tcp_input.c 170 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #include <linux/mm.h>
  63. #include <linux/slab.h>
  64. #include <linux/module.h>
  65. #include <linux/sysctl.h>
  66. #include <linux/kernel.h>
  67. #include <net/dst.h>
  68. #include <net/tcp.h>
  69. #include <net/inet_common.h>
  70. #include <linux/ipsec.h>
  71. #include <asm/unaligned.h>
  72. #include <net/netdma.h>
  73. int sysctl_tcp_timestamps __read_mostly = 1;
  74. int sysctl_tcp_window_scaling __read_mostly = 1;
  75. int sysctl_tcp_sack __read_mostly = 1;
  76. int sysctl_tcp_fack __read_mostly = 1;
  77. int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  78. EXPORT_SYMBOL(sysctl_tcp_reordering);
  79. int sysctl_tcp_ecn __read_mostly = 2;
  80. EXPORT_SYMBOL(sysctl_tcp_ecn);
  81. int sysctl_tcp_dsack __read_mostly = 1;
  82. int sysctl_tcp_app_win __read_mostly = 31;
  83. int sysctl_tcp_adv_win_scale __read_mostly = 2;
  84. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  85. int sysctl_tcp_stdurg __read_mostly;
  86. int sysctl_tcp_rfc1337 __read_mostly;
  87. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  88. int sysctl_tcp_frto __read_mostly = 2;
  89. int sysctl_tcp_frto_response __read_mostly;
  90. int sysctl_tcp_nometrics_save __read_mostly;
  91. int sysctl_tcp_thin_dupack __read_mostly;
  92. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  93. int sysctl_tcp_abc __read_mostly;
  94. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  95. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  96. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  97. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  98. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  99. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  100. #define FLAG_ECE 0x40 /* ECE in this ACK */
  101. #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
  102. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  103. #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
  104. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  105. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  106. #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
  107. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  108. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  109. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  110. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  111. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  112. #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
  113. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  114. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  115. /* Adapt the MSS value used to make delayed ack decision to the
  116. * real world.
  117. */
  118. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  119. {
  120. struct inet_connection_sock *icsk = inet_csk(sk);
  121. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  122. unsigned int len;
  123. icsk->icsk_ack.last_seg_size = 0;
  124. /* skb->len may jitter because of SACKs, even if peer
  125. * sends good full-sized frames.
  126. */
  127. len = skb_shinfo(skb)->gso_size ? : skb->len;
  128. if (len >= icsk->icsk_ack.rcv_mss) {
  129. icsk->icsk_ack.rcv_mss = len;
  130. } else {
  131. /* Otherwise, we make more careful check taking into account,
  132. * that SACKs block is variable.
  133. *
  134. * "len" is invariant segment length, including TCP header.
  135. */
  136. len += skb->data - skb_transport_header(skb);
  137. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  138. /* If PSH is not set, packet should be
  139. * full sized, provided peer TCP is not badly broken.
  140. * This observation (if it is correct 8)) allows
  141. * to handle super-low mtu links fairly.
  142. */
  143. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  144. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  145. /* Subtract also invariant (if peer is RFC compliant),
  146. * tcp header plus fixed timestamp option length.
  147. * Resulting "len" is MSS free of SACK jitter.
  148. */
  149. len -= tcp_sk(sk)->tcp_header_len;
  150. icsk->icsk_ack.last_seg_size = len;
  151. if (len == lss) {
  152. icsk->icsk_ack.rcv_mss = len;
  153. return;
  154. }
  155. }
  156. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  157. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  158. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  159. }
  160. }
  161. static void tcp_incr_quickack(struct sock *sk)
  162. {
  163. struct inet_connection_sock *icsk = inet_csk(sk);
  164. unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  165. if (quickacks == 0)
  166. quickacks = 2;
  167. if (quickacks > icsk->icsk_ack.quick)
  168. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  169. }
  170. static void tcp_enter_quickack_mode(struct sock *sk)
  171. {
  172. struct inet_connection_sock *icsk = inet_csk(sk);
  173. tcp_incr_quickack(sk);
  174. icsk->icsk_ack.pingpong = 0;
  175. icsk->icsk_ack.ato = TCP_ATO_MIN;
  176. }
  177. /* Send ACKs quickly, if "quick" count is not exhausted
  178. * and the session is not interactive.
  179. */
  180. static inline int tcp_in_quickack_mode(const struct sock *sk)
  181. {
  182. const struct inet_connection_sock *icsk = inet_csk(sk);
  183. return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
  184. }
  185. static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
  186. {
  187. if (tp->ecn_flags & TCP_ECN_OK)
  188. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  189. }
  190. static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
  191. {
  192. if (tcp_hdr(skb)->cwr)
  193. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  194. }
  195. static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
  196. {
  197. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  198. }
  199. static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  200. {
  201. if (!(tp->ecn_flags & TCP_ECN_OK))
  202. return;
  203. switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
  204. case INET_ECN_NOT_ECT:
  205. /* Funny extension: if ECT is not set on a segment,
  206. * and we already seen ECT on a previous segment,
  207. * it is probably a retransmit.
  208. */
  209. if (tp->ecn_flags & TCP_ECN_SEEN)
  210. tcp_enter_quickack_mode((struct sock *)tp);
  211. break;
  212. case INET_ECN_CE:
  213. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  214. /* fallinto */
  215. default:
  216. tp->ecn_flags |= TCP_ECN_SEEN;
  217. }
  218. }
  219. static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
  220. {
  221. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  222. tp->ecn_flags &= ~TCP_ECN_OK;
  223. }
  224. static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
  225. {
  226. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  227. tp->ecn_flags &= ~TCP_ECN_OK;
  228. }
  229. static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
  230. {
  231. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  232. return 1;
  233. return 0;
  234. }
  235. /* Buffer size and advertised window tuning.
  236. *
  237. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  238. */
  239. static void tcp_fixup_sndbuf(struct sock *sk)
  240. {
  241. int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
  242. sndmem *= TCP_INIT_CWND;
  243. if (sk->sk_sndbuf < sndmem)
  244. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  245. }
  246. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  247. *
  248. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  249. * forward and advertised in receiver window (tp->rcv_wnd) and
  250. * "application buffer", required to isolate scheduling/application
  251. * latencies from network.
  252. * window_clamp is maximal advertised window. It can be less than
  253. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  254. * is reserved for "application" buffer. The less window_clamp is
  255. * the smoother our behaviour from viewpoint of network, but the lower
  256. * throughput and the higher sensitivity of the connection to losses. 8)
  257. *
  258. * rcv_ssthresh is more strict window_clamp used at "slow start"
  259. * phase to predict further behaviour of this connection.
  260. * It is used for two goals:
  261. * - to enforce header prediction at sender, even when application
  262. * requires some significant "application buffer". It is check #1.
  263. * - to prevent pruning of receive queue because of misprediction
  264. * of receiver window. Check #2.
  265. *
  266. * The scheme does not work when sender sends good segments opening
  267. * window and then starts to feed us spaghetti. But it should work
  268. * in common situations. Otherwise, we have to rely on queue collapsing.
  269. */
  270. /* Slow part of check#2. */
  271. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  272. {
  273. struct tcp_sock *tp = tcp_sk(sk);
  274. /* Optimize this! */
  275. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  276. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  277. while (tp->rcv_ssthresh <= window) {
  278. if (truesize <= skb->len)
  279. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  280. truesize >>= 1;
  281. window >>= 1;
  282. }
  283. return 0;
  284. }
  285. static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
  286. {
  287. struct tcp_sock *tp = tcp_sk(sk);
  288. /* Check #1 */
  289. if (tp->rcv_ssthresh < tp->window_clamp &&
  290. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  291. !tcp_memory_pressure) {
  292. int incr;
  293. /* Check #2. Increase window, if skb with such overhead
  294. * will fit to rcvbuf in future.
  295. */
  296. if (tcp_win_from_space(skb->truesize) <= skb->len)
  297. incr = 2 * tp->advmss;
  298. else
  299. incr = __tcp_grow_window(sk, skb);
  300. if (incr) {
  301. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  302. tp->window_clamp);
  303. inet_csk(sk)->icsk_ack.quick |= 1;
  304. }
  305. }
  306. }
  307. /* 3. Tuning rcvbuf, when connection enters established state. */
  308. static void tcp_fixup_rcvbuf(struct sock *sk)
  309. {
  310. u32 mss = tcp_sk(sk)->advmss;
  311. u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
  312. int rcvmem;
  313. /* Limit to 10 segments if mss <= 1460,
  314. * or 14600/mss segments, with a minimum of two segments.
  315. */
  316. if (mss > 1460)
  317. icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
  318. rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
  319. while (tcp_win_from_space(rcvmem) < mss)
  320. rcvmem += 128;
  321. rcvmem *= icwnd;
  322. if (sk->sk_rcvbuf < rcvmem)
  323. sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
  324. }
  325. /* 4. Try to fixup all. It is made immediately after connection enters
  326. * established state.
  327. */
  328. static void tcp_init_buffer_space(struct sock *sk)
  329. {
  330. struct tcp_sock *tp = tcp_sk(sk);
  331. int maxwin;
  332. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  333. tcp_fixup_rcvbuf(sk);
  334. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  335. tcp_fixup_sndbuf(sk);
  336. tp->rcvq_space.space = tp->rcv_wnd;
  337. maxwin = tcp_full_space(sk);
  338. if (tp->window_clamp >= maxwin) {
  339. tp->window_clamp = maxwin;
  340. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  341. tp->window_clamp = max(maxwin -
  342. (maxwin >> sysctl_tcp_app_win),
  343. 4 * tp->advmss);
  344. }
  345. /* Force reservation of one segment. */
  346. if (sysctl_tcp_app_win &&
  347. tp->window_clamp > 2 * tp->advmss &&
  348. tp->window_clamp + tp->advmss > maxwin)
  349. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  350. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  351. tp->snd_cwnd_stamp = tcp_time_stamp;
  352. }
  353. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  354. static void tcp_clamp_window(struct sock *sk)
  355. {
  356. struct tcp_sock *tp = tcp_sk(sk);
  357. struct inet_connection_sock *icsk = inet_csk(sk);
  358. icsk->icsk_ack.quick = 0;
  359. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  360. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  361. !tcp_memory_pressure &&
  362. atomic_long_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
  363. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  364. sysctl_tcp_rmem[2]);
  365. }
  366. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  367. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  368. }
  369. /* Initialize RCV_MSS value.
  370. * RCV_MSS is an our guess about MSS used by the peer.
  371. * We haven't any direct information about the MSS.
  372. * It's better to underestimate the RCV_MSS rather than overestimate.
  373. * Overestimations make us ACKing less frequently than needed.
  374. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  375. */
  376. void tcp_initialize_rcv_mss(struct sock *sk)
  377. {
  378. const struct tcp_sock *tp = tcp_sk(sk);
  379. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  380. hint = min(hint, tp->rcv_wnd / 2);
  381. hint = min(hint, TCP_MSS_DEFAULT);
  382. hint = max(hint, TCP_MIN_MSS);
  383. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  384. }
  385. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  386. /* Receiver "autotuning" code.
  387. *
  388. * The algorithm for RTT estimation w/o timestamps is based on
  389. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  390. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  391. *
  392. * More detail on this code can be found at
  393. * <http://staff.psc.edu/jheffner/>,
  394. * though this reference is out of date. A new paper
  395. * is pending.
  396. */
  397. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  398. {
  399. u32 new_sample = tp->rcv_rtt_est.rtt;
  400. long m = sample;
  401. if (m == 0)
  402. m = 1;
  403. if (new_sample != 0) {
  404. /* If we sample in larger samples in the non-timestamp
  405. * case, we could grossly overestimate the RTT especially
  406. * with chatty applications or bulk transfer apps which
  407. * are stalled on filesystem I/O.
  408. *
  409. * Also, since we are only going for a minimum in the
  410. * non-timestamp case, we do not smooth things out
  411. * else with timestamps disabled convergence takes too
  412. * long.
  413. */
  414. if (!win_dep) {
  415. m -= (new_sample >> 3);
  416. new_sample += m;
  417. } else if (m < new_sample)
  418. new_sample = m << 3;
  419. } else {
  420. /* No previous measure. */
  421. new_sample = m << 3;
  422. }
  423. if (tp->rcv_rtt_est.rtt != new_sample)
  424. tp->rcv_rtt_est.rtt = new_sample;
  425. }
  426. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  427. {
  428. if (tp->rcv_rtt_est.time == 0)
  429. goto new_measure;
  430. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  431. return;
  432. tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
  433. new_measure:
  434. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  435. tp->rcv_rtt_est.time = tcp_time_stamp;
  436. }
  437. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  438. const struct sk_buff *skb)
  439. {
  440. struct tcp_sock *tp = tcp_sk(sk);
  441. if (tp->rx_opt.rcv_tsecr &&
  442. (TCP_SKB_CB(skb)->end_seq -
  443. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
  444. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
  445. }
  446. /*
  447. * This function should be called every time data is copied to user space.
  448. * It calculates the appropriate TCP receive buffer space.
  449. */
  450. void tcp_rcv_space_adjust(struct sock *sk)
  451. {
  452. struct tcp_sock *tp = tcp_sk(sk);
  453. int time;
  454. int space;
  455. if (tp->rcvq_space.time == 0)
  456. goto new_measure;
  457. time = tcp_time_stamp - tp->rcvq_space.time;
  458. if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
  459. return;
  460. space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
  461. space = max(tp->rcvq_space.space, space);
  462. if (tp->rcvq_space.space != space) {
  463. int rcvmem;
  464. tp->rcvq_space.space = space;
  465. if (sysctl_tcp_moderate_rcvbuf &&
  466. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  467. int new_clamp = space;
  468. /* Receive space grows, normalize in order to
  469. * take into account packet headers and sk_buff
  470. * structure overhead.
  471. */
  472. space /= tp->advmss;
  473. if (!space)
  474. space = 1;
  475. rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
  476. while (tcp_win_from_space(rcvmem) < tp->advmss)
  477. rcvmem += 128;
  478. space *= rcvmem;
  479. space = min(space, sysctl_tcp_rmem[2]);
  480. if (space > sk->sk_rcvbuf) {
  481. sk->sk_rcvbuf = space;
  482. /* Make the window clamp follow along. */
  483. tp->window_clamp = new_clamp;
  484. }
  485. }
  486. }
  487. new_measure:
  488. tp->rcvq_space.seq = tp->copied_seq;
  489. tp->rcvq_space.time = tcp_time_stamp;
  490. }
  491. /* There is something which you must keep in mind when you analyze the
  492. * behavior of the tp->ato delayed ack timeout interval. When a
  493. * connection starts up, we want to ack as quickly as possible. The
  494. * problem is that "good" TCP's do slow start at the beginning of data
  495. * transmission. The means that until we send the first few ACK's the
  496. * sender will sit on his end and only queue most of his data, because
  497. * he can only send snd_cwnd unacked packets at any given time. For
  498. * each ACK we send, he increments snd_cwnd and transmits more of his
  499. * queue. -DaveM
  500. */
  501. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  502. {
  503. struct tcp_sock *tp = tcp_sk(sk);
  504. struct inet_connection_sock *icsk = inet_csk(sk);
  505. u32 now;
  506. inet_csk_schedule_ack(sk);
  507. tcp_measure_rcv_mss(sk, skb);
  508. tcp_rcv_rtt_measure(tp);
  509. now = tcp_time_stamp;
  510. if (!icsk->icsk_ack.ato) {
  511. /* The _first_ data packet received, initialize
  512. * delayed ACK engine.
  513. */
  514. tcp_incr_quickack(sk);
  515. icsk->icsk_ack.ato = TCP_ATO_MIN;
  516. } else {
  517. int m = now - icsk->icsk_ack.lrcvtime;
  518. if (m <= TCP_ATO_MIN / 2) {
  519. /* The fastest case is the first. */
  520. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  521. } else if (m < icsk->icsk_ack.ato) {
  522. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  523. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  524. icsk->icsk_ack.ato = icsk->icsk_rto;
  525. } else if (m > icsk->icsk_rto) {
  526. /* Too long gap. Apparently sender failed to
  527. * restart window, so that we send ACKs quickly.
  528. */
  529. tcp_incr_quickack(sk);
  530. sk_mem_reclaim(sk);
  531. }
  532. }
  533. icsk->icsk_ack.lrcvtime = now;
  534. TCP_ECN_check_ce(tp, skb);
  535. if (skb->len >= 128)
  536. tcp_grow_window(sk, skb);
  537. }
  538. /* Called to compute a smoothed rtt estimate. The data fed to this
  539. * routine either comes from timestamps, or from segments that were
  540. * known _not_ to have been retransmitted [see Karn/Partridge
  541. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  542. * piece by Van Jacobson.
  543. * NOTE: the next three routines used to be one big routine.
  544. * To save cycles in the RFC 1323 implementation it was better to break
  545. * it up into three procedures. -- erics
  546. */
  547. static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
  548. {
  549. struct tcp_sock *tp = tcp_sk(sk);
  550. long m = mrtt; /* RTT */
  551. /* The following amusing code comes from Jacobson's
  552. * article in SIGCOMM '88. Note that rtt and mdev
  553. * are scaled versions of rtt and mean deviation.
  554. * This is designed to be as fast as possible
  555. * m stands for "measurement".
  556. *
  557. * On a 1990 paper the rto value is changed to:
  558. * RTO = rtt + 4 * mdev
  559. *
  560. * Funny. This algorithm seems to be very broken.
  561. * These formulae increase RTO, when it should be decreased, increase
  562. * too slowly, when it should be increased quickly, decrease too quickly
  563. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  564. * does not matter how to _calculate_ it. Seems, it was trap
  565. * that VJ failed to avoid. 8)
  566. */
  567. if (m == 0)
  568. m = 1;
  569. if (tp->srtt != 0) {
  570. m -= (tp->srtt >> 3); /* m is now error in rtt est */
  571. tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  572. if (m < 0) {
  573. m = -m; /* m is now abs(error) */
  574. m -= (tp->mdev >> 2); /* similar update on mdev */
  575. /* This is similar to one of Eifel findings.
  576. * Eifel blocks mdev updates when rtt decreases.
  577. * This solution is a bit different: we use finer gain
  578. * for mdev in this case (alpha*beta).
  579. * Like Eifel it also prevents growth of rto,
  580. * but also it limits too fast rto decreases,
  581. * happening in pure Eifel.
  582. */
  583. if (m > 0)
  584. m >>= 3;
  585. } else {
  586. m -= (tp->mdev >> 2); /* similar update on mdev */
  587. }
  588. tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
  589. if (tp->mdev > tp->mdev_max) {
  590. tp->mdev_max = tp->mdev;
  591. if (tp->mdev_max > tp->rttvar)
  592. tp->rttvar = tp->mdev_max;
  593. }
  594. if (after(tp->snd_una, tp->rtt_seq)) {
  595. if (tp->mdev_max < tp->rttvar)
  596. tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
  597. tp->rtt_seq = tp->snd_nxt;
  598. tp->mdev_max = tcp_rto_min(sk);
  599. }
  600. } else {
  601. /* no previous measure. */
  602. tp->srtt = m << 3; /* take the measured time to be rtt */
  603. tp->mdev = m << 1; /* make sure rto = 3*rtt */
  604. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  605. tp->rtt_seq = tp->snd_nxt;
  606. }
  607. }
  608. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  609. * routine referred to above.
  610. */
  611. static inline void tcp_set_rto(struct sock *sk)
  612. {
  613. const struct tcp_sock *tp = tcp_sk(sk);
  614. /* Old crap is replaced with new one. 8)
  615. *
  616. * More seriously:
  617. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  618. * It cannot be less due to utterly erratic ACK generation made
  619. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  620. * to do with delayed acks, because at cwnd>2 true delack timeout
  621. * is invisible. Actually, Linux-2.4 also generates erratic
  622. * ACKs in some circumstances.
  623. */
  624. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  625. /* 2. Fixups made earlier cannot be right.
  626. * If we do not estimate RTO correctly without them,
  627. * all the algo is pure shit and should be replaced
  628. * with correct one. It is exactly, which we pretend to do.
  629. */
  630. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  631. * guarantees that rto is higher.
  632. */
  633. tcp_bound_rto(sk);
  634. }
  635. /* Save metrics learned by this TCP session.
  636. This function is called only, when TCP finishes successfully
  637. i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
  638. */
  639. void tcp_update_metrics(struct sock *sk)
  640. {
  641. struct tcp_sock *tp = tcp_sk(sk);
  642. struct dst_entry *dst = __sk_dst_get(sk);
  643. if (sysctl_tcp_nometrics_save)
  644. return;
  645. dst_confirm(dst);
  646. if (dst && (dst->flags & DST_HOST)) {
  647. const struct inet_connection_sock *icsk = inet_csk(sk);
  648. int m;
  649. unsigned long rtt;
  650. if (icsk->icsk_backoff || !tp->srtt) {
  651. /* This session failed to estimate rtt. Why?
  652. * Probably, no packets returned in time.
  653. * Reset our results.
  654. */
  655. if (!(dst_metric_locked(dst, RTAX_RTT)))
  656. dst_metric_set(dst, RTAX_RTT, 0);
  657. return;
  658. }
  659. rtt = dst_metric_rtt(dst, RTAX_RTT);
  660. m = rtt - tp->srtt;
  661. /* If newly calculated rtt larger than stored one,
  662. * store new one. Otherwise, use EWMA. Remember,
  663. * rtt overestimation is always better than underestimation.
  664. */
  665. if (!(dst_metric_locked(dst, RTAX_RTT))) {
  666. if (m <= 0)
  667. set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
  668. else
  669. set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
  670. }
  671. if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
  672. unsigned long var;
  673. if (m < 0)
  674. m = -m;
  675. /* Scale deviation to rttvar fixed point */
  676. m >>= 1;
  677. if (m < tp->mdev)
  678. m = tp->mdev;
  679. var = dst_metric_rtt(dst, RTAX_RTTVAR);
  680. if (m >= var)
  681. var = m;
  682. else
  683. var -= (var - m) >> 2;
  684. set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
  685. }
  686. if (tcp_in_initial_slowstart(tp)) {
  687. /* Slow start still did not finish. */
  688. if (dst_metric(dst, RTAX_SSTHRESH) &&
  689. !dst_metric_locked(dst, RTAX_SSTHRESH) &&
  690. (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
  691. dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
  692. if (!dst_metric_locked(dst, RTAX_CWND) &&
  693. tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
  694. dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
  695. } else if (tp->snd_cwnd > tp->snd_ssthresh &&
  696. icsk->icsk_ca_state == TCP_CA_Open) {
  697. /* Cong. avoidance phase, cwnd is reliable. */
  698. if (!dst_metric_locked(dst, RTAX_SSTHRESH))
  699. dst_metric_set(dst, RTAX_SSTHRESH,
  700. max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
  701. if (!dst_metric_locked(dst, RTAX_CWND))
  702. dst_metric_set(dst, RTAX_CWND,
  703. (dst_metric(dst, RTAX_CWND) +
  704. tp->snd_cwnd) >> 1);
  705. } else {
  706. /* Else slow start did not finish, cwnd is non-sense,
  707. ssthresh may be also invalid.
  708. */
  709. if (!dst_metric_locked(dst, RTAX_CWND))
  710. dst_metric_set(dst, RTAX_CWND,
  711. (dst_metric(dst, RTAX_CWND) +
  712. tp->snd_ssthresh) >> 1);
  713. if (dst_metric(dst, RTAX_SSTHRESH) &&
  714. !dst_metric_locked(dst, RTAX_SSTHRESH) &&
  715. tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
  716. dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
  717. }
  718. if (!dst_metric_locked(dst, RTAX_REORDERING)) {
  719. if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
  720. tp->reordering != sysctl_tcp_reordering)
  721. dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
  722. }
  723. }
  724. }
  725. __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
  726. {
  727. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  728. if (!cwnd)
  729. cwnd = TCP_INIT_CWND;
  730. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  731. }
  732. /* Set slow start threshold and cwnd not falling to slow start */
  733. void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
  734. {
  735. struct tcp_sock *tp = tcp_sk(sk);
  736. const struct inet_connection_sock *icsk = inet_csk(sk);
  737. tp->prior_ssthresh = 0;
  738. tp->bytes_acked = 0;
  739. if (icsk->icsk_ca_state < TCP_CA_CWR) {
  740. tp->undo_marker = 0;
  741. if (set_ssthresh)
  742. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  743. tp->snd_cwnd = min(tp->snd_cwnd,
  744. tcp_packets_in_flight(tp) + 1U);
  745. tp->snd_cwnd_cnt = 0;
  746. tp->high_seq = tp->snd_nxt;
  747. tp->snd_cwnd_stamp = tcp_time_stamp;
  748. TCP_ECN_queue_cwr(tp);
  749. tcp_set_ca_state(sk, TCP_CA_CWR);
  750. }
  751. }
  752. /*
  753. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  754. * disables it when reordering is detected
  755. */
  756. static void tcp_disable_fack(struct tcp_sock *tp)
  757. {
  758. /* RFC3517 uses different metric in lost marker => reset on change */
  759. if (tcp_is_fack(tp))
  760. tp->lost_skb_hint = NULL;
  761. tp->rx_opt.sack_ok &= ~2;
  762. }
  763. /* Take a notice that peer is sending D-SACKs */
  764. static void tcp_dsack_seen(struct tcp_sock *tp)
  765. {
  766. tp->rx_opt.sack_ok |= 4;
  767. }
  768. /* Initialize metrics on socket. */
  769. static void tcp_init_metrics(struct sock *sk)
  770. {
  771. struct tcp_sock *tp = tcp_sk(sk);
  772. struct dst_entry *dst = __sk_dst_get(sk);
  773. if (dst == NULL)
  774. goto reset;
  775. dst_confirm(dst);
  776. if (dst_metric_locked(dst, RTAX_CWND))
  777. tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
  778. if (dst_metric(dst, RTAX_SSTHRESH)) {
  779. tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
  780. if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
  781. tp->snd_ssthresh = tp->snd_cwnd_clamp;
  782. } else {
  783. /* ssthresh may have been reduced unnecessarily during.
  784. * 3WHS. Restore it back to its initial default.
  785. */
  786. tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
  787. }
  788. if (dst_metric(dst, RTAX_REORDERING) &&
  789. tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
  790. tcp_disable_fack(tp);
  791. tp->reordering = dst_metric(dst, RTAX_REORDERING);
  792. }
  793. if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
  794. goto reset;
  795. /* Initial rtt is determined from SYN,SYN-ACK.
  796. * The segment is small and rtt may appear much
  797. * less than real one. Use per-dst memory
  798. * to make it more realistic.
  799. *
  800. * A bit of theory. RTT is time passed after "normal" sized packet
  801. * is sent until it is ACKed. In normal circumstances sending small
  802. * packets force peer to delay ACKs and calculation is correct too.
  803. * The algorithm is adaptive and, provided we follow specs, it
  804. * NEVER underestimate RTT. BUT! If peer tries to make some clever
  805. * tricks sort of "quick acks" for time long enough to decrease RTT
  806. * to low value, and then abruptly stops to do it and starts to delay
  807. * ACKs, wait for troubles.
  808. */
  809. if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
  810. tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
  811. tp->rtt_seq = tp->snd_nxt;
  812. }
  813. if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
  814. tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
  815. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  816. }
  817. tcp_set_rto(sk);
  818. reset:
  819. if (tp->srtt == 0) {
  820. /* RFC2988bis: We've failed to get a valid RTT sample from
  821. * 3WHS. This is most likely due to retransmission,
  822. * including spurious one. Reset the RTO back to 3secs
  823. * from the more aggressive 1sec to avoid more spurious
  824. * retransmission.
  825. */
  826. tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
  827. inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
  828. }
  829. /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
  830. * retransmitted. In light of RFC2988bis' more aggressive 1sec
  831. * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
  832. * retransmission has occurred.
  833. */
  834. if (tp->total_retrans > 1)
  835. tp->snd_cwnd = 1;
  836. else
  837. tp->snd_cwnd = tcp_init_cwnd(tp, dst);
  838. tp->snd_cwnd_stamp = tcp_time_stamp;
  839. }
  840. static void tcp_update_reordering(struct sock *sk, const int metric,
  841. const int ts)
  842. {
  843. struct tcp_sock *tp = tcp_sk(sk);
  844. if (metric > tp->reordering) {
  845. int mib_idx;
  846. tp->reordering = min(TCP_MAX_REORDERING, metric);
  847. /* This exciting event is worth to be remembered. 8) */
  848. if (ts)
  849. mib_idx = LINUX_MIB_TCPTSREORDER;
  850. else if (tcp_is_reno(tp))
  851. mib_idx = LINUX_MIB_TCPRENOREORDER;
  852. else if (tcp_is_fack(tp))
  853. mib_idx = LINUX_MIB_TCPFACKREORDER;
  854. else
  855. mib_idx = LINUX_MIB_TCPSACKREORDER;
  856. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  857. #if FASTRETRANS_DEBUG > 1
  858. printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
  859. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  860. tp->reordering,
  861. tp->fackets_out,
  862. tp->sacked_out,
  863. tp->undo_marker ? tp->undo_retrans : 0);
  864. #endif
  865. tcp_disable_fack(tp);
  866. }
  867. }
  868. /* This must be called before lost_out is incremented */
  869. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  870. {
  871. if ((tp->retransmit_skb_hint == NULL) ||
  872. before(TCP_SKB_CB(skb)->seq,
  873. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  874. tp->retransmit_skb_hint = skb;
  875. if (!tp->lost_out ||
  876. after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
  877. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  878. }
  879. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  880. {
  881. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  882. tcp_verify_retransmit_hint(tp, skb);
  883. tp->lost_out += tcp_skb_pcount(skb);
  884. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  885. }
  886. }
  887. static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
  888. struct sk_buff *skb)
  889. {
  890. tcp_verify_retransmit_hint(tp, skb);
  891. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  892. tp->lost_out += tcp_skb_pcount(skb);
  893. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  894. }
  895. }
  896. /* This procedure tags the retransmission queue when SACKs arrive.
  897. *
  898. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  899. * Packets in queue with these bits set are counted in variables
  900. * sacked_out, retrans_out and lost_out, correspondingly.
  901. *
  902. * Valid combinations are:
  903. * Tag InFlight Description
  904. * 0 1 - orig segment is in flight.
  905. * S 0 - nothing flies, orig reached receiver.
  906. * L 0 - nothing flies, orig lost by net.
  907. * R 2 - both orig and retransmit are in flight.
  908. * L|R 1 - orig is lost, retransmit is in flight.
  909. * S|R 1 - orig reached receiver, retrans is still in flight.
  910. * (L|S|R is logically valid, it could occur when L|R is sacked,
  911. * but it is equivalent to plain S and code short-curcuits it to S.
  912. * L|S is logically invalid, it would mean -1 packet in flight 8))
  913. *
  914. * These 6 states form finite state machine, controlled by the following events:
  915. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  916. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  917. * 3. Loss detection event of one of three flavors:
  918. * A. Scoreboard estimator decided the packet is lost.
  919. * A'. Reno "three dupacks" marks head of queue lost.
  920. * A''. Its FACK modfication, head until snd.fack is lost.
  921. * B. SACK arrives sacking data transmitted after never retransmitted
  922. * hole was sent out.
  923. * C. SACK arrives sacking SND.NXT at the moment, when the
  924. * segment was retransmitted.
  925. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  926. *
  927. * It is pleasant to note, that state diagram turns out to be commutative,
  928. * so that we are allowed not to be bothered by order of our actions,
  929. * when multiple events arrive simultaneously. (see the function below).
  930. *
  931. * Reordering detection.
  932. * --------------------
  933. * Reordering metric is maximal distance, which a packet can be displaced
  934. * in packet stream. With SACKs we can estimate it:
  935. *
  936. * 1. SACK fills old hole and the corresponding segment was not
  937. * ever retransmitted -> reordering. Alas, we cannot use it
  938. * when segment was retransmitted.
  939. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  940. * for retransmitted and already SACKed segment -> reordering..
  941. * Both of these heuristics are not used in Loss state, when we cannot
  942. * account for retransmits accurately.
  943. *
  944. * SACK block validation.
  945. * ----------------------
  946. *
  947. * SACK block range validation checks that the received SACK block fits to
  948. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  949. * Note that SND.UNA is not included to the range though being valid because
  950. * it means that the receiver is rather inconsistent with itself reporting
  951. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  952. * perfectly valid, however, in light of RFC2018 which explicitly states
  953. * that "SACK block MUST reflect the newest segment. Even if the newest
  954. * segment is going to be discarded ...", not that it looks very clever
  955. * in case of head skb. Due to potentional receiver driven attacks, we
  956. * choose to avoid immediate execution of a walk in write queue due to
  957. * reneging and defer head skb's loss recovery to standard loss recovery
  958. * procedure that will eventually trigger (nothing forbids us doing this).
  959. *
  960. * Implements also blockage to start_seq wrap-around. Problem lies in the
  961. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  962. * there's no guarantee that it will be before snd_nxt (n). The problem
  963. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  964. * wrap (s_w):
  965. *
  966. * <- outs wnd -> <- wrapzone ->
  967. * u e n u_w e_w s n_w
  968. * | | | | | | |
  969. * |<------------+------+----- TCP seqno space --------------+---------->|
  970. * ...-- <2^31 ->| |<--------...
  971. * ...---- >2^31 ------>| |<--------...
  972. *
  973. * Current code wouldn't be vulnerable but it's better still to discard such
  974. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  975. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  976. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  977. * equal to the ideal case (infinite seqno space without wrap caused issues).
  978. *
  979. * With D-SACK the lower bound is extended to cover sequence space below
  980. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  981. * again, D-SACK block must not to go across snd_una (for the same reason as
  982. * for the normal SACK blocks, explained above). But there all simplicity
  983. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  984. * fully below undo_marker they do not affect behavior in anyway and can
  985. * therefore be safely ignored. In rare cases (which are more or less
  986. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  987. * fragmentation and packet reordering past skb's retransmission. To consider
  988. * them correctly, the acceptable range must be extended even more though
  989. * the exact amount is rather hard to quantify. However, tp->max_window can
  990. * be used as an exaggerated estimate.
  991. */
  992. static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
  993. u32 start_seq, u32 end_seq)
  994. {
  995. /* Too far in future, or reversed (interpretation is ambiguous) */
  996. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  997. return 0;
  998. /* Nasty start_seq wrap-around check (see comments above) */
  999. if (!before(start_seq, tp->snd_nxt))
  1000. return 0;
  1001. /* In outstanding window? ...This is valid exit for D-SACKs too.
  1002. * start_seq == snd_una is non-sensical (see comments above)
  1003. */
  1004. if (after(start_seq, tp->snd_una))
  1005. return 1;
  1006. if (!is_dsack || !tp->undo_marker)
  1007. return 0;
  1008. /* ...Then it's D-SACK, and must reside below snd_una completely */
  1009. if (after(end_seq, tp->snd_una))
  1010. return 0;
  1011. if (!before(start_seq, tp->undo_marker))
  1012. return 1;
  1013. /* Too old */
  1014. if (!after(end_seq, tp->undo_marker))
  1015. return 0;
  1016. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  1017. * start_seq < undo_marker and end_seq >= undo_marker.
  1018. */
  1019. return !before(start_seq, end_seq - tp->max_window);
  1020. }
  1021. /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
  1022. * Event "C". Later note: FACK people cheated me again 8), we have to account
  1023. * for reordering! Ugly, but should help.
  1024. *
  1025. * Search retransmitted skbs from write_queue that were sent when snd_nxt was
  1026. * less than what is now known to be received by the other end (derived from
  1027. * highest SACK block). Also calculate the lowest snd_nxt among the remaining
  1028. * retransmitted skbs to avoid some costly processing per ACKs.
  1029. */
  1030. static void tcp_mark_lost_retrans(struct sock *sk)
  1031. {
  1032. const struct inet_connection_sock *icsk = inet_csk(sk);
  1033. struct tcp_sock *tp = tcp_sk(sk);
  1034. struct sk_buff *skb;
  1035. int cnt = 0;
  1036. u32 new_low_seq = tp->snd_nxt;
  1037. u32 received_upto = tcp_highest_sack_seq(tp);
  1038. if (!tcp_is_fack(tp) || !tp->retrans_out ||
  1039. !after(received_upto, tp->lost_retrans_low) ||
  1040. icsk->icsk_ca_state != TCP_CA_Recovery)
  1041. return;
  1042. tcp_for_write_queue(skb, sk) {
  1043. u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
  1044. if (skb == tcp_send_head(sk))
  1045. break;
  1046. if (cnt == tp->retrans_out)
  1047. break;
  1048. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1049. continue;
  1050. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
  1051. continue;
  1052. /* TODO: We would like to get rid of tcp_is_fack(tp) only
  1053. * constraint here (see above) but figuring out that at
  1054. * least tp->reordering SACK blocks reside between ack_seq
  1055. * and received_upto is not easy task to do cheaply with
  1056. * the available datastructures.
  1057. *
  1058. * Whether FACK should check here for tp->reordering segs
  1059. * in-between one could argue for either way (it would be
  1060. * rather simple to implement as we could count fack_count
  1061. * during the walk and do tp->fackets_out - fack_count).
  1062. */
  1063. if (after(received_upto, ack_seq)) {
  1064. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1065. tp->retrans_out -= tcp_skb_pcount(skb);
  1066. tcp_skb_mark_lost_uncond_verify(tp, skb);
  1067. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
  1068. } else {
  1069. if (before(ack_seq, new_low_seq))
  1070. new_low_seq = ack_seq;
  1071. cnt += tcp_skb_pcount(skb);
  1072. }
  1073. }
  1074. if (tp->retrans_out)
  1075. tp->lost_retrans_low = new_low_seq;
  1076. }
  1077. static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
  1078. struct tcp_sack_block_wire *sp, int num_sacks,
  1079. u32 prior_snd_una)
  1080. {
  1081. struct tcp_sock *tp = tcp_sk(sk);
  1082. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  1083. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  1084. int dup_sack = 0;
  1085. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  1086. dup_sack = 1;
  1087. tcp_dsack_seen(tp);
  1088. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  1089. } else if (num_sacks > 1) {
  1090. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  1091. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  1092. if (!after(end_seq_0, end_seq_1) &&
  1093. !before(start_seq_0, start_seq_1)) {
  1094. dup_sack = 1;
  1095. tcp_dsack_seen(tp);
  1096. NET_INC_STATS_BH(sock_net(sk),
  1097. LINUX_MIB_TCPDSACKOFORECV);
  1098. }
  1099. }
  1100. /* D-SACK for already forgotten data... Do dumb counting. */
  1101. if (dup_sack && tp->undo_marker && tp->undo_retrans &&
  1102. !after(end_seq_0, prior_snd_una) &&
  1103. after(end_seq_0, tp->undo_marker))
  1104. tp->undo_retrans--;
  1105. return dup_sack;
  1106. }
  1107. struct tcp_sacktag_state {
  1108. int reord;
  1109. int fack_count;
  1110. int flag;
  1111. };
  1112. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  1113. * the incoming SACK may not exactly match but we can find smaller MSS
  1114. * aligned portion of it that matches. Therefore we might need to fragment
  1115. * which may fail and creates some hassle (caller must handle error case
  1116. * returns).
  1117. *
  1118. * FIXME: this could be merged to shift decision code
  1119. */
  1120. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  1121. u32 start_seq, u32 end_seq)
  1122. {
  1123. int in_sack, err;
  1124. unsigned int pkt_len;
  1125. unsigned int mss;
  1126. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1127. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1128. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  1129. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  1130. mss = tcp_skb_mss(skb);
  1131. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1132. if (!in_sack) {
  1133. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  1134. if (pkt_len < mss)
  1135. pkt_len = mss;
  1136. } else {
  1137. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  1138. if (pkt_len < mss)
  1139. return -EINVAL;
  1140. }
  1141. /* Round if necessary so that SACKs cover only full MSSes
  1142. * and/or the remaining small portion (if present)
  1143. */
  1144. if (pkt_len > mss) {
  1145. unsigned int new_len = (pkt_len / mss) * mss;
  1146. if (!in_sack && new_len < pkt_len) {
  1147. new_len += mss;
  1148. if (new_len > skb->len)
  1149. return 0;
  1150. }
  1151. pkt_len = new_len;
  1152. }
  1153. err = tcp_fragment(sk, skb, pkt_len, mss);
  1154. if (err < 0)
  1155. return err;
  1156. }
  1157. return in_sack;
  1158. }
  1159. static u8 tcp_sacktag_one(const struct sk_buff *skb, struct sock *sk,
  1160. struct tcp_sacktag_state *state,
  1161. int dup_sack, int pcount)
  1162. {
  1163. struct tcp_sock *tp = tcp_sk(sk);
  1164. u8 sacked = TCP_SKB_CB(skb)->sacked;
  1165. int fack_count = state->fack_count;
  1166. /* Account D-SACK for retransmitted packet. */
  1167. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  1168. if (tp->undo_marker && tp->undo_retrans &&
  1169. after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
  1170. tp->undo_retrans--;
  1171. if (sacked & TCPCB_SACKED_ACKED)
  1172. state->reord = min(fack_count, state->reord);
  1173. }
  1174. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1175. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1176. return sacked;
  1177. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1178. if (sacked & TCPCB_SACKED_RETRANS) {
  1179. /* If the segment is not tagged as lost,
  1180. * we do not clear RETRANS, believing
  1181. * that retransmission is still in flight.
  1182. */
  1183. if (sacked & TCPCB_LOST) {
  1184. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1185. tp->lost_out -= pcount;
  1186. tp->retrans_out -= pcount;
  1187. }
  1188. } else {
  1189. if (!(sacked & TCPCB_RETRANS)) {
  1190. /* New sack for not retransmitted frame,
  1191. * which was in hole. It is reordering.
  1192. */
  1193. if (before(TCP_SKB_CB(skb)->seq,
  1194. tcp_highest_sack_seq(tp)))
  1195. state->reord = min(fack_count,
  1196. state->reord);
  1197. /* SACK enhanced F-RTO (RFC4138; Appendix B) */
  1198. if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
  1199. state->flag |= FLAG_ONLY_ORIG_SACKED;
  1200. }
  1201. if (sacked & TCPCB_LOST) {
  1202. sacked &= ~TCPCB_LOST;
  1203. tp->lost_out -= pcount;
  1204. }
  1205. }
  1206. sacked |= TCPCB_SACKED_ACKED;
  1207. state->flag |= FLAG_DATA_SACKED;
  1208. tp->sacked_out += pcount;
  1209. fack_count += pcount;
  1210. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1211. if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
  1212. before(TCP_SKB_CB(skb)->seq,
  1213. TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1214. tp->lost_cnt_hint += pcount;
  1215. if (fack_count > tp->fackets_out)
  1216. tp->fackets_out = fack_count;
  1217. }
  1218. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1219. * frames and clear it. undo_retrans is decreased above, L|R frames
  1220. * are accounted above as well.
  1221. */
  1222. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1223. sacked &= ~TCPCB_SACKED_RETRANS;
  1224. tp->retrans_out -= pcount;
  1225. }
  1226. return sacked;
  1227. }
  1228. static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
  1229. struct tcp_sacktag_state *state,
  1230. unsigned int pcount, int shifted, int mss,
  1231. int dup_sack)
  1232. {
  1233. struct tcp_sock *tp = tcp_sk(sk);
  1234. struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
  1235. BUG_ON(!pcount);
  1236. if (skb == tp->lost_skb_hint)
  1237. tp->lost_cnt_hint += pcount;
  1238. TCP_SKB_CB(prev)->end_seq += shifted;
  1239. TCP_SKB_CB(skb)->seq += shifted;
  1240. skb_shinfo(prev)->gso_segs += pcount;
  1241. BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
  1242. skb_shinfo(skb)->gso_segs -= pcount;
  1243. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1244. * in theory this shouldn't be necessary but as long as DSACK
  1245. * code can come after this skb later on it's better to keep
  1246. * setting gso_size to something.
  1247. */
  1248. if (!skb_shinfo(prev)->gso_size) {
  1249. skb_shinfo(prev)->gso_size = mss;
  1250. skb_shinfo(prev)->gso_type = sk->sk_gso_type;
  1251. }
  1252. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1253. if (skb_shinfo(skb)->gso_segs <= 1) {
  1254. skb_shinfo(skb)->gso_size = 0;
  1255. skb_shinfo(skb)->gso_type = 0;
  1256. }
  1257. /* We discard results */
  1258. tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
  1259. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1260. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1261. if (skb->len > 0) {
  1262. BUG_ON(!tcp_skb_pcount(skb));
  1263. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1264. return 0;
  1265. }
  1266. /* Whole SKB was eaten :-) */
  1267. if (skb == tp->retransmit_skb_hint)
  1268. tp->retransmit_skb_hint = prev;
  1269. if (skb == tp->scoreboard_skb_hint)
  1270. tp->scoreboard_skb_hint = prev;
  1271. if (skb == tp->lost_skb_hint) {
  1272. tp->lost_skb_hint = prev;
  1273. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1274. }
  1275. TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
  1276. if (skb == tcp_highest_sack(sk))
  1277. tcp_advance_highest_sack(sk, skb);
  1278. tcp_unlink_write_queue(skb, sk);
  1279. sk_wmem_free_skb(sk, skb);
  1280. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
  1281. return 1;
  1282. }
  1283. /* I wish gso_size would have a bit more sane initialization than
  1284. * something-or-zero which complicates things
  1285. */
  1286. static int tcp_skb_seglen(const struct sk_buff *skb)
  1287. {
  1288. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1289. }
  1290. /* Shifting pages past head area doesn't work */
  1291. static int skb_can_shift(const struct sk_buff *skb)
  1292. {
  1293. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1294. }
  1295. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1296. * skb.
  1297. */
  1298. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1299. struct tcp_sacktag_state *state,
  1300. u32 start_seq, u32 end_seq,
  1301. int dup_sack)
  1302. {
  1303. struct tcp_sock *tp = tcp_sk(sk);
  1304. struct sk_buff *prev;
  1305. int mss;
  1306. int pcount = 0;
  1307. int len;
  1308. int in_sack;
  1309. if (!sk_can_gso(sk))
  1310. goto fallback;
  1311. /* Normally R but no L won't result in plain S */
  1312. if (!dup_sack &&
  1313. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1314. goto fallback;
  1315. if (!skb_can_shift(skb))
  1316. goto fallback;
  1317. /* This frame is about to be dropped (was ACKed). */
  1318. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1319. goto fallback;
  1320. /* Can only happen with delayed DSACK + discard craziness */
  1321. if (unlikely(skb == tcp_write_queue_head(sk)))
  1322. goto fallback;
  1323. prev = tcp_write_queue_prev(sk, skb);
  1324. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1325. goto fallback;
  1326. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1327. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1328. if (in_sack) {
  1329. len = skb->len;
  1330. pcount = tcp_skb_pcount(skb);
  1331. mss = tcp_skb_seglen(skb);
  1332. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1333. * drop this restriction as unnecessary
  1334. */
  1335. if (mss != tcp_skb_seglen(prev))
  1336. goto fallback;
  1337. } else {
  1338. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1339. goto noop;
  1340. /* CHECKME: This is non-MSS split case only?, this will
  1341. * cause skipped skbs due to advancing loop btw, original
  1342. * has that feature too
  1343. */
  1344. if (tcp_skb_pcount(skb) <= 1)
  1345. goto noop;
  1346. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1347. if (!in_sack) {
  1348. /* TODO: head merge to next could be attempted here
  1349. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1350. * though it might not be worth of the additional hassle
  1351. *
  1352. * ...we can probably just fallback to what was done
  1353. * previously. We could try merging non-SACKed ones
  1354. * as well but it probably isn't going to buy off
  1355. * because later SACKs might again split them, and
  1356. * it would make skb timestamp tracking considerably
  1357. * harder problem.
  1358. */
  1359. goto fallback;
  1360. }
  1361. len = end_seq - TCP_SKB_CB(skb)->seq;
  1362. BUG_ON(len < 0);
  1363. BUG_ON(len > skb->len);
  1364. /* MSS boundaries should be honoured or else pcount will
  1365. * severely break even though it makes things bit trickier.
  1366. * Optimize common case to avoid most of the divides
  1367. */
  1368. mss = tcp_skb_mss(skb);
  1369. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1370. * drop this restriction as unnecessary
  1371. */
  1372. if (mss != tcp_skb_seglen(prev))
  1373. goto fallback;
  1374. if (len == mss) {
  1375. pcount = 1;
  1376. } else if (len < mss) {
  1377. goto noop;
  1378. } else {
  1379. pcount = len / mss;
  1380. len = pcount * mss;
  1381. }
  1382. }
  1383. if (!skb_shift(prev, skb, len))
  1384. goto fallback;
  1385. if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
  1386. goto out;
  1387. /* Hole filled allows collapsing with the next as well, this is very
  1388. * useful when hole on every nth skb pattern happens
  1389. */
  1390. if (prev == tcp_write_queue_tail(sk))
  1391. goto out;
  1392. skb = tcp_write_queue_next(sk, prev);
  1393. if (!skb_can_shift(skb) ||
  1394. (skb == tcp_send_head(sk)) ||
  1395. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1396. (mss != tcp_skb_seglen(skb)))
  1397. goto out;
  1398. len = skb->len;
  1399. if (skb_shift(prev, skb, len)) {
  1400. pcount += tcp_skb_pcount(skb);
  1401. tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
  1402. }
  1403. out:
  1404. state->fack_count += pcount;
  1405. return prev;
  1406. noop:
  1407. return skb;
  1408. fallback:
  1409. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1410. return NULL;
  1411. }
  1412. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1413. struct tcp_sack_block *next_dup,
  1414. struct tcp_sacktag_state *state,
  1415. u32 start_seq, u32 end_seq,
  1416. int dup_sack_in)
  1417. {
  1418. struct tcp_sock *tp = tcp_sk(sk);
  1419. struct sk_buff *tmp;
  1420. tcp_for_write_queue_from(skb, sk) {
  1421. int in_sack = 0;
  1422. int dup_sack = dup_sack_in;
  1423. if (skb == tcp_send_head(sk))
  1424. break;
  1425. /* queue is in-order => we can short-circuit the walk early */
  1426. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1427. break;
  1428. if ((next_dup != NULL) &&
  1429. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1430. in_sack = tcp_match_skb_to_sack(sk, skb,
  1431. next_dup->start_seq,
  1432. next_dup->end_seq);
  1433. if (in_sack > 0)
  1434. dup_sack = 1;
  1435. }
  1436. /* skb reference here is a bit tricky to get right, since
  1437. * shifting can eat and free both this skb and the next,
  1438. * so not even _safe variant of the loop is enough.
  1439. */
  1440. if (in_sack <= 0) {
  1441. tmp = tcp_shift_skb_data(sk, skb, state,
  1442. start_seq, end_seq, dup_sack);
  1443. if (tmp != NULL) {
  1444. if (tmp != skb) {
  1445. skb = tmp;
  1446. continue;
  1447. }
  1448. in_sack = 0;
  1449. } else {
  1450. in_sack = tcp_match_skb_to_sack(sk, skb,
  1451. start_seq,
  1452. end_seq);
  1453. }
  1454. }
  1455. if (unlikely(in_sack < 0))
  1456. break;
  1457. if (in_sack) {
  1458. TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
  1459. state,
  1460. dup_sack,
  1461. tcp_skb_pcount(skb));
  1462. if (!before(TCP_SKB_CB(skb)->seq,
  1463. tcp_highest_sack_seq(tp)))
  1464. tcp_advance_highest_sack(sk, skb);
  1465. }
  1466. state->fack_count += tcp_skb_pcount(skb);
  1467. }
  1468. return skb;
  1469. }
  1470. /* Avoid all extra work that is being done by sacktag while walking in
  1471. * a normal way
  1472. */
  1473. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1474. struct tcp_sacktag_state *state,
  1475. u32 skip_to_seq)
  1476. {
  1477. tcp_for_write_queue_from(skb, sk) {
  1478. if (skb == tcp_send_head(sk))
  1479. break;
  1480. if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1481. break;
  1482. state->fack_count += tcp_skb_pcount(skb);
  1483. }
  1484. return skb;
  1485. }
  1486. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1487. struct sock *sk,
  1488. struct tcp_sack_block *next_dup,
  1489. struct tcp_sacktag_state *state,
  1490. u32 skip_to_seq)
  1491. {
  1492. if (next_dup == NULL)
  1493. return skb;
  1494. if (before(next_dup->start_seq, skip_to_seq)) {
  1495. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1496. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1497. next_dup->start_seq, next_dup->end_seq,
  1498. 1);
  1499. }
  1500. return skb;
  1501. }
  1502. static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
  1503. {
  1504. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1505. }
  1506. static int
  1507. tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
  1508. u32 prior_snd_una)
  1509. {
  1510. const struct inet_connection_sock *icsk = inet_csk(sk);
  1511. struct tcp_sock *tp = tcp_sk(sk);
  1512. const unsigned char *ptr = (skb_transport_header(ack_skb) +
  1513. TCP_SKB_CB(ack_skb)->sacked);
  1514. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1515. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1516. struct tcp_sack_block *cache;
  1517. struct tcp_sacktag_state state;
  1518. struct sk_buff *skb;
  1519. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1520. int used_sacks;
  1521. int found_dup_sack = 0;
  1522. int i, j;
  1523. int first_sack_index;
  1524. state.flag = 0;
  1525. state.reord = tp->packets_out;
  1526. if (!tp->sacked_out) {
  1527. if (WARN_ON(tp->fackets_out))
  1528. tp->fackets_out = 0;
  1529. tcp_highest_sack_reset(sk);
  1530. }
  1531. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1532. num_sacks, prior_snd_una);
  1533. if (found_dup_sack)
  1534. state.flag |= FLAG_DSACKING_ACK;
  1535. /* Eliminate too old ACKs, but take into
  1536. * account more or less fresh ones, they can
  1537. * contain valid SACK info.
  1538. */
  1539. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1540. return 0;
  1541. if (!tp->packets_out)
  1542. goto out;
  1543. used_sacks = 0;
  1544. first_sack_index = 0;
  1545. for (i = 0; i < num_sacks; i++) {
  1546. int dup_sack = !i && found_dup_sack;
  1547. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1548. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1549. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1550. sp[used_sacks].start_seq,
  1551. sp[used_sacks].end_seq)) {
  1552. int mib_idx;
  1553. if (dup_sack) {
  1554. if (!tp->undo_marker)
  1555. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1556. else
  1557. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1558. } else {
  1559. /* Don't count olds caused by ACK reordering */
  1560. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1561. !after(sp[used_sacks].end_seq, tp->snd_una))
  1562. continue;
  1563. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1564. }
  1565. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  1566. if (i == 0)
  1567. first_sack_index = -1;
  1568. continue;
  1569. }
  1570. /* Ignore very old stuff early */
  1571. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1572. continue;
  1573. used_sacks++;
  1574. }
  1575. /* order SACK blocks to allow in order walk of the retrans queue */
  1576. for (i = used_sacks - 1; i > 0; i--) {
  1577. for (j = 0; j < i; j++) {
  1578. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1579. swap(sp[j], sp[j + 1]);
  1580. /* Track where the first SACK block goes to */
  1581. if (j == first_sack_index)
  1582. first_sack_index = j + 1;
  1583. }
  1584. }
  1585. }
  1586. skb = tcp_write_queue_head(sk);
  1587. state.fack_count = 0;
  1588. i = 0;
  1589. if (!tp->sacked_out) {
  1590. /* It's already past, so skip checking against it */
  1591. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1592. } else {
  1593. cache = tp->recv_sack_cache;
  1594. /* Skip empty blocks in at head of the cache */
  1595. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1596. !cache->end_seq)
  1597. cache++;
  1598. }
  1599. while (i < used_sacks) {
  1600. u32 start_seq = sp[i].start_seq;
  1601. u32 end_seq = sp[i].end_seq;
  1602. int dup_sack = (found_dup_sack && (i == first_sack_index));
  1603. struct tcp_sack_block *next_dup = NULL;
  1604. if (found_dup_sack && ((i + 1) == first_sack_index))
  1605. next_dup = &sp[i + 1];
  1606. /* Event "B" in the comment above. */
  1607. if (after(end_seq, tp->high_seq))
  1608. state.flag |= FLAG_DATA_LOST;
  1609. /* Skip too early cached blocks */
  1610. while (tcp_sack_cache_ok(tp, cache) &&
  1611. !before(start_seq, cache->end_seq))
  1612. cache++;
  1613. /* Can skip some work by looking recv_sack_cache? */
  1614. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1615. after(end_seq, cache->start_seq)) {
  1616. /* Head todo? */
  1617. if (before(start_seq, cache->start_seq)) {
  1618. skb = tcp_sacktag_skip(skb, sk, &state,
  1619. start_seq);
  1620. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1621. &state,
  1622. start_seq,
  1623. cache->start_seq,
  1624. dup_sack);
  1625. }
  1626. /* Rest of the block already fully processed? */
  1627. if (!after(end_seq, cache->end_seq))
  1628. goto advance_sp;
  1629. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1630. &state,
  1631. cache->end_seq);
  1632. /* ...tail remains todo... */
  1633. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1634. /* ...but better entrypoint exists! */
  1635. skb = tcp_highest_sack(sk);
  1636. if (skb == NULL)
  1637. break;
  1638. state.fack_count = tp->fackets_out;
  1639. cache++;
  1640. goto walk;
  1641. }
  1642. skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
  1643. /* Check overlap against next cached too (past this one already) */
  1644. cache++;
  1645. continue;
  1646. }
  1647. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1648. skb = tcp_highest_sack(sk);
  1649. if (skb == NULL)
  1650. break;
  1651. state.fack_count = tp->fackets_out;
  1652. }
  1653. skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
  1654. walk:
  1655. skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
  1656. start_seq, end_seq, dup_sack);
  1657. advance_sp:
  1658. /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
  1659. * due to in-order walk
  1660. */
  1661. if (after(end_seq, tp->frto_highmark))
  1662. state.flag &= ~FLAG_ONLY_ORIG_SACKED;
  1663. i++;
  1664. }
  1665. /* Clear the head of the cache sack blocks so we can skip it next time */
  1666. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1667. tp->recv_sack_cache[i].start_seq = 0;
  1668. tp->recv_sack_cache[i].end_seq = 0;
  1669. }
  1670. for (j = 0; j < used_sacks; j++)
  1671. tp->recv_sack_cache[i++] = sp[j];
  1672. tcp_mark_lost_retrans(sk);
  1673. tcp_verify_left_out(tp);
  1674. if ((state.reord < tp->fackets_out) &&
  1675. ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
  1676. (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
  1677. tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
  1678. out:
  1679. #if FASTRETRANS_DEBUG > 0
  1680. WARN_ON((int)tp->sacked_out < 0);
  1681. WARN_ON((int)tp->lost_out < 0);
  1682. WARN_ON((int)tp->retrans_out < 0);
  1683. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1684. #endif
  1685. return state.flag;
  1686. }
  1687. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1688. * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
  1689. */
  1690. static int tcp_limit_reno_sacked(struct tcp_sock *tp)
  1691. {
  1692. u32 holes;
  1693. holes = max(tp->lost_out, 1U);
  1694. holes = min(holes, tp->packets_out);
  1695. if ((tp->sacked_out + holes) > tp->packets_out) {
  1696. tp->sacked_out = tp->packets_out - holes;
  1697. return 1;
  1698. }
  1699. return 0;
  1700. }
  1701. /* If we receive more dupacks than we expected counting segments
  1702. * in assumption of absent reordering, interpret this as reordering.
  1703. * The only another reason could be bug in receiver TCP.
  1704. */
  1705. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1706. {
  1707. struct tcp_sock *tp = tcp_sk(sk);
  1708. if (tcp_limit_reno_sacked(tp))
  1709. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1710. }
  1711. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1712. static void tcp_add_reno_sack(struct sock *sk)
  1713. {
  1714. struct tcp_sock *tp = tcp_sk(sk);
  1715. tp->sacked_out++;
  1716. tcp_check_reno_reordering(sk, 0);
  1717. tcp_verify_left_out(tp);
  1718. }
  1719. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1720. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1721. {
  1722. struct tcp_sock *tp = tcp_sk(sk);
  1723. if (acked > 0) {
  1724. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1725. if (acked - 1 >= tp->sacked_out)
  1726. tp->sacked_out = 0;
  1727. else
  1728. tp->sacked_out -= acked - 1;
  1729. }
  1730. tcp_check_reno_reordering(sk, acked);
  1731. tcp_verify_left_out(tp);
  1732. }
  1733. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1734. {
  1735. tp->sacked_out = 0;
  1736. }
  1737. static int tcp_is_sackfrto(const struct tcp_sock *tp)
  1738. {
  1739. return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
  1740. }
  1741. /* F-RTO can only be used if TCP has never retransmitted anything other than
  1742. * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
  1743. */
  1744. int tcp_use_frto(struct sock *sk)
  1745. {
  1746. const struct tcp_sock *tp = tcp_sk(sk);
  1747. const struct inet_connection_sock *icsk = inet_csk(sk);
  1748. struct sk_buff *skb;
  1749. if (!sysctl_tcp_frto)
  1750. return 0;
  1751. /* MTU probe and F-RTO won't really play nicely along currently */
  1752. if (icsk->icsk_mtup.probe_size)
  1753. return 0;
  1754. if (tcp_is_sackfrto(tp))
  1755. return 1;
  1756. /* Avoid expensive walking of rexmit queue if possible */
  1757. if (tp->retrans_out > 1)
  1758. return 0;
  1759. skb = tcp_write_queue_head(sk);
  1760. if (tcp_skb_is_last(sk, skb))
  1761. return 1;
  1762. skb = tcp_write_queue_next(sk, skb); /* Skips head */
  1763. tcp_for_write_queue_from(skb, sk) {
  1764. if (skb == tcp_send_head(sk))
  1765. break;
  1766. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1767. return 0;
  1768. /* Short-circuit when first non-SACKed skb has been checked */
  1769. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1770. break;
  1771. }
  1772. return 1;
  1773. }
  1774. /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
  1775. * recovery a bit and use heuristics in tcp_process_frto() to detect if
  1776. * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
  1777. * keep retrans_out counting accurate (with SACK F-RTO, other than head
  1778. * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
  1779. * bits are handled if the Loss state is really to be entered (in
  1780. * tcp_enter_frto_loss).
  1781. *
  1782. * Do like tcp_enter_loss() would; when RTO expires the second time it
  1783. * does:
  1784. * "Reduce ssthresh if it has not yet been made inside this window."
  1785. */
  1786. void tcp_enter_frto(struct sock *sk)
  1787. {
  1788. const struct inet_connection_sock *icsk = inet_csk(sk);
  1789. struct tcp_sock *tp = tcp_sk(sk);
  1790. struct sk_buff *skb;
  1791. if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
  1792. tp->snd_una == tp->high_seq ||
  1793. ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
  1794. !icsk->icsk_retransmits)) {
  1795. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1796. /* Our state is too optimistic in ssthresh() call because cwnd
  1797. * is not reduced until tcp_enter_frto_loss() when previous F-RTO
  1798. * recovery has not yet completed. Pattern would be this: RTO,
  1799. * Cumulative ACK, RTO (2xRTO for the same segment does not end
  1800. * up here twice).
  1801. * RFC4138 should be more specific on what to do, even though
  1802. * RTO is quite unlikely to occur after the first Cumulative ACK
  1803. * due to back-off and complexity of triggering events ...
  1804. */
  1805. if (tp->frto_counter) {
  1806. u32 stored_cwnd;
  1807. stored_cwnd = tp->snd_cwnd;
  1808. tp->snd_cwnd = 2;
  1809. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1810. tp->snd_cwnd = stored_cwnd;
  1811. } else {
  1812. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1813. }
  1814. /* ... in theory, cong.control module could do "any tricks" in
  1815. * ssthresh(), which means that ca_state, lost bits and lost_out
  1816. * counter would have to be faked before the call occurs. We
  1817. * consider that too expensive, unlikely and hacky, so modules
  1818. * using these in ssthresh() must deal these incompatibility
  1819. * issues if they receives CA_EVENT_FRTO and frto_counter != 0
  1820. */
  1821. tcp_ca_event(sk, CA_EVENT_FRTO);
  1822. }
  1823. tp->undo_marker = tp->snd_una;
  1824. tp->undo_retrans = 0;
  1825. skb = tcp_write_queue_head(sk);
  1826. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1827. tp->undo_marker = 0;
  1828. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  1829. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1830. tp->retrans_out -= tcp_skb_pcount(skb);
  1831. }
  1832. tcp_verify_left_out(tp);
  1833. /* Too bad if TCP was application limited */
  1834. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
  1835. /* Earlier loss recovery underway (see RFC4138; Appendix B).
  1836. * The last condition is necessary at least in tp->frto_counter case.
  1837. */
  1838. if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
  1839. ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
  1840. after(tp->high_seq, tp->snd_una)) {
  1841. tp->frto_highmark = tp->high_seq;
  1842. } else {
  1843. tp->frto_highmark = tp->snd_nxt;
  1844. }
  1845. tcp_set_ca_state(sk, TCP_CA_Disorder);
  1846. tp->high_seq = tp->snd_nxt;
  1847. tp->frto_counter = 1;
  1848. }
  1849. /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
  1850. * which indicates that we should follow the traditional RTO recovery,
  1851. * i.e. mark everything lost and do go-back-N retransmission.
  1852. */
  1853. static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
  1854. {
  1855. struct tcp_sock *tp = tcp_sk(sk);
  1856. struct sk_buff *skb;
  1857. tp->lost_out = 0;
  1858. tp->retrans_out = 0;
  1859. if (tcp_is_reno(tp))
  1860. tcp_reset_reno_sack(tp);
  1861. tcp_for_write_queue(skb, sk) {
  1862. if (skb == tcp_send_head(sk))
  1863. break;
  1864. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  1865. /*
  1866. * Count the retransmission made on RTO correctly (only when
  1867. * waiting for the first ACK and did not get it)...
  1868. */
  1869. if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
  1870. /* For some reason this R-bit might get cleared? */
  1871. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
  1872. tp->retrans_out += tcp_skb_pcount(skb);
  1873. /* ...enter this if branch just for the first segment */
  1874. flag |= FLAG_DATA_ACKED;
  1875. } else {
  1876. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1877. tp->undo_marker = 0;
  1878. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1879. }
  1880. /* Marking forward transmissions that were made after RTO lost
  1881. * can cause unnecessary retransmissions in some scenarios,
  1882. * SACK blocks will mitigate that in some but not in all cases.
  1883. * We used to not mark them but it was causing break-ups with
  1884. * receivers that do only in-order receival.
  1885. *
  1886. * TODO: we could detect presence of such receiver and select
  1887. * different behavior per flow.
  1888. */
  1889. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  1890. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1891. tp->lost_out += tcp_skb_pcount(skb);
  1892. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1893. }
  1894. }
  1895. tcp_verify_left_out(tp);
  1896. tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
  1897. tp->snd_cwnd_cnt = 0;
  1898. tp->snd_cwnd_stamp = tcp_time_stamp;
  1899. tp->frto_counter = 0;
  1900. tp->bytes_acked = 0;
  1901. tp->reordering = min_t(unsigned int, tp->reordering,
  1902. sysctl_tcp_reordering);
  1903. tcp_set_ca_state(sk, TCP_CA_Loss);
  1904. tp->high_seq = tp->snd_nxt;
  1905. TCP_ECN_queue_cwr(tp);
  1906. tcp_clear_all_retrans_hints(tp);
  1907. }
  1908. static void tcp_clear_retrans_partial(struct tcp_sock *tp)
  1909. {
  1910. tp->retrans_out = 0;
  1911. tp->lost_out = 0;
  1912. tp->undo_marker = 0;
  1913. tp->undo_retrans = 0;
  1914. }
  1915. void tcp_clear_retrans(struct tcp_sock *tp)
  1916. {
  1917. tcp_clear_retrans_partial(tp);
  1918. tp->fackets_out = 0;
  1919. tp->sacked_out = 0;
  1920. }
  1921. /* Enter Loss state. If "how" is not zero, forget all SACK information
  1922. * and reset tags completely, otherwise preserve SACKs. If receiver
  1923. * dropped its ofo queue, we will know this due to reneging detection.
  1924. */
  1925. void tcp_enter_loss(struct sock *sk, int how)
  1926. {
  1927. const struct inet_connection_sock *icsk = inet_csk(sk);
  1928. struct tcp_sock *tp = tcp_sk(sk);
  1929. struct sk_buff *skb;
  1930. /* Reduce ssthresh if it has not yet been made inside this window. */
  1931. if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
  1932. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1933. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1934. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1935. tcp_ca_event(sk, CA_EVENT_LOSS);
  1936. }
  1937. tp->snd_cwnd = 1;
  1938. tp->snd_cwnd_cnt = 0;
  1939. tp->snd_cwnd_stamp = tcp_time_stamp;
  1940. tp->bytes_acked = 0;
  1941. tcp_clear_retrans_partial(tp);
  1942. if (tcp_is_reno(tp))
  1943. tcp_reset_reno_sack(tp);
  1944. if (!how) {
  1945. /* Push undo marker, if it was plain RTO and nothing
  1946. * was retransmitted. */
  1947. tp->undo_marker = tp->snd_una;
  1948. } else {
  1949. tp->sacked_out = 0;
  1950. tp->fackets_out = 0;
  1951. }
  1952. tcp_clear_all_retrans_hints(tp);
  1953. tcp_for_write_queue(skb, sk) {
  1954. if (skb == tcp_send_head(sk))
  1955. break;
  1956. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1957. tp->undo_marker = 0;
  1958. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1959. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
  1960. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1961. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1962. tp->lost_out += tcp_skb_pcount(skb);
  1963. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1964. }
  1965. }
  1966. tcp_verify_left_out(tp);
  1967. tp->reordering = min_t(unsigned int, tp->reordering,
  1968. sysctl_tcp_reordering);
  1969. tcp_set_ca_state(sk, TCP_CA_Loss);
  1970. tp->high_seq = tp->snd_nxt;
  1971. TCP_ECN_queue_cwr(tp);
  1972. /* Abort F-RTO algorithm if one is in progress */
  1973. tp->frto_counter = 0;
  1974. }
  1975. /* If ACK arrived pointing to a remembered SACK, it means that our
  1976. * remembered SACKs do not reflect real state of receiver i.e.
  1977. * receiver _host_ is heavily congested (or buggy).
  1978. *
  1979. * Do processing similar to RTO timeout.
  1980. */
  1981. static int tcp_check_sack_reneging(struct sock *sk, int flag)
  1982. {
  1983. if (flag & FLAG_SACK_RENEGING) {
  1984. struct inet_connection_sock *icsk = inet_csk(sk);
  1985. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1986. tcp_enter_loss(sk, 1);
  1987. icsk->icsk_retransmits++;
  1988. tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
  1989. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1990. icsk->icsk_rto, TCP_RTO_MAX);
  1991. return 1;
  1992. }
  1993. return 0;
  1994. }
  1995. static inline int tcp_fackets_out(const struct tcp_sock *tp)
  1996. {
  1997. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  1998. }
  1999. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  2000. * counter when SACK is enabled (without SACK, sacked_out is used for
  2001. * that purpose).
  2002. *
  2003. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  2004. * segments up to the highest received SACK block so far and holes in
  2005. * between them.
  2006. *
  2007. * With reordering, holes may still be in flight, so RFC3517 recovery
  2008. * uses pure sacked_out (total number of SACKed segments) even though
  2009. * it violates the RFC that uses duplicate ACKs, often these are equal
  2010. * but when e.g. out-of-window ACKs or packet duplication occurs,
  2011. * they differ. Since neither occurs due to loss, TCP should really
  2012. * ignore them.
  2013. */
  2014. static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
  2015. {
  2016. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  2017. }
  2018. static inline int tcp_skb_timedout(const struct sock *sk,
  2019. const struct sk_buff *skb)
  2020. {
  2021. return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
  2022. }
  2023. static inline int tcp_head_timedout(const struct sock *sk)
  2024. {
  2025. const struct tcp_sock *tp = tcp_sk(sk);
  2026. return tp->packets_out &&
  2027. tcp_skb_timedout(sk, tcp_write_queue_head(sk));
  2028. }
  2029. /* Linux NewReno/SACK/FACK/ECN state machine.
  2030. * --------------------------------------
  2031. *
  2032. * "Open" Normal state, no dubious events, fast path.
  2033. * "Disorder" In all the respects it is "Open",
  2034. * but requires a bit more attention. It is entered when
  2035. * we see some SACKs or dupacks. It is split of "Open"
  2036. * mainly to move some processing from fast path to slow one.
  2037. * "CWR" CWND was reduced due to some Congestion Notification event.
  2038. * It can be ECN, ICMP source quench, local device congestion.
  2039. * "Recovery" CWND was reduced, we are fast-retransmitting.
  2040. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  2041. *
  2042. * tcp_fastretrans_alert() is entered:
  2043. * - each incoming ACK, if state is not "Open"
  2044. * - when arrived ACK is unusual, namely:
  2045. * * SACK
  2046. * * Duplicate ACK.
  2047. * * ECN ECE.
  2048. *
  2049. * Counting packets in flight is pretty simple.
  2050. *
  2051. * in_flight = packets_out - left_out + retrans_out
  2052. *
  2053. * packets_out is SND.NXT-SND.UNA counted in packets.
  2054. *
  2055. * retrans_out is number of retransmitted segments.
  2056. *
  2057. * left_out is number of segments left network, but not ACKed yet.
  2058. *
  2059. * left_out = sacked_out + lost_out
  2060. *
  2061. * sacked_out: Packets, which arrived to receiver out of order
  2062. * and hence not ACKed. With SACKs this number is simply
  2063. * amount of SACKed data. Even without SACKs
  2064. * it is easy to give pretty reliable estimate of this number,
  2065. * counting duplicate ACKs.
  2066. *
  2067. * lost_out: Packets lost by network. TCP has no explicit
  2068. * "loss notification" feedback from network (for now).
  2069. * It means that this number can be only _guessed_.
  2070. * Actually, it is the heuristics to predict lossage that
  2071. * distinguishes different algorithms.
  2072. *
  2073. * F.e. after RTO, when all the queue is considered as lost,
  2074. * lost_out = packets_out and in_flight = retrans_out.
  2075. *
  2076. * Essentially, we have now two algorithms counting
  2077. * lost packets.
  2078. *
  2079. * FACK: It is the simplest heuristics. As soon as we decided
  2080. * that something is lost, we decide that _all_ not SACKed
  2081. * packets until the most forward SACK are lost. I.e.
  2082. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  2083. * It is absolutely correct estimate, if network does not reorder
  2084. * packets. And it loses any connection to reality when reordering
  2085. * takes place. We use FACK by default until reordering
  2086. * is suspected on the path to this destination.
  2087. *
  2088. * NewReno: when Recovery is entered, we assume that one segment
  2089. * is lost (classic Reno). While we are in Recovery and
  2090. * a partial ACK arrives, we assume that one more packet
  2091. * is lost (NewReno). This heuristics are the same in NewReno
  2092. * and SACK.
  2093. *
  2094. * Imagine, that's all! Forget about all this shamanism about CWND inflation
  2095. * deflation etc. CWND is real congestion window, never inflated, changes
  2096. * only according to classic VJ rules.
  2097. *
  2098. * Really tricky (and requiring careful tuning) part of algorithm
  2099. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  2100. * The first determines the moment _when_ we should reduce CWND and,
  2101. * hence, slow down forward transmission. In fact, it determines the moment
  2102. * when we decide that hole is caused by loss, rather than by a reorder.
  2103. *
  2104. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  2105. * holes, caused by lost packets.
  2106. *
  2107. * And the most logically complicated part of algorithm is undo
  2108. * heuristics. We detect false retransmits due to both too early
  2109. * fast retransmit (reordering) and underestimated RTO, analyzing
  2110. * timestamps and D-SACKs. When we detect that some segments were
  2111. * retransmitted by mistake and CWND reduction was wrong, we undo
  2112. * window reduction and abort recovery phase. This logic is hidden
  2113. * inside several functions named tcp_try_undo_<something>.
  2114. */
  2115. /* This function decides, when we should leave Disordered state
  2116. * and enter Recovery phase, reducing congestion window.
  2117. *
  2118. * Main question: may we further continue forward transmission
  2119. * with the same cwnd?
  2120. */
  2121. static int tcp_time_to_recover(struct sock *sk)
  2122. {
  2123. struct tcp_sock *tp = tcp_sk(sk);
  2124. __u32 packets_out;
  2125. /* Do not perform any recovery during F-RTO algorithm */
  2126. if (tp->frto_counter)
  2127. return 0;
  2128. /* Trick#1: The loss is proven. */
  2129. if (tp->lost_out)
  2130. return 1;
  2131. /* Not-A-Trick#2 : Classic rule... */
  2132. if (tcp_dupack_heuristics(tp) > tp->reordering)
  2133. return 1;
  2134. /* Trick#3 : when we use RFC2988 timer restart, fast
  2135. * retransmit can be triggered by timeout of queue head.
  2136. */
  2137. if (tcp_is_fack(tp) && tcp_head_timedout(sk))
  2138. return 1;
  2139. /* Trick#4: It is still not OK... But will it be useful to delay
  2140. * recovery more?
  2141. */
  2142. packets_out = tp->packets_out;
  2143. if (packets_out <= tp->reordering &&
  2144. tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
  2145. !tcp_may_send_now(sk)) {
  2146. /* We have nothing to send. This connection is limited
  2147. * either by receiver window or by application.
  2148. */
  2149. return 1;
  2150. }
  2151. /* If a thin stream is detected, retransmit after first
  2152. * received dupack. Employ only if SACK is supported in order
  2153. * to avoid possible corner-case series of spurious retransmissions
  2154. * Use only if there are no unsent data.
  2155. */
  2156. if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
  2157. tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
  2158. tcp_is_sack(tp) && !tcp_send_head(sk))
  2159. return 1;
  2160. return 0;
  2161. }
  2162. /* New heuristics: it is possible only after we switched to restart timer
  2163. * each time when something is ACKed. Hence, we can detect timed out packets
  2164. * during fast retransmit without falling to slow start.
  2165. *
  2166. * Usefulness of this as is very questionable, since we should know which of
  2167. * the segments is the next to timeout which is relatively expensive to find
  2168. * in general case unless we add some data structure just for that. The
  2169. * current approach certainly won't find the right one too often and when it
  2170. * finally does find _something_ it usually marks large part of the window
  2171. * right away (because a retransmission with a larger timestamp blocks the
  2172. * loop from advancing). -ij
  2173. */
  2174. static void tcp_timeout_skbs(struct sock *sk)
  2175. {
  2176. struct tcp_sock *tp = tcp_sk(sk);
  2177. struct sk_buff *skb;
  2178. if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
  2179. return;
  2180. skb = tp->scoreboard_skb_hint;
  2181. if (tp->scoreboard_skb_hint == NULL)
  2182. skb = tcp_write_queue_head(sk);
  2183. tcp_for_write_queue_from(skb, sk) {
  2184. if (skb == tcp_send_head(sk))
  2185. break;
  2186. if (!tcp_skb_timedout(sk, skb))
  2187. break;
  2188. tcp_skb_mark_lost(tp, skb);
  2189. }
  2190. tp->scoreboard_skb_hint = skb;
  2191. tcp_verify_left_out(tp);
  2192. }
  2193. /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
  2194. * is against sacked "cnt", otherwise it's against facked "cnt"
  2195. */
  2196. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  2197. {
  2198. struct tcp_sock *tp = tcp_sk(sk);
  2199. struct sk_buff *skb;
  2200. int cnt, oldcnt;
  2201. int err;
  2202. unsigned int mss;
  2203. WARN_ON(packets > tp->packets_out);
  2204. if (tp->lost_skb_hint) {
  2205. skb = tp->lost_skb_hint;
  2206. cnt = tp->lost_cnt_hint;
  2207. /* Head already handled? */
  2208. if (mark_head && skb != tcp_write_queue_head(sk))
  2209. return;
  2210. } else {
  2211. skb = tcp_write_queue_head(sk);
  2212. cnt = 0;
  2213. }
  2214. tcp_for_write_queue_from(skb, sk) {
  2215. if (skb == tcp_send_head(sk))
  2216. break;
  2217. /* TODO: do this better */
  2218. /* this is not the most efficient way to do this... */
  2219. tp->lost_skb_hint = skb;
  2220. tp->lost_cnt_hint = cnt;
  2221. if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
  2222. break;
  2223. oldcnt = cnt;
  2224. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  2225. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2226. cnt += tcp_skb_pcount(skb);
  2227. if (cnt > packets) {
  2228. if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
  2229. (oldcnt >= packets))
  2230. break;
  2231. mss = skb_shinfo(skb)->gso_size;
  2232. err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
  2233. if (err < 0)
  2234. break;
  2235. cnt = packets;
  2236. }
  2237. tcp_skb_mark_lost(tp, skb);
  2238. if (mark_head)
  2239. break;
  2240. }
  2241. tcp_verify_left_out(tp);
  2242. }
  2243. /* Account newly detected lost packet(s) */
  2244. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  2245. {
  2246. struct tcp_sock *tp = tcp_sk(sk);
  2247. if (tcp_is_reno(tp)) {
  2248. tcp_mark_head_lost(sk, 1, 1);
  2249. } else if (tcp_is_fack(tp)) {
  2250. int lost = tp->fackets_out - tp->reordering;
  2251. if (lost <= 0)
  2252. lost = 1;
  2253. tcp_mark_head_lost(sk, lost, 0);
  2254. } else {
  2255. int sacked_upto = tp->sacked_out - tp->reordering;
  2256. if (sacked_upto >= 0)
  2257. tcp_mark_head_lost(sk, sacked_upto, 0);
  2258. else if (fast_rexmit)
  2259. tcp_mark_head_lost(sk, 1, 1);
  2260. }
  2261. tcp_timeout_skbs(sk);
  2262. }
  2263. /* CWND moderation, preventing bursts due to too big ACKs
  2264. * in dubious situations.
  2265. */
  2266. static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
  2267. {
  2268. tp->snd_cwnd = min(tp->snd_cwnd,
  2269. tcp_packets_in_flight(tp) + tcp_max_burst(tp));
  2270. tp->snd_cwnd_stamp = tcp_time_stamp;
  2271. }
  2272. /* Lower bound on congestion window is slow start threshold
  2273. * unless congestion avoidance choice decides to overide it.
  2274. */
  2275. static inline u32 tcp_cwnd_min(const struct sock *sk)
  2276. {
  2277. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  2278. return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
  2279. }
  2280. /* Decrease cwnd each second ack. */
  2281. static void tcp_cwnd_down(struct sock *sk, int flag)
  2282. {
  2283. struct tcp_sock *tp = tcp_sk(sk);
  2284. int decr = tp->snd_cwnd_cnt + 1;
  2285. if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
  2286. (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
  2287. tp->snd_cwnd_cnt = decr & 1;
  2288. decr >>= 1;
  2289. if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
  2290. tp->snd_cwnd -= decr;
  2291. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
  2292. tp->snd_cwnd_stamp = tcp_time_stamp;
  2293. }
  2294. }
  2295. /* Nothing was retransmitted or returned timestamp is less
  2296. * than timestamp of the first retransmission.
  2297. */
  2298. static inline int tcp_packet_delayed(const struct tcp_sock *tp)
  2299. {
  2300. return !tp->retrans_stamp ||
  2301. (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2302. before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
  2303. }
  2304. /* Undo procedures. */
  2305. #if FASTRETRANS_DEBUG > 1
  2306. static void DBGUNDO(struct sock *sk, const char *msg)
  2307. {
  2308. struct tcp_sock *tp = tcp_sk(sk);
  2309. struct inet_sock *inet = inet_sk(sk);
  2310. if (sk->sk_family == AF_INET) {
  2311. printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  2312. msg,
  2313. &inet->inet_daddr, ntohs(inet->inet_dport),
  2314. tp->snd_cwnd, tcp_left_out(tp),
  2315. tp->snd_ssthresh, tp->prior_ssthresh,
  2316. tp->packets_out);
  2317. }
  2318. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2319. else if (sk->sk_family == AF_INET6) {
  2320. struct ipv6_pinfo *np = inet6_sk(sk);
  2321. printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  2322. msg,
  2323. &np->daddr, ntohs(inet->inet_dport),
  2324. tp->snd_cwnd, tcp_left_out(tp),
  2325. tp->snd_ssthresh, tp->prior_ssthresh,
  2326. tp->packets_out);
  2327. }
  2328. #endif
  2329. }
  2330. #else
  2331. #define DBGUNDO(x...) do { } while (0)
  2332. #endif
  2333. static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
  2334. {
  2335. struct tcp_sock *tp = tcp_sk(sk);
  2336. if (tp->prior_ssthresh) {
  2337. const struct inet_connection_sock *icsk = inet_csk(sk);
  2338. if (icsk->icsk_ca_ops->undo_cwnd)
  2339. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2340. else
  2341. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
  2342. if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
  2343. tp->snd_ssthresh = tp->prior_ssthresh;
  2344. TCP_ECN_withdraw_cwr(tp);
  2345. }
  2346. } else {
  2347. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
  2348. }
  2349. tp->snd_cwnd_stamp = tcp_time_stamp;
  2350. }
  2351. static inline int tcp_may_undo(const struct tcp_sock *tp)
  2352. {
  2353. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2354. }
  2355. /* People celebrate: "We love our President!" */
  2356. static int tcp_try_undo_recovery(struct sock *sk)
  2357. {
  2358. struct tcp_sock *tp = tcp_sk(sk);
  2359. if (tcp_may_undo(tp)) {
  2360. int mib_idx;
  2361. /* Happy end! We did not retransmit anything
  2362. * or our original transmission succeeded.
  2363. */
  2364. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2365. tcp_undo_cwr(sk, true);
  2366. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2367. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2368. else
  2369. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2370. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2371. tp->undo_marker = 0;
  2372. }
  2373. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2374. /* Hold old state until something *above* high_seq
  2375. * is ACKed. For Reno it is MUST to prevent false
  2376. * fast retransmits (RFC2582). SACK TCP is safe. */
  2377. tcp_moderate_cwnd(tp);
  2378. return 1;
  2379. }
  2380. tcp_set_ca_state(sk, TCP_CA_Open);
  2381. return 0;
  2382. }
  2383. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2384. static void tcp_try_undo_dsack(struct sock *sk)
  2385. {
  2386. struct tcp_sock *tp = tcp_sk(sk);
  2387. if (tp->undo_marker && !tp->undo_retrans) {
  2388. DBGUNDO(sk, "D-SACK");
  2389. tcp_undo_cwr(sk, true);
  2390. tp->undo_marker = 0;
  2391. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2392. }
  2393. }
  2394. /* We can clear retrans_stamp when there are no retransmissions in the
  2395. * window. It would seem that it is trivially available for us in
  2396. * tp->retrans_out, however, that kind of assumptions doesn't consider
  2397. * what will happen if errors occur when sending retransmission for the
  2398. * second time. ...It could the that such segment has only
  2399. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  2400. * the head skb is enough except for some reneging corner cases that
  2401. * are not worth the effort.
  2402. *
  2403. * Main reason for all this complexity is the fact that connection dying
  2404. * time now depends on the validity of the retrans_stamp, in particular,
  2405. * that successive retransmissions of a segment must not advance
  2406. * retrans_stamp under any conditions.
  2407. */
  2408. static int tcp_any_retrans_done(const struct sock *sk)
  2409. {
  2410. const struct tcp_sock *tp = tcp_sk(sk);
  2411. struct sk_buff *skb;
  2412. if (tp->retrans_out)
  2413. return 1;
  2414. skb = tcp_write_queue_head(sk);
  2415. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  2416. return 1;
  2417. return 0;
  2418. }
  2419. /* Undo during fast recovery after partial ACK. */
  2420. static int tcp_try_undo_partial(struct sock *sk, int acked)
  2421. {
  2422. struct tcp_sock *tp = tcp_sk(sk);
  2423. /* Partial ACK arrived. Force Hoe's retransmit. */
  2424. int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
  2425. if (tcp_may_undo(tp)) {
  2426. /* Plain luck! Hole if filled with delayed
  2427. * packet, rather than with a retransmit.
  2428. */
  2429. if (!tcp_any_retrans_done(sk))
  2430. tp->retrans_stamp = 0;
  2431. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2432. DBGUNDO(sk, "Hoe");
  2433. tcp_undo_cwr(sk, false);
  2434. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2435. /* So... Do not make Hoe's retransmit yet.
  2436. * If the first packet was delayed, the rest
  2437. * ones are most probably delayed as well.
  2438. */
  2439. failed = 0;
  2440. }
  2441. return failed;
  2442. }
  2443. /* Undo during loss recovery after partial ACK. */
  2444. static int tcp_try_undo_loss(struct sock *sk)
  2445. {
  2446. struct tcp_sock *tp = tcp_sk(sk);
  2447. if (tcp_may_undo(tp)) {
  2448. struct sk_buff *skb;
  2449. tcp_for_write_queue(skb, sk) {
  2450. if (skb == tcp_send_head(sk))
  2451. break;
  2452. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2453. }
  2454. tcp_clear_all_retrans_hints(tp);
  2455. DBGUNDO(sk, "partial loss");
  2456. tp->lost_out = 0;
  2457. tcp_undo_cwr(sk, true);
  2458. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2459. inet_csk(sk)->icsk_retransmits = 0;
  2460. tp->undo_marker = 0;
  2461. if (tcp_is_sack(tp))
  2462. tcp_set_ca_state(sk, TCP_CA_Open);
  2463. return 1;
  2464. }
  2465. return 0;
  2466. }
  2467. static inline void tcp_complete_cwr(struct sock *sk)
  2468. {
  2469. struct tcp_sock *tp = tcp_sk(sk);
  2470. /* Do not moderate cwnd if it's already undone in cwr or recovery. */
  2471. if (tp->undo_marker) {
  2472. if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR)
  2473. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  2474. else /* PRR */
  2475. tp->snd_cwnd = tp->snd_ssthresh;
  2476. tp->snd_cwnd_stamp = tcp_time_stamp;
  2477. }
  2478. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2479. }
  2480. static void tcp_try_keep_open(struct sock *sk)
  2481. {
  2482. struct tcp_sock *tp = tcp_sk(sk);
  2483. int state = TCP_CA_Open;
  2484. if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
  2485. state = TCP_CA_Disorder;
  2486. if (inet_csk(sk)->icsk_ca_state != state) {
  2487. tcp_set_ca_state(sk, state);
  2488. tp->high_seq = tp->snd_nxt;
  2489. }
  2490. }
  2491. static void tcp_try_to_open(struct sock *sk, int flag)
  2492. {
  2493. struct tcp_sock *tp = tcp_sk(sk);
  2494. tcp_verify_left_out(tp);
  2495. if (!tp->frto_counter && !tcp_any_retrans_done(sk))
  2496. tp->retrans_stamp = 0;
  2497. if (flag & FLAG_ECE)
  2498. tcp_enter_cwr(sk, 1);
  2499. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2500. tcp_try_keep_open(sk);
  2501. tcp_moderate_cwnd(tp);
  2502. } else {
  2503. tcp_cwnd_down(sk, flag);
  2504. }
  2505. }
  2506. static void tcp_mtup_probe_failed(struct sock *sk)
  2507. {
  2508. struct inet_connection_sock *icsk = inet_csk(sk);
  2509. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2510. icsk->icsk_mtup.probe_size = 0;
  2511. }
  2512. static void tcp_mtup_probe_success(struct sock *sk)
  2513. {
  2514. struct tcp_sock *tp = tcp_sk(sk);
  2515. struct inet_connection_sock *icsk = inet_csk(sk);
  2516. /* FIXME: breaks with very large cwnd */
  2517. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2518. tp->snd_cwnd = tp->snd_cwnd *
  2519. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2520. icsk->icsk_mtup.probe_size;
  2521. tp->snd_cwnd_cnt = 0;
  2522. tp->snd_cwnd_stamp = tcp_time_stamp;
  2523. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2524. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2525. icsk->icsk_mtup.probe_size = 0;
  2526. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2527. }
  2528. /* Do a simple retransmit without using the backoff mechanisms in
  2529. * tcp_timer. This is used for path mtu discovery.
  2530. * The socket is already locked here.
  2531. */
  2532. void tcp_simple_retransmit(struct sock *sk)
  2533. {
  2534. const struct inet_connection_sock *icsk = inet_csk(sk);
  2535. struct tcp_sock *tp = tcp_sk(sk);
  2536. struct sk_buff *skb;
  2537. unsigned int mss = tcp_current_mss(sk);
  2538. u32 prior_lost = tp->lost_out;
  2539. tcp_for_write_queue(skb, sk) {
  2540. if (skb == tcp_send_head(sk))
  2541. break;
  2542. if (tcp_skb_seglen(skb) > mss &&
  2543. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2544. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2545. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2546. tp->retrans_out -= tcp_skb_pcount(skb);
  2547. }
  2548. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2549. }
  2550. }
  2551. tcp_clear_retrans_hints_partial(tp);
  2552. if (prior_lost == tp->lost_out)
  2553. return;
  2554. if (tcp_is_reno(tp))
  2555. tcp_limit_reno_sacked(tp);
  2556. tcp_verify_left_out(tp);
  2557. /* Don't muck with the congestion window here.
  2558. * Reason is that we do not increase amount of _data_
  2559. * in network, but units changed and effective
  2560. * cwnd/ssthresh really reduced now.
  2561. */
  2562. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2563. tp->high_seq = tp->snd_nxt;
  2564. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2565. tp->prior_ssthresh = 0;
  2566. tp->undo_marker = 0;
  2567. tcp_set_ca_state(sk, TCP_CA_Loss);
  2568. }
  2569. tcp_xmit_retransmit_queue(sk);
  2570. }
  2571. EXPORT_SYMBOL(tcp_simple_retransmit);
  2572. /* This function implements the PRR algorithm, specifcally the PRR-SSRB
  2573. * (proportional rate reduction with slow start reduction bound) as described in
  2574. * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
  2575. * It computes the number of packets to send (sndcnt) based on packets newly
  2576. * delivered:
  2577. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2578. * cwnd reductions across a full RTT.
  2579. * 2) If packets in flight is lower than ssthresh (such as due to excess
  2580. * losses and/or application stalls), do not perform any further cwnd
  2581. * reductions, but instead slow start up to ssthresh.
  2582. */
  2583. static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
  2584. int fast_rexmit, int flag)
  2585. {
  2586. struct tcp_sock *tp = tcp_sk(sk);
  2587. int sndcnt = 0;
  2588. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2589. if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
  2590. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2591. tp->prior_cwnd - 1;
  2592. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2593. } else {
  2594. sndcnt = min_t(int, delta,
  2595. max_t(int, tp->prr_delivered - tp->prr_out,
  2596. newly_acked_sacked) + 1);
  2597. }
  2598. sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
  2599. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2600. }
  2601. /* Process an event, which can update packets-in-flight not trivially.
  2602. * Main goal of this function is to calculate new estimate for left_out,
  2603. * taking into account both packets sitting in receiver's buffer and
  2604. * packets lost by network.
  2605. *
  2606. * Besides that it does CWND reduction, when packet loss is detected
  2607. * and changes state of machine.
  2608. *
  2609. * It does _not_ decide what to send, it is made in function
  2610. * tcp_xmit_retransmit_queue().
  2611. */
  2612. static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
  2613. int newly_acked_sacked, bool is_dupack,
  2614. int flag)
  2615. {
  2616. struct inet_connection_sock *icsk = inet_csk(sk);
  2617. struct tcp_sock *tp = tcp_sk(sk);
  2618. int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2619. (tcp_fackets_out(tp) > tp->reordering));
  2620. int fast_rexmit = 0, mib_idx;
  2621. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2622. tp->sacked_out = 0;
  2623. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2624. tp->fackets_out = 0;
  2625. /* Now state machine starts.
  2626. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2627. if (flag & FLAG_ECE)
  2628. tp->prior_ssthresh = 0;
  2629. /* B. In all the states check for reneging SACKs. */
  2630. if (tcp_check_sack_reneging(sk, flag))
  2631. return;
  2632. /* C. Process data loss notification, provided it is valid. */
  2633. if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
  2634. before(tp->snd_una, tp->high_seq) &&
  2635. icsk->icsk_ca_state != TCP_CA_Open &&
  2636. tp->fackets_out > tp->reordering) {
  2637. tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering, 0);
  2638. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
  2639. }
  2640. /* D. Check consistency of the current state. */
  2641. tcp_verify_left_out(tp);
  2642. /* E. Check state exit conditions. State can be terminated
  2643. * when high_seq is ACKed. */
  2644. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2645. WARN_ON(tp->retrans_out != 0);
  2646. tp->retrans_stamp = 0;
  2647. } else if (!before(tp->snd_una, tp->high_seq)) {
  2648. switch (icsk->icsk_ca_state) {
  2649. case TCP_CA_Loss:
  2650. icsk->icsk_retransmits = 0;
  2651. if (tcp_try_undo_recovery(sk))
  2652. return;
  2653. break;
  2654. case TCP_CA_CWR:
  2655. /* CWR is to be held something *above* high_seq
  2656. * is ACKed for CWR bit to reach receiver. */
  2657. if (tp->snd_una != tp->high_seq) {
  2658. tcp_complete_cwr(sk);
  2659. tcp_set_ca_state(sk, TCP_CA_Open);
  2660. }
  2661. break;
  2662. case TCP_CA_Disorder:
  2663. tcp_try_undo_dsack(sk);
  2664. if (!tp->undo_marker ||
  2665. /* For SACK case do not Open to allow to undo
  2666. * catching for all duplicate ACKs. */
  2667. tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
  2668. tp->undo_marker = 0;
  2669. tcp_set_ca_state(sk, TCP_CA_Open);
  2670. }
  2671. break;
  2672. case TCP_CA_Recovery:
  2673. if (tcp_is_reno(tp))
  2674. tcp_reset_reno_sack(tp);
  2675. if (tcp_try_undo_recovery(sk))
  2676. return;
  2677. tcp_complete_cwr(sk);
  2678. break;
  2679. }
  2680. }
  2681. /* F. Process state. */
  2682. switch (icsk->icsk_ca_state) {
  2683. case TCP_CA_Recovery:
  2684. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2685. if (tcp_is_reno(tp) && is_dupack)
  2686. tcp_add_reno_sack(sk);
  2687. } else
  2688. do_lost = tcp_try_undo_partial(sk, pkts_acked);
  2689. break;
  2690. case TCP_CA_Loss:
  2691. if (flag & FLAG_DATA_ACKED)
  2692. icsk->icsk_retransmits = 0;
  2693. if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
  2694. tcp_reset_reno_sack(tp);
  2695. if (!tcp_try_undo_loss(sk)) {
  2696. tcp_moderate_cwnd(tp);
  2697. tcp_xmit_retransmit_queue(sk);
  2698. return;
  2699. }
  2700. if (icsk->icsk_ca_state != TCP_CA_Open)
  2701. return;
  2702. /* Loss is undone; fall through to processing in Open state. */
  2703. default:
  2704. if (tcp_is_reno(tp)) {
  2705. if (flag & FLAG_SND_UNA_ADVANCED)
  2706. tcp_reset_reno_sack(tp);
  2707. if (is_dupack)
  2708. tcp_add_reno_sack(sk);
  2709. }
  2710. if (icsk->icsk_ca_state == TCP_CA_Disorder)
  2711. tcp_try_undo_dsack(sk);
  2712. if (!tcp_time_to_recover(sk)) {
  2713. tcp_try_to_open(sk, flag);
  2714. return;
  2715. }
  2716. /* MTU probe failure: don't reduce cwnd */
  2717. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2718. icsk->icsk_mtup.probe_size &&
  2719. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2720. tcp_mtup_probe_failed(sk);
  2721. /* Restores the reduction we did in tcp_mtup_probe() */
  2722. tp->snd_cwnd++;
  2723. tcp_simple_retransmit(sk);
  2724. return;
  2725. }
  2726. /* Otherwise enter Recovery state */
  2727. if (tcp_is_reno(tp))
  2728. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2729. else
  2730. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2731. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2732. tp->high_seq = tp->snd_nxt;
  2733. tp->prior_ssthresh = 0;
  2734. tp->undo_marker = tp->snd_una;
  2735. tp->undo_retrans = tp->retrans_out;
  2736. if (icsk->icsk_ca_state < TCP_CA_CWR) {
  2737. if (!(flag & FLAG_ECE))
  2738. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2739. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  2740. TCP_ECN_queue_cwr(tp);
  2741. }
  2742. tp->bytes_acked = 0;
  2743. tp->snd_cwnd_cnt = 0;
  2744. tp->prior_cwnd = tp->snd_cwnd;
  2745. tp->prr_delivered = 0;
  2746. tp->prr_out = 0;
  2747. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2748. fast_rexmit = 1;
  2749. }
  2750. if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
  2751. tcp_update_scoreboard(sk, fast_rexmit);
  2752. tp->prr_delivered += newly_acked_sacked;
  2753. tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
  2754. tcp_xmit_retransmit_queue(sk);
  2755. }
  2756. void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
  2757. {
  2758. tcp_rtt_estimator(sk, seq_rtt);
  2759. tcp_set_rto(sk);
  2760. inet_csk(sk)->icsk_backoff = 0;
  2761. }
  2762. EXPORT_SYMBOL(tcp_valid_rtt_meas);
  2763. /* Read draft-ietf-tcplw-high-performance before mucking
  2764. * with this code. (Supersedes RFC1323)
  2765. */
  2766. static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
  2767. {
  2768. /* RTTM Rule: A TSecr value received in a segment is used to
  2769. * update the averaged RTT measurement only if the segment
  2770. * acknowledges some new data, i.e., only if it advances the
  2771. * left edge of the send window.
  2772. *
  2773. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2774. * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
  2775. *
  2776. * Changed: reset backoff as soon as we see the first valid sample.
  2777. * If we do not, we get strongly overestimated rto. With timestamps
  2778. * samples are accepted even from very old segments: f.e., when rtt=1
  2779. * increases to 8, we retransmit 5 times and after 8 seconds delayed
  2780. * answer arrives rto becomes 120 seconds! If at least one of segments
  2781. * in window is lost... Voila. --ANK (010210)
  2782. */
  2783. struct tcp_sock *tp = tcp_sk(sk);
  2784. tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
  2785. }
  2786. static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
  2787. {
  2788. /* We don't have a timestamp. Can only use
  2789. * packets that are not retransmitted to determine
  2790. * rtt estimates. Also, we must not reset the
  2791. * backoff for rto until we get a non-retransmitted
  2792. * packet. This allows us to deal with a situation
  2793. * where the network delay has increased suddenly.
  2794. * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
  2795. */
  2796. if (flag & FLAG_RETRANS_DATA_ACKED)
  2797. return;
  2798. tcp_valid_rtt_meas(sk, seq_rtt);
  2799. }
  2800. static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
  2801. const s32 seq_rtt)
  2802. {
  2803. const struct tcp_sock *tp = tcp_sk(sk);
  2804. /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
  2805. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  2806. tcp_ack_saw_tstamp(sk, flag);
  2807. else if (seq_rtt >= 0)
  2808. tcp_ack_no_tstamp(sk, seq_rtt, flag);
  2809. }
  2810. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
  2811. {
  2812. const struct inet_connection_sock *icsk = inet_csk(sk);
  2813. icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
  2814. tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
  2815. }
  2816. /* Restart timer after forward progress on connection.
  2817. * RFC2988 recommends to restart timer to now+rto.
  2818. */
  2819. static void tcp_rearm_rto(struct sock *sk)
  2820. {
  2821. const struct tcp_sock *tp = tcp_sk(sk);
  2822. if (!tp->packets_out) {
  2823. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2824. } else {
  2825. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  2826. inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
  2827. }
  2828. }
  2829. /* If we get here, the whole TSO packet has not been acked. */
  2830. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2831. {
  2832. struct tcp_sock *tp = tcp_sk(sk);
  2833. u32 packets_acked;
  2834. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2835. packets_acked = tcp_skb_pcount(skb);
  2836. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2837. return 0;
  2838. packets_acked -= tcp_skb_pcount(skb);
  2839. if (packets_acked) {
  2840. BUG_ON(tcp_skb_pcount(skb) == 0);
  2841. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2842. }
  2843. return packets_acked;
  2844. }
  2845. /* Remove acknowledged frames from the retransmission queue. If our packet
  2846. * is before the ack sequence we can discard it as it's confirmed to have
  2847. * arrived at the other end.
  2848. */
  2849. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2850. u32 prior_snd_una)
  2851. {
  2852. struct tcp_sock *tp = tcp_sk(sk);
  2853. const struct inet_connection_sock *icsk = inet_csk(sk);
  2854. struct sk_buff *skb;
  2855. u32 now = tcp_time_stamp;
  2856. int fully_acked = 1;
  2857. int flag = 0;
  2858. u32 pkts_acked = 0;
  2859. u32 reord = tp->packets_out;
  2860. u32 prior_sacked = tp->sacked_out;
  2861. s32 seq_rtt = -1;
  2862. s32 ca_seq_rtt = -1;
  2863. ktime_t last_ackt = net_invalid_timestamp();
  2864. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2865. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2866. u32 acked_pcount;
  2867. u8 sacked = scb->sacked;
  2868. /* Determine how many packets and what bytes were acked, tso and else */
  2869. if (after(scb->end_seq, tp->snd_una)) {
  2870. if (tcp_skb_pcount(skb) == 1 ||
  2871. !after(tp->snd_una, scb->seq))
  2872. break;
  2873. acked_pcount = tcp_tso_acked(sk, skb);
  2874. if (!acked_pcount)
  2875. break;
  2876. fully_acked = 0;
  2877. } else {
  2878. acked_pcount = tcp_skb_pcount(skb);
  2879. }
  2880. if (sacked & TCPCB_RETRANS) {
  2881. if (sacked & TCPCB_SACKED_RETRANS)
  2882. tp->retrans_out -= acked_pcount;
  2883. flag |= FLAG_RETRANS_DATA_ACKED;
  2884. ca_seq_rtt = -1;
  2885. seq_rtt = -1;
  2886. if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
  2887. flag |= FLAG_NONHEAD_RETRANS_ACKED;
  2888. } else {
  2889. ca_seq_rtt = now - scb->when;
  2890. last_ackt = skb->tstamp;
  2891. if (seq_rtt < 0) {
  2892. seq_rtt = ca_seq_rtt;
  2893. }
  2894. if (!(sacked & TCPCB_SACKED_ACKED))
  2895. reord = min(pkts_acked, reord);
  2896. }
  2897. if (sacked & TCPCB_SACKED_ACKED)
  2898. tp->sacked_out -= acked_pcount;
  2899. if (sacked & TCPCB_LOST)
  2900. tp->lost_out -= acked_pcount;
  2901. tp->packets_out -= acked_pcount;
  2902. pkts_acked += acked_pcount;
  2903. /* Initial outgoing SYN's get put onto the write_queue
  2904. * just like anything else we transmit. It is not
  2905. * true data, and if we misinform our callers that
  2906. * this ACK acks real data, we will erroneously exit
  2907. * connection startup slow start one packet too
  2908. * quickly. This is severely frowned upon behavior.
  2909. */
  2910. if (!(scb->tcp_flags & TCPHDR_SYN)) {
  2911. flag |= FLAG_DATA_ACKED;
  2912. } else {
  2913. flag |= FLAG_SYN_ACKED;
  2914. tp->retrans_stamp = 0;
  2915. }
  2916. if (!fully_acked)
  2917. break;
  2918. tcp_unlink_write_queue(skb, sk);
  2919. sk_wmem_free_skb(sk, skb);
  2920. tp->scoreboard_skb_hint = NULL;
  2921. if (skb == tp->retransmit_skb_hint)
  2922. tp->retransmit_skb_hint = NULL;
  2923. if (skb == tp->lost_skb_hint)
  2924. tp->lost_skb_hint = NULL;
  2925. }
  2926. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2927. tp->snd_up = tp->snd_una;
  2928. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2929. flag |= FLAG_SACK_RENEGING;
  2930. if (flag & FLAG_ACKED) {
  2931. const struct tcp_congestion_ops *ca_ops
  2932. = inet_csk(sk)->icsk_ca_ops;
  2933. if (unlikely(icsk->icsk_mtup.probe_size &&
  2934. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  2935. tcp_mtup_probe_success(sk);
  2936. }
  2937. tcp_ack_update_rtt(sk, flag, seq_rtt);
  2938. tcp_rearm_rto(sk);
  2939. if (tcp_is_reno(tp)) {
  2940. tcp_remove_reno_sacks(sk, pkts_acked);
  2941. } else {
  2942. int delta;
  2943. /* Non-retransmitted hole got filled? That's reordering */
  2944. if (reord < prior_fackets)
  2945. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2946. delta = tcp_is_fack(tp) ? pkts_acked :
  2947. prior_sacked - tp->sacked_out;
  2948. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  2949. }
  2950. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2951. if (ca_ops->pkts_acked) {
  2952. s32 rtt_us = -1;
  2953. /* Is the ACK triggering packet unambiguous? */
  2954. if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
  2955. /* High resolution needed and available? */
  2956. if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
  2957. !ktime_equal(last_ackt,
  2958. net_invalid_timestamp()))
  2959. rtt_us = ktime_us_delta(ktime_get_real(),
  2960. last_ackt);
  2961. else if (ca_seq_rtt >= 0)
  2962. rtt_us = jiffies_to_usecs(ca_seq_rtt);
  2963. }
  2964. ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
  2965. }
  2966. }
  2967. #if FASTRETRANS_DEBUG > 0
  2968. WARN_ON((int)tp->sacked_out < 0);
  2969. WARN_ON((int)tp->lost_out < 0);
  2970. WARN_ON((int)tp->retrans_out < 0);
  2971. if (!tp->packets_out && tcp_is_sack(tp)) {
  2972. icsk = inet_csk(sk);
  2973. if (tp->lost_out) {
  2974. printk(KERN_DEBUG "Leak l=%u %d\n",
  2975. tp->lost_out, icsk->icsk_ca_state);
  2976. tp->lost_out = 0;
  2977. }
  2978. if (tp->sacked_out) {
  2979. printk(KERN_DEBUG "Leak s=%u %d\n",
  2980. tp->sacked_out, icsk->icsk_ca_state);
  2981. tp->sacked_out = 0;
  2982. }
  2983. if (tp->retrans_out) {
  2984. printk(KERN_DEBUG "Leak r=%u %d\n",
  2985. tp->retrans_out, icsk->icsk_ca_state);
  2986. tp->retrans_out = 0;
  2987. }
  2988. }
  2989. #endif
  2990. return flag;
  2991. }
  2992. static void tcp_ack_probe(struct sock *sk)
  2993. {
  2994. const struct tcp_sock *tp = tcp_sk(sk);
  2995. struct inet_connection_sock *icsk = inet_csk(sk);
  2996. /* Was it a usable window open? */
  2997. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  2998. icsk->icsk_backoff = 0;
  2999. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  3000. /* Socket must be waked up by subsequent tcp_data_snd_check().
  3001. * This function is not for random using!
  3002. */
  3003. } else {
  3004. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  3005. min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
  3006. TCP_RTO_MAX);
  3007. }
  3008. }
  3009. static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
  3010. {
  3011. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  3012. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  3013. }
  3014. static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  3015. {
  3016. const struct tcp_sock *tp = tcp_sk(sk);
  3017. return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
  3018. !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
  3019. }
  3020. /* Check that window update is acceptable.
  3021. * The function assumes that snd_una<=ack<=snd_next.
  3022. */
  3023. static inline int tcp_may_update_window(const struct tcp_sock *tp,
  3024. const u32 ack, const u32 ack_seq,
  3025. const u32 nwin)
  3026. {
  3027. return after(ack, tp->snd_una) ||
  3028. after(ack_seq, tp->snd_wl1) ||
  3029. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  3030. }
  3031. /* Update our send window.
  3032. *
  3033. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  3034. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  3035. */
  3036. static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
  3037. u32 ack_seq)
  3038. {
  3039. struct tcp_sock *tp = tcp_sk(sk);
  3040. int flag = 0;
  3041. u32 nwin = ntohs(tcp_hdr(skb)->window);
  3042. if (likely(!tcp_hdr(skb)->syn))
  3043. nwin <<= tp->rx_opt.snd_wscale;
  3044. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  3045. flag |= FLAG_WIN_UPDATE;
  3046. tcp_update_wl(tp, ack_seq);
  3047. if (tp->snd_wnd != nwin) {
  3048. tp->snd_wnd = nwin;
  3049. /* Note, it is the only place, where
  3050. * fast path is recovered for sending TCP.
  3051. */
  3052. tp->pred_flags = 0;
  3053. tcp_fast_path_check(sk);
  3054. if (nwin > tp->max_window) {
  3055. tp->max_window = nwin;
  3056. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  3057. }
  3058. }
  3059. }
  3060. tp->snd_una = ack;
  3061. return flag;
  3062. }
  3063. /* A very conservative spurious RTO response algorithm: reduce cwnd and
  3064. * continue in congestion avoidance.
  3065. */
  3066. static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
  3067. {
  3068. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  3069. tp->snd_cwnd_cnt = 0;
  3070. tp->bytes_acked = 0;
  3071. TCP_ECN_queue_cwr(tp);
  3072. tcp_moderate_cwnd(tp);
  3073. }
  3074. /* A conservative spurious RTO response algorithm: reduce cwnd using
  3075. * rate halving and continue in congestion avoidance.
  3076. */
  3077. static void tcp_ratehalving_spur_to_response(struct sock *sk)
  3078. {
  3079. tcp_enter_cwr(sk, 0);
  3080. }
  3081. static void tcp_undo_spur_to_response(struct sock *sk, int flag)
  3082. {
  3083. if (flag & FLAG_ECE)
  3084. tcp_ratehalving_spur_to_response(sk);
  3085. else
  3086. tcp_undo_cwr(sk, true);
  3087. }
  3088. /* F-RTO spurious RTO detection algorithm (RFC4138)
  3089. *
  3090. * F-RTO affects during two new ACKs following RTO (well, almost, see inline
  3091. * comments). State (ACK number) is kept in frto_counter. When ACK advances
  3092. * window (but not to or beyond highest sequence sent before RTO):
  3093. * On First ACK, send two new segments out.
  3094. * On Second ACK, RTO was likely spurious. Do spurious response (response
  3095. * algorithm is not part of the F-RTO detection algorithm
  3096. * given in RFC4138 but can be selected separately).
  3097. * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
  3098. * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
  3099. * of Nagle, this is done using frto_counter states 2 and 3, when a new data
  3100. * segment of any size sent during F-RTO, state 2 is upgraded to 3.
  3101. *
  3102. * Rationale: if the RTO was spurious, new ACKs should arrive from the
  3103. * original window even after we transmit two new data segments.
  3104. *
  3105. * SACK version:
  3106. * on first step, wait until first cumulative ACK arrives, then move to
  3107. * the second step. In second step, the next ACK decides.
  3108. *
  3109. * F-RTO is implemented (mainly) in four functions:
  3110. * - tcp_use_frto() is used to determine if TCP is can use F-RTO
  3111. * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
  3112. * called when tcp_use_frto() showed green light
  3113. * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
  3114. * - tcp_enter_frto_loss() is called if there is not enough evidence
  3115. * to prove that the RTO is indeed spurious. It transfers the control
  3116. * from F-RTO to the conventional RTO recovery
  3117. */
  3118. static int tcp_process_frto(struct sock *sk, int flag)
  3119. {
  3120. struct tcp_sock *tp = tcp_sk(sk);
  3121. tcp_verify_left_out(tp);
  3122. /* Duplicate the behavior from Loss state (fastretrans_alert) */
  3123. if (flag & FLAG_DATA_ACKED)
  3124. inet_csk(sk)->icsk_retransmits = 0;
  3125. if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
  3126. ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
  3127. tp->undo_marker = 0;
  3128. if (!before(tp->snd_una, tp->frto_highmark)) {
  3129. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
  3130. return 1;
  3131. }
  3132. if (!tcp_is_sackfrto(tp)) {
  3133. /* RFC4138 shortcoming in step 2; should also have case c):
  3134. * ACK isn't duplicate nor advances window, e.g., opposite dir
  3135. * data, winupdate
  3136. */
  3137. if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
  3138. return 1;
  3139. if (!(flag & FLAG_DATA_ACKED)) {
  3140. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
  3141. flag);
  3142. return 1;
  3143. }
  3144. } else {
  3145. if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
  3146. /* Prevent sending of new data. */
  3147. tp->snd_cwnd = min(tp->snd_cwnd,
  3148. tcp_packets_in_flight(tp));
  3149. return 1;
  3150. }
  3151. if ((tp->frto_counter >= 2) &&
  3152. (!(flag & FLAG_FORWARD_PROGRESS) ||
  3153. ((flag & FLAG_DATA_SACKED) &&
  3154. !(flag & FLAG_ONLY_ORIG_SACKED)))) {
  3155. /* RFC4138 shortcoming (see comment above) */
  3156. if (!(flag & FLAG_FORWARD_PROGRESS) &&
  3157. (flag & FLAG_NOT_DUP))
  3158. return 1;
  3159. tcp_enter_frto_loss(sk, 3, flag);
  3160. return 1;
  3161. }
  3162. }
  3163. if (tp->frto_counter == 1) {
  3164. /* tcp_may_send_now needs to see updated state */
  3165. tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
  3166. tp->frto_counter = 2;
  3167. if (!tcp_may_send_now(sk))
  3168. tcp_enter_frto_loss(sk, 2, flag);
  3169. return 1;
  3170. } else {
  3171. switch (sysctl_tcp_frto_response) {
  3172. case 2:
  3173. tcp_undo_spur_to_response(sk, flag);
  3174. break;
  3175. case 1:
  3176. tcp_conservative_spur_to_response(tp);
  3177. break;
  3178. default:
  3179. tcp_ratehalving_spur_to_response(sk);
  3180. break;
  3181. }
  3182. tp->frto_counter = 0;
  3183. tp->undo_marker = 0;
  3184. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
  3185. }
  3186. return 0;
  3187. }
  3188. /* This routine deals with incoming acks, but not outgoing ones. */
  3189. static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
  3190. {
  3191. struct inet_connection_sock *icsk = inet_csk(sk);
  3192. struct tcp_sock *tp = tcp_sk(sk);
  3193. u32 prior_snd_una = tp->snd_una;
  3194. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  3195. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3196. bool is_dupack = false;
  3197. u32 prior_in_flight;
  3198. u32 prior_fackets;
  3199. int prior_packets;
  3200. int prior_sacked = tp->sacked_out;
  3201. int pkts_acked = 0;
  3202. int newly_acked_sacked = 0;
  3203. int frto_cwnd = 0;
  3204. /* If the ack is older than previous acks
  3205. * then we can probably ignore it.
  3206. */
  3207. if (before(ack, prior_snd_una))
  3208. goto old_ack;
  3209. /* If the ack includes data we haven't sent yet, discard
  3210. * this segment (RFC793 Section 3.9).
  3211. */
  3212. if (after(ack, tp->snd_nxt))
  3213. goto invalid_ack;
  3214. if (after(ack, prior_snd_una))
  3215. flag |= FLAG_SND_UNA_ADVANCED;
  3216. if (sysctl_tcp_abc) {
  3217. if (icsk->icsk_ca_state < TCP_CA_CWR)
  3218. tp->bytes_acked += ack - prior_snd_una;
  3219. else if (icsk->icsk_ca_state == TCP_CA_Loss)
  3220. /* we assume just one segment left network */
  3221. tp->bytes_acked += min(ack - prior_snd_una,
  3222. tp->mss_cache);
  3223. }
  3224. prior_fackets = tp->fackets_out;
  3225. prior_in_flight = tcp_packets_in_flight(tp);
  3226. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  3227. /* Window is constant, pure forward advance.
  3228. * No more checks are required.
  3229. * Note, we use the fact that SND.UNA>=SND.WL2.
  3230. */
  3231. tcp_update_wl(tp, ack_seq);
  3232. tp->snd_una = ack;
  3233. flag |= FLAG_WIN_UPDATE;
  3234. tcp_ca_event(sk, CA_EVENT_FAST_ACK);
  3235. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
  3236. } else {
  3237. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  3238. flag |= FLAG_DATA;
  3239. else
  3240. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  3241. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  3242. if (TCP_SKB_CB(skb)->sacked)
  3243. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  3244. if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
  3245. flag |= FLAG_ECE;
  3246. tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
  3247. }
  3248. /* We passed data and got it acked, remove any soft error
  3249. * log. Something worked...
  3250. */
  3251. sk->sk_err_soft = 0;
  3252. icsk->icsk_probes_out = 0;
  3253. tp->rcv_tstamp = tcp_time_stamp;
  3254. prior_packets = tp->packets_out;
  3255. if (!prior_packets)
  3256. goto no_queue;
  3257. /* See if we can take anything off of the retransmit queue. */
  3258. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
  3259. pkts_acked = prior_packets - tp->packets_out;
  3260. newly_acked_sacked = (prior_packets - prior_sacked) -
  3261. (tp->packets_out - tp->sacked_out);
  3262. if (tp->frto_counter)
  3263. frto_cwnd = tcp_process_frto(sk, flag);
  3264. /* Guarantee sacktag reordering detection against wrap-arounds */
  3265. if (before(tp->frto_highmark, tp->snd_una))
  3266. tp->frto_highmark = 0;
  3267. if (tcp_ack_is_dubious(sk, flag)) {
  3268. /* Advance CWND, if state allows this. */
  3269. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
  3270. tcp_may_raise_cwnd(sk, flag))
  3271. tcp_cong_avoid(sk, ack, prior_in_flight);
  3272. is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  3273. tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
  3274. is_dupack, flag);
  3275. } else {
  3276. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
  3277. tcp_cong_avoid(sk, ack, prior_in_flight);
  3278. }
  3279. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
  3280. dst_confirm(__sk_dst_get(sk));
  3281. return 1;
  3282. no_queue:
  3283. /* If this ack opens up a zero window, clear backoff. It was
  3284. * being used to time the probes, and is probably far higher than
  3285. * it needs to be for normal retransmission.
  3286. */
  3287. if (tcp_send_head(sk))
  3288. tcp_ack_probe(sk);
  3289. return 1;
  3290. invalid_ack:
  3291. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3292. return -1;
  3293. old_ack:
  3294. if (TCP_SKB_CB(skb)->sacked) {
  3295. tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  3296. if (icsk->icsk_ca_state == TCP_CA_Open)
  3297. tcp_try_keep_open(sk);
  3298. }
  3299. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3300. return 0;
  3301. }
  3302. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3303. * But, this can also be called on packets in the established flow when
  3304. * the fast version below fails.
  3305. */
  3306. void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
  3307. const u8 **hvpp, int estab)
  3308. {
  3309. const unsigned char *ptr;
  3310. const struct tcphdr *th = tcp_hdr(skb);
  3311. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3312. ptr = (const unsigned char *)(th + 1);
  3313. opt_rx->saw_tstamp = 0;
  3314. while (length > 0) {
  3315. int opcode = *ptr++;
  3316. int opsize;
  3317. switch (opcode) {
  3318. case TCPOPT_EOL:
  3319. return;
  3320. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3321. length--;
  3322. continue;
  3323. default:
  3324. opsize = *ptr++;
  3325. if (opsize < 2) /* "silly options" */
  3326. return;
  3327. if (opsize > length)
  3328. return; /* don't parse partial options */
  3329. switch (opcode) {
  3330. case TCPOPT_MSS:
  3331. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3332. u16 in_mss = get_unaligned_be16(ptr);
  3333. if (in_mss) {
  3334. if (opt_rx->user_mss &&
  3335. opt_rx->user_mss < in_mss)
  3336. in_mss = opt_rx->user_mss;
  3337. opt_rx->mss_clamp = in_mss;
  3338. }
  3339. }
  3340. break;
  3341. case TCPOPT_WINDOW:
  3342. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3343. !estab && sysctl_tcp_window_scaling) {
  3344. __u8 snd_wscale = *(__u8 *)ptr;
  3345. opt_rx->wscale_ok = 1;
  3346. if (snd_wscale > 14) {
  3347. if (net_ratelimit())
  3348. printk(KERN_INFO "tcp_parse_options: Illegal window "
  3349. "scaling value %d >14 received.\n",
  3350. snd_wscale);
  3351. snd_wscale = 14;
  3352. }
  3353. opt_rx->snd_wscale = snd_wscale;
  3354. }
  3355. break;
  3356. case TCPOPT_TIMESTAMP:
  3357. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3358. ((estab && opt_rx->tstamp_ok) ||
  3359. (!estab && sysctl_tcp_timestamps))) {
  3360. opt_rx->saw_tstamp = 1;
  3361. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3362. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3363. }
  3364. break;
  3365. case TCPOPT_SACK_PERM:
  3366. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3367. !estab && sysctl_tcp_sack) {
  3368. opt_rx->sack_ok = 1;
  3369. tcp_sack_reset(opt_rx);
  3370. }
  3371. break;
  3372. case TCPOPT_SACK:
  3373. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3374. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3375. opt_rx->sack_ok) {
  3376. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3377. }
  3378. break;
  3379. #ifdef CONFIG_TCP_MD5SIG
  3380. case TCPOPT_MD5SIG:
  3381. /*
  3382. * The MD5 Hash has already been
  3383. * checked (see tcp_v{4,6}_do_rcv()).
  3384. */
  3385. break;
  3386. #endif
  3387. case TCPOPT_COOKIE:
  3388. /* This option is variable length.
  3389. */
  3390. switch (opsize) {
  3391. case TCPOLEN_COOKIE_BASE:
  3392. /* not yet implemented */
  3393. break;
  3394. case TCPOLEN_COOKIE_PAIR:
  3395. /* not yet implemented */
  3396. break;
  3397. case TCPOLEN_COOKIE_MIN+0:
  3398. case TCPOLEN_COOKIE_MIN+2:
  3399. case TCPOLEN_COOKIE_MIN+4:
  3400. case TCPOLEN_COOKIE_MIN+6:
  3401. case TCPOLEN_COOKIE_MAX:
  3402. /* 16-bit multiple */
  3403. opt_rx->cookie_plus = opsize;
  3404. *hvpp = ptr;
  3405. break;
  3406. default:
  3407. /* ignore option */
  3408. break;
  3409. }
  3410. break;
  3411. }
  3412. ptr += opsize-2;
  3413. length -= opsize;
  3414. }
  3415. }
  3416. }
  3417. EXPORT_SYMBOL(tcp_parse_options);
  3418. static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
  3419. {
  3420. const __be32 *ptr = (const __be32 *)(th + 1);
  3421. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3422. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3423. tp->rx_opt.saw_tstamp = 1;
  3424. ++ptr;
  3425. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3426. ++ptr;
  3427. tp->rx_opt.rcv_tsecr = ntohl(*ptr);
  3428. return 1;
  3429. }
  3430. return 0;
  3431. }
  3432. /* Fast parse options. This hopes to only see timestamps.
  3433. * If it is wrong it falls back on tcp_parse_options().
  3434. */
  3435. static int tcp_fast_parse_options(const struct sk_buff *skb,
  3436. const struct tcphdr *th,
  3437. struct tcp_sock *tp, const u8 **hvpp)
  3438. {
  3439. /* In the spirit of fast parsing, compare doff directly to constant
  3440. * values. Because equality is used, short doff can be ignored here.
  3441. */
  3442. if (th->doff == (sizeof(*th) / 4)) {
  3443. tp->rx_opt.saw_tstamp = 0;
  3444. return 0;
  3445. } else if (tp->rx_opt.tstamp_ok &&
  3446. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3447. if (tcp_parse_aligned_timestamp(tp, th))
  3448. return 1;
  3449. }
  3450. tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
  3451. return 1;
  3452. }
  3453. #ifdef CONFIG_TCP_MD5SIG
  3454. /*
  3455. * Parse MD5 Signature option
  3456. */
  3457. const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
  3458. {
  3459. int length = (th->doff << 2) - sizeof(*th);
  3460. const u8 *ptr = (const u8 *)(th + 1);
  3461. /* If the TCP option is too short, we can short cut */
  3462. if (length < TCPOLEN_MD5SIG)
  3463. return NULL;
  3464. while (length > 0) {
  3465. int opcode = *ptr++;
  3466. int opsize;
  3467. switch(opcode) {
  3468. case TCPOPT_EOL:
  3469. return NULL;
  3470. case TCPOPT_NOP:
  3471. length--;
  3472. continue;
  3473. default:
  3474. opsize = *ptr++;
  3475. if (opsize < 2 || opsize > length)
  3476. return NULL;
  3477. if (opcode == TCPOPT_MD5SIG)
  3478. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3479. }
  3480. ptr += opsize - 2;
  3481. length -= opsize;
  3482. }
  3483. return NULL;
  3484. }
  3485. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3486. #endif
  3487. static inline void tcp_store_ts_recent(struct tcp_sock *tp)
  3488. {
  3489. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  3490. tp->rx_opt.ts_recent_stamp = get_seconds();
  3491. }
  3492. static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  3493. {
  3494. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  3495. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  3496. * extra check below makes sure this can only happen
  3497. * for pure ACK frames. -DaveM
  3498. *
  3499. * Not only, also it occurs for expired timestamps.
  3500. */
  3501. if (tcp_paws_check(&tp->rx_opt, 0))
  3502. tcp_store_ts_recent(tp);
  3503. }
  3504. }
  3505. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3506. *
  3507. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3508. * it can pass through stack. So, the following predicate verifies that
  3509. * this segment is not used for anything but congestion avoidance or
  3510. * fast retransmit. Moreover, we even are able to eliminate most of such
  3511. * second order effects, if we apply some small "replay" window (~RTO)
  3512. * to timestamp space.
  3513. *
  3514. * All these measures still do not guarantee that we reject wrapped ACKs
  3515. * on networks with high bandwidth, when sequence space is recycled fastly,
  3516. * but it guarantees that such events will be very rare and do not affect
  3517. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3518. * buggy extension.
  3519. *
  3520. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3521. * states that events when retransmit arrives after original data are rare.
  3522. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3523. * the biggest problem on large power networks even with minor reordering.
  3524. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3525. * up to bandwidth of 18Gigabit/sec. 8) ]
  3526. */
  3527. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3528. {
  3529. const struct tcp_sock *tp = tcp_sk(sk);
  3530. const struct tcphdr *th = tcp_hdr(skb);
  3531. u32 seq = TCP_SKB_CB(skb)->seq;
  3532. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3533. return (/* 1. Pure ACK with correct sequence number. */
  3534. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3535. /* 2. ... and duplicate ACK. */
  3536. ack == tp->snd_una &&
  3537. /* 3. ... and does not update window. */
  3538. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3539. /* 4. ... and sits in replay window. */
  3540. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3541. }
  3542. static inline int tcp_paws_discard(const struct sock *sk,
  3543. const struct sk_buff *skb)
  3544. {
  3545. const struct tcp_sock *tp = tcp_sk(sk);
  3546. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3547. !tcp_disordered_ack(sk, skb);
  3548. }
  3549. /* Check segment sequence number for validity.
  3550. *
  3551. * Segment controls are considered valid, if the segment
  3552. * fits to the window after truncation to the window. Acceptability
  3553. * of data (and SYN, FIN, of course) is checked separately.
  3554. * See tcp_data_queue(), for example.
  3555. *
  3556. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3557. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3558. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3559. * (borrowed from freebsd)
  3560. */
  3561. static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
  3562. {
  3563. return !before(end_seq, tp->rcv_wup) &&
  3564. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3565. }
  3566. /* When we get a reset we do this. */
  3567. static void tcp_reset(struct sock *sk)
  3568. {
  3569. /* We want the right error as BSD sees it (and indeed as we do). */
  3570. switch (sk->sk_state) {
  3571. case TCP_SYN_SENT:
  3572. sk->sk_err = ECONNREFUSED;
  3573. break;
  3574. case TCP_CLOSE_WAIT:
  3575. sk->sk_err = EPIPE;
  3576. break;
  3577. case TCP_CLOSE:
  3578. return;
  3579. default:
  3580. sk->sk_err = ECONNRESET;
  3581. }
  3582. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3583. smp_wmb();
  3584. if (!sock_flag(sk, SOCK_DEAD))
  3585. sk->sk_error_report(sk);
  3586. tcp_done(sk);
  3587. }
  3588. /*
  3589. * Process the FIN bit. This now behaves as it is supposed to work
  3590. * and the FIN takes effect when it is validly part of sequence
  3591. * space. Not before when we get holes.
  3592. *
  3593. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3594. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3595. * TIME-WAIT)
  3596. *
  3597. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3598. * close and we go into CLOSING (and later onto TIME-WAIT)
  3599. *
  3600. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3601. */
  3602. static void tcp_fin(struct sock *sk)
  3603. {
  3604. struct tcp_sock *tp = tcp_sk(sk);
  3605. inet_csk_schedule_ack(sk);
  3606. sk->sk_shutdown |= RCV_SHUTDOWN;
  3607. sock_set_flag(sk, SOCK_DONE);
  3608. switch (sk->sk_state) {
  3609. case TCP_SYN_RECV:
  3610. case TCP_ESTABLISHED:
  3611. /* Move to CLOSE_WAIT */
  3612. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3613. inet_csk(sk)->icsk_ack.pingpong = 1;
  3614. break;
  3615. case TCP_CLOSE_WAIT:
  3616. case TCP_CLOSING:
  3617. /* Received a retransmission of the FIN, do
  3618. * nothing.
  3619. */
  3620. break;
  3621. case TCP_LAST_ACK:
  3622. /* RFC793: Remain in the LAST-ACK state. */
  3623. break;
  3624. case TCP_FIN_WAIT1:
  3625. /* This case occurs when a simultaneous close
  3626. * happens, we must ack the received FIN and
  3627. * enter the CLOSING state.
  3628. */
  3629. tcp_send_ack(sk);
  3630. tcp_set_state(sk, TCP_CLOSING);
  3631. break;
  3632. case TCP_FIN_WAIT2:
  3633. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3634. tcp_send_ack(sk);
  3635. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3636. break;
  3637. default:
  3638. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3639. * cases we should never reach this piece of code.
  3640. */
  3641. printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
  3642. __func__, sk->sk_state);
  3643. break;
  3644. }
  3645. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3646. * Probably, we should reset in this case. For now drop them.
  3647. */
  3648. __skb_queue_purge(&tp->out_of_order_queue);
  3649. if (tcp_is_sack(tp))
  3650. tcp_sack_reset(&tp->rx_opt);
  3651. sk_mem_reclaim(sk);
  3652. if (!sock_flag(sk, SOCK_DEAD)) {
  3653. sk->sk_state_change(sk);
  3654. /* Do not send POLL_HUP for half duplex close. */
  3655. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3656. sk->sk_state == TCP_CLOSE)
  3657. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3658. else
  3659. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3660. }
  3661. }
  3662. static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3663. u32 end_seq)
  3664. {
  3665. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3666. if (before(seq, sp->start_seq))
  3667. sp->start_seq = seq;
  3668. if (after(end_seq, sp->end_seq))
  3669. sp->end_seq = end_seq;
  3670. return 1;
  3671. }
  3672. return 0;
  3673. }
  3674. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3675. {
  3676. struct tcp_sock *tp = tcp_sk(sk);
  3677. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3678. int mib_idx;
  3679. if (before(seq, tp->rcv_nxt))
  3680. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3681. else
  3682. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3683. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  3684. tp->rx_opt.dsack = 1;
  3685. tp->duplicate_sack[0].start_seq = seq;
  3686. tp->duplicate_sack[0].end_seq = end_seq;
  3687. }
  3688. }
  3689. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3690. {
  3691. struct tcp_sock *tp = tcp_sk(sk);
  3692. if (!tp->rx_opt.dsack)
  3693. tcp_dsack_set(sk, seq, end_seq);
  3694. else
  3695. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3696. }
  3697. static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
  3698. {
  3699. struct tcp_sock *tp = tcp_sk(sk);
  3700. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3701. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3702. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3703. tcp_enter_quickack_mode(sk);
  3704. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3705. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3706. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3707. end_seq = tp->rcv_nxt;
  3708. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3709. }
  3710. }
  3711. tcp_send_ack(sk);
  3712. }
  3713. /* These routines update the SACK block as out-of-order packets arrive or
  3714. * in-order packets close up the sequence space.
  3715. */
  3716. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3717. {
  3718. int this_sack;
  3719. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3720. struct tcp_sack_block *swalk = sp + 1;
  3721. /* See if the recent change to the first SACK eats into
  3722. * or hits the sequence space of other SACK blocks, if so coalesce.
  3723. */
  3724. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3725. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3726. int i;
  3727. /* Zap SWALK, by moving every further SACK up by one slot.
  3728. * Decrease num_sacks.
  3729. */
  3730. tp->rx_opt.num_sacks--;
  3731. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3732. sp[i] = sp[i + 1];
  3733. continue;
  3734. }
  3735. this_sack++, swalk++;
  3736. }
  3737. }
  3738. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3739. {
  3740. struct tcp_sock *tp = tcp_sk(sk);
  3741. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3742. int cur_sacks = tp->rx_opt.num_sacks;
  3743. int this_sack;
  3744. if (!cur_sacks)
  3745. goto new_sack;
  3746. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3747. if (tcp_sack_extend(sp, seq, end_seq)) {
  3748. /* Rotate this_sack to the first one. */
  3749. for (; this_sack > 0; this_sack--, sp--)
  3750. swap(*sp, *(sp - 1));
  3751. if (cur_sacks > 1)
  3752. tcp_sack_maybe_coalesce(tp);
  3753. return;
  3754. }
  3755. }
  3756. /* Could not find an adjacent existing SACK, build a new one,
  3757. * put it at the front, and shift everyone else down. We
  3758. * always know there is at least one SACK present already here.
  3759. *
  3760. * If the sack array is full, forget about the last one.
  3761. */
  3762. if (this_sack >= TCP_NUM_SACKS) {
  3763. this_sack--;
  3764. tp->rx_opt.num_sacks--;
  3765. sp--;
  3766. }
  3767. for (; this_sack > 0; this_sack--, sp--)
  3768. *sp = *(sp - 1);
  3769. new_sack:
  3770. /* Build the new head SACK, and we're done. */
  3771. sp->start_seq = seq;
  3772. sp->end_seq = end_seq;
  3773. tp->rx_opt.num_sacks++;
  3774. }
  3775. /* RCV.NXT advances, some SACKs should be eaten. */
  3776. static void tcp_sack_remove(struct tcp_sock *tp)
  3777. {
  3778. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3779. int num_sacks = tp->rx_opt.num_sacks;
  3780. int this_sack;
  3781. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3782. if (skb_queue_empty(&tp->out_of_order_queue)) {
  3783. tp->rx_opt.num_sacks = 0;
  3784. return;
  3785. }
  3786. for (this_sack = 0; this_sack < num_sacks;) {
  3787. /* Check if the start of the sack is covered by RCV.NXT. */
  3788. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3789. int i;
  3790. /* RCV.NXT must cover all the block! */
  3791. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3792. /* Zap this SACK, by moving forward any other SACKS. */
  3793. for (i=this_sack+1; i < num_sacks; i++)
  3794. tp->selective_acks[i-1] = tp->selective_acks[i];
  3795. num_sacks--;
  3796. continue;
  3797. }
  3798. this_sack++;
  3799. sp++;
  3800. }
  3801. tp->rx_opt.num_sacks = num_sacks;
  3802. }
  3803. /* This one checks to see if we can put data from the
  3804. * out_of_order queue into the receive_queue.
  3805. */
  3806. static void tcp_ofo_queue(struct sock *sk)
  3807. {
  3808. struct tcp_sock *tp = tcp_sk(sk);
  3809. __u32 dsack_high = tp->rcv_nxt;
  3810. struct sk_buff *skb;
  3811. while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
  3812. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3813. break;
  3814. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3815. __u32 dsack = dsack_high;
  3816. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3817. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3818. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3819. }
  3820. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3821. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3822. __skb_unlink(skb, &tp->out_of_order_queue);
  3823. __kfree_skb(skb);
  3824. continue;
  3825. }
  3826. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3827. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3828. TCP_SKB_CB(skb)->end_seq);
  3829. __skb_unlink(skb, &tp->out_of_order_queue);
  3830. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3831. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3832. if (tcp_hdr(skb)->fin)
  3833. tcp_fin(sk);
  3834. }
  3835. }
  3836. static int tcp_prune_ofo_queue(struct sock *sk);
  3837. static int tcp_prune_queue(struct sock *sk);
  3838. static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
  3839. {
  3840. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3841. !sk_rmem_schedule(sk, size)) {
  3842. if (tcp_prune_queue(sk) < 0)
  3843. return -1;
  3844. if (!sk_rmem_schedule(sk, size)) {
  3845. if (!tcp_prune_ofo_queue(sk))
  3846. return -1;
  3847. if (!sk_rmem_schedule(sk, size))
  3848. return -1;
  3849. }
  3850. }
  3851. return 0;
  3852. }
  3853. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3854. {
  3855. const struct tcphdr *th = tcp_hdr(skb);
  3856. struct tcp_sock *tp = tcp_sk(sk);
  3857. int eaten = -1;
  3858. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
  3859. goto drop;
  3860. skb_dst_drop(skb);
  3861. __skb_pull(skb, th->doff * 4);
  3862. TCP_ECN_accept_cwr(tp, skb);
  3863. tp->rx_opt.dsack = 0;
  3864. /* Queue data for delivery to the user.
  3865. * Packets in sequence go to the receive queue.
  3866. * Out of sequence packets to the out_of_order_queue.
  3867. */
  3868. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3869. if (tcp_receive_window(tp) == 0)
  3870. goto out_of_window;
  3871. /* Ok. In sequence. In window. */
  3872. if (tp->ucopy.task == current &&
  3873. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  3874. sock_owned_by_user(sk) && !tp->urg_data) {
  3875. int chunk = min_t(unsigned int, skb->len,
  3876. tp->ucopy.len);
  3877. __set_current_state(TASK_RUNNING);
  3878. local_bh_enable();
  3879. if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
  3880. tp->ucopy.len -= chunk;
  3881. tp->copied_seq += chunk;
  3882. eaten = (chunk == skb->len);
  3883. tcp_rcv_space_adjust(sk);
  3884. }
  3885. local_bh_disable();
  3886. }
  3887. if (eaten <= 0) {
  3888. queue_and_out:
  3889. if (eaten < 0 &&
  3890. tcp_try_rmem_schedule(sk, skb->truesize))
  3891. goto drop;
  3892. skb_set_owner_r(skb, sk);
  3893. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3894. }
  3895. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3896. if (skb->len)
  3897. tcp_event_data_recv(sk, skb);
  3898. if (th->fin)
  3899. tcp_fin(sk);
  3900. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  3901. tcp_ofo_queue(sk);
  3902. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  3903. * gap in queue is filled.
  3904. */
  3905. if (skb_queue_empty(&tp->out_of_order_queue))
  3906. inet_csk(sk)->icsk_ack.pingpong = 0;
  3907. }
  3908. if (tp->rx_opt.num_sacks)
  3909. tcp_sack_remove(tp);
  3910. tcp_fast_path_check(sk);
  3911. if (eaten > 0)
  3912. __kfree_skb(skb);
  3913. else if (!sock_flag(sk, SOCK_DEAD))
  3914. sk->sk_data_ready(sk, 0);
  3915. return;
  3916. }
  3917. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3918. /* A retransmit, 2nd most common case. Force an immediate ack. */
  3919. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3920. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3921. out_of_window:
  3922. tcp_enter_quickack_mode(sk);
  3923. inet_csk_schedule_ack(sk);
  3924. drop:
  3925. __kfree_skb(skb);
  3926. return;
  3927. }
  3928. /* Out of window. F.e. zero window probe. */
  3929. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  3930. goto out_of_window;
  3931. tcp_enter_quickack_mode(sk);
  3932. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3933. /* Partial packet, seq < rcv_next < end_seq */
  3934. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  3935. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3936. TCP_SKB_CB(skb)->end_seq);
  3937. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  3938. /* If window is closed, drop tail of packet. But after
  3939. * remembering D-SACK for its head made in previous line.
  3940. */
  3941. if (!tcp_receive_window(tp))
  3942. goto out_of_window;
  3943. goto queue_and_out;
  3944. }
  3945. TCP_ECN_check_ce(tp, skb);
  3946. if (tcp_try_rmem_schedule(sk, skb->truesize))
  3947. goto drop;
  3948. /* Disable header prediction. */
  3949. tp->pred_flags = 0;
  3950. inet_csk_schedule_ack(sk);
  3951. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3952. tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3953. skb_set_owner_r(skb, sk);
  3954. if (!skb_peek(&tp->out_of_order_queue)) {
  3955. /* Initial out of order segment, build 1 SACK. */
  3956. if (tcp_is_sack(tp)) {
  3957. tp->rx_opt.num_sacks = 1;
  3958. tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
  3959. tp->selective_acks[0].end_seq =
  3960. TCP_SKB_CB(skb)->end_seq;
  3961. }
  3962. __skb_queue_head(&tp->out_of_order_queue, skb);
  3963. } else {
  3964. struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
  3965. u32 seq = TCP_SKB_CB(skb)->seq;
  3966. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3967. if (seq == TCP_SKB_CB(skb1)->end_seq) {
  3968. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3969. if (!tp->rx_opt.num_sacks ||
  3970. tp->selective_acks[0].end_seq != seq)
  3971. goto add_sack;
  3972. /* Common case: data arrive in order after hole. */
  3973. tp->selective_acks[0].end_seq = end_seq;
  3974. return;
  3975. }
  3976. /* Find place to insert this segment. */
  3977. while (1) {
  3978. if (!after(TCP_SKB_CB(skb1)->seq, seq))
  3979. break;
  3980. if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
  3981. skb1 = NULL;
  3982. break;
  3983. }
  3984. skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
  3985. }
  3986. /* Do skb overlap to previous one? */
  3987. if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3988. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3989. /* All the bits are present. Drop. */
  3990. __kfree_skb(skb);
  3991. tcp_dsack_set(sk, seq, end_seq);
  3992. goto add_sack;
  3993. }
  3994. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3995. /* Partial overlap. */
  3996. tcp_dsack_set(sk, seq,
  3997. TCP_SKB_CB(skb1)->end_seq);
  3998. } else {
  3999. if (skb_queue_is_first(&tp->out_of_order_queue,
  4000. skb1))
  4001. skb1 = NULL;
  4002. else
  4003. skb1 = skb_queue_prev(
  4004. &tp->out_of_order_queue,
  4005. skb1);
  4006. }
  4007. }
  4008. if (!skb1)
  4009. __skb_queue_head(&tp->out_of_order_queue, skb);
  4010. else
  4011. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  4012. /* And clean segments covered by new one as whole. */
  4013. while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
  4014. skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
  4015. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  4016. break;
  4017. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  4018. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  4019. end_seq);
  4020. break;
  4021. }
  4022. __skb_unlink(skb1, &tp->out_of_order_queue);
  4023. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  4024. TCP_SKB_CB(skb1)->end_seq);
  4025. __kfree_skb(skb1);
  4026. }
  4027. add_sack:
  4028. if (tcp_is_sack(tp))
  4029. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  4030. }
  4031. }
  4032. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  4033. struct sk_buff_head *list)
  4034. {
  4035. struct sk_buff *next = NULL;
  4036. if (!skb_queue_is_last(list, skb))
  4037. next = skb_queue_next(list, skb);
  4038. __skb_unlink(skb, list);
  4039. __kfree_skb(skb);
  4040. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  4041. return next;
  4042. }
  4043. /* Collapse contiguous sequence of skbs head..tail with
  4044. * sequence numbers start..end.
  4045. *
  4046. * If tail is NULL, this means until the end of the list.
  4047. *
  4048. * Segments with FIN/SYN are not collapsed (only because this
  4049. * simplifies code)
  4050. */
  4051. static void
  4052. tcp_collapse(struct sock *sk, struct sk_buff_head *list,
  4053. struct sk_buff *head, struct sk_buff *tail,
  4054. u32 start, u32 end)
  4055. {
  4056. struct sk_buff *skb, *n;
  4057. bool end_of_skbs;
  4058. /* First, check that queue is collapsible and find
  4059. * the point where collapsing can be useful. */
  4060. skb = head;
  4061. restart:
  4062. end_of_skbs = true;
  4063. skb_queue_walk_from_safe(list, skb, n) {
  4064. if (skb == tail)
  4065. break;
  4066. /* No new bits? It is possible on ofo queue. */
  4067. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4068. skb = tcp_collapse_one(sk, skb, list);
  4069. if (!skb)
  4070. break;
  4071. goto restart;
  4072. }
  4073. /* The first skb to collapse is:
  4074. * - not SYN/FIN and
  4075. * - bloated or contains data before "start" or
  4076. * overlaps to the next one.
  4077. */
  4078. if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
  4079. (tcp_win_from_space(skb->truesize) > skb->len ||
  4080. before(TCP_SKB_CB(skb)->seq, start))) {
  4081. end_of_skbs = false;
  4082. break;
  4083. }
  4084. if (!skb_queue_is_last(list, skb)) {
  4085. struct sk_buff *next = skb_queue_next(list, skb);
  4086. if (next != tail &&
  4087. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
  4088. end_of_skbs = false;
  4089. break;
  4090. }
  4091. }
  4092. /* Decided to skip this, advance start seq. */
  4093. start = TCP_SKB_CB(skb)->end_seq;
  4094. }
  4095. if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
  4096. return;
  4097. while (before(start, end)) {
  4098. struct sk_buff *nskb;
  4099. unsigned int header = skb_headroom(skb);
  4100. int copy = SKB_MAX_ORDER(header, 0);
  4101. /* Too big header? This can happen with IPv6. */
  4102. if (copy < 0)
  4103. return;
  4104. if (end - start < copy)
  4105. copy = end - start;
  4106. nskb = alloc_skb(copy + header, GFP_ATOMIC);
  4107. if (!nskb)
  4108. return;
  4109. skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
  4110. skb_set_network_header(nskb, (skb_network_header(skb) -
  4111. skb->head));
  4112. skb_set_transport_header(nskb, (skb_transport_header(skb) -
  4113. skb->head));
  4114. skb_reserve(nskb, header);
  4115. memcpy(nskb->head, skb->head, header);
  4116. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  4117. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  4118. __skb_queue_before(list, skb, nskb);
  4119. skb_set_owner_r(nskb, sk);
  4120. /* Copy data, releasing collapsed skbs. */
  4121. while (copy > 0) {
  4122. int offset = start - TCP_SKB_CB(skb)->seq;
  4123. int size = TCP_SKB_CB(skb)->end_seq - start;
  4124. BUG_ON(offset < 0);
  4125. if (size > 0) {
  4126. size = min(copy, size);
  4127. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  4128. BUG();
  4129. TCP_SKB_CB(nskb)->end_seq += size;
  4130. copy -= size;
  4131. start += size;
  4132. }
  4133. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4134. skb = tcp_collapse_one(sk, skb, list);
  4135. if (!skb ||
  4136. skb == tail ||
  4137. tcp_hdr(skb)->syn ||
  4138. tcp_hdr(skb)->fin)
  4139. return;
  4140. }
  4141. }
  4142. }
  4143. }
  4144. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  4145. * and tcp_collapse() them until all the queue is collapsed.
  4146. */
  4147. static void tcp_collapse_ofo_queue(struct sock *sk)
  4148. {
  4149. struct tcp_sock *tp = tcp_sk(sk);
  4150. struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
  4151. struct sk_buff *head;
  4152. u32 start, end;
  4153. if (skb == NULL)
  4154. return;
  4155. start = TCP_SKB_CB(skb)->seq;
  4156. end = TCP_SKB_CB(skb)->end_seq;
  4157. head = skb;
  4158. for (;;) {
  4159. struct sk_buff *next = NULL;
  4160. if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
  4161. next = skb_queue_next(&tp->out_of_order_queue, skb);
  4162. skb = next;
  4163. /* Segment is terminated when we see gap or when
  4164. * we are at the end of all the queue. */
  4165. if (!skb ||
  4166. after(TCP_SKB_CB(skb)->seq, end) ||
  4167. before(TCP_SKB_CB(skb)->end_seq, start)) {
  4168. tcp_collapse(sk, &tp->out_of_order_queue,
  4169. head, skb, start, end);
  4170. head = skb;
  4171. if (!skb)
  4172. break;
  4173. /* Start new segment */
  4174. start = TCP_SKB_CB(skb)->seq;
  4175. end = TCP_SKB_CB(skb)->end_seq;
  4176. } else {
  4177. if (before(TCP_SKB_CB(skb)->seq, start))
  4178. start = TCP_SKB_CB(skb)->seq;
  4179. if (after(TCP_SKB_CB(skb)->end_seq, end))
  4180. end = TCP_SKB_CB(skb)->end_seq;
  4181. }
  4182. }
  4183. }
  4184. /*
  4185. * Purge the out-of-order queue.
  4186. * Return true if queue was pruned.
  4187. */
  4188. static int tcp_prune_ofo_queue(struct sock *sk)
  4189. {
  4190. struct tcp_sock *tp = tcp_sk(sk);
  4191. int res = 0;
  4192. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  4193. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
  4194. __skb_queue_purge(&tp->out_of_order_queue);
  4195. /* Reset SACK state. A conforming SACK implementation will
  4196. * do the same at a timeout based retransmit. When a connection
  4197. * is in a sad state like this, we care only about integrity
  4198. * of the connection not performance.
  4199. */
  4200. if (tp->rx_opt.sack_ok)
  4201. tcp_sack_reset(&tp->rx_opt);
  4202. sk_mem_reclaim(sk);
  4203. res = 1;
  4204. }
  4205. return res;
  4206. }
  4207. /* Reduce allocated memory if we can, trying to get
  4208. * the socket within its memory limits again.
  4209. *
  4210. * Return less than zero if we should start dropping frames
  4211. * until the socket owning process reads some of the data
  4212. * to stabilize the situation.
  4213. */
  4214. static int tcp_prune_queue(struct sock *sk)
  4215. {
  4216. struct tcp_sock *tp = tcp_sk(sk);
  4217. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  4218. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
  4219. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  4220. tcp_clamp_window(sk);
  4221. else if (tcp_memory_pressure)
  4222. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  4223. tcp_collapse_ofo_queue(sk);
  4224. if (!skb_queue_empty(&sk->sk_receive_queue))
  4225. tcp_collapse(sk, &sk->sk_receive_queue,
  4226. skb_peek(&sk->sk_receive_queue),
  4227. NULL,
  4228. tp->copied_seq, tp->rcv_nxt);
  4229. sk_mem_reclaim(sk);
  4230. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4231. return 0;
  4232. /* Collapsing did not help, destructive actions follow.
  4233. * This must not ever occur. */
  4234. tcp_prune_ofo_queue(sk);
  4235. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4236. return 0;
  4237. /* If we are really being abused, tell the caller to silently
  4238. * drop receive data on the floor. It will get retransmitted
  4239. * and hopefully then we'll have sufficient space.
  4240. */
  4241. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4242. /* Massive buffer overcommit. */
  4243. tp->pred_flags = 0;
  4244. return -1;
  4245. }
  4246. /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
  4247. * As additional protections, we do not touch cwnd in retransmission phases,
  4248. * and if application hit its sndbuf limit recently.
  4249. */
  4250. void tcp_cwnd_application_limited(struct sock *sk)
  4251. {
  4252. struct tcp_sock *tp = tcp_sk(sk);
  4253. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
  4254. sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  4255. /* Limited by application or receiver window. */
  4256. u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
  4257. u32 win_used = max(tp->snd_cwnd_used, init_win);
  4258. if (win_used < tp->snd_cwnd) {
  4259. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  4260. tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
  4261. }
  4262. tp->snd_cwnd_used = 0;
  4263. }
  4264. tp->snd_cwnd_stamp = tcp_time_stamp;
  4265. }
  4266. static int tcp_should_expand_sndbuf(const struct sock *sk)
  4267. {
  4268. const struct tcp_sock *tp = tcp_sk(sk);
  4269. /* If the user specified a specific send buffer setting, do
  4270. * not modify it.
  4271. */
  4272. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4273. return 0;
  4274. /* If we are under global TCP memory pressure, do not expand. */
  4275. if (tcp_memory_pressure)
  4276. return 0;
  4277. /* If we are under soft global TCP memory pressure, do not expand. */
  4278. if (atomic_long_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
  4279. return 0;
  4280. /* If we filled the congestion window, do not expand. */
  4281. if (tp->packets_out >= tp->snd_cwnd)
  4282. return 0;
  4283. return 1;
  4284. }
  4285. /* When incoming ACK allowed to free some skb from write_queue,
  4286. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4287. * on the exit from tcp input handler.
  4288. *
  4289. * PROBLEM: sndbuf expansion does not work well with largesend.
  4290. */
  4291. static void tcp_new_space(struct sock *sk)
  4292. {
  4293. struct tcp_sock *tp = tcp_sk(sk);
  4294. if (tcp_should_expand_sndbuf(sk)) {
  4295. int sndmem = SKB_TRUESIZE(max_t(u32,
  4296. tp->rx_opt.mss_clamp,
  4297. tp->mss_cache) +
  4298. MAX_TCP_HEADER);
  4299. int demanded = max_t(unsigned int, tp->snd_cwnd,
  4300. tp->reordering + 1);
  4301. sndmem *= 2 * demanded;
  4302. if (sndmem > sk->sk_sndbuf)
  4303. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  4304. tp->snd_cwnd_stamp = tcp_time_stamp;
  4305. }
  4306. sk->sk_write_space(sk);
  4307. }
  4308. static void tcp_check_space(struct sock *sk)
  4309. {
  4310. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4311. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4312. if (sk->sk_socket &&
  4313. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4314. tcp_new_space(sk);
  4315. }
  4316. }
  4317. static inline void tcp_data_snd_check(struct sock *sk)
  4318. {
  4319. tcp_push_pending_frames(sk);
  4320. tcp_check_space(sk);
  4321. }
  4322. /*
  4323. * Check if sending an ack is needed.
  4324. */
  4325. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4326. {
  4327. struct tcp_sock *tp = tcp_sk(sk);
  4328. /* More than one full frame received... */
  4329. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4330. /* ... and right edge of window advances far enough.
  4331. * (tcp_recvmsg() will send ACK otherwise). Or...
  4332. */
  4333. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4334. /* We ACK each frame or... */
  4335. tcp_in_quickack_mode(sk) ||
  4336. /* We have out of order data. */
  4337. (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
  4338. /* Then ack it now */
  4339. tcp_send_ack(sk);
  4340. } else {
  4341. /* Else, send delayed ack. */
  4342. tcp_send_delayed_ack(sk);
  4343. }
  4344. }
  4345. static inline void tcp_ack_snd_check(struct sock *sk)
  4346. {
  4347. if (!inet_csk_ack_scheduled(sk)) {
  4348. /* We sent a data segment already. */
  4349. return;
  4350. }
  4351. __tcp_ack_snd_check(sk, 1);
  4352. }
  4353. /*
  4354. * This routine is only called when we have urgent data
  4355. * signaled. Its the 'slow' part of tcp_urg. It could be
  4356. * moved inline now as tcp_urg is only called from one
  4357. * place. We handle URGent data wrong. We have to - as
  4358. * BSD still doesn't use the correction from RFC961.
  4359. * For 1003.1g we should support a new option TCP_STDURG to permit
  4360. * either form (or just set the sysctl tcp_stdurg).
  4361. */
  4362. static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
  4363. {
  4364. struct tcp_sock *tp = tcp_sk(sk);
  4365. u32 ptr = ntohs(th->urg_ptr);
  4366. if (ptr && !sysctl_tcp_stdurg)
  4367. ptr--;
  4368. ptr += ntohl(th->seq);
  4369. /* Ignore urgent data that we've already seen and read. */
  4370. if (after(tp->copied_seq, ptr))
  4371. return;
  4372. /* Do not replay urg ptr.
  4373. *
  4374. * NOTE: interesting situation not covered by specs.
  4375. * Misbehaving sender may send urg ptr, pointing to segment,
  4376. * which we already have in ofo queue. We are not able to fetch
  4377. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4378. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4379. * situations. But it is worth to think about possibility of some
  4380. * DoSes using some hypothetical application level deadlock.
  4381. */
  4382. if (before(ptr, tp->rcv_nxt))
  4383. return;
  4384. /* Do we already have a newer (or duplicate) urgent pointer? */
  4385. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4386. return;
  4387. /* Tell the world about our new urgent pointer. */
  4388. sk_send_sigurg(sk);
  4389. /* We may be adding urgent data when the last byte read was
  4390. * urgent. To do this requires some care. We cannot just ignore
  4391. * tp->copied_seq since we would read the last urgent byte again
  4392. * as data, nor can we alter copied_seq until this data arrives
  4393. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4394. *
  4395. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4396. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4397. * and expect that both A and B disappear from stream. This is _wrong_.
  4398. * Though this happens in BSD with high probability, this is occasional.
  4399. * Any application relying on this is buggy. Note also, that fix "works"
  4400. * only in this artificial test. Insert some normal data between A and B and we will
  4401. * decline of BSD again. Verdict: it is better to remove to trap
  4402. * buggy users.
  4403. */
  4404. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4405. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4406. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4407. tp->copied_seq++;
  4408. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4409. __skb_unlink(skb, &sk->sk_receive_queue);
  4410. __kfree_skb(skb);
  4411. }
  4412. }
  4413. tp->urg_data = TCP_URG_NOTYET;
  4414. tp->urg_seq = ptr;
  4415. /* Disable header prediction. */
  4416. tp->pred_flags = 0;
  4417. }
  4418. /* This is the 'fast' part of urgent handling. */
  4419. static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
  4420. {
  4421. struct tcp_sock *tp = tcp_sk(sk);
  4422. /* Check if we get a new urgent pointer - normally not. */
  4423. if (th->urg)
  4424. tcp_check_urg(sk, th);
  4425. /* Do we wait for any urgent data? - normally not... */
  4426. if (tp->urg_data == TCP_URG_NOTYET) {
  4427. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4428. th->syn;
  4429. /* Is the urgent pointer pointing into this packet? */
  4430. if (ptr < skb->len) {
  4431. u8 tmp;
  4432. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4433. BUG();
  4434. tp->urg_data = TCP_URG_VALID | tmp;
  4435. if (!sock_flag(sk, SOCK_DEAD))
  4436. sk->sk_data_ready(sk, 0);
  4437. }
  4438. }
  4439. }
  4440. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  4441. {
  4442. struct tcp_sock *tp = tcp_sk(sk);
  4443. int chunk = skb->len - hlen;
  4444. int err;
  4445. local_bh_enable();
  4446. if (skb_csum_unnecessary(skb))
  4447. err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
  4448. else
  4449. err = skb_copy_and_csum_datagram_iovec(skb, hlen,
  4450. tp->ucopy.iov);
  4451. if (!err) {
  4452. tp->ucopy.len -= chunk;
  4453. tp->copied_seq += chunk;
  4454. tcp_rcv_space_adjust(sk);
  4455. }
  4456. local_bh_disable();
  4457. return err;
  4458. }
  4459. static __sum16 __tcp_checksum_complete_user(struct sock *sk,
  4460. struct sk_buff *skb)
  4461. {
  4462. __sum16 result;
  4463. if (sock_owned_by_user(sk)) {
  4464. local_bh_enable();
  4465. result = __tcp_checksum_complete(skb);
  4466. local_bh_disable();
  4467. } else {
  4468. result = __tcp_checksum_complete(skb);
  4469. }
  4470. return result;
  4471. }
  4472. static inline int tcp_checksum_complete_user(struct sock *sk,
  4473. struct sk_buff *skb)
  4474. {
  4475. return !skb_csum_unnecessary(skb) &&
  4476. __tcp_checksum_complete_user(sk, skb);
  4477. }
  4478. #ifdef CONFIG_NET_DMA
  4479. static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
  4480. int hlen)
  4481. {
  4482. struct tcp_sock *tp = tcp_sk(sk);
  4483. int chunk = skb->len - hlen;
  4484. int dma_cookie;
  4485. int copied_early = 0;
  4486. if (tp->ucopy.wakeup)
  4487. return 0;
  4488. if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
  4489. tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
  4490. if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
  4491. dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
  4492. skb, hlen,
  4493. tp->ucopy.iov, chunk,
  4494. tp->ucopy.pinned_list);
  4495. if (dma_cookie < 0)
  4496. goto out;
  4497. tp->ucopy.dma_cookie = dma_cookie;
  4498. copied_early = 1;
  4499. tp->ucopy.len -= chunk;
  4500. tp->copied_seq += chunk;
  4501. tcp_rcv_space_adjust(sk);
  4502. if ((tp->ucopy.len == 0) ||
  4503. (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
  4504. (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
  4505. tp->ucopy.wakeup = 1;
  4506. sk->sk_data_ready(sk, 0);
  4507. }
  4508. } else if (chunk > 0) {
  4509. tp->ucopy.wakeup = 1;
  4510. sk->sk_data_ready(sk, 0);
  4511. }
  4512. out:
  4513. return copied_early;
  4514. }
  4515. #endif /* CONFIG_NET_DMA */
  4516. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4517. * play significant role here.
  4518. */
  4519. static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4520. const struct tcphdr *th, int syn_inerr)
  4521. {
  4522. const u8 *hash_location;
  4523. struct tcp_sock *tp = tcp_sk(sk);
  4524. /* RFC1323: H1. Apply PAWS check first. */
  4525. if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
  4526. tp->rx_opt.saw_tstamp &&
  4527. tcp_paws_discard(sk, skb)) {
  4528. if (!th->rst) {
  4529. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4530. tcp_send_dupack(sk, skb);
  4531. goto discard;
  4532. }
  4533. /* Reset is accepted even if it did not pass PAWS. */
  4534. }
  4535. /* Step 1: check sequence number */
  4536. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4537. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4538. * (RST) segments are validated by checking their SEQ-fields."
  4539. * And page 69: "If an incoming segment is not acceptable,
  4540. * an acknowledgment should be sent in reply (unless the RST
  4541. * bit is set, if so drop the segment and return)".
  4542. */
  4543. if (!th->rst)
  4544. tcp_send_dupack(sk, skb);
  4545. goto discard;
  4546. }
  4547. /* Step 2: check RST bit */
  4548. if (th->rst) {
  4549. tcp_reset(sk);
  4550. goto discard;
  4551. }
  4552. /* ts_recent update must be made after we are sure that the packet
  4553. * is in window.
  4554. */
  4555. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  4556. /* step 3: check security and precedence [ignored] */
  4557. /* step 4: Check for a SYN in window. */
  4558. if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4559. if (syn_inerr)
  4560. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4561. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
  4562. tcp_reset(sk);
  4563. return -1;
  4564. }
  4565. return 1;
  4566. discard:
  4567. __kfree_skb(skb);
  4568. return 0;
  4569. }
  4570. /*
  4571. * TCP receive function for the ESTABLISHED state.
  4572. *
  4573. * It is split into a fast path and a slow path. The fast path is
  4574. * disabled when:
  4575. * - A zero window was announced from us - zero window probing
  4576. * is only handled properly in the slow path.
  4577. * - Out of order segments arrived.
  4578. * - Urgent data is expected.
  4579. * - There is no buffer space left
  4580. * - Unexpected TCP flags/window values/header lengths are received
  4581. * (detected by checking the TCP header against pred_flags)
  4582. * - Data is sent in both directions. Fast path only supports pure senders
  4583. * or pure receivers (this means either the sequence number or the ack
  4584. * value must stay constant)
  4585. * - Unexpected TCP option.
  4586. *
  4587. * When these conditions are not satisfied it drops into a standard
  4588. * receive procedure patterned after RFC793 to handle all cases.
  4589. * The first three cases are guaranteed by proper pred_flags setting,
  4590. * the rest is checked inline. Fast processing is turned on in
  4591. * tcp_data_queue when everything is OK.
  4592. */
  4593. int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4594. const struct tcphdr *th, unsigned int len)
  4595. {
  4596. struct tcp_sock *tp = tcp_sk(sk);
  4597. int res;
  4598. /*
  4599. * Header prediction.
  4600. * The code loosely follows the one in the famous
  4601. * "30 instruction TCP receive" Van Jacobson mail.
  4602. *
  4603. * Van's trick is to deposit buffers into socket queue
  4604. * on a device interrupt, to call tcp_recv function
  4605. * on the receive process context and checksum and copy
  4606. * the buffer to user space. smart...
  4607. *
  4608. * Our current scheme is not silly either but we take the
  4609. * extra cost of the net_bh soft interrupt processing...
  4610. * We do checksum and copy also but from device to kernel.
  4611. */
  4612. tp->rx_opt.saw_tstamp = 0;
  4613. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4614. * if header_prediction is to be made
  4615. * 'S' will always be tp->tcp_header_len >> 2
  4616. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4617. * turn it off (when there are holes in the receive
  4618. * space for instance)
  4619. * PSH flag is ignored.
  4620. */
  4621. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4622. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4623. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4624. int tcp_header_len = tp->tcp_header_len;
  4625. /* Timestamp header prediction: tcp_header_len
  4626. * is automatically equal to th->doff*4 due to pred_flags
  4627. * match.
  4628. */
  4629. /* Check timestamp */
  4630. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4631. /* No? Slow path! */
  4632. if (!tcp_parse_aligned_timestamp(tp, th))
  4633. goto slow_path;
  4634. /* If PAWS failed, check it more carefully in slow path */
  4635. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4636. goto slow_path;
  4637. /* DO NOT update ts_recent here, if checksum fails
  4638. * and timestamp was corrupted part, it will result
  4639. * in a hung connection since we will drop all
  4640. * future packets due to the PAWS test.
  4641. */
  4642. }
  4643. if (len <= tcp_header_len) {
  4644. /* Bulk data transfer: sender */
  4645. if (len == tcp_header_len) {
  4646. /* Predicted packet is in window by definition.
  4647. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4648. * Hence, check seq<=rcv_wup reduces to:
  4649. */
  4650. if (tcp_header_len ==
  4651. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4652. tp->rcv_nxt == tp->rcv_wup)
  4653. tcp_store_ts_recent(tp);
  4654. /* We know that such packets are checksummed
  4655. * on entry.
  4656. */
  4657. tcp_ack(sk, skb, 0);
  4658. __kfree_skb(skb);
  4659. tcp_data_snd_check(sk);
  4660. return 0;
  4661. } else { /* Header too small */
  4662. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4663. goto discard;
  4664. }
  4665. } else {
  4666. int eaten = 0;
  4667. int copied_early = 0;
  4668. if (tp->copied_seq == tp->rcv_nxt &&
  4669. len - tcp_header_len <= tp->ucopy.len) {
  4670. #ifdef CONFIG_NET_DMA
  4671. if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
  4672. copied_early = 1;
  4673. eaten = 1;
  4674. }
  4675. #endif
  4676. if (tp->ucopy.task == current &&
  4677. sock_owned_by_user(sk) && !copied_early) {
  4678. __set_current_state(TASK_RUNNING);
  4679. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
  4680. eaten = 1;
  4681. }
  4682. if (eaten) {
  4683. /* Predicted packet is in window by definition.
  4684. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4685. * Hence, check seq<=rcv_wup reduces to:
  4686. */
  4687. if (tcp_header_len ==
  4688. (sizeof(struct tcphdr) +
  4689. TCPOLEN_TSTAMP_ALIGNED) &&
  4690. tp->rcv_nxt == tp->rcv_wup)
  4691. tcp_store_ts_recent(tp);
  4692. tcp_rcv_rtt_measure_ts(sk, skb);
  4693. __skb_pull(skb, tcp_header_len);
  4694. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4695. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
  4696. }
  4697. if (copied_early)
  4698. tcp_cleanup_rbuf(sk, skb->len);
  4699. }
  4700. if (!eaten) {
  4701. if (tcp_checksum_complete_user(sk, skb))
  4702. goto csum_error;
  4703. /* Predicted packet is in window by definition.
  4704. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4705. * Hence, check seq<=rcv_wup reduces to:
  4706. */
  4707. if (tcp_header_len ==
  4708. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4709. tp->rcv_nxt == tp->rcv_wup)
  4710. tcp_store_ts_recent(tp);
  4711. tcp_rcv_rtt_measure_ts(sk, skb);
  4712. if ((int)skb->truesize > sk->sk_forward_alloc)
  4713. goto step5;
  4714. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4715. /* Bulk data transfer: receiver */
  4716. __skb_pull(skb, tcp_header_len);
  4717. __skb_queue_tail(&sk->sk_receive_queue, skb);
  4718. skb_set_owner_r(skb, sk);
  4719. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4720. }
  4721. tcp_event_data_recv(sk, skb);
  4722. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4723. /* Well, only one small jumplet in fast path... */
  4724. tcp_ack(sk, skb, FLAG_DATA);
  4725. tcp_data_snd_check(sk);
  4726. if (!inet_csk_ack_scheduled(sk))
  4727. goto no_ack;
  4728. }
  4729. if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
  4730. __tcp_ack_snd_check(sk, 0);
  4731. no_ack:
  4732. #ifdef CONFIG_NET_DMA
  4733. if (copied_early)
  4734. __skb_queue_tail(&sk->sk_async_wait_queue, skb);
  4735. else
  4736. #endif
  4737. if (eaten)
  4738. __kfree_skb(skb);
  4739. else
  4740. sk->sk_data_ready(sk, 0);
  4741. return 0;
  4742. }
  4743. }
  4744. slow_path:
  4745. if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
  4746. goto csum_error;
  4747. /*
  4748. * Standard slow path.
  4749. */
  4750. res = tcp_validate_incoming(sk, skb, th, 1);
  4751. if (res <= 0)
  4752. return -res;
  4753. step5:
  4754. if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
  4755. goto discard;
  4756. tcp_rcv_rtt_measure_ts(sk, skb);
  4757. /* Process urgent data. */
  4758. tcp_urg(sk, skb, th);
  4759. /* step 7: process the segment text */
  4760. tcp_data_queue(sk, skb);
  4761. tcp_data_snd_check(sk);
  4762. tcp_ack_snd_check(sk);
  4763. return 0;
  4764. csum_error:
  4765. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4766. discard:
  4767. __kfree_skb(skb);
  4768. return 0;
  4769. }
  4770. EXPORT_SYMBOL(tcp_rcv_established);
  4771. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4772. const struct tcphdr *th, unsigned int len)
  4773. {
  4774. const u8 *hash_location;
  4775. struct inet_connection_sock *icsk = inet_csk(sk);
  4776. struct tcp_sock *tp = tcp_sk(sk);
  4777. struct tcp_cookie_values *cvp = tp->cookie_values;
  4778. int saved_clamp = tp->rx_opt.mss_clamp;
  4779. tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
  4780. if (th->ack) {
  4781. /* rfc793:
  4782. * "If the state is SYN-SENT then
  4783. * first check the ACK bit
  4784. * If the ACK bit is set
  4785. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4786. * a reset (unless the RST bit is set, if so drop
  4787. * the segment and return)"
  4788. *
  4789. * We do not send data with SYN, so that RFC-correct
  4790. * test reduces to:
  4791. */
  4792. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
  4793. goto reset_and_undo;
  4794. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4795. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4796. tcp_time_stamp)) {
  4797. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
  4798. goto reset_and_undo;
  4799. }
  4800. /* Now ACK is acceptable.
  4801. *
  4802. * "If the RST bit is set
  4803. * If the ACK was acceptable then signal the user "error:
  4804. * connection reset", drop the segment, enter CLOSED state,
  4805. * delete TCB, and return."
  4806. */
  4807. if (th->rst) {
  4808. tcp_reset(sk);
  4809. goto discard;
  4810. }
  4811. /* rfc793:
  4812. * "fifth, if neither of the SYN or RST bits is set then
  4813. * drop the segment and return."
  4814. *
  4815. * See note below!
  4816. * --ANK(990513)
  4817. */
  4818. if (!th->syn)
  4819. goto discard_and_undo;
  4820. /* rfc793:
  4821. * "If the SYN bit is on ...
  4822. * are acceptable then ...
  4823. * (our SYN has been ACKed), change the connection
  4824. * state to ESTABLISHED..."
  4825. */
  4826. TCP_ECN_rcv_synack(tp, th);
  4827. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4828. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4829. /* Ok.. it's good. Set up sequence numbers and
  4830. * move to established.
  4831. */
  4832. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4833. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4834. /* RFC1323: The window in SYN & SYN/ACK segments is
  4835. * never scaled.
  4836. */
  4837. tp->snd_wnd = ntohs(th->window);
  4838. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4839. if (!tp->rx_opt.wscale_ok) {
  4840. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4841. tp->window_clamp = min(tp->window_clamp, 65535U);
  4842. }
  4843. if (tp->rx_opt.saw_tstamp) {
  4844. tp->rx_opt.tstamp_ok = 1;
  4845. tp->tcp_header_len =
  4846. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4847. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4848. tcp_store_ts_recent(tp);
  4849. } else {
  4850. tp->tcp_header_len = sizeof(struct tcphdr);
  4851. }
  4852. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4853. tcp_enable_fack(tp);
  4854. tcp_mtup_init(sk);
  4855. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4856. tcp_initialize_rcv_mss(sk);
  4857. /* Remember, tcp_poll() does not lock socket!
  4858. * Change state from SYN-SENT only after copied_seq
  4859. * is initialized. */
  4860. tp->copied_seq = tp->rcv_nxt;
  4861. if (cvp != NULL &&
  4862. cvp->cookie_pair_size > 0 &&
  4863. tp->rx_opt.cookie_plus > 0) {
  4864. int cookie_size = tp->rx_opt.cookie_plus
  4865. - TCPOLEN_COOKIE_BASE;
  4866. int cookie_pair_size = cookie_size
  4867. + cvp->cookie_desired;
  4868. /* A cookie extension option was sent and returned.
  4869. * Note that each incoming SYNACK replaces the
  4870. * Responder cookie. The initial exchange is most
  4871. * fragile, as protection against spoofing relies
  4872. * entirely upon the sequence and timestamp (above).
  4873. * This replacement strategy allows the correct pair to
  4874. * pass through, while any others will be filtered via
  4875. * Responder verification later.
  4876. */
  4877. if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
  4878. memcpy(&cvp->cookie_pair[cvp->cookie_desired],
  4879. hash_location, cookie_size);
  4880. cvp->cookie_pair_size = cookie_pair_size;
  4881. }
  4882. }
  4883. smp_mb();
  4884. tcp_set_state(sk, TCP_ESTABLISHED);
  4885. security_inet_conn_established(sk, skb);
  4886. /* Make sure socket is routed, for correct metrics. */
  4887. icsk->icsk_af_ops->rebuild_header(sk);
  4888. tcp_init_metrics(sk);
  4889. tcp_init_congestion_control(sk);
  4890. /* Prevent spurious tcp_cwnd_restart() on first data
  4891. * packet.
  4892. */
  4893. tp->lsndtime = tcp_time_stamp;
  4894. tcp_init_buffer_space(sk);
  4895. if (sock_flag(sk, SOCK_KEEPOPEN))
  4896. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4897. if (!tp->rx_opt.snd_wscale)
  4898. __tcp_fast_path_on(tp, tp->snd_wnd);
  4899. else
  4900. tp->pred_flags = 0;
  4901. if (!sock_flag(sk, SOCK_DEAD)) {
  4902. sk->sk_state_change(sk);
  4903. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4904. }
  4905. if (sk->sk_write_pending ||
  4906. icsk->icsk_accept_queue.rskq_defer_accept ||
  4907. icsk->icsk_ack.pingpong) {
  4908. /* Save one ACK. Data will be ready after
  4909. * several ticks, if write_pending is set.
  4910. *
  4911. * It may be deleted, but with this feature tcpdumps
  4912. * look so _wonderfully_ clever, that I was not able
  4913. * to stand against the temptation 8) --ANK
  4914. */
  4915. inet_csk_schedule_ack(sk);
  4916. icsk->icsk_ack.lrcvtime = tcp_time_stamp;
  4917. icsk->icsk_ack.ato = TCP_ATO_MIN;
  4918. tcp_incr_quickack(sk);
  4919. tcp_enter_quickack_mode(sk);
  4920. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  4921. TCP_DELACK_MAX, TCP_RTO_MAX);
  4922. discard:
  4923. __kfree_skb(skb);
  4924. return 0;
  4925. } else {
  4926. tcp_send_ack(sk);
  4927. }
  4928. return -1;
  4929. }
  4930. /* No ACK in the segment */
  4931. if (th->rst) {
  4932. /* rfc793:
  4933. * "If the RST bit is set
  4934. *
  4935. * Otherwise (no ACK) drop the segment and return."
  4936. */
  4937. goto discard_and_undo;
  4938. }
  4939. /* PAWS check. */
  4940. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  4941. tcp_paws_reject(&tp->rx_opt, 0))
  4942. goto discard_and_undo;
  4943. if (th->syn) {
  4944. /* We see SYN without ACK. It is attempt of
  4945. * simultaneous connect with crossed SYNs.
  4946. * Particularly, it can be connect to self.
  4947. */
  4948. tcp_set_state(sk, TCP_SYN_RECV);
  4949. if (tp->rx_opt.saw_tstamp) {
  4950. tp->rx_opt.tstamp_ok = 1;
  4951. tcp_store_ts_recent(tp);
  4952. tp->tcp_header_len =
  4953. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4954. } else {
  4955. tp->tcp_header_len = sizeof(struct tcphdr);
  4956. }
  4957. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4958. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4959. /* RFC1323: The window in SYN & SYN/ACK segments is
  4960. * never scaled.
  4961. */
  4962. tp->snd_wnd = ntohs(th->window);
  4963. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4964. tp->max_window = tp->snd_wnd;
  4965. TCP_ECN_rcv_syn(tp, th);
  4966. tcp_mtup_init(sk);
  4967. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4968. tcp_initialize_rcv_mss(sk);
  4969. tcp_send_synack(sk);
  4970. #if 0
  4971. /* Note, we could accept data and URG from this segment.
  4972. * There are no obstacles to make this.
  4973. *
  4974. * However, if we ignore data in ACKless segments sometimes,
  4975. * we have no reasons to accept it sometimes.
  4976. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  4977. * is not flawless. So, discard packet for sanity.
  4978. * Uncomment this return to process the data.
  4979. */
  4980. return -1;
  4981. #else
  4982. goto discard;
  4983. #endif
  4984. }
  4985. /* "fifth, if neither of the SYN or RST bits is set then
  4986. * drop the segment and return."
  4987. */
  4988. discard_and_undo:
  4989. tcp_clear_options(&tp->rx_opt);
  4990. tp->rx_opt.mss_clamp = saved_clamp;
  4991. goto discard;
  4992. reset_and_undo:
  4993. tcp_clear_options(&tp->rx_opt);
  4994. tp->rx_opt.mss_clamp = saved_clamp;
  4995. return 1;
  4996. }
  4997. /*
  4998. * This function implements the receiving procedure of RFC 793 for
  4999. * all states except ESTABLISHED and TIME_WAIT.
  5000. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  5001. * address independent.
  5002. */
  5003. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
  5004. const struct tcphdr *th, unsigned int len)
  5005. {
  5006. struct tcp_sock *tp = tcp_sk(sk);
  5007. struct inet_connection_sock *icsk = inet_csk(sk);
  5008. int queued = 0;
  5009. int res;
  5010. tp->rx_opt.saw_tstamp = 0;
  5011. switch (sk->sk_state) {
  5012. case TCP_CLOSE:
  5013. goto discard;
  5014. case TCP_LISTEN:
  5015. if (th->ack)
  5016. return 1;
  5017. if (th->rst)
  5018. goto discard;
  5019. if (th->syn) {
  5020. if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
  5021. return 1;
  5022. /* Now we have several options: In theory there is
  5023. * nothing else in the frame. KA9Q has an option to
  5024. * send data with the syn, BSD accepts data with the
  5025. * syn up to the [to be] advertised window and
  5026. * Solaris 2.1 gives you a protocol error. For now
  5027. * we just ignore it, that fits the spec precisely
  5028. * and avoids incompatibilities. It would be nice in
  5029. * future to drop through and process the data.
  5030. *
  5031. * Now that TTCP is starting to be used we ought to
  5032. * queue this data.
  5033. * But, this leaves one open to an easy denial of
  5034. * service attack, and SYN cookies can't defend
  5035. * against this problem. So, we drop the data
  5036. * in the interest of security over speed unless
  5037. * it's still in use.
  5038. */
  5039. kfree_skb(skb);
  5040. return 0;
  5041. }
  5042. goto discard;
  5043. case TCP_SYN_SENT:
  5044. queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
  5045. if (queued >= 0)
  5046. return queued;
  5047. /* Do step6 onward by hand. */
  5048. tcp_urg(sk, skb, th);
  5049. __kfree_skb(skb);
  5050. tcp_data_snd_check(sk);
  5051. return 0;
  5052. }
  5053. res = tcp_validate_incoming(sk, skb, th, 0);
  5054. if (res <= 0)
  5055. return -res;
  5056. /* step 5: check the ACK field */
  5057. if (th->ack) {
  5058. int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
  5059. switch (sk->sk_state) {
  5060. case TCP_SYN_RECV:
  5061. if (acceptable) {
  5062. tp->copied_seq = tp->rcv_nxt;
  5063. smp_mb();
  5064. tcp_set_state(sk, TCP_ESTABLISHED);
  5065. sk->sk_state_change(sk);
  5066. /* Note, that this wakeup is only for marginal
  5067. * crossed SYN case. Passively open sockets
  5068. * are not waked up, because sk->sk_sleep ==
  5069. * NULL and sk->sk_socket == NULL.
  5070. */
  5071. if (sk->sk_socket)
  5072. sk_wake_async(sk,
  5073. SOCK_WAKE_IO, POLL_OUT);
  5074. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  5075. tp->snd_wnd = ntohs(th->window) <<
  5076. tp->rx_opt.snd_wscale;
  5077. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  5078. if (tp->rx_opt.tstamp_ok)
  5079. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  5080. /* Make sure socket is routed, for
  5081. * correct metrics.
  5082. */
  5083. icsk->icsk_af_ops->rebuild_header(sk);
  5084. tcp_init_metrics(sk);
  5085. tcp_init_congestion_control(sk);
  5086. /* Prevent spurious tcp_cwnd_restart() on
  5087. * first data packet.
  5088. */
  5089. tp->lsndtime = tcp_time_stamp;
  5090. tcp_mtup_init(sk);
  5091. tcp_initialize_rcv_mss(sk);
  5092. tcp_init_buffer_space(sk);
  5093. tcp_fast_path_on(tp);
  5094. } else {
  5095. return 1;
  5096. }
  5097. break;
  5098. case TCP_FIN_WAIT1:
  5099. if (tp->snd_una == tp->write_seq) {
  5100. tcp_set_state(sk, TCP_FIN_WAIT2);
  5101. sk->sk_shutdown |= SEND_SHUTDOWN;
  5102. dst_confirm(__sk_dst_get(sk));
  5103. if (!sock_flag(sk, SOCK_DEAD))
  5104. /* Wake up lingering close() */
  5105. sk->sk_state_change(sk);
  5106. else {
  5107. int tmo;
  5108. if (tp->linger2 < 0 ||
  5109. (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5110. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
  5111. tcp_done(sk);
  5112. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5113. return 1;
  5114. }
  5115. tmo = tcp_fin_time(sk);
  5116. if (tmo > TCP_TIMEWAIT_LEN) {
  5117. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  5118. } else if (th->fin || sock_owned_by_user(sk)) {
  5119. /* Bad case. We could lose such FIN otherwise.
  5120. * It is not a big problem, but it looks confusing
  5121. * and not so rare event. We still can lose it now,
  5122. * if it spins in bh_lock_sock(), but it is really
  5123. * marginal case.
  5124. */
  5125. inet_csk_reset_keepalive_timer(sk, tmo);
  5126. } else {
  5127. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  5128. goto discard;
  5129. }
  5130. }
  5131. }
  5132. break;
  5133. case TCP_CLOSING:
  5134. if (tp->snd_una == tp->write_seq) {
  5135. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  5136. goto discard;
  5137. }
  5138. break;
  5139. case TCP_LAST_ACK:
  5140. if (tp->snd_una == tp->write_seq) {
  5141. tcp_update_metrics(sk);
  5142. tcp_done(sk);
  5143. goto discard;
  5144. }
  5145. break;
  5146. }
  5147. } else
  5148. goto discard;
  5149. /* step 6: check the URG bit */
  5150. tcp_urg(sk, skb, th);
  5151. /* step 7: process the segment text */
  5152. switch (sk->sk_state) {
  5153. case TCP_CLOSE_WAIT:
  5154. case TCP_CLOSING:
  5155. case TCP_LAST_ACK:
  5156. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  5157. break;
  5158. case TCP_FIN_WAIT1:
  5159. case TCP_FIN_WAIT2:
  5160. /* RFC 793 says to queue data in these states,
  5161. * RFC 1122 says we MUST send a reset.
  5162. * BSD 4.4 also does reset.
  5163. */
  5164. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5165. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5166. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5167. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5168. tcp_reset(sk);
  5169. return 1;
  5170. }
  5171. }
  5172. /* Fall through */
  5173. case TCP_ESTABLISHED:
  5174. tcp_data_queue(sk, skb);
  5175. queued = 1;
  5176. break;
  5177. }
  5178. /* tcp_data could move socket to TIME-WAIT */
  5179. if (sk->sk_state != TCP_CLOSE) {
  5180. tcp_data_snd_check(sk);
  5181. tcp_ack_snd_check(sk);
  5182. }
  5183. if (!queued) {
  5184. discard:
  5185. __kfree_skb(skb);
  5186. }
  5187. return 0;
  5188. }
  5189. EXPORT_SYMBOL(tcp_rcv_state_process);