sched.c 165 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. */
  26. #include <linux/mm.h>
  27. #include <linux/module.h>
  28. #include <linux/nmi.h>
  29. #include <linux/init.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/highmem.h>
  32. #include <linux/smp_lock.h>
  33. #include <asm/mmu_context.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/capability.h>
  36. #include <linux/completion.h>
  37. #include <linux/kernel_stat.h>
  38. #include <linux/debug_locks.h>
  39. #include <linux/security.h>
  40. #include <linux/notifier.h>
  41. #include <linux/profile.h>
  42. #include <linux/freezer.h>
  43. #include <linux/vmalloc.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/delay.h>
  46. #include <linux/smp.h>
  47. #include <linux/threads.h>
  48. #include <linux/timer.h>
  49. #include <linux/rcupdate.h>
  50. #include <linux/cpu.h>
  51. #include <linux/cpuset.h>
  52. #include <linux/percpu.h>
  53. #include <linux/kthread.h>
  54. #include <linux/seq_file.h>
  55. #include <linux/sysctl.h>
  56. #include <linux/syscalls.h>
  57. #include <linux/times.h>
  58. #include <linux/tsacct_kern.h>
  59. #include <linux/kprobes.h>
  60. #include <linux/delayacct.h>
  61. #include <linux/reciprocal_div.h>
  62. #include <linux/unistd.h>
  63. #include <asm/tlb.h>
  64. /*
  65. * Scheduler clock - returns current time in nanosec units.
  66. * This is default implementation.
  67. * Architectures and sub-architectures can override this.
  68. */
  69. unsigned long long __attribute__((weak)) sched_clock(void)
  70. {
  71. return (unsigned long long)jiffies * (1000000000 / HZ);
  72. }
  73. /*
  74. * Convert user-nice values [ -20 ... 0 ... 19 ]
  75. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  76. * and back.
  77. */
  78. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  79. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  80. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  81. /*
  82. * 'User priority' is the nice value converted to something we
  83. * can work with better when scaling various scheduler parameters,
  84. * it's a [ 0 ... 39 ] range.
  85. */
  86. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  87. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  88. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  89. /*
  90. * Some helpers for converting nanosecond timing to jiffy resolution
  91. */
  92. #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
  93. #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
  94. #define NICE_0_LOAD SCHED_LOAD_SCALE
  95. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  96. /*
  97. * These are the 'tuning knobs' of the scheduler:
  98. *
  99. * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
  100. * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  101. * Timeslices get refilled after they expire.
  102. */
  103. #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
  104. #define DEF_TIMESLICE (100 * HZ / 1000)
  105. #ifdef CONFIG_SMP
  106. /*
  107. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  108. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  109. */
  110. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  111. {
  112. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  113. }
  114. /*
  115. * Each time a sched group cpu_power is changed,
  116. * we must compute its reciprocal value
  117. */
  118. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  119. {
  120. sg->__cpu_power += val;
  121. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  122. }
  123. #endif
  124. #define SCALE_PRIO(x, prio) \
  125. max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
  126. /*
  127. * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
  128. * to time slice values: [800ms ... 100ms ... 5ms]
  129. */
  130. static unsigned int static_prio_timeslice(int static_prio)
  131. {
  132. if (static_prio == NICE_TO_PRIO(19))
  133. return 1;
  134. if (static_prio < NICE_TO_PRIO(0))
  135. return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
  136. else
  137. return SCALE_PRIO(DEF_TIMESLICE, static_prio);
  138. }
  139. static inline int rt_policy(int policy)
  140. {
  141. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  142. return 1;
  143. return 0;
  144. }
  145. static inline int task_has_rt_policy(struct task_struct *p)
  146. {
  147. return rt_policy(p->policy);
  148. }
  149. /*
  150. * This is the priority-queue data structure of the RT scheduling class:
  151. */
  152. struct rt_prio_array {
  153. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  154. struct list_head queue[MAX_RT_PRIO];
  155. };
  156. struct load_stat {
  157. struct load_weight load;
  158. u64 load_update_start, load_update_last;
  159. unsigned long delta_fair, delta_exec, delta_stat;
  160. };
  161. /* CFS-related fields in a runqueue */
  162. struct cfs_rq {
  163. struct load_weight load;
  164. unsigned long nr_running;
  165. s64 fair_clock;
  166. u64 exec_clock;
  167. s64 wait_runtime;
  168. u64 sleeper_bonus;
  169. unsigned long wait_runtime_overruns, wait_runtime_underruns;
  170. struct rb_root tasks_timeline;
  171. struct rb_node *rb_leftmost;
  172. struct rb_node *rb_load_balance_curr;
  173. #ifdef CONFIG_FAIR_GROUP_SCHED
  174. /* 'curr' points to currently running entity on this cfs_rq.
  175. * It is set to NULL otherwise (i.e when none are currently running).
  176. */
  177. struct sched_entity *curr;
  178. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  179. /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  180. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  181. * (like users, containers etc.)
  182. *
  183. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  184. * list is used during load balance.
  185. */
  186. struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
  187. #endif
  188. };
  189. /* Real-Time classes' related field in a runqueue: */
  190. struct rt_rq {
  191. struct rt_prio_array active;
  192. int rt_load_balance_idx;
  193. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  194. };
  195. /*
  196. * This is the main, per-CPU runqueue data structure.
  197. *
  198. * Locking rule: those places that want to lock multiple runqueues
  199. * (such as the load balancing or the thread migration code), lock
  200. * acquire operations must be ordered by ascending &runqueue.
  201. */
  202. struct rq {
  203. spinlock_t lock; /* runqueue lock */
  204. /*
  205. * nr_running and cpu_load should be in the same cacheline because
  206. * remote CPUs use both these fields when doing load calculation.
  207. */
  208. unsigned long nr_running;
  209. #define CPU_LOAD_IDX_MAX 5
  210. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  211. unsigned char idle_at_tick;
  212. #ifdef CONFIG_NO_HZ
  213. unsigned char in_nohz_recently;
  214. #endif
  215. struct load_stat ls; /* capture load from *all* tasks on this cpu */
  216. unsigned long nr_load_updates;
  217. u64 nr_switches;
  218. struct cfs_rq cfs;
  219. #ifdef CONFIG_FAIR_GROUP_SCHED
  220. struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
  221. #endif
  222. struct rt_rq rt;
  223. /*
  224. * This is part of a global counter where only the total sum
  225. * over all CPUs matters. A task can increase this counter on
  226. * one CPU and if it got migrated afterwards it may decrease
  227. * it on another CPU. Always updated under the runqueue lock:
  228. */
  229. unsigned long nr_uninterruptible;
  230. struct task_struct *curr, *idle;
  231. unsigned long next_balance;
  232. struct mm_struct *prev_mm;
  233. u64 clock, prev_clock_raw;
  234. s64 clock_max_delta;
  235. unsigned int clock_warps, clock_overflows;
  236. unsigned int clock_unstable_events;
  237. atomic_t nr_iowait;
  238. #ifdef CONFIG_SMP
  239. struct sched_domain *sd;
  240. /* For active balancing */
  241. int active_balance;
  242. int push_cpu;
  243. int cpu; /* cpu of this runqueue */
  244. struct task_struct *migration_thread;
  245. struct list_head migration_queue;
  246. #endif
  247. #ifdef CONFIG_SCHEDSTATS
  248. /* latency stats */
  249. struct sched_info rq_sched_info;
  250. /* sys_sched_yield() stats */
  251. unsigned long yld_exp_empty;
  252. unsigned long yld_act_empty;
  253. unsigned long yld_both_empty;
  254. unsigned long yld_cnt;
  255. /* schedule() stats */
  256. unsigned long sched_switch;
  257. unsigned long sched_cnt;
  258. unsigned long sched_goidle;
  259. /* try_to_wake_up() stats */
  260. unsigned long ttwu_cnt;
  261. unsigned long ttwu_local;
  262. #endif
  263. struct lock_class_key rq_lock_key;
  264. };
  265. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  266. static DEFINE_MUTEX(sched_hotcpu_mutex);
  267. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  268. {
  269. rq->curr->sched_class->check_preempt_curr(rq, p);
  270. }
  271. static inline int cpu_of(struct rq *rq)
  272. {
  273. #ifdef CONFIG_SMP
  274. return rq->cpu;
  275. #else
  276. return 0;
  277. #endif
  278. }
  279. /*
  280. * Update the per-runqueue clock, as finegrained as the platform can give
  281. * us, but without assuming monotonicity, etc.:
  282. */
  283. static void __update_rq_clock(struct rq *rq)
  284. {
  285. u64 prev_raw = rq->prev_clock_raw;
  286. u64 now = sched_clock();
  287. s64 delta = now - prev_raw;
  288. u64 clock = rq->clock;
  289. #ifdef CONFIG_SCHED_DEBUG
  290. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  291. #endif
  292. /*
  293. * Protect against sched_clock() occasionally going backwards:
  294. */
  295. if (unlikely(delta < 0)) {
  296. clock++;
  297. rq->clock_warps++;
  298. } else {
  299. /*
  300. * Catch too large forward jumps too:
  301. */
  302. if (unlikely(delta > 2*TICK_NSEC)) {
  303. clock++;
  304. rq->clock_overflows++;
  305. } else {
  306. if (unlikely(delta > rq->clock_max_delta))
  307. rq->clock_max_delta = delta;
  308. clock += delta;
  309. }
  310. }
  311. rq->prev_clock_raw = now;
  312. rq->clock = clock;
  313. }
  314. static void update_rq_clock(struct rq *rq)
  315. {
  316. if (likely(smp_processor_id() == cpu_of(rq)))
  317. __update_rq_clock(rq);
  318. }
  319. /*
  320. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  321. * See detach_destroy_domains: synchronize_sched for details.
  322. *
  323. * The domain tree of any CPU may only be accessed from within
  324. * preempt-disabled sections.
  325. */
  326. #define for_each_domain(cpu, __sd) \
  327. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  328. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  329. #define this_rq() (&__get_cpu_var(runqueues))
  330. #define task_rq(p) cpu_rq(task_cpu(p))
  331. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  332. /*
  333. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  334. * clock constructed from sched_clock():
  335. */
  336. unsigned long long cpu_clock(int cpu)
  337. {
  338. unsigned long long now;
  339. unsigned long flags;
  340. struct rq *rq;
  341. local_irq_save(flags);
  342. rq = cpu_rq(cpu);
  343. update_rq_clock(rq);
  344. now = rq->clock;
  345. local_irq_restore(flags);
  346. return now;
  347. }
  348. #ifdef CONFIG_FAIR_GROUP_SCHED
  349. /* Change a task's ->cfs_rq if it moves across CPUs */
  350. static inline void set_task_cfs_rq(struct task_struct *p)
  351. {
  352. p->se.cfs_rq = &task_rq(p)->cfs;
  353. }
  354. #else
  355. static inline void set_task_cfs_rq(struct task_struct *p)
  356. {
  357. }
  358. #endif
  359. #ifndef prepare_arch_switch
  360. # define prepare_arch_switch(next) do { } while (0)
  361. #endif
  362. #ifndef finish_arch_switch
  363. # define finish_arch_switch(prev) do { } while (0)
  364. #endif
  365. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  366. static inline int task_running(struct rq *rq, struct task_struct *p)
  367. {
  368. return rq->curr == p;
  369. }
  370. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  371. {
  372. }
  373. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  374. {
  375. #ifdef CONFIG_DEBUG_SPINLOCK
  376. /* this is a valid case when another task releases the spinlock */
  377. rq->lock.owner = current;
  378. #endif
  379. /*
  380. * If we are tracking spinlock dependencies then we have to
  381. * fix up the runqueue lock - which gets 'carried over' from
  382. * prev into current:
  383. */
  384. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  385. spin_unlock_irq(&rq->lock);
  386. }
  387. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  388. static inline int task_running(struct rq *rq, struct task_struct *p)
  389. {
  390. #ifdef CONFIG_SMP
  391. return p->oncpu;
  392. #else
  393. return rq->curr == p;
  394. #endif
  395. }
  396. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  397. {
  398. #ifdef CONFIG_SMP
  399. /*
  400. * We can optimise this out completely for !SMP, because the
  401. * SMP rebalancing from interrupt is the only thing that cares
  402. * here.
  403. */
  404. next->oncpu = 1;
  405. #endif
  406. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  407. spin_unlock_irq(&rq->lock);
  408. #else
  409. spin_unlock(&rq->lock);
  410. #endif
  411. }
  412. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  413. {
  414. #ifdef CONFIG_SMP
  415. /*
  416. * After ->oncpu is cleared, the task can be moved to a different CPU.
  417. * We must ensure this doesn't happen until the switch is completely
  418. * finished.
  419. */
  420. smp_wmb();
  421. prev->oncpu = 0;
  422. #endif
  423. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  424. local_irq_enable();
  425. #endif
  426. }
  427. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  428. /*
  429. * __task_rq_lock - lock the runqueue a given task resides on.
  430. * Must be called interrupts disabled.
  431. */
  432. static inline struct rq *__task_rq_lock(struct task_struct *p)
  433. __acquires(rq->lock)
  434. {
  435. struct rq *rq;
  436. repeat_lock_task:
  437. rq = task_rq(p);
  438. spin_lock(&rq->lock);
  439. if (unlikely(rq != task_rq(p))) {
  440. spin_unlock(&rq->lock);
  441. goto repeat_lock_task;
  442. }
  443. return rq;
  444. }
  445. /*
  446. * task_rq_lock - lock the runqueue a given task resides on and disable
  447. * interrupts. Note the ordering: we can safely lookup the task_rq without
  448. * explicitly disabling preemption.
  449. */
  450. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  451. __acquires(rq->lock)
  452. {
  453. struct rq *rq;
  454. repeat_lock_task:
  455. local_irq_save(*flags);
  456. rq = task_rq(p);
  457. spin_lock(&rq->lock);
  458. if (unlikely(rq != task_rq(p))) {
  459. spin_unlock_irqrestore(&rq->lock, *flags);
  460. goto repeat_lock_task;
  461. }
  462. return rq;
  463. }
  464. static inline void __task_rq_unlock(struct rq *rq)
  465. __releases(rq->lock)
  466. {
  467. spin_unlock(&rq->lock);
  468. }
  469. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  470. __releases(rq->lock)
  471. {
  472. spin_unlock_irqrestore(&rq->lock, *flags);
  473. }
  474. /*
  475. * this_rq_lock - lock this runqueue and disable interrupts.
  476. */
  477. static inline struct rq *this_rq_lock(void)
  478. __acquires(rq->lock)
  479. {
  480. struct rq *rq;
  481. local_irq_disable();
  482. rq = this_rq();
  483. spin_lock(&rq->lock);
  484. return rq;
  485. }
  486. /*
  487. * CPU frequency is/was unstable - start new by setting prev_clock_raw:
  488. */
  489. void sched_clock_unstable_event(void)
  490. {
  491. unsigned long flags;
  492. struct rq *rq;
  493. rq = task_rq_lock(current, &flags);
  494. rq->prev_clock_raw = sched_clock();
  495. rq->clock_unstable_events++;
  496. task_rq_unlock(rq, &flags);
  497. }
  498. /*
  499. * resched_task - mark a task 'to be rescheduled now'.
  500. *
  501. * On UP this means the setting of the need_resched flag, on SMP it
  502. * might also involve a cross-CPU call to trigger the scheduler on
  503. * the target CPU.
  504. */
  505. #ifdef CONFIG_SMP
  506. #ifndef tsk_is_polling
  507. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  508. #endif
  509. static void resched_task(struct task_struct *p)
  510. {
  511. int cpu;
  512. assert_spin_locked(&task_rq(p)->lock);
  513. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  514. return;
  515. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  516. cpu = task_cpu(p);
  517. if (cpu == smp_processor_id())
  518. return;
  519. /* NEED_RESCHED must be visible before we test polling */
  520. smp_mb();
  521. if (!tsk_is_polling(p))
  522. smp_send_reschedule(cpu);
  523. }
  524. static void resched_cpu(int cpu)
  525. {
  526. struct rq *rq = cpu_rq(cpu);
  527. unsigned long flags;
  528. if (!spin_trylock_irqsave(&rq->lock, flags))
  529. return;
  530. resched_task(cpu_curr(cpu));
  531. spin_unlock_irqrestore(&rq->lock, flags);
  532. }
  533. #else
  534. static inline void resched_task(struct task_struct *p)
  535. {
  536. assert_spin_locked(&task_rq(p)->lock);
  537. set_tsk_need_resched(p);
  538. }
  539. #endif
  540. static u64 div64_likely32(u64 divident, unsigned long divisor)
  541. {
  542. #if BITS_PER_LONG == 32
  543. if (likely(divident <= 0xffffffffULL))
  544. return (u32)divident / divisor;
  545. do_div(divident, divisor);
  546. return divident;
  547. #else
  548. return divident / divisor;
  549. #endif
  550. }
  551. #if BITS_PER_LONG == 32
  552. # define WMULT_CONST (~0UL)
  553. #else
  554. # define WMULT_CONST (1UL << 32)
  555. #endif
  556. #define WMULT_SHIFT 32
  557. /*
  558. * Shift right and round:
  559. */
  560. #define RSR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  561. static unsigned long
  562. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  563. struct load_weight *lw)
  564. {
  565. u64 tmp;
  566. if (unlikely(!lw->inv_weight))
  567. lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
  568. tmp = (u64)delta_exec * weight;
  569. /*
  570. * Check whether we'd overflow the 64-bit multiplication:
  571. */
  572. if (unlikely(tmp > WMULT_CONST))
  573. tmp = RSR(RSR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  574. WMULT_SHIFT/2);
  575. else
  576. tmp = RSR(tmp * lw->inv_weight, WMULT_SHIFT);
  577. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  578. }
  579. static inline unsigned long
  580. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  581. {
  582. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  583. }
  584. static void update_load_add(struct load_weight *lw, unsigned long inc)
  585. {
  586. lw->weight += inc;
  587. lw->inv_weight = 0;
  588. }
  589. static void update_load_sub(struct load_weight *lw, unsigned long dec)
  590. {
  591. lw->weight -= dec;
  592. lw->inv_weight = 0;
  593. }
  594. /*
  595. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  596. * of tasks with abnormal "nice" values across CPUs the contribution that
  597. * each task makes to its run queue's load is weighted according to its
  598. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  599. * scaled version of the new time slice allocation that they receive on time
  600. * slice expiry etc.
  601. */
  602. #define WEIGHT_IDLEPRIO 2
  603. #define WMULT_IDLEPRIO (1 << 31)
  604. /*
  605. * Nice levels are multiplicative, with a gentle 10% change for every
  606. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  607. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  608. * that remained on nice 0.
  609. *
  610. * The "10% effect" is relative and cumulative: from _any_ nice level,
  611. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  612. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  613. * If a task goes up by ~10% and another task goes down by ~10% then
  614. * the relative distance between them is ~25%.)
  615. */
  616. static const int prio_to_weight[40] = {
  617. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  618. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  619. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  620. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  621. /* 0 */ 1024, 820, 655, 526, 423,
  622. /* 5 */ 335, 272, 215, 172, 137,
  623. /* 10 */ 110, 87, 70, 56, 45,
  624. /* 15 */ 36, 29, 23, 18, 15,
  625. };
  626. /*
  627. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  628. *
  629. * In cases where the weight does not change often, we can use the
  630. * precalculated inverse to speed up arithmetics by turning divisions
  631. * into multiplications:
  632. */
  633. static const u32 prio_to_wmult[40] = {
  634. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  635. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  636. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  637. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  638. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  639. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  640. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  641. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  642. };
  643. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  644. /*
  645. * runqueue iterator, to support SMP load-balancing between different
  646. * scheduling classes, without having to expose their internal data
  647. * structures to the load-balancing proper:
  648. */
  649. struct rq_iterator {
  650. void *arg;
  651. struct task_struct *(*start)(void *);
  652. struct task_struct *(*next)(void *);
  653. };
  654. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  655. unsigned long max_nr_move, unsigned long max_load_move,
  656. struct sched_domain *sd, enum cpu_idle_type idle,
  657. int *all_pinned, unsigned long *load_moved,
  658. int *this_best_prio, struct rq_iterator *iterator);
  659. #include "sched_stats.h"
  660. #include "sched_rt.c"
  661. #include "sched_fair.c"
  662. #include "sched_idletask.c"
  663. #ifdef CONFIG_SCHED_DEBUG
  664. # include "sched_debug.c"
  665. #endif
  666. #define sched_class_highest (&rt_sched_class)
  667. static void __update_curr_load(struct rq *rq, struct load_stat *ls)
  668. {
  669. if (rq->curr != rq->idle && ls->load.weight) {
  670. ls->delta_exec += ls->delta_stat;
  671. ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
  672. ls->delta_stat = 0;
  673. }
  674. }
  675. /*
  676. * Update delta_exec, delta_fair fields for rq.
  677. *
  678. * delta_fair clock advances at a rate inversely proportional to
  679. * total load (rq->ls.load.weight) on the runqueue, while
  680. * delta_exec advances at the same rate as wall-clock (provided
  681. * cpu is not idle).
  682. *
  683. * delta_exec / delta_fair is a measure of the (smoothened) load on this
  684. * runqueue over any given interval. This (smoothened) load is used
  685. * during load balance.
  686. *
  687. * This function is called /before/ updating rq->ls.load
  688. * and when switching tasks.
  689. */
  690. static void update_curr_load(struct rq *rq)
  691. {
  692. struct load_stat *ls = &rq->ls;
  693. u64 start;
  694. start = ls->load_update_start;
  695. ls->load_update_start = rq->clock;
  696. ls->delta_stat += rq->clock - start;
  697. /*
  698. * Stagger updates to ls->delta_fair. Very frequent updates
  699. * can be expensive.
  700. */
  701. if (ls->delta_stat >= sysctl_sched_stat_granularity)
  702. __update_curr_load(rq, ls);
  703. }
  704. static inline void inc_load(struct rq *rq, const struct task_struct *p)
  705. {
  706. update_curr_load(rq);
  707. update_load_add(&rq->ls.load, p->se.load.weight);
  708. }
  709. static inline void dec_load(struct rq *rq, const struct task_struct *p)
  710. {
  711. update_curr_load(rq);
  712. update_load_sub(&rq->ls.load, p->se.load.weight);
  713. }
  714. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  715. {
  716. rq->nr_running++;
  717. inc_load(rq, p);
  718. }
  719. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  720. {
  721. rq->nr_running--;
  722. dec_load(rq, p);
  723. }
  724. static void set_load_weight(struct task_struct *p)
  725. {
  726. task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
  727. p->se.wait_runtime = 0;
  728. if (task_has_rt_policy(p)) {
  729. p->se.load.weight = prio_to_weight[0] * 2;
  730. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  731. return;
  732. }
  733. /*
  734. * SCHED_IDLE tasks get minimal weight:
  735. */
  736. if (p->policy == SCHED_IDLE) {
  737. p->se.load.weight = WEIGHT_IDLEPRIO;
  738. p->se.load.inv_weight = WMULT_IDLEPRIO;
  739. return;
  740. }
  741. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  742. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  743. }
  744. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  745. {
  746. sched_info_queued(p);
  747. p->sched_class->enqueue_task(rq, p, wakeup);
  748. p->se.on_rq = 1;
  749. }
  750. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  751. {
  752. p->sched_class->dequeue_task(rq, p, sleep);
  753. p->se.on_rq = 0;
  754. }
  755. /*
  756. * __normal_prio - return the priority that is based on the static prio
  757. */
  758. static inline int __normal_prio(struct task_struct *p)
  759. {
  760. return p->static_prio;
  761. }
  762. /*
  763. * Calculate the expected normal priority: i.e. priority
  764. * without taking RT-inheritance into account. Might be
  765. * boosted by interactivity modifiers. Changes upon fork,
  766. * setprio syscalls, and whenever the interactivity
  767. * estimator recalculates.
  768. */
  769. static inline int normal_prio(struct task_struct *p)
  770. {
  771. int prio;
  772. if (task_has_rt_policy(p))
  773. prio = MAX_RT_PRIO-1 - p->rt_priority;
  774. else
  775. prio = __normal_prio(p);
  776. return prio;
  777. }
  778. /*
  779. * Calculate the current priority, i.e. the priority
  780. * taken into account by the scheduler. This value might
  781. * be boosted by RT tasks, or might be boosted by
  782. * interactivity modifiers. Will be RT if the task got
  783. * RT-boosted. If not then it returns p->normal_prio.
  784. */
  785. static int effective_prio(struct task_struct *p)
  786. {
  787. p->normal_prio = normal_prio(p);
  788. /*
  789. * If we are RT tasks or we were boosted to RT priority,
  790. * keep the priority unchanged. Otherwise, update priority
  791. * to the normal priority:
  792. */
  793. if (!rt_prio(p->prio))
  794. return p->normal_prio;
  795. return p->prio;
  796. }
  797. /*
  798. * activate_task - move a task to the runqueue.
  799. */
  800. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  801. {
  802. if (p->state == TASK_UNINTERRUPTIBLE)
  803. rq->nr_uninterruptible--;
  804. enqueue_task(rq, p, wakeup);
  805. inc_nr_running(p, rq);
  806. }
  807. /*
  808. * activate_idle_task - move idle task to the _front_ of runqueue.
  809. */
  810. static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
  811. {
  812. update_rq_clock(rq);
  813. if (p->state == TASK_UNINTERRUPTIBLE)
  814. rq->nr_uninterruptible--;
  815. enqueue_task(rq, p, 0);
  816. inc_nr_running(p, rq);
  817. }
  818. /*
  819. * deactivate_task - remove a task from the runqueue.
  820. */
  821. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  822. {
  823. if (p->state == TASK_UNINTERRUPTIBLE)
  824. rq->nr_uninterruptible++;
  825. dequeue_task(rq, p, sleep);
  826. dec_nr_running(p, rq);
  827. }
  828. /**
  829. * task_curr - is this task currently executing on a CPU?
  830. * @p: the task in question.
  831. */
  832. inline int task_curr(const struct task_struct *p)
  833. {
  834. return cpu_curr(task_cpu(p)) == p;
  835. }
  836. /* Used instead of source_load when we know the type == 0 */
  837. unsigned long weighted_cpuload(const int cpu)
  838. {
  839. return cpu_rq(cpu)->ls.load.weight;
  840. }
  841. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  842. {
  843. #ifdef CONFIG_SMP
  844. task_thread_info(p)->cpu = cpu;
  845. set_task_cfs_rq(p);
  846. #endif
  847. }
  848. #ifdef CONFIG_SMP
  849. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  850. {
  851. int old_cpu = task_cpu(p);
  852. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  853. u64 clock_offset, fair_clock_offset;
  854. clock_offset = old_rq->clock - new_rq->clock;
  855. fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
  856. if (p->se.wait_start_fair)
  857. p->se.wait_start_fair -= fair_clock_offset;
  858. if (p->se.sleep_start_fair)
  859. p->se.sleep_start_fair -= fair_clock_offset;
  860. #ifdef CONFIG_SCHEDSTATS
  861. if (p->se.wait_start)
  862. p->se.wait_start -= clock_offset;
  863. if (p->se.sleep_start)
  864. p->se.sleep_start -= clock_offset;
  865. if (p->se.block_start)
  866. p->se.block_start -= clock_offset;
  867. #endif
  868. __set_task_cpu(p, new_cpu);
  869. }
  870. struct migration_req {
  871. struct list_head list;
  872. struct task_struct *task;
  873. int dest_cpu;
  874. struct completion done;
  875. };
  876. /*
  877. * The task's runqueue lock must be held.
  878. * Returns true if you have to wait for migration thread.
  879. */
  880. static int
  881. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  882. {
  883. struct rq *rq = task_rq(p);
  884. /*
  885. * If the task is not on a runqueue (and not running), then
  886. * it is sufficient to simply update the task's cpu field.
  887. */
  888. if (!p->se.on_rq && !task_running(rq, p)) {
  889. set_task_cpu(p, dest_cpu);
  890. return 0;
  891. }
  892. init_completion(&req->done);
  893. req->task = p;
  894. req->dest_cpu = dest_cpu;
  895. list_add(&req->list, &rq->migration_queue);
  896. return 1;
  897. }
  898. /*
  899. * wait_task_inactive - wait for a thread to unschedule.
  900. *
  901. * The caller must ensure that the task *will* unschedule sometime soon,
  902. * else this function might spin for a *long* time. This function can't
  903. * be called with interrupts off, or it may introduce deadlock with
  904. * smp_call_function() if an IPI is sent by the same process we are
  905. * waiting to become inactive.
  906. */
  907. void wait_task_inactive(struct task_struct *p)
  908. {
  909. unsigned long flags;
  910. int running, on_rq;
  911. struct rq *rq;
  912. repeat:
  913. /*
  914. * We do the initial early heuristics without holding
  915. * any task-queue locks at all. We'll only try to get
  916. * the runqueue lock when things look like they will
  917. * work out!
  918. */
  919. rq = task_rq(p);
  920. /*
  921. * If the task is actively running on another CPU
  922. * still, just relax and busy-wait without holding
  923. * any locks.
  924. *
  925. * NOTE! Since we don't hold any locks, it's not
  926. * even sure that "rq" stays as the right runqueue!
  927. * But we don't care, since "task_running()" will
  928. * return false if the runqueue has changed and p
  929. * is actually now running somewhere else!
  930. */
  931. while (task_running(rq, p))
  932. cpu_relax();
  933. /*
  934. * Ok, time to look more closely! We need the rq
  935. * lock now, to be *sure*. If we're wrong, we'll
  936. * just go back and repeat.
  937. */
  938. rq = task_rq_lock(p, &flags);
  939. running = task_running(rq, p);
  940. on_rq = p->se.on_rq;
  941. task_rq_unlock(rq, &flags);
  942. /*
  943. * Was it really running after all now that we
  944. * checked with the proper locks actually held?
  945. *
  946. * Oops. Go back and try again..
  947. */
  948. if (unlikely(running)) {
  949. cpu_relax();
  950. goto repeat;
  951. }
  952. /*
  953. * It's not enough that it's not actively running,
  954. * it must be off the runqueue _entirely_, and not
  955. * preempted!
  956. *
  957. * So if it wa still runnable (but just not actively
  958. * running right now), it's preempted, and we should
  959. * yield - it could be a while.
  960. */
  961. if (unlikely(on_rq)) {
  962. yield();
  963. goto repeat;
  964. }
  965. /*
  966. * Ahh, all good. It wasn't running, and it wasn't
  967. * runnable, which means that it will never become
  968. * running in the future either. We're all done!
  969. */
  970. }
  971. /***
  972. * kick_process - kick a running thread to enter/exit the kernel
  973. * @p: the to-be-kicked thread
  974. *
  975. * Cause a process which is running on another CPU to enter
  976. * kernel-mode, without any delay. (to get signals handled.)
  977. *
  978. * NOTE: this function doesnt have to take the runqueue lock,
  979. * because all it wants to ensure is that the remote task enters
  980. * the kernel. If the IPI races and the task has been migrated
  981. * to another CPU then no harm is done and the purpose has been
  982. * achieved as well.
  983. */
  984. void kick_process(struct task_struct *p)
  985. {
  986. int cpu;
  987. preempt_disable();
  988. cpu = task_cpu(p);
  989. if ((cpu != smp_processor_id()) && task_curr(p))
  990. smp_send_reschedule(cpu);
  991. preempt_enable();
  992. }
  993. /*
  994. * Return a low guess at the load of a migration-source cpu weighted
  995. * according to the scheduling class and "nice" value.
  996. *
  997. * We want to under-estimate the load of migration sources, to
  998. * balance conservatively.
  999. */
  1000. static inline unsigned long source_load(int cpu, int type)
  1001. {
  1002. struct rq *rq = cpu_rq(cpu);
  1003. unsigned long total = weighted_cpuload(cpu);
  1004. if (type == 0)
  1005. return total;
  1006. return min(rq->cpu_load[type-1], total);
  1007. }
  1008. /*
  1009. * Return a high guess at the load of a migration-target cpu weighted
  1010. * according to the scheduling class and "nice" value.
  1011. */
  1012. static inline unsigned long target_load(int cpu, int type)
  1013. {
  1014. struct rq *rq = cpu_rq(cpu);
  1015. unsigned long total = weighted_cpuload(cpu);
  1016. if (type == 0)
  1017. return total;
  1018. return max(rq->cpu_load[type-1], total);
  1019. }
  1020. /*
  1021. * Return the average load per task on the cpu's run queue
  1022. */
  1023. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1024. {
  1025. struct rq *rq = cpu_rq(cpu);
  1026. unsigned long total = weighted_cpuload(cpu);
  1027. unsigned long n = rq->nr_running;
  1028. return n ? total / n : SCHED_LOAD_SCALE;
  1029. }
  1030. /*
  1031. * find_idlest_group finds and returns the least busy CPU group within the
  1032. * domain.
  1033. */
  1034. static struct sched_group *
  1035. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1036. {
  1037. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1038. unsigned long min_load = ULONG_MAX, this_load = 0;
  1039. int load_idx = sd->forkexec_idx;
  1040. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1041. do {
  1042. unsigned long load, avg_load;
  1043. int local_group;
  1044. int i;
  1045. /* Skip over this group if it has no CPUs allowed */
  1046. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1047. goto nextgroup;
  1048. local_group = cpu_isset(this_cpu, group->cpumask);
  1049. /* Tally up the load of all CPUs in the group */
  1050. avg_load = 0;
  1051. for_each_cpu_mask(i, group->cpumask) {
  1052. /* Bias balancing toward cpus of our domain */
  1053. if (local_group)
  1054. load = source_load(i, load_idx);
  1055. else
  1056. load = target_load(i, load_idx);
  1057. avg_load += load;
  1058. }
  1059. /* Adjust by relative CPU power of the group */
  1060. avg_load = sg_div_cpu_power(group,
  1061. avg_load * SCHED_LOAD_SCALE);
  1062. if (local_group) {
  1063. this_load = avg_load;
  1064. this = group;
  1065. } else if (avg_load < min_load) {
  1066. min_load = avg_load;
  1067. idlest = group;
  1068. }
  1069. nextgroup:
  1070. group = group->next;
  1071. } while (group != sd->groups);
  1072. if (!idlest || 100*this_load < imbalance*min_load)
  1073. return NULL;
  1074. return idlest;
  1075. }
  1076. /*
  1077. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1078. */
  1079. static int
  1080. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1081. {
  1082. cpumask_t tmp;
  1083. unsigned long load, min_load = ULONG_MAX;
  1084. int idlest = -1;
  1085. int i;
  1086. /* Traverse only the allowed CPUs */
  1087. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1088. for_each_cpu_mask(i, tmp) {
  1089. load = weighted_cpuload(i);
  1090. if (load < min_load || (load == min_load && i == this_cpu)) {
  1091. min_load = load;
  1092. idlest = i;
  1093. }
  1094. }
  1095. return idlest;
  1096. }
  1097. /*
  1098. * sched_balance_self: balance the current task (running on cpu) in domains
  1099. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1100. * SD_BALANCE_EXEC.
  1101. *
  1102. * Balance, ie. select the least loaded group.
  1103. *
  1104. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1105. *
  1106. * preempt must be disabled.
  1107. */
  1108. static int sched_balance_self(int cpu, int flag)
  1109. {
  1110. struct task_struct *t = current;
  1111. struct sched_domain *tmp, *sd = NULL;
  1112. for_each_domain(cpu, tmp) {
  1113. /*
  1114. * If power savings logic is enabled for a domain, stop there.
  1115. */
  1116. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1117. break;
  1118. if (tmp->flags & flag)
  1119. sd = tmp;
  1120. }
  1121. while (sd) {
  1122. cpumask_t span;
  1123. struct sched_group *group;
  1124. int new_cpu, weight;
  1125. if (!(sd->flags & flag)) {
  1126. sd = sd->child;
  1127. continue;
  1128. }
  1129. span = sd->span;
  1130. group = find_idlest_group(sd, t, cpu);
  1131. if (!group) {
  1132. sd = sd->child;
  1133. continue;
  1134. }
  1135. new_cpu = find_idlest_cpu(group, t, cpu);
  1136. if (new_cpu == -1 || new_cpu == cpu) {
  1137. /* Now try balancing at a lower domain level of cpu */
  1138. sd = sd->child;
  1139. continue;
  1140. }
  1141. /* Now try balancing at a lower domain level of new_cpu */
  1142. cpu = new_cpu;
  1143. sd = NULL;
  1144. weight = cpus_weight(span);
  1145. for_each_domain(cpu, tmp) {
  1146. if (weight <= cpus_weight(tmp->span))
  1147. break;
  1148. if (tmp->flags & flag)
  1149. sd = tmp;
  1150. }
  1151. /* while loop will break here if sd == NULL */
  1152. }
  1153. return cpu;
  1154. }
  1155. #endif /* CONFIG_SMP */
  1156. /*
  1157. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1158. * not idle and an idle cpu is available. The span of cpus to
  1159. * search starts with cpus closest then further out as needed,
  1160. * so we always favor a closer, idle cpu.
  1161. *
  1162. * Returns the CPU we should wake onto.
  1163. */
  1164. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1165. static int wake_idle(int cpu, struct task_struct *p)
  1166. {
  1167. cpumask_t tmp;
  1168. struct sched_domain *sd;
  1169. int i;
  1170. /*
  1171. * If it is idle, then it is the best cpu to run this task.
  1172. *
  1173. * This cpu is also the best, if it has more than one task already.
  1174. * Siblings must be also busy(in most cases) as they didn't already
  1175. * pickup the extra load from this cpu and hence we need not check
  1176. * sibling runqueue info. This will avoid the checks and cache miss
  1177. * penalities associated with that.
  1178. */
  1179. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  1180. return cpu;
  1181. for_each_domain(cpu, sd) {
  1182. if (sd->flags & SD_WAKE_IDLE) {
  1183. cpus_and(tmp, sd->span, p->cpus_allowed);
  1184. for_each_cpu_mask(i, tmp) {
  1185. if (idle_cpu(i))
  1186. return i;
  1187. }
  1188. } else {
  1189. break;
  1190. }
  1191. }
  1192. return cpu;
  1193. }
  1194. #else
  1195. static inline int wake_idle(int cpu, struct task_struct *p)
  1196. {
  1197. return cpu;
  1198. }
  1199. #endif
  1200. /***
  1201. * try_to_wake_up - wake up a thread
  1202. * @p: the to-be-woken-up thread
  1203. * @state: the mask of task states that can be woken
  1204. * @sync: do a synchronous wakeup?
  1205. *
  1206. * Put it on the run-queue if it's not already there. The "current"
  1207. * thread is always on the run-queue (except when the actual
  1208. * re-schedule is in progress), and as such you're allowed to do
  1209. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1210. * runnable without the overhead of this.
  1211. *
  1212. * returns failure only if the task is already active.
  1213. */
  1214. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1215. {
  1216. int cpu, this_cpu, success = 0;
  1217. unsigned long flags;
  1218. long old_state;
  1219. struct rq *rq;
  1220. #ifdef CONFIG_SMP
  1221. struct sched_domain *sd, *this_sd = NULL;
  1222. unsigned long load, this_load;
  1223. int new_cpu;
  1224. #endif
  1225. rq = task_rq_lock(p, &flags);
  1226. old_state = p->state;
  1227. if (!(old_state & state))
  1228. goto out;
  1229. if (p->se.on_rq)
  1230. goto out_running;
  1231. cpu = task_cpu(p);
  1232. this_cpu = smp_processor_id();
  1233. #ifdef CONFIG_SMP
  1234. if (unlikely(task_running(rq, p)))
  1235. goto out_activate;
  1236. new_cpu = cpu;
  1237. schedstat_inc(rq, ttwu_cnt);
  1238. if (cpu == this_cpu) {
  1239. schedstat_inc(rq, ttwu_local);
  1240. goto out_set_cpu;
  1241. }
  1242. for_each_domain(this_cpu, sd) {
  1243. if (cpu_isset(cpu, sd->span)) {
  1244. schedstat_inc(sd, ttwu_wake_remote);
  1245. this_sd = sd;
  1246. break;
  1247. }
  1248. }
  1249. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1250. goto out_set_cpu;
  1251. /*
  1252. * Check for affine wakeup and passive balancing possibilities.
  1253. */
  1254. if (this_sd) {
  1255. int idx = this_sd->wake_idx;
  1256. unsigned int imbalance;
  1257. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1258. load = source_load(cpu, idx);
  1259. this_load = target_load(this_cpu, idx);
  1260. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1261. if (this_sd->flags & SD_WAKE_AFFINE) {
  1262. unsigned long tl = this_load;
  1263. unsigned long tl_per_task;
  1264. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1265. /*
  1266. * If sync wakeup then subtract the (maximum possible)
  1267. * effect of the currently running task from the load
  1268. * of the current CPU:
  1269. */
  1270. if (sync)
  1271. tl -= current->se.load.weight;
  1272. if ((tl <= load &&
  1273. tl + target_load(cpu, idx) <= tl_per_task) ||
  1274. 100*(tl + p->se.load.weight) <= imbalance*load) {
  1275. /*
  1276. * This domain has SD_WAKE_AFFINE and
  1277. * p is cache cold in this domain, and
  1278. * there is no bad imbalance.
  1279. */
  1280. schedstat_inc(this_sd, ttwu_move_affine);
  1281. goto out_set_cpu;
  1282. }
  1283. }
  1284. /*
  1285. * Start passive balancing when half the imbalance_pct
  1286. * limit is reached.
  1287. */
  1288. if (this_sd->flags & SD_WAKE_BALANCE) {
  1289. if (imbalance*this_load <= 100*load) {
  1290. schedstat_inc(this_sd, ttwu_move_balance);
  1291. goto out_set_cpu;
  1292. }
  1293. }
  1294. }
  1295. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1296. out_set_cpu:
  1297. new_cpu = wake_idle(new_cpu, p);
  1298. if (new_cpu != cpu) {
  1299. set_task_cpu(p, new_cpu);
  1300. task_rq_unlock(rq, &flags);
  1301. /* might preempt at this point */
  1302. rq = task_rq_lock(p, &flags);
  1303. old_state = p->state;
  1304. if (!(old_state & state))
  1305. goto out;
  1306. if (p->se.on_rq)
  1307. goto out_running;
  1308. this_cpu = smp_processor_id();
  1309. cpu = task_cpu(p);
  1310. }
  1311. out_activate:
  1312. #endif /* CONFIG_SMP */
  1313. update_rq_clock(rq);
  1314. activate_task(rq, p, 1);
  1315. /*
  1316. * Sync wakeups (i.e. those types of wakeups where the waker
  1317. * has indicated that it will leave the CPU in short order)
  1318. * don't trigger a preemption, if the woken up task will run on
  1319. * this cpu. (in this case the 'I will reschedule' promise of
  1320. * the waker guarantees that the freshly woken up task is going
  1321. * to be considered on this CPU.)
  1322. */
  1323. if (!sync || cpu != this_cpu)
  1324. check_preempt_curr(rq, p);
  1325. success = 1;
  1326. out_running:
  1327. p->state = TASK_RUNNING;
  1328. out:
  1329. task_rq_unlock(rq, &flags);
  1330. return success;
  1331. }
  1332. int fastcall wake_up_process(struct task_struct *p)
  1333. {
  1334. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1335. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1336. }
  1337. EXPORT_SYMBOL(wake_up_process);
  1338. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1339. {
  1340. return try_to_wake_up(p, state, 0);
  1341. }
  1342. /*
  1343. * Perform scheduler related setup for a newly forked process p.
  1344. * p is forked by current.
  1345. *
  1346. * __sched_fork() is basic setup used by init_idle() too:
  1347. */
  1348. static void __sched_fork(struct task_struct *p)
  1349. {
  1350. p->se.wait_start_fair = 0;
  1351. p->se.exec_start = 0;
  1352. p->se.sum_exec_runtime = 0;
  1353. p->se.delta_exec = 0;
  1354. p->se.delta_fair_run = 0;
  1355. p->se.delta_fair_sleep = 0;
  1356. p->se.wait_runtime = 0;
  1357. p->se.sleep_start_fair = 0;
  1358. #ifdef CONFIG_SCHEDSTATS
  1359. p->se.wait_start = 0;
  1360. p->se.sum_wait_runtime = 0;
  1361. p->se.sum_sleep_runtime = 0;
  1362. p->se.sleep_start = 0;
  1363. p->se.block_start = 0;
  1364. p->se.sleep_max = 0;
  1365. p->se.block_max = 0;
  1366. p->se.exec_max = 0;
  1367. p->se.wait_max = 0;
  1368. p->se.wait_runtime_overruns = 0;
  1369. p->se.wait_runtime_underruns = 0;
  1370. #endif
  1371. INIT_LIST_HEAD(&p->run_list);
  1372. p->se.on_rq = 0;
  1373. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1374. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1375. #endif
  1376. /*
  1377. * We mark the process as running here, but have not actually
  1378. * inserted it onto the runqueue yet. This guarantees that
  1379. * nobody will actually run it, and a signal or other external
  1380. * event cannot wake it up and insert it on the runqueue either.
  1381. */
  1382. p->state = TASK_RUNNING;
  1383. }
  1384. /*
  1385. * fork()/clone()-time setup:
  1386. */
  1387. void sched_fork(struct task_struct *p, int clone_flags)
  1388. {
  1389. int cpu = get_cpu();
  1390. __sched_fork(p);
  1391. #ifdef CONFIG_SMP
  1392. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1393. #endif
  1394. __set_task_cpu(p, cpu);
  1395. /*
  1396. * Make sure we do not leak PI boosting priority to the child:
  1397. */
  1398. p->prio = current->normal_prio;
  1399. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1400. if (likely(sched_info_on()))
  1401. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1402. #endif
  1403. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1404. p->oncpu = 0;
  1405. #endif
  1406. #ifdef CONFIG_PREEMPT
  1407. /* Want to start with kernel preemption disabled. */
  1408. task_thread_info(p)->preempt_count = 1;
  1409. #endif
  1410. put_cpu();
  1411. }
  1412. /*
  1413. * After fork, child runs first. (default) If set to 0 then
  1414. * parent will (try to) run first.
  1415. */
  1416. unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
  1417. /*
  1418. * wake_up_new_task - wake up a newly created task for the first time.
  1419. *
  1420. * This function will do some initial scheduler statistics housekeeping
  1421. * that must be done for every newly created context, then puts the task
  1422. * on the runqueue and wakes it.
  1423. */
  1424. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1425. {
  1426. unsigned long flags;
  1427. struct rq *rq;
  1428. int this_cpu;
  1429. rq = task_rq_lock(p, &flags);
  1430. BUG_ON(p->state != TASK_RUNNING);
  1431. this_cpu = smp_processor_id(); /* parent's CPU */
  1432. update_rq_clock(rq);
  1433. p->prio = effective_prio(p);
  1434. if (!p->sched_class->task_new || !sysctl_sched_child_runs_first ||
  1435. (clone_flags & CLONE_VM) || task_cpu(p) != this_cpu ||
  1436. !current->se.on_rq) {
  1437. activate_task(rq, p, 0);
  1438. } else {
  1439. /*
  1440. * Let the scheduling class do new task startup
  1441. * management (if any):
  1442. */
  1443. p->sched_class->task_new(rq, p);
  1444. inc_nr_running(p, rq);
  1445. }
  1446. check_preempt_curr(rq, p);
  1447. task_rq_unlock(rq, &flags);
  1448. }
  1449. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1450. /**
  1451. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1452. * @notifier: notifier struct to register
  1453. */
  1454. void preempt_notifier_register(struct preempt_notifier *notifier)
  1455. {
  1456. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1457. }
  1458. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1459. /**
  1460. * preempt_notifier_unregister - no longer interested in preemption notifications
  1461. * @notifier: notifier struct to unregister
  1462. *
  1463. * This is safe to call from within a preemption notifier.
  1464. */
  1465. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1466. {
  1467. hlist_del(&notifier->link);
  1468. }
  1469. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1470. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1471. {
  1472. struct preempt_notifier *notifier;
  1473. struct hlist_node *node;
  1474. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1475. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1476. }
  1477. static void
  1478. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1479. struct task_struct *next)
  1480. {
  1481. struct preempt_notifier *notifier;
  1482. struct hlist_node *node;
  1483. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1484. notifier->ops->sched_out(notifier, next);
  1485. }
  1486. #else
  1487. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1488. {
  1489. }
  1490. static void
  1491. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1492. struct task_struct *next)
  1493. {
  1494. }
  1495. #endif
  1496. /**
  1497. * prepare_task_switch - prepare to switch tasks
  1498. * @rq: the runqueue preparing to switch
  1499. * @prev: the current task that is being switched out
  1500. * @next: the task we are going to switch to.
  1501. *
  1502. * This is called with the rq lock held and interrupts off. It must
  1503. * be paired with a subsequent finish_task_switch after the context
  1504. * switch.
  1505. *
  1506. * prepare_task_switch sets up locking and calls architecture specific
  1507. * hooks.
  1508. */
  1509. static inline void
  1510. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1511. struct task_struct *next)
  1512. {
  1513. fire_sched_out_preempt_notifiers(prev, next);
  1514. prepare_lock_switch(rq, next);
  1515. prepare_arch_switch(next);
  1516. }
  1517. /**
  1518. * finish_task_switch - clean up after a task-switch
  1519. * @rq: runqueue associated with task-switch
  1520. * @prev: the thread we just switched away from.
  1521. *
  1522. * finish_task_switch must be called after the context switch, paired
  1523. * with a prepare_task_switch call before the context switch.
  1524. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1525. * and do any other architecture-specific cleanup actions.
  1526. *
  1527. * Note that we may have delayed dropping an mm in context_switch(). If
  1528. * so, we finish that here outside of the runqueue lock. (Doing it
  1529. * with the lock held can cause deadlocks; see schedule() for
  1530. * details.)
  1531. */
  1532. static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1533. __releases(rq->lock)
  1534. {
  1535. struct mm_struct *mm = rq->prev_mm;
  1536. long prev_state;
  1537. rq->prev_mm = NULL;
  1538. /*
  1539. * A task struct has one reference for the use as "current".
  1540. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1541. * schedule one last time. The schedule call will never return, and
  1542. * the scheduled task must drop that reference.
  1543. * The test for TASK_DEAD must occur while the runqueue locks are
  1544. * still held, otherwise prev could be scheduled on another cpu, die
  1545. * there before we look at prev->state, and then the reference would
  1546. * be dropped twice.
  1547. * Manfred Spraul <manfred@colorfullife.com>
  1548. */
  1549. prev_state = prev->state;
  1550. finish_arch_switch(prev);
  1551. finish_lock_switch(rq, prev);
  1552. fire_sched_in_preempt_notifiers(current);
  1553. if (mm)
  1554. mmdrop(mm);
  1555. if (unlikely(prev_state == TASK_DEAD)) {
  1556. /*
  1557. * Remove function-return probe instances associated with this
  1558. * task and put them back on the free list.
  1559. */
  1560. kprobe_flush_task(prev);
  1561. put_task_struct(prev);
  1562. }
  1563. }
  1564. /**
  1565. * schedule_tail - first thing a freshly forked thread must call.
  1566. * @prev: the thread we just switched away from.
  1567. */
  1568. asmlinkage void schedule_tail(struct task_struct *prev)
  1569. __releases(rq->lock)
  1570. {
  1571. struct rq *rq = this_rq();
  1572. finish_task_switch(rq, prev);
  1573. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1574. /* In this case, finish_task_switch does not reenable preemption */
  1575. preempt_enable();
  1576. #endif
  1577. if (current->set_child_tid)
  1578. put_user(current->pid, current->set_child_tid);
  1579. }
  1580. /*
  1581. * context_switch - switch to the new MM and the new
  1582. * thread's register state.
  1583. */
  1584. static inline void
  1585. context_switch(struct rq *rq, struct task_struct *prev,
  1586. struct task_struct *next)
  1587. {
  1588. struct mm_struct *mm, *oldmm;
  1589. prepare_task_switch(rq, prev, next);
  1590. mm = next->mm;
  1591. oldmm = prev->active_mm;
  1592. /*
  1593. * For paravirt, this is coupled with an exit in switch_to to
  1594. * combine the page table reload and the switch backend into
  1595. * one hypercall.
  1596. */
  1597. arch_enter_lazy_cpu_mode();
  1598. if (unlikely(!mm)) {
  1599. next->active_mm = oldmm;
  1600. atomic_inc(&oldmm->mm_count);
  1601. enter_lazy_tlb(oldmm, next);
  1602. } else
  1603. switch_mm(oldmm, mm, next);
  1604. if (unlikely(!prev->mm)) {
  1605. prev->active_mm = NULL;
  1606. rq->prev_mm = oldmm;
  1607. }
  1608. /*
  1609. * Since the runqueue lock will be released by the next
  1610. * task (which is an invalid locking op but in the case
  1611. * of the scheduler it's an obvious special-case), so we
  1612. * do an early lockdep release here:
  1613. */
  1614. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1615. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1616. #endif
  1617. /* Here we just switch the register state and the stack. */
  1618. switch_to(prev, next, prev);
  1619. barrier();
  1620. /*
  1621. * this_rq must be evaluated again because prev may have moved
  1622. * CPUs since it called schedule(), thus the 'rq' on its stack
  1623. * frame will be invalid.
  1624. */
  1625. finish_task_switch(this_rq(), prev);
  1626. }
  1627. /*
  1628. * nr_running, nr_uninterruptible and nr_context_switches:
  1629. *
  1630. * externally visible scheduler statistics: current number of runnable
  1631. * threads, current number of uninterruptible-sleeping threads, total
  1632. * number of context switches performed since bootup.
  1633. */
  1634. unsigned long nr_running(void)
  1635. {
  1636. unsigned long i, sum = 0;
  1637. for_each_online_cpu(i)
  1638. sum += cpu_rq(i)->nr_running;
  1639. return sum;
  1640. }
  1641. unsigned long nr_uninterruptible(void)
  1642. {
  1643. unsigned long i, sum = 0;
  1644. for_each_possible_cpu(i)
  1645. sum += cpu_rq(i)->nr_uninterruptible;
  1646. /*
  1647. * Since we read the counters lockless, it might be slightly
  1648. * inaccurate. Do not allow it to go below zero though:
  1649. */
  1650. if (unlikely((long)sum < 0))
  1651. sum = 0;
  1652. return sum;
  1653. }
  1654. unsigned long long nr_context_switches(void)
  1655. {
  1656. int i;
  1657. unsigned long long sum = 0;
  1658. for_each_possible_cpu(i)
  1659. sum += cpu_rq(i)->nr_switches;
  1660. return sum;
  1661. }
  1662. unsigned long nr_iowait(void)
  1663. {
  1664. unsigned long i, sum = 0;
  1665. for_each_possible_cpu(i)
  1666. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1667. return sum;
  1668. }
  1669. unsigned long nr_active(void)
  1670. {
  1671. unsigned long i, running = 0, uninterruptible = 0;
  1672. for_each_online_cpu(i) {
  1673. running += cpu_rq(i)->nr_running;
  1674. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1675. }
  1676. if (unlikely((long)uninterruptible < 0))
  1677. uninterruptible = 0;
  1678. return running + uninterruptible;
  1679. }
  1680. /*
  1681. * Update rq->cpu_load[] statistics. This function is usually called every
  1682. * scheduler tick (TICK_NSEC).
  1683. */
  1684. static void update_cpu_load(struct rq *this_rq)
  1685. {
  1686. u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
  1687. unsigned long total_load = this_rq->ls.load.weight;
  1688. unsigned long this_load = total_load;
  1689. struct load_stat *ls = &this_rq->ls;
  1690. int i, scale;
  1691. this_rq->nr_load_updates++;
  1692. if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
  1693. goto do_avg;
  1694. /* Update delta_fair/delta_exec fields first */
  1695. update_curr_load(this_rq);
  1696. fair_delta64 = ls->delta_fair + 1;
  1697. ls->delta_fair = 0;
  1698. exec_delta64 = ls->delta_exec + 1;
  1699. ls->delta_exec = 0;
  1700. sample_interval64 = this_rq->clock - ls->load_update_last;
  1701. ls->load_update_last = this_rq->clock;
  1702. if ((s64)sample_interval64 < (s64)TICK_NSEC)
  1703. sample_interval64 = TICK_NSEC;
  1704. if (exec_delta64 > sample_interval64)
  1705. exec_delta64 = sample_interval64;
  1706. idle_delta64 = sample_interval64 - exec_delta64;
  1707. tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
  1708. tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
  1709. this_load = (unsigned long)tmp64;
  1710. do_avg:
  1711. /* Update our load: */
  1712. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1713. unsigned long old_load, new_load;
  1714. /* scale is effectively 1 << i now, and >> i divides by scale */
  1715. old_load = this_rq->cpu_load[i];
  1716. new_load = this_load;
  1717. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1718. }
  1719. }
  1720. #ifdef CONFIG_SMP
  1721. /*
  1722. * double_rq_lock - safely lock two runqueues
  1723. *
  1724. * Note this does not disable interrupts like task_rq_lock,
  1725. * you need to do so manually before calling.
  1726. */
  1727. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1728. __acquires(rq1->lock)
  1729. __acquires(rq2->lock)
  1730. {
  1731. BUG_ON(!irqs_disabled());
  1732. if (rq1 == rq2) {
  1733. spin_lock(&rq1->lock);
  1734. __acquire(rq2->lock); /* Fake it out ;) */
  1735. } else {
  1736. if (rq1 < rq2) {
  1737. spin_lock(&rq1->lock);
  1738. spin_lock(&rq2->lock);
  1739. } else {
  1740. spin_lock(&rq2->lock);
  1741. spin_lock(&rq1->lock);
  1742. }
  1743. }
  1744. update_rq_clock(rq1);
  1745. update_rq_clock(rq2);
  1746. }
  1747. /*
  1748. * double_rq_unlock - safely unlock two runqueues
  1749. *
  1750. * Note this does not restore interrupts like task_rq_unlock,
  1751. * you need to do so manually after calling.
  1752. */
  1753. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1754. __releases(rq1->lock)
  1755. __releases(rq2->lock)
  1756. {
  1757. spin_unlock(&rq1->lock);
  1758. if (rq1 != rq2)
  1759. spin_unlock(&rq2->lock);
  1760. else
  1761. __release(rq2->lock);
  1762. }
  1763. /*
  1764. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1765. */
  1766. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1767. __releases(this_rq->lock)
  1768. __acquires(busiest->lock)
  1769. __acquires(this_rq->lock)
  1770. {
  1771. if (unlikely(!irqs_disabled())) {
  1772. /* printk() doesn't work good under rq->lock */
  1773. spin_unlock(&this_rq->lock);
  1774. BUG_ON(1);
  1775. }
  1776. if (unlikely(!spin_trylock(&busiest->lock))) {
  1777. if (busiest < this_rq) {
  1778. spin_unlock(&this_rq->lock);
  1779. spin_lock(&busiest->lock);
  1780. spin_lock(&this_rq->lock);
  1781. } else
  1782. spin_lock(&busiest->lock);
  1783. }
  1784. }
  1785. /*
  1786. * If dest_cpu is allowed for this process, migrate the task to it.
  1787. * This is accomplished by forcing the cpu_allowed mask to only
  1788. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1789. * the cpu_allowed mask is restored.
  1790. */
  1791. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1792. {
  1793. struct migration_req req;
  1794. unsigned long flags;
  1795. struct rq *rq;
  1796. rq = task_rq_lock(p, &flags);
  1797. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1798. || unlikely(cpu_is_offline(dest_cpu)))
  1799. goto out;
  1800. /* force the process onto the specified CPU */
  1801. if (migrate_task(p, dest_cpu, &req)) {
  1802. /* Need to wait for migration thread (might exit: take ref). */
  1803. struct task_struct *mt = rq->migration_thread;
  1804. get_task_struct(mt);
  1805. task_rq_unlock(rq, &flags);
  1806. wake_up_process(mt);
  1807. put_task_struct(mt);
  1808. wait_for_completion(&req.done);
  1809. return;
  1810. }
  1811. out:
  1812. task_rq_unlock(rq, &flags);
  1813. }
  1814. /*
  1815. * sched_exec - execve() is a valuable balancing opportunity, because at
  1816. * this point the task has the smallest effective memory and cache footprint.
  1817. */
  1818. void sched_exec(void)
  1819. {
  1820. int new_cpu, this_cpu = get_cpu();
  1821. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1822. put_cpu();
  1823. if (new_cpu != this_cpu)
  1824. sched_migrate_task(current, new_cpu);
  1825. }
  1826. /*
  1827. * pull_task - move a task from a remote runqueue to the local runqueue.
  1828. * Both runqueues must be locked.
  1829. */
  1830. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1831. struct rq *this_rq, int this_cpu)
  1832. {
  1833. deactivate_task(src_rq, p, 0);
  1834. set_task_cpu(p, this_cpu);
  1835. activate_task(this_rq, p, 0);
  1836. /*
  1837. * Note that idle threads have a prio of MAX_PRIO, for this test
  1838. * to be always true for them.
  1839. */
  1840. check_preempt_curr(this_rq, p);
  1841. }
  1842. /*
  1843. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1844. */
  1845. static
  1846. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1847. struct sched_domain *sd, enum cpu_idle_type idle,
  1848. int *all_pinned)
  1849. {
  1850. /*
  1851. * We do not migrate tasks that are:
  1852. * 1) running (obviously), or
  1853. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1854. * 3) are cache-hot on their current CPU.
  1855. */
  1856. if (!cpu_isset(this_cpu, p->cpus_allowed))
  1857. return 0;
  1858. *all_pinned = 0;
  1859. if (task_running(rq, p))
  1860. return 0;
  1861. /*
  1862. * Aggressive migration if too many balance attempts have failed:
  1863. */
  1864. if (sd->nr_balance_failed > sd->cache_nice_tries)
  1865. return 1;
  1866. return 1;
  1867. }
  1868. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1869. unsigned long max_nr_move, unsigned long max_load_move,
  1870. struct sched_domain *sd, enum cpu_idle_type idle,
  1871. int *all_pinned, unsigned long *load_moved,
  1872. int *this_best_prio, struct rq_iterator *iterator)
  1873. {
  1874. int pulled = 0, pinned = 0, skip_for_load;
  1875. struct task_struct *p;
  1876. long rem_load_move = max_load_move;
  1877. if (max_nr_move == 0 || max_load_move == 0)
  1878. goto out;
  1879. pinned = 1;
  1880. /*
  1881. * Start the load-balancing iterator:
  1882. */
  1883. p = iterator->start(iterator->arg);
  1884. next:
  1885. if (!p)
  1886. goto out;
  1887. /*
  1888. * To help distribute high priority tasks accross CPUs we don't
  1889. * skip a task if it will be the highest priority task (i.e. smallest
  1890. * prio value) on its new queue regardless of its load weight
  1891. */
  1892. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  1893. SCHED_LOAD_SCALE_FUZZ;
  1894. if ((skip_for_load && p->prio >= *this_best_prio) ||
  1895. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  1896. p = iterator->next(iterator->arg);
  1897. goto next;
  1898. }
  1899. pull_task(busiest, p, this_rq, this_cpu);
  1900. pulled++;
  1901. rem_load_move -= p->se.load.weight;
  1902. /*
  1903. * We only want to steal up to the prescribed number of tasks
  1904. * and the prescribed amount of weighted load.
  1905. */
  1906. if (pulled < max_nr_move && rem_load_move > 0) {
  1907. if (p->prio < *this_best_prio)
  1908. *this_best_prio = p->prio;
  1909. p = iterator->next(iterator->arg);
  1910. goto next;
  1911. }
  1912. out:
  1913. /*
  1914. * Right now, this is the only place pull_task() is called,
  1915. * so we can safely collect pull_task() stats here rather than
  1916. * inside pull_task().
  1917. */
  1918. schedstat_add(sd, lb_gained[idle], pulled);
  1919. if (all_pinned)
  1920. *all_pinned = pinned;
  1921. *load_moved = max_load_move - rem_load_move;
  1922. return pulled;
  1923. }
  1924. /*
  1925. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1926. * this_rq, as part of a balancing operation within domain "sd".
  1927. * Returns 1 if successful and 0 otherwise.
  1928. *
  1929. * Called with both runqueues locked.
  1930. */
  1931. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1932. unsigned long max_load_move,
  1933. struct sched_domain *sd, enum cpu_idle_type idle,
  1934. int *all_pinned)
  1935. {
  1936. struct sched_class *class = sched_class_highest;
  1937. unsigned long total_load_moved = 0;
  1938. int this_best_prio = this_rq->curr->prio;
  1939. do {
  1940. total_load_moved +=
  1941. class->load_balance(this_rq, this_cpu, busiest,
  1942. ULONG_MAX, max_load_move - total_load_moved,
  1943. sd, idle, all_pinned, &this_best_prio);
  1944. class = class->next;
  1945. } while (class && max_load_move > total_load_moved);
  1946. return total_load_moved > 0;
  1947. }
  1948. /*
  1949. * move_one_task tries to move exactly one task from busiest to this_rq, as
  1950. * part of active balancing operations within "domain".
  1951. * Returns 1 if successful and 0 otherwise.
  1952. *
  1953. * Called with both runqueues locked.
  1954. */
  1955. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1956. struct sched_domain *sd, enum cpu_idle_type idle)
  1957. {
  1958. struct sched_class *class;
  1959. int this_best_prio = MAX_PRIO;
  1960. for (class = sched_class_highest; class; class = class->next)
  1961. if (class->load_balance(this_rq, this_cpu, busiest,
  1962. 1, ULONG_MAX, sd, idle, NULL,
  1963. &this_best_prio))
  1964. return 1;
  1965. return 0;
  1966. }
  1967. /*
  1968. * find_busiest_group finds and returns the busiest CPU group within the
  1969. * domain. It calculates and returns the amount of weighted load which
  1970. * should be moved to restore balance via the imbalance parameter.
  1971. */
  1972. static struct sched_group *
  1973. find_busiest_group(struct sched_domain *sd, int this_cpu,
  1974. unsigned long *imbalance, enum cpu_idle_type idle,
  1975. int *sd_idle, cpumask_t *cpus, int *balance)
  1976. {
  1977. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  1978. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  1979. unsigned long max_pull;
  1980. unsigned long busiest_load_per_task, busiest_nr_running;
  1981. unsigned long this_load_per_task, this_nr_running;
  1982. int load_idx;
  1983. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1984. int power_savings_balance = 1;
  1985. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  1986. unsigned long min_nr_running = ULONG_MAX;
  1987. struct sched_group *group_min = NULL, *group_leader = NULL;
  1988. #endif
  1989. max_load = this_load = total_load = total_pwr = 0;
  1990. busiest_load_per_task = busiest_nr_running = 0;
  1991. this_load_per_task = this_nr_running = 0;
  1992. if (idle == CPU_NOT_IDLE)
  1993. load_idx = sd->busy_idx;
  1994. else if (idle == CPU_NEWLY_IDLE)
  1995. load_idx = sd->newidle_idx;
  1996. else
  1997. load_idx = sd->idle_idx;
  1998. do {
  1999. unsigned long load, group_capacity;
  2000. int local_group;
  2001. int i;
  2002. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2003. unsigned long sum_nr_running, sum_weighted_load;
  2004. local_group = cpu_isset(this_cpu, group->cpumask);
  2005. if (local_group)
  2006. balance_cpu = first_cpu(group->cpumask);
  2007. /* Tally up the load of all CPUs in the group */
  2008. sum_weighted_load = sum_nr_running = avg_load = 0;
  2009. for_each_cpu_mask(i, group->cpumask) {
  2010. struct rq *rq;
  2011. if (!cpu_isset(i, *cpus))
  2012. continue;
  2013. rq = cpu_rq(i);
  2014. if (*sd_idle && rq->nr_running)
  2015. *sd_idle = 0;
  2016. /* Bias balancing toward cpus of our domain */
  2017. if (local_group) {
  2018. if (idle_cpu(i) && !first_idle_cpu) {
  2019. first_idle_cpu = 1;
  2020. balance_cpu = i;
  2021. }
  2022. load = target_load(i, load_idx);
  2023. } else
  2024. load = source_load(i, load_idx);
  2025. avg_load += load;
  2026. sum_nr_running += rq->nr_running;
  2027. sum_weighted_load += weighted_cpuload(i);
  2028. }
  2029. /*
  2030. * First idle cpu or the first cpu(busiest) in this sched group
  2031. * is eligible for doing load balancing at this and above
  2032. * domains. In the newly idle case, we will allow all the cpu's
  2033. * to do the newly idle load balance.
  2034. */
  2035. if (idle != CPU_NEWLY_IDLE && local_group &&
  2036. balance_cpu != this_cpu && balance) {
  2037. *balance = 0;
  2038. goto ret;
  2039. }
  2040. total_load += avg_load;
  2041. total_pwr += group->__cpu_power;
  2042. /* Adjust by relative CPU power of the group */
  2043. avg_load = sg_div_cpu_power(group,
  2044. avg_load * SCHED_LOAD_SCALE);
  2045. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2046. if (local_group) {
  2047. this_load = avg_load;
  2048. this = group;
  2049. this_nr_running = sum_nr_running;
  2050. this_load_per_task = sum_weighted_load;
  2051. } else if (avg_load > max_load &&
  2052. sum_nr_running > group_capacity) {
  2053. max_load = avg_load;
  2054. busiest = group;
  2055. busiest_nr_running = sum_nr_running;
  2056. busiest_load_per_task = sum_weighted_load;
  2057. }
  2058. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2059. /*
  2060. * Busy processors will not participate in power savings
  2061. * balance.
  2062. */
  2063. if (idle == CPU_NOT_IDLE ||
  2064. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2065. goto group_next;
  2066. /*
  2067. * If the local group is idle or completely loaded
  2068. * no need to do power savings balance at this domain
  2069. */
  2070. if (local_group && (this_nr_running >= group_capacity ||
  2071. !this_nr_running))
  2072. power_savings_balance = 0;
  2073. /*
  2074. * If a group is already running at full capacity or idle,
  2075. * don't include that group in power savings calculations
  2076. */
  2077. if (!power_savings_balance || sum_nr_running >= group_capacity
  2078. || !sum_nr_running)
  2079. goto group_next;
  2080. /*
  2081. * Calculate the group which has the least non-idle load.
  2082. * This is the group from where we need to pick up the load
  2083. * for saving power
  2084. */
  2085. if ((sum_nr_running < min_nr_running) ||
  2086. (sum_nr_running == min_nr_running &&
  2087. first_cpu(group->cpumask) <
  2088. first_cpu(group_min->cpumask))) {
  2089. group_min = group;
  2090. min_nr_running = sum_nr_running;
  2091. min_load_per_task = sum_weighted_load /
  2092. sum_nr_running;
  2093. }
  2094. /*
  2095. * Calculate the group which is almost near its
  2096. * capacity but still has some space to pick up some load
  2097. * from other group and save more power
  2098. */
  2099. if (sum_nr_running <= group_capacity - 1) {
  2100. if (sum_nr_running > leader_nr_running ||
  2101. (sum_nr_running == leader_nr_running &&
  2102. first_cpu(group->cpumask) >
  2103. first_cpu(group_leader->cpumask))) {
  2104. group_leader = group;
  2105. leader_nr_running = sum_nr_running;
  2106. }
  2107. }
  2108. group_next:
  2109. #endif
  2110. group = group->next;
  2111. } while (group != sd->groups);
  2112. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2113. goto out_balanced;
  2114. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2115. if (this_load >= avg_load ||
  2116. 100*max_load <= sd->imbalance_pct*this_load)
  2117. goto out_balanced;
  2118. busiest_load_per_task /= busiest_nr_running;
  2119. /*
  2120. * We're trying to get all the cpus to the average_load, so we don't
  2121. * want to push ourselves above the average load, nor do we wish to
  2122. * reduce the max loaded cpu below the average load, as either of these
  2123. * actions would just result in more rebalancing later, and ping-pong
  2124. * tasks around. Thus we look for the minimum possible imbalance.
  2125. * Negative imbalances (*we* are more loaded than anyone else) will
  2126. * be counted as no imbalance for these purposes -- we can't fix that
  2127. * by pulling tasks to us. Be careful of negative numbers as they'll
  2128. * appear as very large values with unsigned longs.
  2129. */
  2130. if (max_load <= busiest_load_per_task)
  2131. goto out_balanced;
  2132. /*
  2133. * In the presence of smp nice balancing, certain scenarios can have
  2134. * max load less than avg load(as we skip the groups at or below
  2135. * its cpu_power, while calculating max_load..)
  2136. */
  2137. if (max_load < avg_load) {
  2138. *imbalance = 0;
  2139. goto small_imbalance;
  2140. }
  2141. /* Don't want to pull so many tasks that a group would go idle */
  2142. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2143. /* How much load to actually move to equalise the imbalance */
  2144. *imbalance = min(max_pull * busiest->__cpu_power,
  2145. (avg_load - this_load) * this->__cpu_power)
  2146. / SCHED_LOAD_SCALE;
  2147. /*
  2148. * if *imbalance is less than the average load per runnable task
  2149. * there is no gaurantee that any tasks will be moved so we'll have
  2150. * a think about bumping its value to force at least one task to be
  2151. * moved
  2152. */
  2153. if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
  2154. unsigned long tmp, pwr_now, pwr_move;
  2155. unsigned int imbn;
  2156. small_imbalance:
  2157. pwr_move = pwr_now = 0;
  2158. imbn = 2;
  2159. if (this_nr_running) {
  2160. this_load_per_task /= this_nr_running;
  2161. if (busiest_load_per_task > this_load_per_task)
  2162. imbn = 1;
  2163. } else
  2164. this_load_per_task = SCHED_LOAD_SCALE;
  2165. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2166. busiest_load_per_task * imbn) {
  2167. *imbalance = busiest_load_per_task;
  2168. return busiest;
  2169. }
  2170. /*
  2171. * OK, we don't have enough imbalance to justify moving tasks,
  2172. * however we may be able to increase total CPU power used by
  2173. * moving them.
  2174. */
  2175. pwr_now += busiest->__cpu_power *
  2176. min(busiest_load_per_task, max_load);
  2177. pwr_now += this->__cpu_power *
  2178. min(this_load_per_task, this_load);
  2179. pwr_now /= SCHED_LOAD_SCALE;
  2180. /* Amount of load we'd subtract */
  2181. tmp = sg_div_cpu_power(busiest,
  2182. busiest_load_per_task * SCHED_LOAD_SCALE);
  2183. if (max_load > tmp)
  2184. pwr_move += busiest->__cpu_power *
  2185. min(busiest_load_per_task, max_load - tmp);
  2186. /* Amount of load we'd add */
  2187. if (max_load * busiest->__cpu_power <
  2188. busiest_load_per_task * SCHED_LOAD_SCALE)
  2189. tmp = sg_div_cpu_power(this,
  2190. max_load * busiest->__cpu_power);
  2191. else
  2192. tmp = sg_div_cpu_power(this,
  2193. busiest_load_per_task * SCHED_LOAD_SCALE);
  2194. pwr_move += this->__cpu_power *
  2195. min(this_load_per_task, this_load + tmp);
  2196. pwr_move /= SCHED_LOAD_SCALE;
  2197. /* Move if we gain throughput */
  2198. if (pwr_move <= pwr_now)
  2199. goto out_balanced;
  2200. *imbalance = busiest_load_per_task;
  2201. }
  2202. return busiest;
  2203. out_balanced:
  2204. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2205. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2206. goto ret;
  2207. if (this == group_leader && group_leader != group_min) {
  2208. *imbalance = min_load_per_task;
  2209. return group_min;
  2210. }
  2211. #endif
  2212. ret:
  2213. *imbalance = 0;
  2214. return NULL;
  2215. }
  2216. /*
  2217. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2218. */
  2219. static struct rq *
  2220. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2221. unsigned long imbalance, cpumask_t *cpus)
  2222. {
  2223. struct rq *busiest = NULL, *rq;
  2224. unsigned long max_load = 0;
  2225. int i;
  2226. for_each_cpu_mask(i, group->cpumask) {
  2227. unsigned long wl;
  2228. if (!cpu_isset(i, *cpus))
  2229. continue;
  2230. rq = cpu_rq(i);
  2231. wl = weighted_cpuload(i);
  2232. if (rq->nr_running == 1 && wl > imbalance)
  2233. continue;
  2234. if (wl > max_load) {
  2235. max_load = wl;
  2236. busiest = rq;
  2237. }
  2238. }
  2239. return busiest;
  2240. }
  2241. /*
  2242. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2243. * so long as it is large enough.
  2244. */
  2245. #define MAX_PINNED_INTERVAL 512
  2246. /*
  2247. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2248. * tasks if there is an imbalance.
  2249. */
  2250. static int load_balance(int this_cpu, struct rq *this_rq,
  2251. struct sched_domain *sd, enum cpu_idle_type idle,
  2252. int *balance)
  2253. {
  2254. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2255. struct sched_group *group;
  2256. unsigned long imbalance;
  2257. struct rq *busiest;
  2258. cpumask_t cpus = CPU_MASK_ALL;
  2259. unsigned long flags;
  2260. /*
  2261. * When power savings policy is enabled for the parent domain, idle
  2262. * sibling can pick up load irrespective of busy siblings. In this case,
  2263. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2264. * portraying it as CPU_NOT_IDLE.
  2265. */
  2266. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2267. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2268. sd_idle = 1;
  2269. schedstat_inc(sd, lb_cnt[idle]);
  2270. redo:
  2271. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2272. &cpus, balance);
  2273. if (*balance == 0)
  2274. goto out_balanced;
  2275. if (!group) {
  2276. schedstat_inc(sd, lb_nobusyg[idle]);
  2277. goto out_balanced;
  2278. }
  2279. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2280. if (!busiest) {
  2281. schedstat_inc(sd, lb_nobusyq[idle]);
  2282. goto out_balanced;
  2283. }
  2284. BUG_ON(busiest == this_rq);
  2285. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2286. ld_moved = 0;
  2287. if (busiest->nr_running > 1) {
  2288. /*
  2289. * Attempt to move tasks. If find_busiest_group has found
  2290. * an imbalance but busiest->nr_running <= 1, the group is
  2291. * still unbalanced. ld_moved simply stays zero, so it is
  2292. * correctly treated as an imbalance.
  2293. */
  2294. local_irq_save(flags);
  2295. double_rq_lock(this_rq, busiest);
  2296. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2297. imbalance, sd, idle, &all_pinned);
  2298. double_rq_unlock(this_rq, busiest);
  2299. local_irq_restore(flags);
  2300. /*
  2301. * some other cpu did the load balance for us.
  2302. */
  2303. if (ld_moved && this_cpu != smp_processor_id())
  2304. resched_cpu(this_cpu);
  2305. /* All tasks on this runqueue were pinned by CPU affinity */
  2306. if (unlikely(all_pinned)) {
  2307. cpu_clear(cpu_of(busiest), cpus);
  2308. if (!cpus_empty(cpus))
  2309. goto redo;
  2310. goto out_balanced;
  2311. }
  2312. }
  2313. if (!ld_moved) {
  2314. schedstat_inc(sd, lb_failed[idle]);
  2315. sd->nr_balance_failed++;
  2316. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2317. spin_lock_irqsave(&busiest->lock, flags);
  2318. /* don't kick the migration_thread, if the curr
  2319. * task on busiest cpu can't be moved to this_cpu
  2320. */
  2321. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2322. spin_unlock_irqrestore(&busiest->lock, flags);
  2323. all_pinned = 1;
  2324. goto out_one_pinned;
  2325. }
  2326. if (!busiest->active_balance) {
  2327. busiest->active_balance = 1;
  2328. busiest->push_cpu = this_cpu;
  2329. active_balance = 1;
  2330. }
  2331. spin_unlock_irqrestore(&busiest->lock, flags);
  2332. if (active_balance)
  2333. wake_up_process(busiest->migration_thread);
  2334. /*
  2335. * We've kicked active balancing, reset the failure
  2336. * counter.
  2337. */
  2338. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2339. }
  2340. } else
  2341. sd->nr_balance_failed = 0;
  2342. if (likely(!active_balance)) {
  2343. /* We were unbalanced, so reset the balancing interval */
  2344. sd->balance_interval = sd->min_interval;
  2345. } else {
  2346. /*
  2347. * If we've begun active balancing, start to back off. This
  2348. * case may not be covered by the all_pinned logic if there
  2349. * is only 1 task on the busy runqueue (because we don't call
  2350. * move_tasks).
  2351. */
  2352. if (sd->balance_interval < sd->max_interval)
  2353. sd->balance_interval *= 2;
  2354. }
  2355. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2356. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2357. return -1;
  2358. return ld_moved;
  2359. out_balanced:
  2360. schedstat_inc(sd, lb_balanced[idle]);
  2361. sd->nr_balance_failed = 0;
  2362. out_one_pinned:
  2363. /* tune up the balancing interval */
  2364. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2365. (sd->balance_interval < sd->max_interval))
  2366. sd->balance_interval *= 2;
  2367. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2368. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2369. return -1;
  2370. return 0;
  2371. }
  2372. /*
  2373. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2374. * tasks if there is an imbalance.
  2375. *
  2376. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2377. * this_rq is locked.
  2378. */
  2379. static int
  2380. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2381. {
  2382. struct sched_group *group;
  2383. struct rq *busiest = NULL;
  2384. unsigned long imbalance;
  2385. int ld_moved = 0;
  2386. int sd_idle = 0;
  2387. int all_pinned = 0;
  2388. cpumask_t cpus = CPU_MASK_ALL;
  2389. /*
  2390. * When power savings policy is enabled for the parent domain, idle
  2391. * sibling can pick up load irrespective of busy siblings. In this case,
  2392. * let the state of idle sibling percolate up as IDLE, instead of
  2393. * portraying it as CPU_NOT_IDLE.
  2394. */
  2395. if (sd->flags & SD_SHARE_CPUPOWER &&
  2396. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2397. sd_idle = 1;
  2398. schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
  2399. redo:
  2400. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2401. &sd_idle, &cpus, NULL);
  2402. if (!group) {
  2403. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2404. goto out_balanced;
  2405. }
  2406. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2407. &cpus);
  2408. if (!busiest) {
  2409. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2410. goto out_balanced;
  2411. }
  2412. BUG_ON(busiest == this_rq);
  2413. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2414. ld_moved = 0;
  2415. if (busiest->nr_running > 1) {
  2416. /* Attempt to move tasks */
  2417. double_lock_balance(this_rq, busiest);
  2418. /* this_rq->clock is already updated */
  2419. update_rq_clock(busiest);
  2420. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2421. imbalance, sd, CPU_NEWLY_IDLE,
  2422. &all_pinned);
  2423. spin_unlock(&busiest->lock);
  2424. if (unlikely(all_pinned)) {
  2425. cpu_clear(cpu_of(busiest), cpus);
  2426. if (!cpus_empty(cpus))
  2427. goto redo;
  2428. }
  2429. }
  2430. if (!ld_moved) {
  2431. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2432. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2433. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2434. return -1;
  2435. } else
  2436. sd->nr_balance_failed = 0;
  2437. return ld_moved;
  2438. out_balanced:
  2439. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2440. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2441. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2442. return -1;
  2443. sd->nr_balance_failed = 0;
  2444. return 0;
  2445. }
  2446. /*
  2447. * idle_balance is called by schedule() if this_cpu is about to become
  2448. * idle. Attempts to pull tasks from other CPUs.
  2449. */
  2450. static void idle_balance(int this_cpu, struct rq *this_rq)
  2451. {
  2452. struct sched_domain *sd;
  2453. int pulled_task = -1;
  2454. unsigned long next_balance = jiffies + HZ;
  2455. for_each_domain(this_cpu, sd) {
  2456. unsigned long interval;
  2457. if (!(sd->flags & SD_LOAD_BALANCE))
  2458. continue;
  2459. if (sd->flags & SD_BALANCE_NEWIDLE)
  2460. /* If we've pulled tasks over stop searching: */
  2461. pulled_task = load_balance_newidle(this_cpu,
  2462. this_rq, sd);
  2463. interval = msecs_to_jiffies(sd->balance_interval);
  2464. if (time_after(next_balance, sd->last_balance + interval))
  2465. next_balance = sd->last_balance + interval;
  2466. if (pulled_task)
  2467. break;
  2468. }
  2469. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2470. /*
  2471. * We are going idle. next_balance may be set based on
  2472. * a busy processor. So reset next_balance.
  2473. */
  2474. this_rq->next_balance = next_balance;
  2475. }
  2476. }
  2477. /*
  2478. * active_load_balance is run by migration threads. It pushes running tasks
  2479. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2480. * running on each physical CPU where possible, and avoids physical /
  2481. * logical imbalances.
  2482. *
  2483. * Called with busiest_rq locked.
  2484. */
  2485. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2486. {
  2487. int target_cpu = busiest_rq->push_cpu;
  2488. struct sched_domain *sd;
  2489. struct rq *target_rq;
  2490. /* Is there any task to move? */
  2491. if (busiest_rq->nr_running <= 1)
  2492. return;
  2493. target_rq = cpu_rq(target_cpu);
  2494. /*
  2495. * This condition is "impossible", if it occurs
  2496. * we need to fix it. Originally reported by
  2497. * Bjorn Helgaas on a 128-cpu setup.
  2498. */
  2499. BUG_ON(busiest_rq == target_rq);
  2500. /* move a task from busiest_rq to target_rq */
  2501. double_lock_balance(busiest_rq, target_rq);
  2502. update_rq_clock(busiest_rq);
  2503. update_rq_clock(target_rq);
  2504. /* Search for an sd spanning us and the target CPU. */
  2505. for_each_domain(target_cpu, sd) {
  2506. if ((sd->flags & SD_LOAD_BALANCE) &&
  2507. cpu_isset(busiest_cpu, sd->span))
  2508. break;
  2509. }
  2510. if (likely(sd)) {
  2511. schedstat_inc(sd, alb_cnt);
  2512. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2513. sd, CPU_IDLE))
  2514. schedstat_inc(sd, alb_pushed);
  2515. else
  2516. schedstat_inc(sd, alb_failed);
  2517. }
  2518. spin_unlock(&target_rq->lock);
  2519. }
  2520. #ifdef CONFIG_NO_HZ
  2521. static struct {
  2522. atomic_t load_balancer;
  2523. cpumask_t cpu_mask;
  2524. } nohz ____cacheline_aligned = {
  2525. .load_balancer = ATOMIC_INIT(-1),
  2526. .cpu_mask = CPU_MASK_NONE,
  2527. };
  2528. /*
  2529. * This routine will try to nominate the ilb (idle load balancing)
  2530. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2531. * load balancing on behalf of all those cpus. If all the cpus in the system
  2532. * go into this tickless mode, then there will be no ilb owner (as there is
  2533. * no need for one) and all the cpus will sleep till the next wakeup event
  2534. * arrives...
  2535. *
  2536. * For the ilb owner, tick is not stopped. And this tick will be used
  2537. * for idle load balancing. ilb owner will still be part of
  2538. * nohz.cpu_mask..
  2539. *
  2540. * While stopping the tick, this cpu will become the ilb owner if there
  2541. * is no other owner. And will be the owner till that cpu becomes busy
  2542. * or if all cpus in the system stop their ticks at which point
  2543. * there is no need for ilb owner.
  2544. *
  2545. * When the ilb owner becomes busy, it nominates another owner, during the
  2546. * next busy scheduler_tick()
  2547. */
  2548. int select_nohz_load_balancer(int stop_tick)
  2549. {
  2550. int cpu = smp_processor_id();
  2551. if (stop_tick) {
  2552. cpu_set(cpu, nohz.cpu_mask);
  2553. cpu_rq(cpu)->in_nohz_recently = 1;
  2554. /*
  2555. * If we are going offline and still the leader, give up!
  2556. */
  2557. if (cpu_is_offline(cpu) &&
  2558. atomic_read(&nohz.load_balancer) == cpu) {
  2559. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2560. BUG();
  2561. return 0;
  2562. }
  2563. /* time for ilb owner also to sleep */
  2564. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2565. if (atomic_read(&nohz.load_balancer) == cpu)
  2566. atomic_set(&nohz.load_balancer, -1);
  2567. return 0;
  2568. }
  2569. if (atomic_read(&nohz.load_balancer) == -1) {
  2570. /* make me the ilb owner */
  2571. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2572. return 1;
  2573. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2574. return 1;
  2575. } else {
  2576. if (!cpu_isset(cpu, nohz.cpu_mask))
  2577. return 0;
  2578. cpu_clear(cpu, nohz.cpu_mask);
  2579. if (atomic_read(&nohz.load_balancer) == cpu)
  2580. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2581. BUG();
  2582. }
  2583. return 0;
  2584. }
  2585. #endif
  2586. static DEFINE_SPINLOCK(balancing);
  2587. /*
  2588. * It checks each scheduling domain to see if it is due to be balanced,
  2589. * and initiates a balancing operation if so.
  2590. *
  2591. * Balancing parameters are set up in arch_init_sched_domains.
  2592. */
  2593. static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2594. {
  2595. int balance = 1;
  2596. struct rq *rq = cpu_rq(cpu);
  2597. unsigned long interval;
  2598. struct sched_domain *sd;
  2599. /* Earliest time when we have to do rebalance again */
  2600. unsigned long next_balance = jiffies + 60*HZ;
  2601. for_each_domain(cpu, sd) {
  2602. if (!(sd->flags & SD_LOAD_BALANCE))
  2603. continue;
  2604. interval = sd->balance_interval;
  2605. if (idle != CPU_IDLE)
  2606. interval *= sd->busy_factor;
  2607. /* scale ms to jiffies */
  2608. interval = msecs_to_jiffies(interval);
  2609. if (unlikely(!interval))
  2610. interval = 1;
  2611. if (interval > HZ*NR_CPUS/10)
  2612. interval = HZ*NR_CPUS/10;
  2613. if (sd->flags & SD_SERIALIZE) {
  2614. if (!spin_trylock(&balancing))
  2615. goto out;
  2616. }
  2617. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2618. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2619. /*
  2620. * We've pulled tasks over so either we're no
  2621. * longer idle, or one of our SMT siblings is
  2622. * not idle.
  2623. */
  2624. idle = CPU_NOT_IDLE;
  2625. }
  2626. sd->last_balance = jiffies;
  2627. }
  2628. if (sd->flags & SD_SERIALIZE)
  2629. spin_unlock(&balancing);
  2630. out:
  2631. if (time_after(next_balance, sd->last_balance + interval))
  2632. next_balance = sd->last_balance + interval;
  2633. /*
  2634. * Stop the load balance at this level. There is another
  2635. * CPU in our sched group which is doing load balancing more
  2636. * actively.
  2637. */
  2638. if (!balance)
  2639. break;
  2640. }
  2641. rq->next_balance = next_balance;
  2642. }
  2643. /*
  2644. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2645. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2646. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2647. */
  2648. static void run_rebalance_domains(struct softirq_action *h)
  2649. {
  2650. int this_cpu = smp_processor_id();
  2651. struct rq *this_rq = cpu_rq(this_cpu);
  2652. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2653. CPU_IDLE : CPU_NOT_IDLE;
  2654. rebalance_domains(this_cpu, idle);
  2655. #ifdef CONFIG_NO_HZ
  2656. /*
  2657. * If this cpu is the owner for idle load balancing, then do the
  2658. * balancing on behalf of the other idle cpus whose ticks are
  2659. * stopped.
  2660. */
  2661. if (this_rq->idle_at_tick &&
  2662. atomic_read(&nohz.load_balancer) == this_cpu) {
  2663. cpumask_t cpus = nohz.cpu_mask;
  2664. struct rq *rq;
  2665. int balance_cpu;
  2666. cpu_clear(this_cpu, cpus);
  2667. for_each_cpu_mask(balance_cpu, cpus) {
  2668. /*
  2669. * If this cpu gets work to do, stop the load balancing
  2670. * work being done for other cpus. Next load
  2671. * balancing owner will pick it up.
  2672. */
  2673. if (need_resched())
  2674. break;
  2675. rebalance_domains(balance_cpu, SCHED_IDLE);
  2676. rq = cpu_rq(balance_cpu);
  2677. if (time_after(this_rq->next_balance, rq->next_balance))
  2678. this_rq->next_balance = rq->next_balance;
  2679. }
  2680. }
  2681. #endif
  2682. }
  2683. /*
  2684. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2685. *
  2686. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2687. * idle load balancing owner or decide to stop the periodic load balancing,
  2688. * if the whole system is idle.
  2689. */
  2690. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2691. {
  2692. #ifdef CONFIG_NO_HZ
  2693. /*
  2694. * If we were in the nohz mode recently and busy at the current
  2695. * scheduler tick, then check if we need to nominate new idle
  2696. * load balancer.
  2697. */
  2698. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2699. rq->in_nohz_recently = 0;
  2700. if (atomic_read(&nohz.load_balancer) == cpu) {
  2701. cpu_clear(cpu, nohz.cpu_mask);
  2702. atomic_set(&nohz.load_balancer, -1);
  2703. }
  2704. if (atomic_read(&nohz.load_balancer) == -1) {
  2705. /*
  2706. * simple selection for now: Nominate the
  2707. * first cpu in the nohz list to be the next
  2708. * ilb owner.
  2709. *
  2710. * TBD: Traverse the sched domains and nominate
  2711. * the nearest cpu in the nohz.cpu_mask.
  2712. */
  2713. int ilb = first_cpu(nohz.cpu_mask);
  2714. if (ilb != NR_CPUS)
  2715. resched_cpu(ilb);
  2716. }
  2717. }
  2718. /*
  2719. * If this cpu is idle and doing idle load balancing for all the
  2720. * cpus with ticks stopped, is it time for that to stop?
  2721. */
  2722. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2723. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2724. resched_cpu(cpu);
  2725. return;
  2726. }
  2727. /*
  2728. * If this cpu is idle and the idle load balancing is done by
  2729. * someone else, then no need raise the SCHED_SOFTIRQ
  2730. */
  2731. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2732. cpu_isset(cpu, nohz.cpu_mask))
  2733. return;
  2734. #endif
  2735. if (time_after_eq(jiffies, rq->next_balance))
  2736. raise_softirq(SCHED_SOFTIRQ);
  2737. }
  2738. #else /* CONFIG_SMP */
  2739. /*
  2740. * on UP we do not need to balance between CPUs:
  2741. */
  2742. static inline void idle_balance(int cpu, struct rq *rq)
  2743. {
  2744. }
  2745. /* Avoid "used but not defined" warning on UP */
  2746. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2747. unsigned long max_nr_move, unsigned long max_load_move,
  2748. struct sched_domain *sd, enum cpu_idle_type idle,
  2749. int *all_pinned, unsigned long *load_moved,
  2750. int *this_best_prio, struct rq_iterator *iterator)
  2751. {
  2752. *load_moved = 0;
  2753. return 0;
  2754. }
  2755. #endif
  2756. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2757. EXPORT_PER_CPU_SYMBOL(kstat);
  2758. /*
  2759. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2760. * that have not yet been banked in case the task is currently running.
  2761. */
  2762. unsigned long long task_sched_runtime(struct task_struct *p)
  2763. {
  2764. unsigned long flags;
  2765. u64 ns, delta_exec;
  2766. struct rq *rq;
  2767. rq = task_rq_lock(p, &flags);
  2768. ns = p->se.sum_exec_runtime;
  2769. if (rq->curr == p) {
  2770. update_rq_clock(rq);
  2771. delta_exec = rq->clock - p->se.exec_start;
  2772. if ((s64)delta_exec > 0)
  2773. ns += delta_exec;
  2774. }
  2775. task_rq_unlock(rq, &flags);
  2776. return ns;
  2777. }
  2778. /*
  2779. * Account user cpu time to a process.
  2780. * @p: the process that the cpu time gets accounted to
  2781. * @hardirq_offset: the offset to subtract from hardirq_count()
  2782. * @cputime: the cpu time spent in user space since the last update
  2783. */
  2784. void account_user_time(struct task_struct *p, cputime_t cputime)
  2785. {
  2786. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2787. cputime64_t tmp;
  2788. p->utime = cputime_add(p->utime, cputime);
  2789. /* Add user time to cpustat. */
  2790. tmp = cputime_to_cputime64(cputime);
  2791. if (TASK_NICE(p) > 0)
  2792. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2793. else
  2794. cpustat->user = cputime64_add(cpustat->user, tmp);
  2795. }
  2796. /*
  2797. * Account system cpu time to a process.
  2798. * @p: the process that the cpu time gets accounted to
  2799. * @hardirq_offset: the offset to subtract from hardirq_count()
  2800. * @cputime: the cpu time spent in kernel space since the last update
  2801. */
  2802. void account_system_time(struct task_struct *p, int hardirq_offset,
  2803. cputime_t cputime)
  2804. {
  2805. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2806. struct rq *rq = this_rq();
  2807. cputime64_t tmp;
  2808. p->stime = cputime_add(p->stime, cputime);
  2809. /* Add system time to cpustat. */
  2810. tmp = cputime_to_cputime64(cputime);
  2811. if (hardirq_count() - hardirq_offset)
  2812. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2813. else if (softirq_count())
  2814. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2815. else if (p != rq->idle)
  2816. cpustat->system = cputime64_add(cpustat->system, tmp);
  2817. else if (atomic_read(&rq->nr_iowait) > 0)
  2818. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2819. else
  2820. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2821. /* Account for system time used */
  2822. acct_update_integrals(p);
  2823. }
  2824. /*
  2825. * Account for involuntary wait time.
  2826. * @p: the process from which the cpu time has been stolen
  2827. * @steal: the cpu time spent in involuntary wait
  2828. */
  2829. void account_steal_time(struct task_struct *p, cputime_t steal)
  2830. {
  2831. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2832. cputime64_t tmp = cputime_to_cputime64(steal);
  2833. struct rq *rq = this_rq();
  2834. if (p == rq->idle) {
  2835. p->stime = cputime_add(p->stime, steal);
  2836. if (atomic_read(&rq->nr_iowait) > 0)
  2837. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2838. else
  2839. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2840. } else
  2841. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2842. }
  2843. /*
  2844. * This function gets called by the timer code, with HZ frequency.
  2845. * We call it with interrupts disabled.
  2846. *
  2847. * It also gets called by the fork code, when changing the parent's
  2848. * timeslices.
  2849. */
  2850. void scheduler_tick(void)
  2851. {
  2852. int cpu = smp_processor_id();
  2853. struct rq *rq = cpu_rq(cpu);
  2854. struct task_struct *curr = rq->curr;
  2855. spin_lock(&rq->lock);
  2856. __update_rq_clock(rq);
  2857. update_cpu_load(rq);
  2858. if (curr != rq->idle) /* FIXME: needed? */
  2859. curr->sched_class->task_tick(rq, curr);
  2860. spin_unlock(&rq->lock);
  2861. #ifdef CONFIG_SMP
  2862. rq->idle_at_tick = idle_cpu(cpu);
  2863. trigger_load_balance(rq, cpu);
  2864. #endif
  2865. }
  2866. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  2867. void fastcall add_preempt_count(int val)
  2868. {
  2869. /*
  2870. * Underflow?
  2871. */
  2872. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2873. return;
  2874. preempt_count() += val;
  2875. /*
  2876. * Spinlock count overflowing soon?
  2877. */
  2878. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2879. PREEMPT_MASK - 10);
  2880. }
  2881. EXPORT_SYMBOL(add_preempt_count);
  2882. void fastcall sub_preempt_count(int val)
  2883. {
  2884. /*
  2885. * Underflow?
  2886. */
  2887. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2888. return;
  2889. /*
  2890. * Is the spinlock portion underflowing?
  2891. */
  2892. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2893. !(preempt_count() & PREEMPT_MASK)))
  2894. return;
  2895. preempt_count() -= val;
  2896. }
  2897. EXPORT_SYMBOL(sub_preempt_count);
  2898. #endif
  2899. /*
  2900. * Print scheduling while atomic bug:
  2901. */
  2902. static noinline void __schedule_bug(struct task_struct *prev)
  2903. {
  2904. printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
  2905. prev->comm, preempt_count(), prev->pid);
  2906. debug_show_held_locks(prev);
  2907. if (irqs_disabled())
  2908. print_irqtrace_events(prev);
  2909. dump_stack();
  2910. }
  2911. /*
  2912. * Various schedule()-time debugging checks and statistics:
  2913. */
  2914. static inline void schedule_debug(struct task_struct *prev)
  2915. {
  2916. /*
  2917. * Test if we are atomic. Since do_exit() needs to call into
  2918. * schedule() atomically, we ignore that path for now.
  2919. * Otherwise, whine if we are scheduling when we should not be.
  2920. */
  2921. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  2922. __schedule_bug(prev);
  2923. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2924. schedstat_inc(this_rq(), sched_cnt);
  2925. }
  2926. /*
  2927. * Pick up the highest-prio task:
  2928. */
  2929. static inline struct task_struct *
  2930. pick_next_task(struct rq *rq, struct task_struct *prev)
  2931. {
  2932. struct sched_class *class;
  2933. struct task_struct *p;
  2934. /*
  2935. * Optimization: we know that if all tasks are in
  2936. * the fair class we can call that function directly:
  2937. */
  2938. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  2939. p = fair_sched_class.pick_next_task(rq);
  2940. if (likely(p))
  2941. return p;
  2942. }
  2943. class = sched_class_highest;
  2944. for ( ; ; ) {
  2945. p = class->pick_next_task(rq);
  2946. if (p)
  2947. return p;
  2948. /*
  2949. * Will never be NULL as the idle class always
  2950. * returns a non-NULL p:
  2951. */
  2952. class = class->next;
  2953. }
  2954. }
  2955. /*
  2956. * schedule() is the main scheduler function.
  2957. */
  2958. asmlinkage void __sched schedule(void)
  2959. {
  2960. struct task_struct *prev, *next;
  2961. long *switch_count;
  2962. struct rq *rq;
  2963. int cpu;
  2964. need_resched:
  2965. preempt_disable();
  2966. cpu = smp_processor_id();
  2967. rq = cpu_rq(cpu);
  2968. rcu_qsctr_inc(cpu);
  2969. prev = rq->curr;
  2970. switch_count = &prev->nivcsw;
  2971. release_kernel_lock(prev);
  2972. need_resched_nonpreemptible:
  2973. schedule_debug(prev);
  2974. spin_lock_irq(&rq->lock);
  2975. clear_tsk_need_resched(prev);
  2976. __update_rq_clock(rq);
  2977. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2978. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  2979. unlikely(signal_pending(prev)))) {
  2980. prev->state = TASK_RUNNING;
  2981. } else {
  2982. deactivate_task(rq, prev, 1);
  2983. }
  2984. switch_count = &prev->nvcsw;
  2985. }
  2986. if (unlikely(!rq->nr_running))
  2987. idle_balance(cpu, rq);
  2988. prev->sched_class->put_prev_task(rq, prev);
  2989. next = pick_next_task(rq, prev);
  2990. sched_info_switch(prev, next);
  2991. if (likely(prev != next)) {
  2992. rq->nr_switches++;
  2993. rq->curr = next;
  2994. ++*switch_count;
  2995. context_switch(rq, prev, next); /* unlocks the rq */
  2996. } else
  2997. spin_unlock_irq(&rq->lock);
  2998. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  2999. cpu = smp_processor_id();
  3000. rq = cpu_rq(cpu);
  3001. goto need_resched_nonpreemptible;
  3002. }
  3003. preempt_enable_no_resched();
  3004. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3005. goto need_resched;
  3006. }
  3007. EXPORT_SYMBOL(schedule);
  3008. #ifdef CONFIG_PREEMPT
  3009. /*
  3010. * this is the entry point to schedule() from in-kernel preemption
  3011. * off of preempt_enable. Kernel preemptions off return from interrupt
  3012. * occur there and call schedule directly.
  3013. */
  3014. asmlinkage void __sched preempt_schedule(void)
  3015. {
  3016. struct thread_info *ti = current_thread_info();
  3017. #ifdef CONFIG_PREEMPT_BKL
  3018. struct task_struct *task = current;
  3019. int saved_lock_depth;
  3020. #endif
  3021. /*
  3022. * If there is a non-zero preempt_count or interrupts are disabled,
  3023. * we do not want to preempt the current task. Just return..
  3024. */
  3025. if (likely(ti->preempt_count || irqs_disabled()))
  3026. return;
  3027. need_resched:
  3028. add_preempt_count(PREEMPT_ACTIVE);
  3029. /*
  3030. * We keep the big kernel semaphore locked, but we
  3031. * clear ->lock_depth so that schedule() doesnt
  3032. * auto-release the semaphore:
  3033. */
  3034. #ifdef CONFIG_PREEMPT_BKL
  3035. saved_lock_depth = task->lock_depth;
  3036. task->lock_depth = -1;
  3037. #endif
  3038. schedule();
  3039. #ifdef CONFIG_PREEMPT_BKL
  3040. task->lock_depth = saved_lock_depth;
  3041. #endif
  3042. sub_preempt_count(PREEMPT_ACTIVE);
  3043. /* we could miss a preemption opportunity between schedule and now */
  3044. barrier();
  3045. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3046. goto need_resched;
  3047. }
  3048. EXPORT_SYMBOL(preempt_schedule);
  3049. /*
  3050. * this is the entry point to schedule() from kernel preemption
  3051. * off of irq context.
  3052. * Note, that this is called and return with irqs disabled. This will
  3053. * protect us against recursive calling from irq.
  3054. */
  3055. asmlinkage void __sched preempt_schedule_irq(void)
  3056. {
  3057. struct thread_info *ti = current_thread_info();
  3058. #ifdef CONFIG_PREEMPT_BKL
  3059. struct task_struct *task = current;
  3060. int saved_lock_depth;
  3061. #endif
  3062. /* Catch callers which need to be fixed */
  3063. BUG_ON(ti->preempt_count || !irqs_disabled());
  3064. need_resched:
  3065. add_preempt_count(PREEMPT_ACTIVE);
  3066. /*
  3067. * We keep the big kernel semaphore locked, but we
  3068. * clear ->lock_depth so that schedule() doesnt
  3069. * auto-release the semaphore:
  3070. */
  3071. #ifdef CONFIG_PREEMPT_BKL
  3072. saved_lock_depth = task->lock_depth;
  3073. task->lock_depth = -1;
  3074. #endif
  3075. local_irq_enable();
  3076. schedule();
  3077. local_irq_disable();
  3078. #ifdef CONFIG_PREEMPT_BKL
  3079. task->lock_depth = saved_lock_depth;
  3080. #endif
  3081. sub_preempt_count(PREEMPT_ACTIVE);
  3082. /* we could miss a preemption opportunity between schedule and now */
  3083. barrier();
  3084. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3085. goto need_resched;
  3086. }
  3087. #endif /* CONFIG_PREEMPT */
  3088. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3089. void *key)
  3090. {
  3091. return try_to_wake_up(curr->private, mode, sync);
  3092. }
  3093. EXPORT_SYMBOL(default_wake_function);
  3094. /*
  3095. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3096. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3097. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3098. *
  3099. * There are circumstances in which we can try to wake a task which has already
  3100. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3101. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3102. */
  3103. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3104. int nr_exclusive, int sync, void *key)
  3105. {
  3106. struct list_head *tmp, *next;
  3107. list_for_each_safe(tmp, next, &q->task_list) {
  3108. wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
  3109. unsigned flags = curr->flags;
  3110. if (curr->func(curr, mode, sync, key) &&
  3111. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3112. break;
  3113. }
  3114. }
  3115. /**
  3116. * __wake_up - wake up threads blocked on a waitqueue.
  3117. * @q: the waitqueue
  3118. * @mode: which threads
  3119. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3120. * @key: is directly passed to the wakeup function
  3121. */
  3122. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3123. int nr_exclusive, void *key)
  3124. {
  3125. unsigned long flags;
  3126. spin_lock_irqsave(&q->lock, flags);
  3127. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3128. spin_unlock_irqrestore(&q->lock, flags);
  3129. }
  3130. EXPORT_SYMBOL(__wake_up);
  3131. /*
  3132. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3133. */
  3134. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3135. {
  3136. __wake_up_common(q, mode, 1, 0, NULL);
  3137. }
  3138. /**
  3139. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3140. * @q: the waitqueue
  3141. * @mode: which threads
  3142. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3143. *
  3144. * The sync wakeup differs that the waker knows that it will schedule
  3145. * away soon, so while the target thread will be woken up, it will not
  3146. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3147. * with each other. This can prevent needless bouncing between CPUs.
  3148. *
  3149. * On UP it can prevent extra preemption.
  3150. */
  3151. void fastcall
  3152. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3153. {
  3154. unsigned long flags;
  3155. int sync = 1;
  3156. if (unlikely(!q))
  3157. return;
  3158. if (unlikely(!nr_exclusive))
  3159. sync = 0;
  3160. spin_lock_irqsave(&q->lock, flags);
  3161. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3162. spin_unlock_irqrestore(&q->lock, flags);
  3163. }
  3164. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3165. void fastcall complete(struct completion *x)
  3166. {
  3167. unsigned long flags;
  3168. spin_lock_irqsave(&x->wait.lock, flags);
  3169. x->done++;
  3170. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3171. 1, 0, NULL);
  3172. spin_unlock_irqrestore(&x->wait.lock, flags);
  3173. }
  3174. EXPORT_SYMBOL(complete);
  3175. void fastcall complete_all(struct completion *x)
  3176. {
  3177. unsigned long flags;
  3178. spin_lock_irqsave(&x->wait.lock, flags);
  3179. x->done += UINT_MAX/2;
  3180. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3181. 0, 0, NULL);
  3182. spin_unlock_irqrestore(&x->wait.lock, flags);
  3183. }
  3184. EXPORT_SYMBOL(complete_all);
  3185. void fastcall __sched wait_for_completion(struct completion *x)
  3186. {
  3187. might_sleep();
  3188. spin_lock_irq(&x->wait.lock);
  3189. if (!x->done) {
  3190. DECLARE_WAITQUEUE(wait, current);
  3191. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3192. __add_wait_queue_tail(&x->wait, &wait);
  3193. do {
  3194. __set_current_state(TASK_UNINTERRUPTIBLE);
  3195. spin_unlock_irq(&x->wait.lock);
  3196. schedule();
  3197. spin_lock_irq(&x->wait.lock);
  3198. } while (!x->done);
  3199. __remove_wait_queue(&x->wait, &wait);
  3200. }
  3201. x->done--;
  3202. spin_unlock_irq(&x->wait.lock);
  3203. }
  3204. EXPORT_SYMBOL(wait_for_completion);
  3205. unsigned long fastcall __sched
  3206. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3207. {
  3208. might_sleep();
  3209. spin_lock_irq(&x->wait.lock);
  3210. if (!x->done) {
  3211. DECLARE_WAITQUEUE(wait, current);
  3212. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3213. __add_wait_queue_tail(&x->wait, &wait);
  3214. do {
  3215. __set_current_state(TASK_UNINTERRUPTIBLE);
  3216. spin_unlock_irq(&x->wait.lock);
  3217. timeout = schedule_timeout(timeout);
  3218. spin_lock_irq(&x->wait.lock);
  3219. if (!timeout) {
  3220. __remove_wait_queue(&x->wait, &wait);
  3221. goto out;
  3222. }
  3223. } while (!x->done);
  3224. __remove_wait_queue(&x->wait, &wait);
  3225. }
  3226. x->done--;
  3227. out:
  3228. spin_unlock_irq(&x->wait.lock);
  3229. return timeout;
  3230. }
  3231. EXPORT_SYMBOL(wait_for_completion_timeout);
  3232. int fastcall __sched wait_for_completion_interruptible(struct completion *x)
  3233. {
  3234. int ret = 0;
  3235. might_sleep();
  3236. spin_lock_irq(&x->wait.lock);
  3237. if (!x->done) {
  3238. DECLARE_WAITQUEUE(wait, current);
  3239. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3240. __add_wait_queue_tail(&x->wait, &wait);
  3241. do {
  3242. if (signal_pending(current)) {
  3243. ret = -ERESTARTSYS;
  3244. __remove_wait_queue(&x->wait, &wait);
  3245. goto out;
  3246. }
  3247. __set_current_state(TASK_INTERRUPTIBLE);
  3248. spin_unlock_irq(&x->wait.lock);
  3249. schedule();
  3250. spin_lock_irq(&x->wait.lock);
  3251. } while (!x->done);
  3252. __remove_wait_queue(&x->wait, &wait);
  3253. }
  3254. x->done--;
  3255. out:
  3256. spin_unlock_irq(&x->wait.lock);
  3257. return ret;
  3258. }
  3259. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3260. unsigned long fastcall __sched
  3261. wait_for_completion_interruptible_timeout(struct completion *x,
  3262. unsigned long timeout)
  3263. {
  3264. might_sleep();
  3265. spin_lock_irq(&x->wait.lock);
  3266. if (!x->done) {
  3267. DECLARE_WAITQUEUE(wait, current);
  3268. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3269. __add_wait_queue_tail(&x->wait, &wait);
  3270. do {
  3271. if (signal_pending(current)) {
  3272. timeout = -ERESTARTSYS;
  3273. __remove_wait_queue(&x->wait, &wait);
  3274. goto out;
  3275. }
  3276. __set_current_state(TASK_INTERRUPTIBLE);
  3277. spin_unlock_irq(&x->wait.lock);
  3278. timeout = schedule_timeout(timeout);
  3279. spin_lock_irq(&x->wait.lock);
  3280. if (!timeout) {
  3281. __remove_wait_queue(&x->wait, &wait);
  3282. goto out;
  3283. }
  3284. } while (!x->done);
  3285. __remove_wait_queue(&x->wait, &wait);
  3286. }
  3287. x->done--;
  3288. out:
  3289. spin_unlock_irq(&x->wait.lock);
  3290. return timeout;
  3291. }
  3292. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3293. static inline void
  3294. sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
  3295. {
  3296. spin_lock_irqsave(&q->lock, *flags);
  3297. __add_wait_queue(q, wait);
  3298. spin_unlock(&q->lock);
  3299. }
  3300. static inline void
  3301. sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
  3302. {
  3303. spin_lock_irq(&q->lock);
  3304. __remove_wait_queue(q, wait);
  3305. spin_unlock_irqrestore(&q->lock, *flags);
  3306. }
  3307. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3308. {
  3309. unsigned long flags;
  3310. wait_queue_t wait;
  3311. init_waitqueue_entry(&wait, current);
  3312. current->state = TASK_INTERRUPTIBLE;
  3313. sleep_on_head(q, &wait, &flags);
  3314. schedule();
  3315. sleep_on_tail(q, &wait, &flags);
  3316. }
  3317. EXPORT_SYMBOL(interruptible_sleep_on);
  3318. long __sched
  3319. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3320. {
  3321. unsigned long flags;
  3322. wait_queue_t wait;
  3323. init_waitqueue_entry(&wait, current);
  3324. current->state = TASK_INTERRUPTIBLE;
  3325. sleep_on_head(q, &wait, &flags);
  3326. timeout = schedule_timeout(timeout);
  3327. sleep_on_tail(q, &wait, &flags);
  3328. return timeout;
  3329. }
  3330. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3331. void __sched sleep_on(wait_queue_head_t *q)
  3332. {
  3333. unsigned long flags;
  3334. wait_queue_t wait;
  3335. init_waitqueue_entry(&wait, current);
  3336. current->state = TASK_UNINTERRUPTIBLE;
  3337. sleep_on_head(q, &wait, &flags);
  3338. schedule();
  3339. sleep_on_tail(q, &wait, &flags);
  3340. }
  3341. EXPORT_SYMBOL(sleep_on);
  3342. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3343. {
  3344. unsigned long flags;
  3345. wait_queue_t wait;
  3346. init_waitqueue_entry(&wait, current);
  3347. current->state = TASK_UNINTERRUPTIBLE;
  3348. sleep_on_head(q, &wait, &flags);
  3349. timeout = schedule_timeout(timeout);
  3350. sleep_on_tail(q, &wait, &flags);
  3351. return timeout;
  3352. }
  3353. EXPORT_SYMBOL(sleep_on_timeout);
  3354. #ifdef CONFIG_RT_MUTEXES
  3355. /*
  3356. * rt_mutex_setprio - set the current priority of a task
  3357. * @p: task
  3358. * @prio: prio value (kernel-internal form)
  3359. *
  3360. * This function changes the 'effective' priority of a task. It does
  3361. * not touch ->normal_prio like __setscheduler().
  3362. *
  3363. * Used by the rt_mutex code to implement priority inheritance logic.
  3364. */
  3365. void rt_mutex_setprio(struct task_struct *p, int prio)
  3366. {
  3367. unsigned long flags;
  3368. int oldprio, on_rq;
  3369. struct rq *rq;
  3370. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3371. rq = task_rq_lock(p, &flags);
  3372. update_rq_clock(rq);
  3373. oldprio = p->prio;
  3374. on_rq = p->se.on_rq;
  3375. if (on_rq)
  3376. dequeue_task(rq, p, 0);
  3377. if (rt_prio(prio))
  3378. p->sched_class = &rt_sched_class;
  3379. else
  3380. p->sched_class = &fair_sched_class;
  3381. p->prio = prio;
  3382. if (on_rq) {
  3383. enqueue_task(rq, p, 0);
  3384. /*
  3385. * Reschedule if we are currently running on this runqueue and
  3386. * our priority decreased, or if we are not currently running on
  3387. * this runqueue and our priority is higher than the current's
  3388. */
  3389. if (task_running(rq, p)) {
  3390. if (p->prio > oldprio)
  3391. resched_task(rq->curr);
  3392. } else {
  3393. check_preempt_curr(rq, p);
  3394. }
  3395. }
  3396. task_rq_unlock(rq, &flags);
  3397. }
  3398. #endif
  3399. void set_user_nice(struct task_struct *p, long nice)
  3400. {
  3401. int old_prio, delta, on_rq;
  3402. unsigned long flags;
  3403. struct rq *rq;
  3404. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3405. return;
  3406. /*
  3407. * We have to be careful, if called from sys_setpriority(),
  3408. * the task might be in the middle of scheduling on another CPU.
  3409. */
  3410. rq = task_rq_lock(p, &flags);
  3411. update_rq_clock(rq);
  3412. /*
  3413. * The RT priorities are set via sched_setscheduler(), but we still
  3414. * allow the 'normal' nice value to be set - but as expected
  3415. * it wont have any effect on scheduling until the task is
  3416. * SCHED_FIFO/SCHED_RR:
  3417. */
  3418. if (task_has_rt_policy(p)) {
  3419. p->static_prio = NICE_TO_PRIO(nice);
  3420. goto out_unlock;
  3421. }
  3422. on_rq = p->se.on_rq;
  3423. if (on_rq) {
  3424. dequeue_task(rq, p, 0);
  3425. dec_load(rq, p);
  3426. }
  3427. p->static_prio = NICE_TO_PRIO(nice);
  3428. set_load_weight(p);
  3429. old_prio = p->prio;
  3430. p->prio = effective_prio(p);
  3431. delta = p->prio - old_prio;
  3432. if (on_rq) {
  3433. enqueue_task(rq, p, 0);
  3434. inc_load(rq, p);
  3435. /*
  3436. * If the task increased its priority or is running and
  3437. * lowered its priority, then reschedule its CPU:
  3438. */
  3439. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3440. resched_task(rq->curr);
  3441. }
  3442. out_unlock:
  3443. task_rq_unlock(rq, &flags);
  3444. }
  3445. EXPORT_SYMBOL(set_user_nice);
  3446. /*
  3447. * can_nice - check if a task can reduce its nice value
  3448. * @p: task
  3449. * @nice: nice value
  3450. */
  3451. int can_nice(const struct task_struct *p, const int nice)
  3452. {
  3453. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3454. int nice_rlim = 20 - nice;
  3455. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3456. capable(CAP_SYS_NICE));
  3457. }
  3458. #ifdef __ARCH_WANT_SYS_NICE
  3459. /*
  3460. * sys_nice - change the priority of the current process.
  3461. * @increment: priority increment
  3462. *
  3463. * sys_setpriority is a more generic, but much slower function that
  3464. * does similar things.
  3465. */
  3466. asmlinkage long sys_nice(int increment)
  3467. {
  3468. long nice, retval;
  3469. /*
  3470. * Setpriority might change our priority at the same moment.
  3471. * We don't have to worry. Conceptually one call occurs first
  3472. * and we have a single winner.
  3473. */
  3474. if (increment < -40)
  3475. increment = -40;
  3476. if (increment > 40)
  3477. increment = 40;
  3478. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3479. if (nice < -20)
  3480. nice = -20;
  3481. if (nice > 19)
  3482. nice = 19;
  3483. if (increment < 0 && !can_nice(current, nice))
  3484. return -EPERM;
  3485. retval = security_task_setnice(current, nice);
  3486. if (retval)
  3487. return retval;
  3488. set_user_nice(current, nice);
  3489. return 0;
  3490. }
  3491. #endif
  3492. /**
  3493. * task_prio - return the priority value of a given task.
  3494. * @p: the task in question.
  3495. *
  3496. * This is the priority value as seen by users in /proc.
  3497. * RT tasks are offset by -200. Normal tasks are centered
  3498. * around 0, value goes from -16 to +15.
  3499. */
  3500. int task_prio(const struct task_struct *p)
  3501. {
  3502. return p->prio - MAX_RT_PRIO;
  3503. }
  3504. /**
  3505. * task_nice - return the nice value of a given task.
  3506. * @p: the task in question.
  3507. */
  3508. int task_nice(const struct task_struct *p)
  3509. {
  3510. return TASK_NICE(p);
  3511. }
  3512. EXPORT_SYMBOL_GPL(task_nice);
  3513. /**
  3514. * idle_cpu - is a given cpu idle currently?
  3515. * @cpu: the processor in question.
  3516. */
  3517. int idle_cpu(int cpu)
  3518. {
  3519. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3520. }
  3521. /**
  3522. * idle_task - return the idle task for a given cpu.
  3523. * @cpu: the processor in question.
  3524. */
  3525. struct task_struct *idle_task(int cpu)
  3526. {
  3527. return cpu_rq(cpu)->idle;
  3528. }
  3529. /**
  3530. * find_process_by_pid - find a process with a matching PID value.
  3531. * @pid: the pid in question.
  3532. */
  3533. static inline struct task_struct *find_process_by_pid(pid_t pid)
  3534. {
  3535. return pid ? find_task_by_pid(pid) : current;
  3536. }
  3537. /* Actually do priority change: must hold rq lock. */
  3538. static void
  3539. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3540. {
  3541. BUG_ON(p->se.on_rq);
  3542. p->policy = policy;
  3543. switch (p->policy) {
  3544. case SCHED_NORMAL:
  3545. case SCHED_BATCH:
  3546. case SCHED_IDLE:
  3547. p->sched_class = &fair_sched_class;
  3548. break;
  3549. case SCHED_FIFO:
  3550. case SCHED_RR:
  3551. p->sched_class = &rt_sched_class;
  3552. break;
  3553. }
  3554. p->rt_priority = prio;
  3555. p->normal_prio = normal_prio(p);
  3556. /* we are holding p->pi_lock already */
  3557. p->prio = rt_mutex_getprio(p);
  3558. set_load_weight(p);
  3559. }
  3560. /**
  3561. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3562. * @p: the task in question.
  3563. * @policy: new policy.
  3564. * @param: structure containing the new RT priority.
  3565. *
  3566. * NOTE that the task may be already dead.
  3567. */
  3568. int sched_setscheduler(struct task_struct *p, int policy,
  3569. struct sched_param *param)
  3570. {
  3571. int retval, oldprio, oldpolicy = -1, on_rq;
  3572. unsigned long flags;
  3573. struct rq *rq;
  3574. /* may grab non-irq protected spin_locks */
  3575. BUG_ON(in_interrupt());
  3576. recheck:
  3577. /* double check policy once rq lock held */
  3578. if (policy < 0)
  3579. policy = oldpolicy = p->policy;
  3580. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3581. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3582. policy != SCHED_IDLE)
  3583. return -EINVAL;
  3584. /*
  3585. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3586. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3587. * SCHED_BATCH and SCHED_IDLE is 0.
  3588. */
  3589. if (param->sched_priority < 0 ||
  3590. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3591. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3592. return -EINVAL;
  3593. if (rt_policy(policy) != (param->sched_priority != 0))
  3594. return -EINVAL;
  3595. /*
  3596. * Allow unprivileged RT tasks to decrease priority:
  3597. */
  3598. if (!capable(CAP_SYS_NICE)) {
  3599. if (rt_policy(policy)) {
  3600. unsigned long rlim_rtprio;
  3601. if (!lock_task_sighand(p, &flags))
  3602. return -ESRCH;
  3603. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3604. unlock_task_sighand(p, &flags);
  3605. /* can't set/change the rt policy */
  3606. if (policy != p->policy && !rlim_rtprio)
  3607. return -EPERM;
  3608. /* can't increase priority */
  3609. if (param->sched_priority > p->rt_priority &&
  3610. param->sched_priority > rlim_rtprio)
  3611. return -EPERM;
  3612. }
  3613. /*
  3614. * Like positive nice levels, dont allow tasks to
  3615. * move out of SCHED_IDLE either:
  3616. */
  3617. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3618. return -EPERM;
  3619. /* can't change other user's priorities */
  3620. if ((current->euid != p->euid) &&
  3621. (current->euid != p->uid))
  3622. return -EPERM;
  3623. }
  3624. retval = security_task_setscheduler(p, policy, param);
  3625. if (retval)
  3626. return retval;
  3627. /*
  3628. * make sure no PI-waiters arrive (or leave) while we are
  3629. * changing the priority of the task:
  3630. */
  3631. spin_lock_irqsave(&p->pi_lock, flags);
  3632. /*
  3633. * To be able to change p->policy safely, the apropriate
  3634. * runqueue lock must be held.
  3635. */
  3636. rq = __task_rq_lock(p);
  3637. /* recheck policy now with rq lock held */
  3638. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3639. policy = oldpolicy = -1;
  3640. __task_rq_unlock(rq);
  3641. spin_unlock_irqrestore(&p->pi_lock, flags);
  3642. goto recheck;
  3643. }
  3644. update_rq_clock(rq);
  3645. on_rq = p->se.on_rq;
  3646. if (on_rq)
  3647. deactivate_task(rq, p, 0);
  3648. oldprio = p->prio;
  3649. __setscheduler(rq, p, policy, param->sched_priority);
  3650. if (on_rq) {
  3651. activate_task(rq, p, 0);
  3652. /*
  3653. * Reschedule if we are currently running on this runqueue and
  3654. * our priority decreased, or if we are not currently running on
  3655. * this runqueue and our priority is higher than the current's
  3656. */
  3657. if (task_running(rq, p)) {
  3658. if (p->prio > oldprio)
  3659. resched_task(rq->curr);
  3660. } else {
  3661. check_preempt_curr(rq, p);
  3662. }
  3663. }
  3664. __task_rq_unlock(rq);
  3665. spin_unlock_irqrestore(&p->pi_lock, flags);
  3666. rt_mutex_adjust_pi(p);
  3667. return 0;
  3668. }
  3669. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3670. static int
  3671. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3672. {
  3673. struct sched_param lparam;
  3674. struct task_struct *p;
  3675. int retval;
  3676. if (!param || pid < 0)
  3677. return -EINVAL;
  3678. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3679. return -EFAULT;
  3680. rcu_read_lock();
  3681. retval = -ESRCH;
  3682. p = find_process_by_pid(pid);
  3683. if (p != NULL)
  3684. retval = sched_setscheduler(p, policy, &lparam);
  3685. rcu_read_unlock();
  3686. return retval;
  3687. }
  3688. /**
  3689. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3690. * @pid: the pid in question.
  3691. * @policy: new policy.
  3692. * @param: structure containing the new RT priority.
  3693. */
  3694. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3695. struct sched_param __user *param)
  3696. {
  3697. /* negative values for policy are not valid */
  3698. if (policy < 0)
  3699. return -EINVAL;
  3700. return do_sched_setscheduler(pid, policy, param);
  3701. }
  3702. /**
  3703. * sys_sched_setparam - set/change the RT priority of a thread
  3704. * @pid: the pid in question.
  3705. * @param: structure containing the new RT priority.
  3706. */
  3707. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3708. {
  3709. return do_sched_setscheduler(pid, -1, param);
  3710. }
  3711. /**
  3712. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3713. * @pid: the pid in question.
  3714. */
  3715. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3716. {
  3717. struct task_struct *p;
  3718. int retval = -EINVAL;
  3719. if (pid < 0)
  3720. goto out_nounlock;
  3721. retval = -ESRCH;
  3722. read_lock(&tasklist_lock);
  3723. p = find_process_by_pid(pid);
  3724. if (p) {
  3725. retval = security_task_getscheduler(p);
  3726. if (!retval)
  3727. retval = p->policy;
  3728. }
  3729. read_unlock(&tasklist_lock);
  3730. out_nounlock:
  3731. return retval;
  3732. }
  3733. /**
  3734. * sys_sched_getscheduler - get the RT priority of a thread
  3735. * @pid: the pid in question.
  3736. * @param: structure containing the RT priority.
  3737. */
  3738. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3739. {
  3740. struct sched_param lp;
  3741. struct task_struct *p;
  3742. int retval = -EINVAL;
  3743. if (!param || pid < 0)
  3744. goto out_nounlock;
  3745. read_lock(&tasklist_lock);
  3746. p = find_process_by_pid(pid);
  3747. retval = -ESRCH;
  3748. if (!p)
  3749. goto out_unlock;
  3750. retval = security_task_getscheduler(p);
  3751. if (retval)
  3752. goto out_unlock;
  3753. lp.sched_priority = p->rt_priority;
  3754. read_unlock(&tasklist_lock);
  3755. /*
  3756. * This one might sleep, we cannot do it with a spinlock held ...
  3757. */
  3758. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3759. out_nounlock:
  3760. return retval;
  3761. out_unlock:
  3762. read_unlock(&tasklist_lock);
  3763. return retval;
  3764. }
  3765. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3766. {
  3767. cpumask_t cpus_allowed;
  3768. struct task_struct *p;
  3769. int retval;
  3770. mutex_lock(&sched_hotcpu_mutex);
  3771. read_lock(&tasklist_lock);
  3772. p = find_process_by_pid(pid);
  3773. if (!p) {
  3774. read_unlock(&tasklist_lock);
  3775. mutex_unlock(&sched_hotcpu_mutex);
  3776. return -ESRCH;
  3777. }
  3778. /*
  3779. * It is not safe to call set_cpus_allowed with the
  3780. * tasklist_lock held. We will bump the task_struct's
  3781. * usage count and then drop tasklist_lock.
  3782. */
  3783. get_task_struct(p);
  3784. read_unlock(&tasklist_lock);
  3785. retval = -EPERM;
  3786. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3787. !capable(CAP_SYS_NICE))
  3788. goto out_unlock;
  3789. retval = security_task_setscheduler(p, 0, NULL);
  3790. if (retval)
  3791. goto out_unlock;
  3792. cpus_allowed = cpuset_cpus_allowed(p);
  3793. cpus_and(new_mask, new_mask, cpus_allowed);
  3794. retval = set_cpus_allowed(p, new_mask);
  3795. out_unlock:
  3796. put_task_struct(p);
  3797. mutex_unlock(&sched_hotcpu_mutex);
  3798. return retval;
  3799. }
  3800. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3801. cpumask_t *new_mask)
  3802. {
  3803. if (len < sizeof(cpumask_t)) {
  3804. memset(new_mask, 0, sizeof(cpumask_t));
  3805. } else if (len > sizeof(cpumask_t)) {
  3806. len = sizeof(cpumask_t);
  3807. }
  3808. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3809. }
  3810. /**
  3811. * sys_sched_setaffinity - set the cpu affinity of a process
  3812. * @pid: pid of the process
  3813. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3814. * @user_mask_ptr: user-space pointer to the new cpu mask
  3815. */
  3816. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3817. unsigned long __user *user_mask_ptr)
  3818. {
  3819. cpumask_t new_mask;
  3820. int retval;
  3821. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3822. if (retval)
  3823. return retval;
  3824. return sched_setaffinity(pid, new_mask);
  3825. }
  3826. /*
  3827. * Represents all cpu's present in the system
  3828. * In systems capable of hotplug, this map could dynamically grow
  3829. * as new cpu's are detected in the system via any platform specific
  3830. * method, such as ACPI for e.g.
  3831. */
  3832. cpumask_t cpu_present_map __read_mostly;
  3833. EXPORT_SYMBOL(cpu_present_map);
  3834. #ifndef CONFIG_SMP
  3835. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3836. EXPORT_SYMBOL(cpu_online_map);
  3837. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3838. EXPORT_SYMBOL(cpu_possible_map);
  3839. #endif
  3840. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3841. {
  3842. struct task_struct *p;
  3843. int retval;
  3844. mutex_lock(&sched_hotcpu_mutex);
  3845. read_lock(&tasklist_lock);
  3846. retval = -ESRCH;
  3847. p = find_process_by_pid(pid);
  3848. if (!p)
  3849. goto out_unlock;
  3850. retval = security_task_getscheduler(p);
  3851. if (retval)
  3852. goto out_unlock;
  3853. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3854. out_unlock:
  3855. read_unlock(&tasklist_lock);
  3856. mutex_unlock(&sched_hotcpu_mutex);
  3857. return retval;
  3858. }
  3859. /**
  3860. * sys_sched_getaffinity - get the cpu affinity of a process
  3861. * @pid: pid of the process
  3862. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3863. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3864. */
  3865. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3866. unsigned long __user *user_mask_ptr)
  3867. {
  3868. int ret;
  3869. cpumask_t mask;
  3870. if (len < sizeof(cpumask_t))
  3871. return -EINVAL;
  3872. ret = sched_getaffinity(pid, &mask);
  3873. if (ret < 0)
  3874. return ret;
  3875. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3876. return -EFAULT;
  3877. return sizeof(cpumask_t);
  3878. }
  3879. /**
  3880. * sys_sched_yield - yield the current processor to other threads.
  3881. *
  3882. * This function yields the current CPU to other tasks. If there are no
  3883. * other threads running on this CPU then this function will return.
  3884. */
  3885. asmlinkage long sys_sched_yield(void)
  3886. {
  3887. struct rq *rq = this_rq_lock();
  3888. schedstat_inc(rq, yld_cnt);
  3889. if (unlikely(rq->nr_running == 1))
  3890. schedstat_inc(rq, yld_act_empty);
  3891. else
  3892. current->sched_class->yield_task(rq, current);
  3893. /*
  3894. * Since we are going to call schedule() anyway, there's
  3895. * no need to preempt or enable interrupts:
  3896. */
  3897. __release(rq->lock);
  3898. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3899. _raw_spin_unlock(&rq->lock);
  3900. preempt_enable_no_resched();
  3901. schedule();
  3902. return 0;
  3903. }
  3904. static void __cond_resched(void)
  3905. {
  3906. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  3907. __might_sleep(__FILE__, __LINE__);
  3908. #endif
  3909. /*
  3910. * The BKS might be reacquired before we have dropped
  3911. * PREEMPT_ACTIVE, which could trigger a second
  3912. * cond_resched() call.
  3913. */
  3914. do {
  3915. add_preempt_count(PREEMPT_ACTIVE);
  3916. schedule();
  3917. sub_preempt_count(PREEMPT_ACTIVE);
  3918. } while (need_resched());
  3919. }
  3920. int __sched cond_resched(void)
  3921. {
  3922. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  3923. system_state == SYSTEM_RUNNING) {
  3924. __cond_resched();
  3925. return 1;
  3926. }
  3927. return 0;
  3928. }
  3929. EXPORT_SYMBOL(cond_resched);
  3930. /*
  3931. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3932. * call schedule, and on return reacquire the lock.
  3933. *
  3934. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3935. * operations here to prevent schedule() from being called twice (once via
  3936. * spin_unlock(), once by hand).
  3937. */
  3938. int cond_resched_lock(spinlock_t *lock)
  3939. {
  3940. int ret = 0;
  3941. if (need_lockbreak(lock)) {
  3942. spin_unlock(lock);
  3943. cpu_relax();
  3944. ret = 1;
  3945. spin_lock(lock);
  3946. }
  3947. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3948. spin_release(&lock->dep_map, 1, _THIS_IP_);
  3949. _raw_spin_unlock(lock);
  3950. preempt_enable_no_resched();
  3951. __cond_resched();
  3952. ret = 1;
  3953. spin_lock(lock);
  3954. }
  3955. return ret;
  3956. }
  3957. EXPORT_SYMBOL(cond_resched_lock);
  3958. int __sched cond_resched_softirq(void)
  3959. {
  3960. BUG_ON(!in_softirq());
  3961. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3962. local_bh_enable();
  3963. __cond_resched();
  3964. local_bh_disable();
  3965. return 1;
  3966. }
  3967. return 0;
  3968. }
  3969. EXPORT_SYMBOL(cond_resched_softirq);
  3970. /**
  3971. * yield - yield the current processor to other threads.
  3972. *
  3973. * This is a shortcut for kernel-space yielding - it marks the
  3974. * thread runnable and calls sys_sched_yield().
  3975. */
  3976. void __sched yield(void)
  3977. {
  3978. set_current_state(TASK_RUNNING);
  3979. sys_sched_yield();
  3980. }
  3981. EXPORT_SYMBOL(yield);
  3982. /*
  3983. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3984. * that process accounting knows that this is a task in IO wait state.
  3985. *
  3986. * But don't do that if it is a deliberate, throttling IO wait (this task
  3987. * has set its backing_dev_info: the queue against which it should throttle)
  3988. */
  3989. void __sched io_schedule(void)
  3990. {
  3991. struct rq *rq = &__raw_get_cpu_var(runqueues);
  3992. delayacct_blkio_start();
  3993. atomic_inc(&rq->nr_iowait);
  3994. schedule();
  3995. atomic_dec(&rq->nr_iowait);
  3996. delayacct_blkio_end();
  3997. }
  3998. EXPORT_SYMBOL(io_schedule);
  3999. long __sched io_schedule_timeout(long timeout)
  4000. {
  4001. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4002. long ret;
  4003. delayacct_blkio_start();
  4004. atomic_inc(&rq->nr_iowait);
  4005. ret = schedule_timeout(timeout);
  4006. atomic_dec(&rq->nr_iowait);
  4007. delayacct_blkio_end();
  4008. return ret;
  4009. }
  4010. /**
  4011. * sys_sched_get_priority_max - return maximum RT priority.
  4012. * @policy: scheduling class.
  4013. *
  4014. * this syscall returns the maximum rt_priority that can be used
  4015. * by a given scheduling class.
  4016. */
  4017. asmlinkage long sys_sched_get_priority_max(int policy)
  4018. {
  4019. int ret = -EINVAL;
  4020. switch (policy) {
  4021. case SCHED_FIFO:
  4022. case SCHED_RR:
  4023. ret = MAX_USER_RT_PRIO-1;
  4024. break;
  4025. case SCHED_NORMAL:
  4026. case SCHED_BATCH:
  4027. case SCHED_IDLE:
  4028. ret = 0;
  4029. break;
  4030. }
  4031. return ret;
  4032. }
  4033. /**
  4034. * sys_sched_get_priority_min - return minimum RT priority.
  4035. * @policy: scheduling class.
  4036. *
  4037. * this syscall returns the minimum rt_priority that can be used
  4038. * by a given scheduling class.
  4039. */
  4040. asmlinkage long sys_sched_get_priority_min(int policy)
  4041. {
  4042. int ret = -EINVAL;
  4043. switch (policy) {
  4044. case SCHED_FIFO:
  4045. case SCHED_RR:
  4046. ret = 1;
  4047. break;
  4048. case SCHED_NORMAL:
  4049. case SCHED_BATCH:
  4050. case SCHED_IDLE:
  4051. ret = 0;
  4052. }
  4053. return ret;
  4054. }
  4055. /**
  4056. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4057. * @pid: pid of the process.
  4058. * @interval: userspace pointer to the timeslice value.
  4059. *
  4060. * this syscall writes the default timeslice value of a given process
  4061. * into the user-space timespec buffer. A value of '0' means infinity.
  4062. */
  4063. asmlinkage
  4064. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4065. {
  4066. struct task_struct *p;
  4067. int retval = -EINVAL;
  4068. struct timespec t;
  4069. if (pid < 0)
  4070. goto out_nounlock;
  4071. retval = -ESRCH;
  4072. read_lock(&tasklist_lock);
  4073. p = find_process_by_pid(pid);
  4074. if (!p)
  4075. goto out_unlock;
  4076. retval = security_task_getscheduler(p);
  4077. if (retval)
  4078. goto out_unlock;
  4079. jiffies_to_timespec(p->policy == SCHED_FIFO ?
  4080. 0 : static_prio_timeslice(p->static_prio), &t);
  4081. read_unlock(&tasklist_lock);
  4082. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4083. out_nounlock:
  4084. return retval;
  4085. out_unlock:
  4086. read_unlock(&tasklist_lock);
  4087. return retval;
  4088. }
  4089. static const char stat_nam[] = "RSDTtZX";
  4090. static void show_task(struct task_struct *p)
  4091. {
  4092. unsigned long free = 0;
  4093. unsigned state;
  4094. state = p->state ? __ffs(p->state) + 1 : 0;
  4095. printk("%-13.13s %c", p->comm,
  4096. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4097. #if BITS_PER_LONG == 32
  4098. if (state == TASK_RUNNING)
  4099. printk(" running ");
  4100. else
  4101. printk(" %08lx ", thread_saved_pc(p));
  4102. #else
  4103. if (state == TASK_RUNNING)
  4104. printk(" running task ");
  4105. else
  4106. printk(" %016lx ", thread_saved_pc(p));
  4107. #endif
  4108. #ifdef CONFIG_DEBUG_STACK_USAGE
  4109. {
  4110. unsigned long *n = end_of_stack(p);
  4111. while (!*n)
  4112. n++;
  4113. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4114. }
  4115. #endif
  4116. printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
  4117. if (state != TASK_RUNNING)
  4118. show_stack(p, NULL);
  4119. }
  4120. void show_state_filter(unsigned long state_filter)
  4121. {
  4122. struct task_struct *g, *p;
  4123. #if BITS_PER_LONG == 32
  4124. printk(KERN_INFO
  4125. " task PC stack pid father\n");
  4126. #else
  4127. printk(KERN_INFO
  4128. " task PC stack pid father\n");
  4129. #endif
  4130. read_lock(&tasklist_lock);
  4131. do_each_thread(g, p) {
  4132. /*
  4133. * reset the NMI-timeout, listing all files on a slow
  4134. * console might take alot of time:
  4135. */
  4136. touch_nmi_watchdog();
  4137. if (!state_filter || (p->state & state_filter))
  4138. show_task(p);
  4139. } while_each_thread(g, p);
  4140. touch_all_softlockup_watchdogs();
  4141. #ifdef CONFIG_SCHED_DEBUG
  4142. sysrq_sched_debug_show();
  4143. #endif
  4144. read_unlock(&tasklist_lock);
  4145. /*
  4146. * Only show locks if all tasks are dumped:
  4147. */
  4148. if (state_filter == -1)
  4149. debug_show_all_locks();
  4150. }
  4151. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4152. {
  4153. idle->sched_class = &idle_sched_class;
  4154. }
  4155. /**
  4156. * init_idle - set up an idle thread for a given CPU
  4157. * @idle: task in question
  4158. * @cpu: cpu the idle task belongs to
  4159. *
  4160. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4161. * flag, to make booting more robust.
  4162. */
  4163. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4164. {
  4165. struct rq *rq = cpu_rq(cpu);
  4166. unsigned long flags;
  4167. __sched_fork(idle);
  4168. idle->se.exec_start = sched_clock();
  4169. idle->prio = idle->normal_prio = MAX_PRIO;
  4170. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4171. __set_task_cpu(idle, cpu);
  4172. spin_lock_irqsave(&rq->lock, flags);
  4173. rq->curr = rq->idle = idle;
  4174. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4175. idle->oncpu = 1;
  4176. #endif
  4177. spin_unlock_irqrestore(&rq->lock, flags);
  4178. /* Set the preempt count _outside_ the spinlocks! */
  4179. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4180. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4181. #else
  4182. task_thread_info(idle)->preempt_count = 0;
  4183. #endif
  4184. /*
  4185. * The idle tasks have their own, simple scheduling class:
  4186. */
  4187. idle->sched_class = &idle_sched_class;
  4188. }
  4189. /*
  4190. * In a system that switches off the HZ timer nohz_cpu_mask
  4191. * indicates which cpus entered this state. This is used
  4192. * in the rcu update to wait only for active cpus. For system
  4193. * which do not switch off the HZ timer nohz_cpu_mask should
  4194. * always be CPU_MASK_NONE.
  4195. */
  4196. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4197. /*
  4198. * Increase the granularity value when there are more CPUs,
  4199. * because with more CPUs the 'effective latency' as visible
  4200. * to users decreases. But the relationship is not linear,
  4201. * so pick a second-best guess by going with the log2 of the
  4202. * number of CPUs.
  4203. *
  4204. * This idea comes from the SD scheduler of Con Kolivas:
  4205. */
  4206. static inline void sched_init_granularity(void)
  4207. {
  4208. unsigned int factor = 1 + ilog2(num_online_cpus());
  4209. const unsigned long gran_limit = 100000000;
  4210. sysctl_sched_granularity *= factor;
  4211. if (sysctl_sched_granularity > gran_limit)
  4212. sysctl_sched_granularity = gran_limit;
  4213. sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
  4214. sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
  4215. }
  4216. #ifdef CONFIG_SMP
  4217. /*
  4218. * This is how migration works:
  4219. *
  4220. * 1) we queue a struct migration_req structure in the source CPU's
  4221. * runqueue and wake up that CPU's migration thread.
  4222. * 2) we down() the locked semaphore => thread blocks.
  4223. * 3) migration thread wakes up (implicitly it forces the migrated
  4224. * thread off the CPU)
  4225. * 4) it gets the migration request and checks whether the migrated
  4226. * task is still in the wrong runqueue.
  4227. * 5) if it's in the wrong runqueue then the migration thread removes
  4228. * it and puts it into the right queue.
  4229. * 6) migration thread up()s the semaphore.
  4230. * 7) we wake up and the migration is done.
  4231. */
  4232. /*
  4233. * Change a given task's CPU affinity. Migrate the thread to a
  4234. * proper CPU and schedule it away if the CPU it's executing on
  4235. * is removed from the allowed bitmask.
  4236. *
  4237. * NOTE: the caller must have a valid reference to the task, the
  4238. * task must not exit() & deallocate itself prematurely. The
  4239. * call is not atomic; no spinlocks may be held.
  4240. */
  4241. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4242. {
  4243. struct migration_req req;
  4244. unsigned long flags;
  4245. struct rq *rq;
  4246. int ret = 0;
  4247. rq = task_rq_lock(p, &flags);
  4248. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4249. ret = -EINVAL;
  4250. goto out;
  4251. }
  4252. p->cpus_allowed = new_mask;
  4253. /* Can the task run on the task's current CPU? If so, we're done */
  4254. if (cpu_isset(task_cpu(p), new_mask))
  4255. goto out;
  4256. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4257. /* Need help from migration thread: drop lock and wait. */
  4258. task_rq_unlock(rq, &flags);
  4259. wake_up_process(rq->migration_thread);
  4260. wait_for_completion(&req.done);
  4261. tlb_migrate_finish(p->mm);
  4262. return 0;
  4263. }
  4264. out:
  4265. task_rq_unlock(rq, &flags);
  4266. return ret;
  4267. }
  4268. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4269. /*
  4270. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4271. * this because either it can't run here any more (set_cpus_allowed()
  4272. * away from this CPU, or CPU going down), or because we're
  4273. * attempting to rebalance this task on exec (sched_exec).
  4274. *
  4275. * So we race with normal scheduler movements, but that's OK, as long
  4276. * as the task is no longer on this CPU.
  4277. *
  4278. * Returns non-zero if task was successfully migrated.
  4279. */
  4280. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4281. {
  4282. struct rq *rq_dest, *rq_src;
  4283. int ret = 0, on_rq;
  4284. if (unlikely(cpu_is_offline(dest_cpu)))
  4285. return ret;
  4286. rq_src = cpu_rq(src_cpu);
  4287. rq_dest = cpu_rq(dest_cpu);
  4288. double_rq_lock(rq_src, rq_dest);
  4289. /* Already moved. */
  4290. if (task_cpu(p) != src_cpu)
  4291. goto out;
  4292. /* Affinity changed (again). */
  4293. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4294. goto out;
  4295. on_rq = p->se.on_rq;
  4296. if (on_rq)
  4297. deactivate_task(rq_src, p, 0);
  4298. set_task_cpu(p, dest_cpu);
  4299. if (on_rq) {
  4300. activate_task(rq_dest, p, 0);
  4301. check_preempt_curr(rq_dest, p);
  4302. }
  4303. ret = 1;
  4304. out:
  4305. double_rq_unlock(rq_src, rq_dest);
  4306. return ret;
  4307. }
  4308. /*
  4309. * migration_thread - this is a highprio system thread that performs
  4310. * thread migration by bumping thread off CPU then 'pushing' onto
  4311. * another runqueue.
  4312. */
  4313. static int migration_thread(void *data)
  4314. {
  4315. int cpu = (long)data;
  4316. struct rq *rq;
  4317. rq = cpu_rq(cpu);
  4318. BUG_ON(rq->migration_thread != current);
  4319. set_current_state(TASK_INTERRUPTIBLE);
  4320. while (!kthread_should_stop()) {
  4321. struct migration_req *req;
  4322. struct list_head *head;
  4323. spin_lock_irq(&rq->lock);
  4324. if (cpu_is_offline(cpu)) {
  4325. spin_unlock_irq(&rq->lock);
  4326. goto wait_to_die;
  4327. }
  4328. if (rq->active_balance) {
  4329. active_load_balance(rq, cpu);
  4330. rq->active_balance = 0;
  4331. }
  4332. head = &rq->migration_queue;
  4333. if (list_empty(head)) {
  4334. spin_unlock_irq(&rq->lock);
  4335. schedule();
  4336. set_current_state(TASK_INTERRUPTIBLE);
  4337. continue;
  4338. }
  4339. req = list_entry(head->next, struct migration_req, list);
  4340. list_del_init(head->next);
  4341. spin_unlock(&rq->lock);
  4342. __migrate_task(req->task, cpu, req->dest_cpu);
  4343. local_irq_enable();
  4344. complete(&req->done);
  4345. }
  4346. __set_current_state(TASK_RUNNING);
  4347. return 0;
  4348. wait_to_die:
  4349. /* Wait for kthread_stop */
  4350. set_current_state(TASK_INTERRUPTIBLE);
  4351. while (!kthread_should_stop()) {
  4352. schedule();
  4353. set_current_state(TASK_INTERRUPTIBLE);
  4354. }
  4355. __set_current_state(TASK_RUNNING);
  4356. return 0;
  4357. }
  4358. #ifdef CONFIG_HOTPLUG_CPU
  4359. /*
  4360. * Figure out where task on dead CPU should go, use force if neccessary.
  4361. * NOTE: interrupts should be disabled by the caller
  4362. */
  4363. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4364. {
  4365. unsigned long flags;
  4366. cpumask_t mask;
  4367. struct rq *rq;
  4368. int dest_cpu;
  4369. restart:
  4370. /* On same node? */
  4371. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4372. cpus_and(mask, mask, p->cpus_allowed);
  4373. dest_cpu = any_online_cpu(mask);
  4374. /* On any allowed CPU? */
  4375. if (dest_cpu == NR_CPUS)
  4376. dest_cpu = any_online_cpu(p->cpus_allowed);
  4377. /* No more Mr. Nice Guy. */
  4378. if (dest_cpu == NR_CPUS) {
  4379. rq = task_rq_lock(p, &flags);
  4380. cpus_setall(p->cpus_allowed);
  4381. dest_cpu = any_online_cpu(p->cpus_allowed);
  4382. task_rq_unlock(rq, &flags);
  4383. /*
  4384. * Don't tell them about moving exiting tasks or
  4385. * kernel threads (both mm NULL), since they never
  4386. * leave kernel.
  4387. */
  4388. if (p->mm && printk_ratelimit())
  4389. printk(KERN_INFO "process %d (%s) no "
  4390. "longer affine to cpu%d\n",
  4391. p->pid, p->comm, dead_cpu);
  4392. }
  4393. if (!__migrate_task(p, dead_cpu, dest_cpu))
  4394. goto restart;
  4395. }
  4396. /*
  4397. * While a dead CPU has no uninterruptible tasks queued at this point,
  4398. * it might still have a nonzero ->nr_uninterruptible counter, because
  4399. * for performance reasons the counter is not stricly tracking tasks to
  4400. * their home CPUs. So we just add the counter to another CPU's counter,
  4401. * to keep the global sum constant after CPU-down:
  4402. */
  4403. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4404. {
  4405. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4406. unsigned long flags;
  4407. local_irq_save(flags);
  4408. double_rq_lock(rq_src, rq_dest);
  4409. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4410. rq_src->nr_uninterruptible = 0;
  4411. double_rq_unlock(rq_src, rq_dest);
  4412. local_irq_restore(flags);
  4413. }
  4414. /* Run through task list and migrate tasks from the dead cpu. */
  4415. static void migrate_live_tasks(int src_cpu)
  4416. {
  4417. struct task_struct *p, *t;
  4418. write_lock_irq(&tasklist_lock);
  4419. do_each_thread(t, p) {
  4420. if (p == current)
  4421. continue;
  4422. if (task_cpu(p) == src_cpu)
  4423. move_task_off_dead_cpu(src_cpu, p);
  4424. } while_each_thread(t, p);
  4425. write_unlock_irq(&tasklist_lock);
  4426. }
  4427. /*
  4428. * Schedules idle task to be the next runnable task on current CPU.
  4429. * It does so by boosting its priority to highest possible and adding it to
  4430. * the _front_ of the runqueue. Used by CPU offline code.
  4431. */
  4432. void sched_idle_next(void)
  4433. {
  4434. int this_cpu = smp_processor_id();
  4435. struct rq *rq = cpu_rq(this_cpu);
  4436. struct task_struct *p = rq->idle;
  4437. unsigned long flags;
  4438. /* cpu has to be offline */
  4439. BUG_ON(cpu_online(this_cpu));
  4440. /*
  4441. * Strictly not necessary since rest of the CPUs are stopped by now
  4442. * and interrupts disabled on the current cpu.
  4443. */
  4444. spin_lock_irqsave(&rq->lock, flags);
  4445. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4446. /* Add idle task to the _front_ of its priority queue: */
  4447. activate_idle_task(p, rq);
  4448. spin_unlock_irqrestore(&rq->lock, flags);
  4449. }
  4450. /*
  4451. * Ensures that the idle task is using init_mm right before its cpu goes
  4452. * offline.
  4453. */
  4454. void idle_task_exit(void)
  4455. {
  4456. struct mm_struct *mm = current->active_mm;
  4457. BUG_ON(cpu_online(smp_processor_id()));
  4458. if (mm != &init_mm)
  4459. switch_mm(mm, &init_mm, current);
  4460. mmdrop(mm);
  4461. }
  4462. /* called under rq->lock with disabled interrupts */
  4463. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4464. {
  4465. struct rq *rq = cpu_rq(dead_cpu);
  4466. /* Must be exiting, otherwise would be on tasklist. */
  4467. BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
  4468. /* Cannot have done final schedule yet: would have vanished. */
  4469. BUG_ON(p->state == TASK_DEAD);
  4470. get_task_struct(p);
  4471. /*
  4472. * Drop lock around migration; if someone else moves it,
  4473. * that's OK. No task can be added to this CPU, so iteration is
  4474. * fine.
  4475. * NOTE: interrupts should be left disabled --dev@
  4476. */
  4477. spin_unlock(&rq->lock);
  4478. move_task_off_dead_cpu(dead_cpu, p);
  4479. spin_lock(&rq->lock);
  4480. put_task_struct(p);
  4481. }
  4482. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4483. static void migrate_dead_tasks(unsigned int dead_cpu)
  4484. {
  4485. struct rq *rq = cpu_rq(dead_cpu);
  4486. struct task_struct *next;
  4487. for ( ; ; ) {
  4488. if (!rq->nr_running)
  4489. break;
  4490. update_rq_clock(rq);
  4491. next = pick_next_task(rq, rq->curr);
  4492. if (!next)
  4493. break;
  4494. migrate_dead(dead_cpu, next);
  4495. }
  4496. }
  4497. #endif /* CONFIG_HOTPLUG_CPU */
  4498. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4499. static struct ctl_table sd_ctl_dir[] = {
  4500. {
  4501. .procname = "sched_domain",
  4502. .mode = 0755,
  4503. },
  4504. {0,},
  4505. };
  4506. static struct ctl_table sd_ctl_root[] = {
  4507. {
  4508. .procname = "kernel",
  4509. .mode = 0755,
  4510. .child = sd_ctl_dir,
  4511. },
  4512. {0,},
  4513. };
  4514. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4515. {
  4516. struct ctl_table *entry =
  4517. kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
  4518. BUG_ON(!entry);
  4519. memset(entry, 0, n * sizeof(struct ctl_table));
  4520. return entry;
  4521. }
  4522. static void
  4523. set_table_entry(struct ctl_table *entry,
  4524. const char *procname, void *data, int maxlen,
  4525. mode_t mode, proc_handler *proc_handler)
  4526. {
  4527. entry->procname = procname;
  4528. entry->data = data;
  4529. entry->maxlen = maxlen;
  4530. entry->mode = mode;
  4531. entry->proc_handler = proc_handler;
  4532. }
  4533. static struct ctl_table *
  4534. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4535. {
  4536. struct ctl_table *table = sd_alloc_ctl_entry(14);
  4537. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4538. sizeof(long), 0644, proc_doulongvec_minmax);
  4539. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4540. sizeof(long), 0644, proc_doulongvec_minmax);
  4541. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4542. sizeof(int), 0644, proc_dointvec_minmax);
  4543. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4544. sizeof(int), 0644, proc_dointvec_minmax);
  4545. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4546. sizeof(int), 0644, proc_dointvec_minmax);
  4547. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4548. sizeof(int), 0644, proc_dointvec_minmax);
  4549. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4550. sizeof(int), 0644, proc_dointvec_minmax);
  4551. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4552. sizeof(int), 0644, proc_dointvec_minmax);
  4553. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4554. sizeof(int), 0644, proc_dointvec_minmax);
  4555. set_table_entry(&table[10], "cache_nice_tries",
  4556. &sd->cache_nice_tries,
  4557. sizeof(int), 0644, proc_dointvec_minmax);
  4558. set_table_entry(&table[12], "flags", &sd->flags,
  4559. sizeof(int), 0644, proc_dointvec_minmax);
  4560. return table;
  4561. }
  4562. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4563. {
  4564. struct ctl_table *entry, *table;
  4565. struct sched_domain *sd;
  4566. int domain_num = 0, i;
  4567. char buf[32];
  4568. for_each_domain(cpu, sd)
  4569. domain_num++;
  4570. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4571. i = 0;
  4572. for_each_domain(cpu, sd) {
  4573. snprintf(buf, 32, "domain%d", i);
  4574. entry->procname = kstrdup(buf, GFP_KERNEL);
  4575. entry->mode = 0755;
  4576. entry->child = sd_alloc_ctl_domain_table(sd);
  4577. entry++;
  4578. i++;
  4579. }
  4580. return table;
  4581. }
  4582. static struct ctl_table_header *sd_sysctl_header;
  4583. static void init_sched_domain_sysctl(void)
  4584. {
  4585. int i, cpu_num = num_online_cpus();
  4586. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4587. char buf[32];
  4588. sd_ctl_dir[0].child = entry;
  4589. for (i = 0; i < cpu_num; i++, entry++) {
  4590. snprintf(buf, 32, "cpu%d", i);
  4591. entry->procname = kstrdup(buf, GFP_KERNEL);
  4592. entry->mode = 0755;
  4593. entry->child = sd_alloc_ctl_cpu_table(i);
  4594. }
  4595. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4596. }
  4597. #else
  4598. static void init_sched_domain_sysctl(void)
  4599. {
  4600. }
  4601. #endif
  4602. /*
  4603. * migration_call - callback that gets triggered when a CPU is added.
  4604. * Here we can start up the necessary migration thread for the new CPU.
  4605. */
  4606. static int __cpuinit
  4607. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4608. {
  4609. struct task_struct *p;
  4610. int cpu = (long)hcpu;
  4611. unsigned long flags;
  4612. struct rq *rq;
  4613. switch (action) {
  4614. case CPU_LOCK_ACQUIRE:
  4615. mutex_lock(&sched_hotcpu_mutex);
  4616. break;
  4617. case CPU_UP_PREPARE:
  4618. case CPU_UP_PREPARE_FROZEN:
  4619. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4620. if (IS_ERR(p))
  4621. return NOTIFY_BAD;
  4622. kthread_bind(p, cpu);
  4623. /* Must be high prio: stop_machine expects to yield to it. */
  4624. rq = task_rq_lock(p, &flags);
  4625. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4626. task_rq_unlock(rq, &flags);
  4627. cpu_rq(cpu)->migration_thread = p;
  4628. break;
  4629. case CPU_ONLINE:
  4630. case CPU_ONLINE_FROZEN:
  4631. /* Strictly unneccessary, as first user will wake it. */
  4632. wake_up_process(cpu_rq(cpu)->migration_thread);
  4633. break;
  4634. #ifdef CONFIG_HOTPLUG_CPU
  4635. case CPU_UP_CANCELED:
  4636. case CPU_UP_CANCELED_FROZEN:
  4637. if (!cpu_rq(cpu)->migration_thread)
  4638. break;
  4639. /* Unbind it from offline cpu so it can run. Fall thru. */
  4640. kthread_bind(cpu_rq(cpu)->migration_thread,
  4641. any_online_cpu(cpu_online_map));
  4642. kthread_stop(cpu_rq(cpu)->migration_thread);
  4643. cpu_rq(cpu)->migration_thread = NULL;
  4644. break;
  4645. case CPU_DEAD:
  4646. case CPU_DEAD_FROZEN:
  4647. migrate_live_tasks(cpu);
  4648. rq = cpu_rq(cpu);
  4649. kthread_stop(rq->migration_thread);
  4650. rq->migration_thread = NULL;
  4651. /* Idle task back to normal (off runqueue, low prio) */
  4652. rq = task_rq_lock(rq->idle, &flags);
  4653. update_rq_clock(rq);
  4654. deactivate_task(rq, rq->idle, 0);
  4655. rq->idle->static_prio = MAX_PRIO;
  4656. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4657. rq->idle->sched_class = &idle_sched_class;
  4658. migrate_dead_tasks(cpu);
  4659. task_rq_unlock(rq, &flags);
  4660. migrate_nr_uninterruptible(rq);
  4661. BUG_ON(rq->nr_running != 0);
  4662. /* No need to migrate the tasks: it was best-effort if
  4663. * they didn't take sched_hotcpu_mutex. Just wake up
  4664. * the requestors. */
  4665. spin_lock_irq(&rq->lock);
  4666. while (!list_empty(&rq->migration_queue)) {
  4667. struct migration_req *req;
  4668. req = list_entry(rq->migration_queue.next,
  4669. struct migration_req, list);
  4670. list_del_init(&req->list);
  4671. complete(&req->done);
  4672. }
  4673. spin_unlock_irq(&rq->lock);
  4674. break;
  4675. #endif
  4676. case CPU_LOCK_RELEASE:
  4677. mutex_unlock(&sched_hotcpu_mutex);
  4678. break;
  4679. }
  4680. return NOTIFY_OK;
  4681. }
  4682. /* Register at highest priority so that task migration (migrate_all_tasks)
  4683. * happens before everything else.
  4684. */
  4685. static struct notifier_block __cpuinitdata migration_notifier = {
  4686. .notifier_call = migration_call,
  4687. .priority = 10
  4688. };
  4689. int __init migration_init(void)
  4690. {
  4691. void *cpu = (void *)(long)smp_processor_id();
  4692. int err;
  4693. /* Start one for the boot CPU: */
  4694. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4695. BUG_ON(err == NOTIFY_BAD);
  4696. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4697. register_cpu_notifier(&migration_notifier);
  4698. return 0;
  4699. }
  4700. #endif
  4701. #ifdef CONFIG_SMP
  4702. /* Number of possible processor ids */
  4703. int nr_cpu_ids __read_mostly = NR_CPUS;
  4704. EXPORT_SYMBOL(nr_cpu_ids);
  4705. #undef SCHED_DOMAIN_DEBUG
  4706. #ifdef SCHED_DOMAIN_DEBUG
  4707. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4708. {
  4709. int level = 0;
  4710. if (!sd) {
  4711. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4712. return;
  4713. }
  4714. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4715. do {
  4716. int i;
  4717. char str[NR_CPUS];
  4718. struct sched_group *group = sd->groups;
  4719. cpumask_t groupmask;
  4720. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4721. cpus_clear(groupmask);
  4722. printk(KERN_DEBUG);
  4723. for (i = 0; i < level + 1; i++)
  4724. printk(" ");
  4725. printk("domain %d: ", level);
  4726. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4727. printk("does not load-balance\n");
  4728. if (sd->parent)
  4729. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4730. " has parent");
  4731. break;
  4732. }
  4733. printk("span %s\n", str);
  4734. if (!cpu_isset(cpu, sd->span))
  4735. printk(KERN_ERR "ERROR: domain->span does not contain "
  4736. "CPU%d\n", cpu);
  4737. if (!cpu_isset(cpu, group->cpumask))
  4738. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4739. " CPU%d\n", cpu);
  4740. printk(KERN_DEBUG);
  4741. for (i = 0; i < level + 2; i++)
  4742. printk(" ");
  4743. printk("groups:");
  4744. do {
  4745. if (!group) {
  4746. printk("\n");
  4747. printk(KERN_ERR "ERROR: group is NULL\n");
  4748. break;
  4749. }
  4750. if (!group->__cpu_power) {
  4751. printk("\n");
  4752. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4753. "set\n");
  4754. }
  4755. if (!cpus_weight(group->cpumask)) {
  4756. printk("\n");
  4757. printk(KERN_ERR "ERROR: empty group\n");
  4758. }
  4759. if (cpus_intersects(groupmask, group->cpumask)) {
  4760. printk("\n");
  4761. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4762. }
  4763. cpus_or(groupmask, groupmask, group->cpumask);
  4764. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4765. printk(" %s", str);
  4766. group = group->next;
  4767. } while (group != sd->groups);
  4768. printk("\n");
  4769. if (!cpus_equal(sd->span, groupmask))
  4770. printk(KERN_ERR "ERROR: groups don't span "
  4771. "domain->span\n");
  4772. level++;
  4773. sd = sd->parent;
  4774. if (!sd)
  4775. continue;
  4776. if (!cpus_subset(groupmask, sd->span))
  4777. printk(KERN_ERR "ERROR: parent span is not a superset "
  4778. "of domain->span\n");
  4779. } while (sd);
  4780. }
  4781. #else
  4782. # define sched_domain_debug(sd, cpu) do { } while (0)
  4783. #endif
  4784. static int sd_degenerate(struct sched_domain *sd)
  4785. {
  4786. if (cpus_weight(sd->span) == 1)
  4787. return 1;
  4788. /* Following flags need at least 2 groups */
  4789. if (sd->flags & (SD_LOAD_BALANCE |
  4790. SD_BALANCE_NEWIDLE |
  4791. SD_BALANCE_FORK |
  4792. SD_BALANCE_EXEC |
  4793. SD_SHARE_CPUPOWER |
  4794. SD_SHARE_PKG_RESOURCES)) {
  4795. if (sd->groups != sd->groups->next)
  4796. return 0;
  4797. }
  4798. /* Following flags don't use groups */
  4799. if (sd->flags & (SD_WAKE_IDLE |
  4800. SD_WAKE_AFFINE |
  4801. SD_WAKE_BALANCE))
  4802. return 0;
  4803. return 1;
  4804. }
  4805. static int
  4806. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4807. {
  4808. unsigned long cflags = sd->flags, pflags = parent->flags;
  4809. if (sd_degenerate(parent))
  4810. return 1;
  4811. if (!cpus_equal(sd->span, parent->span))
  4812. return 0;
  4813. /* Does parent contain flags not in child? */
  4814. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  4815. if (cflags & SD_WAKE_AFFINE)
  4816. pflags &= ~SD_WAKE_BALANCE;
  4817. /* Flags needing groups don't count if only 1 group in parent */
  4818. if (parent->groups == parent->groups->next) {
  4819. pflags &= ~(SD_LOAD_BALANCE |
  4820. SD_BALANCE_NEWIDLE |
  4821. SD_BALANCE_FORK |
  4822. SD_BALANCE_EXEC |
  4823. SD_SHARE_CPUPOWER |
  4824. SD_SHARE_PKG_RESOURCES);
  4825. }
  4826. if (~cflags & pflags)
  4827. return 0;
  4828. return 1;
  4829. }
  4830. /*
  4831. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4832. * hold the hotplug lock.
  4833. */
  4834. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  4835. {
  4836. struct rq *rq = cpu_rq(cpu);
  4837. struct sched_domain *tmp;
  4838. /* Remove the sched domains which do not contribute to scheduling. */
  4839. for (tmp = sd; tmp; tmp = tmp->parent) {
  4840. struct sched_domain *parent = tmp->parent;
  4841. if (!parent)
  4842. break;
  4843. if (sd_parent_degenerate(tmp, parent)) {
  4844. tmp->parent = parent->parent;
  4845. if (parent->parent)
  4846. parent->parent->child = tmp;
  4847. }
  4848. }
  4849. if (sd && sd_degenerate(sd)) {
  4850. sd = sd->parent;
  4851. if (sd)
  4852. sd->child = NULL;
  4853. }
  4854. sched_domain_debug(sd, cpu);
  4855. rcu_assign_pointer(rq->sd, sd);
  4856. }
  4857. /* cpus with isolated domains */
  4858. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  4859. /* Setup the mask of cpus configured for isolated domains */
  4860. static int __init isolated_cpu_setup(char *str)
  4861. {
  4862. int ints[NR_CPUS], i;
  4863. str = get_options(str, ARRAY_SIZE(ints), ints);
  4864. cpus_clear(cpu_isolated_map);
  4865. for (i = 1; i <= ints[0]; i++)
  4866. if (ints[i] < NR_CPUS)
  4867. cpu_set(ints[i], cpu_isolated_map);
  4868. return 1;
  4869. }
  4870. __setup ("isolcpus=", isolated_cpu_setup);
  4871. /*
  4872. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  4873. * to a function which identifies what group(along with sched group) a CPU
  4874. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  4875. * (due to the fact that we keep track of groups covered with a cpumask_t).
  4876. *
  4877. * init_sched_build_groups will build a circular linked list of the groups
  4878. * covered by the given span, and will set each group's ->cpumask correctly,
  4879. * and ->cpu_power to 0.
  4880. */
  4881. static void
  4882. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  4883. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  4884. struct sched_group **sg))
  4885. {
  4886. struct sched_group *first = NULL, *last = NULL;
  4887. cpumask_t covered = CPU_MASK_NONE;
  4888. int i;
  4889. for_each_cpu_mask(i, span) {
  4890. struct sched_group *sg;
  4891. int group = group_fn(i, cpu_map, &sg);
  4892. int j;
  4893. if (cpu_isset(i, covered))
  4894. continue;
  4895. sg->cpumask = CPU_MASK_NONE;
  4896. sg->__cpu_power = 0;
  4897. for_each_cpu_mask(j, span) {
  4898. if (group_fn(j, cpu_map, NULL) != group)
  4899. continue;
  4900. cpu_set(j, covered);
  4901. cpu_set(j, sg->cpumask);
  4902. }
  4903. if (!first)
  4904. first = sg;
  4905. if (last)
  4906. last->next = sg;
  4907. last = sg;
  4908. }
  4909. last->next = first;
  4910. }
  4911. #define SD_NODES_PER_DOMAIN 16
  4912. #ifdef CONFIG_NUMA
  4913. /**
  4914. * find_next_best_node - find the next node to include in a sched_domain
  4915. * @node: node whose sched_domain we're building
  4916. * @used_nodes: nodes already in the sched_domain
  4917. *
  4918. * Find the next node to include in a given scheduling domain. Simply
  4919. * finds the closest node not already in the @used_nodes map.
  4920. *
  4921. * Should use nodemask_t.
  4922. */
  4923. static int find_next_best_node(int node, unsigned long *used_nodes)
  4924. {
  4925. int i, n, val, min_val, best_node = 0;
  4926. min_val = INT_MAX;
  4927. for (i = 0; i < MAX_NUMNODES; i++) {
  4928. /* Start at @node */
  4929. n = (node + i) % MAX_NUMNODES;
  4930. if (!nr_cpus_node(n))
  4931. continue;
  4932. /* Skip already used nodes */
  4933. if (test_bit(n, used_nodes))
  4934. continue;
  4935. /* Simple min distance search */
  4936. val = node_distance(node, n);
  4937. if (val < min_val) {
  4938. min_val = val;
  4939. best_node = n;
  4940. }
  4941. }
  4942. set_bit(best_node, used_nodes);
  4943. return best_node;
  4944. }
  4945. /**
  4946. * sched_domain_node_span - get a cpumask for a node's sched_domain
  4947. * @node: node whose cpumask we're constructing
  4948. * @size: number of nodes to include in this span
  4949. *
  4950. * Given a node, construct a good cpumask for its sched_domain to span. It
  4951. * should be one that prevents unnecessary balancing, but also spreads tasks
  4952. * out optimally.
  4953. */
  4954. static cpumask_t sched_domain_node_span(int node)
  4955. {
  4956. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  4957. cpumask_t span, nodemask;
  4958. int i;
  4959. cpus_clear(span);
  4960. bitmap_zero(used_nodes, MAX_NUMNODES);
  4961. nodemask = node_to_cpumask(node);
  4962. cpus_or(span, span, nodemask);
  4963. set_bit(node, used_nodes);
  4964. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  4965. int next_node = find_next_best_node(node, used_nodes);
  4966. nodemask = node_to_cpumask(next_node);
  4967. cpus_or(span, span, nodemask);
  4968. }
  4969. return span;
  4970. }
  4971. #endif
  4972. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  4973. /*
  4974. * SMT sched-domains:
  4975. */
  4976. #ifdef CONFIG_SCHED_SMT
  4977. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  4978. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  4979. static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
  4980. struct sched_group **sg)
  4981. {
  4982. if (sg)
  4983. *sg = &per_cpu(sched_group_cpus, cpu);
  4984. return cpu;
  4985. }
  4986. #endif
  4987. /*
  4988. * multi-core sched-domains:
  4989. */
  4990. #ifdef CONFIG_SCHED_MC
  4991. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  4992. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  4993. #endif
  4994. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  4995. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  4996. struct sched_group **sg)
  4997. {
  4998. int group;
  4999. cpumask_t mask = cpu_sibling_map[cpu];
  5000. cpus_and(mask, mask, *cpu_map);
  5001. group = first_cpu(mask);
  5002. if (sg)
  5003. *sg = &per_cpu(sched_group_core, group);
  5004. return group;
  5005. }
  5006. #elif defined(CONFIG_SCHED_MC)
  5007. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5008. struct sched_group **sg)
  5009. {
  5010. if (sg)
  5011. *sg = &per_cpu(sched_group_core, cpu);
  5012. return cpu;
  5013. }
  5014. #endif
  5015. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5016. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5017. static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
  5018. struct sched_group **sg)
  5019. {
  5020. int group;
  5021. #ifdef CONFIG_SCHED_MC
  5022. cpumask_t mask = cpu_coregroup_map(cpu);
  5023. cpus_and(mask, mask, *cpu_map);
  5024. group = first_cpu(mask);
  5025. #elif defined(CONFIG_SCHED_SMT)
  5026. cpumask_t mask = cpu_sibling_map[cpu];
  5027. cpus_and(mask, mask, *cpu_map);
  5028. group = first_cpu(mask);
  5029. #else
  5030. group = cpu;
  5031. #endif
  5032. if (sg)
  5033. *sg = &per_cpu(sched_group_phys, group);
  5034. return group;
  5035. }
  5036. #ifdef CONFIG_NUMA
  5037. /*
  5038. * The init_sched_build_groups can't handle what we want to do with node
  5039. * groups, so roll our own. Now each node has its own list of groups which
  5040. * gets dynamically allocated.
  5041. */
  5042. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5043. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5044. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5045. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5046. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5047. struct sched_group **sg)
  5048. {
  5049. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5050. int group;
  5051. cpus_and(nodemask, nodemask, *cpu_map);
  5052. group = first_cpu(nodemask);
  5053. if (sg)
  5054. *sg = &per_cpu(sched_group_allnodes, group);
  5055. return group;
  5056. }
  5057. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5058. {
  5059. struct sched_group *sg = group_head;
  5060. int j;
  5061. if (!sg)
  5062. return;
  5063. next_sg:
  5064. for_each_cpu_mask(j, sg->cpumask) {
  5065. struct sched_domain *sd;
  5066. sd = &per_cpu(phys_domains, j);
  5067. if (j != first_cpu(sd->groups->cpumask)) {
  5068. /*
  5069. * Only add "power" once for each
  5070. * physical package.
  5071. */
  5072. continue;
  5073. }
  5074. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5075. }
  5076. sg = sg->next;
  5077. if (sg != group_head)
  5078. goto next_sg;
  5079. }
  5080. #endif
  5081. #ifdef CONFIG_NUMA
  5082. /* Free memory allocated for various sched_group structures */
  5083. static void free_sched_groups(const cpumask_t *cpu_map)
  5084. {
  5085. int cpu, i;
  5086. for_each_cpu_mask(cpu, *cpu_map) {
  5087. struct sched_group **sched_group_nodes
  5088. = sched_group_nodes_bycpu[cpu];
  5089. if (!sched_group_nodes)
  5090. continue;
  5091. for (i = 0; i < MAX_NUMNODES; i++) {
  5092. cpumask_t nodemask = node_to_cpumask(i);
  5093. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5094. cpus_and(nodemask, nodemask, *cpu_map);
  5095. if (cpus_empty(nodemask))
  5096. continue;
  5097. if (sg == NULL)
  5098. continue;
  5099. sg = sg->next;
  5100. next_sg:
  5101. oldsg = sg;
  5102. sg = sg->next;
  5103. kfree(oldsg);
  5104. if (oldsg != sched_group_nodes[i])
  5105. goto next_sg;
  5106. }
  5107. kfree(sched_group_nodes);
  5108. sched_group_nodes_bycpu[cpu] = NULL;
  5109. }
  5110. }
  5111. #else
  5112. static void free_sched_groups(const cpumask_t *cpu_map)
  5113. {
  5114. }
  5115. #endif
  5116. /*
  5117. * Initialize sched groups cpu_power.
  5118. *
  5119. * cpu_power indicates the capacity of sched group, which is used while
  5120. * distributing the load between different sched groups in a sched domain.
  5121. * Typically cpu_power for all the groups in a sched domain will be same unless
  5122. * there are asymmetries in the topology. If there are asymmetries, group
  5123. * having more cpu_power will pickup more load compared to the group having
  5124. * less cpu_power.
  5125. *
  5126. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5127. * the maximum number of tasks a group can handle in the presence of other idle
  5128. * or lightly loaded groups in the same sched domain.
  5129. */
  5130. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5131. {
  5132. struct sched_domain *child;
  5133. struct sched_group *group;
  5134. WARN_ON(!sd || !sd->groups);
  5135. if (cpu != first_cpu(sd->groups->cpumask))
  5136. return;
  5137. child = sd->child;
  5138. sd->groups->__cpu_power = 0;
  5139. /*
  5140. * For perf policy, if the groups in child domain share resources
  5141. * (for example cores sharing some portions of the cache hierarchy
  5142. * or SMT), then set this domain groups cpu_power such that each group
  5143. * can handle only one task, when there are other idle groups in the
  5144. * same sched domain.
  5145. */
  5146. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5147. (child->flags &
  5148. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5149. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5150. return;
  5151. }
  5152. /*
  5153. * add cpu_power of each child group to this groups cpu_power
  5154. */
  5155. group = child->groups;
  5156. do {
  5157. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5158. group = group->next;
  5159. } while (group != child->groups);
  5160. }
  5161. /*
  5162. * Build sched domains for a given set of cpus and attach the sched domains
  5163. * to the individual cpus
  5164. */
  5165. static int build_sched_domains(const cpumask_t *cpu_map)
  5166. {
  5167. int i;
  5168. #ifdef CONFIG_NUMA
  5169. struct sched_group **sched_group_nodes = NULL;
  5170. int sd_allnodes = 0;
  5171. /*
  5172. * Allocate the per-node list of sched groups
  5173. */
  5174. sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
  5175. GFP_KERNEL);
  5176. if (!sched_group_nodes) {
  5177. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5178. return -ENOMEM;
  5179. }
  5180. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5181. #endif
  5182. /*
  5183. * Set up domains for cpus specified by the cpu_map.
  5184. */
  5185. for_each_cpu_mask(i, *cpu_map) {
  5186. struct sched_domain *sd = NULL, *p;
  5187. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5188. cpus_and(nodemask, nodemask, *cpu_map);
  5189. #ifdef CONFIG_NUMA
  5190. if (cpus_weight(*cpu_map) >
  5191. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5192. sd = &per_cpu(allnodes_domains, i);
  5193. *sd = SD_ALLNODES_INIT;
  5194. sd->span = *cpu_map;
  5195. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5196. p = sd;
  5197. sd_allnodes = 1;
  5198. } else
  5199. p = NULL;
  5200. sd = &per_cpu(node_domains, i);
  5201. *sd = SD_NODE_INIT;
  5202. sd->span = sched_domain_node_span(cpu_to_node(i));
  5203. sd->parent = p;
  5204. if (p)
  5205. p->child = sd;
  5206. cpus_and(sd->span, sd->span, *cpu_map);
  5207. #endif
  5208. p = sd;
  5209. sd = &per_cpu(phys_domains, i);
  5210. *sd = SD_CPU_INIT;
  5211. sd->span = nodemask;
  5212. sd->parent = p;
  5213. if (p)
  5214. p->child = sd;
  5215. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5216. #ifdef CONFIG_SCHED_MC
  5217. p = sd;
  5218. sd = &per_cpu(core_domains, i);
  5219. *sd = SD_MC_INIT;
  5220. sd->span = cpu_coregroup_map(i);
  5221. cpus_and(sd->span, sd->span, *cpu_map);
  5222. sd->parent = p;
  5223. p->child = sd;
  5224. cpu_to_core_group(i, cpu_map, &sd->groups);
  5225. #endif
  5226. #ifdef CONFIG_SCHED_SMT
  5227. p = sd;
  5228. sd = &per_cpu(cpu_domains, i);
  5229. *sd = SD_SIBLING_INIT;
  5230. sd->span = cpu_sibling_map[i];
  5231. cpus_and(sd->span, sd->span, *cpu_map);
  5232. sd->parent = p;
  5233. p->child = sd;
  5234. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5235. #endif
  5236. }
  5237. #ifdef CONFIG_SCHED_SMT
  5238. /* Set up CPU (sibling) groups */
  5239. for_each_cpu_mask(i, *cpu_map) {
  5240. cpumask_t this_sibling_map = cpu_sibling_map[i];
  5241. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5242. if (i != first_cpu(this_sibling_map))
  5243. continue;
  5244. init_sched_build_groups(this_sibling_map, cpu_map,
  5245. &cpu_to_cpu_group);
  5246. }
  5247. #endif
  5248. #ifdef CONFIG_SCHED_MC
  5249. /* Set up multi-core groups */
  5250. for_each_cpu_mask(i, *cpu_map) {
  5251. cpumask_t this_core_map = cpu_coregroup_map(i);
  5252. cpus_and(this_core_map, this_core_map, *cpu_map);
  5253. if (i != first_cpu(this_core_map))
  5254. continue;
  5255. init_sched_build_groups(this_core_map, cpu_map,
  5256. &cpu_to_core_group);
  5257. }
  5258. #endif
  5259. /* Set up physical groups */
  5260. for (i = 0; i < MAX_NUMNODES; i++) {
  5261. cpumask_t nodemask = node_to_cpumask(i);
  5262. cpus_and(nodemask, nodemask, *cpu_map);
  5263. if (cpus_empty(nodemask))
  5264. continue;
  5265. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5266. }
  5267. #ifdef CONFIG_NUMA
  5268. /* Set up node groups */
  5269. if (sd_allnodes)
  5270. init_sched_build_groups(*cpu_map, cpu_map,
  5271. &cpu_to_allnodes_group);
  5272. for (i = 0; i < MAX_NUMNODES; i++) {
  5273. /* Set up node groups */
  5274. struct sched_group *sg, *prev;
  5275. cpumask_t nodemask = node_to_cpumask(i);
  5276. cpumask_t domainspan;
  5277. cpumask_t covered = CPU_MASK_NONE;
  5278. int j;
  5279. cpus_and(nodemask, nodemask, *cpu_map);
  5280. if (cpus_empty(nodemask)) {
  5281. sched_group_nodes[i] = NULL;
  5282. continue;
  5283. }
  5284. domainspan = sched_domain_node_span(i);
  5285. cpus_and(domainspan, domainspan, *cpu_map);
  5286. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5287. if (!sg) {
  5288. printk(KERN_WARNING "Can not alloc domain group for "
  5289. "node %d\n", i);
  5290. goto error;
  5291. }
  5292. sched_group_nodes[i] = sg;
  5293. for_each_cpu_mask(j, nodemask) {
  5294. struct sched_domain *sd;
  5295. sd = &per_cpu(node_domains, j);
  5296. sd->groups = sg;
  5297. }
  5298. sg->__cpu_power = 0;
  5299. sg->cpumask = nodemask;
  5300. sg->next = sg;
  5301. cpus_or(covered, covered, nodemask);
  5302. prev = sg;
  5303. for (j = 0; j < MAX_NUMNODES; j++) {
  5304. cpumask_t tmp, notcovered;
  5305. int n = (i + j) % MAX_NUMNODES;
  5306. cpus_complement(notcovered, covered);
  5307. cpus_and(tmp, notcovered, *cpu_map);
  5308. cpus_and(tmp, tmp, domainspan);
  5309. if (cpus_empty(tmp))
  5310. break;
  5311. nodemask = node_to_cpumask(n);
  5312. cpus_and(tmp, tmp, nodemask);
  5313. if (cpus_empty(tmp))
  5314. continue;
  5315. sg = kmalloc_node(sizeof(struct sched_group),
  5316. GFP_KERNEL, i);
  5317. if (!sg) {
  5318. printk(KERN_WARNING
  5319. "Can not alloc domain group for node %d\n", j);
  5320. goto error;
  5321. }
  5322. sg->__cpu_power = 0;
  5323. sg->cpumask = tmp;
  5324. sg->next = prev->next;
  5325. cpus_or(covered, covered, tmp);
  5326. prev->next = sg;
  5327. prev = sg;
  5328. }
  5329. }
  5330. #endif
  5331. /* Calculate CPU power for physical packages and nodes */
  5332. #ifdef CONFIG_SCHED_SMT
  5333. for_each_cpu_mask(i, *cpu_map) {
  5334. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5335. init_sched_groups_power(i, sd);
  5336. }
  5337. #endif
  5338. #ifdef CONFIG_SCHED_MC
  5339. for_each_cpu_mask(i, *cpu_map) {
  5340. struct sched_domain *sd = &per_cpu(core_domains, i);
  5341. init_sched_groups_power(i, sd);
  5342. }
  5343. #endif
  5344. for_each_cpu_mask(i, *cpu_map) {
  5345. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5346. init_sched_groups_power(i, sd);
  5347. }
  5348. #ifdef CONFIG_NUMA
  5349. for (i = 0; i < MAX_NUMNODES; i++)
  5350. init_numa_sched_groups_power(sched_group_nodes[i]);
  5351. if (sd_allnodes) {
  5352. struct sched_group *sg;
  5353. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5354. init_numa_sched_groups_power(sg);
  5355. }
  5356. #endif
  5357. /* Attach the domains */
  5358. for_each_cpu_mask(i, *cpu_map) {
  5359. struct sched_domain *sd;
  5360. #ifdef CONFIG_SCHED_SMT
  5361. sd = &per_cpu(cpu_domains, i);
  5362. #elif defined(CONFIG_SCHED_MC)
  5363. sd = &per_cpu(core_domains, i);
  5364. #else
  5365. sd = &per_cpu(phys_domains, i);
  5366. #endif
  5367. cpu_attach_domain(sd, i);
  5368. }
  5369. return 0;
  5370. #ifdef CONFIG_NUMA
  5371. error:
  5372. free_sched_groups(cpu_map);
  5373. return -ENOMEM;
  5374. #endif
  5375. }
  5376. /*
  5377. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5378. */
  5379. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5380. {
  5381. cpumask_t cpu_default_map;
  5382. int err;
  5383. /*
  5384. * Setup mask for cpus without special case scheduling requirements.
  5385. * For now this just excludes isolated cpus, but could be used to
  5386. * exclude other special cases in the future.
  5387. */
  5388. cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
  5389. err = build_sched_domains(&cpu_default_map);
  5390. return err;
  5391. }
  5392. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5393. {
  5394. free_sched_groups(cpu_map);
  5395. }
  5396. /*
  5397. * Detach sched domains from a group of cpus specified in cpu_map
  5398. * These cpus will now be attached to the NULL domain
  5399. */
  5400. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5401. {
  5402. int i;
  5403. for_each_cpu_mask(i, *cpu_map)
  5404. cpu_attach_domain(NULL, i);
  5405. synchronize_sched();
  5406. arch_destroy_sched_domains(cpu_map);
  5407. }
  5408. /*
  5409. * Partition sched domains as specified by the cpumasks below.
  5410. * This attaches all cpus from the cpumasks to the NULL domain,
  5411. * waits for a RCU quiescent period, recalculates sched
  5412. * domain information and then attaches them back to the
  5413. * correct sched domains
  5414. * Call with hotplug lock held
  5415. */
  5416. int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
  5417. {
  5418. cpumask_t change_map;
  5419. int err = 0;
  5420. cpus_and(*partition1, *partition1, cpu_online_map);
  5421. cpus_and(*partition2, *partition2, cpu_online_map);
  5422. cpus_or(change_map, *partition1, *partition2);
  5423. /* Detach sched domains from all of the affected cpus */
  5424. detach_destroy_domains(&change_map);
  5425. if (!cpus_empty(*partition1))
  5426. err = build_sched_domains(partition1);
  5427. if (!err && !cpus_empty(*partition2))
  5428. err = build_sched_domains(partition2);
  5429. return err;
  5430. }
  5431. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5432. int arch_reinit_sched_domains(void)
  5433. {
  5434. int err;
  5435. mutex_lock(&sched_hotcpu_mutex);
  5436. detach_destroy_domains(&cpu_online_map);
  5437. err = arch_init_sched_domains(&cpu_online_map);
  5438. mutex_unlock(&sched_hotcpu_mutex);
  5439. return err;
  5440. }
  5441. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5442. {
  5443. int ret;
  5444. if (buf[0] != '0' && buf[0] != '1')
  5445. return -EINVAL;
  5446. if (smt)
  5447. sched_smt_power_savings = (buf[0] == '1');
  5448. else
  5449. sched_mc_power_savings = (buf[0] == '1');
  5450. ret = arch_reinit_sched_domains();
  5451. return ret ? ret : count;
  5452. }
  5453. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5454. {
  5455. int err = 0;
  5456. #ifdef CONFIG_SCHED_SMT
  5457. if (smt_capable())
  5458. err = sysfs_create_file(&cls->kset.kobj,
  5459. &attr_sched_smt_power_savings.attr);
  5460. #endif
  5461. #ifdef CONFIG_SCHED_MC
  5462. if (!err && mc_capable())
  5463. err = sysfs_create_file(&cls->kset.kobj,
  5464. &attr_sched_mc_power_savings.attr);
  5465. #endif
  5466. return err;
  5467. }
  5468. #endif
  5469. #ifdef CONFIG_SCHED_MC
  5470. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5471. {
  5472. return sprintf(page, "%u\n", sched_mc_power_savings);
  5473. }
  5474. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5475. const char *buf, size_t count)
  5476. {
  5477. return sched_power_savings_store(buf, count, 0);
  5478. }
  5479. SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5480. sched_mc_power_savings_store);
  5481. #endif
  5482. #ifdef CONFIG_SCHED_SMT
  5483. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5484. {
  5485. return sprintf(page, "%u\n", sched_smt_power_savings);
  5486. }
  5487. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5488. const char *buf, size_t count)
  5489. {
  5490. return sched_power_savings_store(buf, count, 1);
  5491. }
  5492. SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5493. sched_smt_power_savings_store);
  5494. #endif
  5495. /*
  5496. * Force a reinitialization of the sched domains hierarchy. The domains
  5497. * and groups cannot be updated in place without racing with the balancing
  5498. * code, so we temporarily attach all running cpus to the NULL domain
  5499. * which will prevent rebalancing while the sched domains are recalculated.
  5500. */
  5501. static int update_sched_domains(struct notifier_block *nfb,
  5502. unsigned long action, void *hcpu)
  5503. {
  5504. switch (action) {
  5505. case CPU_UP_PREPARE:
  5506. case CPU_UP_PREPARE_FROZEN:
  5507. case CPU_DOWN_PREPARE:
  5508. case CPU_DOWN_PREPARE_FROZEN:
  5509. detach_destroy_domains(&cpu_online_map);
  5510. return NOTIFY_OK;
  5511. case CPU_UP_CANCELED:
  5512. case CPU_UP_CANCELED_FROZEN:
  5513. case CPU_DOWN_FAILED:
  5514. case CPU_DOWN_FAILED_FROZEN:
  5515. case CPU_ONLINE:
  5516. case CPU_ONLINE_FROZEN:
  5517. case CPU_DEAD:
  5518. case CPU_DEAD_FROZEN:
  5519. /*
  5520. * Fall through and re-initialise the domains.
  5521. */
  5522. break;
  5523. default:
  5524. return NOTIFY_DONE;
  5525. }
  5526. /* The hotplug lock is already held by cpu_up/cpu_down */
  5527. arch_init_sched_domains(&cpu_online_map);
  5528. return NOTIFY_OK;
  5529. }
  5530. void __init sched_init_smp(void)
  5531. {
  5532. cpumask_t non_isolated_cpus;
  5533. mutex_lock(&sched_hotcpu_mutex);
  5534. arch_init_sched_domains(&cpu_online_map);
  5535. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5536. if (cpus_empty(non_isolated_cpus))
  5537. cpu_set(smp_processor_id(), non_isolated_cpus);
  5538. mutex_unlock(&sched_hotcpu_mutex);
  5539. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5540. hotcpu_notifier(update_sched_domains, 0);
  5541. init_sched_domain_sysctl();
  5542. /* Move init over to a non-isolated CPU */
  5543. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5544. BUG();
  5545. sched_init_granularity();
  5546. }
  5547. #else
  5548. void __init sched_init_smp(void)
  5549. {
  5550. sched_init_granularity();
  5551. }
  5552. #endif /* CONFIG_SMP */
  5553. int in_sched_functions(unsigned long addr)
  5554. {
  5555. /* Linker adds these: start and end of __sched functions */
  5556. extern char __sched_text_start[], __sched_text_end[];
  5557. return in_lock_functions(addr) ||
  5558. (addr >= (unsigned long)__sched_text_start
  5559. && addr < (unsigned long)__sched_text_end);
  5560. }
  5561. static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  5562. {
  5563. cfs_rq->tasks_timeline = RB_ROOT;
  5564. cfs_rq->fair_clock = 1;
  5565. #ifdef CONFIG_FAIR_GROUP_SCHED
  5566. cfs_rq->rq = rq;
  5567. #endif
  5568. }
  5569. void __init sched_init(void)
  5570. {
  5571. u64 now = sched_clock();
  5572. int highest_cpu = 0;
  5573. int i, j;
  5574. /*
  5575. * Link up the scheduling class hierarchy:
  5576. */
  5577. rt_sched_class.next = &fair_sched_class;
  5578. fair_sched_class.next = &idle_sched_class;
  5579. idle_sched_class.next = NULL;
  5580. for_each_possible_cpu(i) {
  5581. struct rt_prio_array *array;
  5582. struct rq *rq;
  5583. rq = cpu_rq(i);
  5584. spin_lock_init(&rq->lock);
  5585. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5586. rq->nr_running = 0;
  5587. rq->clock = 1;
  5588. init_cfs_rq(&rq->cfs, rq);
  5589. #ifdef CONFIG_FAIR_GROUP_SCHED
  5590. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5591. list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  5592. #endif
  5593. rq->ls.load_update_last = now;
  5594. rq->ls.load_update_start = now;
  5595. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5596. rq->cpu_load[j] = 0;
  5597. #ifdef CONFIG_SMP
  5598. rq->sd = NULL;
  5599. rq->active_balance = 0;
  5600. rq->next_balance = jiffies;
  5601. rq->push_cpu = 0;
  5602. rq->cpu = i;
  5603. rq->migration_thread = NULL;
  5604. INIT_LIST_HEAD(&rq->migration_queue);
  5605. #endif
  5606. atomic_set(&rq->nr_iowait, 0);
  5607. array = &rq->rt.active;
  5608. for (j = 0; j < MAX_RT_PRIO; j++) {
  5609. INIT_LIST_HEAD(array->queue + j);
  5610. __clear_bit(j, array->bitmap);
  5611. }
  5612. highest_cpu = i;
  5613. /* delimiter for bitsearch: */
  5614. __set_bit(MAX_RT_PRIO, array->bitmap);
  5615. }
  5616. set_load_weight(&init_task);
  5617. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5618. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5619. #endif
  5620. #ifdef CONFIG_SMP
  5621. nr_cpu_ids = highest_cpu + 1;
  5622. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5623. #endif
  5624. #ifdef CONFIG_RT_MUTEXES
  5625. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5626. #endif
  5627. /*
  5628. * The boot idle thread does lazy MMU switching as well:
  5629. */
  5630. atomic_inc(&init_mm.mm_count);
  5631. enter_lazy_tlb(&init_mm, current);
  5632. /*
  5633. * Make us the idle thread. Technically, schedule() should not be
  5634. * called from this thread, however somewhere below it might be,
  5635. * but because we are the idle thread, we just pick up running again
  5636. * when this runqueue becomes "idle".
  5637. */
  5638. init_idle(current, smp_processor_id());
  5639. /*
  5640. * During early bootup we pretend to be a normal task:
  5641. */
  5642. current->sched_class = &fair_sched_class;
  5643. }
  5644. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5645. void __might_sleep(char *file, int line)
  5646. {
  5647. #ifdef in_atomic
  5648. static unsigned long prev_jiffy; /* ratelimiting */
  5649. if ((in_atomic() || irqs_disabled()) &&
  5650. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5651. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5652. return;
  5653. prev_jiffy = jiffies;
  5654. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5655. " context at %s:%d\n", file, line);
  5656. printk("in_atomic():%d, irqs_disabled():%d\n",
  5657. in_atomic(), irqs_disabled());
  5658. debug_show_held_locks(current);
  5659. if (irqs_disabled())
  5660. print_irqtrace_events(current);
  5661. dump_stack();
  5662. }
  5663. #endif
  5664. }
  5665. EXPORT_SYMBOL(__might_sleep);
  5666. #endif
  5667. #ifdef CONFIG_MAGIC_SYSRQ
  5668. void normalize_rt_tasks(void)
  5669. {
  5670. struct task_struct *g, *p;
  5671. unsigned long flags;
  5672. struct rq *rq;
  5673. int on_rq;
  5674. read_lock_irq(&tasklist_lock);
  5675. do_each_thread(g, p) {
  5676. p->se.fair_key = 0;
  5677. p->se.wait_runtime = 0;
  5678. p->se.exec_start = 0;
  5679. p->se.wait_start_fair = 0;
  5680. p->se.sleep_start_fair = 0;
  5681. #ifdef CONFIG_SCHEDSTATS
  5682. p->se.wait_start = 0;
  5683. p->se.sleep_start = 0;
  5684. p->se.block_start = 0;
  5685. #endif
  5686. task_rq(p)->cfs.fair_clock = 0;
  5687. task_rq(p)->clock = 0;
  5688. if (!rt_task(p)) {
  5689. /*
  5690. * Renice negative nice level userspace
  5691. * tasks back to 0:
  5692. */
  5693. if (TASK_NICE(p) < 0 && p->mm)
  5694. set_user_nice(p, 0);
  5695. continue;
  5696. }
  5697. spin_lock_irqsave(&p->pi_lock, flags);
  5698. rq = __task_rq_lock(p);
  5699. #ifdef CONFIG_SMP
  5700. /*
  5701. * Do not touch the migration thread:
  5702. */
  5703. if (p == rq->migration_thread)
  5704. goto out_unlock;
  5705. #endif
  5706. update_rq_clock(rq);
  5707. on_rq = p->se.on_rq;
  5708. if (on_rq)
  5709. deactivate_task(rq, p, 0);
  5710. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5711. if (on_rq) {
  5712. activate_task(rq, p, 0);
  5713. resched_task(rq->curr);
  5714. }
  5715. #ifdef CONFIG_SMP
  5716. out_unlock:
  5717. #endif
  5718. __task_rq_unlock(rq);
  5719. spin_unlock_irqrestore(&p->pi_lock, flags);
  5720. } while_each_thread(g, p);
  5721. read_unlock_irq(&tasklist_lock);
  5722. }
  5723. #endif /* CONFIG_MAGIC_SYSRQ */
  5724. #ifdef CONFIG_IA64
  5725. /*
  5726. * These functions are only useful for the IA64 MCA handling.
  5727. *
  5728. * They can only be called when the whole system has been
  5729. * stopped - every CPU needs to be quiescent, and no scheduling
  5730. * activity can take place. Using them for anything else would
  5731. * be a serious bug, and as a result, they aren't even visible
  5732. * under any other configuration.
  5733. */
  5734. /**
  5735. * curr_task - return the current task for a given cpu.
  5736. * @cpu: the processor in question.
  5737. *
  5738. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5739. */
  5740. struct task_struct *curr_task(int cpu)
  5741. {
  5742. return cpu_curr(cpu);
  5743. }
  5744. /**
  5745. * set_curr_task - set the current task for a given cpu.
  5746. * @cpu: the processor in question.
  5747. * @p: the task pointer to set.
  5748. *
  5749. * Description: This function must only be used when non-maskable interrupts
  5750. * are serviced on a separate stack. It allows the architecture to switch the
  5751. * notion of the current task on a cpu in a non-blocking manner. This function
  5752. * must be called with all CPU's synchronized, and interrupts disabled, the
  5753. * and caller must save the original value of the current task (see
  5754. * curr_task() above) and restore that value before reenabling interrupts and
  5755. * re-starting the system.
  5756. *
  5757. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5758. */
  5759. void set_curr_task(int cpu, struct task_struct *p)
  5760. {
  5761. cpu_curr(cpu) = p;
  5762. }
  5763. #endif