vmx.c 97 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "mmu.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/sched.h>
  25. #include <linux/moduleparam.h>
  26. #include "kvm_cache_regs.h"
  27. #include "x86.h"
  28. #include <asm/io.h>
  29. #include <asm/desc.h>
  30. #include <asm/vmx.h>
  31. #include <asm/virtext.h>
  32. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  33. MODULE_AUTHOR("Qumranet");
  34. MODULE_LICENSE("GPL");
  35. static int __read_mostly bypass_guest_pf = 1;
  36. module_param(bypass_guest_pf, bool, S_IRUGO);
  37. static int __read_mostly enable_vpid = 1;
  38. module_param_named(vpid, enable_vpid, bool, 0444);
  39. static int __read_mostly flexpriority_enabled = 1;
  40. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  41. static int __read_mostly enable_ept = 1;
  42. module_param_named(ept, enable_ept, bool, S_IRUGO);
  43. static int __read_mostly emulate_invalid_guest_state = 0;
  44. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  45. struct vmcs {
  46. u32 revision_id;
  47. u32 abort;
  48. char data[0];
  49. };
  50. struct vcpu_vmx {
  51. struct kvm_vcpu vcpu;
  52. struct list_head local_vcpus_link;
  53. unsigned long host_rsp;
  54. int launched;
  55. u8 fail;
  56. u32 idt_vectoring_info;
  57. struct kvm_msr_entry *guest_msrs;
  58. struct kvm_msr_entry *host_msrs;
  59. int nmsrs;
  60. int save_nmsrs;
  61. int msr_offset_efer;
  62. #ifdef CONFIG_X86_64
  63. int msr_offset_kernel_gs_base;
  64. #endif
  65. struct vmcs *vmcs;
  66. struct {
  67. int loaded;
  68. u16 fs_sel, gs_sel, ldt_sel;
  69. int gs_ldt_reload_needed;
  70. int fs_reload_needed;
  71. int guest_efer_loaded;
  72. } host_state;
  73. struct {
  74. struct {
  75. bool pending;
  76. u8 vector;
  77. unsigned rip;
  78. } irq;
  79. } rmode;
  80. int vpid;
  81. bool emulation_required;
  82. enum emulation_result invalid_state_emulation_result;
  83. /* Support for vnmi-less CPUs */
  84. int soft_vnmi_blocked;
  85. ktime_t entry_time;
  86. s64 vnmi_blocked_time;
  87. };
  88. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  89. {
  90. return container_of(vcpu, struct vcpu_vmx, vcpu);
  91. }
  92. static int init_rmode(struct kvm *kvm);
  93. static u64 construct_eptp(unsigned long root_hpa);
  94. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  95. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  96. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  97. static unsigned long *vmx_io_bitmap_a;
  98. static unsigned long *vmx_io_bitmap_b;
  99. static unsigned long *vmx_msr_bitmap_legacy;
  100. static unsigned long *vmx_msr_bitmap_longmode;
  101. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  102. static DEFINE_SPINLOCK(vmx_vpid_lock);
  103. static struct vmcs_config {
  104. int size;
  105. int order;
  106. u32 revision_id;
  107. u32 pin_based_exec_ctrl;
  108. u32 cpu_based_exec_ctrl;
  109. u32 cpu_based_2nd_exec_ctrl;
  110. u32 vmexit_ctrl;
  111. u32 vmentry_ctrl;
  112. } vmcs_config;
  113. static struct vmx_capability {
  114. u32 ept;
  115. u32 vpid;
  116. } vmx_capability;
  117. #define VMX_SEGMENT_FIELD(seg) \
  118. [VCPU_SREG_##seg] = { \
  119. .selector = GUEST_##seg##_SELECTOR, \
  120. .base = GUEST_##seg##_BASE, \
  121. .limit = GUEST_##seg##_LIMIT, \
  122. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  123. }
  124. static struct kvm_vmx_segment_field {
  125. unsigned selector;
  126. unsigned base;
  127. unsigned limit;
  128. unsigned ar_bytes;
  129. } kvm_vmx_segment_fields[] = {
  130. VMX_SEGMENT_FIELD(CS),
  131. VMX_SEGMENT_FIELD(DS),
  132. VMX_SEGMENT_FIELD(ES),
  133. VMX_SEGMENT_FIELD(FS),
  134. VMX_SEGMENT_FIELD(GS),
  135. VMX_SEGMENT_FIELD(SS),
  136. VMX_SEGMENT_FIELD(TR),
  137. VMX_SEGMENT_FIELD(LDTR),
  138. };
  139. /*
  140. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  141. * away by decrementing the array size.
  142. */
  143. static const u32 vmx_msr_index[] = {
  144. #ifdef CONFIG_X86_64
  145. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  146. #endif
  147. MSR_EFER, MSR_K6_STAR,
  148. };
  149. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  150. static void load_msrs(struct kvm_msr_entry *e, int n)
  151. {
  152. int i;
  153. for (i = 0; i < n; ++i)
  154. wrmsrl(e[i].index, e[i].data);
  155. }
  156. static void save_msrs(struct kvm_msr_entry *e, int n)
  157. {
  158. int i;
  159. for (i = 0; i < n; ++i)
  160. rdmsrl(e[i].index, e[i].data);
  161. }
  162. static inline int is_page_fault(u32 intr_info)
  163. {
  164. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  165. INTR_INFO_VALID_MASK)) ==
  166. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  167. }
  168. static inline int is_no_device(u32 intr_info)
  169. {
  170. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  171. INTR_INFO_VALID_MASK)) ==
  172. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  173. }
  174. static inline int is_invalid_opcode(u32 intr_info)
  175. {
  176. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  177. INTR_INFO_VALID_MASK)) ==
  178. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  179. }
  180. static inline int is_external_interrupt(u32 intr_info)
  181. {
  182. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  183. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  184. }
  185. static inline int cpu_has_vmx_msr_bitmap(void)
  186. {
  187. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS);
  188. }
  189. static inline int cpu_has_vmx_tpr_shadow(void)
  190. {
  191. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
  192. }
  193. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  194. {
  195. return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
  196. }
  197. static inline int cpu_has_secondary_exec_ctrls(void)
  198. {
  199. return (vmcs_config.cpu_based_exec_ctrl &
  200. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
  201. }
  202. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  203. {
  204. return flexpriority_enabled;
  205. }
  206. static inline int cpu_has_vmx_invept_individual_addr(void)
  207. {
  208. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT));
  209. }
  210. static inline int cpu_has_vmx_invept_context(void)
  211. {
  212. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT));
  213. }
  214. static inline int cpu_has_vmx_invept_global(void)
  215. {
  216. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT));
  217. }
  218. static inline int cpu_has_vmx_ept(void)
  219. {
  220. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  221. SECONDARY_EXEC_ENABLE_EPT);
  222. }
  223. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  224. {
  225. return ((cpu_has_vmx_virtualize_apic_accesses()) &&
  226. (irqchip_in_kernel(kvm)));
  227. }
  228. static inline int cpu_has_vmx_vpid(void)
  229. {
  230. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  231. SECONDARY_EXEC_ENABLE_VPID);
  232. }
  233. static inline int cpu_has_virtual_nmis(void)
  234. {
  235. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  236. }
  237. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  238. {
  239. int i;
  240. for (i = 0; i < vmx->nmsrs; ++i)
  241. if (vmx->guest_msrs[i].index == msr)
  242. return i;
  243. return -1;
  244. }
  245. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  246. {
  247. struct {
  248. u64 vpid : 16;
  249. u64 rsvd : 48;
  250. u64 gva;
  251. } operand = { vpid, 0, gva };
  252. asm volatile (__ex(ASM_VMX_INVVPID)
  253. /* CF==1 or ZF==1 --> rc = -1 */
  254. "; ja 1f ; ud2 ; 1:"
  255. : : "a"(&operand), "c"(ext) : "cc", "memory");
  256. }
  257. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  258. {
  259. struct {
  260. u64 eptp, gpa;
  261. } operand = {eptp, gpa};
  262. asm volatile (__ex(ASM_VMX_INVEPT)
  263. /* CF==1 or ZF==1 --> rc = -1 */
  264. "; ja 1f ; ud2 ; 1:\n"
  265. : : "a" (&operand), "c" (ext) : "cc", "memory");
  266. }
  267. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  268. {
  269. int i;
  270. i = __find_msr_index(vmx, msr);
  271. if (i >= 0)
  272. return &vmx->guest_msrs[i];
  273. return NULL;
  274. }
  275. static void vmcs_clear(struct vmcs *vmcs)
  276. {
  277. u64 phys_addr = __pa(vmcs);
  278. u8 error;
  279. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  280. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  281. : "cc", "memory");
  282. if (error)
  283. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  284. vmcs, phys_addr);
  285. }
  286. static void __vcpu_clear(void *arg)
  287. {
  288. struct vcpu_vmx *vmx = arg;
  289. int cpu = raw_smp_processor_id();
  290. if (vmx->vcpu.cpu == cpu)
  291. vmcs_clear(vmx->vmcs);
  292. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  293. per_cpu(current_vmcs, cpu) = NULL;
  294. rdtscll(vmx->vcpu.arch.host_tsc);
  295. list_del(&vmx->local_vcpus_link);
  296. vmx->vcpu.cpu = -1;
  297. vmx->launched = 0;
  298. }
  299. static void vcpu_clear(struct vcpu_vmx *vmx)
  300. {
  301. if (vmx->vcpu.cpu == -1)
  302. return;
  303. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  304. }
  305. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  306. {
  307. if (vmx->vpid == 0)
  308. return;
  309. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  310. }
  311. static inline void ept_sync_global(void)
  312. {
  313. if (cpu_has_vmx_invept_global())
  314. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  315. }
  316. static inline void ept_sync_context(u64 eptp)
  317. {
  318. if (enable_ept) {
  319. if (cpu_has_vmx_invept_context())
  320. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  321. else
  322. ept_sync_global();
  323. }
  324. }
  325. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  326. {
  327. if (enable_ept) {
  328. if (cpu_has_vmx_invept_individual_addr())
  329. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  330. eptp, gpa);
  331. else
  332. ept_sync_context(eptp);
  333. }
  334. }
  335. static unsigned long vmcs_readl(unsigned long field)
  336. {
  337. unsigned long value;
  338. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  339. : "=a"(value) : "d"(field) : "cc");
  340. return value;
  341. }
  342. static u16 vmcs_read16(unsigned long field)
  343. {
  344. return vmcs_readl(field);
  345. }
  346. static u32 vmcs_read32(unsigned long field)
  347. {
  348. return vmcs_readl(field);
  349. }
  350. static u64 vmcs_read64(unsigned long field)
  351. {
  352. #ifdef CONFIG_X86_64
  353. return vmcs_readl(field);
  354. #else
  355. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  356. #endif
  357. }
  358. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  359. {
  360. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  361. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  362. dump_stack();
  363. }
  364. static void vmcs_writel(unsigned long field, unsigned long value)
  365. {
  366. u8 error;
  367. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  368. : "=q"(error) : "a"(value), "d"(field) : "cc");
  369. if (unlikely(error))
  370. vmwrite_error(field, value);
  371. }
  372. static void vmcs_write16(unsigned long field, u16 value)
  373. {
  374. vmcs_writel(field, value);
  375. }
  376. static void vmcs_write32(unsigned long field, u32 value)
  377. {
  378. vmcs_writel(field, value);
  379. }
  380. static void vmcs_write64(unsigned long field, u64 value)
  381. {
  382. vmcs_writel(field, value);
  383. #ifndef CONFIG_X86_64
  384. asm volatile ("");
  385. vmcs_writel(field+1, value >> 32);
  386. #endif
  387. }
  388. static void vmcs_clear_bits(unsigned long field, u32 mask)
  389. {
  390. vmcs_writel(field, vmcs_readl(field) & ~mask);
  391. }
  392. static void vmcs_set_bits(unsigned long field, u32 mask)
  393. {
  394. vmcs_writel(field, vmcs_readl(field) | mask);
  395. }
  396. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  397. {
  398. u32 eb;
  399. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
  400. if (!vcpu->fpu_active)
  401. eb |= 1u << NM_VECTOR;
  402. if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
  403. if (vcpu->guest_debug &
  404. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  405. eb |= 1u << DB_VECTOR;
  406. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  407. eb |= 1u << BP_VECTOR;
  408. }
  409. if (vcpu->arch.rmode.active)
  410. eb = ~0;
  411. if (enable_ept)
  412. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  413. vmcs_write32(EXCEPTION_BITMAP, eb);
  414. }
  415. static void reload_tss(void)
  416. {
  417. /*
  418. * VT restores TR but not its size. Useless.
  419. */
  420. struct descriptor_table gdt;
  421. struct desc_struct *descs;
  422. kvm_get_gdt(&gdt);
  423. descs = (void *)gdt.base;
  424. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  425. load_TR_desc();
  426. }
  427. static void load_transition_efer(struct vcpu_vmx *vmx)
  428. {
  429. int efer_offset = vmx->msr_offset_efer;
  430. u64 host_efer = vmx->host_msrs[efer_offset].data;
  431. u64 guest_efer = vmx->guest_msrs[efer_offset].data;
  432. u64 ignore_bits;
  433. if (efer_offset < 0)
  434. return;
  435. /*
  436. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  437. * outside long mode
  438. */
  439. ignore_bits = EFER_NX | EFER_SCE;
  440. #ifdef CONFIG_X86_64
  441. ignore_bits |= EFER_LMA | EFER_LME;
  442. /* SCE is meaningful only in long mode on Intel */
  443. if (guest_efer & EFER_LMA)
  444. ignore_bits &= ~(u64)EFER_SCE;
  445. #endif
  446. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  447. return;
  448. vmx->host_state.guest_efer_loaded = 1;
  449. guest_efer &= ~ignore_bits;
  450. guest_efer |= host_efer & ignore_bits;
  451. wrmsrl(MSR_EFER, guest_efer);
  452. vmx->vcpu.stat.efer_reload++;
  453. }
  454. static void reload_host_efer(struct vcpu_vmx *vmx)
  455. {
  456. if (vmx->host_state.guest_efer_loaded) {
  457. vmx->host_state.guest_efer_loaded = 0;
  458. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  459. }
  460. }
  461. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  462. {
  463. struct vcpu_vmx *vmx = to_vmx(vcpu);
  464. if (vmx->host_state.loaded)
  465. return;
  466. vmx->host_state.loaded = 1;
  467. /*
  468. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  469. * allow segment selectors with cpl > 0 or ti == 1.
  470. */
  471. vmx->host_state.ldt_sel = kvm_read_ldt();
  472. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  473. vmx->host_state.fs_sel = kvm_read_fs();
  474. if (!(vmx->host_state.fs_sel & 7)) {
  475. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  476. vmx->host_state.fs_reload_needed = 0;
  477. } else {
  478. vmcs_write16(HOST_FS_SELECTOR, 0);
  479. vmx->host_state.fs_reload_needed = 1;
  480. }
  481. vmx->host_state.gs_sel = kvm_read_gs();
  482. if (!(vmx->host_state.gs_sel & 7))
  483. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  484. else {
  485. vmcs_write16(HOST_GS_SELECTOR, 0);
  486. vmx->host_state.gs_ldt_reload_needed = 1;
  487. }
  488. #ifdef CONFIG_X86_64
  489. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  490. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  491. #else
  492. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  493. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  494. #endif
  495. #ifdef CONFIG_X86_64
  496. if (is_long_mode(&vmx->vcpu))
  497. save_msrs(vmx->host_msrs +
  498. vmx->msr_offset_kernel_gs_base, 1);
  499. #endif
  500. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  501. load_transition_efer(vmx);
  502. }
  503. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  504. {
  505. unsigned long flags;
  506. if (!vmx->host_state.loaded)
  507. return;
  508. ++vmx->vcpu.stat.host_state_reload;
  509. vmx->host_state.loaded = 0;
  510. if (vmx->host_state.fs_reload_needed)
  511. kvm_load_fs(vmx->host_state.fs_sel);
  512. if (vmx->host_state.gs_ldt_reload_needed) {
  513. kvm_load_ldt(vmx->host_state.ldt_sel);
  514. /*
  515. * If we have to reload gs, we must take care to
  516. * preserve our gs base.
  517. */
  518. local_irq_save(flags);
  519. kvm_load_gs(vmx->host_state.gs_sel);
  520. #ifdef CONFIG_X86_64
  521. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  522. #endif
  523. local_irq_restore(flags);
  524. }
  525. reload_tss();
  526. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  527. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  528. reload_host_efer(vmx);
  529. }
  530. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  531. {
  532. preempt_disable();
  533. __vmx_load_host_state(vmx);
  534. preempt_enable();
  535. }
  536. /*
  537. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  538. * vcpu mutex is already taken.
  539. */
  540. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  541. {
  542. struct vcpu_vmx *vmx = to_vmx(vcpu);
  543. u64 phys_addr = __pa(vmx->vmcs);
  544. u64 tsc_this, delta, new_offset;
  545. if (vcpu->cpu != cpu) {
  546. vcpu_clear(vmx);
  547. kvm_migrate_timers(vcpu);
  548. vpid_sync_vcpu_all(vmx);
  549. local_irq_disable();
  550. list_add(&vmx->local_vcpus_link,
  551. &per_cpu(vcpus_on_cpu, cpu));
  552. local_irq_enable();
  553. }
  554. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  555. u8 error;
  556. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  557. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  558. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  559. : "cc");
  560. if (error)
  561. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  562. vmx->vmcs, phys_addr);
  563. }
  564. if (vcpu->cpu != cpu) {
  565. struct descriptor_table dt;
  566. unsigned long sysenter_esp;
  567. vcpu->cpu = cpu;
  568. /*
  569. * Linux uses per-cpu TSS and GDT, so set these when switching
  570. * processors.
  571. */
  572. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  573. kvm_get_gdt(&dt);
  574. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  575. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  576. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  577. /*
  578. * Make sure the time stamp counter is monotonous.
  579. */
  580. rdtscll(tsc_this);
  581. if (tsc_this < vcpu->arch.host_tsc) {
  582. delta = vcpu->arch.host_tsc - tsc_this;
  583. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  584. vmcs_write64(TSC_OFFSET, new_offset);
  585. }
  586. }
  587. }
  588. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  589. {
  590. __vmx_load_host_state(to_vmx(vcpu));
  591. }
  592. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  593. {
  594. if (vcpu->fpu_active)
  595. return;
  596. vcpu->fpu_active = 1;
  597. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  598. if (vcpu->arch.cr0 & X86_CR0_TS)
  599. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  600. update_exception_bitmap(vcpu);
  601. }
  602. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  603. {
  604. if (!vcpu->fpu_active)
  605. return;
  606. vcpu->fpu_active = 0;
  607. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  608. update_exception_bitmap(vcpu);
  609. }
  610. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  611. {
  612. return vmcs_readl(GUEST_RFLAGS);
  613. }
  614. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  615. {
  616. if (vcpu->arch.rmode.active)
  617. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  618. vmcs_writel(GUEST_RFLAGS, rflags);
  619. }
  620. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  621. {
  622. unsigned long rip;
  623. u32 interruptibility;
  624. rip = kvm_rip_read(vcpu);
  625. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  626. kvm_rip_write(vcpu, rip);
  627. /*
  628. * We emulated an instruction, so temporary interrupt blocking
  629. * should be removed, if set.
  630. */
  631. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  632. if (interruptibility & 3)
  633. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  634. interruptibility & ~3);
  635. vcpu->arch.interrupt_window_open = 1;
  636. }
  637. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  638. bool has_error_code, u32 error_code)
  639. {
  640. struct vcpu_vmx *vmx = to_vmx(vcpu);
  641. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  642. if (has_error_code) {
  643. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  644. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  645. }
  646. if (vcpu->arch.rmode.active) {
  647. vmx->rmode.irq.pending = true;
  648. vmx->rmode.irq.vector = nr;
  649. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  650. if (nr == BP_VECTOR || nr == OF_VECTOR)
  651. vmx->rmode.irq.rip++;
  652. intr_info |= INTR_TYPE_SOFT_INTR;
  653. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  654. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  655. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  656. return;
  657. }
  658. if (nr == BP_VECTOR || nr == OF_VECTOR) {
  659. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  660. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  661. } else
  662. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  663. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  664. }
  665. static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
  666. {
  667. return false;
  668. }
  669. /*
  670. * Swap MSR entry in host/guest MSR entry array.
  671. */
  672. #ifdef CONFIG_X86_64
  673. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  674. {
  675. struct kvm_msr_entry tmp;
  676. tmp = vmx->guest_msrs[to];
  677. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  678. vmx->guest_msrs[from] = tmp;
  679. tmp = vmx->host_msrs[to];
  680. vmx->host_msrs[to] = vmx->host_msrs[from];
  681. vmx->host_msrs[from] = tmp;
  682. }
  683. #endif
  684. /*
  685. * Set up the vmcs to automatically save and restore system
  686. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  687. * mode, as fiddling with msrs is very expensive.
  688. */
  689. static void setup_msrs(struct vcpu_vmx *vmx)
  690. {
  691. int save_nmsrs;
  692. unsigned long *msr_bitmap;
  693. vmx_load_host_state(vmx);
  694. save_nmsrs = 0;
  695. #ifdef CONFIG_X86_64
  696. if (is_long_mode(&vmx->vcpu)) {
  697. int index;
  698. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  699. if (index >= 0)
  700. move_msr_up(vmx, index, save_nmsrs++);
  701. index = __find_msr_index(vmx, MSR_LSTAR);
  702. if (index >= 0)
  703. move_msr_up(vmx, index, save_nmsrs++);
  704. index = __find_msr_index(vmx, MSR_CSTAR);
  705. if (index >= 0)
  706. move_msr_up(vmx, index, save_nmsrs++);
  707. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  708. if (index >= 0)
  709. move_msr_up(vmx, index, save_nmsrs++);
  710. /*
  711. * MSR_K6_STAR is only needed on long mode guests, and only
  712. * if efer.sce is enabled.
  713. */
  714. index = __find_msr_index(vmx, MSR_K6_STAR);
  715. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  716. move_msr_up(vmx, index, save_nmsrs++);
  717. }
  718. #endif
  719. vmx->save_nmsrs = save_nmsrs;
  720. #ifdef CONFIG_X86_64
  721. vmx->msr_offset_kernel_gs_base =
  722. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  723. #endif
  724. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  725. if (cpu_has_vmx_msr_bitmap()) {
  726. if (is_long_mode(&vmx->vcpu))
  727. msr_bitmap = vmx_msr_bitmap_longmode;
  728. else
  729. msr_bitmap = vmx_msr_bitmap_legacy;
  730. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  731. }
  732. }
  733. /*
  734. * reads and returns guest's timestamp counter "register"
  735. * guest_tsc = host_tsc + tsc_offset -- 21.3
  736. */
  737. static u64 guest_read_tsc(void)
  738. {
  739. u64 host_tsc, tsc_offset;
  740. rdtscll(host_tsc);
  741. tsc_offset = vmcs_read64(TSC_OFFSET);
  742. return host_tsc + tsc_offset;
  743. }
  744. /*
  745. * writes 'guest_tsc' into guest's timestamp counter "register"
  746. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  747. */
  748. static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
  749. {
  750. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  751. }
  752. /*
  753. * Reads an msr value (of 'msr_index') into 'pdata'.
  754. * Returns 0 on success, non-0 otherwise.
  755. * Assumes vcpu_load() was already called.
  756. */
  757. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  758. {
  759. u64 data;
  760. struct kvm_msr_entry *msr;
  761. if (!pdata) {
  762. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  763. return -EINVAL;
  764. }
  765. switch (msr_index) {
  766. #ifdef CONFIG_X86_64
  767. case MSR_FS_BASE:
  768. data = vmcs_readl(GUEST_FS_BASE);
  769. break;
  770. case MSR_GS_BASE:
  771. data = vmcs_readl(GUEST_GS_BASE);
  772. break;
  773. case MSR_EFER:
  774. return kvm_get_msr_common(vcpu, msr_index, pdata);
  775. #endif
  776. case MSR_IA32_TIME_STAMP_COUNTER:
  777. data = guest_read_tsc();
  778. break;
  779. case MSR_IA32_SYSENTER_CS:
  780. data = vmcs_read32(GUEST_SYSENTER_CS);
  781. break;
  782. case MSR_IA32_SYSENTER_EIP:
  783. data = vmcs_readl(GUEST_SYSENTER_EIP);
  784. break;
  785. case MSR_IA32_SYSENTER_ESP:
  786. data = vmcs_readl(GUEST_SYSENTER_ESP);
  787. break;
  788. default:
  789. vmx_load_host_state(to_vmx(vcpu));
  790. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  791. if (msr) {
  792. data = msr->data;
  793. break;
  794. }
  795. return kvm_get_msr_common(vcpu, msr_index, pdata);
  796. }
  797. *pdata = data;
  798. return 0;
  799. }
  800. /*
  801. * Writes msr value into into the appropriate "register".
  802. * Returns 0 on success, non-0 otherwise.
  803. * Assumes vcpu_load() was already called.
  804. */
  805. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  806. {
  807. struct vcpu_vmx *vmx = to_vmx(vcpu);
  808. struct kvm_msr_entry *msr;
  809. u64 host_tsc;
  810. int ret = 0;
  811. switch (msr_index) {
  812. case MSR_EFER:
  813. vmx_load_host_state(vmx);
  814. ret = kvm_set_msr_common(vcpu, msr_index, data);
  815. break;
  816. #ifdef CONFIG_X86_64
  817. case MSR_FS_BASE:
  818. vmcs_writel(GUEST_FS_BASE, data);
  819. break;
  820. case MSR_GS_BASE:
  821. vmcs_writel(GUEST_GS_BASE, data);
  822. break;
  823. #endif
  824. case MSR_IA32_SYSENTER_CS:
  825. vmcs_write32(GUEST_SYSENTER_CS, data);
  826. break;
  827. case MSR_IA32_SYSENTER_EIP:
  828. vmcs_writel(GUEST_SYSENTER_EIP, data);
  829. break;
  830. case MSR_IA32_SYSENTER_ESP:
  831. vmcs_writel(GUEST_SYSENTER_ESP, data);
  832. break;
  833. case MSR_IA32_TIME_STAMP_COUNTER:
  834. rdtscll(host_tsc);
  835. guest_write_tsc(data, host_tsc);
  836. break;
  837. case MSR_P6_PERFCTR0:
  838. case MSR_P6_PERFCTR1:
  839. case MSR_P6_EVNTSEL0:
  840. case MSR_P6_EVNTSEL1:
  841. /*
  842. * Just discard all writes to the performance counters; this
  843. * should keep both older linux and windows 64-bit guests
  844. * happy
  845. */
  846. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index, data);
  847. break;
  848. case MSR_IA32_CR_PAT:
  849. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  850. vmcs_write64(GUEST_IA32_PAT, data);
  851. vcpu->arch.pat = data;
  852. break;
  853. }
  854. /* Otherwise falls through to kvm_set_msr_common */
  855. default:
  856. vmx_load_host_state(vmx);
  857. msr = find_msr_entry(vmx, msr_index);
  858. if (msr) {
  859. msr->data = data;
  860. break;
  861. }
  862. ret = kvm_set_msr_common(vcpu, msr_index, data);
  863. }
  864. return ret;
  865. }
  866. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  867. {
  868. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  869. switch (reg) {
  870. case VCPU_REGS_RSP:
  871. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  872. break;
  873. case VCPU_REGS_RIP:
  874. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  875. break;
  876. default:
  877. break;
  878. }
  879. }
  880. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  881. {
  882. int old_debug = vcpu->guest_debug;
  883. unsigned long flags;
  884. vcpu->guest_debug = dbg->control;
  885. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  886. vcpu->guest_debug = 0;
  887. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  888. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  889. else
  890. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  891. flags = vmcs_readl(GUEST_RFLAGS);
  892. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  893. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  894. else if (old_debug & KVM_GUESTDBG_SINGLESTEP)
  895. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  896. vmcs_writel(GUEST_RFLAGS, flags);
  897. update_exception_bitmap(vcpu);
  898. return 0;
  899. }
  900. static int vmx_get_irq(struct kvm_vcpu *vcpu)
  901. {
  902. if (!vcpu->arch.interrupt.pending)
  903. return -1;
  904. return vcpu->arch.interrupt.nr;
  905. }
  906. static __init int cpu_has_kvm_support(void)
  907. {
  908. return cpu_has_vmx();
  909. }
  910. static __init int vmx_disabled_by_bios(void)
  911. {
  912. u64 msr;
  913. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  914. return (msr & (FEATURE_CONTROL_LOCKED |
  915. FEATURE_CONTROL_VMXON_ENABLED))
  916. == FEATURE_CONTROL_LOCKED;
  917. /* locked but not enabled */
  918. }
  919. static void hardware_enable(void *garbage)
  920. {
  921. int cpu = raw_smp_processor_id();
  922. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  923. u64 old;
  924. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  925. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  926. if ((old & (FEATURE_CONTROL_LOCKED |
  927. FEATURE_CONTROL_VMXON_ENABLED))
  928. != (FEATURE_CONTROL_LOCKED |
  929. FEATURE_CONTROL_VMXON_ENABLED))
  930. /* enable and lock */
  931. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  932. FEATURE_CONTROL_LOCKED |
  933. FEATURE_CONTROL_VMXON_ENABLED);
  934. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  935. asm volatile (ASM_VMX_VMXON_RAX
  936. : : "a"(&phys_addr), "m"(phys_addr)
  937. : "memory", "cc");
  938. }
  939. static void vmclear_local_vcpus(void)
  940. {
  941. int cpu = raw_smp_processor_id();
  942. struct vcpu_vmx *vmx, *n;
  943. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  944. local_vcpus_link)
  945. __vcpu_clear(vmx);
  946. }
  947. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  948. * tricks.
  949. */
  950. static void kvm_cpu_vmxoff(void)
  951. {
  952. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  953. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  954. }
  955. static void hardware_disable(void *garbage)
  956. {
  957. vmclear_local_vcpus();
  958. kvm_cpu_vmxoff();
  959. }
  960. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  961. u32 msr, u32 *result)
  962. {
  963. u32 vmx_msr_low, vmx_msr_high;
  964. u32 ctl = ctl_min | ctl_opt;
  965. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  966. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  967. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  968. /* Ensure minimum (required) set of control bits are supported. */
  969. if (ctl_min & ~ctl)
  970. return -EIO;
  971. *result = ctl;
  972. return 0;
  973. }
  974. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  975. {
  976. u32 vmx_msr_low, vmx_msr_high;
  977. u32 min, opt, min2, opt2;
  978. u32 _pin_based_exec_control = 0;
  979. u32 _cpu_based_exec_control = 0;
  980. u32 _cpu_based_2nd_exec_control = 0;
  981. u32 _vmexit_control = 0;
  982. u32 _vmentry_control = 0;
  983. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  984. opt = PIN_BASED_VIRTUAL_NMIS;
  985. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  986. &_pin_based_exec_control) < 0)
  987. return -EIO;
  988. min = CPU_BASED_HLT_EXITING |
  989. #ifdef CONFIG_X86_64
  990. CPU_BASED_CR8_LOAD_EXITING |
  991. CPU_BASED_CR8_STORE_EXITING |
  992. #endif
  993. CPU_BASED_CR3_LOAD_EXITING |
  994. CPU_BASED_CR3_STORE_EXITING |
  995. CPU_BASED_USE_IO_BITMAPS |
  996. CPU_BASED_MOV_DR_EXITING |
  997. CPU_BASED_USE_TSC_OFFSETING |
  998. CPU_BASED_INVLPG_EXITING;
  999. opt = CPU_BASED_TPR_SHADOW |
  1000. CPU_BASED_USE_MSR_BITMAPS |
  1001. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1002. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1003. &_cpu_based_exec_control) < 0)
  1004. return -EIO;
  1005. #ifdef CONFIG_X86_64
  1006. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  1007. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  1008. ~CPU_BASED_CR8_STORE_EXITING;
  1009. #endif
  1010. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  1011. min2 = 0;
  1012. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1013. SECONDARY_EXEC_WBINVD_EXITING |
  1014. SECONDARY_EXEC_ENABLE_VPID |
  1015. SECONDARY_EXEC_ENABLE_EPT;
  1016. if (adjust_vmx_controls(min2, opt2,
  1017. MSR_IA32_VMX_PROCBASED_CTLS2,
  1018. &_cpu_based_2nd_exec_control) < 0)
  1019. return -EIO;
  1020. }
  1021. #ifndef CONFIG_X86_64
  1022. if (!(_cpu_based_2nd_exec_control &
  1023. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1024. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1025. #endif
  1026. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1027. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  1028. enabled */
  1029. min &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1030. CPU_BASED_CR3_STORE_EXITING |
  1031. CPU_BASED_INVLPG_EXITING);
  1032. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1033. &_cpu_based_exec_control) < 0)
  1034. return -EIO;
  1035. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1036. vmx_capability.ept, vmx_capability.vpid);
  1037. }
  1038. if (!cpu_has_vmx_vpid())
  1039. enable_vpid = 0;
  1040. if (!cpu_has_vmx_ept())
  1041. enable_ept = 0;
  1042. if (!(vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1043. flexpriority_enabled = 0;
  1044. min = 0;
  1045. #ifdef CONFIG_X86_64
  1046. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1047. #endif
  1048. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  1049. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1050. &_vmexit_control) < 0)
  1051. return -EIO;
  1052. min = 0;
  1053. opt = VM_ENTRY_LOAD_IA32_PAT;
  1054. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1055. &_vmentry_control) < 0)
  1056. return -EIO;
  1057. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1058. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1059. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1060. return -EIO;
  1061. #ifdef CONFIG_X86_64
  1062. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1063. if (vmx_msr_high & (1u<<16))
  1064. return -EIO;
  1065. #endif
  1066. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1067. if (((vmx_msr_high >> 18) & 15) != 6)
  1068. return -EIO;
  1069. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1070. vmcs_conf->order = get_order(vmcs_config.size);
  1071. vmcs_conf->revision_id = vmx_msr_low;
  1072. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1073. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1074. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1075. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1076. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1077. return 0;
  1078. }
  1079. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1080. {
  1081. int node = cpu_to_node(cpu);
  1082. struct page *pages;
  1083. struct vmcs *vmcs;
  1084. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
  1085. if (!pages)
  1086. return NULL;
  1087. vmcs = page_address(pages);
  1088. memset(vmcs, 0, vmcs_config.size);
  1089. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1090. return vmcs;
  1091. }
  1092. static struct vmcs *alloc_vmcs(void)
  1093. {
  1094. return alloc_vmcs_cpu(raw_smp_processor_id());
  1095. }
  1096. static void free_vmcs(struct vmcs *vmcs)
  1097. {
  1098. free_pages((unsigned long)vmcs, vmcs_config.order);
  1099. }
  1100. static void free_kvm_area(void)
  1101. {
  1102. int cpu;
  1103. for_each_online_cpu(cpu)
  1104. free_vmcs(per_cpu(vmxarea, cpu));
  1105. }
  1106. static __init int alloc_kvm_area(void)
  1107. {
  1108. int cpu;
  1109. for_each_online_cpu(cpu) {
  1110. struct vmcs *vmcs;
  1111. vmcs = alloc_vmcs_cpu(cpu);
  1112. if (!vmcs) {
  1113. free_kvm_area();
  1114. return -ENOMEM;
  1115. }
  1116. per_cpu(vmxarea, cpu) = vmcs;
  1117. }
  1118. return 0;
  1119. }
  1120. static __init int hardware_setup(void)
  1121. {
  1122. if (setup_vmcs_config(&vmcs_config) < 0)
  1123. return -EIO;
  1124. if (boot_cpu_has(X86_FEATURE_NX))
  1125. kvm_enable_efer_bits(EFER_NX);
  1126. return alloc_kvm_area();
  1127. }
  1128. static __exit void hardware_unsetup(void)
  1129. {
  1130. free_kvm_area();
  1131. }
  1132. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1133. {
  1134. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1135. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1136. vmcs_write16(sf->selector, save->selector);
  1137. vmcs_writel(sf->base, save->base);
  1138. vmcs_write32(sf->limit, save->limit);
  1139. vmcs_write32(sf->ar_bytes, save->ar);
  1140. } else {
  1141. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1142. << AR_DPL_SHIFT;
  1143. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1144. }
  1145. }
  1146. static void enter_pmode(struct kvm_vcpu *vcpu)
  1147. {
  1148. unsigned long flags;
  1149. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1150. vmx->emulation_required = 1;
  1151. vcpu->arch.rmode.active = 0;
  1152. vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
  1153. vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
  1154. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
  1155. flags = vmcs_readl(GUEST_RFLAGS);
  1156. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1157. flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
  1158. vmcs_writel(GUEST_RFLAGS, flags);
  1159. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1160. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1161. update_exception_bitmap(vcpu);
  1162. if (emulate_invalid_guest_state)
  1163. return;
  1164. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1165. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1166. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1167. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1168. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1169. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1170. vmcs_write16(GUEST_CS_SELECTOR,
  1171. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1172. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1173. }
  1174. static gva_t rmode_tss_base(struct kvm *kvm)
  1175. {
  1176. if (!kvm->arch.tss_addr) {
  1177. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  1178. kvm->memslots[0].npages - 3;
  1179. return base_gfn << PAGE_SHIFT;
  1180. }
  1181. return kvm->arch.tss_addr;
  1182. }
  1183. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1184. {
  1185. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1186. save->selector = vmcs_read16(sf->selector);
  1187. save->base = vmcs_readl(sf->base);
  1188. save->limit = vmcs_read32(sf->limit);
  1189. save->ar = vmcs_read32(sf->ar_bytes);
  1190. vmcs_write16(sf->selector, save->base >> 4);
  1191. vmcs_write32(sf->base, save->base & 0xfffff);
  1192. vmcs_write32(sf->limit, 0xffff);
  1193. vmcs_write32(sf->ar_bytes, 0xf3);
  1194. }
  1195. static void enter_rmode(struct kvm_vcpu *vcpu)
  1196. {
  1197. unsigned long flags;
  1198. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1199. vmx->emulation_required = 1;
  1200. vcpu->arch.rmode.active = 1;
  1201. vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1202. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1203. vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1204. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1205. vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1206. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1207. flags = vmcs_readl(GUEST_RFLAGS);
  1208. vcpu->arch.rmode.save_iopl
  1209. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1210. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1211. vmcs_writel(GUEST_RFLAGS, flags);
  1212. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1213. update_exception_bitmap(vcpu);
  1214. if (emulate_invalid_guest_state)
  1215. goto continue_rmode;
  1216. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1217. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1218. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1219. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1220. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1221. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1222. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1223. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1224. fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1225. fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1226. fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1227. fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1228. continue_rmode:
  1229. kvm_mmu_reset_context(vcpu);
  1230. init_rmode(vcpu->kvm);
  1231. }
  1232. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1233. {
  1234. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1235. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1236. vcpu->arch.shadow_efer = efer;
  1237. if (!msr)
  1238. return;
  1239. if (efer & EFER_LMA) {
  1240. vmcs_write32(VM_ENTRY_CONTROLS,
  1241. vmcs_read32(VM_ENTRY_CONTROLS) |
  1242. VM_ENTRY_IA32E_MODE);
  1243. msr->data = efer;
  1244. } else {
  1245. vmcs_write32(VM_ENTRY_CONTROLS,
  1246. vmcs_read32(VM_ENTRY_CONTROLS) &
  1247. ~VM_ENTRY_IA32E_MODE);
  1248. msr->data = efer & ~EFER_LME;
  1249. }
  1250. setup_msrs(vmx);
  1251. }
  1252. #ifdef CONFIG_X86_64
  1253. static void enter_lmode(struct kvm_vcpu *vcpu)
  1254. {
  1255. u32 guest_tr_ar;
  1256. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1257. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1258. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1259. __func__);
  1260. vmcs_write32(GUEST_TR_AR_BYTES,
  1261. (guest_tr_ar & ~AR_TYPE_MASK)
  1262. | AR_TYPE_BUSY_64_TSS);
  1263. }
  1264. vcpu->arch.shadow_efer |= EFER_LMA;
  1265. vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
  1266. }
  1267. static void exit_lmode(struct kvm_vcpu *vcpu)
  1268. {
  1269. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1270. vmcs_write32(VM_ENTRY_CONTROLS,
  1271. vmcs_read32(VM_ENTRY_CONTROLS)
  1272. & ~VM_ENTRY_IA32E_MODE);
  1273. }
  1274. #endif
  1275. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1276. {
  1277. vpid_sync_vcpu_all(to_vmx(vcpu));
  1278. if (enable_ept)
  1279. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1280. }
  1281. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1282. {
  1283. vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
  1284. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1285. }
  1286. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1287. {
  1288. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1289. if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
  1290. printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
  1291. return;
  1292. }
  1293. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1294. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1295. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1296. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1297. }
  1298. }
  1299. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1300. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1301. unsigned long cr0,
  1302. struct kvm_vcpu *vcpu)
  1303. {
  1304. if (!(cr0 & X86_CR0_PG)) {
  1305. /* From paging/starting to nonpaging */
  1306. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1307. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1308. (CPU_BASED_CR3_LOAD_EXITING |
  1309. CPU_BASED_CR3_STORE_EXITING));
  1310. vcpu->arch.cr0 = cr0;
  1311. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1312. *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
  1313. *hw_cr0 &= ~X86_CR0_WP;
  1314. } else if (!is_paging(vcpu)) {
  1315. /* From nonpaging to paging */
  1316. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1317. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1318. ~(CPU_BASED_CR3_LOAD_EXITING |
  1319. CPU_BASED_CR3_STORE_EXITING));
  1320. vcpu->arch.cr0 = cr0;
  1321. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1322. if (!(vcpu->arch.cr0 & X86_CR0_WP))
  1323. *hw_cr0 &= ~X86_CR0_WP;
  1324. }
  1325. }
  1326. static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
  1327. struct kvm_vcpu *vcpu)
  1328. {
  1329. if (!is_paging(vcpu)) {
  1330. *hw_cr4 &= ~X86_CR4_PAE;
  1331. *hw_cr4 |= X86_CR4_PSE;
  1332. } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
  1333. *hw_cr4 &= ~X86_CR4_PAE;
  1334. }
  1335. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1336. {
  1337. unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
  1338. KVM_VM_CR0_ALWAYS_ON;
  1339. vmx_fpu_deactivate(vcpu);
  1340. if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
  1341. enter_pmode(vcpu);
  1342. if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
  1343. enter_rmode(vcpu);
  1344. #ifdef CONFIG_X86_64
  1345. if (vcpu->arch.shadow_efer & EFER_LME) {
  1346. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1347. enter_lmode(vcpu);
  1348. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1349. exit_lmode(vcpu);
  1350. }
  1351. #endif
  1352. if (enable_ept)
  1353. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1354. vmcs_writel(CR0_READ_SHADOW, cr0);
  1355. vmcs_writel(GUEST_CR0, hw_cr0);
  1356. vcpu->arch.cr0 = cr0;
  1357. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1358. vmx_fpu_activate(vcpu);
  1359. }
  1360. static u64 construct_eptp(unsigned long root_hpa)
  1361. {
  1362. u64 eptp;
  1363. /* TODO write the value reading from MSR */
  1364. eptp = VMX_EPT_DEFAULT_MT |
  1365. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1366. eptp |= (root_hpa & PAGE_MASK);
  1367. return eptp;
  1368. }
  1369. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1370. {
  1371. unsigned long guest_cr3;
  1372. u64 eptp;
  1373. guest_cr3 = cr3;
  1374. if (enable_ept) {
  1375. eptp = construct_eptp(cr3);
  1376. vmcs_write64(EPT_POINTER, eptp);
  1377. ept_sync_context(eptp);
  1378. ept_load_pdptrs(vcpu);
  1379. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1380. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1381. }
  1382. vmx_flush_tlb(vcpu);
  1383. vmcs_writel(GUEST_CR3, guest_cr3);
  1384. if (vcpu->arch.cr0 & X86_CR0_PE)
  1385. vmx_fpu_deactivate(vcpu);
  1386. }
  1387. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1388. {
  1389. unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
  1390. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1391. vcpu->arch.cr4 = cr4;
  1392. if (enable_ept)
  1393. ept_update_paging_mode_cr4(&hw_cr4, vcpu);
  1394. vmcs_writel(CR4_READ_SHADOW, cr4);
  1395. vmcs_writel(GUEST_CR4, hw_cr4);
  1396. }
  1397. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1398. {
  1399. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1400. return vmcs_readl(sf->base);
  1401. }
  1402. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1403. struct kvm_segment *var, int seg)
  1404. {
  1405. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1406. u32 ar;
  1407. var->base = vmcs_readl(sf->base);
  1408. var->limit = vmcs_read32(sf->limit);
  1409. var->selector = vmcs_read16(sf->selector);
  1410. ar = vmcs_read32(sf->ar_bytes);
  1411. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  1412. ar = 0;
  1413. var->type = ar & 15;
  1414. var->s = (ar >> 4) & 1;
  1415. var->dpl = (ar >> 5) & 3;
  1416. var->present = (ar >> 7) & 1;
  1417. var->avl = (ar >> 12) & 1;
  1418. var->l = (ar >> 13) & 1;
  1419. var->db = (ar >> 14) & 1;
  1420. var->g = (ar >> 15) & 1;
  1421. var->unusable = (ar >> 16) & 1;
  1422. }
  1423. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1424. {
  1425. struct kvm_segment kvm_seg;
  1426. if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
  1427. return 0;
  1428. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1429. return 3;
  1430. vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
  1431. return kvm_seg.selector & 3;
  1432. }
  1433. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1434. {
  1435. u32 ar;
  1436. if (var->unusable)
  1437. ar = 1 << 16;
  1438. else {
  1439. ar = var->type & 15;
  1440. ar |= (var->s & 1) << 4;
  1441. ar |= (var->dpl & 3) << 5;
  1442. ar |= (var->present & 1) << 7;
  1443. ar |= (var->avl & 1) << 12;
  1444. ar |= (var->l & 1) << 13;
  1445. ar |= (var->db & 1) << 14;
  1446. ar |= (var->g & 1) << 15;
  1447. }
  1448. if (ar == 0) /* a 0 value means unusable */
  1449. ar = AR_UNUSABLE_MASK;
  1450. return ar;
  1451. }
  1452. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1453. struct kvm_segment *var, int seg)
  1454. {
  1455. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1456. u32 ar;
  1457. if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
  1458. vcpu->arch.rmode.tr.selector = var->selector;
  1459. vcpu->arch.rmode.tr.base = var->base;
  1460. vcpu->arch.rmode.tr.limit = var->limit;
  1461. vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
  1462. return;
  1463. }
  1464. vmcs_writel(sf->base, var->base);
  1465. vmcs_write32(sf->limit, var->limit);
  1466. vmcs_write16(sf->selector, var->selector);
  1467. if (vcpu->arch.rmode.active && var->s) {
  1468. /*
  1469. * Hack real-mode segments into vm86 compatibility.
  1470. */
  1471. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1472. vmcs_writel(sf->base, 0xf0000);
  1473. ar = 0xf3;
  1474. } else
  1475. ar = vmx_segment_access_rights(var);
  1476. vmcs_write32(sf->ar_bytes, ar);
  1477. }
  1478. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1479. {
  1480. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1481. *db = (ar >> 14) & 1;
  1482. *l = (ar >> 13) & 1;
  1483. }
  1484. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1485. {
  1486. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1487. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1488. }
  1489. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1490. {
  1491. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1492. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1493. }
  1494. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1495. {
  1496. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1497. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1498. }
  1499. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1500. {
  1501. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1502. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1503. }
  1504. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1505. {
  1506. struct kvm_segment var;
  1507. u32 ar;
  1508. vmx_get_segment(vcpu, &var, seg);
  1509. ar = vmx_segment_access_rights(&var);
  1510. if (var.base != (var.selector << 4))
  1511. return false;
  1512. if (var.limit != 0xffff)
  1513. return false;
  1514. if (ar != 0xf3)
  1515. return false;
  1516. return true;
  1517. }
  1518. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  1519. {
  1520. struct kvm_segment cs;
  1521. unsigned int cs_rpl;
  1522. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1523. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  1524. if (cs.unusable)
  1525. return false;
  1526. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  1527. return false;
  1528. if (!cs.s)
  1529. return false;
  1530. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  1531. if (cs.dpl > cs_rpl)
  1532. return false;
  1533. } else {
  1534. if (cs.dpl != cs_rpl)
  1535. return false;
  1536. }
  1537. if (!cs.present)
  1538. return false;
  1539. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  1540. return true;
  1541. }
  1542. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  1543. {
  1544. struct kvm_segment ss;
  1545. unsigned int ss_rpl;
  1546. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1547. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  1548. if (ss.unusable)
  1549. return true;
  1550. if (ss.type != 3 && ss.type != 7)
  1551. return false;
  1552. if (!ss.s)
  1553. return false;
  1554. if (ss.dpl != ss_rpl) /* DPL != RPL */
  1555. return false;
  1556. if (!ss.present)
  1557. return false;
  1558. return true;
  1559. }
  1560. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1561. {
  1562. struct kvm_segment var;
  1563. unsigned int rpl;
  1564. vmx_get_segment(vcpu, &var, seg);
  1565. rpl = var.selector & SELECTOR_RPL_MASK;
  1566. if (var.unusable)
  1567. return true;
  1568. if (!var.s)
  1569. return false;
  1570. if (!var.present)
  1571. return false;
  1572. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  1573. if (var.dpl < rpl) /* DPL < RPL */
  1574. return false;
  1575. }
  1576. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  1577. * rights flags
  1578. */
  1579. return true;
  1580. }
  1581. static bool tr_valid(struct kvm_vcpu *vcpu)
  1582. {
  1583. struct kvm_segment tr;
  1584. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  1585. if (tr.unusable)
  1586. return false;
  1587. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1588. return false;
  1589. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  1590. return false;
  1591. if (!tr.present)
  1592. return false;
  1593. return true;
  1594. }
  1595. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  1596. {
  1597. struct kvm_segment ldtr;
  1598. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  1599. if (ldtr.unusable)
  1600. return true;
  1601. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1602. return false;
  1603. if (ldtr.type != 2)
  1604. return false;
  1605. if (!ldtr.present)
  1606. return false;
  1607. return true;
  1608. }
  1609. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  1610. {
  1611. struct kvm_segment cs, ss;
  1612. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1613. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1614. return ((cs.selector & SELECTOR_RPL_MASK) ==
  1615. (ss.selector & SELECTOR_RPL_MASK));
  1616. }
  1617. /*
  1618. * Check if guest state is valid. Returns true if valid, false if
  1619. * not.
  1620. * We assume that registers are always usable
  1621. */
  1622. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  1623. {
  1624. /* real mode guest state checks */
  1625. if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
  1626. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  1627. return false;
  1628. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  1629. return false;
  1630. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  1631. return false;
  1632. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  1633. return false;
  1634. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  1635. return false;
  1636. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  1637. return false;
  1638. } else {
  1639. /* protected mode guest state checks */
  1640. if (!cs_ss_rpl_check(vcpu))
  1641. return false;
  1642. if (!code_segment_valid(vcpu))
  1643. return false;
  1644. if (!stack_segment_valid(vcpu))
  1645. return false;
  1646. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  1647. return false;
  1648. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  1649. return false;
  1650. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  1651. return false;
  1652. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  1653. return false;
  1654. if (!tr_valid(vcpu))
  1655. return false;
  1656. if (!ldtr_valid(vcpu))
  1657. return false;
  1658. }
  1659. /* TODO:
  1660. * - Add checks on RIP
  1661. * - Add checks on RFLAGS
  1662. */
  1663. return true;
  1664. }
  1665. static int init_rmode_tss(struct kvm *kvm)
  1666. {
  1667. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1668. u16 data = 0;
  1669. int ret = 0;
  1670. int r;
  1671. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1672. if (r < 0)
  1673. goto out;
  1674. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1675. r = kvm_write_guest_page(kvm, fn++, &data,
  1676. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  1677. if (r < 0)
  1678. goto out;
  1679. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1680. if (r < 0)
  1681. goto out;
  1682. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1683. if (r < 0)
  1684. goto out;
  1685. data = ~0;
  1686. r = kvm_write_guest_page(kvm, fn, &data,
  1687. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1688. sizeof(u8));
  1689. if (r < 0)
  1690. goto out;
  1691. ret = 1;
  1692. out:
  1693. return ret;
  1694. }
  1695. static int init_rmode_identity_map(struct kvm *kvm)
  1696. {
  1697. int i, r, ret;
  1698. pfn_t identity_map_pfn;
  1699. u32 tmp;
  1700. if (!enable_ept)
  1701. return 1;
  1702. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1703. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1704. "haven't been allocated!\n");
  1705. return 0;
  1706. }
  1707. if (likely(kvm->arch.ept_identity_pagetable_done))
  1708. return 1;
  1709. ret = 0;
  1710. identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
  1711. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1712. if (r < 0)
  1713. goto out;
  1714. /* Set up identity-mapping pagetable for EPT in real mode */
  1715. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1716. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1717. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1718. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1719. &tmp, i * sizeof(tmp), sizeof(tmp));
  1720. if (r < 0)
  1721. goto out;
  1722. }
  1723. kvm->arch.ept_identity_pagetable_done = true;
  1724. ret = 1;
  1725. out:
  1726. return ret;
  1727. }
  1728. static void seg_setup(int seg)
  1729. {
  1730. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1731. vmcs_write16(sf->selector, 0);
  1732. vmcs_writel(sf->base, 0);
  1733. vmcs_write32(sf->limit, 0xffff);
  1734. vmcs_write32(sf->ar_bytes, 0xf3);
  1735. }
  1736. static int alloc_apic_access_page(struct kvm *kvm)
  1737. {
  1738. struct kvm_userspace_memory_region kvm_userspace_mem;
  1739. int r = 0;
  1740. down_write(&kvm->slots_lock);
  1741. if (kvm->arch.apic_access_page)
  1742. goto out;
  1743. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1744. kvm_userspace_mem.flags = 0;
  1745. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1746. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1747. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1748. if (r)
  1749. goto out;
  1750. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1751. out:
  1752. up_write(&kvm->slots_lock);
  1753. return r;
  1754. }
  1755. static int alloc_identity_pagetable(struct kvm *kvm)
  1756. {
  1757. struct kvm_userspace_memory_region kvm_userspace_mem;
  1758. int r = 0;
  1759. down_write(&kvm->slots_lock);
  1760. if (kvm->arch.ept_identity_pagetable)
  1761. goto out;
  1762. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  1763. kvm_userspace_mem.flags = 0;
  1764. kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1765. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1766. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1767. if (r)
  1768. goto out;
  1769. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  1770. VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
  1771. out:
  1772. up_write(&kvm->slots_lock);
  1773. return r;
  1774. }
  1775. static void allocate_vpid(struct vcpu_vmx *vmx)
  1776. {
  1777. int vpid;
  1778. vmx->vpid = 0;
  1779. if (!enable_vpid)
  1780. return;
  1781. spin_lock(&vmx_vpid_lock);
  1782. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1783. if (vpid < VMX_NR_VPIDS) {
  1784. vmx->vpid = vpid;
  1785. __set_bit(vpid, vmx_vpid_bitmap);
  1786. }
  1787. spin_unlock(&vmx_vpid_lock);
  1788. }
  1789. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  1790. {
  1791. int f = sizeof(unsigned long);
  1792. if (!cpu_has_vmx_msr_bitmap())
  1793. return;
  1794. /*
  1795. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1796. * have the write-low and read-high bitmap offsets the wrong way round.
  1797. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1798. */
  1799. if (msr <= 0x1fff) {
  1800. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  1801. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  1802. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1803. msr &= 0x1fff;
  1804. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  1805. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  1806. }
  1807. }
  1808. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  1809. {
  1810. if (!longmode_only)
  1811. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  1812. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  1813. }
  1814. /*
  1815. * Sets up the vmcs for emulated real mode.
  1816. */
  1817. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1818. {
  1819. u32 host_sysenter_cs, msr_low, msr_high;
  1820. u32 junk;
  1821. u64 host_pat, tsc_this, tsc_base;
  1822. unsigned long a;
  1823. struct descriptor_table dt;
  1824. int i;
  1825. unsigned long kvm_vmx_return;
  1826. u32 exec_control;
  1827. /* I/O */
  1828. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  1829. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  1830. if (cpu_has_vmx_msr_bitmap())
  1831. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  1832. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1833. /* Control */
  1834. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1835. vmcs_config.pin_based_exec_ctrl);
  1836. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1837. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1838. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1839. #ifdef CONFIG_X86_64
  1840. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1841. CPU_BASED_CR8_LOAD_EXITING;
  1842. #endif
  1843. }
  1844. if (!enable_ept)
  1845. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  1846. CPU_BASED_CR3_LOAD_EXITING |
  1847. CPU_BASED_INVLPG_EXITING;
  1848. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1849. if (cpu_has_secondary_exec_ctrls()) {
  1850. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1851. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1852. exec_control &=
  1853. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1854. if (vmx->vpid == 0)
  1855. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  1856. if (!enable_ept)
  1857. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  1858. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1859. }
  1860. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1861. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1862. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1863. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1864. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1865. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1866. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1867. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1868. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1869. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  1870. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  1871. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1872. #ifdef CONFIG_X86_64
  1873. rdmsrl(MSR_FS_BASE, a);
  1874. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1875. rdmsrl(MSR_GS_BASE, a);
  1876. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1877. #else
  1878. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1879. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1880. #endif
  1881. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1882. kvm_get_idt(&dt);
  1883. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1884. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1885. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1886. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1887. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1888. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1889. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1890. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1891. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1892. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1893. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1894. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1895. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  1896. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  1897. host_pat = msr_low | ((u64) msr_high << 32);
  1898. vmcs_write64(HOST_IA32_PAT, host_pat);
  1899. }
  1900. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  1901. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  1902. host_pat = msr_low | ((u64) msr_high << 32);
  1903. /* Write the default value follow host pat */
  1904. vmcs_write64(GUEST_IA32_PAT, host_pat);
  1905. /* Keep arch.pat sync with GUEST_IA32_PAT */
  1906. vmx->vcpu.arch.pat = host_pat;
  1907. }
  1908. for (i = 0; i < NR_VMX_MSR; ++i) {
  1909. u32 index = vmx_msr_index[i];
  1910. u32 data_low, data_high;
  1911. u64 data;
  1912. int j = vmx->nmsrs;
  1913. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1914. continue;
  1915. if (wrmsr_safe(index, data_low, data_high) < 0)
  1916. continue;
  1917. data = data_low | ((u64)data_high << 32);
  1918. vmx->host_msrs[j].index = index;
  1919. vmx->host_msrs[j].reserved = 0;
  1920. vmx->host_msrs[j].data = data;
  1921. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1922. ++vmx->nmsrs;
  1923. }
  1924. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  1925. /* 22.2.1, 20.8.1 */
  1926. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  1927. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1928. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1929. tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
  1930. rdtscll(tsc_this);
  1931. if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
  1932. tsc_base = tsc_this;
  1933. guest_write_tsc(0, tsc_base);
  1934. return 0;
  1935. }
  1936. static int init_rmode(struct kvm *kvm)
  1937. {
  1938. if (!init_rmode_tss(kvm))
  1939. return 0;
  1940. if (!init_rmode_identity_map(kvm))
  1941. return 0;
  1942. return 1;
  1943. }
  1944. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  1945. {
  1946. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1947. u64 msr;
  1948. int ret;
  1949. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  1950. down_read(&vcpu->kvm->slots_lock);
  1951. if (!init_rmode(vmx->vcpu.kvm)) {
  1952. ret = -ENOMEM;
  1953. goto out;
  1954. }
  1955. vmx->vcpu.arch.rmode.active = 0;
  1956. vmx->soft_vnmi_blocked = 0;
  1957. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1958. kvm_set_cr8(&vmx->vcpu, 0);
  1959. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1960. if (vmx->vcpu.vcpu_id == 0)
  1961. msr |= MSR_IA32_APICBASE_BSP;
  1962. kvm_set_apic_base(&vmx->vcpu, msr);
  1963. fx_init(&vmx->vcpu);
  1964. seg_setup(VCPU_SREG_CS);
  1965. /*
  1966. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1967. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1968. */
  1969. if (vmx->vcpu.vcpu_id == 0) {
  1970. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1971. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1972. } else {
  1973. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  1974. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  1975. }
  1976. seg_setup(VCPU_SREG_DS);
  1977. seg_setup(VCPU_SREG_ES);
  1978. seg_setup(VCPU_SREG_FS);
  1979. seg_setup(VCPU_SREG_GS);
  1980. seg_setup(VCPU_SREG_SS);
  1981. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1982. vmcs_writel(GUEST_TR_BASE, 0);
  1983. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1984. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1985. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1986. vmcs_writel(GUEST_LDTR_BASE, 0);
  1987. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1988. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1989. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1990. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1991. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1992. vmcs_writel(GUEST_RFLAGS, 0x02);
  1993. if (vmx->vcpu.vcpu_id == 0)
  1994. kvm_rip_write(vcpu, 0xfff0);
  1995. else
  1996. kvm_rip_write(vcpu, 0);
  1997. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  1998. vmcs_writel(GUEST_DR7, 0x400);
  1999. vmcs_writel(GUEST_GDTR_BASE, 0);
  2000. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  2001. vmcs_writel(GUEST_IDTR_BASE, 0);
  2002. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  2003. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  2004. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  2005. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  2006. /* Special registers */
  2007. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  2008. setup_msrs(vmx);
  2009. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  2010. if (cpu_has_vmx_tpr_shadow()) {
  2011. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  2012. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  2013. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  2014. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  2015. vmcs_write32(TPR_THRESHOLD, 0);
  2016. }
  2017. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2018. vmcs_write64(APIC_ACCESS_ADDR,
  2019. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  2020. if (vmx->vpid != 0)
  2021. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  2022. vmx->vcpu.arch.cr0 = 0x60000010;
  2023. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  2024. vmx_set_cr4(&vmx->vcpu, 0);
  2025. vmx_set_efer(&vmx->vcpu, 0);
  2026. vmx_fpu_activate(&vmx->vcpu);
  2027. update_exception_bitmap(&vmx->vcpu);
  2028. vpid_sync_vcpu_all(vmx);
  2029. ret = 0;
  2030. /* HACK: Don't enable emulation on guest boot/reset */
  2031. vmx->emulation_required = 0;
  2032. out:
  2033. up_read(&vcpu->kvm->slots_lock);
  2034. return ret;
  2035. }
  2036. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2037. {
  2038. u32 cpu_based_vm_exec_control;
  2039. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2040. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2041. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2042. }
  2043. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2044. {
  2045. u32 cpu_based_vm_exec_control;
  2046. if (!cpu_has_virtual_nmis()) {
  2047. enable_irq_window(vcpu);
  2048. return;
  2049. }
  2050. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2051. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2052. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2053. }
  2054. static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
  2055. {
  2056. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2057. KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
  2058. ++vcpu->stat.irq_injections;
  2059. if (vcpu->arch.rmode.active) {
  2060. vmx->rmode.irq.pending = true;
  2061. vmx->rmode.irq.vector = irq;
  2062. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2063. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2064. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  2065. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2066. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2067. return;
  2068. }
  2069. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2070. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  2071. }
  2072. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  2073. {
  2074. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2075. if (!cpu_has_virtual_nmis()) {
  2076. /*
  2077. * Tracking the NMI-blocked state in software is built upon
  2078. * finding the next open IRQ window. This, in turn, depends on
  2079. * well-behaving guests: They have to keep IRQs disabled at
  2080. * least as long as the NMI handler runs. Otherwise we may
  2081. * cause NMI nesting, maybe breaking the guest. But as this is
  2082. * highly unlikely, we can live with the residual risk.
  2083. */
  2084. vmx->soft_vnmi_blocked = 1;
  2085. vmx->vnmi_blocked_time = 0;
  2086. }
  2087. ++vcpu->stat.nmi_injections;
  2088. if (vcpu->arch.rmode.active) {
  2089. vmx->rmode.irq.pending = true;
  2090. vmx->rmode.irq.vector = NMI_VECTOR;
  2091. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2092. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2093. NMI_VECTOR | INTR_TYPE_SOFT_INTR |
  2094. INTR_INFO_VALID_MASK);
  2095. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2096. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2097. return;
  2098. }
  2099. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2100. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  2101. }
  2102. static void vmx_update_window_states(struct kvm_vcpu *vcpu)
  2103. {
  2104. u32 guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  2105. vcpu->arch.nmi_window_open =
  2106. !(guest_intr & (GUEST_INTR_STATE_STI |
  2107. GUEST_INTR_STATE_MOV_SS |
  2108. GUEST_INTR_STATE_NMI));
  2109. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  2110. vcpu->arch.nmi_window_open = 0;
  2111. vcpu->arch.interrupt_window_open =
  2112. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2113. !(guest_intr & (GUEST_INTR_STATE_STI |
  2114. GUEST_INTR_STATE_MOV_SS)));
  2115. }
  2116. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  2117. {
  2118. vmx_update_window_states(vcpu);
  2119. return vcpu->arch.interrupt_window_open;
  2120. }
  2121. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  2122. struct kvm_run *kvm_run)
  2123. {
  2124. vmx_update_window_states(vcpu);
  2125. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  2126. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2127. GUEST_INTR_STATE_STI |
  2128. GUEST_INTR_STATE_MOV_SS);
  2129. if (vcpu->arch.nmi_pending && !vcpu->arch.nmi_injected) {
  2130. if (vcpu->arch.interrupt.pending) {
  2131. enable_nmi_window(vcpu);
  2132. } else if (vcpu->arch.nmi_window_open) {
  2133. vcpu->arch.nmi_pending = false;
  2134. vcpu->arch.nmi_injected = true;
  2135. } else {
  2136. enable_nmi_window(vcpu);
  2137. return;
  2138. }
  2139. }
  2140. if (vcpu->arch.nmi_injected) {
  2141. vmx_inject_nmi(vcpu);
  2142. if (vcpu->arch.nmi_pending)
  2143. enable_nmi_window(vcpu);
  2144. else if (vcpu->arch.irq_summary
  2145. || kvm_run->request_interrupt_window)
  2146. enable_irq_window(vcpu);
  2147. return;
  2148. }
  2149. if (vcpu->arch.interrupt_window_open) {
  2150. if (vcpu->arch.irq_summary && !vcpu->arch.interrupt.pending)
  2151. kvm_queue_interrupt(vcpu, kvm_pop_irq(vcpu));
  2152. if (vcpu->arch.interrupt.pending)
  2153. vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
  2154. }
  2155. if (!vcpu->arch.interrupt_window_open &&
  2156. (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
  2157. enable_irq_window(vcpu);
  2158. }
  2159. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2160. {
  2161. int ret;
  2162. struct kvm_userspace_memory_region tss_mem = {
  2163. .slot = TSS_PRIVATE_MEMSLOT,
  2164. .guest_phys_addr = addr,
  2165. .memory_size = PAGE_SIZE * 3,
  2166. .flags = 0,
  2167. };
  2168. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2169. if (ret)
  2170. return ret;
  2171. kvm->arch.tss_addr = addr;
  2172. return 0;
  2173. }
  2174. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2175. int vec, u32 err_code)
  2176. {
  2177. /*
  2178. * Instruction with address size override prefix opcode 0x67
  2179. * Cause the #SS fault with 0 error code in VM86 mode.
  2180. */
  2181. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2182. if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
  2183. return 1;
  2184. /*
  2185. * Forward all other exceptions that are valid in real mode.
  2186. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2187. * the required debugging infrastructure rework.
  2188. */
  2189. switch (vec) {
  2190. case DB_VECTOR:
  2191. if (vcpu->guest_debug &
  2192. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  2193. return 0;
  2194. kvm_queue_exception(vcpu, vec);
  2195. return 1;
  2196. case BP_VECTOR:
  2197. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  2198. return 0;
  2199. /* fall through */
  2200. case DE_VECTOR:
  2201. case OF_VECTOR:
  2202. case BR_VECTOR:
  2203. case UD_VECTOR:
  2204. case DF_VECTOR:
  2205. case SS_VECTOR:
  2206. case GP_VECTOR:
  2207. case MF_VECTOR:
  2208. kvm_queue_exception(vcpu, vec);
  2209. return 1;
  2210. }
  2211. return 0;
  2212. }
  2213. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2214. {
  2215. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2216. u32 intr_info, ex_no, error_code;
  2217. unsigned long cr2, rip, dr6;
  2218. u32 vect_info;
  2219. enum emulation_result er;
  2220. vect_info = vmx->idt_vectoring_info;
  2221. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2222. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2223. !is_page_fault(intr_info))
  2224. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  2225. "intr info 0x%x\n", __func__, vect_info, intr_info);
  2226. if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
  2227. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  2228. kvm_push_irq(vcpu, irq);
  2229. }
  2230. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  2231. return 1; /* already handled by vmx_vcpu_run() */
  2232. if (is_no_device(intr_info)) {
  2233. vmx_fpu_activate(vcpu);
  2234. return 1;
  2235. }
  2236. if (is_invalid_opcode(intr_info)) {
  2237. er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
  2238. if (er != EMULATE_DONE)
  2239. kvm_queue_exception(vcpu, UD_VECTOR);
  2240. return 1;
  2241. }
  2242. error_code = 0;
  2243. rip = kvm_rip_read(vcpu);
  2244. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2245. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2246. if (is_page_fault(intr_info)) {
  2247. /* EPT won't cause page fault directly */
  2248. if (enable_ept)
  2249. BUG();
  2250. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2251. KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
  2252. (u32)((u64)cr2 >> 32), handler);
  2253. if (vcpu->arch.interrupt.pending || vcpu->arch.exception.pending)
  2254. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2255. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  2256. }
  2257. if (vcpu->arch.rmode.active &&
  2258. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2259. error_code)) {
  2260. if (vcpu->arch.halt_request) {
  2261. vcpu->arch.halt_request = 0;
  2262. return kvm_emulate_halt(vcpu);
  2263. }
  2264. return 1;
  2265. }
  2266. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  2267. switch (ex_no) {
  2268. case DB_VECTOR:
  2269. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  2270. if (!(vcpu->guest_debug &
  2271. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  2272. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  2273. kvm_queue_exception(vcpu, DB_VECTOR);
  2274. return 1;
  2275. }
  2276. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  2277. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  2278. /* fall through */
  2279. case BP_VECTOR:
  2280. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2281. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  2282. kvm_run->debug.arch.exception = ex_no;
  2283. break;
  2284. default:
  2285. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2286. kvm_run->ex.exception = ex_no;
  2287. kvm_run->ex.error_code = error_code;
  2288. break;
  2289. }
  2290. return 0;
  2291. }
  2292. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  2293. struct kvm_run *kvm_run)
  2294. {
  2295. ++vcpu->stat.irq_exits;
  2296. KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
  2297. return 1;
  2298. }
  2299. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2300. {
  2301. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  2302. return 0;
  2303. }
  2304. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2305. {
  2306. unsigned long exit_qualification;
  2307. int size, in, string;
  2308. unsigned port;
  2309. ++vcpu->stat.io_exits;
  2310. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2311. string = (exit_qualification & 16) != 0;
  2312. if (string) {
  2313. if (emulate_instruction(vcpu,
  2314. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  2315. return 0;
  2316. return 1;
  2317. }
  2318. size = (exit_qualification & 7) + 1;
  2319. in = (exit_qualification & 8) != 0;
  2320. port = exit_qualification >> 16;
  2321. skip_emulated_instruction(vcpu);
  2322. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  2323. }
  2324. static void
  2325. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2326. {
  2327. /*
  2328. * Patch in the VMCALL instruction:
  2329. */
  2330. hypercall[0] = 0x0f;
  2331. hypercall[1] = 0x01;
  2332. hypercall[2] = 0xc1;
  2333. }
  2334. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2335. {
  2336. unsigned long exit_qualification;
  2337. int cr;
  2338. int reg;
  2339. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2340. cr = exit_qualification & 15;
  2341. reg = (exit_qualification >> 8) & 15;
  2342. switch ((exit_qualification >> 4) & 3) {
  2343. case 0: /* mov to cr */
  2344. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
  2345. (u32)kvm_register_read(vcpu, reg),
  2346. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2347. handler);
  2348. switch (cr) {
  2349. case 0:
  2350. kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
  2351. skip_emulated_instruction(vcpu);
  2352. return 1;
  2353. case 3:
  2354. kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
  2355. skip_emulated_instruction(vcpu);
  2356. return 1;
  2357. case 4:
  2358. kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
  2359. skip_emulated_instruction(vcpu);
  2360. return 1;
  2361. case 8:
  2362. kvm_set_cr8(vcpu, kvm_register_read(vcpu, reg));
  2363. skip_emulated_instruction(vcpu);
  2364. if (irqchip_in_kernel(vcpu->kvm))
  2365. return 1;
  2366. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  2367. return 0;
  2368. };
  2369. break;
  2370. case 2: /* clts */
  2371. vmx_fpu_deactivate(vcpu);
  2372. vcpu->arch.cr0 &= ~X86_CR0_TS;
  2373. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  2374. vmx_fpu_activate(vcpu);
  2375. KVMTRACE_0D(CLTS, vcpu, handler);
  2376. skip_emulated_instruction(vcpu);
  2377. return 1;
  2378. case 1: /*mov from cr*/
  2379. switch (cr) {
  2380. case 3:
  2381. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2382. KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
  2383. (u32)kvm_register_read(vcpu, reg),
  2384. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2385. handler);
  2386. skip_emulated_instruction(vcpu);
  2387. return 1;
  2388. case 8:
  2389. kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
  2390. KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
  2391. (u32)kvm_register_read(vcpu, reg), handler);
  2392. skip_emulated_instruction(vcpu);
  2393. return 1;
  2394. }
  2395. break;
  2396. case 3: /* lmsw */
  2397. kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  2398. skip_emulated_instruction(vcpu);
  2399. return 1;
  2400. default:
  2401. break;
  2402. }
  2403. kvm_run->exit_reason = 0;
  2404. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2405. (int)(exit_qualification >> 4) & 3, cr);
  2406. return 0;
  2407. }
  2408. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2409. {
  2410. unsigned long exit_qualification;
  2411. unsigned long val;
  2412. int dr, reg;
  2413. dr = vmcs_readl(GUEST_DR7);
  2414. if (dr & DR7_GD) {
  2415. /*
  2416. * As the vm-exit takes precedence over the debug trap, we
  2417. * need to emulate the latter, either for the host or the
  2418. * guest debugging itself.
  2419. */
  2420. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  2421. kvm_run->debug.arch.dr6 = vcpu->arch.dr6;
  2422. kvm_run->debug.arch.dr7 = dr;
  2423. kvm_run->debug.arch.pc =
  2424. vmcs_readl(GUEST_CS_BASE) +
  2425. vmcs_readl(GUEST_RIP);
  2426. kvm_run->debug.arch.exception = DB_VECTOR;
  2427. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2428. return 0;
  2429. } else {
  2430. vcpu->arch.dr7 &= ~DR7_GD;
  2431. vcpu->arch.dr6 |= DR6_BD;
  2432. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2433. kvm_queue_exception(vcpu, DB_VECTOR);
  2434. return 1;
  2435. }
  2436. }
  2437. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2438. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  2439. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  2440. if (exit_qualification & TYPE_MOV_FROM_DR) {
  2441. switch (dr) {
  2442. case 0 ... 3:
  2443. val = vcpu->arch.db[dr];
  2444. break;
  2445. case 6:
  2446. val = vcpu->arch.dr6;
  2447. break;
  2448. case 7:
  2449. val = vcpu->arch.dr7;
  2450. break;
  2451. default:
  2452. val = 0;
  2453. }
  2454. kvm_register_write(vcpu, reg, val);
  2455. KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
  2456. } else {
  2457. val = vcpu->arch.regs[reg];
  2458. switch (dr) {
  2459. case 0 ... 3:
  2460. vcpu->arch.db[dr] = val;
  2461. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  2462. vcpu->arch.eff_db[dr] = val;
  2463. break;
  2464. case 4 ... 5:
  2465. if (vcpu->arch.cr4 & X86_CR4_DE)
  2466. kvm_queue_exception(vcpu, UD_VECTOR);
  2467. break;
  2468. case 6:
  2469. if (val & 0xffffffff00000000ULL) {
  2470. kvm_queue_exception(vcpu, GP_VECTOR);
  2471. break;
  2472. }
  2473. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  2474. break;
  2475. case 7:
  2476. if (val & 0xffffffff00000000ULL) {
  2477. kvm_queue_exception(vcpu, GP_VECTOR);
  2478. break;
  2479. }
  2480. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  2481. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  2482. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2483. vcpu->arch.switch_db_regs =
  2484. (val & DR7_BP_EN_MASK);
  2485. }
  2486. break;
  2487. }
  2488. KVMTRACE_2D(DR_WRITE, vcpu, (u32)dr, (u32)val, handler);
  2489. }
  2490. skip_emulated_instruction(vcpu);
  2491. return 1;
  2492. }
  2493. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2494. {
  2495. kvm_emulate_cpuid(vcpu);
  2496. return 1;
  2497. }
  2498. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2499. {
  2500. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2501. u64 data;
  2502. if (vmx_get_msr(vcpu, ecx, &data)) {
  2503. kvm_inject_gp(vcpu, 0);
  2504. return 1;
  2505. }
  2506. KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2507. handler);
  2508. /* FIXME: handling of bits 32:63 of rax, rdx */
  2509. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2510. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2511. skip_emulated_instruction(vcpu);
  2512. return 1;
  2513. }
  2514. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2515. {
  2516. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2517. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2518. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2519. KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2520. handler);
  2521. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2522. kvm_inject_gp(vcpu, 0);
  2523. return 1;
  2524. }
  2525. skip_emulated_instruction(vcpu);
  2526. return 1;
  2527. }
  2528. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  2529. struct kvm_run *kvm_run)
  2530. {
  2531. return 1;
  2532. }
  2533. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  2534. struct kvm_run *kvm_run)
  2535. {
  2536. u32 cpu_based_vm_exec_control;
  2537. /* clear pending irq */
  2538. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2539. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2540. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2541. KVMTRACE_0D(PEND_INTR, vcpu, handler);
  2542. ++vcpu->stat.irq_window_exits;
  2543. /*
  2544. * If the user space waits to inject interrupts, exit as soon as
  2545. * possible
  2546. */
  2547. if (kvm_run->request_interrupt_window &&
  2548. !vcpu->arch.irq_summary) {
  2549. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2550. return 0;
  2551. }
  2552. return 1;
  2553. }
  2554. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2555. {
  2556. skip_emulated_instruction(vcpu);
  2557. return kvm_emulate_halt(vcpu);
  2558. }
  2559. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2560. {
  2561. skip_emulated_instruction(vcpu);
  2562. kvm_emulate_hypercall(vcpu);
  2563. return 1;
  2564. }
  2565. static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2566. {
  2567. u64 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2568. kvm_mmu_invlpg(vcpu, exit_qualification);
  2569. skip_emulated_instruction(vcpu);
  2570. return 1;
  2571. }
  2572. static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2573. {
  2574. skip_emulated_instruction(vcpu);
  2575. /* TODO: Add support for VT-d/pass-through device */
  2576. return 1;
  2577. }
  2578. static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2579. {
  2580. u64 exit_qualification;
  2581. enum emulation_result er;
  2582. unsigned long offset;
  2583. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2584. offset = exit_qualification & 0xffful;
  2585. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2586. if (er != EMULATE_DONE) {
  2587. printk(KERN_ERR
  2588. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2589. offset);
  2590. return -ENOTSUPP;
  2591. }
  2592. return 1;
  2593. }
  2594. static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2595. {
  2596. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2597. unsigned long exit_qualification;
  2598. u16 tss_selector;
  2599. int reason;
  2600. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2601. reason = (u32)exit_qualification >> 30;
  2602. if (reason == TASK_SWITCH_GATE && vmx->vcpu.arch.nmi_injected &&
  2603. (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2604. (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK)
  2605. == INTR_TYPE_NMI_INTR) {
  2606. vcpu->arch.nmi_injected = false;
  2607. if (cpu_has_virtual_nmis())
  2608. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2609. GUEST_INTR_STATE_NMI);
  2610. }
  2611. tss_selector = exit_qualification;
  2612. if (!kvm_task_switch(vcpu, tss_selector, reason))
  2613. return 0;
  2614. /* clear all local breakpoint enable flags */
  2615. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  2616. /*
  2617. * TODO: What about debug traps on tss switch?
  2618. * Are we supposed to inject them and update dr6?
  2619. */
  2620. return 1;
  2621. }
  2622. static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2623. {
  2624. u64 exit_qualification;
  2625. gpa_t gpa;
  2626. int gla_validity;
  2627. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2628. if (exit_qualification & (1 << 6)) {
  2629. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2630. return -ENOTSUPP;
  2631. }
  2632. gla_validity = (exit_qualification >> 7) & 0x3;
  2633. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2634. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2635. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2636. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2637. (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
  2638. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2639. (long unsigned int)exit_qualification);
  2640. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2641. kvm_run->hw.hardware_exit_reason = 0;
  2642. return -ENOTSUPP;
  2643. }
  2644. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2645. return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2646. }
  2647. static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2648. {
  2649. u32 cpu_based_vm_exec_control;
  2650. /* clear pending NMI */
  2651. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2652. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  2653. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2654. ++vcpu->stat.nmi_window_exits;
  2655. return 1;
  2656. }
  2657. static void handle_invalid_guest_state(struct kvm_vcpu *vcpu,
  2658. struct kvm_run *kvm_run)
  2659. {
  2660. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2661. enum emulation_result err = EMULATE_DONE;
  2662. preempt_enable();
  2663. local_irq_enable();
  2664. while (!guest_state_valid(vcpu)) {
  2665. err = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2666. if (err == EMULATE_DO_MMIO)
  2667. break;
  2668. if (err != EMULATE_DONE) {
  2669. kvm_report_emulation_failure(vcpu, "emulation failure");
  2670. return;
  2671. }
  2672. if (signal_pending(current))
  2673. break;
  2674. if (need_resched())
  2675. schedule();
  2676. }
  2677. local_irq_disable();
  2678. preempt_disable();
  2679. vmx->invalid_state_emulation_result = err;
  2680. }
  2681. /*
  2682. * The exit handlers return 1 if the exit was handled fully and guest execution
  2683. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  2684. * to be done to userspace and return 0.
  2685. */
  2686. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  2687. struct kvm_run *kvm_run) = {
  2688. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  2689. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  2690. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  2691. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  2692. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  2693. [EXIT_REASON_CR_ACCESS] = handle_cr,
  2694. [EXIT_REASON_DR_ACCESS] = handle_dr,
  2695. [EXIT_REASON_CPUID] = handle_cpuid,
  2696. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  2697. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  2698. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  2699. [EXIT_REASON_HLT] = handle_halt,
  2700. [EXIT_REASON_INVLPG] = handle_invlpg,
  2701. [EXIT_REASON_VMCALL] = handle_vmcall,
  2702. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  2703. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  2704. [EXIT_REASON_WBINVD] = handle_wbinvd,
  2705. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  2706. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  2707. };
  2708. static const int kvm_vmx_max_exit_handlers =
  2709. ARRAY_SIZE(kvm_vmx_exit_handlers);
  2710. /*
  2711. * The guest has exited. See if we can fix it or if we need userspace
  2712. * assistance.
  2713. */
  2714. static int vmx_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  2715. {
  2716. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  2717. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2718. u32 vectoring_info = vmx->idt_vectoring_info;
  2719. KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
  2720. (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
  2721. /* If we need to emulate an MMIO from handle_invalid_guest_state
  2722. * we just return 0 */
  2723. if (vmx->emulation_required && emulate_invalid_guest_state) {
  2724. if (guest_state_valid(vcpu))
  2725. vmx->emulation_required = 0;
  2726. return vmx->invalid_state_emulation_result != EMULATE_DO_MMIO;
  2727. }
  2728. /* Access CR3 don't cause VMExit in paging mode, so we need
  2729. * to sync with guest real CR3. */
  2730. if (enable_ept && is_paging(vcpu)) {
  2731. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2732. ept_load_pdptrs(vcpu);
  2733. }
  2734. if (unlikely(vmx->fail)) {
  2735. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2736. kvm_run->fail_entry.hardware_entry_failure_reason
  2737. = vmcs_read32(VM_INSTRUCTION_ERROR);
  2738. return 0;
  2739. }
  2740. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2741. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  2742. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  2743. exit_reason != EXIT_REASON_TASK_SWITCH))
  2744. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  2745. "(0x%x) and exit reason is 0x%x\n",
  2746. __func__, vectoring_info, exit_reason);
  2747. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
  2748. if (vcpu->arch.interrupt_window_open) {
  2749. vmx->soft_vnmi_blocked = 0;
  2750. vcpu->arch.nmi_window_open = 1;
  2751. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  2752. vcpu->arch.nmi_pending) {
  2753. /*
  2754. * This CPU don't support us in finding the end of an
  2755. * NMI-blocked window if the guest runs with IRQs
  2756. * disabled. So we pull the trigger after 1 s of
  2757. * futile waiting, but inform the user about this.
  2758. */
  2759. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  2760. "state on VCPU %d after 1 s timeout\n",
  2761. __func__, vcpu->vcpu_id);
  2762. vmx->soft_vnmi_blocked = 0;
  2763. vmx->vcpu.arch.nmi_window_open = 1;
  2764. }
  2765. }
  2766. if (exit_reason < kvm_vmx_max_exit_handlers
  2767. && kvm_vmx_exit_handlers[exit_reason])
  2768. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  2769. else {
  2770. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2771. kvm_run->hw.hardware_exit_reason = exit_reason;
  2772. }
  2773. return 0;
  2774. }
  2775. static void update_tpr_threshold(struct kvm_vcpu *vcpu)
  2776. {
  2777. int max_irr, tpr;
  2778. if (!vm_need_tpr_shadow(vcpu->kvm))
  2779. return;
  2780. if (!kvm_lapic_enabled(vcpu) ||
  2781. ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
  2782. vmcs_write32(TPR_THRESHOLD, 0);
  2783. return;
  2784. }
  2785. tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
  2786. vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
  2787. }
  2788. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  2789. {
  2790. u32 exit_intr_info;
  2791. u32 idt_vectoring_info;
  2792. bool unblock_nmi;
  2793. u8 vector;
  2794. int type;
  2795. bool idtv_info_valid;
  2796. u32 error;
  2797. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2798. if (cpu_has_virtual_nmis()) {
  2799. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  2800. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  2801. /*
  2802. * SDM 3: 25.7.1.2
  2803. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  2804. * a guest IRET fault.
  2805. */
  2806. if (unblock_nmi && vector != DF_VECTOR)
  2807. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2808. GUEST_INTR_STATE_NMI);
  2809. } else if (unlikely(vmx->soft_vnmi_blocked))
  2810. vmx->vnmi_blocked_time +=
  2811. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  2812. idt_vectoring_info = vmx->idt_vectoring_info;
  2813. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  2814. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  2815. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  2816. if (vmx->vcpu.arch.nmi_injected) {
  2817. /*
  2818. * SDM 3: 25.7.1.2
  2819. * Clear bit "block by NMI" before VM entry if a NMI delivery
  2820. * faulted.
  2821. */
  2822. if (idtv_info_valid && type == INTR_TYPE_NMI_INTR)
  2823. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2824. GUEST_INTR_STATE_NMI);
  2825. else
  2826. vmx->vcpu.arch.nmi_injected = false;
  2827. }
  2828. kvm_clear_exception_queue(&vmx->vcpu);
  2829. if (idtv_info_valid && (type == INTR_TYPE_HARD_EXCEPTION ||
  2830. type == INTR_TYPE_SOFT_EXCEPTION)) {
  2831. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  2832. error = vmcs_read32(IDT_VECTORING_ERROR_CODE);
  2833. kvm_queue_exception_e(&vmx->vcpu, vector, error);
  2834. } else
  2835. kvm_queue_exception(&vmx->vcpu, vector);
  2836. vmx->idt_vectoring_info = 0;
  2837. }
  2838. kvm_clear_interrupt_queue(&vmx->vcpu);
  2839. if (idtv_info_valid && type == INTR_TYPE_EXT_INTR) {
  2840. kvm_queue_interrupt(&vmx->vcpu, vector);
  2841. vmx->idt_vectoring_info = 0;
  2842. }
  2843. }
  2844. static void vmx_intr_assist(struct kvm_vcpu *vcpu)
  2845. {
  2846. update_tpr_threshold(vcpu);
  2847. vmx_update_window_states(vcpu);
  2848. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  2849. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2850. GUEST_INTR_STATE_STI |
  2851. GUEST_INTR_STATE_MOV_SS);
  2852. if (vcpu->arch.nmi_pending && !vcpu->arch.nmi_injected) {
  2853. if (vcpu->arch.interrupt.pending) {
  2854. enable_nmi_window(vcpu);
  2855. } else if (vcpu->arch.nmi_window_open) {
  2856. vcpu->arch.nmi_pending = false;
  2857. vcpu->arch.nmi_injected = true;
  2858. } else {
  2859. enable_nmi_window(vcpu);
  2860. return;
  2861. }
  2862. }
  2863. if (vcpu->arch.nmi_injected) {
  2864. vmx_inject_nmi(vcpu);
  2865. if (vcpu->arch.nmi_pending)
  2866. enable_nmi_window(vcpu);
  2867. else if (kvm_cpu_has_interrupt(vcpu))
  2868. enable_irq_window(vcpu);
  2869. return;
  2870. }
  2871. if (!vcpu->arch.interrupt.pending && kvm_cpu_has_interrupt(vcpu)) {
  2872. if (vcpu->arch.interrupt_window_open)
  2873. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu));
  2874. else
  2875. enable_irq_window(vcpu);
  2876. }
  2877. if (vcpu->arch.interrupt.pending) {
  2878. vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
  2879. if (kvm_cpu_has_interrupt(vcpu))
  2880. enable_irq_window(vcpu);
  2881. }
  2882. }
  2883. /*
  2884. * Failure to inject an interrupt should give us the information
  2885. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  2886. * when fetching the interrupt redirection bitmap in the real-mode
  2887. * tss, this doesn't happen. So we do it ourselves.
  2888. */
  2889. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  2890. {
  2891. vmx->rmode.irq.pending = 0;
  2892. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  2893. return;
  2894. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  2895. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  2896. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  2897. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  2898. return;
  2899. }
  2900. vmx->idt_vectoring_info =
  2901. VECTORING_INFO_VALID_MASK
  2902. | INTR_TYPE_EXT_INTR
  2903. | vmx->rmode.irq.vector;
  2904. }
  2905. #ifdef CONFIG_X86_64
  2906. #define R "r"
  2907. #define Q "q"
  2908. #else
  2909. #define R "e"
  2910. #define Q "l"
  2911. #endif
  2912. static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2913. {
  2914. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2915. u32 intr_info;
  2916. /* Record the guest's net vcpu time for enforced NMI injections. */
  2917. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  2918. vmx->entry_time = ktime_get();
  2919. /* Handle invalid guest state instead of entering VMX */
  2920. if (vmx->emulation_required && emulate_invalid_guest_state) {
  2921. handle_invalid_guest_state(vcpu, kvm_run);
  2922. return;
  2923. }
  2924. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  2925. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  2926. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  2927. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  2928. /*
  2929. * Loading guest fpu may have cleared host cr0.ts
  2930. */
  2931. vmcs_writel(HOST_CR0, read_cr0());
  2932. set_debugreg(vcpu->arch.dr6, 6);
  2933. asm(
  2934. /* Store host registers */
  2935. "push %%"R"dx; push %%"R"bp;"
  2936. "push %%"R"cx \n\t"
  2937. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  2938. "je 1f \n\t"
  2939. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  2940. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  2941. "1: \n\t"
  2942. /* Check if vmlaunch of vmresume is needed */
  2943. "cmpl $0, %c[launched](%0) \n\t"
  2944. /* Load guest registers. Don't clobber flags. */
  2945. "mov %c[cr2](%0), %%"R"ax \n\t"
  2946. "mov %%"R"ax, %%cr2 \n\t"
  2947. "mov %c[rax](%0), %%"R"ax \n\t"
  2948. "mov %c[rbx](%0), %%"R"bx \n\t"
  2949. "mov %c[rdx](%0), %%"R"dx \n\t"
  2950. "mov %c[rsi](%0), %%"R"si \n\t"
  2951. "mov %c[rdi](%0), %%"R"di \n\t"
  2952. "mov %c[rbp](%0), %%"R"bp \n\t"
  2953. #ifdef CONFIG_X86_64
  2954. "mov %c[r8](%0), %%r8 \n\t"
  2955. "mov %c[r9](%0), %%r9 \n\t"
  2956. "mov %c[r10](%0), %%r10 \n\t"
  2957. "mov %c[r11](%0), %%r11 \n\t"
  2958. "mov %c[r12](%0), %%r12 \n\t"
  2959. "mov %c[r13](%0), %%r13 \n\t"
  2960. "mov %c[r14](%0), %%r14 \n\t"
  2961. "mov %c[r15](%0), %%r15 \n\t"
  2962. #endif
  2963. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  2964. /* Enter guest mode */
  2965. "jne .Llaunched \n\t"
  2966. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  2967. "jmp .Lkvm_vmx_return \n\t"
  2968. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  2969. ".Lkvm_vmx_return: "
  2970. /* Save guest registers, load host registers, keep flags */
  2971. "xchg %0, (%%"R"sp) \n\t"
  2972. "mov %%"R"ax, %c[rax](%0) \n\t"
  2973. "mov %%"R"bx, %c[rbx](%0) \n\t"
  2974. "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
  2975. "mov %%"R"dx, %c[rdx](%0) \n\t"
  2976. "mov %%"R"si, %c[rsi](%0) \n\t"
  2977. "mov %%"R"di, %c[rdi](%0) \n\t"
  2978. "mov %%"R"bp, %c[rbp](%0) \n\t"
  2979. #ifdef CONFIG_X86_64
  2980. "mov %%r8, %c[r8](%0) \n\t"
  2981. "mov %%r9, %c[r9](%0) \n\t"
  2982. "mov %%r10, %c[r10](%0) \n\t"
  2983. "mov %%r11, %c[r11](%0) \n\t"
  2984. "mov %%r12, %c[r12](%0) \n\t"
  2985. "mov %%r13, %c[r13](%0) \n\t"
  2986. "mov %%r14, %c[r14](%0) \n\t"
  2987. "mov %%r15, %c[r15](%0) \n\t"
  2988. #endif
  2989. "mov %%cr2, %%"R"ax \n\t"
  2990. "mov %%"R"ax, %c[cr2](%0) \n\t"
  2991. "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
  2992. "setbe %c[fail](%0) \n\t"
  2993. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  2994. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  2995. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  2996. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  2997. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  2998. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  2999. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  3000. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  3001. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  3002. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  3003. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  3004. #ifdef CONFIG_X86_64
  3005. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  3006. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  3007. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  3008. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  3009. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  3010. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  3011. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  3012. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  3013. #endif
  3014. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  3015. : "cc", "memory"
  3016. , R"bx", R"di", R"si"
  3017. #ifdef CONFIG_X86_64
  3018. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  3019. #endif
  3020. );
  3021. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  3022. vcpu->arch.regs_dirty = 0;
  3023. get_debugreg(vcpu->arch.dr6, 6);
  3024. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  3025. if (vmx->rmode.irq.pending)
  3026. fixup_rmode_irq(vmx);
  3027. vmx_update_window_states(vcpu);
  3028. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  3029. vmx->launched = 1;
  3030. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  3031. /* We need to handle NMIs before interrupts are enabled */
  3032. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  3033. (intr_info & INTR_INFO_VALID_MASK)) {
  3034. KVMTRACE_0D(NMI, vcpu, handler);
  3035. asm("int $2");
  3036. }
  3037. vmx_complete_interrupts(vmx);
  3038. }
  3039. #undef R
  3040. #undef Q
  3041. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  3042. {
  3043. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3044. if (vmx->vmcs) {
  3045. vcpu_clear(vmx);
  3046. free_vmcs(vmx->vmcs);
  3047. vmx->vmcs = NULL;
  3048. }
  3049. }
  3050. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  3051. {
  3052. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3053. spin_lock(&vmx_vpid_lock);
  3054. if (vmx->vpid != 0)
  3055. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3056. spin_unlock(&vmx_vpid_lock);
  3057. vmx_free_vmcs(vcpu);
  3058. kfree(vmx->host_msrs);
  3059. kfree(vmx->guest_msrs);
  3060. kvm_vcpu_uninit(vcpu);
  3061. kmem_cache_free(kvm_vcpu_cache, vmx);
  3062. }
  3063. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  3064. {
  3065. int err;
  3066. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  3067. int cpu;
  3068. if (!vmx)
  3069. return ERR_PTR(-ENOMEM);
  3070. allocate_vpid(vmx);
  3071. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  3072. if (err)
  3073. goto free_vcpu;
  3074. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3075. if (!vmx->guest_msrs) {
  3076. err = -ENOMEM;
  3077. goto uninit_vcpu;
  3078. }
  3079. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3080. if (!vmx->host_msrs)
  3081. goto free_guest_msrs;
  3082. vmx->vmcs = alloc_vmcs();
  3083. if (!vmx->vmcs)
  3084. goto free_msrs;
  3085. vmcs_clear(vmx->vmcs);
  3086. cpu = get_cpu();
  3087. vmx_vcpu_load(&vmx->vcpu, cpu);
  3088. err = vmx_vcpu_setup(vmx);
  3089. vmx_vcpu_put(&vmx->vcpu);
  3090. put_cpu();
  3091. if (err)
  3092. goto free_vmcs;
  3093. if (vm_need_virtualize_apic_accesses(kvm))
  3094. if (alloc_apic_access_page(kvm) != 0)
  3095. goto free_vmcs;
  3096. if (enable_ept)
  3097. if (alloc_identity_pagetable(kvm) != 0)
  3098. goto free_vmcs;
  3099. return &vmx->vcpu;
  3100. free_vmcs:
  3101. free_vmcs(vmx->vmcs);
  3102. free_msrs:
  3103. kfree(vmx->host_msrs);
  3104. free_guest_msrs:
  3105. kfree(vmx->guest_msrs);
  3106. uninit_vcpu:
  3107. kvm_vcpu_uninit(&vmx->vcpu);
  3108. free_vcpu:
  3109. kmem_cache_free(kvm_vcpu_cache, vmx);
  3110. return ERR_PTR(err);
  3111. }
  3112. static void __init vmx_check_processor_compat(void *rtn)
  3113. {
  3114. struct vmcs_config vmcs_conf;
  3115. *(int *)rtn = 0;
  3116. if (setup_vmcs_config(&vmcs_conf) < 0)
  3117. *(int *)rtn = -EIO;
  3118. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  3119. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  3120. smp_processor_id());
  3121. *(int *)rtn = -EIO;
  3122. }
  3123. }
  3124. static int get_ept_level(void)
  3125. {
  3126. return VMX_EPT_DEFAULT_GAW + 1;
  3127. }
  3128. static int vmx_get_mt_mask_shift(void)
  3129. {
  3130. return VMX_EPT_MT_EPTE_SHIFT;
  3131. }
  3132. static struct kvm_x86_ops vmx_x86_ops = {
  3133. .cpu_has_kvm_support = cpu_has_kvm_support,
  3134. .disabled_by_bios = vmx_disabled_by_bios,
  3135. .hardware_setup = hardware_setup,
  3136. .hardware_unsetup = hardware_unsetup,
  3137. .check_processor_compatibility = vmx_check_processor_compat,
  3138. .hardware_enable = hardware_enable,
  3139. .hardware_disable = hardware_disable,
  3140. .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
  3141. .vcpu_create = vmx_create_vcpu,
  3142. .vcpu_free = vmx_free_vcpu,
  3143. .vcpu_reset = vmx_vcpu_reset,
  3144. .prepare_guest_switch = vmx_save_host_state,
  3145. .vcpu_load = vmx_vcpu_load,
  3146. .vcpu_put = vmx_vcpu_put,
  3147. .set_guest_debug = set_guest_debug,
  3148. .get_msr = vmx_get_msr,
  3149. .set_msr = vmx_set_msr,
  3150. .get_segment_base = vmx_get_segment_base,
  3151. .get_segment = vmx_get_segment,
  3152. .set_segment = vmx_set_segment,
  3153. .get_cpl = vmx_get_cpl,
  3154. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  3155. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  3156. .set_cr0 = vmx_set_cr0,
  3157. .set_cr3 = vmx_set_cr3,
  3158. .set_cr4 = vmx_set_cr4,
  3159. .set_efer = vmx_set_efer,
  3160. .get_idt = vmx_get_idt,
  3161. .set_idt = vmx_set_idt,
  3162. .get_gdt = vmx_get_gdt,
  3163. .set_gdt = vmx_set_gdt,
  3164. .cache_reg = vmx_cache_reg,
  3165. .get_rflags = vmx_get_rflags,
  3166. .set_rflags = vmx_set_rflags,
  3167. .tlb_flush = vmx_flush_tlb,
  3168. .run = vmx_vcpu_run,
  3169. .handle_exit = vmx_handle_exit,
  3170. .skip_emulated_instruction = skip_emulated_instruction,
  3171. .patch_hypercall = vmx_patch_hypercall,
  3172. .get_irq = vmx_get_irq,
  3173. .set_irq = vmx_inject_irq,
  3174. .queue_exception = vmx_queue_exception,
  3175. .exception_injected = vmx_exception_injected,
  3176. .inject_pending_irq = vmx_intr_assist,
  3177. .inject_pending_vectors = do_interrupt_requests,
  3178. .interrupt_allowed = vmx_interrupt_allowed,
  3179. .set_tss_addr = vmx_set_tss_addr,
  3180. .get_tdp_level = get_ept_level,
  3181. .get_mt_mask_shift = vmx_get_mt_mask_shift,
  3182. };
  3183. static int __init vmx_init(void)
  3184. {
  3185. int r;
  3186. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  3187. if (!vmx_io_bitmap_a)
  3188. return -ENOMEM;
  3189. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  3190. if (!vmx_io_bitmap_b) {
  3191. r = -ENOMEM;
  3192. goto out;
  3193. }
  3194. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  3195. if (!vmx_msr_bitmap_legacy) {
  3196. r = -ENOMEM;
  3197. goto out1;
  3198. }
  3199. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  3200. if (!vmx_msr_bitmap_longmode) {
  3201. r = -ENOMEM;
  3202. goto out2;
  3203. }
  3204. /*
  3205. * Allow direct access to the PC debug port (it is often used for I/O
  3206. * delays, but the vmexits simply slow things down).
  3207. */
  3208. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  3209. clear_bit(0x80, vmx_io_bitmap_a);
  3210. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  3211. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  3212. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  3213. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  3214. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  3215. if (r)
  3216. goto out3;
  3217. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  3218. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  3219. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  3220. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  3221. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  3222. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  3223. if (enable_ept) {
  3224. bypass_guest_pf = 0;
  3225. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  3226. VMX_EPT_WRITABLE_MASK);
  3227. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  3228. VMX_EPT_EXECUTABLE_MASK,
  3229. VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT);
  3230. kvm_enable_tdp();
  3231. } else
  3232. kvm_disable_tdp();
  3233. if (bypass_guest_pf)
  3234. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  3235. ept_sync_global();
  3236. return 0;
  3237. out3:
  3238. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3239. out2:
  3240. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3241. out1:
  3242. free_page((unsigned long)vmx_io_bitmap_b);
  3243. out:
  3244. free_page((unsigned long)vmx_io_bitmap_a);
  3245. return r;
  3246. }
  3247. static void __exit vmx_exit(void)
  3248. {
  3249. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3250. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3251. free_page((unsigned long)vmx_io_bitmap_b);
  3252. free_page((unsigned long)vmx_io_bitmap_a);
  3253. kvm_exit();
  3254. }
  3255. module_init(vmx_init)
  3256. module_exit(vmx_exit)