pxa2xx_spi.c 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679
  1. /*
  2. * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17. */
  18. #include <linux/init.h>
  19. #include <linux/module.h>
  20. #include <linux/device.h>
  21. #include <linux/ioport.h>
  22. #include <linux/errno.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/spi/spi.h>
  27. #include <linux/workqueue.h>
  28. #include <linux/delay.h>
  29. #include <linux/clk.h>
  30. #include <asm/io.h>
  31. #include <asm/irq.h>
  32. #include <asm/delay.h>
  33. #include <mach/dma.h>
  34. #include <mach/regs-ssp.h>
  35. #include <mach/ssp.h>
  36. #include <mach/pxa2xx_spi.h>
  37. MODULE_AUTHOR("Stephen Street");
  38. MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  39. MODULE_LICENSE("GPL");
  40. MODULE_ALIAS("platform:pxa2xx-spi");
  41. #define MAX_BUSES 3
  42. #define RX_THRESH_DFLT 8
  43. #define TX_THRESH_DFLT 8
  44. #define TIMOUT_DFLT 1000
  45. #define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
  46. #define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK)
  47. #define IS_DMA_ALIGNED(x) ((((u32)(x)) & 0x07) == 0)
  48. #define MAX_DMA_LEN 8191
  49. /*
  50. * for testing SSCR1 changes that require SSP restart, basically
  51. * everything except the service and interrupt enables, the pxa270 developer
  52. * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  53. * list, but the PXA255 dev man says all bits without really meaning the
  54. * service and interrupt enables
  55. */
  56. #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  57. | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  58. | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  59. | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  60. | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  61. | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  62. #define DEFINE_SSP_REG(reg, off) \
  63. static inline u32 read_##reg(void const __iomem *p) \
  64. { return __raw_readl(p + (off)); } \
  65. \
  66. static inline void write_##reg(u32 v, void __iomem *p) \
  67. { __raw_writel(v, p + (off)); }
  68. DEFINE_SSP_REG(SSCR0, 0x00)
  69. DEFINE_SSP_REG(SSCR1, 0x04)
  70. DEFINE_SSP_REG(SSSR, 0x08)
  71. DEFINE_SSP_REG(SSITR, 0x0c)
  72. DEFINE_SSP_REG(SSDR, 0x10)
  73. DEFINE_SSP_REG(SSTO, 0x28)
  74. DEFINE_SSP_REG(SSPSP, 0x2c)
  75. #define START_STATE ((void*)0)
  76. #define RUNNING_STATE ((void*)1)
  77. #define DONE_STATE ((void*)2)
  78. #define ERROR_STATE ((void*)-1)
  79. #define QUEUE_RUNNING 0
  80. #define QUEUE_STOPPED 1
  81. struct driver_data {
  82. /* Driver model hookup */
  83. struct platform_device *pdev;
  84. /* SSP Info */
  85. struct ssp_device *ssp;
  86. /* SPI framework hookup */
  87. enum pxa_ssp_type ssp_type;
  88. struct spi_master *master;
  89. /* PXA hookup */
  90. struct pxa2xx_spi_master *master_info;
  91. /* DMA setup stuff */
  92. int rx_channel;
  93. int tx_channel;
  94. u32 *null_dma_buf;
  95. /* SSP register addresses */
  96. void __iomem *ioaddr;
  97. u32 ssdr_physical;
  98. /* SSP masks*/
  99. u32 dma_cr1;
  100. u32 int_cr1;
  101. u32 clear_sr;
  102. u32 mask_sr;
  103. /* Driver message queue */
  104. struct workqueue_struct *workqueue;
  105. struct work_struct pump_messages;
  106. spinlock_t lock;
  107. struct list_head queue;
  108. int busy;
  109. int run;
  110. /* Message Transfer pump */
  111. struct tasklet_struct pump_transfers;
  112. /* Current message transfer state info */
  113. struct spi_message* cur_msg;
  114. struct spi_transfer* cur_transfer;
  115. struct chip_data *cur_chip;
  116. size_t len;
  117. void *tx;
  118. void *tx_end;
  119. void *rx;
  120. void *rx_end;
  121. int dma_mapped;
  122. dma_addr_t rx_dma;
  123. dma_addr_t tx_dma;
  124. size_t rx_map_len;
  125. size_t tx_map_len;
  126. u8 n_bytes;
  127. u32 dma_width;
  128. int (*write)(struct driver_data *drv_data);
  129. int (*read)(struct driver_data *drv_data);
  130. irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
  131. void (*cs_control)(u32 command);
  132. };
  133. struct chip_data {
  134. u32 cr0;
  135. u32 cr1;
  136. u32 psp;
  137. u32 timeout;
  138. u8 n_bytes;
  139. u32 dma_width;
  140. u32 dma_burst_size;
  141. u32 threshold;
  142. u32 dma_threshold;
  143. u8 enable_dma;
  144. u8 bits_per_word;
  145. u32 speed_hz;
  146. int (*write)(struct driver_data *drv_data);
  147. int (*read)(struct driver_data *drv_data);
  148. void (*cs_control)(u32 command);
  149. };
  150. static void pump_messages(struct work_struct *work);
  151. static int flush(struct driver_data *drv_data)
  152. {
  153. unsigned long limit = loops_per_jiffy << 1;
  154. void __iomem *reg = drv_data->ioaddr;
  155. do {
  156. while (read_SSSR(reg) & SSSR_RNE) {
  157. read_SSDR(reg);
  158. }
  159. } while ((read_SSSR(reg) & SSSR_BSY) && limit--);
  160. write_SSSR(SSSR_ROR, reg);
  161. return limit;
  162. }
  163. static void null_cs_control(u32 command)
  164. {
  165. }
  166. static int null_writer(struct driver_data *drv_data)
  167. {
  168. void __iomem *reg = drv_data->ioaddr;
  169. u8 n_bytes = drv_data->n_bytes;
  170. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  171. || (drv_data->tx == drv_data->tx_end))
  172. return 0;
  173. write_SSDR(0, reg);
  174. drv_data->tx += n_bytes;
  175. return 1;
  176. }
  177. static int null_reader(struct driver_data *drv_data)
  178. {
  179. void __iomem *reg = drv_data->ioaddr;
  180. u8 n_bytes = drv_data->n_bytes;
  181. while ((read_SSSR(reg) & SSSR_RNE)
  182. && (drv_data->rx < drv_data->rx_end)) {
  183. read_SSDR(reg);
  184. drv_data->rx += n_bytes;
  185. }
  186. return drv_data->rx == drv_data->rx_end;
  187. }
  188. static int u8_writer(struct driver_data *drv_data)
  189. {
  190. void __iomem *reg = drv_data->ioaddr;
  191. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  192. || (drv_data->tx == drv_data->tx_end))
  193. return 0;
  194. write_SSDR(*(u8 *)(drv_data->tx), reg);
  195. ++drv_data->tx;
  196. return 1;
  197. }
  198. static int u8_reader(struct driver_data *drv_data)
  199. {
  200. void __iomem *reg = drv_data->ioaddr;
  201. while ((read_SSSR(reg) & SSSR_RNE)
  202. && (drv_data->rx < drv_data->rx_end)) {
  203. *(u8 *)(drv_data->rx) = read_SSDR(reg);
  204. ++drv_data->rx;
  205. }
  206. return drv_data->rx == drv_data->rx_end;
  207. }
  208. static int u16_writer(struct driver_data *drv_data)
  209. {
  210. void __iomem *reg = drv_data->ioaddr;
  211. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  212. || (drv_data->tx == drv_data->tx_end))
  213. return 0;
  214. write_SSDR(*(u16 *)(drv_data->tx), reg);
  215. drv_data->tx += 2;
  216. return 1;
  217. }
  218. static int u16_reader(struct driver_data *drv_data)
  219. {
  220. void __iomem *reg = drv_data->ioaddr;
  221. while ((read_SSSR(reg) & SSSR_RNE)
  222. && (drv_data->rx < drv_data->rx_end)) {
  223. *(u16 *)(drv_data->rx) = read_SSDR(reg);
  224. drv_data->rx += 2;
  225. }
  226. return drv_data->rx == drv_data->rx_end;
  227. }
  228. static int u32_writer(struct driver_data *drv_data)
  229. {
  230. void __iomem *reg = drv_data->ioaddr;
  231. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  232. || (drv_data->tx == drv_data->tx_end))
  233. return 0;
  234. write_SSDR(*(u32 *)(drv_data->tx), reg);
  235. drv_data->tx += 4;
  236. return 1;
  237. }
  238. static int u32_reader(struct driver_data *drv_data)
  239. {
  240. void __iomem *reg = drv_data->ioaddr;
  241. while ((read_SSSR(reg) & SSSR_RNE)
  242. && (drv_data->rx < drv_data->rx_end)) {
  243. *(u32 *)(drv_data->rx) = read_SSDR(reg);
  244. drv_data->rx += 4;
  245. }
  246. return drv_data->rx == drv_data->rx_end;
  247. }
  248. static void *next_transfer(struct driver_data *drv_data)
  249. {
  250. struct spi_message *msg = drv_data->cur_msg;
  251. struct spi_transfer *trans = drv_data->cur_transfer;
  252. /* Move to next transfer */
  253. if (trans->transfer_list.next != &msg->transfers) {
  254. drv_data->cur_transfer =
  255. list_entry(trans->transfer_list.next,
  256. struct spi_transfer,
  257. transfer_list);
  258. return RUNNING_STATE;
  259. } else
  260. return DONE_STATE;
  261. }
  262. static int map_dma_buffers(struct driver_data *drv_data)
  263. {
  264. struct spi_message *msg = drv_data->cur_msg;
  265. struct device *dev = &msg->spi->dev;
  266. if (!drv_data->cur_chip->enable_dma)
  267. return 0;
  268. if (msg->is_dma_mapped)
  269. return drv_data->rx_dma && drv_data->tx_dma;
  270. if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
  271. return 0;
  272. /* Modify setup if rx buffer is null */
  273. if (drv_data->rx == NULL) {
  274. *drv_data->null_dma_buf = 0;
  275. drv_data->rx = drv_data->null_dma_buf;
  276. drv_data->rx_map_len = 4;
  277. } else
  278. drv_data->rx_map_len = drv_data->len;
  279. /* Modify setup if tx buffer is null */
  280. if (drv_data->tx == NULL) {
  281. *drv_data->null_dma_buf = 0;
  282. drv_data->tx = drv_data->null_dma_buf;
  283. drv_data->tx_map_len = 4;
  284. } else
  285. drv_data->tx_map_len = drv_data->len;
  286. /* Stream map the tx buffer. Always do DMA_TO_DEVICE first
  287. * so we flush the cache *before* invalidating it, in case
  288. * the tx and rx buffers overlap.
  289. */
  290. drv_data->tx_dma = dma_map_single(dev, drv_data->tx,
  291. drv_data->tx_map_len, DMA_TO_DEVICE);
  292. if (dma_mapping_error(dev, drv_data->tx_dma))
  293. return 0;
  294. /* Stream map the rx buffer */
  295. drv_data->rx_dma = dma_map_single(dev, drv_data->rx,
  296. drv_data->rx_map_len, DMA_FROM_DEVICE);
  297. if (dma_mapping_error(dev, drv_data->rx_dma)) {
  298. dma_unmap_single(dev, drv_data->tx_dma,
  299. drv_data->tx_map_len, DMA_TO_DEVICE);
  300. return 0;
  301. }
  302. return 1;
  303. }
  304. static void unmap_dma_buffers(struct driver_data *drv_data)
  305. {
  306. struct device *dev;
  307. if (!drv_data->dma_mapped)
  308. return;
  309. if (!drv_data->cur_msg->is_dma_mapped) {
  310. dev = &drv_data->cur_msg->spi->dev;
  311. dma_unmap_single(dev, drv_data->rx_dma,
  312. drv_data->rx_map_len, DMA_FROM_DEVICE);
  313. dma_unmap_single(dev, drv_data->tx_dma,
  314. drv_data->tx_map_len, DMA_TO_DEVICE);
  315. }
  316. drv_data->dma_mapped = 0;
  317. }
  318. /* caller already set message->status; dma and pio irqs are blocked */
  319. static void giveback(struct driver_data *drv_data)
  320. {
  321. struct spi_transfer* last_transfer;
  322. unsigned long flags;
  323. struct spi_message *msg;
  324. spin_lock_irqsave(&drv_data->lock, flags);
  325. msg = drv_data->cur_msg;
  326. drv_data->cur_msg = NULL;
  327. drv_data->cur_transfer = NULL;
  328. drv_data->cur_chip = NULL;
  329. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  330. spin_unlock_irqrestore(&drv_data->lock, flags);
  331. last_transfer = list_entry(msg->transfers.prev,
  332. struct spi_transfer,
  333. transfer_list);
  334. /* Delay if requested before any change in chip select */
  335. if (last_transfer->delay_usecs)
  336. udelay(last_transfer->delay_usecs);
  337. /* Drop chip select UNLESS cs_change is true or we are returning
  338. * a message with an error, or next message is for another chip
  339. */
  340. if (!last_transfer->cs_change)
  341. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  342. else {
  343. struct spi_message *next_msg;
  344. /* Holding of cs was hinted, but we need to make sure
  345. * the next message is for the same chip. Don't waste
  346. * time with the following tests unless this was hinted.
  347. *
  348. * We cannot postpone this until pump_messages, because
  349. * after calling msg->complete (below) the driver that
  350. * sent the current message could be unloaded, which
  351. * could invalidate the cs_control() callback...
  352. */
  353. /* get a pointer to the next message, if any */
  354. spin_lock_irqsave(&drv_data->lock, flags);
  355. if (list_empty(&drv_data->queue))
  356. next_msg = NULL;
  357. else
  358. next_msg = list_entry(drv_data->queue.next,
  359. struct spi_message, queue);
  360. spin_unlock_irqrestore(&drv_data->lock, flags);
  361. /* see if the next and current messages point
  362. * to the same chip
  363. */
  364. if (next_msg && next_msg->spi != msg->spi)
  365. next_msg = NULL;
  366. if (!next_msg || msg->state == ERROR_STATE)
  367. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  368. }
  369. msg->state = NULL;
  370. if (msg->complete)
  371. msg->complete(msg->context);
  372. }
  373. static int wait_ssp_rx_stall(void const __iomem *ioaddr)
  374. {
  375. unsigned long limit = loops_per_jiffy << 1;
  376. while ((read_SSSR(ioaddr) & SSSR_BSY) && limit--)
  377. cpu_relax();
  378. return limit;
  379. }
  380. static int wait_dma_channel_stop(int channel)
  381. {
  382. unsigned long limit = loops_per_jiffy << 1;
  383. while (!(DCSR(channel) & DCSR_STOPSTATE) && limit--)
  384. cpu_relax();
  385. return limit;
  386. }
  387. static void dma_error_stop(struct driver_data *drv_data, const char *msg)
  388. {
  389. void __iomem *reg = drv_data->ioaddr;
  390. /* Stop and reset */
  391. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  392. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  393. write_SSSR(drv_data->clear_sr, reg);
  394. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  395. if (drv_data->ssp_type != PXA25x_SSP)
  396. write_SSTO(0, reg);
  397. flush(drv_data);
  398. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  399. unmap_dma_buffers(drv_data);
  400. dev_err(&drv_data->pdev->dev, "%s\n", msg);
  401. drv_data->cur_msg->state = ERROR_STATE;
  402. tasklet_schedule(&drv_data->pump_transfers);
  403. }
  404. static void dma_transfer_complete(struct driver_data *drv_data)
  405. {
  406. void __iomem *reg = drv_data->ioaddr;
  407. struct spi_message *msg = drv_data->cur_msg;
  408. /* Clear and disable interrupts on SSP and DMA channels*/
  409. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  410. write_SSSR(drv_data->clear_sr, reg);
  411. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  412. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  413. if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
  414. dev_err(&drv_data->pdev->dev,
  415. "dma_handler: dma rx channel stop failed\n");
  416. if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
  417. dev_err(&drv_data->pdev->dev,
  418. "dma_transfer: ssp rx stall failed\n");
  419. unmap_dma_buffers(drv_data);
  420. /* update the buffer pointer for the amount completed in dma */
  421. drv_data->rx += drv_data->len -
  422. (DCMD(drv_data->rx_channel) & DCMD_LENGTH);
  423. /* read trailing data from fifo, it does not matter how many
  424. * bytes are in the fifo just read until buffer is full
  425. * or fifo is empty, which ever occurs first */
  426. drv_data->read(drv_data);
  427. /* return count of what was actually read */
  428. msg->actual_length += drv_data->len -
  429. (drv_data->rx_end - drv_data->rx);
  430. /* Transfer delays and chip select release are
  431. * handled in pump_transfers or giveback
  432. */
  433. /* Move to next transfer */
  434. msg->state = next_transfer(drv_data);
  435. /* Schedule transfer tasklet */
  436. tasklet_schedule(&drv_data->pump_transfers);
  437. }
  438. static void dma_handler(int channel, void *data)
  439. {
  440. struct driver_data *drv_data = data;
  441. u32 irq_status = DCSR(channel) & DMA_INT_MASK;
  442. if (irq_status & DCSR_BUSERR) {
  443. if (channel == drv_data->tx_channel)
  444. dma_error_stop(drv_data,
  445. "dma_handler: "
  446. "bad bus address on tx channel");
  447. else
  448. dma_error_stop(drv_data,
  449. "dma_handler: "
  450. "bad bus address on rx channel");
  451. return;
  452. }
  453. /* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
  454. if ((channel == drv_data->tx_channel)
  455. && (irq_status & DCSR_ENDINTR)
  456. && (drv_data->ssp_type == PXA25x_SSP)) {
  457. /* Wait for rx to stall */
  458. if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
  459. dev_err(&drv_data->pdev->dev,
  460. "dma_handler: ssp rx stall failed\n");
  461. /* finish this transfer, start the next */
  462. dma_transfer_complete(drv_data);
  463. }
  464. }
  465. static irqreturn_t dma_transfer(struct driver_data *drv_data)
  466. {
  467. u32 irq_status;
  468. void __iomem *reg = drv_data->ioaddr;
  469. irq_status = read_SSSR(reg) & drv_data->mask_sr;
  470. if (irq_status & SSSR_ROR) {
  471. dma_error_stop(drv_data, "dma_transfer: fifo overrun");
  472. return IRQ_HANDLED;
  473. }
  474. /* Check for false positive timeout */
  475. if ((irq_status & SSSR_TINT)
  476. && (DCSR(drv_data->tx_channel) & DCSR_RUN)) {
  477. write_SSSR(SSSR_TINT, reg);
  478. return IRQ_HANDLED;
  479. }
  480. if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) {
  481. /* Clear and disable timeout interrupt, do the rest in
  482. * dma_transfer_complete */
  483. if (drv_data->ssp_type != PXA25x_SSP)
  484. write_SSTO(0, reg);
  485. /* finish this transfer, start the next */
  486. dma_transfer_complete(drv_data);
  487. return IRQ_HANDLED;
  488. }
  489. /* Opps problem detected */
  490. return IRQ_NONE;
  491. }
  492. static void int_error_stop(struct driver_data *drv_data, const char* msg)
  493. {
  494. void __iomem *reg = drv_data->ioaddr;
  495. /* Stop and reset SSP */
  496. write_SSSR(drv_data->clear_sr, reg);
  497. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  498. if (drv_data->ssp_type != PXA25x_SSP)
  499. write_SSTO(0, reg);
  500. flush(drv_data);
  501. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  502. dev_err(&drv_data->pdev->dev, "%s\n", msg);
  503. drv_data->cur_msg->state = ERROR_STATE;
  504. tasklet_schedule(&drv_data->pump_transfers);
  505. }
  506. static void int_transfer_complete(struct driver_data *drv_data)
  507. {
  508. void __iomem *reg = drv_data->ioaddr;
  509. /* Stop SSP */
  510. write_SSSR(drv_data->clear_sr, reg);
  511. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  512. if (drv_data->ssp_type != PXA25x_SSP)
  513. write_SSTO(0, reg);
  514. /* Update total byte transfered return count actual bytes read */
  515. drv_data->cur_msg->actual_length += drv_data->len -
  516. (drv_data->rx_end - drv_data->rx);
  517. /* Transfer delays and chip select release are
  518. * handled in pump_transfers or giveback
  519. */
  520. /* Move to next transfer */
  521. drv_data->cur_msg->state = next_transfer(drv_data);
  522. /* Schedule transfer tasklet */
  523. tasklet_schedule(&drv_data->pump_transfers);
  524. }
  525. static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
  526. {
  527. void __iomem *reg = drv_data->ioaddr;
  528. u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
  529. drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
  530. u32 irq_status = read_SSSR(reg) & irq_mask;
  531. if (irq_status & SSSR_ROR) {
  532. int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
  533. return IRQ_HANDLED;
  534. }
  535. if (irq_status & SSSR_TINT) {
  536. write_SSSR(SSSR_TINT, reg);
  537. if (drv_data->read(drv_data)) {
  538. int_transfer_complete(drv_data);
  539. return IRQ_HANDLED;
  540. }
  541. }
  542. /* Drain rx fifo, Fill tx fifo and prevent overruns */
  543. do {
  544. if (drv_data->read(drv_data)) {
  545. int_transfer_complete(drv_data);
  546. return IRQ_HANDLED;
  547. }
  548. } while (drv_data->write(drv_data));
  549. if (drv_data->read(drv_data)) {
  550. int_transfer_complete(drv_data);
  551. return IRQ_HANDLED;
  552. }
  553. if (drv_data->tx == drv_data->tx_end) {
  554. write_SSCR1(read_SSCR1(reg) & ~SSCR1_TIE, reg);
  555. /* PXA25x_SSP has no timeout, read trailing bytes */
  556. if (drv_data->ssp_type == PXA25x_SSP) {
  557. if (!wait_ssp_rx_stall(reg))
  558. {
  559. int_error_stop(drv_data, "interrupt_transfer: "
  560. "rx stall failed");
  561. return IRQ_HANDLED;
  562. }
  563. if (!drv_data->read(drv_data))
  564. {
  565. int_error_stop(drv_data,
  566. "interrupt_transfer: "
  567. "trailing byte read failed");
  568. return IRQ_HANDLED;
  569. }
  570. int_transfer_complete(drv_data);
  571. }
  572. }
  573. /* We did something */
  574. return IRQ_HANDLED;
  575. }
  576. static irqreturn_t ssp_int(int irq, void *dev_id)
  577. {
  578. struct driver_data *drv_data = dev_id;
  579. void __iomem *reg = drv_data->ioaddr;
  580. if (!drv_data->cur_msg) {
  581. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  582. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  583. if (drv_data->ssp_type != PXA25x_SSP)
  584. write_SSTO(0, reg);
  585. write_SSSR(drv_data->clear_sr, reg);
  586. dev_err(&drv_data->pdev->dev, "bad message state "
  587. "in interrupt handler\n");
  588. /* Never fail */
  589. return IRQ_HANDLED;
  590. }
  591. return drv_data->transfer_handler(drv_data);
  592. }
  593. static int set_dma_burst_and_threshold(struct chip_data *chip,
  594. struct spi_device *spi,
  595. u8 bits_per_word, u32 *burst_code,
  596. u32 *threshold)
  597. {
  598. struct pxa2xx_spi_chip *chip_info =
  599. (struct pxa2xx_spi_chip *)spi->controller_data;
  600. int bytes_per_word;
  601. int burst_bytes;
  602. int thresh_words;
  603. int req_burst_size;
  604. int retval = 0;
  605. /* Set the threshold (in registers) to equal the same amount of data
  606. * as represented by burst size (in bytes). The computation below
  607. * is (burst_size rounded up to nearest 8 byte, word or long word)
  608. * divided by (bytes/register); the tx threshold is the inverse of
  609. * the rx, so that there will always be enough data in the rx fifo
  610. * to satisfy a burst, and there will always be enough space in the
  611. * tx fifo to accept a burst (a tx burst will overwrite the fifo if
  612. * there is not enough space), there must always remain enough empty
  613. * space in the rx fifo for any data loaded to the tx fifo.
  614. * Whenever burst_size (in bytes) equals bits/word, the fifo threshold
  615. * will be 8, or half the fifo;
  616. * The threshold can only be set to 2, 4 or 8, but not 16, because
  617. * to burst 16 to the tx fifo, the fifo would have to be empty;
  618. * however, the minimum fifo trigger level is 1, and the tx will
  619. * request service when the fifo is at this level, with only 15 spaces.
  620. */
  621. /* find bytes/word */
  622. if (bits_per_word <= 8)
  623. bytes_per_word = 1;
  624. else if (bits_per_word <= 16)
  625. bytes_per_word = 2;
  626. else
  627. bytes_per_word = 4;
  628. /* use struct pxa2xx_spi_chip->dma_burst_size if available */
  629. if (chip_info)
  630. req_burst_size = chip_info->dma_burst_size;
  631. else {
  632. switch (chip->dma_burst_size) {
  633. default:
  634. /* if the default burst size is not set,
  635. * do it now */
  636. chip->dma_burst_size = DCMD_BURST8;
  637. case DCMD_BURST8:
  638. req_burst_size = 8;
  639. break;
  640. case DCMD_BURST16:
  641. req_burst_size = 16;
  642. break;
  643. case DCMD_BURST32:
  644. req_burst_size = 32;
  645. break;
  646. }
  647. }
  648. if (req_burst_size <= 8) {
  649. *burst_code = DCMD_BURST8;
  650. burst_bytes = 8;
  651. } else if (req_burst_size <= 16) {
  652. if (bytes_per_word == 1) {
  653. /* don't burst more than 1/2 the fifo */
  654. *burst_code = DCMD_BURST8;
  655. burst_bytes = 8;
  656. retval = 1;
  657. } else {
  658. *burst_code = DCMD_BURST16;
  659. burst_bytes = 16;
  660. }
  661. } else {
  662. if (bytes_per_word == 1) {
  663. /* don't burst more than 1/2 the fifo */
  664. *burst_code = DCMD_BURST8;
  665. burst_bytes = 8;
  666. retval = 1;
  667. } else if (bytes_per_word == 2) {
  668. /* don't burst more than 1/2 the fifo */
  669. *burst_code = DCMD_BURST16;
  670. burst_bytes = 16;
  671. retval = 1;
  672. } else {
  673. *burst_code = DCMD_BURST32;
  674. burst_bytes = 32;
  675. }
  676. }
  677. thresh_words = burst_bytes / bytes_per_word;
  678. /* thresh_words will be between 2 and 8 */
  679. *threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT)
  680. | (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT);
  681. return retval;
  682. }
  683. static unsigned int ssp_get_clk_div(struct ssp_device *ssp, int rate)
  684. {
  685. unsigned long ssp_clk = clk_get_rate(ssp->clk);
  686. if (ssp->type == PXA25x_SSP)
  687. return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
  688. else
  689. return ((ssp_clk / rate - 1) & 0xfff) << 8;
  690. }
  691. static void pump_transfers(unsigned long data)
  692. {
  693. struct driver_data *drv_data = (struct driver_data *)data;
  694. struct spi_message *message = NULL;
  695. struct spi_transfer *transfer = NULL;
  696. struct spi_transfer *previous = NULL;
  697. struct chip_data *chip = NULL;
  698. struct ssp_device *ssp = drv_data->ssp;
  699. void __iomem *reg = drv_data->ioaddr;
  700. u32 clk_div = 0;
  701. u8 bits = 0;
  702. u32 speed = 0;
  703. u32 cr0;
  704. u32 cr1;
  705. u32 dma_thresh = drv_data->cur_chip->dma_threshold;
  706. u32 dma_burst = drv_data->cur_chip->dma_burst_size;
  707. /* Get current state information */
  708. message = drv_data->cur_msg;
  709. transfer = drv_data->cur_transfer;
  710. chip = drv_data->cur_chip;
  711. /* Handle for abort */
  712. if (message->state == ERROR_STATE) {
  713. message->status = -EIO;
  714. giveback(drv_data);
  715. return;
  716. }
  717. /* Handle end of message */
  718. if (message->state == DONE_STATE) {
  719. message->status = 0;
  720. giveback(drv_data);
  721. return;
  722. }
  723. /* Delay if requested at end of transfer before CS change */
  724. if (message->state == RUNNING_STATE) {
  725. previous = list_entry(transfer->transfer_list.prev,
  726. struct spi_transfer,
  727. transfer_list);
  728. if (previous->delay_usecs)
  729. udelay(previous->delay_usecs);
  730. /* Drop chip select only if cs_change is requested */
  731. if (previous->cs_change)
  732. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  733. }
  734. /* Check for transfers that need multiple DMA segments */
  735. if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
  736. /* reject already-mapped transfers; PIO won't always work */
  737. if (message->is_dma_mapped
  738. || transfer->rx_dma || transfer->tx_dma) {
  739. dev_err(&drv_data->pdev->dev,
  740. "pump_transfers: mapped transfer length "
  741. "of %u is greater than %d\n",
  742. transfer->len, MAX_DMA_LEN);
  743. message->status = -EINVAL;
  744. giveback(drv_data);
  745. return;
  746. }
  747. /* warn ... we force this to PIO mode */
  748. if (printk_ratelimit())
  749. dev_warn(&message->spi->dev, "pump_transfers: "
  750. "DMA disabled for transfer length %ld "
  751. "greater than %d\n",
  752. (long)drv_data->len, MAX_DMA_LEN);
  753. }
  754. /* Setup the transfer state based on the type of transfer */
  755. if (flush(drv_data) == 0) {
  756. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  757. message->status = -EIO;
  758. giveback(drv_data);
  759. return;
  760. }
  761. drv_data->n_bytes = chip->n_bytes;
  762. drv_data->dma_width = chip->dma_width;
  763. drv_data->cs_control = chip->cs_control;
  764. drv_data->tx = (void *)transfer->tx_buf;
  765. drv_data->tx_end = drv_data->tx + transfer->len;
  766. drv_data->rx = transfer->rx_buf;
  767. drv_data->rx_end = drv_data->rx + transfer->len;
  768. drv_data->rx_dma = transfer->rx_dma;
  769. drv_data->tx_dma = transfer->tx_dma;
  770. drv_data->len = transfer->len & DCMD_LENGTH;
  771. drv_data->write = drv_data->tx ? chip->write : null_writer;
  772. drv_data->read = drv_data->rx ? chip->read : null_reader;
  773. /* Change speed and bit per word on a per transfer */
  774. cr0 = chip->cr0;
  775. if (transfer->speed_hz || transfer->bits_per_word) {
  776. bits = chip->bits_per_word;
  777. speed = chip->speed_hz;
  778. if (transfer->speed_hz)
  779. speed = transfer->speed_hz;
  780. if (transfer->bits_per_word)
  781. bits = transfer->bits_per_word;
  782. clk_div = ssp_get_clk_div(ssp, speed);
  783. if (bits <= 8) {
  784. drv_data->n_bytes = 1;
  785. drv_data->dma_width = DCMD_WIDTH1;
  786. drv_data->read = drv_data->read != null_reader ?
  787. u8_reader : null_reader;
  788. drv_data->write = drv_data->write != null_writer ?
  789. u8_writer : null_writer;
  790. } else if (bits <= 16) {
  791. drv_data->n_bytes = 2;
  792. drv_data->dma_width = DCMD_WIDTH2;
  793. drv_data->read = drv_data->read != null_reader ?
  794. u16_reader : null_reader;
  795. drv_data->write = drv_data->write != null_writer ?
  796. u16_writer : null_writer;
  797. } else if (bits <= 32) {
  798. drv_data->n_bytes = 4;
  799. drv_data->dma_width = DCMD_WIDTH4;
  800. drv_data->read = drv_data->read != null_reader ?
  801. u32_reader : null_reader;
  802. drv_data->write = drv_data->write != null_writer ?
  803. u32_writer : null_writer;
  804. }
  805. /* if bits/word is changed in dma mode, then must check the
  806. * thresholds and burst also */
  807. if (chip->enable_dma) {
  808. if (set_dma_burst_and_threshold(chip, message->spi,
  809. bits, &dma_burst,
  810. &dma_thresh))
  811. if (printk_ratelimit())
  812. dev_warn(&message->spi->dev,
  813. "pump_transfers: "
  814. "DMA burst size reduced to "
  815. "match bits_per_word\n");
  816. }
  817. cr0 = clk_div
  818. | SSCR0_Motorola
  819. | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
  820. | SSCR0_SSE
  821. | (bits > 16 ? SSCR0_EDSS : 0);
  822. }
  823. message->state = RUNNING_STATE;
  824. /* Try to map dma buffer and do a dma transfer if successful, but
  825. * only if the length is non-zero and less than MAX_DMA_LEN.
  826. *
  827. * Zero-length non-descriptor DMA is illegal on PXA2xx; force use
  828. * of PIO instead. Care is needed above because the transfer may
  829. * have have been passed with buffers that are already dma mapped.
  830. * A zero-length transfer in PIO mode will not try to write/read
  831. * to/from the buffers
  832. *
  833. * REVISIT large transfers are exactly where we most want to be
  834. * using DMA. If this happens much, split those transfers into
  835. * multiple DMA segments rather than forcing PIO.
  836. */
  837. drv_data->dma_mapped = 0;
  838. if (drv_data->len > 0 && drv_data->len <= MAX_DMA_LEN)
  839. drv_data->dma_mapped = map_dma_buffers(drv_data);
  840. if (drv_data->dma_mapped) {
  841. /* Ensure we have the correct interrupt handler */
  842. drv_data->transfer_handler = dma_transfer;
  843. /* Setup rx DMA Channel */
  844. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  845. DSADR(drv_data->rx_channel) = drv_data->ssdr_physical;
  846. DTADR(drv_data->rx_channel) = drv_data->rx_dma;
  847. if (drv_data->rx == drv_data->null_dma_buf)
  848. /* No target address increment */
  849. DCMD(drv_data->rx_channel) = DCMD_FLOWSRC
  850. | drv_data->dma_width
  851. | dma_burst
  852. | drv_data->len;
  853. else
  854. DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR
  855. | DCMD_FLOWSRC
  856. | drv_data->dma_width
  857. | dma_burst
  858. | drv_data->len;
  859. /* Setup tx DMA Channel */
  860. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  861. DSADR(drv_data->tx_channel) = drv_data->tx_dma;
  862. DTADR(drv_data->tx_channel) = drv_data->ssdr_physical;
  863. if (drv_data->tx == drv_data->null_dma_buf)
  864. /* No source address increment */
  865. DCMD(drv_data->tx_channel) = DCMD_FLOWTRG
  866. | drv_data->dma_width
  867. | dma_burst
  868. | drv_data->len;
  869. else
  870. DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR
  871. | DCMD_FLOWTRG
  872. | drv_data->dma_width
  873. | dma_burst
  874. | drv_data->len;
  875. /* Enable dma end irqs on SSP to detect end of transfer */
  876. if (drv_data->ssp_type == PXA25x_SSP)
  877. DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN;
  878. /* Clear status and start DMA engine */
  879. cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
  880. write_SSSR(drv_data->clear_sr, reg);
  881. DCSR(drv_data->rx_channel) |= DCSR_RUN;
  882. DCSR(drv_data->tx_channel) |= DCSR_RUN;
  883. } else {
  884. /* Ensure we have the correct interrupt handler */
  885. drv_data->transfer_handler = interrupt_transfer;
  886. /* Clear status */
  887. cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
  888. write_SSSR(drv_data->clear_sr, reg);
  889. }
  890. /* see if we need to reload the config registers */
  891. if ((read_SSCR0(reg) != cr0)
  892. || (read_SSCR1(reg) & SSCR1_CHANGE_MASK) !=
  893. (cr1 & SSCR1_CHANGE_MASK)) {
  894. /* stop the SSP, and update the other bits */
  895. write_SSCR0(cr0 & ~SSCR0_SSE, reg);
  896. if (drv_data->ssp_type != PXA25x_SSP)
  897. write_SSTO(chip->timeout, reg);
  898. /* first set CR1 without interrupt and service enables */
  899. write_SSCR1(cr1 & SSCR1_CHANGE_MASK, reg);
  900. /* restart the SSP */
  901. write_SSCR0(cr0, reg);
  902. } else {
  903. if (drv_data->ssp_type != PXA25x_SSP)
  904. write_SSTO(chip->timeout, reg);
  905. }
  906. /* FIXME, need to handle cs polarity,
  907. * this driver uses struct pxa2xx_spi_chip.cs_control to
  908. * specify a CS handling function, and it ignores most
  909. * struct spi_device.mode[s], including SPI_CS_HIGH */
  910. drv_data->cs_control(PXA2XX_CS_ASSERT);
  911. /* after chip select, release the data by enabling service
  912. * requests and interrupts, without changing any mode bits */
  913. write_SSCR1(cr1, reg);
  914. }
  915. static void pump_messages(struct work_struct *work)
  916. {
  917. struct driver_data *drv_data =
  918. container_of(work, struct driver_data, pump_messages);
  919. unsigned long flags;
  920. /* Lock queue and check for queue work */
  921. spin_lock_irqsave(&drv_data->lock, flags);
  922. if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
  923. drv_data->busy = 0;
  924. spin_unlock_irqrestore(&drv_data->lock, flags);
  925. return;
  926. }
  927. /* Make sure we are not already running a message */
  928. if (drv_data->cur_msg) {
  929. spin_unlock_irqrestore(&drv_data->lock, flags);
  930. return;
  931. }
  932. /* Extract head of queue */
  933. drv_data->cur_msg = list_entry(drv_data->queue.next,
  934. struct spi_message, queue);
  935. list_del_init(&drv_data->cur_msg->queue);
  936. /* Initial message state*/
  937. drv_data->cur_msg->state = START_STATE;
  938. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  939. struct spi_transfer,
  940. transfer_list);
  941. /* prepare to setup the SSP, in pump_transfers, using the per
  942. * chip configuration */
  943. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  944. /* Mark as busy and launch transfers */
  945. tasklet_schedule(&drv_data->pump_transfers);
  946. drv_data->busy = 1;
  947. spin_unlock_irqrestore(&drv_data->lock, flags);
  948. }
  949. static int transfer(struct spi_device *spi, struct spi_message *msg)
  950. {
  951. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  952. unsigned long flags;
  953. spin_lock_irqsave(&drv_data->lock, flags);
  954. if (drv_data->run == QUEUE_STOPPED) {
  955. spin_unlock_irqrestore(&drv_data->lock, flags);
  956. return -ESHUTDOWN;
  957. }
  958. msg->actual_length = 0;
  959. msg->status = -EINPROGRESS;
  960. msg->state = START_STATE;
  961. list_add_tail(&msg->queue, &drv_data->queue);
  962. if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
  963. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  964. spin_unlock_irqrestore(&drv_data->lock, flags);
  965. return 0;
  966. }
  967. /* the spi->mode bits understood by this driver: */
  968. #define MODEBITS (SPI_CPOL | SPI_CPHA)
  969. static int setup(struct spi_device *spi)
  970. {
  971. struct pxa2xx_spi_chip *chip_info = NULL;
  972. struct chip_data *chip;
  973. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  974. struct ssp_device *ssp = drv_data->ssp;
  975. unsigned int clk_div;
  976. uint tx_thres = TX_THRESH_DFLT;
  977. uint rx_thres = RX_THRESH_DFLT;
  978. if (!spi->bits_per_word)
  979. spi->bits_per_word = 8;
  980. if (drv_data->ssp_type != PXA25x_SSP
  981. && (spi->bits_per_word < 4 || spi->bits_per_word > 32)) {
  982. dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
  983. "b/w not 4-32 for type non-PXA25x_SSP\n",
  984. drv_data->ssp_type, spi->bits_per_word);
  985. return -EINVAL;
  986. }
  987. else if (drv_data->ssp_type == PXA25x_SSP
  988. && (spi->bits_per_word < 4
  989. || spi->bits_per_word > 16)) {
  990. dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
  991. "b/w not 4-16 for type PXA25x_SSP\n",
  992. drv_data->ssp_type, spi->bits_per_word);
  993. return -EINVAL;
  994. }
  995. if (spi->mode & ~MODEBITS) {
  996. dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n",
  997. spi->mode & ~MODEBITS);
  998. return -EINVAL;
  999. }
  1000. /* Only alloc on first setup */
  1001. chip = spi_get_ctldata(spi);
  1002. if (!chip) {
  1003. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  1004. if (!chip) {
  1005. dev_err(&spi->dev,
  1006. "failed setup: can't allocate chip data\n");
  1007. return -ENOMEM;
  1008. }
  1009. chip->cs_control = null_cs_control;
  1010. chip->enable_dma = 0;
  1011. chip->timeout = TIMOUT_DFLT;
  1012. chip->dma_burst_size = drv_data->master_info->enable_dma ?
  1013. DCMD_BURST8 : 0;
  1014. }
  1015. /* protocol drivers may change the chip settings, so...
  1016. * if chip_info exists, use it */
  1017. chip_info = spi->controller_data;
  1018. /* chip_info isn't always needed */
  1019. chip->cr1 = 0;
  1020. if (chip_info) {
  1021. if (chip_info->cs_control)
  1022. chip->cs_control = chip_info->cs_control;
  1023. if (chip_info->timeout)
  1024. chip->timeout = chip_info->timeout;
  1025. if (chip_info->tx_threshold)
  1026. tx_thres = chip_info->tx_threshold;
  1027. if (chip_info->rx_threshold)
  1028. rx_thres = chip_info->rx_threshold;
  1029. chip->enable_dma = drv_data->master_info->enable_dma;
  1030. chip->dma_threshold = 0;
  1031. if (chip_info->enable_loopback)
  1032. chip->cr1 = SSCR1_LBM;
  1033. }
  1034. chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
  1035. (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
  1036. /* set dma burst and threshold outside of chip_info path so that if
  1037. * chip_info goes away after setting chip->enable_dma, the
  1038. * burst and threshold can still respond to changes in bits_per_word */
  1039. if (chip->enable_dma) {
  1040. /* set up legal burst and threshold for dma */
  1041. if (set_dma_burst_and_threshold(chip, spi, spi->bits_per_word,
  1042. &chip->dma_burst_size,
  1043. &chip->dma_threshold)) {
  1044. dev_warn(&spi->dev, "in setup: DMA burst size reduced "
  1045. "to match bits_per_word\n");
  1046. }
  1047. }
  1048. clk_div = ssp_get_clk_div(ssp, spi->max_speed_hz);
  1049. chip->speed_hz = spi->max_speed_hz;
  1050. chip->cr0 = clk_div
  1051. | SSCR0_Motorola
  1052. | SSCR0_DataSize(spi->bits_per_word > 16 ?
  1053. spi->bits_per_word - 16 : spi->bits_per_word)
  1054. | SSCR0_SSE
  1055. | (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
  1056. chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
  1057. chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
  1058. | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
  1059. /* NOTE: PXA25x_SSP _could_ use external clocking ... */
  1060. if (drv_data->ssp_type != PXA25x_SSP)
  1061. dev_dbg(&spi->dev, "%d bits/word, %ld Hz, mode %d, %s\n",
  1062. spi->bits_per_word,
  1063. clk_get_rate(ssp->clk)
  1064. / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
  1065. spi->mode & 0x3,
  1066. chip->enable_dma ? "DMA" : "PIO");
  1067. else
  1068. dev_dbg(&spi->dev, "%d bits/word, %ld Hz, mode %d, %s\n",
  1069. spi->bits_per_word,
  1070. clk_get_rate(ssp->clk) / 2
  1071. / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
  1072. spi->mode & 0x3,
  1073. chip->enable_dma ? "DMA" : "PIO");
  1074. if (spi->bits_per_word <= 8) {
  1075. chip->n_bytes = 1;
  1076. chip->dma_width = DCMD_WIDTH1;
  1077. chip->read = u8_reader;
  1078. chip->write = u8_writer;
  1079. } else if (spi->bits_per_word <= 16) {
  1080. chip->n_bytes = 2;
  1081. chip->dma_width = DCMD_WIDTH2;
  1082. chip->read = u16_reader;
  1083. chip->write = u16_writer;
  1084. } else if (spi->bits_per_word <= 32) {
  1085. chip->cr0 |= SSCR0_EDSS;
  1086. chip->n_bytes = 4;
  1087. chip->dma_width = DCMD_WIDTH4;
  1088. chip->read = u32_reader;
  1089. chip->write = u32_writer;
  1090. } else {
  1091. dev_err(&spi->dev, "invalid wordsize\n");
  1092. return -ENODEV;
  1093. }
  1094. chip->bits_per_word = spi->bits_per_word;
  1095. spi_set_ctldata(spi, chip);
  1096. return 0;
  1097. }
  1098. static void cleanup(struct spi_device *spi)
  1099. {
  1100. struct chip_data *chip = spi_get_ctldata(spi);
  1101. kfree(chip);
  1102. }
  1103. static int __init init_queue(struct driver_data *drv_data)
  1104. {
  1105. INIT_LIST_HEAD(&drv_data->queue);
  1106. spin_lock_init(&drv_data->lock);
  1107. drv_data->run = QUEUE_STOPPED;
  1108. drv_data->busy = 0;
  1109. tasklet_init(&drv_data->pump_transfers,
  1110. pump_transfers, (unsigned long)drv_data);
  1111. INIT_WORK(&drv_data->pump_messages, pump_messages);
  1112. drv_data->workqueue = create_singlethread_workqueue(
  1113. dev_name(drv_data->master->dev.parent));
  1114. if (drv_data->workqueue == NULL)
  1115. return -EBUSY;
  1116. return 0;
  1117. }
  1118. static int start_queue(struct driver_data *drv_data)
  1119. {
  1120. unsigned long flags;
  1121. spin_lock_irqsave(&drv_data->lock, flags);
  1122. if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
  1123. spin_unlock_irqrestore(&drv_data->lock, flags);
  1124. return -EBUSY;
  1125. }
  1126. drv_data->run = QUEUE_RUNNING;
  1127. drv_data->cur_msg = NULL;
  1128. drv_data->cur_transfer = NULL;
  1129. drv_data->cur_chip = NULL;
  1130. spin_unlock_irqrestore(&drv_data->lock, flags);
  1131. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  1132. return 0;
  1133. }
  1134. static int stop_queue(struct driver_data *drv_data)
  1135. {
  1136. unsigned long flags;
  1137. unsigned limit = 500;
  1138. int status = 0;
  1139. spin_lock_irqsave(&drv_data->lock, flags);
  1140. /* This is a bit lame, but is optimized for the common execution path.
  1141. * A wait_queue on the drv_data->busy could be used, but then the common
  1142. * execution path (pump_messages) would be required to call wake_up or
  1143. * friends on every SPI message. Do this instead */
  1144. drv_data->run = QUEUE_STOPPED;
  1145. while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
  1146. spin_unlock_irqrestore(&drv_data->lock, flags);
  1147. msleep(10);
  1148. spin_lock_irqsave(&drv_data->lock, flags);
  1149. }
  1150. if (!list_empty(&drv_data->queue) || drv_data->busy)
  1151. status = -EBUSY;
  1152. spin_unlock_irqrestore(&drv_data->lock, flags);
  1153. return status;
  1154. }
  1155. static int destroy_queue(struct driver_data *drv_data)
  1156. {
  1157. int status;
  1158. status = stop_queue(drv_data);
  1159. /* we are unloading the module or failing to load (only two calls
  1160. * to this routine), and neither call can handle a return value.
  1161. * However, destroy_workqueue calls flush_workqueue, and that will
  1162. * block until all work is done. If the reason that stop_queue
  1163. * timed out is that the work will never finish, then it does no
  1164. * good to call destroy_workqueue, so return anyway. */
  1165. if (status != 0)
  1166. return status;
  1167. destroy_workqueue(drv_data->workqueue);
  1168. return 0;
  1169. }
  1170. static int __init pxa2xx_spi_probe(struct platform_device *pdev)
  1171. {
  1172. struct device *dev = &pdev->dev;
  1173. struct pxa2xx_spi_master *platform_info;
  1174. struct spi_master *master;
  1175. struct driver_data *drv_data;
  1176. struct ssp_device *ssp;
  1177. int status;
  1178. platform_info = dev->platform_data;
  1179. ssp = ssp_request(pdev->id, pdev->name);
  1180. if (ssp == NULL) {
  1181. dev_err(&pdev->dev, "failed to request SSP%d\n", pdev->id);
  1182. return -ENODEV;
  1183. }
  1184. /* Allocate master with space for drv_data and null dma buffer */
  1185. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  1186. if (!master) {
  1187. dev_err(&pdev->dev, "cannot alloc spi_master\n");
  1188. ssp_free(ssp);
  1189. return -ENOMEM;
  1190. }
  1191. drv_data = spi_master_get_devdata(master);
  1192. drv_data->master = master;
  1193. drv_data->master_info = platform_info;
  1194. drv_data->pdev = pdev;
  1195. drv_data->ssp = ssp;
  1196. master->bus_num = pdev->id;
  1197. master->num_chipselect = platform_info->num_chipselect;
  1198. master->cleanup = cleanup;
  1199. master->setup = setup;
  1200. master->transfer = transfer;
  1201. drv_data->ssp_type = ssp->type;
  1202. drv_data->null_dma_buf = (u32 *)ALIGN((u32)(drv_data +
  1203. sizeof(struct driver_data)), 8);
  1204. drv_data->ioaddr = ssp->mmio_base;
  1205. drv_data->ssdr_physical = ssp->phys_base + SSDR;
  1206. if (ssp->type == PXA25x_SSP) {
  1207. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
  1208. drv_data->dma_cr1 = 0;
  1209. drv_data->clear_sr = SSSR_ROR;
  1210. drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
  1211. } else {
  1212. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
  1213. drv_data->dma_cr1 = SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE;
  1214. drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
  1215. drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
  1216. }
  1217. status = request_irq(ssp->irq, ssp_int, 0, dev_name(dev), drv_data);
  1218. if (status < 0) {
  1219. dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
  1220. goto out_error_master_alloc;
  1221. }
  1222. /* Setup DMA if requested */
  1223. drv_data->tx_channel = -1;
  1224. drv_data->rx_channel = -1;
  1225. if (platform_info->enable_dma) {
  1226. /* Get two DMA channels (rx and tx) */
  1227. drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx",
  1228. DMA_PRIO_HIGH,
  1229. dma_handler,
  1230. drv_data);
  1231. if (drv_data->rx_channel < 0) {
  1232. dev_err(dev, "problem (%d) requesting rx channel\n",
  1233. drv_data->rx_channel);
  1234. status = -ENODEV;
  1235. goto out_error_irq_alloc;
  1236. }
  1237. drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx",
  1238. DMA_PRIO_MEDIUM,
  1239. dma_handler,
  1240. drv_data);
  1241. if (drv_data->tx_channel < 0) {
  1242. dev_err(dev, "problem (%d) requesting tx channel\n",
  1243. drv_data->tx_channel);
  1244. status = -ENODEV;
  1245. goto out_error_dma_alloc;
  1246. }
  1247. DRCMR(ssp->drcmr_rx) = DRCMR_MAPVLD | drv_data->rx_channel;
  1248. DRCMR(ssp->drcmr_tx) = DRCMR_MAPVLD | drv_data->tx_channel;
  1249. }
  1250. /* Enable SOC clock */
  1251. clk_enable(ssp->clk);
  1252. /* Load default SSP configuration */
  1253. write_SSCR0(0, drv_data->ioaddr);
  1254. write_SSCR1(SSCR1_RxTresh(RX_THRESH_DFLT) |
  1255. SSCR1_TxTresh(TX_THRESH_DFLT),
  1256. drv_data->ioaddr);
  1257. write_SSCR0(SSCR0_SerClkDiv(2)
  1258. | SSCR0_Motorola
  1259. | SSCR0_DataSize(8),
  1260. drv_data->ioaddr);
  1261. if (drv_data->ssp_type != PXA25x_SSP)
  1262. write_SSTO(0, drv_data->ioaddr);
  1263. write_SSPSP(0, drv_data->ioaddr);
  1264. /* Initial and start queue */
  1265. status = init_queue(drv_data);
  1266. if (status != 0) {
  1267. dev_err(&pdev->dev, "problem initializing queue\n");
  1268. goto out_error_clock_enabled;
  1269. }
  1270. status = start_queue(drv_data);
  1271. if (status != 0) {
  1272. dev_err(&pdev->dev, "problem starting queue\n");
  1273. goto out_error_clock_enabled;
  1274. }
  1275. /* Register with the SPI framework */
  1276. platform_set_drvdata(pdev, drv_data);
  1277. status = spi_register_master(master);
  1278. if (status != 0) {
  1279. dev_err(&pdev->dev, "problem registering spi master\n");
  1280. goto out_error_queue_alloc;
  1281. }
  1282. return status;
  1283. out_error_queue_alloc:
  1284. destroy_queue(drv_data);
  1285. out_error_clock_enabled:
  1286. clk_disable(ssp->clk);
  1287. out_error_dma_alloc:
  1288. if (drv_data->tx_channel != -1)
  1289. pxa_free_dma(drv_data->tx_channel);
  1290. if (drv_data->rx_channel != -1)
  1291. pxa_free_dma(drv_data->rx_channel);
  1292. out_error_irq_alloc:
  1293. free_irq(ssp->irq, drv_data);
  1294. out_error_master_alloc:
  1295. spi_master_put(master);
  1296. ssp_free(ssp);
  1297. return status;
  1298. }
  1299. static int pxa2xx_spi_remove(struct platform_device *pdev)
  1300. {
  1301. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1302. struct ssp_device *ssp;
  1303. int status = 0;
  1304. if (!drv_data)
  1305. return 0;
  1306. ssp = drv_data->ssp;
  1307. /* Remove the queue */
  1308. status = destroy_queue(drv_data);
  1309. if (status != 0)
  1310. /* the kernel does not check the return status of this
  1311. * this routine (mod->exit, within the kernel). Therefore
  1312. * nothing is gained by returning from here, the module is
  1313. * going away regardless, and we should not leave any more
  1314. * resources allocated than necessary. We cannot free the
  1315. * message memory in drv_data->queue, but we can release the
  1316. * resources below. I think the kernel should honor -EBUSY
  1317. * returns but... */
  1318. dev_err(&pdev->dev, "pxa2xx_spi_remove: workqueue will not "
  1319. "complete, message memory not freed\n");
  1320. /* Disable the SSP at the peripheral and SOC level */
  1321. write_SSCR0(0, drv_data->ioaddr);
  1322. clk_disable(ssp->clk);
  1323. /* Release DMA */
  1324. if (drv_data->master_info->enable_dma) {
  1325. DRCMR(ssp->drcmr_rx) = 0;
  1326. DRCMR(ssp->drcmr_tx) = 0;
  1327. pxa_free_dma(drv_data->tx_channel);
  1328. pxa_free_dma(drv_data->rx_channel);
  1329. }
  1330. /* Release IRQ */
  1331. free_irq(ssp->irq, drv_data);
  1332. /* Release SSP */
  1333. ssp_free(ssp);
  1334. /* Disconnect from the SPI framework */
  1335. spi_unregister_master(drv_data->master);
  1336. /* Prevent double remove */
  1337. platform_set_drvdata(pdev, NULL);
  1338. return 0;
  1339. }
  1340. static void pxa2xx_spi_shutdown(struct platform_device *pdev)
  1341. {
  1342. int status = 0;
  1343. if ((status = pxa2xx_spi_remove(pdev)) != 0)
  1344. dev_err(&pdev->dev, "shutdown failed with %d\n", status);
  1345. }
  1346. #ifdef CONFIG_PM
  1347. static int pxa2xx_spi_suspend(struct platform_device *pdev, pm_message_t state)
  1348. {
  1349. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1350. struct ssp_device *ssp = drv_data->ssp;
  1351. int status = 0;
  1352. status = stop_queue(drv_data);
  1353. if (status != 0)
  1354. return status;
  1355. write_SSCR0(0, drv_data->ioaddr);
  1356. clk_disable(ssp->clk);
  1357. return 0;
  1358. }
  1359. static int pxa2xx_spi_resume(struct platform_device *pdev)
  1360. {
  1361. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1362. struct ssp_device *ssp = drv_data->ssp;
  1363. int status = 0;
  1364. /* Enable the SSP clock */
  1365. clk_enable(ssp->clk);
  1366. /* Start the queue running */
  1367. status = start_queue(drv_data);
  1368. if (status != 0) {
  1369. dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
  1370. return status;
  1371. }
  1372. return 0;
  1373. }
  1374. #else
  1375. #define pxa2xx_spi_suspend NULL
  1376. #define pxa2xx_spi_resume NULL
  1377. #endif /* CONFIG_PM */
  1378. static struct platform_driver driver = {
  1379. .driver = {
  1380. .name = "pxa2xx-spi",
  1381. .owner = THIS_MODULE,
  1382. },
  1383. .remove = pxa2xx_spi_remove,
  1384. .shutdown = pxa2xx_spi_shutdown,
  1385. .suspend = pxa2xx_spi_suspend,
  1386. .resume = pxa2xx_spi_resume,
  1387. };
  1388. static int __init pxa2xx_spi_init(void)
  1389. {
  1390. return platform_driver_probe(&driver, pxa2xx_spi_probe);
  1391. }
  1392. module_init(pxa2xx_spi_init);
  1393. static void __exit pxa2xx_spi_exit(void)
  1394. {
  1395. platform_driver_unregister(&driver);
  1396. }
  1397. module_exit(pxa2xx_spi_exit);