *page, *h;
  2107. spin_lock_irqsave(&n->list_lock, flags);
  2108. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2109. if (!page->inuse) {
  2110. list_del(&page->lru);
  2111. discard_slab(s, page);
  2112. n->nr_partial--;
  2113. } else {
  2114. list_slab_objects(s, page,
  2115. "Objects remaining on kmem_cache_close()");
  2116. }
  2117. }
  2118. spin_unlock_irqrestore(&n->list_lock, flags);
  2119. }
  2120. /*
  2121. * Release all resources used by a slab cache.
  2122. */
  2123. static inline int kmem_cache_close(struct kmem_cache *s)
  2124. {
  2125. int node;
  2126. flush_all(s);
  2127. free_percpu(s->cpu_slab);
  2128. /* Attempt to free all objects */
  2129. for_each_node_state(node, N_NORMAL_MEMORY) {
  2130. struct kmem_cache_node *n = get_node(s, node);
  2131. free_partial(s, n);
  2132. if (n->nr_partial || slabs_node(s, node))
  2133. return 1;
  2134. }
  2135. free_kmem_cache_nodes(s);
  2136. return 0;
  2137. }
  2138. /*
  2139. * Close a cache and release the kmem_cache structure
  2140. * (must be used for caches created using kmem_cache_create)
  2141. */
  2142. void kmem_cache_destroy(struct kmem_cache *s)
  2143. {
  2144. down_write(&slub_lock);
  2145. s->refcount--;
  2146. if (!s->refcount) {
  2147. list_del(&s->list);
  2148. if (kmem_cache_close(s)) {
  2149. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2150. "still has objects.\n", s->name, __func__);
  2151. dump_stack();
  2152. }
  2153. if (s->flags & SLAB_DESTROY_BY_RCU)
  2154. rcu_barrier();
  2155. sysfs_slab_remove(s);
  2156. }
  2157. up_write(&slub_lock);
  2158. }
  2159. EXPORT_SYMBOL(kmem_cache_destroy);
  2160. /********************************************************************
  2161. * Kmalloc subsystem
  2162. *******************************************************************/
  2163. struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
  2164. EXPORT_SYMBOL(kmalloc_caches);
  2165. static struct kmem_cache *kmem_cache;
  2166. #ifdef CONFIG_ZONE_DMA
  2167. static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
  2168. #endif
  2169. static int __init setup_slub_min_order(char *str)
  2170. {
  2171. get_option(&str, &slub_min_order);
  2172. return 1;
  2173. }
  2174. __setup("slub_min_order=", setup_slub_min_order);
  2175. static int __init setup_slub_max_order(char *str)
  2176. {
  2177. get_option(&str, &slub_max_order);
  2178. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2179. return 1;
  2180. }
  2181. __setup("slub_max_order=", setup_slub_max_order);
  2182. static int __init setup_slub_min_objects(char *str)
  2183. {
  2184. get_option(&str, &slub_min_objects);
  2185. return 1;
  2186. }
  2187. __setup("slub_min_objects=", setup_slub_min_objects);
  2188. static int __init setup_slub_nomerge(char *str)
  2189. {
  2190. slub_nomerge = 1;
  2191. return 1;
  2192. }
  2193. __setup("slub_nomerge", setup_slub_nomerge);
  2194. static struct kmem_cache *__init create_kmalloc_cache(const char *name,
  2195. int size, unsigned int flags)
  2196. {
  2197. struct kmem_cache *s;
  2198. s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2199. /*
  2200. * This function is called with IRQs disabled during early-boot on
  2201. * single CPU so there's no need to take slub_lock here.
  2202. */
  2203. if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
  2204. flags, NULL))
  2205. goto panic;
  2206. list_add(&s->list, &slab_caches);
  2207. return s;
  2208. panic:
  2209. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2210. return NULL;
  2211. }
  2212. /*
  2213. * Conversion table for small slabs sizes / 8 to the index in the
  2214. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2215. * of two cache sizes there. The size of larger slabs can be determined using
  2216. * fls.
  2217. */
  2218. static s8 size_index[24] = {
  2219. 3, /* 8 */
  2220. 4, /* 16 */
  2221. 5, /* 24 */
  2222. 5, /* 32 */
  2223. 6, /* 40 */
  2224. 6, /* 48 */
  2225. 6, /* 56 */
  2226. 6, /* 64 */
  2227. 1, /* 72 */
  2228. 1, /* 80 */
  2229. 1, /* 88 */
  2230. 1, /* 96 */
  2231. 7, /* 104 */
  2232. 7, /* 112 */
  2233. 7, /* 120 */
  2234. 7, /* 128 */
  2235. 2, /* 136 */
  2236. 2, /* 144 */
  2237. 2, /* 152 */
  2238. 2, /* 160 */
  2239. 2, /* 168 */
  2240. 2, /* 176 */
  2241. 2, /* 184 */
  2242. 2 /* 192 */
  2243. };
  2244. static inline int size_index_elem(size_t bytes)
  2245. {
  2246. return (bytes - 1) / 8;
  2247. }
  2248. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2249. {
  2250. int index;
  2251. if (size <= 192) {
  2252. if (!size)
  2253. return ZERO_SIZE_PTR;
  2254. index = size_index[size_index_elem(size)];
  2255. } else
  2256. index = fls(size - 1);
  2257. #ifdef CONFIG_ZONE_DMA
  2258. if (unlikely((flags & SLUB_DMA)))
  2259. return kmalloc_dma_caches[index];
  2260. #endif
  2261. return kmalloc_caches[index];
  2262. }
  2263. void *__kmalloc(size_t size, gfp_t flags)
  2264. {
  2265. struct kmem_cache *s;
  2266. void *ret;
  2267. if (unlikely(size > SLUB_MAX_SIZE))
  2268. return kmalloc_large(size, flags);
  2269. s = get_slab(size, flags);
  2270. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2271. return s;
  2272. ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
  2273. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2274. return ret;
  2275. }
  2276. EXPORT_SYMBOL(__kmalloc);
  2277. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2278. {
  2279. struct page *page;
  2280. void *ptr = NULL;
  2281. flags |= __GFP_COMP | __GFP_NOTRACK;
  2282. page = alloc_pages_node(node, flags, get_order(size));
  2283. if (page)
  2284. ptr = page_address(page);
  2285. kmemleak_alloc(ptr, size, 1, flags);
  2286. return ptr;
  2287. }
  2288. #ifdef CONFIG_NUMA
  2289. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2290. {
  2291. struct kmem_cache *s;
  2292. void *ret;
  2293. if (unlikely(size > SLUB_MAX_SIZE)) {
  2294. ret = kmalloc_large_node(size, flags, node);
  2295. trace_kmalloc_node(_RET_IP_, ret,
  2296. size, PAGE_SIZE << get_order(size),
  2297. flags, node);
  2298. return ret;
  2299. }
  2300. s = get_slab(size, flags);
  2301. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2302. return s;
  2303. ret = slab_alloc(s, flags, node, _RET_IP_);
  2304. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2305. return ret;
  2306. }
  2307. EXPORT_SYMBOL(__kmalloc_node);
  2308. #endif
  2309. size_t ksize(const void *object)
  2310. {
  2311. struct page *page;
  2312. struct kmem_cache *s;
  2313. if (unlikely(object == ZERO_SIZE_PTR))
  2314. return 0;
  2315. page = virt_to_head_page(object);
  2316. if (unlikely(!PageSlab(page))) {
  2317. WARN_ON(!PageCompound(page));
  2318. return PAGE_SIZE << compound_order(page);
  2319. }
  2320. s = page->slab;
  2321. #ifdef CONFIG_SLUB_DEBUG
  2322. /*
  2323. * Debugging requires use of the padding between object
  2324. * and whatever may come after it.
  2325. */
  2326. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  2327. return s->objsize;
  2328. #endif
  2329. /*
  2330. * If we have the need to store the freelist pointer
  2331. * back there or track user information then we can
  2332. * only use the space before that information.
  2333. */
  2334. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  2335. return s->inuse;
  2336. /*
  2337. * Else we can use all the padding etc for the allocation
  2338. */
  2339. return s->size;
  2340. }
  2341. EXPORT_SYMBOL(ksize);
  2342. void kfree(const void *x)
  2343. {
  2344. struct page *page;
  2345. void *object = (void *)x;
  2346. trace_kfree(_RET_IP_, x);
  2347. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2348. return;
  2349. page = virt_to_head_page(x);
  2350. if (unlikely(!PageSlab(page))) {
  2351. BUG_ON(!PageCompound(page));
  2352. kmemleak_free(x);
  2353. put_page(page);
  2354. return;
  2355. }
  2356. slab_free(page->slab, page, object, _RET_IP_);
  2357. }
  2358. EXPORT_SYMBOL(kfree);
  2359. /*
  2360. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2361. * the remaining slabs by the number of items in use. The slabs with the
  2362. * most items in use come first. New allocations will then fill those up
  2363. * and thus they can be removed from the partial lists.
  2364. *
  2365. * The slabs with the least items are placed last. This results in them
  2366. * being allocated from last increasing the chance that the last objects
  2367. * are freed in them.
  2368. */
  2369. int kmem_cache_shrink(struct kmem_cache *s)
  2370. {
  2371. int node;
  2372. int i;
  2373. struct kmem_cache_node *n;
  2374. struct page *page;
  2375. struct page *t;
  2376. int objects = oo_objects(s->max);
  2377. struct list_head *slabs_by_inuse =
  2378. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2379. unsigned long flags;
  2380. if (!slabs_by_inuse)
  2381. return -ENOMEM;
  2382. flush_all(s);
  2383. for_each_node_state(node, N_NORMAL_MEMORY) {
  2384. n = get_node(s, node);
  2385. if (!n->nr_partial)
  2386. continue;
  2387. for (i = 0; i < objects; i++)
  2388. INIT_LIST_HEAD(slabs_by_inuse + i);
  2389. spin_lock_irqsave(&n->list_lock, flags);
  2390. /*
  2391. * Build lists indexed by the items in use in each slab.
  2392. *
  2393. * Note that concurrent frees may occur while we hold the
  2394. * list_lock. page->inuse here is the upper limit.
  2395. */
  2396. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2397. if (!page->inuse && slab_trylock(page)) {
  2398. /*
  2399. * Must hold slab lock here because slab_free
  2400. * may have freed the last object and be
  2401. * waiting to release the slab.
  2402. */
  2403. list_del(&page->lru);
  2404. n->nr_partial--;
  2405. slab_unlock(page);
  2406. discard_slab(s, page);
  2407. } else {
  2408. list_move(&page->lru,
  2409. slabs_by_inuse + page->inuse);
  2410. }
  2411. }
  2412. /*
  2413. * Rebuild the partial list with the slabs filled up most
  2414. * first and the least used slabs at the end.
  2415. */
  2416. for (i = objects - 1; i >= 0; i--)
  2417. list_splice(slabs_by_inuse + i, n->partial.prev);
  2418. spin_unlock_irqrestore(&n->list_lock, flags);
  2419. }
  2420. kfree(slabs_by_inuse);
  2421. return 0;
  2422. }
  2423. EXPORT_SYMBOL(kmem_cache_shrink);
  2424. #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
  2425. static int slab_mem_going_offline_callback(void *arg)
  2426. {
  2427. struct kmem_cache *s;
  2428. down_read(&slub_lock);
  2429. list_for_each_entry(s, &slab_caches, list)
  2430. kmem_cache_shrink(s);
  2431. up_read(&slub_lock);
  2432. return 0;
  2433. }
  2434. static void slab_mem_offline_callback(void *arg)
  2435. {
  2436. struct kmem_cache_node *n;
  2437. struct kmem_cache *s;
  2438. struct memory_notify *marg = arg;
  2439. int offline_node;
  2440. offline_node = marg->status_change_nid;
  2441. /*
  2442. * If the node still has available memory. we need kmem_cache_node
  2443. * for it yet.
  2444. */
  2445. if (offline_node < 0)
  2446. return;
  2447. down_read(&slub_lock);
  2448. list_for_each_entry(s, &slab_caches, list) {
  2449. n = get_node(s, offline_node);
  2450. if (n) {
  2451. /*
  2452. * if n->nr_slabs > 0, slabs still exist on the node
  2453. * that is going down. We were unable to free them,
  2454. * and offline_pages() function shouldn't call this
  2455. * callback. So, we must fail.
  2456. */
  2457. BUG_ON(slabs_node(s, offline_node));
  2458. s->node[offline_node] = NULL;
  2459. kmem_cache_free(kmalloc_caches, n);
  2460. }
  2461. }
  2462. up_read(&slub_lock);
  2463. }
  2464. static int slab_mem_going_online_callback(void *arg)
  2465. {
  2466. struct kmem_cache_node *n;
  2467. struct kmem_cache *s;
  2468. struct memory_notify *marg = arg;
  2469. int nid = marg->status_change_nid;
  2470. int ret = 0;
  2471. /*
  2472. * If the node's memory is already available, then kmem_cache_node is
  2473. * already created. Nothing to do.
  2474. */
  2475. if (nid < 0)
  2476. return 0;
  2477. /*
  2478. * We are bringing a node online. No memory is available yet. We must
  2479. * allocate a kmem_cache_node structure in order to bring the node
  2480. * online.
  2481. */
  2482. down_read(&slub_lock);
  2483. list_for_each_entry(s, &slab_caches, list) {
  2484. /*
  2485. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2486. * since memory is not yet available from the node that
  2487. * is brought up.
  2488. */
  2489. n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
  2490. if (!n) {
  2491. ret = -ENOMEM;
  2492. goto out;
  2493. }
  2494. init_kmem_cache_node(n, s);
  2495. s->node[nid] = n;
  2496. }
  2497. out:
  2498. up_read(&slub_lock);
  2499. return ret;
  2500. }
  2501. static int slab_memory_callback(struct notifier_block *self,
  2502. unsigned long action, void *arg)
  2503. {
  2504. int ret = 0;
  2505. switch (action) {
  2506. case MEM_GOING_ONLINE:
  2507. ret = slab_mem_going_online_callback(arg);
  2508. break;
  2509. case MEM_GOING_OFFLINE:
  2510. ret = slab_mem_going_offline_callback(arg);
  2511. break;
  2512. case MEM_OFFLINE:
  2513. case MEM_CANCEL_ONLINE:
  2514. slab_mem_offline_callback(arg);
  2515. break;
  2516. case MEM_ONLINE:
  2517. case MEM_CANCEL_OFFLINE:
  2518. break;
  2519. }
  2520. if (ret)
  2521. ret = notifier_from_errno(ret);
  2522. else
  2523. ret = NOTIFY_OK;
  2524. return ret;
  2525. }
  2526. #endif /* CONFIG_MEMORY_HOTPLUG */
  2527. /********************************************************************
  2528. * Basic setup of slabs
  2529. *******************************************************************/
  2530. /*
  2531. * Used for early kmem_cache structures that were allocated using
  2532. * the page allocator
  2533. */
  2534. static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
  2535. {
  2536. int node;
  2537. list_add(&s->list, &slab_caches);
  2538. s->refcount = -1;
  2539. for_each_node_state(node, N_NORMAL_MEMORY) {
  2540. struct kmem_cache_node *n = get_node(s, node);
  2541. struct page *p;
  2542. if (n) {
  2543. list_for_each_entry(p, &n->partial, lru)
  2544. p->slab = s;
  2545. #ifdef CONFIG_SLAB_DEBUG
  2546. list_for_each_entry(p, &n->full, lru)
  2547. p->slab = s;
  2548. #endif
  2549. }
  2550. }
  2551. }
  2552. void __init kmem_cache_init(void)
  2553. {
  2554. int i;
  2555. int caches = 0;
  2556. struct kmem_cache *temp_kmem_cache;
  2557. int order;
  2558. #ifdef CONFIG_NUMA
  2559. struct kmem_cache *temp_kmem_cache_node;
  2560. unsigned long kmalloc_size;
  2561. kmem_size = offsetof(struct kmem_cache, node) +
  2562. nr_node_ids * sizeof(struct kmem_cache_node *);
  2563. /* Allocate two kmem_caches from the page allocator */
  2564. kmalloc_size = ALIGN(kmem_size, cache_line_size());
  2565. order = get_order(2 * kmalloc_size);
  2566. kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
  2567. /*
  2568. * Must first have the slab cache available for the allocations of the
  2569. * struct kmem_cache_node's. There is special bootstrap code in
  2570. * kmem_cache_open for slab_state == DOWN.
  2571. */
  2572. kmem_cache_node = (void *)kmem_cache + kmalloc_size;
  2573. kmem_cache_open(kmem_cache_node, "kmem_cache_node",
  2574. sizeof(struct kmem_cache_node),
  2575. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2576. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  2577. #else
  2578. /* Allocate a single kmem_cache from the page allocator */
  2579. kmem_size = sizeof(struct kmem_cache);
  2580. order = get_order(kmem_size);
  2581. kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
  2582. #endif
  2583. /* Able to allocate the per node structures */
  2584. slab_state = PARTIAL;
  2585. temp_kmem_cache = kmem_cache;
  2586. kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
  2587. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2588. kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2589. memcpy(kmem_cache, temp_kmem_cache, kmem_size);
  2590. #ifdef CONFIG_NUMA
  2591. /*
  2592. * Allocate kmem_cache_node properly from the kmem_cache slab.
  2593. * kmem_cache_node is separately allocated so no need to
  2594. * update any list pointers.
  2595. */
  2596. temp_kmem_cache_node = kmem_cache_node;
  2597. kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2598. memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
  2599. kmem_cache_bootstrap_fixup(kmem_cache_node);
  2600. caches++;
  2601. #else
  2602. /*
  2603. * kmem_cache has kmem_cache_node embedded and we moved it!
  2604. * Update the list heads
  2605. */
  2606. INIT_LIST_HEAD(&kmem_cache->local_node.partial);
  2607. list_splice(&temp_kmem_cache->local_node.partial, &kmem_cache->local_node.partial);
  2608. #ifdef CONFIG_SLUB_DEBUG
  2609. INIT_LIST_HEAD(&kmem_cache->local_node.full);
  2610. list_splice(&temp_kmem_cache->local_node.full, &kmem_cache->local_node.full);
  2611. #endif
  2612. #endif
  2613. kmem_cache_bootstrap_fixup(kmem_cache);
  2614. caches++;
  2615. /* Free temporary boot structure */
  2616. free_pages((unsigned long)temp_kmem_cache, order);
  2617. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  2618. /*
  2619. * Patch up the size_index table if we have strange large alignment
  2620. * requirements for the kmalloc array. This is only the case for
  2621. * MIPS it seems. The standard arches will not generate any code here.
  2622. *
  2623. * Largest permitted alignment is 256 bytes due to the way we
  2624. * handle the index determination for the smaller caches.
  2625. *
  2626. * Make sure that nothing crazy happens if someone starts tinkering
  2627. * around with ARCH_KMALLOC_MINALIGN
  2628. */
  2629. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  2630. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  2631. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
  2632. int elem = size_index_elem(i);
  2633. if (elem >= ARRAY_SIZE(size_index))
  2634. break;
  2635. size_index[elem] = KMALLOC_SHIFT_LOW;
  2636. }
  2637. if (KMALLOC_MIN_SIZE == 64) {
  2638. /*
  2639. * The 96 byte size cache is not used if the alignment
  2640. * is 64 byte.
  2641. */
  2642. for (i = 64 + 8; i <= 96; i += 8)
  2643. size_index[size_index_elem(i)] = 7;
  2644. } else if (KMALLOC_MIN_SIZE == 128) {
  2645. /*
  2646. * The 192 byte sized cache is not used if the alignment
  2647. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  2648. * instead.
  2649. */
  2650. for (i = 128 + 8; i <= 192; i += 8)
  2651. size_index[size_index_elem(i)] = 8;
  2652. }
  2653. /* Caches that are not of the two-to-the-power-of size */
  2654. if (KMALLOC_MIN_SIZE <= 32) {
  2655. kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
  2656. caches++;
  2657. }
  2658. if (KMALLOC_MIN_SIZE <= 64) {
  2659. kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
  2660. caches++;
  2661. }
  2662. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  2663. kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
  2664. caches++;
  2665. }
  2666. slab_state = UP;
  2667. /* Provide the correct kmalloc names now that the caches are up */
  2668. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  2669. char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
  2670. BUG_ON(!s);
  2671. kmalloc_caches[i]->name = s;
  2672. }
  2673. #ifdef CONFIG_SMP
  2674. register_cpu_notifier(&slab_notifier);
  2675. #endif
  2676. #ifdef CONFIG_ZONE_DMA
  2677. for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
  2678. struct kmem_cache *s = kmalloc_caches[i];
  2679. if (s && s->size) {
  2680. char *name = kasprintf(GFP_NOWAIT,
  2681. "dma-kmalloc-%d", s->objsize);
  2682. BUG_ON(!name);
  2683. kmalloc_dma_caches[i] = create_kmalloc_cache(name,
  2684. s->objsize, SLAB_CACHE_DMA);
  2685. }
  2686. }
  2687. #endif
  2688. printk(KERN_INFO
  2689. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  2690. " CPUs=%d, Nodes=%d\n",
  2691. caches, cache_line_size(),
  2692. slub_min_order, slub_max_order, slub_min_objects,
  2693. nr_cpu_ids, nr_node_ids);
  2694. }
  2695. void __init kmem_cache_init_late(void)
  2696. {
  2697. }
  2698. /*
  2699. * Find a mergeable slab cache
  2700. */
  2701. static int slab_unmergeable(struct kmem_cache *s)
  2702. {
  2703. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  2704. return 1;
  2705. if (s->ctor)
  2706. return 1;
  2707. /*
  2708. * We may have set a slab to be unmergeable during bootstrap.
  2709. */
  2710. if (s->refcount < 0)
  2711. return 1;
  2712. return 0;
  2713. }
  2714. static struct kmem_cache *find_mergeable(size_t size,
  2715. size_t align, unsigned long flags, const char *name,
  2716. void (*ctor)(void *))
  2717. {
  2718. struct kmem_cache *s;
  2719. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  2720. return NULL;
  2721. if (ctor)
  2722. return NULL;
  2723. size = ALIGN(size, sizeof(void *));
  2724. align = calculate_alignment(flags, align, size);
  2725. size = ALIGN(size, align);
  2726. flags = kmem_cache_flags(size, flags, name, NULL);
  2727. list_for_each_entry(s, &slab_caches, list) {
  2728. if (slab_unmergeable(s))
  2729. continue;
  2730. if (size > s->size)
  2731. continue;
  2732. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  2733. continue;
  2734. /*
  2735. * Check if alignment is compatible.
  2736. * Courtesy of Adrian Drzewiecki
  2737. */
  2738. if ((s->size & ~(align - 1)) != s->size)
  2739. continue;
  2740. if (s->size - size >= sizeof(void *))
  2741. continue;
  2742. return s;
  2743. }
  2744. return NULL;
  2745. }
  2746. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  2747. size_t align, unsigned long flags, void (*ctor)(void *))
  2748. {
  2749. struct kmem_cache *s;
  2750. if (WARN_ON(!name))
  2751. return NULL;
  2752. down_write(&slub_lock);
  2753. s = find_mergeable(size, align, flags, name, ctor);
  2754. if (s) {
  2755. s->refcount++;
  2756. /*
  2757. * Adjust the object sizes so that we clear
  2758. * the complete object on kzalloc.
  2759. */
  2760. s->objsize = max(s->objsize, (int)size);
  2761. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  2762. if (sysfs_slab_alias(s, name)) {
  2763. s->refcount--;
  2764. goto err;
  2765. }
  2766. up_write(&slub_lock);
  2767. return s;
  2768. }
  2769. s = kmalloc(kmem_size, GFP_KERNEL);
  2770. if (s) {
  2771. if (kmem_cache_open(s, name,
  2772. size, align, flags, ctor)) {
  2773. list_add(&s->list, &slab_caches);
  2774. if (sysfs_slab_add(s)) {
  2775. list_del(&s->list);
  2776. kfree(s);
  2777. goto err;
  2778. }
  2779. up_write(&slub_lock);
  2780. return s;
  2781. }
  2782. kfree(s);
  2783. }
  2784. up_write(&slub_lock);
  2785. err:
  2786. if (flags & SLAB_PANIC)
  2787. panic("Cannot create slabcache %s\n", name);
  2788. else
  2789. s = NULL;
  2790. return s;
  2791. }
  2792. EXPORT_SYMBOL(kmem_cache_create);
  2793. #ifdef CONFIG_SMP
  2794. /*
  2795. * Use the cpu notifier to insure that the cpu slabs are flushed when
  2796. * necessary.
  2797. */
  2798. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  2799. unsigned long action, void *hcpu)
  2800. {
  2801. long cpu = (long)hcpu;
  2802. struct kmem_cache *s;
  2803. unsigned long flags;
  2804. switch (action) {
  2805. case CPU_UP_CANCELED:
  2806. case CPU_UP_CANCELED_FROZEN:
  2807. case CPU_DEAD:
  2808. case CPU_DEAD_FROZEN:
  2809. down_read(&slub_lock);
  2810. list_for_each_entry(s, &slab_caches, list) {
  2811. local_irq_save(flags);
  2812. __flush_cpu_slab(s, cpu);
  2813. local_irq_restore(flags);
  2814. }
  2815. up_read(&slub_lock);
  2816. break;
  2817. default:
  2818. break;
  2819. }
  2820. return NOTIFY_OK;
  2821. }
  2822. static struct notifier_block __cpuinitdata slab_notifier = {
  2823. .notifier_call = slab_cpuup_callback
  2824. };
  2825. #endif
  2826. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  2827. {
  2828. struct kmem_cache *s;
  2829. void *ret;
  2830. if (unlikely(size > SLUB_MAX_SIZE))
  2831. return kmalloc_large(size, gfpflags);
  2832. s = get_slab(size, gfpflags);
  2833. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2834. return s;
  2835. ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
  2836. /* Honor the call site pointer we recieved. */
  2837. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  2838. return ret;
  2839. }
  2840. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  2841. int node, unsigned long caller)
  2842. {
  2843. struct kmem_cache *s;
  2844. void *ret;
  2845. if (unlikely(size > SLUB_MAX_SIZE)) {
  2846. ret = kmalloc_large_node(size, gfpflags, node);
  2847. trace_kmalloc_node(caller, ret,
  2848. size, PAGE_SIZE << get_order(size),
  2849. gfpflags, node);
  2850. return ret;
  2851. }
  2852. s = get_slab(size, gfpflags);
  2853. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2854. return s;
  2855. ret = slab_alloc(s, gfpflags, node, caller);
  2856. /* Honor the call site pointer we recieved. */
  2857. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  2858. return ret;
  2859. }
  2860. #ifdef CONFIG_SLUB_DEBUG
  2861. static int count_inuse(struct page *page)
  2862. {
  2863. return page->inuse;
  2864. }
  2865. static int count_total(struct page *page)
  2866. {
  2867. return page->objects;
  2868. }
  2869. static int validate_slab(struct kmem_cache *s, struct page *page,
  2870. unsigned long *map)
  2871. {
  2872. void *p;
  2873. void *addr = page_address(page);
  2874. if (!check_slab(s, page) ||
  2875. !on_freelist(s, page, NULL))
  2876. return 0;
  2877. /* Now we know that a valid freelist exists */
  2878. bitmap_zero(map, page->objects);
  2879. for_each_free_object(p, s, page->freelist) {
  2880. set_bit(slab_index(p, s, addr), map);
  2881. if (!check_object(s, page, p, 0))
  2882. return 0;
  2883. }
  2884. for_each_object(p, s, addr, page->objects)
  2885. if (!test_bit(slab_index(p, s, addr), map))
  2886. if (!check_object(s, page, p, 1))
  2887. return 0;
  2888. return 1;
  2889. }
  2890. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  2891. unsigned long *map)
  2892. {
  2893. if (slab_trylock(page)) {
  2894. validate_slab(s, page, map);
  2895. slab_unlock(page);
  2896. } else
  2897. printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
  2898. s->name, page);
  2899. }
  2900. static int validate_slab_node(struct kmem_cache *s,
  2901. struct kmem_cache_node *n, unsigned long *map)
  2902. {
  2903. unsigned long count = 0;
  2904. struct page *page;
  2905. unsigned long flags;
  2906. spin_lock_irqsave(&n->list_lock, flags);
  2907. list_for_each_entry(page, &n->partial, lru) {
  2908. validate_slab_slab(s, page, map);
  2909. count++;
  2910. }
  2911. if (count != n->nr_partial)
  2912. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  2913. "counter=%ld\n", s->name, count, n->nr_partial);
  2914. if (!(s->flags & SLAB_STORE_USER))
  2915. goto out;
  2916. list_for_each_entry(page, &n->full, lru) {
  2917. validate_slab_slab(s, page, map);
  2918. count++;
  2919. }
  2920. if (count != atomic_long_read(&n->nr_slabs))
  2921. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  2922. "counter=%ld\n", s->name, count,
  2923. atomic_long_read(&n->nr_slabs));
  2924. out:
  2925. spin_unlock_irqrestore(&n->list_lock, flags);
  2926. return count;
  2927. }
  2928. static long validate_slab_cache(struct kmem_cache *s)
  2929. {
  2930. int node;
  2931. unsigned long count = 0;
  2932. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  2933. sizeof(unsigned long), GFP_KERNEL);
  2934. if (!map)
  2935. return -ENOMEM;
  2936. flush_all(s);
  2937. for_each_node_state(node, N_NORMAL_MEMORY) {
  2938. struct kmem_cache_node *n = get_node(s, node);
  2939. count += validate_slab_node(s, n, map);
  2940. }
  2941. kfree(map);
  2942. return count;
  2943. }
  2944. #ifdef SLUB_RESILIENCY_TEST
  2945. static void resiliency_test(void)
  2946. {
  2947. u8 *p;
  2948. printk(KERN_ERR "SLUB resiliency testing\n");
  2949. printk(KERN_ERR "-----------------------\n");
  2950. printk(KERN_ERR "A. Corruption after allocation\n");
  2951. p = kzalloc(16, GFP_KERNEL);
  2952. p[16] = 0x12;
  2953. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  2954. " 0x12->0x%p\n\n", p + 16);
  2955. validate_slab_cache(kmalloc_caches + 4);
  2956. /* Hmmm... The next two are dangerous */
  2957. p = kzalloc(32, GFP_KERNEL);
  2958. p[32 + sizeof(void *)] = 0x34;
  2959. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  2960. " 0x34 -> -0x%p\n", p);
  2961. printk(KERN_ERR
  2962. "If allocated object is overwritten then not detectable\n\n");
  2963. validate_slab_cache(kmalloc_caches + 5);
  2964. p = kzalloc(64, GFP_KERNEL);
  2965. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  2966. *p = 0x56;
  2967. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  2968. p);
  2969. printk(KERN_ERR
  2970. "If allocated object is overwritten then not detectable\n\n");
  2971. validate_slab_cache(kmalloc_caches + 6);
  2972. printk(KERN_ERR "\nB. Corruption after free\n");
  2973. p = kzalloc(128, GFP_KERNEL);
  2974. kfree(p);
  2975. *p = 0x78;
  2976. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  2977. validate_slab_cache(kmalloc_caches + 7);
  2978. p = kzalloc(256, GFP_KERNEL);
  2979. kfree(p);
  2980. p[50] = 0x9a;
  2981. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  2982. p);
  2983. validate_slab_cache(kmalloc_caches + 8);
  2984. p = kzalloc(512, GFP_KERNEL);
  2985. kfree(p);
  2986. p[512] = 0xab;
  2987. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  2988. validate_slab_cache(kmalloc_caches + 9);
  2989. }
  2990. #else
  2991. static void resiliency_test(void) {};
  2992. #endif
  2993. /*
  2994. * Generate lists of code addresses where slabcache objects are allocated
  2995. * and freed.
  2996. */
  2997. struct location {
  2998. unsigned long count;
  2999. unsigned long addr;
  3000. long long sum_time;
  3001. long min_time;
  3002. long max_time;
  3003. long min_pid;
  3004. long max_pid;
  3005. DECLARE_BITMAP(cpus, NR_CPUS);
  3006. nodemask_t nodes;
  3007. };
  3008. struct loc_track {
  3009. unsigned long max;
  3010. unsigned long count;
  3011. struct location *loc;
  3012. };
  3013. static void free_loc_track(struct loc_track *t)
  3014. {
  3015. if (t->max)
  3016. free_pages((unsigned long)t->loc,
  3017. get_order(sizeof(struct location) * t->max));
  3018. }
  3019. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3020. {
  3021. struct location *l;
  3022. int order;
  3023. order = get_order(sizeof(struct location) * max);
  3024. l = (void *)__get_free_pages(flags, order);
  3025. if (!l)
  3026. return 0;
  3027. if (t->count) {
  3028. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3029. free_loc_track(t);
  3030. }
  3031. t->max = max;
  3032. t->loc = l;
  3033. return 1;
  3034. }
  3035. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3036. const struct track *track)
  3037. {
  3038. long start, end, pos;
  3039. struct location *l;
  3040. unsigned long caddr;
  3041. unsigned long age = jiffies - track->when;
  3042. start = -1;
  3043. end = t->count;
  3044. for ( ; ; ) {
  3045. pos = start + (end - start + 1) / 2;
  3046. /*
  3047. * There is nothing at "end". If we end up there
  3048. * we need to add something to before end.
  3049. */
  3050. if (pos == end)
  3051. break;
  3052. caddr = t->loc[pos].addr;
  3053. if (track->addr == caddr) {
  3054. l = &t->loc[pos];
  3055. l->count++;
  3056. if (track->when) {
  3057. l->sum_time += age;
  3058. if (age < l->min_time)
  3059. l->min_time = age;
  3060. if (age > l->max_time)
  3061. l->max_time = age;
  3062. if (track->pid < l->min_pid)
  3063. l->min_pid = track->pid;
  3064. if (track->pid > l->max_pid)
  3065. l->max_pid = track->pid;
  3066. cpumask_set_cpu(track->cpu,
  3067. to_cpumask(l->cpus));
  3068. }
  3069. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3070. return 1;
  3071. }
  3072. if (track->addr < caddr)
  3073. end = pos;
  3074. else
  3075. start = pos;
  3076. }
  3077. /*
  3078. * Not found. Insert new tracking element.
  3079. */
  3080. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3081. return 0;
  3082. l = t->loc + pos;
  3083. if (pos < t->count)
  3084. memmove(l + 1, l,
  3085. (t->count - pos) * sizeof(struct location));
  3086. t->count++;
  3087. l->count = 1;
  3088. l->addr = track->addr;
  3089. l->sum_time = age;
  3090. l->min_time = age;
  3091. l->max_time = age;
  3092. l->min_pid = track->pid;
  3093. l->max_pid = track->pid;
  3094. cpumask_clear(to_cpumask(l->cpus));
  3095. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3096. nodes_clear(l->nodes);
  3097. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3098. return 1;
  3099. }
  3100. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3101. struct page *page, enum track_item alloc,
  3102. long *map)
  3103. {
  3104. void *addr = page_address(page);
  3105. void *p;
  3106. bitmap_zero(map, page->objects);
  3107. for_each_free_object(p, s, page->freelist)
  3108. set_bit(slab_index(p, s, addr), map);
  3109. for_each_object(p, s, addr, page->objects)
  3110. if (!test_bit(slab_index(p, s, addr), map))
  3111. add_location(t, s, get_track(s, p, alloc));
  3112. }
  3113. static int list_locations(struct kmem_cache *s, char *buf,
  3114. enum track_item alloc)
  3115. {
  3116. int len = 0;
  3117. unsigned long i;
  3118. struct loc_track t = { 0, 0, NULL };
  3119. int node;
  3120. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3121. sizeof(unsigned long), GFP_KERNEL);
  3122. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3123. GFP_TEMPORARY)) {
  3124. kfree(map);
  3125. return sprintf(buf, "Out of memory\n");
  3126. }
  3127. /* Push back cpu slabs */
  3128. flush_all(s);
  3129. for_each_node_state(node, N_NORMAL_MEMORY) {
  3130. struct kmem_cache_node *n = get_node(s, node);
  3131. unsigned long flags;
  3132. struct page *page;
  3133. if (!atomic_long_read(&n->nr_slabs))
  3134. continue;
  3135. spin_lock_irqsave(&n->list_lock, flags);
  3136. list_for_each_entry(page, &n->partial, lru)
  3137. process_slab(&t, s, page, alloc, map);
  3138. list_for_each_entry(page, &n->full, lru)
  3139. process_slab(&t, s, page, alloc, map);
  3140. spin_unlock_irqrestore(&n->list_lock, flags);
  3141. }
  3142. for (i = 0; i < t.count; i++) {
  3143. struct location *l = &t.loc[i];
  3144. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3145. break;
  3146. len += sprintf(buf + len, "%7ld ", l->count);
  3147. if (l->addr)
  3148. len += sprint_symbol(buf + len, (unsigned long)l->addr);
  3149. else
  3150. len += sprintf(buf + len, "<not-available>");
  3151. if (l->sum_time != l->min_time) {
  3152. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3153. l->min_time,
  3154. (long)div_u64(l->sum_time, l->count),
  3155. l->max_time);
  3156. } else
  3157. len += sprintf(buf + len, " age=%ld",
  3158. l->min_time);
  3159. if (l->min_pid != l->max_pid)
  3160. len += sprintf(buf + len, " pid=%ld-%ld",
  3161. l->min_pid, l->max_pid);
  3162. else
  3163. len += sprintf(buf + len, " pid=%ld",
  3164. l->min_pid);
  3165. if (num_online_cpus() > 1 &&
  3166. !cpumask_empty(to_cpumask(l->cpus)) &&
  3167. len < PAGE_SIZE - 60) {
  3168. len += sprintf(buf + len, " cpus=");
  3169. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3170. to_cpumask(l->cpus));
  3171. }
  3172. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3173. len < PAGE_SIZE - 60) {
  3174. len += sprintf(buf + len, " nodes=");
  3175. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3176. l->nodes);
  3177. }
  3178. len += sprintf(buf + len, "\n");
  3179. }
  3180. free_loc_track(&t);
  3181. kfree(map);
  3182. if (!t.count)
  3183. len += sprintf(buf, "No data\n");
  3184. return len;
  3185. }
  3186. enum slab_stat_type {
  3187. SL_ALL, /* All slabs */
  3188. SL_PARTIAL, /* Only partially allocated slabs */
  3189. SL_CPU, /* Only slabs used for cpu caches */
  3190. SL_OBJECTS, /* Determine allocated objects not slabs */
  3191. SL_TOTAL /* Determine object capacity not slabs */
  3192. };
  3193. #define SO_ALL (1 << SL_ALL)
  3194. #define SO_PARTIAL (1 << SL_PARTIAL)
  3195. #define SO_CPU (1 << SL_CPU)
  3196. #define SO_OBJECTS (1 << SL_OBJECTS)
  3197. #define SO_TOTAL (1 << SL_TOTAL)
  3198. static ssize_t show_slab_objects(struct kmem_cache *s,
  3199. char *buf, unsigned long flags)
  3200. {
  3201. unsigned long total = 0;
  3202. int node;
  3203. int x;
  3204. unsigned long *nodes;
  3205. unsigned long *per_cpu;
  3206. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3207. if (!nodes)
  3208. return -ENOMEM;
  3209. per_cpu = nodes + nr_node_ids;
  3210. if (flags & SO_CPU) {
  3211. int cpu;
  3212. for_each_possible_cpu(cpu) {
  3213. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  3214. if (!c || c->node < 0)
  3215. continue;
  3216. if (c->page) {
  3217. if (flags & SO_TOTAL)
  3218. x = c->page->objects;
  3219. else if (flags & SO_OBJECTS)
  3220. x = c->page->inuse;
  3221. else
  3222. x = 1;
  3223. total += x;
  3224. nodes[c->node] += x;
  3225. }
  3226. per_cpu[c->node]++;
  3227. }
  3228. }
  3229. if (flags & SO_ALL) {
  3230. for_each_node_state(node, N_NORMAL_MEMORY) {
  3231. struct kmem_cache_node *n = get_node(s, node);
  3232. if (flags & SO_TOTAL)
  3233. x = atomic_long_read(&n->total_objects);
  3234. else if (flags & SO_OBJECTS)
  3235. x = atomic_long_read(&n->total_objects) -
  3236. count_partial(n, count_free);
  3237. else
  3238. x = atomic_long_read(&n->nr_slabs);
  3239. total += x;
  3240. nodes[node] += x;
  3241. }
  3242. } else if (flags & SO_PARTIAL) {
  3243. for_each_node_state(node, N_NORMAL_MEMORY) {
  3244. struct kmem_cache_node *n = get_node(s, node);
  3245. if (flags & SO_TOTAL)
  3246. x = count_partial(n, count_total);
  3247. else if (flags & SO_OBJECTS)
  3248. x = count_partial(n, count_inuse);
  3249. else
  3250. x = n->nr_partial;
  3251. total += x;
  3252. nodes[node] += x;
  3253. }
  3254. }
  3255. x = sprintf(buf, "%lu", total);
  3256. #ifdef CONFIG_NUMA
  3257. for_each_node_state(node, N_NORMAL_MEMORY)
  3258. if (nodes[node])
  3259. x += sprintf(buf + x, " N%d=%lu",
  3260. node, nodes[node]);
  3261. #endif
  3262. kfree(nodes);
  3263. return x + sprintf(buf + x, "\n");
  3264. }
  3265. static int any_slab_objects(struct kmem_cache *s)
  3266. {
  3267. int node;
  3268. for_each_online_node(node) {
  3269. struct kmem_cache_node *n = get_node(s, node);
  3270. if (!n)
  3271. continue;
  3272. if (atomic_long_read(&n->total_objects))
  3273. return 1;
  3274. }
  3275. return 0;
  3276. }
  3277. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3278. #define to_slab(n) container_of(n, struct kmem_cache, kobj);
  3279. struct slab_attribute {
  3280. struct attribute attr;
  3281. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3282. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3283. };
  3284. #define SLAB_ATTR_RO(_name) \
  3285. static struct slab_attribute _name##_attr = __ATTR_RO(_name)
  3286. #define SLAB_ATTR(_name) \
  3287. static struct slab_attribute _name##_attr = \
  3288. __ATTR(_name, 0644, _name##_show, _name##_store)
  3289. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3290. {
  3291. return sprintf(buf, "%d\n", s->size);
  3292. }
  3293. SLAB_ATTR_RO(slab_size);
  3294. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3295. {
  3296. return sprintf(buf, "%d\n", s->align);
  3297. }
  3298. SLAB_ATTR_RO(align);
  3299. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3300. {
  3301. return sprintf(buf, "%d\n", s->objsize);
  3302. }
  3303. SLAB_ATTR_RO(object_size);
  3304. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3305. {
  3306. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3307. }
  3308. SLAB_ATTR_RO(objs_per_slab);
  3309. static ssize_t order_store(struct kmem_cache *s,
  3310. const char *buf, size_t length)
  3311. {
  3312. unsigned long order;
  3313. int err;
  3314. err = strict_strtoul(buf, 10, &order);
  3315. if (err)
  3316. return err;
  3317. if (order > slub_max_order || order < slub_min_order)
  3318. return -EINVAL;
  3319. calculate_sizes(s, order);
  3320. return length;
  3321. }
  3322. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3323. {
  3324. return sprintf(buf, "%d\n", oo_order(s->oo));
  3325. }
  3326. SLAB_ATTR(order);
  3327. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3328. {
  3329. return sprintf(buf, "%lu\n", s->min_partial);
  3330. }
  3331. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3332. size_t length)
  3333. {
  3334. unsigned long min;
  3335. int err;
  3336. err = strict_strtoul(buf, 10, &min);
  3337. if (err)
  3338. return err;
  3339. set_min_partial(s, min);
  3340. return length;
  3341. }
  3342. SLAB_ATTR(min_partial);
  3343. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3344. {
  3345. if (s->ctor) {
  3346. int n = sprint_symbol(buf, (unsigned long)s->ctor);
  3347. return n + sprintf(buf + n, "\n");
  3348. }
  3349. return 0;
  3350. }
  3351. SLAB_ATTR_RO(ctor);
  3352. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3353. {
  3354. return sprintf(buf, "%d\n", s->refcount - 1);
  3355. }
  3356. SLAB_ATTR_RO(aliases);
  3357. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3358. {
  3359. return show_slab_objects(s, buf, SO_ALL);
  3360. }
  3361. SLAB_ATTR_RO(slabs);
  3362. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3363. {
  3364. return show_slab_objects(s, buf, SO_PARTIAL);
  3365. }
  3366. SLAB_ATTR_RO(partial);
  3367. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3368. {
  3369. return show_slab_objects(s, buf, SO_CPU);
  3370. }
  3371. SLAB_ATTR_RO(cpu_slabs);
  3372. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3373. {
  3374. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3375. }
  3376. SLAB_ATTR_RO(objects);
  3377. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3378. {
  3379. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3380. }
  3381. SLAB_ATTR_RO(objects_partial);
  3382. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3383. {
  3384. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3385. }
  3386. SLAB_ATTR_RO(total_objects);
  3387. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3388. {
  3389. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3390. }
  3391. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3392. const char *buf, size_t length)
  3393. {
  3394. s->flags &= ~SLAB_DEBUG_FREE;
  3395. if (buf[0] == '1')
  3396. s->flags |= SLAB_DEBUG_FREE;
  3397. return length;
  3398. }
  3399. SLAB_ATTR(sanity_checks);
  3400. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3401. {
  3402. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3403. }
  3404. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3405. size_t length)
  3406. {
  3407. s->flags &= ~SLAB_TRACE;
  3408. if (buf[0] == '1')
  3409. s->flags |= SLAB_TRACE;
  3410. return length;
  3411. }
  3412. SLAB_ATTR(trace);
  3413. #ifdef CONFIG_FAILSLAB
  3414. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  3415. {
  3416. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  3417. }
  3418. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  3419. size_t length)
  3420. {
  3421. s->flags &= ~SLAB_FAILSLAB;
  3422. if (buf[0] == '1')
  3423. s->flags |= SLAB_FAILSLAB;
  3424. return length;
  3425. }
  3426. SLAB_ATTR(failslab);
  3427. #endif
  3428. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3429. {
  3430. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3431. }
  3432. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3433. const char *buf, size_t length)
  3434. {
  3435. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3436. if (buf[0] == '1')
  3437. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3438. return length;
  3439. }
  3440. SLAB_ATTR(reclaim_account);
  3441. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3442. {
  3443. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3444. }
  3445. SLAB_ATTR_RO(hwcache_align);
  3446. #ifdef CONFIG_ZONE_DMA
  3447. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3448. {
  3449. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3450. }
  3451. SLAB_ATTR_RO(cache_dma);
  3452. #endif
  3453. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3454. {
  3455. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3456. }
  3457. SLAB_ATTR_RO(destroy_by_rcu);
  3458. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3459. {
  3460. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3461. }
  3462. static ssize_t red_zone_store(struct kmem_cache *s,
  3463. const char *buf, size_t length)
  3464. {
  3465. if (any_slab_objects(s))
  3466. return -EBUSY;
  3467. s->flags &= ~SLAB_RED_ZONE;
  3468. if (buf[0] == '1')
  3469. s->flags |= SLAB_RED_ZONE;
  3470. calculate_sizes(s, -1);
  3471. return length;
  3472. }
  3473. SLAB_ATTR(red_zone);
  3474. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3475. {
  3476. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3477. }
  3478. static ssize_t poison_store(struct kmem_cache *s,
  3479. const char *buf, size_t length)
  3480. {
  3481. if (any_slab_objects(s))
  3482. return -EBUSY;
  3483. s->flags &= ~SLAB_POISON;
  3484. if (buf[0] == '1')
  3485. s->flags |= SLAB_POISON;
  3486. calculate_sizes(s, -1);
  3487. return length;
  3488. }
  3489. SLAB_ATTR(poison);
  3490. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3491. {
  3492. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3493. }
  3494. static ssize_t store_user_store(struct kmem_cache *s,
  3495. const char *buf, size_t length)
  3496. {
  3497. if (any_slab_objects(s))
  3498. return -EBUSY;
  3499. s->flags &= ~SLAB_STORE_USER;
  3500. if (buf[0] == '1')
  3501. s->flags |= SLAB_STORE_USER;
  3502. calculate_sizes(s, -1);
  3503. return length;
  3504. }
  3505. SLAB_ATTR(store_user);
  3506. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3507. {
  3508. return 0;
  3509. }
  3510. static ssize_t validate_store(struct kmem_cache *s,
  3511. const char *buf, size_t length)
  3512. {
  3513. int ret = -EINVAL;
  3514. if (buf[0] == '1') {
  3515. ret = validate_slab_cache(s);
  3516. if (ret >= 0)
  3517. ret = length;
  3518. }
  3519. return ret;
  3520. }
  3521. SLAB_ATTR(validate);
  3522. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3523. {
  3524. return 0;
  3525. }
  3526. static ssize_t shrink_store(struct kmem_cache *s,
  3527. const char *buf, size_t length)
  3528. {
  3529. if (buf[0] == '1') {
  3530. int rc = kmem_cache_shrink(s);
  3531. if (rc)
  3532. return rc;
  3533. } else
  3534. return -EINVAL;
  3535. return length;
  3536. }
  3537. SLAB_ATTR(shrink);
  3538. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3539. {
  3540. if (!(s->flags & SLAB_STORE_USER))
  3541. return -ENOSYS;
  3542. return list_locations(s, buf, TRACK_ALLOC);
  3543. }
  3544. SLAB_ATTR_RO(alloc_calls);
  3545. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3546. {
  3547. if (!(s->flags & SLAB_STORE_USER))
  3548. return -ENOSYS;
  3549. return list_locations(s, buf, TRACK_FREE);
  3550. }
  3551. SLAB_ATTR_RO(free_calls);
  3552. #ifdef CONFIG_NUMA
  3553. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  3554. {
  3555. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  3556. }
  3557. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  3558. const char *buf, size_t length)
  3559. {
  3560. unsigned long ratio;
  3561. int err;
  3562. err = strict_strtoul(buf, 10, &ratio);
  3563. if (err)
  3564. return err;
  3565. if (ratio <= 100)
  3566. s->remote_node_defrag_ratio = ratio * 10;
  3567. return length;
  3568. }
  3569. SLAB_ATTR(remote_node_defrag_ratio);
  3570. #endif
  3571. #ifdef CONFIG_SLUB_STATS
  3572. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  3573. {
  3574. unsigned long sum = 0;
  3575. int cpu;
  3576. int len;
  3577. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  3578. if (!data)
  3579. return -ENOMEM;
  3580. for_each_online_cpu(cpu) {
  3581. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  3582. data[cpu] = x;
  3583. sum += x;
  3584. }
  3585. len = sprintf(buf, "%lu", sum);
  3586. #ifdef CONFIG_SMP
  3587. for_each_online_cpu(cpu) {
  3588. if (data[cpu] && len < PAGE_SIZE - 20)
  3589. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  3590. }
  3591. #endif
  3592. kfree(data);
  3593. return len + sprintf(buf + len, "\n");
  3594. }
  3595. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  3596. {
  3597. int cpu;
  3598. for_each_online_cpu(cpu)
  3599. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  3600. }
  3601. #define STAT_ATTR(si, text) \
  3602. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  3603. { \
  3604. return show_stat(s, buf, si); \
  3605. } \
  3606. static ssize_t text##_store(struct kmem_cache *s, \
  3607. const char *buf, size_t length) \
  3608. { \
  3609. if (buf[0] != '0') \
  3610. return -EINVAL; \
  3611. clear_stat(s, si); \
  3612. return length; \
  3613. } \
  3614. SLAB_ATTR(text); \
  3615. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  3616. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  3617. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  3618. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  3619. STAT_ATTR(FREE_FROZEN, free_frozen);
  3620. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  3621. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  3622. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  3623. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  3624. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  3625. STAT_ATTR(FREE_SLAB, free_slab);
  3626. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  3627. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  3628. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  3629. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  3630. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  3631. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  3632. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  3633. #endif
  3634. static struct attribute *slab_attrs[] = {
  3635. &slab_size_attr.attr,
  3636. &object_size_attr.attr,
  3637. &objs_per_slab_attr.attr,
  3638. &order_attr.attr,
  3639. &min_partial_attr.attr,
  3640. &objects_attr.attr,
  3641. &objects_partial_attr.attr,
  3642. &total_objects_attr.attr,
  3643. &slabs_attr.attr,
  3644. &partial_attr.attr,
  3645. &cpu_slabs_attr.attr,
  3646. &ctor_attr.attr,
  3647. &aliases_attr.attr,
  3648. &align_attr.attr,
  3649. &sanity_checks_attr.attr,
  3650. &trace_attr.attr,
  3651. &hwcache_align_attr.attr,
  3652. &reclaim_account_attr.attr,
  3653. &destroy_by_rcu_attr.attr,
  3654. &red_zone_attr.attr,
  3655. &poison_attr.attr,
  3656. &store_user_attr.attr,
  3657. &validate_attr.attr,
  3658. &shrink_attr.attr,
  3659. &alloc_calls_attr.attr,
  3660. &free_calls_attr.attr,
  3661. #ifdef CONFIG_ZONE_DMA
  3662. &cache_dma_attr.attr,
  3663. #endif
  3664. #ifdef CONFIG_NUMA
  3665. &remote_node_defrag_ratio_attr.attr,
  3666. #endif
  3667. #ifdef CONFIG_SLUB_STATS
  3668. &alloc_fastpath_attr.attr,
  3669. &alloc_slowpath_attr.attr,
  3670. &free_fastpath_attr.attr,
  3671. &free_slowpath_attr.attr,
  3672. &free_frozen_attr.attr,
  3673. &free_add_partial_attr.attr,
  3674. &free_remove_partial_attr.attr,
  3675. &alloc_from_partial_attr.attr,
  3676. &alloc_slab_attr.attr,
  3677. &alloc_refill_attr.attr,
  3678. &free_slab_attr.attr,
  3679. &cpuslab_flush_attr.attr,
  3680. &deactivate_full_attr.attr,
  3681. &deactivate_empty_attr.attr,
  3682. &deactivate_to_head_attr.attr,
  3683. &deactivate_to_tail_attr.attr,
  3684. &deactivate_remote_frees_attr.attr,
  3685. &order_fallback_attr.attr,
  3686. #endif
  3687. #ifdef CONFIG_FAILSLAB
  3688. &failslab_attr.attr,
  3689. #endif
  3690. NULL
  3691. };
  3692. static struct attribute_group slab_attr_group = {
  3693. .attrs = slab_attrs,
  3694. };
  3695. static ssize_t slab_attr_show(struct kobject *kobj,
  3696. struct attribute *attr,
  3697. char *buf)
  3698. {
  3699. struct slab_attribute *attribute;
  3700. struct kmem_cache *s;
  3701. int err;
  3702. attribute = to_slab_attr(attr);
  3703. s = to_slab(kobj);
  3704. if (!attribute->show)
  3705. return -EIO;
  3706. err = attribute->show(s, buf);
  3707. return err;
  3708. }
  3709. static ssize_t slab_attr_store(struct kobject *kobj,
  3710. struct attribute *attr,
  3711. const char *buf, size_t len)
  3712. {
  3713. struct slab_attribute *attribute;
  3714. struct kmem_cache *s;
  3715. int err;
  3716. attribute = to_slab_attr(attr);
  3717. s = to_slab(kobj);
  3718. if (!attribute->store)
  3719. return -EIO;
  3720. err = attribute->store(s, buf, len);
  3721. return err;
  3722. }
  3723. static void kmem_cache_release(struct kobject *kobj)
  3724. {
  3725. struct kmem_cache *s = to_slab(kobj);
  3726. kfree(s);
  3727. }
  3728. static const struct sysfs_ops slab_sysfs_ops = {
  3729. .show = slab_attr_show,
  3730. .store = slab_attr_store,
  3731. };
  3732. static struct kobj_type slab_ktype = {
  3733. .sysfs_ops = &slab_sysfs_ops,
  3734. .release = kmem_cache_release
  3735. };
  3736. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  3737. {
  3738. struct kobj_type *ktype = get_ktype(kobj);
  3739. if (ktype == &slab_ktype)
  3740. return 1;
  3741. return 0;
  3742. }
  3743. static const struct kset_uevent_ops slab_uevent_ops = {
  3744. .filter = uevent_filter,
  3745. };
  3746. static struct kset *slab_kset;
  3747. #define ID_STR_LENGTH 64
  3748. /* Create a unique string id for a slab cache:
  3749. *
  3750. * Format :[flags-]size
  3751. */
  3752. static char *create_unique_id(struct kmem_cache *s)
  3753. {
  3754. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  3755. char *p = name;
  3756. BUG_ON(!name);
  3757. *p++ = ':';
  3758. /*
  3759. * First flags affecting slabcache operations. We will only
  3760. * get here for aliasable slabs so we do not need to support
  3761. * too many flags. The flags here must cover all flags that
  3762. * are matched during merging to guarantee that the id is
  3763. * unique.
  3764. */
  3765. if (s->flags & SLAB_CACHE_DMA)
  3766. *p++ = 'd';
  3767. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  3768. *p++ = 'a';
  3769. if (s->flags & SLAB_DEBUG_FREE)
  3770. *p++ = 'F';
  3771. if (!(s->flags & SLAB_NOTRACK))
  3772. *p++ = 't';
  3773. if (p != name + 1)
  3774. *p++ = '-';
  3775. p += sprintf(p, "%07d", s->size);
  3776. BUG_ON(p > name + ID_STR_LENGTH - 1);
  3777. return name;
  3778. }
  3779. static int sysfs_slab_add(struct kmem_cache *s)
  3780. {
  3781. int err;
  3782. const char *name;
  3783. int unmergeable;
  3784. if (slab_state < SYSFS)
  3785. /* Defer until later */
  3786. return 0;
  3787. unmergeable = slab_unmergeable(s);
  3788. if (unmergeable) {
  3789. /*
  3790. * Slabcache can never be merged so we can use the name proper.
  3791. * This is typically the case for debug situations. In that
  3792. * case we can catch duplicate names easily.
  3793. */
  3794. sysfs_remove_link(&slab_kset->kobj, s->name);
  3795. name = s->name;
  3796. } else {
  3797. /*
  3798. * Create a unique name for the slab as a target
  3799. * for the symlinks.
  3800. */
  3801. name = create_unique_id(s);
  3802. }
  3803. s->kobj.kset = slab_kset;
  3804. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  3805. if (err) {
  3806. kobject_put(&s->kobj);
  3807. return err;
  3808. }
  3809. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  3810. if (err) {
  3811. kobject_del(&s->kobj);
  3812. kobject_put(&s->kobj);
  3813. return err;
  3814. }
  3815. kobject_uevent(&s->kobj, KOBJ_ADD);
  3816. if (!unmergeable) {
  3817. /* Setup first alias */
  3818. sysfs_slab_alias(s, s->name);
  3819. kfree(name);
  3820. }
  3821. return 0;
  3822. }
  3823. static void sysfs_slab_remove(struct kmem_cache *s)
  3824. {
  3825. if (slab_state < SYSFS)
  3826. /*
  3827. * Sysfs has not been setup yet so no need to remove the
  3828. * cache from sysfs.
  3829. */
  3830. return;
  3831. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  3832. kobject_del(&s->kobj);
  3833. kobject_put(&s->kobj);
  3834. }
  3835. /*
  3836. * Need to buffer aliases during bootup until sysfs becomes
  3837. * available lest we lose that information.
  3838. */
  3839. struct saved_alias {
  3840. struct kmem_cache *s;
  3841. const char *name;
  3842. struct saved_alias *next;
  3843. };
  3844. static struct saved_alias *alias_list;
  3845. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  3846. {
  3847. struct saved_alias *al;
  3848. if (slab_state == SYSFS) {
  3849. /*
  3850. * If we have a leftover link then remove it.
  3851. */
  3852. sysfs_remove_link(&slab_kset->kobj, name);
  3853. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  3854. }
  3855. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  3856. if (!al)
  3857. return -ENOMEM;
  3858. al->s = s;
  3859. al->name = name;
  3860. al->next = alias_list;
  3861. alias_list = al;
  3862. return 0;
  3863. }
  3864. static int __init slab_sysfs_init(void)
  3865. {
  3866. struct kmem_cache *s;
  3867. int err;
  3868. down_write(&slub_lock);
  3869. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  3870. if (!slab_kset) {
  3871. up_write(&slub_lock);
  3872. printk(KERN_ERR "Cannot register slab subsystem.\n");
  3873. return -ENOSYS;
  3874. }
  3875. slab_state = SYSFS;
  3876. list_for_each_entry(s, &slab_caches, list) {
  3877. err = sysfs_slab_add(s);
  3878. if (err)
  3879. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  3880. " to sysfs\n", s->name);
  3881. }
  3882. while (alias_list) {
  3883. struct saved_alias *al = alias_list;
  3884. alias_list = alias_list->next;
  3885. err = sysfs_slab_alias(al->s, al->name);
  3886. if (err)
  3887. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  3888. " %s to sysfs\n", s->name);
  3889. kfree(al);
  3890. }
  3891. up_write(&slub_lock);
  3892. resiliency_test();
  3893. return 0;
  3894. }
  3895. __initcall(slab_sysfs_init);
  3896. #endif
  3897. /*
  3898. * The /proc/slabinfo ABI
  3899. */
  3900. #ifdef CONFIG_SLABINFO
  3901. static void print_slabinfo_header(struct seq_file *m)
  3902. {
  3903. seq_puts(m, "slabinfo - version: 2.1\n");
  3904. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3905. "<objperslab> <pagesperslab>");
  3906. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3907. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3908. seq_putc(m, '\n');
  3909. }
  3910. static void *s_start(struct seq_file *m, loff_t *pos)
  3911. {
  3912. loff_t n = *pos;
  3913. down_read(&slub_lock);
  3914. if (!n)
  3915. print_slabinfo_header(m);
  3916. return seq_list_start(&slab_caches, *pos);
  3917. }
  3918. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3919. {
  3920. return seq_list_next(p, &slab_caches, pos);
  3921. }
  3922. static void s_stop(struct seq_file *m, void *p)
  3923. {
  3924. up_read(&slub_lock);
  3925. }
  3926. static int s_show(struct seq_file *m, void *p)
  3927. {
  3928. unsigned long nr_partials = 0;
  3929. unsigned long nr_slabs = 0;
  3930. unsigned long nr_inuse = 0;
  3931. unsigned long nr_objs = 0;
  3932. unsigned long nr_free = 0;
  3933. struct kmem_cache *s;
  3934. int node;
  3935. s = list_entry(p, struct kmem_cache, list);
  3936. for_each_online_node(node) {
  3937. struct kmem_cache_node *n = get_node(s, node);
  3938. if (!n)
  3939. continue;
  3940. nr_partials += n->nr_partial;
  3941. nr_slabs += atomic_long_read(&n->nr_slabs);
  3942. nr_objs += atomic_long_read(&n->total_objects);
  3943. nr_free += count_partial(n, count_free);
  3944. }
  3945. nr_inuse = nr_objs - nr_free;
  3946. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  3947. nr_objs, s->size, oo_objects(s->oo),
  3948. (1 << oo_order(s->oo)));
  3949. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  3950. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  3951. 0UL);
  3952. seq_putc(m, '\n');
  3953. return 0;
  3954. }
  3955. static const struct seq_operations slabinfo_op = {
  3956. .start = s_start,
  3957. .next = s_next,
  3958. .stop = s_stop,
  3959. .show = s_show,
  3960. };
  3961. static int slabinfo_open(struct inode *inode, struct file *file)
  3962. {
  3963. return seq_open(file, &slabinfo_op);
  3964. }
  3965. static const struct file_operations proc_slabinfo_operations = {
  3966. .open = slabinfo_open,
  3967. .read = seq_read,
  3968. .llseek = seq_lseek,
  3969. .release = seq_release,
  3970. };
  3971. static int __init slab_proc_init(void)
  3972. {
  3973. proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
  3974. return 0;
  3975. }
  3976. module_init(slab_proc_init);
  3977. #endif /* CONFIG_SLABINFO */